WorldWideScience

Sample records for normal lipoprotein receptors

  1. Lipoprotein receptors in cultured bovine endothelial cells

    International Nuclear Information System (INIS)

    Struempfer, A.E.M.

    1983-07-01

    In this study, receptors that may be involved in the uptake of low density lipoproteins (LDL) and low density lipoproteins which have been modified by acetylation (AcLDL), were characterized. Aortic epithelial cells were used and a cell culture system which closely resembled the in vivo monolayer was established. Endothelial cell and lipoprotein interactions were examined by incubating the cells with 125 l-labelled lipoproteins under various conditions. The receptor affinity of bovine aortic endothelial cells was higher for AcLDL than that for LDL. Competition studies demonstrated that there were two distinct receptors for LDL and AcLDL on the endothelial cells. AcLDL did not compete with LDL for the LDL receptor, and conversely LDL did not compete with AcLDL for the AcLDL receptor. The receptor activities for LDL and AcLDL were examined as a function of culture age. Whereas the LDL receptor could be regulated, the AcLDL receptor was not as susceptible to regulation. Upon exposing endothelial cells for 72 h to either LDL or AcLDL, it was found that the total amount of cellular cholesterol increased by about 50%. However, the increase of total cholesterol was largely in the form of free cholesterol. This is in contrast to macrophages, where the increase in total cholesterol upon exposure to AcLDL is largely in the form cholesteryl esters

  2. Low density lipoprotein receptors: preliminary results on 'in vivo' study

    International Nuclear Information System (INIS)

    Lupattelli, G.; Virgolini, I.; Li, S.R.; Sinzinger, H.

    1991-01-01

    Plasmatic levels of low density lipoproteins (LDL) are regulated by the receptor pathway and most LDL receptor are located in the liver. A receptor defect due to genetic mutations of the LDL receptor gene is the cause of familial hypercholesterolemia (F.H.), a disease characterized by high cholesterol levels and premature atherosclerosis. Injections of autologous radiolabelled LDL, followed by hepatic scintiscanning, can be used to obtain 'in vivo' quantification of hepatic receptor activity, both in normal and hypercholesterolemic patients. In this study we observe no hepatic increase of radioactivity in patients affected by F.H., confirming the liver receptor defect. Scintigraphy is a non-invasive technique which can be used to diagnose this disease and to monitor the efficiacy of hypolipidemic therapy. (Authors)

  3. Neuronal low-density lipoprotein receptor-related protein 1 binds and endocytoses prion fibrils via receptor cluster 4

    DEFF Research Database (Denmark)

    Jen, Angela; Parkyn, Celia J; Mootoosamy, Roy C

    2010-01-01

    For infectious prion protein (designated PrP(Sc)) to act as a template to convert normal cellular protein (PrP(C)) to its distinctive pathogenic conformation, the two forms of prion protein (PrP) must interact closely. The neuronal receptor that rapidly endocytoses PrP(C) is the low......-density lipoprotein receptor-related protein 1 (LRP1). We show here that on sensory neurons LRP1 is also the receptor that binds and rapidly endocytoses smaller oligomeric forms of infectious prion fibrils, and recombinant PrP fibrils. Although LRP1 binds two molecules of most ligands independently to its receptor...... both prion and LRP1 biology....

  4. Familial defective apolipoprotein B-100: low density lipoproteins with abnormal receptor binding

    International Nuclear Information System (INIS)

    Innerarity, T.L.; Weisgraber, K.H.; Arnold, K.S.; Mahley, R.W.; Krauss, R.M.; Vega, G.L.; Grundy, S.M.

    1987-01-01

    Previous in vivo turnover studies suggested that retarded clearance of low density lipoproteins (LDL) from the plasma of some hypercholesterolemic patients is due to LDL with defective receptor binding. The present study examined this postulate directly by receptor binding experiments. The LDL from a hypercholesterolemic patient (G.R.) displayed a reduced ability to bind to the LDL receptors on normal human fibroblasts. The G.R. LDL possessed 32% of normal receptor binding activity. Likewise, the G.R. LDL were much less effective than normal LDL in competing with 125 I-labeled normal LDL for cellular uptake and degradation and in stimulating intracellular cholesteryl ester synthesis. The defect in LDL binding appears to be due to a genetic abnormality of apolipoprotein B-100: two brothers of the proband possess LDL defective in receptor binding, whereas a third brother and the proband's son have normally binding LDL. Further, the defect in receptor binding does not appear to be associated wit an abnormal lipid composition or structure of the LDL. Normal and abnormal LDL subpopulations were partially separated from plasma of two subjects by density-gradient ultracentrifugation, a finding consistent with the presence of a normal and a mutant allele. The affected family members appear to be heterozygous for this disorder, which has been designated familial defective apolipoprotein B-100. These studies indicate that the defective receptor binding results in inefficient clearance of LDL and the hypercholesterolemia observed in these patients

  5. Effects of 1,2-cyclohexanedione modification on the metabolism of very low density lipoprotein apolipoprotein B: potential role of receptors in intermediate density lipoprotein catabolism

    International Nuclear Information System (INIS)

    Packard, C.J.; Boag, D.E.; Clegg, R.; Bedford, D.; Shepherd, J.

    1985-01-01

    The conversion of very low density (VLDL) to low density lipoproteins (LDL) is a two-step process. The first step is mediated by lipoprotein lipase, but the mechanism responsible for the second is obscure. In this study we examined the possible involvement of receptors at this stage. Apolipoprotein B (apoB)-containing lipoproteins were separated into three fractions, VLDL (Sf 100-400), an intermediate fraction IDL (Sf 12-100), and LDL (Sf 0-12). Autologous 125I-labeled VLDL and 131I-labeled 1,2-cyclohexanedione-modified VLDL were injected into the plasma of four normal subjects and the rate of transfer of apoB radioactivity was followed through IDL to LDL. Modification did not affect VLDL to IDL conversion. Thereafter, however, the catabolism of modified apoB in IDL was retarded and its appearance in LDL was delayed. Hence, functional arginine residues (and by implication, receptors) are required in this process. Confirmation of this was obtained by injecting 125I-labeled IDL and 131I-labeled cyclohexanedione-treated IDL into two additional subjects. Again, IDL metabolism was delayed by approximately 50% as a result of the modification. These data are consistent with the view that receptors are involved in the metabolism of intermediate density lipoprotein

  6. Demonstration of functional low-density lipoprotein receptors by protein blotting in fibroblasts from a subject with homozygous receptor-negative familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Semenkovich, C.F.; Ostlund, R.E. Jr.; Yang, J.; Reaban, M.E.

    1985-01-01

    We report the detection of low-density lipoprotein (LDL) receptors by the technique of receptor blotting in fibroblasts from a patient with homozygous familial hypercholesterolemia (FHC) previously classified as ''receptor negative.'' Solubilized receptors were electrophoresed, transferred to nitrocellulose paper, treated with LDL followed by radiolabeled antibody to LDL, and visualized by autoradiography. GM 2000 FHC fibroblasts revealed LDL receptors with an apparent molecular weight of approximately 140,000, the same as in normal cells. LDL receptor activity by blotting in GM 2000 cells was greatly diminished in comparison with normal cells, but was calcium dependent. Receptor activity was also detectable by conventional monolayer binding and degradation assays. Thus, GM 2000 cells have profoundly diminished LDL receptor activity, but retain the genetic capacity to make LDL receptor material of normal molecular weight that is capable of binding LDL. Previous studies have demonstrated the presence of trace amounts of immunoreactive LDL receptor protein in fibroblasts from some receptor-negative FHC homozygotes. These studies are extended by demonstrating the ability of this material to bind LDL

  7. Membrane receptors for very low density lipoprotein (VLDL) inhibitor of lymphocyte proliferation

    International Nuclear Information System (INIS)

    Yi, P.I.; Beck, G.; Zucker, S.

    1981-01-01

    Physiologic concentrations of human plasma very low density lipoproteins inhibit the DNA synthesis of lymphocytes stimulated by allogeneic cells or lectins. In this report reachers have compared the effects of isolated lipoproteins [very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)] and lipoprotein-depleted plasma (LDP) on DNA synthesis by phytohemagglutinin-stimulated human lymphocytes. The relative potency for the inhibition of lymphocyte proliferation was VLDL greater than LDL greater than HDL greater than LDP. Fifty percent inhibition of DNA synthesis was observed at a VLDL protein concentration of 1.5--2.0 microgram/ml. Researchers have further demonstrated the presence of specific receptors for VLDL on human lymphocytes. Native VLDL was more effective than LDL in competing for 125I-VLDL binding sites. Subsequent to binding to lymphocytes, 125I-VLDL was internalized and degraded to acid-soluble products. Based on a Scatchard analysis of VLDL binding at 4 degrees C, the number of VLDL receptors per lymphocyte was estimated at 28,000 +/- 1300. Based on an estimated mean binding affinity for the VLDL receptor complex at half saturation of approximately 8.8 X 10(7) liter/mole, it is estimated that 91% of lymphocyte VLDL receptors are occupied at physiologic VLDL concentrations in blood. Although the immune regulatory role of plasma lipoproteins is uncertain, researchers suggest tha VLDL and LDL-In may maintain circulating blood lymphocytes in a nonproliferative state via their respective cell receptor mechanisms

  8. Effect of neoadjuvant chemotherapy on low-density lipoprotein (LDL) receptor and LDL receptor-related protein 1 (LRP-1) receptor in locally advanced breast cancer

    International Nuclear Information System (INIS)

    Pires, L.A.; Hegg, R.; Freitas, F.R.; Tavares, E.R.; Almeida, C.P.; Baracat, E.C.; Maranhão, R.C.

    2012-01-01

    Low-density lipoprotein (LDL) receptors are overexpressed in most neoplastic cell lines and provide a mechanism for the internalization and concentration of drug-laden nanoemulsions that bind to these receptors. The aim of the present study was to determine whether the administration of standard chemotherapeutic schemes can alter the expression of LDL and LDL receptor-related protein 1 (LRP-1) receptors in breast carcinoma. Fragments of tumoral and normal breast tissue from 16 consecutive volunteer women with breast cancer in stage II or III were obtained from biopsies before the beginning of neoadjuvant chemotherapy and after chemotherapy, from fragments excised during mastectomy. Tissues were analyzed by immunohistochemistry for both receptors. Because complete response to treatment was achieved in 4 patients, only the tumors from 12 were analyzed. Before chemotherapy, there was overexpression of LDL receptor in the tumoral tissue compared to normal breast tissue in 8 of these patients. LRP-1 receptor overexpression was observed in tumors of 4 patients. After chemotherapy, expression of both receptors decreased in the tumors of 6 patients, increased in 4 and was unchanged in 2. Nonetheless, even when chemotherapy reduced receptors expression, the expression was still above normal. The fact that chemotherapy does not impair LDL receptors expression supports the use of drug carrier systems that target neoplastic cells by the LDL receptor endocytic pathway in patients on conventional chemotherapy

  9. Experimental hypothyroidism modulates the expression of the low density lipoprotein receptor by the liver

    International Nuclear Information System (INIS)

    Scarabottolo, Lia; Trezzi, Ermanno; Roma, Paola; Catapano, A.L.

    1986-01-01

    The effect of exprimental hypothyroidism of the catabolism of plasma lipoproteins and on the expression of low density lipoprotein receptors by the liver was investigated in rats made hypothyroid by surgery. The animals developed mild hypercholesterolemia, mainly due to an increase of plasma low density lipoprotein, while other lipoprotein classes were only marginally affected. Kinetic studies using ( 125 I)LDL indicated that a decreased fractional catabolic rate of the lipoprotein was responsible for this finding in agreement with the in vitro observation of a reduced binding of lipoproteins to liver membranes from hyperthyroid rats and with the demonstrations, by ligand blotting analysis, of a decreasd expression of lipoprotein receptors in liver membranes. These data suggest that hypothyroidism affects lipoprotein distribution also by decreasing the catabolism of low density lipoproteins by the liver (author)

  10. Cholesterol transfer from normal and atherogenic low density lipoproteins to Mycoplasma membranes

    International Nuclear Information System (INIS)

    Mitschelen, J.J.; St Clair, R.W.; Hester, S.H.

    1981-01-01

    The purpose of this study was to determine whether the free cholesterol of hypercholesterolemic low density lipoprotein from cholesterol-fed nonhuman primates has a greater potential for surface transfer to cell membranes than does the free cholesterol of normal low density lipoprotein. The low density lipoproteins were isolated from normal and hypercholesterolemic rhesus and cynomolgus monkeys, incubated with membranes from Acholeplasma laidlawii, a mycoplasma species devoid of cholesterol in its membranes, and the mass transfer of free cholesterol determined by measuring membrane cholesterol content. Since these membranes neither synthesize nor esterify cholesterol, nor degrade the protein or cholesterol ester moieties of low density lipoprotein, they are an ideal model with which to study differences in the cholesterol transfer potential of low density lipoprotein independent of the uptake of the intact low density lipoprotein particle. These studies indicate that, even though there are marked differences in the cholesterol composition of normal and hypercholesterolemic low density lipoproteins, this does not result in a greater chemical potential for surface transfer of free cholesterol. Consequently, if a difference in the surface transfer of free cholesterol is responsible for the enhanced ability of hypercholesterolemic low density lipoprotein to promote cellular cholesterol accumulation and, perhaps, also atherosclerosis, it must be the result of differences in the interaction to the hypercholesterolemic low density lipoprotein with the more complicated mammalian cell membranes, rather than differences in the chemical potential for cholesterol transfer

  11. Receptor-mediated endocytosis of low density lipoproteins in aortic endothelial cells

    International Nuclear Information System (INIS)

    Sanan, D.A.

    1986-04-01

    Lipoprotein binding and metabolism in actively-dividing (subconfluent) and quiescent (postconfluent) bovine aortic endothelial cells (ECs) were qualitatively investigated by fluorescence microscopy using dioctadecylindocarbocyanine-labelled lipoproteins and by indirect immunofluorescence microscopy. LDL and acetylated-LDL (AcLDL) were seen bound to the surfaces of subconfluent ECs (at 4 degrees C or at 37 degrees C), as a random distribution of punctate foci. ECs therefore closely resembled fibroblasts in the distribution of LDL receptors on their surfaces. No binding of LDL was seen on postconfluent EC surfaces by either direct or indirect fluorescence microscopy. The patterns of AcLDL binding on postconfluent ECs resembled those on subconfluent ECs. Intracellular LDL and AcLDL occurred as perinuclear accumulations of large fluorescent disc-shaped profiles in subconfluent ECs. These accumulations were shown to arise from surface-bound material by pulse-chase experiments. Intracellular LDL was absent in the majority of postconfluent ECs, while AcLDL accumulation was massive. 'Wounding' of cultures allowed simultaneous assessment of lipoprotein metabolism in quiescent and actively-dividing areas of the same culture. It is concluded that postconfluent quiescent bovine aortic ECs in vitro metabolise virtually no LDL via the LDL-receptor pathway due to a vanishingly low number of LDL receptors. This contrasts with the ability of postconfluent cells to metabolise relatively large amounts of AcLDL via a receptor-mediated mechanism. The significance of these conclusions is discussed with respect to the interaction of plasma lipoproteins with the endothelium in vivo. 301 refs

  12. The multiligand α2-macroglobulin receptor/low density lipoprotein receptor-related protein

    DEFF Research Database (Denmark)

    Gliemann, Jørgen; Nykjær, Anders; Petersen, Claus Munck

    1994-01-01

    The fusion of separate lines of research has greatly helped in elucidating the function of the giant members of the low density lipoprotein (LDL) receptor (LDLR) supergene family. The cDNA encoding a large protein structurally closely related to LDLR, and hence named LDLR-related protein (LRP......), was cloned by Herz et al. in 1988.'Evidence was provided demonstrating that LRP can function as a receptor for chylomicron remnants@-migrating very low density lipoproteins (P-VLDL) rich in apolipoprotein E (apoE)?' The a2-macroglobulin (a2M) receptor (a2MR) was purified from rat livep and human p l a~e n t...... from the observation that affinity-purified a2MR/LRP contains a 40-kDa5.8 or 39-kDa6.' protein, designated a2MRAP, in addition to the a2MFULRP a- and P-chains. cDNA cloning" disclosed the 323-residue protein as both the human homologue of mouse heparin binding protein 44 (see reference 11) and...

  13. An extrahepatic receptor-associated protein-sensitive mechanism is involved in the metabolism of triglyceride-rich lipoproteins

    NARCIS (Netherlands)

    Vlijmen, B.J.M. van; Rohlmann, A.; Page, S.T.; Bensadoun, A.; Bos, I.S.T.; Berkel, T.J.C. van; Havekes, L.M.; Herz, J.

    1999-01-01

    We have used adenovirus-mediated gene transfer in mice to investigate low density lipoprotein receptor (LDLR) and LDLR-related protein (LRP)- independent mechanisms that control the metabolism of chylomicron and very low density lipoprotein (VLDL) remnants in vivo. Overexpression of receptor-

  14. Binding of digitoxin and digoxin to normal human β-lipoproteins

    International Nuclear Information System (INIS)

    Brock, A.

    1976-01-01

    The binding of digitoxin and digoxin to purified β-lipoprotein, obtained from pooled normal human serum, was studied under equilibrium conditions. Even with as high concentrations of unbound digitoxin or digoxin as 4 μmol/l, the preparations of β-lipoproteins, containing cholesterol 1.98-3.95 mmol/l, showed no signs of saturation. The binding affinity of digitoxin was about ten times as high as that of digoxin. Gel filtration chromatography, performed on native serum after addition of 3 H-digitoxin or 3 H-digoxin, showed a minor fraction of the cardiac glycosides to be associated with te protein fraction of highest molecular weight. This phenomenon disappeared after precipitation of the β-lipoproteins. In clinical relations the contribution of protein-bound digitoxin caused by the lipoprotein interaction is immaterial compared to that caused by the albumin interaction. (author)

  15. Low density lipoprotein induces upregulation of vasoconstrictive endothelin type B receptor expression

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Zheng, Jian-Pu; Zhang, Wei

    2014-01-01

    Vasoconstrictive endothelin type B (ET(B)) receptors promote vasospasm and ischemic cerebro- and cardiovascular diseases. The present study was designed to examine if low density lipoprotein (LDL) induces upregulation of vasoconstrictive ET(B) receptor expression and if extracellular signal...

  16. Peri and Postparturient Concentrations of Lipid Lipoprotein Insulin and Glucose in Normal Dairy Cows

    OpenAIRE

    BAŞOĞLU, Abdullah; SEVİNÇ, Mutlu; OK, Mahmut

    1998-01-01

    In order to provide uniqe insight into the metabolic disturbences seen after calving cholesterol, triglycerid, high density lipoprotein, low density lipoprotein, very low density lipoprotein, glucose and insulin levels in serum were studied before calving (group I), in aerly (group II) and late (group III) lactation in 24 normal cows. Serum lipoproteins were separeted into various density classes by repeated ultracentrifugation. The results indicate that there was a rise in glucose, trygl...

  17. Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system.

    Science.gov (United States)

    Liu, Qiang; Zhang, Juan; Zerbinatti, Celina; Zhan, Yan; Kolber, Benedict J; Herz, Joachim; Muglia, Louis J; Bu, Guojun

    2011-01-11

    Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system.

  18. Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system.

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2011-01-01

    Full Text Available Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system.

  19. Serum lipoproteins attenuate macrophage activation and Toll-Like Receptor stimulation by bacterial lipoproteins

    Directory of Open Access Journals (Sweden)

    James Richard W

    2010-09-01

    Full Text Available Abstract Background Chlamydia trachomatis was previously shown to express a lipoprotein, the macrophage infectivity potentiator (Mip, exposed at the bacterial surface, and able to stimulate human primary monocytes/macrophages through Toll Like Receptor (TLR2/TLR1/TLR6, and CD14. In PMA-differentiated THP-1 cells the proinflammatory activity of Mip was significantly higher in the absence than in the presence of serum. The present study aims to investigate the ability of different serum factors to attenuate Mip proinflammatory activity in PMA-differentiated THP-1 cells and in primary human differentiated macrophages. The study was also extend to another lipoprotein, the Borrelia burgdorferi outer surface protein (OspA. The proinflammatory activity was studied through Tumor Necrosis Factor alpha (TNF-α and Interleukin (IL-8 release. Finally, TLR1/2 human embryonic kidney-293 (HEK-293 transfected cells were used to test the ability of the serum factors to inhibit Mip and OspA proinflammatory activity. Results In the absence of any serum and in the presence of 10% delipidated FBS, production of Mip-induced TNF-α and IL-8 in PMA-differentiated THP-1 cells were similar whereas they were significantly decreased in the presence of 10% FBS suggesting an inhibiting role of lipids present in FBS. In the presence of 10% human serum, the concentrations of TNF-α and IL-8 were 2 to 5 times lower than in the presence of 10% FBS suggesting the presence of more potent inhibitor(s in human serum than in FBS. Similar results were obtained in primary human differentiated macrophages. Different lipid components of human serum were then tested (total lipoproteins, HDL, LDL, VLDL, triglyceride emulsion, apolipoprotein (apoA-I, B, E2, and E3. The most efficient inhibitors were LDL, VLDL, and apoB that reduced the mean concentration of TNF-α release in Mip-induced macrophages to 24, 20, and 2%, respectively (p Conclusions These results demonstrated the ability of

  20. Impaired low-density lipoprotein receptor activity in chronic B-lymphocytic leukaemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Juliusson, G.; Vitols, S.

    1988-01-01

    Cellular degradation of /sup 125/I-labelled low-density lipoprotein (LDL) was analysed in freshly isolated blood mononuclear cells from 26 patients with chronic B-lymphocytic leukaemia (CLL) and 8 healthy subjects, and in cells following 1,2 and 3 d of culture in medium containing 10% human lipoprotein-deficient serum (LPDS). Fresh CLL cells had lower LDL degradation rates than mononuclear cells from healthy subjects (p < 0.01). The LDL degradation rates increased during culture (p < 0.001), but to a lesser degree in CLL cells than in normal blood mononuclear cells (p < 0.001). The cellular degradation rate of /sup 125/I-LDL was markedly inhibited by an excess of unlabelled LDL, indicating that most of the /sup 125/I-LDL that was degraded had been internalized following binding to the LPDS-induced LDL degradation of CLL cells and the thymidine uptake in CLL cell cultures with (r = 0.70, p < 0.001) and without (r = 0.59, p < 0.01) the B cell mitogen, Epstein-Barr virus. The results indicate that LDL receptors might be involved in the regulation of CLL cell proliferation.

  1. Regulation of low density lipoprotein receptor function in a human hepatoma cell line

    International Nuclear Information System (INIS)

    Leichtner, A.M.; Krieger, M.; Schwartz, A.L.

    1984-01-01

    Low density lipoprotein (LDL) processing was investigated in a human hepatoma-derived cell line, Hep G2. Hep G2 cells bound, internalized and degraded LDL via a saturable, high affinity pathway similar to that present in other mammalian cells. Although 80% of the uptake and degradation of 125 I-LDL was inhibited by 40-fold excess native LDL, the same concentration of methylated LDL, which cannot bind to LDL receptors, had virtually no effect on processing. When added at low concentrations, the lysosomotropic agent, chloroquine, inhibited degradation without affecting the rate of lipoprotein internalization. Receptor activity was decreased 60% by preincubation of the cells in medium containing a source of cholesterol (LDL or unesterified cholesterol) and increased 1.7-fold by preincubation with compactin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. The Hep G2 cell line may prove a useful system both for the further study of hepatic lipoprotein metabolism and for the evaluation of new antihypercholesterolemic agents

  2. Existence of B/E and E receptors on Hep-G2 cells: a study using colloidal gold- and 125I-labeled lipoproteins

    International Nuclear Information System (INIS)

    Hesz, A.; Ingolic, E.; Krempler, F.; Kostner, G.M.

    1987-01-01

    The presence of specific receptors for apolipoprotein B (low-density lipoproteins) and apolipoprotein E (HDL-E) on Hep-G2 cells and human skin fibroblasts was studied by chemical methods and by electron microscopy using a differential gold labeling technique. Fibroblasts bound both types of lipoproteins to one and the same receptor (B/E receptor) as deduced from competition experiments with HDL-E and LDL. Labeled HDL-E, on the other hand, was only partially displaced by cold LDL but was completely displaced by unlabeled HDL-E. Scatchard analysis of lipoprotein binding to Hep-G2 cells revealed an approx 10 times higher binding affinity of apoE-containing lipoproteins as compared to apoB-containing ones. No differences between apoE- or apoB-containing lipoproteins with respect to the morphology of cell binding and intracellular processing were observed. The results are compatible with the concept that Hep-G2 cells possess two kinds of receptors, one specific for apoB- and apoE-containing lipoproteins (B/E receptor) and another specific for apoE only. From these studies we conclude that Hep-G2 cells may serve as a suitable model for studying the lipoprotein metabolism in the liver

  3. Lipoprotein(a)

    DEFF Research Database (Denmark)

    Langsted, Anne; Kamstrup, Pia R; Nordestgaard, Børge G

    2014-01-01

    OBJECTIVE: There are no recommendations in guidelines on measuring lipoprotein(a) in the fasting or nonfasting state, or on the influence of inflammation. We tested the hypotheses that lipoprotein(a) levels change only minimally in response to normal food intake, and to inflammation. Also, we...... tested whether normal food intake or inflammation influenced lipoprotein(a)'s ability to predict ischemic heart disease. METHODS: We studied 34 829 individuals from the Danish general population using the Copenhagen General Population Study and the Copenhagen City Heart Study. RESULTS: Lipoprotein......(a) levels did not change in response to normal food intake: median fasting levels were 17.3 mg/dL, while median levels at 3-4 h since last meal were 19.4 mg/dL(p = 0.38). Lipoprotein(a) levels increased minimally with increasing levels of C-reactive protein(CRP): median lipoprotein(a) levels at CRP

  4. What are lipoproteins doing in the brain?

    Science.gov (United States)

    Wang, Hong; Eckel, Robert H

    2014-01-01

    Lipoproteins in plasma transport lipids between tissues, however, only high-density lipoproteins (HDL) appear to traverse the blood-brain barrier (BBB); thus, lipoproteins found in the brain must be produced within the central nervous system. Apolipoproteins E (ApoE) and ApoJ are the most abundant apolipoproteins in the brain, are mostly synthesized by astrocytes, and are found on HDL. In the hippocampus and other brain regions, lipoproteins help to regulate neurobehavioral functions by processes that are lipoprotein receptor-mediated. Moreover, lipoproteins and their receptors also have roles in the regulation of body weight and energy balance, acting through lipoprotein lipase (LPL) and the low-density lipoprotein (LDL) receptor-related protein (LRP). Thus, understanding lipoproteins and their metabolism in the brain provides a new opportunity with potential therapeutic relevance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Deletion in the first cysteine-rich repeat of low density lipoprotein receptor impairs its transport but not lipoprotein binding in fibroblasts from a subject with familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Leitersdorf, E.; Hobbs, H.H.; Fourie, A.M.; Jacobs, M.; Van Der Westhuyzen, D.R.; Coetzee, G.A.

    1988-01-01

    The ligand-binding domain of the low density lipoprotein (LDL) receptor is composed of seven cysteine-rich repeats, each ∼ 40 amino acids long. Previous studies showed that if the first repeat of the ligand-binding domain (encoded by exon 2) is deleted, the receptor fails to bind an anti-LDL receptor monoclonal antibody (IgG-C7) but continues to bind LDL with high affinity. Cultured fibroblasts from a Black South African Xhosa patient (TT) with the clinical syndrome of homozygous familial hypercholesterolemia demonstrated high-affinity cell-surface binding of 125 I-labeled LDL but not 125 I-labeled IgG-C7. previous haplotype analysis, using 10 restriction fragment length polymorphic sites, suggested that the patient inherited two identical LDL receptor alleles. The polymerase chain reaction technique was used to selectively amplify exon 2 of the LDL receptor gene from this patient. Sequence analysis of the amplified fragment disclosed a deletion of six base pairs that removes two amino acids, aspartic acid and glycine, from the first cysteine-rich ligand binding repeat. The mutation creates a new Pst I restriction site that can be used to detect the deletion. The existence of this mutant allele confirms that the epitope of IgG-C7 is located in the first cysteine-rich repeat and that this repeat is not necessary for LDL binding. The mutant gene produced a normally sized 120-kilodalton LDL receptor precursor protein that matured to the 160-kilodalton form at less than one-fourth the normal rate

  6. The Human Pathogen Streptococcus pyogenes Releases Lipoproteins as Lipoprotein-rich Membrane Vesicles.

    Science.gov (United States)

    Biagini, Massimiliano; Garibaldi, Manuela; Aprea, Susanna; Pezzicoli, Alfredo; Doro, Francesco; Becherelli, Marco; Taddei, Anna Rita; Tani, Chiara; Tavarini, Simona; Mora, Marirosa; Teti, Giuseppe; D'Oro, Ugo; Nuti, Sandra; Soriani, Marco; Margarit, Immaculada; Rappuoli, Rino; Grandi, Guido; Norais, Nathalie

    2015-08-01

    Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. A receptor-based biosensor for lipoprotein docking at the endothelial surface and vascular matrix.

    Science.gov (United States)

    Siegel, G; Malmsten, M; Klüssendorf, D; Michel, F

    2001-12-01

    Proteoheparan sulfate can be adsorbed to a methylated silica surface in a monomolecular layer via its transmembrane hydrophobic protein core domain. Due to electrostatic repulsion, its anionic glycosaminoglycan side chains are stretched out into the blood substitute solution, representing a receptor site for specific lipoprotein binding through basic amino acid-rich residues within their apolipoproteins. The binding process was studied by ellipsometric techniques showing that HDL has a high binding affinity to the receptor and a protective effect on interfacial heparan sulfate proteoglycan layers, with respect to LDL and Ca(2+) complexation. LDL was found to deposit strongly at the proteoheparan sulfate, particularly in the presence of Ca(2+), thus creating the complex formation "proteoglycan-low density lipoprotein-calcium". This ternary complex build-up may be interpreted as arteriosclerotic nanoplaque formation on the molecular level responsible for the arteriosclerotic primary lesion. On the other hand, HDL bound to heparan sulfate proteoglycan protected against LDL docking and completely suppressed calcification of the proteoglycan-lipoprotein complex. In addition, HDL and aqueous garlic extract were able to reduce the ternary complex deposition and to disintegrate HS-PG/LDL/Ca(2+) aggregates. Although much remains unclear regarding the mechanism of lipoprotein depositions at proteoglycan-coated surfaces, it seems clear that the use of such systems offers possibilities for investigating lipoprotein deposition at a "nanoscopic" level under close to physiological conditions. In particular, Ca(2+)-promoted LDL deposition and the protective effect of HDL, even at high Ca(2+) and LDL concentrations, agree well with previous clinical observations regarding risk and beneficial factors for early stages of atherosclerosis. Therefore, we believe that the system can be of some use in investigations, e.g. of the interplay between different lipoproteins in arteriosclerotic

  8. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    International Nuclear Information System (INIS)

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.; Brown, Robert J.

    2014-01-01

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL

  9. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M.; Brown, Robert J., E-mail: rbrown@mun.ca

    2014-09-05

    Highlights: • Lipoprotein hydrolysis products were produced by lipoprotein lipase. • Hydrolysis products lowers expression of macrophage cholesterol transporters. • Hydrolysis products reduces expression of select nuclear receptors. • Fatty acid products lowers cholesterol transporters and select nuclear receptors. • Fatty acid products reduces cholesterol efflux from macrophages. - Abstract: Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL.

  10. Lipoprotein Nanoplatform for Targeted Delivery of Diagnostic and Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Jerry D. Glickson

    2008-03-01

    Full Text Available Low-density lipoprotein (LDL provides a highly versatile natural nanoplatform for delivery of visible or near-infrared fluorescent optical and magnetic resonance imaging (MRI contrast agents and photodynamic therapy and chemotherapeutic agents to normal and neoplastic cells that overexpress low-density lipoprotein receptors (LDLRs. Extension to other lipoproteins ranging in diameter from about 10 nm (high-density lipoprotein [HDL] to over a micron (chylomicrons is feasible. Loading of contrast or therapeutic agents onto or into these particles has been achieved by protein loading (covalent attachment to protein side chains, surface loading (intercalation into the phospholipid monolayer, and core loading (extraction and reconstitution of the triglyceride/cholesterol ester core. Core and surface loading of LDL have been used for delivery of optical imaging agents to tumor cells in vivo and in culture. Surface loading was used for delivery of gadolinium-bis-stearylamide contrast agents for in vivo MRI detection in tumor-bearing mice. Chlorin and phthalocyanine near-infrared photodynamic therapy agents (≤ 400/LDL have been attached by core loading. Protein loading was used to reroute the LDL from its natural receptor (LDLR to folate receptors and could be used to target other receptors. A semisynthetic nanoparticle has been constructed by coating magnetite iron oxide nanoparticles with carboxylated cholesterol and overlaying a monolayer of phospholipid to which apolipoprotein A1 or E was adsorbed for targeting HDL or adsorbing synthetic amphipathic helical peptides ltargeting LDL or folate receptors. These particles can be used for in situ loading of magnetite into cells for MRI-monitored cell tracking or gene expression.

  11. Distinct functional domains contribute to degradation of the low density lipoprotein receptor (LDLR) by the E3 ubiquitin ligase inducible Degrader of the LDLR (IDOL)

    NARCIS (Netherlands)

    Sorrentino, Vincenzo; Scheer, Lilith; Santos, Ana; Reits, Eric; Bleijlevens, Boris; Zelcer, Noam

    2011-01-01

    We recently identified the liver X receptor-regulated E3 ubiquitin ligase inducible degrader of the LDL receptor (IDOL) as a modulator of lipoprotein metabolism. Acting as an E3 ubiquitin ligase, IDOL triggers ubiquitination and subsequent degradation of the low density lipoprotein receptor (LDLR).

  12. Receptor-mediated uptake of low density lipoprotein stimulates bile acid synthesis by cultured rat hepatocytes

    International Nuclear Information System (INIS)

    Junker, L.H.; Davis, R.A.

    1989-01-01

    The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis

  13. Selective uptake of a toxic lipophilic anthracycline derivative by the low-density lipoprotein receptor pathway in cultured fibroblasts

    International Nuclear Information System (INIS)

    Vitols, S.G.; Masquelier, M.; Peterson, C.O.

    1985-01-01

    N-(N-Retinoyl)-L-leucyldoxorubicin 14-linoleate (r11-DOX), a new lipophilic derivative of doxorubicin, was synthesized and incorporated into low-density lipoprotein (LDL). The drug-LDL complex contained 100- 200 drug molecules/LDL particle. When cultured normal human fibroblasts were incubated with 125 I-LDL-incorporated drug, there was a perfect correlation between the cellular uptake plus degradation of 125 I-LDL and the cellular drug accumulation. The presence of excess native LDL inhibited the cellular uptake and degradation of 125 I-LDL and the drug accumulation to the same extent. In contrast, methylated LDL, which does not bind to the LDL receptor, did not alter the cellular uptake and degradation of 125 I-LDL nor did it alter the drug accumulation. When LDL receptor negative fibroblasts from a patient with the homozygous form of familial hypercholesterolemia were incubated with the drug- 125 I-LDL complex, cellular drug accumulation was very low. The drug-LDL complex inhibited the growth of cultured normal human fibroblasts. The drug incorporated into methylated LDL was much less toxic. These findings suggest that r11-DOX incorporated into LDL is delivered to cells selectively by the LDL receptor pathway. This might be of value in the treatment of leukemia, since it has been previously found that leukemic cells exhibit higher LDL receptor activity than white blood cells and bone marrow cells from healthy subjects

  14. Low density lipoprotein receptor-related protein 1 expression correlates with cholesteryl ester accumulation in the myocardium of ischemic cardiomyopathy patients

    Directory of Open Access Journals (Sweden)

    Cal Roi

    2012-08-01

    Full Text Available Abstract Our hypothesis was that overexpression of certain lipoprotein receptors might be related to lipid accumulation in the human ischemic myocardium. Intramyocardial lipid overload contributes to contractile dysfunction and arrhythmias in cardiomyopathy. Thus, the purpose of this study was to assess the effect of hypercholesterolemic LDL and hypertrigliceridemic VLDL dose on LRP1 expression in cardiomyocytes, as well as the potential correlation between LRP1 expression and neutral lipid accumulation in the left ventricle tissue from ischemic cardiomyopathy patients. Cell culture experiments include control and LRP1-deficient cardiomyocytes exposed to lipoproteins under normoxic and hypoxic conditions. Explanted hearts from 18 ICM patients and eight non-diseased hearts (CNT were included. Low density lipoprotein receptor-related protein 1 (LRP1, very low density lipoprotein receptor (VLDLR and low density lipoprotein receptor (LDLR expression was analyzed by real time PCR and Western blotting. Cholesteryl ester (CE, triglyceride (TG and free cholesterol (FC content was assess by thin layer chromatography following lipid extraction. Western blotting experiments showed that protein levels of LRP1, VLDLR and HIF-1α were significantly upregulated in ischemic hearts. Immunohistochemistry and confocal microscopy analysis showed that LRP1 and HIF-1α were upregulated in cardiomyocytes of ICM patients. In vitro studies showed that VLDL, LDL and hypoxia exerted an upregulatory effect on LRP1 expression and that LRP1 played a major role in cholesteryl ester accumulation from lipoproteins in cardiomyocytes. Myocardial CE accumulation strongly correlated with LRP1 levels in ischemic hearts. Taken together, our results suggest that LRP1 upregulation is key for myocardial cholesterol ester accumulation in ischemic human hearts and that LRP1 may be a target to prevent the deleterious effects of myocardial cholesterol accumulation in ischemic cardiomyopathy.

  15. Cholesterol efflux from THP-1 macrophages is impaired by the fatty acid component from lipoprotein hydrolysis by lipoprotein lipase.

    Science.gov (United States)

    Yang, Yanbo; Thyagarajan, Narmadaa; Coady, Breanne M; Brown, Robert J

    2014-09-05

    Lipoprotein lipase (LPL) is an extracellular lipase that primarily hydrolyzes triglycerides within circulating lipoproteins. Macrophage LPL contributes to atherogenesis, but the mechanisms behind it are poorly understood. We hypothesized that the products of lipoprotein hydrolysis generated by LPL promote atherogenesis by inhibiting the cholesterol efflux ability by macrophages. To test this hypothesis, we treated human THP-1 macrophages with total lipoproteins that were hydrolyzed by LPL and we found significantly reduced transcript levels for the cholesterol transporters ATP binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor BI. These decreases were likely due to significant reductions for the nuclear receptors liver-X-receptor-α, peroxisome proliferator activated receptor (PPAR)-α, and PPAR-γ. We prepared a mixture of free fatty acids (FFA) that represented the ratios of FFA species within lipoprotein hydrolysis products, and we found that the FFA mixture also significantly reduced cholesterol transporters and nuclear receptors. Finally, we tested the efflux of cholesterol from THP-1 macrophages to apolipoprotein A-I, and we found that the treatment of THP-1 macrophages with the FFA mixture significantly attenuated cholesterol efflux. Overall, these data show that the FFA component of lipoprotein hydrolysis products generated by LPL may promote atherogenesis by inhibiting cholesterol efflux, which partially explains the pro-atherogenic role of macrophage LPL. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Normal cholesterol levels with lovastatin (Mevinolin) therapy in a child with homozygous familial hypercholesterolemia following liver transplantation

    International Nuclear Information System (INIS)

    East, C.; Grundy, S.M.; Bilheimer, D.W.

    1986-01-01

    Patients with homozygous familial hypercholesterolemia produce no normal low-density lipoprotein (LDL) receptors, and as a result, LDL accumulates in plasma, causing severe premature atherosclerosis. Two years ago, liver transplantation was performed in a child with homozygous familial hypercholesterolemia, restoring LDL receptor activity to about 60% of normal and reducing the LDL cholesterol level by 81%. However, the patient's lipoprotein levels remained significantly elevated for her age and sex. Treatment with lovastatin (mevinolin) one year after transplantation produced a marked improvement in the patient's lipoprotein profile. The total and LDL cholesterol levels fell 40% and 49%, respectively, to values within the normal range. The level of very low-density lipoprotein cholesterol fell 41%, and the level of total triglycerides declined 28%. While lovastatin therapy decreased the production rate of LDL by 35%, it did not affect the LDL fractional clearance rate. Thus, the combination of liver transplantation and lovastatin restored total and LDL cholesterol levels to normal in this patient with homozygous familial hypercholesterolemia

  17. Rapid characterization of disease-causing mutations in the low density lipoprotein receptor (LDL-R) gene by overexpression in COS cells

    DEFF Research Database (Denmark)

    Jensen, T G; Andresen, B S; Jensen, H K

    1996-01-01

    To characterize disease-causing mutations in the low density lipoprotein receptor (LDL-R) gene, COS cells are transfected with the mutant gene in an EBV-based expression vector and characterized by flow cytometry. Using antibodies against the LDL-receptor the amount of receptor protein on the cel...

  18. Association of peroxisome proliferator-activated receptor single-nucleotide polymorphisms and gene-gene interactions with the lipoprotein(a)

    Institute of Scientific and Technical Information of China (English)

    解惠坚

    2014-01-01

    Objective To examine the associations of 10 singlenucleotide polymorphisms(SNPs)in peroxisome proliferator-activated receptor(PPARs)gene with lipoprotein(a)level,and to investigate if there is gene-gene interaction among the SNPs on lipoprotein(a)level.Methods Totally 644 subjects(234 men and 410 women)were enrolled from Prevention of Multiple Metabolic Disorders and Metabolic Syndrome Study Cohort,which was an urban community survey study conducted in Jiangsu province.Ten SNPs in PPARα(rs135539,rs4253778,

  19. Cellular uptake of lipoproteins and persistent organic compounds-An update and new data

    International Nuclear Information System (INIS)

    Hjelmborg, Philip Sebastian; Andreassen, Thomas Kjaergaard; Bonefeld-Jorgensen, Eva Cecilie

    2008-01-01

    There are a number of interactions related to the transport of lipophilic xenobiotic compounds in the blood stream of mammals. This paper will focus on the interactions between lipoproteins and persistent organic pollutants (POPs) and how these particles are taken up by cells. A number of POPs including the pesticide p,p'-dichlorodiphenyltrichloroethane (DDT), and especially its metabolite p,p'-dichlorodiphenyldichloroethene (DDE), interacts with nuclear hormone receptors causing these to malfunction, which in turn results in a range of deleterious health effects in humans. The aim of the present study was to determine the role of lipoprotein receptors in mouse embryonic fibroblast (MEF) cells in conjunction with uptake of DDT-lipoprotein complexes from supplemented media in vitro. Uptake of DDT by MEF cells was investigated using MEF1 cells carrying the receptors low-density lipoprotein receptor-related protein (LRP) and low-density lipoprotein receptor (LDLR) present and MEF4 cells with no LRP and LDLR expression. Cells were incubated together with the complex of low-density lipoproteins (LDL) and [ 14 C]DDT. The receptor function was further evaluated by adding the 40 kDa receptor-associated protein (RAP) which blocks receptor activity. The results showed that [ 14 C]DDT uptake was decreasing when the LDL concentration was increasing. There was no strong evidence for a receptor-mediated uptake of the [ 14 C]DDT-lipoprotein complex. To conclude, DDT travels in the blood stream and can cross cell membranes while being transported as a DDT-lipoprotein complex. The lipoproteins do not need receptors to cross cell membranes since passive diffusion constitutes a major passageway

  20. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    International Nuclear Information System (INIS)

    Lee, Ha Young; Kim, Sang Doo; Baek, Suk-Hwan; Choi, Joon Hyuk; Cho, Kyung-Hyun; Zabel, Brian A.; Bae, Yoe-Sik

    2013-01-01

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis

  1. Serum amyloid A stimulates macrophage foam cell formation via lectin-like oxidized low-density lipoprotein receptor 1 upregulation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ha Young, E-mail: hayoung@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Kim, Sang Doo [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Baek, Suk-Hwan [Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Joon Hyuk [Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Cho, Kyung-Hyun [School of Biotechnology, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Zabel, Brian A. [Palo Alto Institute for Research and Education, Veterans Affairs Hospital, Palo Alto, CA 94304 (United States); Bae, Yoe-Sik, E-mail: yoesik@skku.edu [Department of Biological Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Mitochondria Hub Regulation Center, Dong-A University, Busan 602-714 (Korea, Republic of); Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 135-710 (Korea, Republic of)

    2013-03-29

    Highlights: ► SAA induced macrophage foam cell formation. ► SAA stimulated upregulation of lectin-like oxidized low-density lipoprotein receptor 1 (LOX1). ► SAA-induced LOX1 expression and foam cell formation is mediated by JNK/NF-κB signaling. ► HDL-conjugated SAA also stimulates foam cell formation via LOX1 upregulation. ► The finding reveals a novel mechanism of action of SAA in the pathogenesis of atherosclerosis. -- Abstract: Elevated levels of serum amyloid A (SAA) is a risk factor for cardiovascular diseases, however, the role of SAA in the pathophysiology of atherosclerosis remains unclear. Here we show that SAA induced macrophage foam cell formation. SAA-stimulated foam cell formation was mediated by c-jun N-terminal kinase (JNK) signaling. Moreover, both SAA and SAA-conjugated high density lipoprotein stimulated the expression of the important scavenger receptor lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) via nuclear factor-κB (NF-κB). A LOX1 antagonist carrageenan significantly blocked SAA-induced foam cell formation, indicating that SAA promotes foam cell formation via LOX1 expression. Our findings therefore suggest that SAA stimulates foam cell formation via LOX1 induction, and thus likely contributes to atherogenesis.

  2. Peroxisome Proliferator Activated Receptors and Lipoprotein Metabolism

    NARCIS (Netherlands)

    Kersten, A.H.

    2008-01-01

    Plasma lipoproteins are responsible for carrying triglycerides and cholesterol in the blood and ensuring their delivery to target organs. Regulation of lipoprotein metabolism takes place at numerous levels including via changes in gene transcription. An important group of transcription factors that

  3. Metabolism of lipoproteins by human fetal hepatocytes

    International Nuclear Information System (INIS)

    Carr, B.R.

    1987-01-01

    The rate of clearance of lipoproteins from plasma appears to play a role in the development of atherogenesis. The liver may account for as much as two thirds of the removal of low-density lipoprotein and one third of the clearance of high-density lipoprotein in certain animal species and humans, mainly by receptor-mediated pathways. The purpose of the present investigation was to determine if human fetal hepatocytes maintained in vitro take up and degrade lipoproteins. We first determined that the maximal binding capacity of iodine 125-iodo-LDL was approximately 300 ng of low-density lipoprotein protein/mg of membrane protein and an apparent dissociation constant of approximately 60 micrograms low-density lipoprotein protein/ml in membranes prepared from human fetal liver. We found that the maximal uptake of [ 125 I]iodo-LDL and [ 125 I]iodo-HDL by fetal hepatocytes occurred after 12 hours of incubation. Low-density lipoprotein uptake preceded the appearance of degradation products by 4 hours, and thereafter the degradation of low-density lipoprotein increased linearly for at least 24 hours. In contrast, high-density lipoprotein was not degraded to any extent by fetal hepatocytes. [ 125 I]Iodo-LDL uptake and degradation were inhibited more than 75% by preincubation with low-density lipoprotein but not significantly by high-density lipoprotein, whereas [ 125 I]iodo-HDL uptake was inhibited 70% by preincubation with high-density lipoprotein but not by low-density lipoprotein. In summary, human fetal hepatocytes take up and degrade low-density lipoprotein by a receptor-mediated process similar to that described for human extrahepatic tissues

  4. Lipoprotein profiles in human heterozygote carriers of a functional mutation P297S in scavenger receptor class B1

    NARCIS (Netherlands)

    Ljunggren, Stefan A.; Levels, Johannes H. M.; Hovingh, Kees; Holleboom, Adriaan G.; Vergeer, Menno; Argyri, Letta; Gkolfinopoulou, Christina; Chroni, Angeliki; Sierts, Jeroen A.; Kastelein, John J.; Kuivenhoven, Jan Albert; Lindahl, Mats; Karlsson, Helen

    2015-01-01

    The scavenger receptor class B type 1 (SR-B1) is an important HDL receptor involved in cholesterol uptake and efflux, but its physiological role in human lipoprotein metabolism is not fully understood. Heterozygous carriers of the SR-B1(P297S) mutation are characterized by increased HDL cholesterol

  5. Learning from biology: synthetic lipoproteins for drug delivery.

    Science.gov (United States)

    Huang, Huang; Cruz, William; Chen, Juan; Zheng, Gang

    2015-01-01

    Synthetic lipoproteins represent a relevant tool for targeted delivery of biological/chemical agents (chemotherapeutics, siRNAs, photosensitizers, and imaging contrast agents) into various cell types. These nanoparticles offer a number of advantages for drugs delivery over their native counterparts while retaining their natural characteristics and biological functions. Their ultra-small size (lipoprotein receptors, i.e., low-density lipoprotein receptor (LDLR) and Scavenger receptor class B member 1 (SRB1) that are found in a number of pathological conditions (e.g., cancer, atherosclerosis), make them superior delivery strategies when compared with other nanoparticle systems. We review the various approaches that have been developed for the generation of synthetic lipoproteins and their respective applications in vitro and in vivo. More specifically, we summarize the approaches employed to address the limitation on use of reconstituted lipoproteins by means of natural or recombinant apolipoproteins, as well as apolipoprotein mimetic molecules. Finally, we provide an overview of the advantages and disadvantages of these approaches and discuss future perspectives for clinical translation of these nanoparticles. © 2014 Wiley Periodicals, Inc.

  6. In LDL receptor-deficient mice, catabolism of remnant lipoproteins requires a high level of apoE but is inhibited by excess apoE

    NARCIS (Netherlands)

    Dijk, K.W. van; Vlijmen, B.J.M. van; Hof, H.B. van 't; Zee, A. van der; Santamarina-Fojo, S.; Berkel, T.J.C. van; Havekes, L.M.; Hofker, M.H.

    1999-01-01

    To investigate the quantitative requirement for apolipoprotein (apo) E in the clearance of lipoproteins via the non-low density lipoprotein (LDL) receptor mediated pathway, human APOE was overexpressed at various levels in the livers of mice deficient for both the endogenous Apoe and Ldlr genes

  7. Tissue-type plasminogen activator-binding RNA aptamers inhibiting low-density lipoprotein receptor family-mediated internalisation.

    Science.gov (United States)

    Bjerregaard, Nils; Bøtkjær, Kenneth A; Helsen, Nicky; Andreasen, Peter A; Dupont, Daniel M

    2015-07-01

    Recombinant tissue-type plasminogen activator (tPA, trade name Alteplase), currently the only drug approved by the US Food and Drug Administration and the European Medicines Agency for the treatment of cerebral ischaemic stroke, has been implicated in a number of adverse effects reportedly mediated by interactions with the low-density lipoprotein (LDL) family receptors, including neuronal cell death and an increased risk of cerebral haemorrhage. The tissue-type plasminogen activator is the principal initiator of thrombolysis in human physiology, an effect that is mediated directly via localised activation of the plasmin zymogen plasminogen at the surface of fibrin clots in the vascular lumen. Here, we sought to identify a ligand to tPA capable of inhibiting the relevant LDL family receptors without interfering with the fibrinolytic activity of tPA. Systematic evolution of ligands by exponential enrichment (SELEX) was employed to isolate tPA-binding RNA aptamers, which were characterised in biochemical assays of tPA association to low density lipoprotein receptor-related protein-1 (LRP-1, an LDL receptor family member); tPA-mediated in vitro and ex vivo clot lysis; and tPA-mediated plasminogen activation in the absence and presence of a stimulating soluble fibrin fragment. Two aptamers, K18 and K32, had minimal effects on clot lysis, but were able to efficiently inhibit tPA-LRP-1 association and LDL receptor family-mediated endocytosis in human vascular endothelial cells and astrocytes. These observations suggest that coadministration alongside tPA may be a viable strategy to improve the safety of thrombolytic treatment of cerebral ischaemic stroke by restricting tPA activity to the vascular lumen.

  8. Cellular uptake of lipoproteins and Persistent Organic Compounds - An update and new data

    DEFF Research Database (Denmark)

    Hjelmborg, Philip Sebastian; Andreassen, Thomas Kjærgaard; Bonefeld-Jørgensen, Eva Cecilie

    2008-01-01

    including the pesticide DDT (p,p'-dichlorodiphenyltrichloroethane), and especially its metabolite DDE (p,p'-dichlorodiphenyldichloroethene), interacts with nuclear hormone receptors causing these to malfunction, which in turn results in a range of deleterious health effects in humans. The aim of the present...... study was to determine the role of lipoprotein receptors in mouse embryonic fibroblast (MEF) cells in conjunction with uptake of DDT-lipoprotein complexes from supplemented media in vitro. Uptake of DDT by MEF cells was investigated using MEF1 cells carrying the receptors LRP (low-density lipoprotein...... receptor-related protein) and LDLR (low density lipoprotein receptor) present and MEF4 cells with no LRP and LDLR expression. Cells were incubated together with the complex of LDL and [14C]DDT. The receptor function was further evaluated by adding the 40 kDa receptor-associated protein (RAP) which blocks...

  9. Lectin-like oxidized low-density lipoprotein receptor (LOX-1) in sickle cell disease vasculopathy

    Science.gov (United States)

    Chen, Mingyi; Qiu, Hong; Lin, Xin; Nam, David; Ogbu-Nwobodo, Lucy; Archibald, Hannah; Joslin, Amelia; Wun, Ted; Sawamura, Tatsuya; Green, Ralph

    2017-01-01

    Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1) is an endothelial receptor for oxidized LDL. Increased expression of LOX-1 has been demonstrated in atherosclerotic lesions and diabetic vasculopathy. In this study, we investigate the expression of LOX-1 receptor in sickle cell disease (SCD) vasculopathy. Expression of LOX-1 in brain vascular endothelium is markedly increased and LOX-1 gene expression is upregulated in cultured human brain microvascular endothelial cells by incubation with SCD erythrocytes. Also, the level of circulating soluble LOX-1 concentration is elevated in the plasma of SCD patients. Increased LOX-1 expression in endothelial cells is potentially involved in the pathogenesis of SCD vasculopathy. Soluble LOX-1 concentration in SCD may provide a novel biomarker for risk stratification of sickle cell vascular complications. PMID:27519944

  10. Fasting and nonfasting lipid levels: influence of normal food intake on lipids, lipoproteins, apolipoproteins, and cardiovascular risk prediction

    DEFF Research Database (Denmark)

    Langsted, A.; Freiberg, J.J.; Nordestgaard, Børge

    2008-01-01

    BACKGROUND: Lipid profiles are usually measured after fasting. We tested the hypotheses that these levels change only minimally in response to normal food intake and that nonfasting levels predict cardiovascular events. METHODS AND RESULTS: We cross-sectionally studied 33 391 individuals 20 to 95...... to HDL cholesterol, and ratio of apolipoprotein B to apolipoprotein A1 did not change in response to normal food intake. The maximum changes after normal food and fluid intake from fasting levels were -0.2 mmol/L for total cholesterol, -0.2 mmol/L for low-density lipoprotein cholesterol, -0.1 mmol...... years of age from the Copenhagen General Population Study. We also studied 9319 individuals 20 to 93 years of age from the Copenhagen City Heart Study, 1166 of whom developed cardiovascular events during 14 years of follow-up. Compared with fasting levels, total cholesterol, low-density lipoprotein...

  11. Acetaldehyde binding increases the catabolism of rat serum low-density lipoproteins

    International Nuclear Information System (INIS)

    Savolainen, M.J.; Baraona, E.; Lieber, C.S.

    1987-01-01

    Acetaldehyde was found to form adducts with rat serum lipoproteins. The binding of [ 14 C]acetaldehyde to lipoproteins was studied at low concentrations which are known to exist during ethanol oxidation. The amount of lipoprotein adducts was a linear function of acetaldehyde concentration up to 250 μM. Incubation of rat plasma low-density lipoproteins (LDL) with 200 μM acetaldehyde increased the disappearance rate of the 3 H-label from the cholesterol ester moiety of LDL injected into normal rats. The data show that even low concentrations of acetaldehyde are capable of affecting LDL metabolism. These findings may provide an explanation for the low concentrations of serum LDL in alcoholics. The alcohol-induced hyperlipidemia includes either a lack of increase or a decrease in the low-density lipoprotein (LDL) concentration, but the underlying mechanism is not known. It has been shown previously, that the acetylation of lysine residues of LDL apoprotein (apoB) by acetanhydride leads to rapid uptake of LDL particles by macrophages through a non-LDL receptor pathway. Since acetaldehyde, the first toxic metabolite of ethanol, is a chemically reactive compound capable of binding to proteins, they tested whether acetaldehyde forms adducts with serum lipoproteins and subsequently alters the catabolism of LDL. 19 references, 2 figures, 1 table

  12. The majority of lipoprotein lipase in plasma is bound to remnant lipoproteins: A new definition of remnant lipoproteins.

    Science.gov (United States)

    Sato, Koichi; Okajima, Fumikazu; Miyashita, Kazuya; Imamura, Shigeyuki; Kobayashi, Junji; Stanhope, Kimber L; Havel, Peter J; Machida, Tetsuo; Sumino, Hiroyuki; Murakami, Masami; Schaefer, Ernst; Nakajima, Katsuyuki

    2016-10-01

    Lipoprotein lipase (LPL) is a multifunctional protein and a key enzyme involved in the regulation of lipoprotein metabolism. We determined the lipoproteins to which LPL is bound in the pre-heparin and post-heparin plasma. Tetrahydrolipstatin (THL), a potent inhibitor of serine lipases, was used to block the lipolytic activity of LPL, thereby preventing changes in the plasma lipoproteins due to ex vivo lipolysis. Gel filtration was performed to obtain the LPL elution profiles in plasma and the isolated remnant lipoproteins (RLP). When ex vivo lipolytic activity was inhibited by THL in the post-heparin plasma, majority of the LPL was found in the VLDL elution range, specifically in the RLP as inactive dimers. However, in the absence of THL, most of the LPL was found in the HDL elution range as active dimers. Furthermore, majority of the LPL in the pre-heparin plasma was found in the RLP as inactive form, with broadly diffused lipoprotein profiles in the presence and absence of THL. It is suggested that during lipolysis in vivo, the endothelial bound LPL dimers generates RLP, forming circulating RLP-LPL complexes in an inactive form that subsequently binds and initiates receptor-mediated catabolism. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Normal and abnormal lipid and lipoprotein metabolism

    African Journals Online (AJOL)

    2009-03-20

    Mar 20, 2009 ... This article focuses on lipid and lipoprotein metabolism and introduces a range of genetic ... spherical structures that are suspended in the plasma and whose ..... atherosclerosis. Table II suggests a simple classification of.

  14. Low density lipoproteins mediated nanoplatforms for cancer targeting

    International Nuclear Information System (INIS)

    Jain, Anupriya; Jain, Keerti; Kesharwani, Prashant; Jain, Narendra K.

    2013-01-01

    Chemotherapy is a foremost remedial approach for the treatment of localized and metastasized tumors. In order to explore new treatment modalities for cancer, it is important to identify qualitative or quantitative differences in metabolic processes between normal and malignant cells. One such difference may be that of increased receptor-mediated cellular uptake of low density lipoproteins (LDLs) by cancer cells. Lipoproteins in general and specifically LDL are ideal candidates for loading and delivering cancer therapeutic and diagnostic agents due to their biocompatibility. By mimicking the endogenous shape and structure of lipoproteins, the reconstituted lipoproteins can remain in circulation for an extended period of time, while largely evading the reticuloendothelial cells in the body’s defenses. In this account, we review the field of low density inspired nanoparticles in relation to the delivery of cancer imaging and therapeutic agents. LDL has instinctive cancer targeting potential and has been used to incorporate various lipophillic molecules to transport them to tumors. Nature’s method of rerouting LDL provides a strategy to extend the cancer targeting potential of lipoproteins far off its constricted purview. In this review, we have discussed the various aspects of LDL including its role in cancer imaging and chemotherapy in retrospect and prospect and current efforts aimed to further improve the delivery efficacy of LDL–drug complexes with reduced chances of drug resistance leading to optimal drug delivery. This review provides a strong support for the concept of using LDL as a drug carrier

  15. Low density lipoproteins mediated nanoplatforms for cancer targeting

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Anupriya; Jain, Keerti; Kesharwani, Prashant, E-mail: prashant_pharmacy04@rediffmail.com; Jain, Narendra K., E-mail: jnarendr@yahoo.co.in [Dr. H. S. Gour University, Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences (India)

    2013-09-15

    Chemotherapy is a foremost remedial approach for the treatment of localized and metastasized tumors. In order to explore new treatment modalities for cancer, it is important to identify qualitative or quantitative differences in metabolic processes between normal and malignant cells. One such difference may be that of increased receptor-mediated cellular uptake of low density lipoproteins (LDLs) by cancer cells. Lipoproteins in general and specifically LDL are ideal candidates for loading and delivering cancer therapeutic and diagnostic agents due to their biocompatibility. By mimicking the endogenous shape and structure of lipoproteins, the reconstituted lipoproteins can remain in circulation for an extended period of time, while largely evading the reticuloendothelial cells in the body's defenses. In this account, we review the field of low density inspired nanoparticles in relation to the delivery of cancer imaging and therapeutic agents. LDL has instinctive cancer targeting potential and has been used to incorporate various lipophillic molecules to transport them to tumors. Nature's method of rerouting LDL provides a strategy to extend the cancer targeting potential of lipoproteins far off its constricted purview. In this review, we have discussed the various aspects of LDL including its role in cancer imaging and chemotherapy in retrospect and prospect and current efforts aimed to further improve the delivery efficacy of LDL-drug complexes with reduced chances of drug resistance leading to optimal drug delivery. This review provides a strong support for the concept of using LDL as a drug carrier.

  16. Low density lipoproteins mediated nanoplatforms for cancer targeting

    Science.gov (United States)

    Jain, Anupriya; Jain, Keerti; Kesharwani, Prashant; Jain, Narendra K.

    2013-09-01

    Chemotherapy is a foremost remedial approach for the treatment of localized and metastasized tumors. In order to explore new treatment modalities for cancer, it is important to identify qualitative or quantitative differences in metabolic processes between normal and malignant cells. One such difference may be that of increased receptor-mediated cellular uptake of low density lipoproteins (LDLs) by cancer cells. Lipoproteins in general and specifically LDL are ideal candidates for loading and delivering cancer therapeutic and diagnostic agents due to their biocompatibility. By mimicking the endogenous shape and structure of lipoproteins, the reconstituted lipoproteins can remain in circulation for an extended period of time, while largely evading the reticuloendothelial cells in the body's defenses. In this account, we review the field of low density inspired nanoparticles in relation to the delivery of cancer imaging and therapeutic agents. LDL has instinctive cancer targeting potential and has been used to incorporate various lipophillic molecules to transport them to tumors. Nature's method of rerouting LDL provides a strategy to extend the cancer targeting potential of lipoproteins far off its constricted purview. In this review, we have discussed the various aspects of LDL including its role in cancer imaging and chemotherapy in retrospect and prospect and current efforts aimed to further improve the delivery efficacy of LDL-drug complexes with reduced chances of drug resistance leading to optimal drug delivery. This review provides a strong support for the concept of using LDL as a drug carrier.

  17. Site-specific O-glycosylation of members of the low-density lipoprotein receptor superfamily enhances ligand interactions.

    Science.gov (United States)

    Wang, Shengjun; Mao, Yang; Narimatsu, Yoshiki; Ye, Zilu; Tian, Weihua; Goth, Christoffer K; Lira-Navarrete, Erandi; Pedersen, Nis B; Benito-Vicente, Asier; Martin, Cesar; Uribe, Kepa B; Hurtado-Guerrero, Ramon; Christoffersen, Christina; Seidah, Nabil G; Nielsen, Rikke; Christensen, Erik I; Hansen, Lars; Bennett, Eric P; Vakhrushev, Sergey Y; Schjoldager, Katrine T; Clausen, Henrik

    2018-05-11

    The low-density lipoprotein receptor (LDLR) and related receptors are important for the transport of diverse biomolecules across cell membranes and barriers. Their functions are especially relevant for cholesterol homeostasis and diseases, including neurodegenerative and kidney disorders. Members of the LDLR-related protein family share LDLR class A (LA) repeats providing binding properties for lipoproteins and other biomolecules. We previously demonstrated that short linker regions between these LA repeats contain conserved O -glycan sites. Moreover, we found that O -glycan modifications at these sites are selectively controlled by the GalNAc-transferase isoform, GalNAc-T11. However, the effects of GalNAc-T11-mediated O -glycosylation on LDLR and related receptor localization and function are unknown. Here, we characterized O -glycosylation of LDLR-related proteins and identified conserved O -glycosylation sites in the LA linker regions of VLDLR, LRP1, and LRP2 (Megalin) from both cell lines and rat organs. Using a panel of gene-edited isogenic cell line models, we demonstrate that GalNAc-T11-mediated LDLR and VLDLR O -glycosylation is not required for transport and cell-surface expression and stability of these receptors but markedly enhances LDL and VLDL binding and uptake. Direct ELISA-based binding assays with truncated LDLR constructs revealed that O -glycosylation increased affinity for LDL by ∼5-fold. The molecular basis for this observation is currently unknown, but these findings open up new avenues for exploring the roles of LDLR-related proteins in disease. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Identification of a point mutation in growth factor repeat C of the low density lipoprotein-receptor gene in a patient with homozygous familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Soutar, A.K.; Knight, B.L.; Patel, D.D.

    1989-01-01

    The coding region of the low density lipoprotein (LDL)-receptor gene from a patient (MM) with homozygous familial hypercholesterolemia (FH) has been sequenced from six overlapping 500-base-pair amplified fragments of the cDNA from cultured skin fibroblasts. Two separate single nucleotide base changes from the normal sequence were detected. The first involved substitution of guanine for adenine in the third position of the codon for amino acid residue Cys-27 and did not affect the protein sequence. The second mutation was substitution of thymine for cytosine in the DNA for the codon for amino acid residue 664, changing the codon from CCG (proline) to CTG (leucine) and introducing a new site for the restriction enzyme PstI. MM is a true homozygote with two identical genes, and the mutation cosegregated with clinically diagnosed FH in his family in which first cousin marriages occurred frequently. LDL receptors in MM's skin fibroblasts bind less LDL than normal and with reduced affinity. Thus this naturally occurring single point mutation affects both intracellular transport of the protein and ligand binding and occurs in growth factor-like repeat C, a region that has not previously been found to influence LDL binding

  19. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ERα) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    International Nuclear Information System (INIS)

    Lee, Junga; Scheri, Richard C.; Zhang Yuan; Curtis, Lawrence R.

    2008-01-01

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [ 14 C]CD or [ 14 C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor α (ERα) in a concentration-dependent manner (0-50 μM). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice

  20. The LDL Receptor-Related Protein 1: At the Crossroads of Lipoprotein Metabolism and Insulin Signaling

    Directory of Open Access Journals (Sweden)

    Dianaly T. Au

    2017-01-01

    Full Text Available The metabolic syndrome is an escalating worldwide public health concern. Defined by a combination of physiological, metabolic, and biochemical factors, the metabolic syndrome is used as a clinical guideline to identify individuals with a higher risk for type 2 diabetes and cardiovascular disease. Although risk factors for type 2 diabetes and cardiovascular disease have been known for decades, the molecular mechanisms involved in the pathophysiology of these diseases and their interrelationship remain unclear. The LDL receptor-related protein 1 (LRP1 is a large endocytic and signaling receptor that is widely expressed in several tissues. As a member of the LDL receptor family, LRP1 is involved in the clearance of chylomicron remnants from the circulation and has been demonstrated to be atheroprotective. Recently, studies have shown that LRP1 is involved in insulin receptor trafficking and regulation and glucose metabolism. This review summarizes the role of tissue-specific LRP1 in insulin signaling and its potential role as a link between lipoprotein and glucose metabolism in diabetes.

  1. Contribution of lipoproteins and lipoprotein processing to endocarditis virulence in Streptococcus sanguinis.

    Science.gov (United States)

    Das, Sankar; Kanamoto, Taisei; Ge, Xiuchun; Xu, Ping; Unoki, Takeshi; Munro, Cindy L; Kitten, Todd

    2009-07-01

    Streptococcus sanguinis is an important cause of infective endocarditis. Previous studies have identified lipoproteins as virulence determinants in other streptococcal species. Using a bioinformatic approach, we identified 52 putative lipoprotein genes in S. sanguinis strain SK36 as well as genes encoding the lipoprotein-processing enzymes prolipoprotein diacylglyceryl transferase (lgt) and signal peptidase II (lspA). We employed a directed signature-tagged mutagenesis approach to systematically disrupt these genes and screen each mutant for the loss of virulence in an animal model of endocarditis. All mutants were viable. In competitive index assays, mutation of a putative phosphate transporter reduced in vivo competitiveness by 14-fold but also reduced in vitro viability by more than 20-fold. Mutations in lgt, lspA, or an uncharacterized lipoprotein gene reduced competitiveness by two- to threefold in the animal model and in broth culture. Mutation of ssaB, encoding a putative metal transporter, produced a similar effect in culture but reduced in vivo competiveness by >1,000-fold. [(3)H]palmitate labeling and Western blot analysis confirmed that the lgt mutant failed to acylate lipoproteins, that the lspA mutant had a general defect in lipoprotein cleavage, and that SsaB was processed differently in both mutants. These results indicate that the loss of a single lipoprotein, SsaB, dramatically reduces endocarditis virulence, whereas the loss of most other lipoproteins or of normal lipoprotein processing has no more than a minor effect on virulence.

  2. Increased cell motility and invasion upon knockdown of lipolysis stimulated lipoprotein receptor (LSR) in SW780 bladder cancer cells

    DEFF Research Database (Denmark)

    Herbsleb, Malene; Birkenkamp-Demtroder, Karin; Thykjaer, Thomas

    2008-01-01

    Mechanisms underlying the malignant development in bladder cancer are still not well understood. Lipolysis stimulated lipoprotein receptor (LSR) has previously been found to be upregulated by P53. Furthermore, we have previously found LSR to be differentially expressed in bladder cancer. Here we...... investigated the role of LSR in bladder cancer....

  3. Targeting low-density lipoprotein receptors with protein-only nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhikun [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain); Céspedes, María Virtudes [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Unzueta, Ugutz [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain); Álamo, Patricia [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Pesarrodona, Mireia [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain); Mangues, Ramón [CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) (Spain); Vázquez, Esther; Villaverde, Antonio, E-mail: antoni.villaverde@uab.cat; Ferrer-Miralles, Neus, E-mail: neus.ferrer@uab.cat [Universitat Autònoma de Barcelona, Institut de Biotecnologia i de Biomedicina (Spain)

    2015-03-15

    Low-density lipoprotein receptors (LDLR) are appealing cell surface targets in drug delivery, as they are expressed in the blood–brain barrier (BBB) endothelium and are able to mediate transcytosis of functionalized drugs for molecular therapies of the central nervous system (CNS). On the other hand, brain-targeted drug delivery is currently limited, among others, by the poor availability of biocompatible vehicles, as most of the nanoparticles under development as drug carriers pose severe toxicity issues. In this context, protein nanoparticles offer functional versatility, easy and cost-effective bioproduction, and full biocompatibility. In this study, we have designed and characterized several chimerical proteins containing different LDLR ligands, regarding their ability to bind and internalize target cells and to self-organize as viral mimetic nanoparticles of about 18 nm in diameter. While the self-assembling of LDLR-binding proteins as nanoparticles positively influences cell penetration in vitro, the nanoparticulate architecture might be not favoring BBB crossing in vivo. These findings are discussed in the context of the use of nanostructured materials as vehicles for the systemic treatment of CNS diseases.

  4. Targeting low-density lipoprotein receptors with protein-only nanoparticles

    International Nuclear Information System (INIS)

    Xu, Zhikun; Céspedes, María Virtudes; Unzueta, Ugutz; Álamo, Patricia; Pesarrodona, Mireia; Mangues, Ramón; Vázquez, Esther; Villaverde, Antonio; Ferrer-Miralles, Neus

    2015-01-01

    Low-density lipoprotein receptors (LDLR) are appealing cell surface targets in drug delivery, as they are expressed in the blood–brain barrier (BBB) endothelium and are able to mediate transcytosis of functionalized drugs for molecular therapies of the central nervous system (CNS). On the other hand, brain-targeted drug delivery is currently limited, among others, by the poor availability of biocompatible vehicles, as most of the nanoparticles under development as drug carriers pose severe toxicity issues. In this context, protein nanoparticles offer functional versatility, easy and cost-effective bioproduction, and full biocompatibility. In this study, we have designed and characterized several chimerical proteins containing different LDLR ligands, regarding their ability to bind and internalize target cells and to self-organize as viral mimetic nanoparticles of about 18 nm in diameter. While the self-assembling of LDLR-binding proteins as nanoparticles positively influences cell penetration in vitro, the nanoparticulate architecture might be not favoring BBB crossing in vivo. These findings are discussed in the context of the use of nanostructured materials as vehicles for the systemic treatment of CNS diseases

  5. Loci of catabolism of beta-very low density lipoprotein in vivo delineated with a residualizing label, 125I-dilactitol tyramine

    International Nuclear Information System (INIS)

    Daugherty, A.; Thorpe, S.R.; Lange, L.G.; Sobel, B.E.; Schonfeld, G.

    1985-01-01

    beta-Very low density lipoprotein (beta-VLDL) may be a major atherogenic lipoprotein, and knowledge of the sites of its catabolism should facilitate elucidation of mechanisms important in the regulation of its plasma concentrations. In this study, catabolic sites of beta-VLDL have been delineated in normolipidemic rabbits with a novel, radioiodinated, residualizing label, 125 I-dilactitol tyramine ( 125 I-DLT). Comparative studies of beta-VLDL and low density lipoprotein catabolism were performed with 125 I-DLT conjugated to each lipoprotein and with lipoproteins iodine-labeled conventionally. Conjugation did not alter size distributions or charge characteristics of lipoprotein particles. The overall processing (binding and degradation) of lipoproteins by cultured rabbit skin fibroblasts was not influenced by 125 I-DLT derivatization, suggesting that attachment of the label did not influence cell receptor-lipoprotein interactions. Furthermore, although degradation products of 125 I-lipoproteins leaked out of the cells and into the medium, the degradation products of 125 I-DLT lipoproteins were retained by the cells. The principal catabolic site of beta-VLDL in normolipidemic rabbits was found to be the liver with 54 +/- 4% of injected 125 I retained in this organ 24 h after injection of 125 I-DLT-beta-VLDL. When catabolism was normalized to tissue weight, the liver and adrenals were found to be approximately equally active in the metabolism of beta-VLDL. In agreement with results of other studies with residualizing labels, the principal organ of catabolism of 125 I-DLT-LDL in vivo was the liver. The adrenals were the most highly catabolizing organ when results were normalized for tissue weight

  6. Contribution of Lipoproteins and Lipoprotein Processing to Endocarditis Virulence in Streptococcus sanguinis▿ §

    Science.gov (United States)

    Das, Sankar; Kanamoto, Taisei; Ge, Xiuchun; Xu, Ping; Unoki, Takeshi; Munro, Cindy L.; Kitten, Todd

    2009-01-01

    Streptococcus sanguinis is an important cause of infective endocarditis. Previous studies have identified lipoproteins as virulence determinants in other streptococcal species. Using a bioinformatic approach, we identified 52 putative lipoprotein genes in S. sanguinis strain SK36 as well as genes encoding the lipoprotein-processing enzymes prolipoprotein diacylglyceryl transferase (lgt) and signal peptidase II (lspA). We employed a directed signature-tagged mutagenesis approach to systematically disrupt these genes and screen each mutant for the loss of virulence in an animal model of endocarditis. All mutants were viable. In competitive index assays, mutation of a putative phosphate transporter reduced in vivo competitiveness by 14-fold but also reduced in vitro viability by more than 20-fold. Mutations in lgt, lspA, or an uncharacterized lipoprotein gene reduced competitiveness by two- to threefold in the animal model and in broth culture. Mutation of ssaB, encoding a putative metal transporter, produced a similar effect in culture but reduced in vivo competiveness by >1,000-fold. [3H]palmitate labeling and Western blot analysis confirmed that the lgt mutant failed to acylate lipoproteins, that the lspA mutant had a general defect in lipoprotein cleavage, and that SsaB was processed differently in both mutants. These results indicate that the loss of a single lipoprotein, SsaB, dramatically reduces endocarditis virulence, whereas the loss of most other lipoproteins or of normal lipoprotein processing has no more than a minor effect on virulence. PMID:19395487

  7. Accumulation of native and methylated low density lipoproteins by healing rabbit arterial wall

    International Nuclear Information System (INIS)

    Fischman, A.J.; Lees, A.M.; Lees, R.S.; Barlai-Kovach, M.; Strauss, H.W.

    1987-01-01

    To determine whether healing arterial wall accumulation of low density lipoproteins (LDL) is mediated by the high affinity LDL receptor, normocholesterolemic rabbits were injected with 125 I-LDL, /sup 99m/Tc-LDL, or the reductively methylated analogs of these compounds ( 125 I-MeLDL, /sup 99m/Tc-MeLDL), 1 month after balloon catheter deendothelialization of the abdominal aorta. If the mechanism of accumulation requires interaction with the LDL receptor, reductively methylated lipoproteins which do not bind to the receptor should not accumulate in healing arterial wall. Twenty-four hours after injection of labelled lipoproteins, each animal was injected with Evans blue dye, in order to distinguish reendothelialized from deendothelialized aorta. One hour after dye injection, the aorta was fixed, removed, divided into abdominal (ballooned) and thoracic (unballooned) regions and counted. For all lipoprotein preparations, there were three to four times as many counts in the abdominal as in the thoracic aorta. En face autoradiographs were made of the aortas that had been exposed to 125 I-labelled lipoproteins. In the autoradiographs, the areas of the lowest activity corresponded to the centers of healing endothelial islands. The most intense radioactivity for both lipoproteins occurred in the region of the leading edge of the endothelial islands where active endothelial regeneration was in progress. The overall distribution of native and MeLDL accumulation was the same. The results suggest that low density lipoproteins are accumulated in areas of active endothelial regeneration by a mechanism that does not involve the high affinity LDL receptor

  8. Sortilins: new players in lipoprotein metabolism

    DEFF Research Database (Denmark)

    Willnow, Thomas; Kjølby, Mads Fuglsang; Nykjær, Anders

    2011-01-01

    PURPOSE OF REVIEW: Sortilins are sorting receptors that direct proteins through secretory and endocytic pathways of the cell. Previously, these receptors have been shown to play important roles in regulating protein transport in neurons and to control neuronal viability and death in many diseases...... on the importance of sorting receptors in control of cellular and systemic lipoprotein metabolism and how altered trafficking pathways may represent a major risk factor for dyslipidemia and atherosclerosis in the human population....

  9. PCSK9 and triglyceride-rich lipoprotein metabolism.

    Science.gov (United States)

    Druce, I; Abujrad, H; Ooi, T C

    2015-07-20

    Pro-protein convertase subtilisin-kexin 9 (PCSK9) is known to affect low-density lipoprotein (LDL) metabolism, but there are indications from several lines of research that it may also influence the metabolism of other lipoproteins, especially triglyceride-rich lipoproteins (TRL). This review summarizes the current data on this possible role of PCSK9. A link between PCSK9 and TRL has been suggested through the demonstration of (1) a correlation between plasma PCSK9 and triglyceride (TG) levels in health and disease, (2) a correlation between plasma PCSK9 and markers of carbohydrate metabolism, which is closely related to TG metabolism, (3) an effect of TG-lowering fibrate therapy on plasma PCSK9 levels, (4) an effect of PCSK9 on postprandial lipemia, (5) an effect of PCSK9 on adipose tissue biology, (6) an effect of PCSK9 on apolipoprotein B production from the liver and intestines, (7) an effect of PCSK9 on receptors other than low density lipoprotein receptor (LDLR) that are involved in TRL metabolism, and (8) an effect of anti-PCSK9 therapy on serum TG levels. The underlying mechanisms are unclear but starting to emerge. © 2015 the Journal of Biomedical Research. All rights reserved.

  10. Plasma lipoprotein(a) levels in patients with homozygous autosomal dominant hypercholesterolemia

    NARCIS (Netherlands)

    Sjouke, B.; Yahya, R.; Tanck, M.W.T.; Defesche, J.C.; Graaf, J. de; Wiegman, A.; Kastelein, J.J.; Mulder, M.T.; Hovingh, G.K.; Roeters van Lennep, J.E.

    2017-01-01

    BACKGROUND: Patients with autosomal dominant hypercholesterolemia (ADH), caused by mutations in either low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), or proprotein convertase subtilisin-kexin type 9 (PCSK9) are characterized by high low-density lipoprotein cholesterol levels and

  11. Streptococcus gordonii induces nitric oxide production through its lipoproteins stimulating Toll-like receptor 2 in murine macrophages.

    Science.gov (United States)

    Kim, Hyun Young; Baik, Jung Eun; Ahn, Ki Bum; Seo, Ho Seong; Yun, Cheol-Heui; Han, Seung Hyun

    2017-02-01

    Streptococcus gordonii, a Gram-positive commensal in the oral cavity, is an opportunistic pathogen that can cause endodontic and systemic infections resulting in infective endocarditis. Lipoteichoic acid (LTA) and lipoprotein are major virulence factors of Gram-positive bacteria that are preferentially recognized by Toll-like receptor 2 (TLR2) on immune cells. In the present study, we investigated the effect of S. gordonii LTA and lipoprotein on the production of the representative inflammatory mediator nitric oxide (NO) by the mouse macrophages. Heat-killed S. gordonii wild-type and an LTA-deficient mutant (ΔltaS) but not a lipoprotein-deficient mutant (Δlgt) induced NO production in mouse primary macrophages and the cell line, RAW 264.7. S. gordonii wild-type and ΔltaS also induced the expression of inducible NO synthase (iNOS) at the mRNA and protein levels. In contrast, the Δlgt mutant showed little effect under the same condition. Furthermore, S. gordonii wild-type and ΔltaS induced NF-κB activation, STAT1 phosphorylation, and IFN-β expression, which are important for the induction of iNOS gene expression, with little activation by Δlgt. S. gordonii wild-type and ΔltaS showed an increased adherence and internalization to RAW 264.7 cells compared to Δlgt. In addition, S. gordonii wild-type and ΔltaS, but not Δlgt, substantially increased TLR2 activation while none of these induced NO production in TLR2-deficient macrophages. Triton X-114-extracted lipoproteins from S. gordonii were sufficient to induce NO production. Collectively, we suggest that lipoprotein is an essential cell wall component of S. gordonii to induce NO production in macrophages through TLR2 triggering NF-κB and STAT1 activation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Plasma lipoprotein(a) levels in patients with homozygous autosomal dominant hypercholesterolemia

    NARCIS (Netherlands)

    Sjouke, Barbara; Yahya, Reyhana; Tanck, Michael W. T.; Defesche, Joep C.; de Graaf, Jacqueline; Wiegman, Albert; Kastelein, John J. P.; Mulder, Monique T.; Hovingh, G. Kees; Roeters van Lennep, Jeanine E.

    2017-01-01

    Patients with autosomal dominant hypercholesterolemia (ADH), caused by mutations in either low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), or proprotein convertase subtilisin-kexin type 9 (PCSK9) are characterized by high low-density lipoprotein cholesterol levels and in some

  13. Analytic ultracentrifugation of lipoproteins: Some current collaborations

    International Nuclear Information System (INIS)

    Lindgren, F.T.

    1987-01-01

    This summary briefly reports on three ongoing studies - the heterogeneity of Low Density Lipoproteins (LDL) in the cynomolgus monkey, the domain nature of Apolipoprotein E-3, and the molecular weight of apoB-100 in low density lipoprotein subfractions in normal males. 4 refs

  14. Large-scale preparation of the homogeneous LolA–lipoprotein complex and efficient in vitro transfer of lipoproteins to the outer membrane in a LolB-dependent manner

    OpenAIRE

    Watanabe, Shoji; Oguchi, Yuki; Yokota, Naoko; Tokuda, Hajime

    2007-01-01

    An ATP-binding cassette transporter LolCDE complex of Escherichia coli releases lipoproteins destined to the outer membrane from the inner membrane as a complex with a periplasmic chaperone, LolA. Interaction of the LolA–lipoprotein complex with an outer membrane receptor, LolB, then causes localization of lipoproteins to the outer membrane. As far as examined, formation of the LolA–lipoprotein complex strictly depends on ATP hydrolysis by the LolCDE complex in the presence of LolA. It has be...

  15. Elevated Lipoprotein(A Impairs Platelet Radiolabeling Yield

    Directory of Open Access Journals (Sweden)

    Susanne Granegger

    2015-02-01

    Full Text Available Objectives: Platelet radiolabeling in clinical routine usually results in labeling efficiencies (LE above 80%. A variety of risk factors and clinical conditions are known to impair platelet labeling yield, among them elevated triglycerides and low-density lipoproteins. The potential influence of lipoprotein(a (Lp(a, an atherogenic lipoprotein particle containing a kringle subunit, which is widely found in the proteins of fibrinolysis pathway, has never been studied. Normal Lp(a levels range below 30 mg/ dl. The exact prevalence of elevated Lp(a is unknown, most likely ranging below 10%. Even more rare is an isolated elevation despite an otherwise normal lipoprotein profile. Methods: We examined the role of isolated elevated Lp(a (> 50 mg/dl, ranging up to 440 mg/dl compared to patients with normal lipid profile. Platelets were radiolabeled with in-111-oxine at 37 °C for 5 minutes using ISORBE-consensus methodology. Results: The findings indicate that already at levels below 100 mg/dl Lp(a decreases LE. LE assessment after cross-incubation of hyper-Lp(a platelets with normal Lp(a plasma and vice versa reveals that platelets rather than the plasmatic environment are responsible for the deterioration of labeling yield. This behavior already has been reported for elevated low-density lipoproteins. Apparently, the quantitative influence of LDL and Lp(a/mg is comparable. Plotting the sum of LDL and Lp(a versus LE reveals a clear significant negative correlation. Conclusion: As extremely elevated Lp(a, particularly above 150 mg/dl, may significantly impair labeling results. We therefore recommend to include extremely elevated Lp(a into the list of parameters, which should be known before performing radiolabeling of human platelets.

  16. Lectin-like oxidized low-density lipoprotein receptor-1 promotes endothelial dysfunction in LDL receptor knockout background.

    Science.gov (United States)

    Hofmann, Anja; Brunssen, Coy; Poitz, David M; Langbein, Heike; Strasser, Ruth H; Henle, Thomas; Ravens, Ursula; Morawietz, Henning

    2017-11-01

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) is the major receptor for oxidized LDL in endothelial cells. LOX-1 is highly expressed in atherosclerotic plaques. The impact of LOX-1 on development of endothelial dysfunction in large vessels in absence or presence of atherosclerosis-prone conditions has not been studied to date. Mice with endothelial cell-specific LOX-1 overexpression (bLOX-1tg) were analyzed. Wild-type (WT) mice served as controls. In addition, bLOX-1tg mice were crossed with LDL receptor knockout (Ldlr -/- ) mice. All mice were fed a western-type diet (WD) or control diet (CD) for 20 weeks. Afterwards, endothelial function was analyzed ex vivo in thoracic aortas using a Mulvany myograph. WD induced hypertriglyceridemia (bLOX-1tg: 1.6-fold; WT: 1.4-fold) and hypercholesterolemia (P LDL-cholesterol (∼9-fold) compared to WT and bLOX-1tg mice on WD. Endothelial function in response to WD was impaired in bLOX-1tg/Ldlr -/- mice (Eff max : 56.7 ± 23.0%) compared to WT (Eff max : 88.2 ± 15.8%, P < 0.001), bLOX-1tg (Eff max : 76.7 ± 12.9%, P < 0.05) and Ldlr -/- mice (Eff max : 70.1 ± 13.1%, P < 0.05). No differences between WT, bLOX-1tg and Ldlr -/- mice were detectable when comparing all genotypes. Endothelial LOX-1 overexpression in an atherosclerosis-prone background impairs endothelial function, proving its importance in the development of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. α-Tocopherol modulates the low density lipoprotein receptor of human HepG2 cells

    Directory of Open Access Journals (Sweden)

    Bottema Cynthia DK

    2003-05-01

    Full Text Available Abstract The aim of this study was to determine the effects of vitamin E (α-tocopherol on the low density lipoprotein (LDL receptor, a cell surface protein which plays an important role in controlling blood cholesterol. Human HepG2 hepatoma cells were incubated for 24 hours with increasing amounts of α, δ, or γ-tocopherol. The LDL receptor binding activity, protein and mRNA, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase mRNA, cell cholesterol and cell lathosterol were measured. The effect of α-tocopherol was biphasic. Up to a concentration of 50 μM, α-tocopherol progressively increased LDL receptor binding activity, protein and mRNA to maximum levels 2, 4 and 6-fold higher than control, respectively. The HMG-CoA reductase mRNA and the cell lathosterol concentration, indices of cholesterol synthesis, were also increased by 40% over control by treatment with 50 μM α-tocopherol. The cell cholesterol concentration was decreased by 20% compared to control at 50 μM α-tocopherol. However, at α-tocopherol concentrations higher than 50 μM, the LDL receptor binding activity, protein and mRNA, the HMG-CoA reductase mRNA and the cell lathosterol and cholesterol concentrations all returned to control levels. The biphasic effect on the LDL receptor was specific for α-tocopherol in that δ and γ-tocopherol suppressed LDL receptor binding activity, protein and mRNA at all concentrations tested despite the cells incorporating similar amounts of the three homologues. In conclusion, α-tocopherol, exhibits a specific, concentration-dependent and biphasic "up then down" effect on the LDL receptor of HepG2 cells which appears to be at the level of gene transcription. Cholesterol synthesis appears to be similarly affected and the cell cholesterol concentration may mediate these effects.

  18. Lipoprotein metabolism in familial hypercholesterolemia: Serial assessment using a one-step ultracentrifugation method

    Directory of Open Access Journals (Sweden)

    Hayato Tada

    2015-04-01

    Full Text Available Objectives: It is well known that familial hypercholesterolemia (FH is a common inherited disorder that can markedly elevate the level of plasma LDL cholesterol. However, little data exists regarding the clinical impact of the plasma triglyceride (TG-rich lipoprotein fraction, including VLDL and IDL, in FH. Thus, we assessed the hypothesis that the mutations in the LDL receptor modulate lipoprotein metabolism other than the LDL fraction. Design and methods: We investigated plasma lipoprotein with a one-step ultracentrifugation method for 146 controls (mean age=61.4±17.1 yr, mean LDL cholesterol=92.7±61.2 mg/dl, 213 heterozygous mutation-determined FH subjects (mean age=46.0±18.0 yr, mean LDL cholesterol=225.1±61.2 mg/dl, and 16 homozygous/compound heterozygous mutation-determined FH subjects (mean age=26.9±17.1 yr, mean LDL cholesterol=428.6±86.1 mg/dl. In addition, we evaluated cholesterol/TG ratio in each lipoprotein fraction separated by ultracentrifugation. Results: In addition to total cholesterol and LDL cholesterol levels, VLDL cholesterol (19.5±10.4, 25.2±19.3, 29.5±21.4 mg/dl, respectively and IDL cholesterol (8.3±3.7, 16.8±11.5, 40.0±37.3 mg/dl, respectively exhibited a tri-model distribution according to their status in LDL receptor mutation(s. Moreover, the ratios of cholesterol/TG of each lipoprotein fraction increased significantly in heterozygous FH and homozygous/compound heterozygous FH groups, compared with that of controls, suggesting that the abnormality in LDL receptor modulates the quality as well as the quantity of each lipoprotein fraction. Conclusions: Our results indicate that cholesterol in TG-rich lipoproteins, including VLDL and IDL, are significantly higher in FH subjects, revealing a tri-modal distribution according to the number of LDL receptor mutations. Keywords: LDL cholesterol, Familial hypercholesterolemia, Ultracentrifugation, Lipoprotein

  19. Effect of high density lipoproteins on permeability of rabbit aorta to low density lipoproteins

    International Nuclear Information System (INIS)

    Klimov, A.N.; Popov, V.A.; Nagornev, V.A.; Pleskov, V.M.

    1985-01-01

    A study was made on the effect of high density lipoproteins (HDL) on the permeability of rabbit aorta to low density lipoproteins (LDL) after intravenous administration of human HDL and human ( 125 I)LDL to normal and hypercholesterolemic rabbits. Evaluation of radioactivity in plasma and aorta has shown that the administration of a large dose of HDL decreased the aorta permeability rate for ( 125 I)LDL on an average by 19% in normal rabbits, and by 45% in rabbits with moderate hypercholesterolemia. A historadiographic study showed that HDL also decreased the vessel wall permeability to ( 125 I)LDL in normal and particularly in hypercholesterolemic animals. The suggestion was made that HDL at very high molar concentration can hamper LDL transportation through the intact endothelial layer into the intima due to the ability of HDL to compete with LDL in sites of low affinity on the surface of endothelial cells. (author)

  20. Alterations of serum cholesterol and serum lipoprotein in breast cancer of women

    OpenAIRE

    Hasija, Kiran; Bagga, Hardeep K.

    2005-01-01

    Fasting blood sample of 50 normal subjects (control) and 100 patients of breast cancer were investigated for serum total cholesterol, high density lipoprotein cholesterol, low density lipoprotein cholesterol, very low density lipoprotein, high density lipoprotein cholesterol:low density lipoprotein cholesterol ratio and total cholesterol:high density lipoprotein cholesterol ratio during breast cancer of women. Five cancer stages, types, age groups, parity and menopausal status were undertaken...

  1. Novel mechanism by which probucol lowers low density lipoprotein levels demonstrated in the LDL receptor-deficient rabbit

    International Nuclear Information System (INIS)

    Naruszewicz, M.; Carew, T.E.; Pittman, R.C.; Witztum, J.L.; Steinberg, D.

    1984-01-01

    Treatment of low density lipoprotein (LDL) receptor-deficient rabbits (WHHL rabbits) with probucol (1% w/w in a chow diet) lowered their LDL-cholesterol levels by 36%, consonant with the reported effectiveness of the drug in patients deficient in the LDL receptor. Initial studies of LDL fractional catabolic rate (FCR) using 125 I-labeled LDL prepared from the serum of untreated WHHL rabbits showed no difference between probucol-treated WHHL rabbits and untreated WHHL rabbits. When, however, 125 I-labeled LDL was prepared from donor WHHL rabbits under treatment with probucol and injected back into them, the FCR was found to be increased by about 50% above that measured simultaneously using 131 I-labeled LDL prepared from untreated WHHL donors. The labeled LDL from probucol-treated donors was also metabolized more rapidly than that from untreated donors when injected into untreated WHHL rabbits or into untreated wild-type New Zealand White rabbits. Finally, it was shown that rabbit skin fibroblasts in culture degraded labeled LDL prepared from probucol-treated WHHL rabbits more rapidly than that prepared from untreated WHHL donors. This was true both for normal rabbit fibroblasts and also for WHHL skin fibroblasts, although the absolute degradation rates in the latter were, of course, much lower for both forms of LDL. The data indicate that a major mechanism by which probucol lowers LDL levels relates not to changes in the cellular mechanisms for LDL uptake or to changes in LDL production but rather to intrinsic changes in the structure and metabolism of the plasma LDL of the probucol-treated animal

  2. Recombinant Lipoproteins as Novel Vaccines with Intrinsic Adjuvant.

    Science.gov (United States)

    Chong, Pele; Huang, Jui-Hsin; Leng, Chih-Hsiang; Liu, Shih-Jen; Chen, Hsin-Wei

    2015-01-01

    A core platform technology for high production of recombinant lipoproteins with built-in immunostimulator for novel subunit vaccine development has been established. This platform technology has the following advantages: (1) easily convert antigen into lipidated recombinant protein using a fusion sequence containing lipobox and express high level (50-150mg/L) in Escherichia coli; (2) a robust high-yield up- and downstream bioprocess for lipoprotein production is successfully developed to devoid endotoxin contamination; (3) the lipid moiety of recombinant lipoproteins, which is identical to that of bacterial lipoproteins is recognized as danger signals by the immune system (Toll-like receptor 2 agonist), so both innate and adaptive immune responses can be induced by lipoproteins; and (4) successfully demonstrate the feasibility and safety of this core platform technology in meningococcal group B subunit vaccine, dengue subunit vaccine, novel subunit vaccine against Clostridium difficile-associated diseases, and HPV-based immunotherapeutic vaccines in animal model studies. © 2015 Elsevier Inc. All rights reserved.

  3. Low-density lipoprotein concentration in the normal left coronary artery tree

    Directory of Open Access Journals (Sweden)

    Louridas George E

    2008-10-01

    Full Text Available Abstract Background The blood flow and transportation of molecules in the cardiovascular system plays a crucial role in the genesis and progression of atherosclerosis. This computational study elucidates the Low Density Lipoprotein (LDL site concentration in the entire normal human 3D tree of the LCA. Methods A 3D geometry model of the normal human LCA tree is constructed. Angiographic data used for geometry construction correspond to end-diastole. The resulted model includes the LMCA, LAD, LCxA and their main branches. The numerical simulation couples the flow equations with the transport equation applying realistic boundary conditions at the wall. Results High concentration of LDL values appears at bifurcation opposite to the flow dividers in the proximal regions of the Left Coronary Artery (LCA tree, where atherosclerosis frequently occurs. The area-averaged normalized luminal surface LDL concentrations over the entire LCA tree are, 1.0348, 1.054 and 1.23, for the low, median and high water infiltration velocities, respectively. For the high, median and low molecular diffusivities, the peak values of the normalized LDL luminal surface concentration at the LMCA bifurcation reach 1.065, 1.080 and 1.205, respectively. LCA tree walls are exposed to a cholesterolemic environment although the applied mass and flow conditions refer to normal human geometry and normal mass-flow conditions. Conclusion The relationship between WSS and luminal surface concentration of LDL indicates that LDL is elevated at locations where WSS is low. Concave sides of the LCA tree exhibit higher concentration of LDL than the convex sides. Decreased molecular diffusivity increases the LDL concentration. Increased water infiltration velocity increases the LDL concentration. The regional area of high luminal surface concentration is increased with increasing water infiltration velocity. Regions of high LDL luminal surface concentration do not necessarily co-locate to the

  4. Germinated Brown Rice Attenuates Atherosclerosis and Vascular Inflammation in Low-Density Lipoprotein Receptor-Knockout Mice.

    Science.gov (United States)

    Zhao, Ruozhi; Ghazzawi, Nora; Wu, Jiansu; Le, Khuong; Li, Chunyang; Moghadasian, Mohammed H; Siow, Yaw L; Apea-Bah, Franklin B; Beta, Trust; Yin, Zhengfeng; Shen, Garry X

    2018-05-02

    The present study investigates the impact of germinated brown rice (GBR) on atherosclerosis and the underlying mechanism in low-density lipoprotein receptor-knockout (LDLr-KO) mice. The intensity of atherosclerosis in aortas of LDLr-KO mice receiving diet supplemented with 60% GBR (weight/weight) was significantly less than that in mice fed with 60% white rice (WR) or control diet ( p mice fed with WR diet was significantly more than that from mice receiving the control diet ( p mice in comparison to the WR diet ( p mice compared to WR. The anti-atherosclerotic effect of GBR in LDLr-KO mice at least in part results from its anti-inflammatory activity.

  5. Redefining the essential trafficking pathway for outer membrane lipoproteins

    Science.gov (United States)

    Grabowicz, Marcin; Silhavy, Thomas J.

    2017-01-01

    The outer membrane (OM) of Gram-negative bacteria is a permeability barrier and an intrinsic antibiotic resistance factor. Lipoproteins are OM components that function in cell wall synthesis, diverse secretion systems, and antibiotic efflux pumps. Moreover, each of the essential OM machines that assemble the barrier requires one or more lipoproteins. This dependence is thought to explain the essentiality of the periplasmic chaperone LolA and its OM receptor LolB that traffic lipoproteins to the OM. However, we show that in strains lacking substrates that are toxic when mislocalized, both LolA and LolB can be completely bypassed by activating an envelope stress response without compromising trafficking of essential lipoproteins. We identify the Cpx stress response as a monitor of lipoprotein trafficking tasked with protecting the cell from mislocalized lipoproteins. Moreover, our findings reveal that an alternate trafficking pathway exists that can, under certain conditions, bypass the functions of LolA and LolB, implying that these proteins do not perform any truly essential mechanistic steps in lipoprotein trafficking. Instead, these proteins’ key function is to prevent lethal accumulation of mislocalized lipoproteins. PMID:28416660

  6. Redefining the essential trafficking pathway for outer membrane lipoproteins.

    Science.gov (United States)

    Grabowicz, Marcin; Silhavy, Thomas J

    2017-05-02

    The outer membrane (OM) of Gram-negative bacteria is a permeability barrier and an intrinsic antibiotic resistance factor. Lipoproteins are OM components that function in cell wall synthesis, diverse secretion systems, and antibiotic efflux pumps. Moreover, each of the essential OM machines that assemble the barrier requires one or more lipoproteins. This dependence is thought to explain the essentiality of the periplasmic chaperone LolA and its OM receptor LolB that traffic lipoproteins to the OM. However, we show that in strains lacking substrates that are toxic when mislocalized, both LolA and LolB can be completely bypassed by activating an envelope stress response without compromising trafficking of essential lipoproteins. We identify the Cpx stress response as a monitor of lipoprotein trafficking tasked with protecting the cell from mislocalized lipoproteins. Moreover, our findings reveal that an alternate trafficking pathway exists that can, under certain conditions, bypass the functions of LolA and LolB, implying that these proteins do not perform any truly essential mechanistic steps in lipoprotein trafficking. Instead, these proteins' key function is to prevent lethal accumulation of mislocalized lipoproteins.

  7. A role for the high-density lipoprotein receptor SR-B1 in synovial inflammation via serum amyloid-A.

    LENUS (Irish Health Repository)

    Mullan, Ronan Hugh

    2012-02-01

    Acute phase apoprotein Serum Amyloid A (A-SAA), which is strongly expressed in rheumatoid arthritis synovial membrane (RA SM), induces angiogenesis, adhesion molecule expression, and matrix metalloproteinase production through the G-coupled receptor FPRL-1. Here we report alternative signaling through the high-density lipoprotein receptor scavenger receptor-class B type 1 (SR-B1). Quantitative expression\\/localization of SR-B1 in RA SM, RA fibroblast-like cells (FLCs), and microvascular endothelial cells (ECs) was assessed by Western blotting and immunohistology\\/fluorescence. A-SAA-mediated effects were examined using a specific antibody against SR-B1 or amphipathic alpha-Helical Peptides (the SR-B1 antagonists L-37pA and D-37pA), in RA FLCs and ECs. Adhesion molecule expression and cytokine production were quantified using flow cytometry and ELISA. SR-B1 was strongly expressed in the RA SM lining layer and endothelial\\/perivascular regions compared with osteoarthritis SM or normal control synovium. Differential SR-B1 expression in RA FLC lines (n = 5) and ECs correlated closely with A-SAA, but not tumor necrosis factor alpha-induced intercellular adhesion molecule-1 upregulation. A-SAA-induced interleukin-6 and -8 production was inhibited in the presence of anti-SR-B1 in human microvascular endothelial cells and RA FLCs. Moreover, D-37pA and L-37pA inhibited A-SAA-induced vascular cell adhesion molecule-1 and intercellular adhesion molecule expression from ECs in a dose-dependent manner. As SR-B1 is expressed in RA synovial tissue and mediates A-SAA-induced pro-inflammatory pathways, a better understanding of A-SAA-mediated inflammatory pathways may lead to novel treatment strategies for RA.

  8. The low-density lipoprotein receptor-related protein 1 and amyloid-β clearance in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Takahisa eKanekiyo

    2014-05-01

    Full Text Available Accumulation and aggregation of amyloid-β (Aβ peptides in the brain trigger the development of progressive neurodegeneration and dementia associated with Alzheimer’s disease (AD. Perturbation in Aβ clearance, rather than Aβ production, is likely the cause of sporadic, late-onset AD, which accounts for the majority of AD cases. Since cellular uptake and subsequent degradation constitute a major Aβ clearance pathway, the receptor-mediated endocytosis of Aβ has been intensely investigated. Among Aβ receptors, the low-density lipoprotein receptor-related protein 1 (LRP1 is one of the most studied receptors. LRP1 is a large endocytic receptor for more than 40 ligands, including apolipoprotein E (apoE, α2-macroglobulin and Aβ. Emerging in vitro and in vivo evidence demonstrates that LRP1 is critically involved in brain Aβ clearance. LRP1 is highly expressed in a variety of cell types in the brain including neurons, vascular cells and glial cells, where LRP1 functions to maintain brain homeostasis and control Aβ metabolism. LRP1-mediated endocytosis regulates cellular Aβ uptake by binding to Aβ either directly or indirectly through its co-receptors or ligands. Furthermore, LRP1 regulates several signaling pathways, which also likely influences Aβ endocytic pathways. In this review, we discuss how LRP1 regulates the brain Aβ clearance and how this unique endocytic receptor participates in AD pathogenesis. Understanding of the mechanisms underlying LRP1-mediated Aβ clearance should enable the rational design of novel diagnostic and therapeutic strategies for AD.

  9. Electronegative Low-Density Lipoprotein Increases C-Reactive Protein Expression in Vascular Endothelial Cells through the LOX-1 Receptor

    OpenAIRE

    Chu, Chih-Sheng; Wang, Yu-Chen; Lu, Long-Sheng; Walton, Brian; Yilmaz, H. Ramazan; Huang, Roger Y.; Sawamura, Tatsuya; Dixon, Richard A. F.; Lai, Wen-Ter; Chen, Chu-Huang; Lu, Jonathan

    2013-01-01

    Objectives Increased plasma C-reactive protein (CRP) levels are associated with the occurrence and severity of acute coronary syndrome. We investigated whether CRP can be generated in vascular endothelial cells (ECs) after exposure to the most electronegative subfraction of low-density lipoprotein (LDL), L5, which is atherogenic to ECs. Because L5 and CRP are both ligands for the lectin-like oxidized LDL receptor-1 (LOX-1), we also examined the role of LOX-1. Methods and Results Plasma LDL sa...

  10. In vivo regulation of scavenger receptor BI and the selective uptake of high density lipoprotein cholesteryl esters in rat liver parenchymal and Kupffer cells

    NARCIS (Netherlands)

    Fluiter, K.; van der Westhuijzen, D. R.; van Berkel, T. J.

    1998-01-01

    High density lipoprotein cholesteryl esters (HDL-CE) are selectively taken up by liver parenchymal cells without parallel apolipoprotein uptake. This selective uptake route forms an important step in the so-called reverse cholesterol transport. Scavenger receptor BI (SR-BI) is the only known HDL

  11. Flow-cytometric determination of high-density-lipoprotein binding sites on human leukocytes

    International Nuclear Information System (INIS)

    Schmitz, G.; Wulf, G.; Bruening, T.A.; Assmann, G.

    1987-01-01

    In this method, leukocytes were isolated from 6 mL of EDTA-blood by density-gradient centrifugation and subsequently incubated with rhodamine isothiocyanate (RITC)-conjugated high-density lipoproteins (HDL). The receptor-bound conjugate particles were determined by fluorescent flow cytometry and compared with 125 I-labeled HDL binding data for the same cells. Human granulocytes express the highest number of HDL binding sites (9.4 x 10(4)/cell), followed by monocytes (7.3 x 10(4)/cell) and lymphocytes (4.0 x 10(4)/cell). Compared with conventional analysis of binding of 125 I-labeled HDL in tissue-culture dishes, the present determination revealed significantly lower values for nonspecific binding. In competition studies, the conjugate competes for the same binding sites as 125 I-labeled HDL. With the use of tetranitromethane-treated HDL3, which fails to compete for the HDL receptor sites while nonspecific binding is not affected, we could clearly distinguish between 37 degrees C surface binding and specific 37 degrees C uptake of RITC-HDL3, confirming that the HDL receptor leads bound HDL particles into an intracellular pathway rather than acting as a docking type of receptor. Patients with familial dysbetalipoproteinemia showed a significantly higher number of HDL binding sites in the granulocyte population but normal in lymphocytes and monocytes, indicating increased uptake of cholesterol-containing lipoproteins. In patients with familial hypercholesterolemia, HDL binding was increased in all three cell types, indicating increased cholesterol uptake and increased cholesterol synthesis. The present method allows rapid determination of HDL binding sites in leukocytes from patients with various forms of hyper- and dyslipoproteinemias

  12. Low-Density Lipoprotein Receptor-Related Protein 6 (LRP6 Is a Novel Nutritional Therapeutic Target for Hyperlipidemia, Non-Alcoholic Fatty Liver Disease, and Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Gwang-woong Go

    2015-06-01

    Full Text Available Low-density lipoprotein receptor-related protein 6 (LRP6 is a member of the low-density lipoprotein receptor family and has a unique structure, which facilitates its multiple functions as a co-receptor for Wnt/β-catenin signaling and as a ligand receptor for endocytosis. The role LRP6 plays in metabolic regulation, specifically in the nutrient-sensing pathway, has recently garnered considerable interest. Patients carrying an LRP6 mutation exhibit elevated levels of LDL cholesterol, triglycerides, and fasting glucose, which cooperatively constitute the risk factors of metabolic syndrome and atherosclerosis. Since the discovery of this mutation, the general role of LRP6 in lipid homeostasis, glucose metabolism, and atherosclerosis has been thoroughly researched. These studies have demonstrated that LRP6 plays a role in LDL receptor-mediated LDL uptake. In addition, when the LRP6 mutant impaired Wnt-LRP6 signaling, hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis developed. LRP6 regulates lipid homeostasis and body fat mass via the nutrient-sensing mechanistic target of the rapamycin (mTOR pathway. Furthermore, the mutant LRP6 triggers atherosclerosis by activating platelet-derived growth factor (PDGF-dependent vascular smooth muscle cell differentiation. This review highlights the exceptional opportunities to study the pathophysiologic contributions of LRP6 to metabolic syndrome and cardiovascular diseases, which implicate LRP6 as a latent regulator of lipid metabolism and a novel therapeutic target for nutritional intervention.

  13. High-density lipoprotein apolipoproteins in urine: I. Characterization in normal subjects and in patients with proteinuria.

    Science.gov (United States)

    Gomo, Z A; Henderson, L O; Myrick, J E

    1988-09-01

    A high-resolution two-dimensional electrophoretic method for protein, with silver staining, has been used to characterize and identify urinary high-density-lipoprotein apolipoproteins (HDL-Apos) and their isoforms in healthy subjects and in patients with kidney disease. Analytical techniques based on both molecular mass and ultracentrifugal flotation properties were used to isolate urinary lipoprotein particles with characteristics identical to those of HDL in plasma. HDL-Apos identified in urine of normal subjects and patients with glomerular proteinuria were Apos A-I, A-II, and C. Five isoforms of Apo A-I were present. Immunostaining of electroblotted proteins further confirmed the presence of HDL-Apos in urine. Creatinine clearance rate was decreased in the patients with proteinuria, and ranged from 32.5 to 40 mL/min. Concentrations of cholesterol and triglycerides in serum were greater in the patients' group, whereas mean HDL-cholesterol (0.68, SD 0.10 mmol/L) and Apo A-I (0.953, SD 0.095 g/L) were significantly (each P less than 0.01) lower. Results of this study suggest that measurement of urinary Apo A-I will reflect excretion of HDL in urine.

  14. Lipoprotein distribution and serum concentrations of 7α-hydroxy-4-cholesten-3-one and bile acids: effects of monogenic disturbances in high-density lipoprotein metabolism

    DEFF Research Database (Denmark)

    Steiner, Carine; Holleboom, Adriaan G; Karuna, Ratna

    2012-01-01

    BA (bile acid) formation is considered an important final step in RCT (reverse cholesterol transport). HDL (high-density lipoprotein) has been reported to transport BAs. We therefore investigated the effects of monogenic disturbances in human HDL metabolism on serum concentrations and lipoprotein...... concentrations of conjugated and secondary BAs differed between heterozygous carriers of SCARB1 (scavenger receptor class B1) mutations and unaffected individuals (P...

  15. Deficiency of Lipoprotein Lipase in Neurons Decreases AMPA Receptor Phosphorylation and Leads to Neurobehavioral Abnormalities in Mice.

    Directory of Open Access Journals (Sweden)

    Tian Yu

    Full Text Available Alterations in lipid metabolism have been found in several neurodegenerative disorders, including Alzheimer's disease. Lipoprotein lipase (LPL hydrolyzes triacylglycerides in lipoproteins and regulates lipid metabolism in multiple organs and tissues, including the central nervous system (CNS. Though many brain regions express LPL, the functions of this lipase in the CNS remain largely unknown. We developed mice with neuron-specific LPL deficiency that became obese on chow by 16 wks in homozygous mutant mice (NEXLPL-/- and 10 mo in heterozygous mice (NEXLPL+/-. In the present study, we show that 21 mo NEXLPL+/- mice display substantial cognitive function decline including poorer learning and memory, and increased anxiety with no difference in general motor activities and exploratory behavior. These neurobehavioral abnormalities are associated with a reduction in the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl propanoic acid (AMPA receptor subunit GluA1 and its phosphorylation, without any alterations in amyloid β accumulation. Importantly, a marked deficit in omega-3 and omega-6 polyunsaturated fatty acids (PUFA in the hippocampus precedes the development of the neurobehavioral phenotype of NEXLPL+/- mice. And, a diet supplemented with n-3 PUFA can improve the learning and memory of NEXLPL+/- mice at both 10 mo and 21 mo of age. We interpret these findings to indicate that LPL regulates the availability of PUFA in the CNS and, this in turn, impacts the strength of synaptic plasticity in the brain of aging mice through the modification of AMPA receptor and its phosphorylation.

  16. Characterization of lipoproteins in human and canine cerebrospinal fluid (CSF)

    International Nuclear Information System (INIS)

    Pitas, R.E.; Weisgraber, K.H.; Boyles, J.K.; Lee, S.; Mahley, R.W.

    1986-01-01

    Previously the authors demonstrated that rat brain astrocytes in vitro synthesize and secrete apo-E and possess apo-B,E(LDL) receptors. The apo-E secreted by astrocytes and apo-E in rat brain extracts differed from serum apo-E in two respects. Brain apo-E had a higher apparent molecular weight and a higher percentage of more acidic isoforms. To characterize further the apo-E within the central nervous system, apo-E in human and canine CSF was investigated. Compared to plasma apo-E, CSF apo-E had a higher apparent M/sub r/ and a higher percentage of acidic isoforms which were sialylated, as shown by neuraminidase digestion. The apo-E in human CSF was approx.5-10% of the plasma level. In CSF 60-80% of the apo-E was in lipoproteins with d = 1.09-1.15. The remainder of the apo-E was in the d > 1.21 fraction. Human CSF lipoproteins were primarily spherical (110-190 A) while canine CSF lipoproteins were a mixture of discs (205 x 65 A) while canine CSF lipoproteins were a mixture of discs (205 x 65 A) and spheres (100-150 A). The CSF also contained apo-AI in the d = 1.09-1.15 g/ml fraction. Human CSF lipoproteins containing both apo-E and apo-AI were isolated on an anti-apo-E affinity column, suggesting that apo-E and AI occurred in the same particles. The CSF apo-E-containing lipoproteins competed for binding of 125 I-LDL to the apo-B,E(LDL) receptor. There was no detectable apo-B in CSF. These data suggest that CSF lipoproteins might transport lipid and regulate lipid homeostasis within the brain

  17. Low-density Lipoprotein Receptor-related Protein-1 (LRP1) Mediates Autophagy and Apoptosis Caused by Helicobacter pylori VacA*

    OpenAIRE

    Yahiro, Kinnosuke; Satoh, Mamoru; Nakano, Masayuki; Hisatsune, Junzo; Isomoto, Hajime; Sap, Jan; Suzuki, Hidekazu; Nomura, Fumio; Noda, Masatoshi; Moss, Joel; Hirayama, Toshiya

    2012-01-01

    In Helicobacter pylori infection, vacuolating cytotoxin (VacA)-induced mitochondrial damage leading to apoptosis is believed to be a major cause of cell death. It has also been proposed that VacA-induced autophagy serves as a host mechanism to limit toxin-induced cellular damage. Apoptosis and autophagy are two dynamic and opposing processes that must be balanced to regulate cell death and survival. Here we identify the low-density lipoprotein receptor-related protein-1 (LRP1) as the VacA rec...

  18. Lipophorin Receptor: The Insect Lipoprotein Receptor

    Indian Academy of Sciences (India)

    IAS Admin

    Director of ... function of the Lp is to deliver lipids throughout the insect body for metabolism ... Lipid is used as a major energy source for development as well as other metabolic .... LpR4 receptor variant was expressed exclusively in the brain and.

  19. Analysis of the binding of pro-urokinase and urokinase-plasminogen activator inhibitor-1 complex to the low density lipoprotein receptor-related protein using a Fab fragment selected from a phage-displayed Fab library

    NARCIS (Netherlands)

    Horn, I. R.; Moestrup, S. K.; van den Berg, B. M.; Pannekoek, H.; Nielsen, M. S.; van Zonneveld, A. J.

    1995-01-01

    The low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor (LRP) mediates endocytosis of a number of structurally unrelated ligands, including complexes of plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) or urokinase plasminogen

  20. Receptor-mediated endocytosis and intracellular trafficking of insulin and low-density lipoprotein by retinal vascular endothelial cells.

    Science.gov (United States)

    Stitt, A W; Anderson, H R; Gardiner, T A; Bailie, J R; Archer, D B

    1994-08-01

    The authors investigated the receptor-mediated endocytosis (RME) and intracellular trafficking of insulin and low-density lipoprotein (LDL) in cultured retinal vascular endothelial cells (RVECs). Low-density lipoprotein and insulin were conjugated to 10 nm colloidal gold, and these ligands were added to cultured bovine RVECs for 20 minutes at 4 degrees C. The cultures were then warmed to 37 degrees C and fixed after incubation times between 30 seconds and 1 hour. Control cells were incubated with unconjugated gold colloid at times and concentrations similar to those of the ligands. Additional control cells were exposed to several concentrations of anti-insulin receptor antibody or a saturating solution of unconjugated insulin before incubation with gold insulin. Using transmission electron microscopy, insulin gold and LDL gold were both observed at various stages of RME. Insulin-gold particles were first seen to bind to the apical plasma membrane (PM) before clustering in clathrin-coated pits and internalization in coated vesicles. Gold was later visualized in uncoated cytoplasmic vesicles, corresponding to early endosomes and multivesicular bodies (MVBs) or late endosomes. In several instances, localized regions of the limiting membrane of the MVBs appeared coated, a feature of endosomal membranes not previously described. After RME at the apical PM and passage through the endosomal system, the greater part of both insulin- and LDL-gold conjugates was seen to accumulate in large lysosome-like compartments. However, a small but significant proportion of the internalized ligands was transcytosed and released as discrete membrane-associated quanta at the basal cell surface. The uptake of LDL gold was greatly increased in highly vacuolated, late-passage RVECs. In controls, anti-insulin receptor antibody and excess unconjugated insulin caused up to 89% inhibition in gold-insulin binding and internalization. These results illustrate the internalization and intracellular

  1. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein

    DEFF Research Database (Denmark)

    Whorton, Matthew R; Bokoch, Michael P; Rasmussen, Søren Gøgsig Faarup

    2007-01-01

    G protein-coupled receptors (GPCRs) respond to a diverse array of ligands, mediating cellular responses to hormones and neurotransmitters, as well as the senses of smell and taste. The structures of the GPCR rhodopsin and several G proteins have been determined by x-ray crystallography, yet...... the organization of the signaling complex between GPCRs and G proteins is poorly understood. The observations that some GPCRs are obligate heterodimers, and that many GPCRs form both homo- and heterodimers, has led to speculation that GPCR dimers may be required for efficient activation of G proteins. However......, technical limitations have precluded a definitive analysis of G protein coupling to monomeric GPCRs in a biochemically defined and membrane-bound system. Here we demonstrate that a prototypical GPCR, the beta2-adrenergic receptor (beta2AR), can be incorporated into a reconstituted high-density lipoprotein...

  2. Anxiety and beta-adrenergic receptor function in a normal population.

    Science.gov (United States)

    Kang, Eun-Ho; Yu, Bum-Hee

    2005-06-01

    Many studies have shown a close relationship between anxiety and beta-adrenergic receptor function in patients with anxiety disorders. This study examined the relationship between beta-adrenergic receptor function and anxiety levels in a normal population. Subjects for this study included 36 men and 44 women between the ages of 20 and 40 years whose Body Mass Index (BMI) was between 18 and 26. All of them were healthy subjects who had no previous history of medical or psychiatric illnesses. The authors measured the Spielberger State-Trait Anxiety Inventory (STAI), Beck Depression Inventory (BDI), and Chronotropic 25 Dose (CD25) of isoproterenol, previously developed to assess in vivo beta-adrenergic receptor sensitivity. We also examined correlations between log normalized CD25 and mood states. The mean of CD25 was 2.64+/-1.37 mug and the mean of CD25 in men was significantly higher (i.e., lower beta-adrenergic receptor sensitivity) than that of women (3.26+/-1.35 vs. 2.14+/-1.17 microg; t = 3.99, p anxiety (r = -0.344, p = 0.002), trait anxiety (r = -0.331, p = 0.003), and BDI (r = -0.283, p = 0.011). CD25 was positively correlated with BMI (r = 0.423, p anxiety, and BMI. The sensitivity of beta-adrenergic receptors increased as anxiety levels became higher in a normal population. Thus, the relationship between anxiety and beta-adrenergic receptor function in healthy subjects may be different from that of patients with anxiety disorders.

  3. Differences in [14C]glycerol utilization in normal and familial hypercholesterolemic fibroblasts

    International Nuclear Information System (INIS)

    Shireman, R.B.; Durieux, J.

    1991-01-01

    It is known that cultured fibroblasts from familial hypercholesterolemia (FH) patients lack the normal cell receptor for low density lipoprotein (LDL) and that the absence of receptor-mediated transport of LDL cholesterol into these cells results in increased cellular synthesis of cholesterol. After 20 h perincubation in lipid-free medium, cultured FH fibroblasts incorporated significantly greater amounts of [ 14 C]glycerol into cellular lipids than did normal fibroblasts. Relative to the control medium which contained only bovine serum albumin (BSA), preincubation with 5% fetal bovine serum or 50 micrograms LDL/ml decreased [ 14 C]glycerol incorporation by both cell types. FH cells utilized more [ 14 C]glycerol for phospholipid synthesis and less for triglyceride synthesis than normal cells. This study indicates that LDL may be important in the transport of glycerides, as well as cholesterol, to cells

  4. A bovine papillomavirus-1 based vector restores the function of the low-density lipoprotein receptor in the receptor-deficient CHO-ldlA7 cell line

    Directory of Open Access Journals (Sweden)

    Ustav Mart

    2002-04-01

    Full Text Available Abstract Background The rationale of using bovine papillomavirus-1 (BPV-1 derived vectors in gene therapy protocols lies in their episomal maintenance at intermediate to high copy number, and stable, high-level expression of the gene products. We constructed the BPV-1 based vector harbouring the human low-density lipoprotein receptor (LDLR gene cDNA and tested its ability to restore the function of the LDLR in the receptor-deficient cell line CHO-ldlA7. Results The introduced vector p3.7LDL produced functionally active LDL receptors in the receptor-deficient cell line CHO-ldlA7 during the 32-week period of observation as determined by the internalisation assay with the labelled LDL particles. Conclusion Bovine papillomavirus type-1 (BPV-1-derived vectors could be suitable for gene therapy due to their episomal maintenance at intermediate to high copy number and stable, high-level expression of the gene products. The constructed BPV-1 based vector p3.7LDL produced functionally active LDL receptors in the LDLR-deficient cell line CHO-ldlA7 during the 32-week period of observation. In vivo experiments should reveal, whether 1–5% transfection efficiency obtained in the current work is sufficient to bring about detectable and clinically significant lowering of the amount of circulating LDL cholesterol particles.

  5. β-Amyloid promotes accumulation of lipid peroxides by inhibiting CD36-mediated clearance of oxidized lipoproteins

    Directory of Open Access Journals (Sweden)

    Khan Tayeba

    2004-11-01

    Full Text Available Abstract Background Recent studies suggest that hypercholesterolemia, an established risk factor for atherosclerosis, is also a risk factor for Alzheimer's disease. The myeloid scavenger receptor CD36 binds oxidized lipoproteins that accumulate with hypercholesterolemia and mediates their clearance from the circulation and peripheral tissues. Recently, we demonstrated that CD36 also binds fibrillar β-amyloid and initiates a signaling cascade that regulates microglial recruitment and activation. As increased lipoprotein oxidation and accumulation of lipid peroxidation products have been reported in Alzheimer's disease, we investigated whether β-amyloid altered oxidized lipoprotein clearance via CD36. Methods The availability of mice genetically deficient in class A (SRAI & II and class B (CD36 scavenger receptors has facilitated studies to discriminate their individual actions. Using primary microglia and macrophages, we assessed the impact of Aβ on: (a cholesterol ester accumulation by GC-MS and neutral lipid staining, (b binding, uptake and degradation of 125I-labeled oxidized lipoproteins via CD36, SR-A and CD36/SR-A-independent pathways, (c expression of SR-A and CD36. In addition, using mice with targeted deletions in essential kinases in the CD36-signaling cascade, we investigated whether Aβ-CD36 signaling altered metabolism of oxidized lipoproteins. Results In primary microglia and macrophages, Aβ inhibited binding, uptake and degradation of oxidized low density lipoprotein (oxLDL in a dose-dependent manner. While untreated cells accumulated abundant cholesterol ester in the presence of oxLDL, cells treated with Aβ were devoid of cholesterol ester. Pretreatment of cells with Aβ did not affect subsequent degradation of oxidized lipoproteins, indicating that lysosomal accumulation of Aβ did not disrupt this degradation pathway. Using mice with targeted deletions of the scavenger receptors, we demonstrated that Aβ inhibited oxidized

  6. CRISPR Correction of a Homozygous Low-Density Lipoprotein Receptor Mutation in Familial Hypercholesterolemia Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Omer, Linda; Hudson, Elizabeth A; Zheng, Shirong; Hoying, James B; Shan, Yuan; Boyd, Nolan L

    2017-11-01

    Familial hypercholesterolemia (FH) is a hereditary disease primarily due to mutations in the low-density lipoprotein receptor (LDLR) that lead to elevated cholesterol and premature development of cardiovascular disease. Homozygous FH patients (HoFH) with two dysfunctional LDLR alleles are not as successfully treated with standard hypercholesterol therapies, and more aggressive therapeutic approaches to control cholesterol levels must be considered. Liver transplant can resolve HoFH, and hepatocyte transplantation has shown promising results in animals and humans. However, demand for donated livers and high-quality hepatocytes overwhelm the supply. Human pluripotent stem cells can differentiate to hepatocyte-like cells (HLCs) with the potential for experimental and clinical use. To be of future clinical use as autologous cells, LDLR genetic mutations in derived FH-HLCs need to be corrected. Genome editing technology clustered-regularly-interspaced-short-palindromic-repeats/CRISPR-associated 9 (CRISPR/Cas9) can repair pathologic genetic mutations in human induced pluripotent stem cells. We used CRISPR/Cas9 genome editing to permanently correct a 3-base pair homozygous deletion in LDLR exon 4 of patient-derived HoFH induced pluripotent stem cells. The genetic correction restored LDLR-mediated endocytosis in FH-HLCs and demonstrates the proof-of-principle that CRISPR-mediated genetic modification can be successfully used to normalize HoFH cholesterol metabolism deficiency at the cellular level.

  7. Radiochemical and immunohistochemical detection of low density lipoprotein surface binding by lymphocytes

    International Nuclear Information System (INIS)

    Melzner, I.; Hambitzer, R.; Haferkamp, O.

    1983-01-01

    Human peripheral blood lymphocytes bind and take up low density lipoprotein (LDL) by receptor-mediated endocytosis. The binding of LDL was determiend by incubation with 125 I-LDL and an immunohistochemical assay. By both techniques a diminished rate of binding was found when cells were freshly isolated from the blood, but increased 5 to 10 fold when lymphocytes were incubated in lipoprotein-deficient medium for 72 hours. In addition, it was shown immunohistochemically that only few ceels showed an LDL-dependent fluorescent labelling: approximately 5 to 10 % of the freshly isolated lymphocytes and 40 to 50 % of the cells incubated for 72 hours under lipoprotein-free conditions. The present data indicate that not only the high affinity LDL receptor described by Goldstein and Braun may be involved in the uptake of cholesterol by lymphocytes, but also other binding sites, which may have immunological function in some lymphocyte subpopulations. (author)

  8. Genetic spectrum of low density lipoprotein receptor gene variations in South Indian population.

    Science.gov (United States)

    ArulJothi, K N; Suruthi Abirami, B; Devi, Arikketh

    2018-03-01

    Low density lipoprotein receptor (LDLR) is a membrane bound receptor maintaining cholesterol homeostasis along with Apolipoprotein B (APOB), Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) and other genes of lipid metabolism. Any pathogenic variation in these genes alters the function of the receptor and leads to Familial Hypercholesterolemia (FH) and other cardiovascular diseases. This study was aimed at screening the LDLR, APOB and PCSK9 genes in Hypercholesterolemic patients to define the genetic spectrum of FH in Indian population. Familial Hypercholesterolemia patients (n=78) of South Indian Tamil population with LDL cholesterol and Total cholesterol levels above 4.9mmol/l and 7.5mmol/l with family history of Myocardial infarction were involved. DNA was isolated by organic extraction method from blood samples and LDLR, APOB and PCSK9 gene exons were amplified using primers that cover exon-intron boundaries. The amplicons were screened using High Resolution Melt (HRM) Analysis and the screened samples were sequenced after purification. This study reports 20 variations in South Indian population for the first time. In this set of variations 9 are novel variations which are reported for the first time, 11 were reported in other studies also. The in silico analysis for all the variations detected in this study were done to predict the probabilistic effect in pathogenicity of FH. This study adds 9 novel variations and 11 recurrent variations to the spectrum of LDLR gene mutations in Indian population. All these variations are reported for the first time in Indian population. This spectrum of variations was different from the variations of previous Indian reports. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Activation of lipoprotein lipase by lipoprotein fractions of human serum.

    Science.gov (United States)

    Bier, D M; Havel, R J

    1970-11-01

    Triglycerides in fat emulsions are hydrolyzed by lipoprotein lipase only when they are "activated" by serum lipoproteins. The contribution of different lipoprotein fractions to hydrolysis of triglycerides in soybean oil emulsion was assessed by determining the quantity of lipoprotein fraction required to give half-maximal hydrolysis. Most of the activator property of whole serum from normolipidemic, postabsorptive subjects was in high density lipoproteins. Low density lipoproteins and serum from which all lipoprotein classes were removed had little or no activity. Also, little activator was present in guinea pig serum or in very low density poor serum from an individual with lecithin:cholesterol acyltransferase deficiency, both of which are deficient in high density lipoproteins. Human very low density lipoproteins are potent activators and are much more active than predicted from their content of high density lipoprotein-protein. Per unit weight of protein, very low density lipoproteins had 13 times the activity of high density lipoproteins. These observations suggest that one or more of the major apoproteins of very low density lipoproteins, present as a minor constituent of high density lipoproteins, may be required for the activation process.

  10. Immunosuppressive activity of human cord-blood lipoproteins

    International Nuclear Information System (INIS)

    Forte, T.M.; Davis, P.A.; Curtiss, L.K.

    1985-01-01

    It is now known that the role of plasma lipoproteins is multifunctional. More recently it has been shown that lipoproteins may regulate immune responses as well. Low-density lipoproteins carrying apolipoprotein B (apoB) are known to suppress phytohemagglutinin (PHA) activated lymphocytes by inhibiting DNA synthesis. More recently, an immunoregulatory role has been described for another apolipoprotein, apoE, which is found in low quantities in normal plasma. In these studies with human umbilical-cord blood the authors were intrigued by two factors: the low level of LDL and hence apoB, and the elevated quantity of apoE. This study examines the hypothesis that apoE may regulate lymphocyte function in the human fetus

  11. Lipoprotein-associated phospholipase A2 distribution among lipoproteins differs in type 1 diabetes.

    Science.gov (United States)

    Jarvie, Jennifer L; Wang, Hong; Kinney, Gregory L; Snell-Bergeon, Janet; Hokanson, John E; Eckel, Robert H

    2016-01-01

    LpPLA2 mass and activity have been variably related to cardiovascular disease risk, and the distribution of LpPLA2 in patients with type 1 diabetes (T1D), wherein cardiovascular disease risk is high despite normal or higher levels of high-density lipoprotein (HDL) cholesterol, is unknown. To determine whether there are differences in the distribution of LpPLA2 mass and activity across lipoproteins and their association with coronary artery calcium (CAC) in patients with T1D. Men with T1D (n = 19) not on statins, with and without CAC progression, and men without diabetes matched for HDL cholesterol (n = 25) had lipoproteins separated by fast protein liquid chromatography. Both LpPLA2 mass and activity were found within low-density lipoprotein (LDL) and HDL pools with more LpPLA2 mass being associated with HDL (54% vs 44%; P-value lipoprotein subfractions was observed between all groups, and there was no relationship between LpPLA2 activity or mass and its distribution and CAC score progression in healthy or T1D men. LpPLA2 is found in both LDL and HDL and is distributed differently in men with T1D without any relationship to CAC score progression. Copyright © 2016 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  12. Hepatic farnesoid X-receptor isoforms α2 and α4 differentially modulate bile salt and lipoprotein metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Marije Boesjes

    Full Text Available The nuclear receptor FXR acts as an intracellular bile salt sensor that regulates synthesis and transport of bile salts within their enterohepatic circulation. In addition, FXR is involved in control of a variety of crucial metabolic pathways. Four FXR splice variants are known, i.e. FXRα1-4. Although these isoforms show differences in spatial and temporal expression patterns as well as in transcriptional activity, the physiological relevance hereof has remained elusive. We have evaluated specific roles of hepatic FXRα2 and FXRα4 by stably expressing these isoforms using liver-specific self-complementary adeno-associated viral vectors in total body FXR knock-out mice. The hepatic gene expression profile of the FXR knock-out mice was largely normalized by both isoforms. Yet, differential effects were also apparent; FXRα2 was more effective in reducing elevated HDL levels and transrepressed hepatic expression of Cyp8b1, the regulator of cholate synthesis. The latter coincided with a switch in hydrophobicity of the bile salt pool. Furthermore, FXRα2-transduction caused an increased neutral sterol excretion compared to FXRα4 without affecting intestinal cholesterol absorption. Our data show, for the first time, that hepatic FXRα2 and FXRα4 differentially modulate bile salt and lipoprotein metabolism in mice.

  13. The fibrate drug gemfibrozil disrupts lipoprotein metabolism in rainbow trout

    International Nuclear Information System (INIS)

    Prindiville, John S.; Mennigen, Jan A.; Zamora, Jake M.; Moon, Thomas W.; Weber, Jean-Michel

    2011-01-01

    Gemfibrozil (GEM) is a fibrate drug consistently found in effluents from sewage treatment plants. This study characterizes the pharmacological effects of GEM on the plasma lipoproteins of rainbow trout (Oncorhynchus mykiss). Our goals were to quantify the impact of the drug on: 1) lipid constituents of lipoproteins (phospholipids (PL), triacylglycerol (TAG), and cholesterol), 2) lipoprotein classes (high, low and very low density lipoproteins), and 3) fatty acid composition of lipoproteins. Potential mechanisms of GEM action were investigated by measuring lipoprotein lipase activity (LPL) and the hepatic gene expression of LPL and of the peroxisome proliferator-activated receptor (PPAR) α, β, and γ isoforms. GEM treatment resulted in decreased plasma lipoprotein levels (- 29%) and a reduced size of all lipoprotein classes (lower PL:TAG ratios). However, the increase in HDL-cholesterol elicited by GEM in humans failed to be observed in trout. Therefore, HDL-cholesterol cannot be used to assess the impact of the drug on fish. GEM also modified lipoprotein composition by reducing the abundance of long-chain n-3 fatty acids, thereby potentially reducing the nutritional quality of exposed fish. The relative gene expression of LPL was increased, but the activity of the enzyme was not, and we found no evidence for the activation of PPAR pathways. The depressing effects of GEM on fish lipoproteins demonstrated here may be a concern in view of the widespread presence of fibrates in aquatic environments. Work is needed to test whether exposure to environmental concentrations of these drugs jeopardizes the capacity of fish for reproduction, temperature acclimation or migratory behaviors.

  14. Sorting of bacterial lipoproteins to the outer membrane by the Lol system.

    Science.gov (United States)

    Narita, Shin-ichiro; Tokuda, Hajime

    2010-01-01

    Bacterial lipoproteins comprise a subset of membrane proteins with a lipid-modified cysteine residue at their amino termini through which they are anchored to the membrane. In Gram-negative bacteria, lipoproteins are localized on either the inner or the outer membrane. The Lol system is responsible for the transport of lipoproteins to the outer membrane.The Lol system comprises an inner-membrane ABC transporter LolCDE complex, a periplasmic carrier protein, LolA, and an outer membrane receptor protein, LolB. Lipoproteins are synthesized as precursors in the cytosol and then translocated across the inner membrane by the Sec translocon to the outer leaflet of the inner membrane, where lipoprotein precursors are processed to mature lipoproteins. The LolCDE complex then mediates the release of outer membrane-specific lipoproteins from the inner membrane while the inner membrane-specific lipoproteins possessing Asp at position 2 are not released by LolCDE because it functions as a LolCDE avoidance signal, causing the retention of these lipoproteins in the inner membrane. A water-soluble lipoprotein-LolA complex is formed as a result of the release reaction mediated by LolCDE. This complex traverses the hydrophilic periplasm to reach the outer membrane, where LolB accepts a lipoprotein from LolA and then catalyzes its incorporation into the inner leaflet of the outer membrane.

  15. Blood Lipoproteins under the Action of Exogenous Sex Steroids in the Postresuscitation Period

    Directory of Open Access Journals (Sweden)

    L. N. Shcherbakova

    2011-01-01

    Full Text Available Objective: to study the effect of reproductive hormones on the blood lipoprotein spectrum in the postresuscitation period after cardiac arrest. Materials and methods. Experiments were carried out on 66 mature albino rats of either sex weighing 200—250 g. Ten-minute cardiac arrest was induced by intrathoracic ligation of the vascular bundle. At 30 min after resuscitation, 49 animals were intramuscularly injected placebo and 17 animals were administered gyn-odian depot (Schering, Germany. The investigators measured the plasma concentrations of progesterone, 17-OH progesterone, androstenedione, dehydroepiandrosterone sulfate, testosterone, estradiol, and estriol, as well as the levels of triglycerides, total, and high-density lipoprotein (HDL, low-density lipoprotein (LDL, and very low-density lipoprotein (VLDL cholesterols. Blood was sampled on days 2 and 16 in the absence of therapy and on day 16 of sex steroid therapy. Results. By day 2 postresuscitation, the progesterone/estradiol ratio increased by approximately 1.8 times in males and females. Despite the fact that there were no changes in the concentrations of triglycerides, VLDL and HDL cholesterols in both males and females at that time, but the level of LDL cholesterol increased. Gender-related differences in the LDL spectrum by day 2 postresuscitation remained only in the levels of LDL cholesterol. Despite the normalization of progesterone levels, the concentrations of triglycerides and VLDL cholesterol decreased by day 16 of the postresuscitative period in the absence of therapy. There were no gender-related differences in the lipoprotein spectrum at this stage. The exogenous estradiol in combination with dehydroepiandrosterone caused a significant increase in the concentration of HLD cholesterol and a reduction in that of VLDL cholesterol in males and females both. Conclusion. Under gynodian action, the lipid spectrum was indicative of the exogenous estra-diol and

  16. Low density lipoprotein uptake by an endothelial-smooth muscle cell bilayer

    International Nuclear Information System (INIS)

    Alexander, J.J.; Miguel, R.; Graham, D.

    1991-01-01

    To study the interaction of endothelial and smooth muscle cells, and the means by which such interaction may affect lipid permeability of the arterial wall, cell bilayers were established by use of a transwell culture system. After confluent growth of both cell types had been achieved, iodine 125 bound to low-density lipoprotein (10 ng protein/ml) was added to the media of the upper well. After a 3-hour incubation period, the iodine 125-bound low-density lipoprotein content of the upper and lower media demonstrated an impedance to lipoprotein movement across the endothelial cell monolayer as compared to the bare porous polycarbonate filter of the transwell (p less than 10(-6)). The presence of smooth muscle cells in the bottom well significantly enhanced the permeability of the endothelial cell layer (p less than 10(-60)). This effect remained unchanged over a 9-day time course. Membrane binding and cellular uptake of low-density lipoprotein by endothelial cells was not altered by smooth muscle cells, indicating that this change in permeability could not be easily attributed to changes in receptor-mediated transport or transcytosis. Membrane binding (p less than 0.02) and cellular uptake (p less than 10(-6)) of low-density lipoprotein by smooth muscle cells in the bilayer, when adjusted for counts available in the smooth muscle cell media, were both reduced in the early incubation period as compared to isolated smooth muscle cells. The disproportionate reduction in uptake as compared to binding would suggest that this was not entirely a receptor-dependent process

  17. Ultracentrifugal and electrophoretic characteristics of the plasma lipoproteins of miniature schnauzer dogs with idiopathic hyperlipoproteinemia.

    Science.gov (United States)

    Whitney, M S; Boon, G D; Rebar, A H; Story, J A; Bottoms, G D

    1993-01-01

    To better characterize the idiopathic hyperlipoproteinemia of Miniature Schnauzer dogs, the plasma lipoproteins of 20 Miniature Schnauzers (MS) and 11 dogs of other breeds (DOB) were evaluated by ultracentrifugation, electrophoresis, and biochemical tests. Seventeen MS were healthy; 3 had diabetes mellitus. Plasma from 6 of 17 healthy and all 3 diabetic MS was visibly lipemic. Lipemia was slight to marked in healthy lipemic MS, and marked in diabetic ones. All DOB had clear plasma; 8 were healthy and 3 had diabetes. All healthy lipemic MS and diabetic lipemic MS had hypertriglyceridemia associated with excess very low density lipoproteins. Chylomicronemia was present in 4 of 6 healthy lipemic MS and all 3 diabetic lipemic MS. Lipoproteins with ultracentrifugal and electrophoretic characteristics of normal low density lipoprotein were lacking in 4 of 6 healthy lipemic MS. The lipoprotein patterns of 4 of 11 healthy nonlipemic MS were characterized by mild hypertriglyceridemia associated with increased very low density lipoproteins and a lack of lipoproteins with characteristics of normal low density lipoproteins. Lipoprotein patterns of diabetic DOB closely resembled those of healthy DOB; those of diabetic lipemic MS resembled those of markedly lipemic healthy lipemic MS. In conclusion, the hyperlipoproteinemia of Miniature Schnauzers is characterized by increased very low density lipoproteins with or without accompanying chylomicronemia; some affected dogs may have decreased low density lipoproteins.

  18. Mice with chimeric livers are an improved model for human lipoprotein metabolism.

    Science.gov (United States)

    Ellis, Ewa C S; Naugler, Willscott Edward; Nauglers, Scott; Parini, Paolo; Mörk, Lisa-Mari; Jorns, Carl; Zemack, Helen; Sandblom, Anita Lövgren; Björkhem, Ingemar; Ericzon, Bo-Göran; Wilson, Elizabeth M; Strom, Stephen C; Grompe, Markus

    2013-01-01

    Rodents are poor model for human hyperlipidemias because total cholesterol and low density lipoprotein levels are very low on a normal diet. Lipoprotein metabolism is primarily regulated by hepatocytes and we therefore assessed whether chimeric mice extensively repopulated with human cells can model human lipid and bile acid metabolism. FRG [ F ah(-/-) R ag2(-/-)Il2r g (-/-)]) mice were repopulated with primary human hepatocytes. Serum lipoprotein lipid composition and distribution (VLDL, LDL, and HDL) was analyzed by size exclusion chromatography. Bile was analyzed by LC-MS or by GC-MS. RNA expression levels were measured by quantitative RT-PCR. Chimeric mice displayed increased LDL and VLDL fractions and a lower HDL fraction compared to wild type, thus significantly shifting the ratio of LDL/HDL towards a human profile. Bile acid analysis revealed a human-like pattern with high amounts of cholic acid and deoxycholic acid (DCA). Control mice had only taurine-conjugated bile acids as expcted, but highly repopulated mice had glycine-conjugated cholic acid as found in human bile. RNA levels of human genes involved in bile acid synthesis including CYP7A1, and CYP27A1 were significantly upregulated as compared to human control liver. However, administration of recombinant hFGF19 restored human CYP7A1 levels to normal. Humanized-liver mice showed a typical human lipoprotein profile with LDL as the predominant lipoprotein fraction even on a normal diet. The bile acid profile confirmed presence of an intact enterohepatic circulation. Although bile acid synthesis was deregulated in this model, this could be fully normalized by FGF19 administration. Taken together these data indicate that chimeric FRG-mice are a useful new model for human lipoprotein and bile-acid metabolism.

  19. Common low-density lipoprotein receptor p.G116S variant has a large effect on plasma low-density lipoprotein cholesterol in circumpolar inuit populations.

    Science.gov (United States)

    Dubé, Joseph B; Wang, Jian; Cao, Henian; McIntyre, Adam D; Johansen, Christopher T; Hopkins, Scarlett E; Stringer, Randa; Hosseinzadeh, Siyavash; Kennedy, Brooke A; Ban, Matthew R; Young, T Kue; Connelly, Philip W; Dewailly, Eric; Bjerregaard, Peter; Boyer, Bert B; Hegele, Robert A

    2015-02-01

    Inuit are considered to be vulnerable to cardiovascular disease because their lifestyles are becoming more Westernized. During sequence analysis of Inuit individuals at extremes of lipid traits, we identified 2 nonsynonymous variants in low-density lipoprotein receptor (LDLR), namely p.G116S and p.R730W. Genotyping these variants in 3324 Inuit from Alaska, Canada, and Greenland showed they were common, with allele frequencies 10% to 15%. Only p.G116S was associated with dyslipidemia: the increase in LDL cholesterol was 0.54 mmol/L (20.9 mg/dL) per allele (P=5.6×10(-49)), which was >3× larger than the largest effect sizes seen with other common variants in other populations. Carriers of p.G116S had a 3.02-fold increased risk of hypercholesterolemia (95% confidence interval, 2.34-3.90; P=1.7×10(-17)), but did not have classical familial hypercholesterolemia. In vitro, p.G116S showed 60% reduced ligand-binding activity compared with wild-type receptor. In contrast, p.R730W was associated with neither LDL cholesterol level nor altered in vitro activity. LDLR p.G116S is thus unique: a common dysfunctional variant in Inuit whose large effect on LDL cholesterol may have public health implications. © 2014 American Heart Association, Inc.

  20. Caenorhabditis elegans reveals a FxNPxY-independent low-density lipoprotein receptor internalization mechanism mediated by epsin1

    Science.gov (United States)

    Kang, Yuan-Lin; Yochem, John; Bell, Leslie; Sorensen, Erika B.; Chen, Lihsia; Conner, Sean D.

    2013-01-01

    Low-density lipoprotein receptor (LDLR) internalization clears cholesterol-laden LDL particles from circulation in humans. Defects in clathrin-dependent LDLR endocytosis promote elevated serum cholesterol levels and can lead to atherosclerosis. However, our understanding of the mechanisms that control LDLR uptake remains incomplete. To identify factors critical to LDLR uptake, we pursued a genome-wide RNA interference screen using Caenorhabditis elegans LRP-1/megalin as a model for LDLR transport. In doing so, we discovered an unanticipated requirement for the clathrin-binding endocytic adaptor epsin1 in LDLR endocytosis. Epsin1 depletion reduced LDLR internalization rates in mammalian cells, similar to the reduction observed following clathrin depletion. Genetic and biochemical analyses of epsin in C. elegans and mammalian cells uncovered a requirement for the ubiquitin-interaction motif (UIM) as critical for receptor transport. As the epsin UIM promotes the internalization of some ubiquitinated receptors, we predicted LDLR ubiquitination as necessary for endocytosis. However, engineered ubiquitination-impaired LDLR mutants showed modest internalization defects that were further enhanced with epsin1 depletion, demonstrating epsin1-mediated LDLR endocytosis is independent of receptor ubiquitination. Finally, we provide evidence that epsin1-mediated LDLR uptake occurs independently of either of the two documented internalization motifs (FxNPxY or HIC) encoded within the LDLR cytoplasmic tail, indicating an additional internalization mechanism for LDLR. PMID:23242996

  1. Structure of the LDL receptor extracellular domain at endosomalpH

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby; Henry, Lisa; Henderson, Keith; Ichtchenko,Konstantin; Brown, Michael S.; Goldstein, Joseph L.; Deisenhofer, Johann

    2002-09-05

    The structure of the low-density lipoprotein receptor extracellular portion has been determined. The document proposes a mechanism for the release of lipoprotein in the endosome. Without this release, the mechanism of receptor recycling cannot function.

  2. Boronated protoporphyrin (BOPP): localization in lysosomes of the human glioma cell line SF-767 with uptake modulated by lipoprotein levels

    International Nuclear Information System (INIS)

    Callahan, Daniel E.; Forte, Trudy M.; Javed Afzal, S.M.; Deen, Dennis F.; Kahl, Stephen B.; Bjornstad, Kathleen A.; Bauer, William F.; Blakely, Eleanor A.

    1999-01-01

    Purpose: Boronated protoporphyrin (BOPP) is a candidate for use in both boron neutron capture therapy (BNCT) and photodynamic therapy (PDT) of glioblastoma multiforme (GBM). Our objectives are to identify factors that influence the uptake and retention of BOPP in vitro and to determine BOPP distribution in a human glioma cell line in vitro. This information will aid the development of compounds and treatment strategies that increase the effectiveness of BNCT therapy for GBM. Methods and Materials: The amount, distribution pattern, and site of internalization of BOPP were assessed using fluorescence microscopy. Living human glioma (SF-767) cells were imaged after a 24-h exposure to BOPP (20-135.6 μg/ml, normal serum). Dose-dependent uptake of BOPP was determined using both fluorescence microscopy of individual living cells and inductively-coupled plasma-atomic emission spectroscopy (ICP-AES) analysis of cell pellets. Lysosome- or mitochondria-specific fluorescent probes were used to identify the cellular compartment containing BOPP. Two human fibroblast cell lines, AG-1522 (LDL receptor-positive) and GM019-15C (LDL receptor-deficient), were used to investigate LDL receptor-dependent BOPP uptake. The dependence of BOPP uptake on lipoproteins in the media was determined by exposing each of the three cell types to BOPP in medium containing either normal (NS) or lipoprotein deficient serum (LPDS). Results: BOPP accumulated in the lysosomes of human glioma cells in vitro, and not in the mitochondria, as reported for C6 rat glioma cells in vitro. BOPP uptake was concentration-dependent and was also dependent on the amount of lipoproteins in the medium. Over the range of incubation concentrations studied and at the single exposure duration time point investigated (24 h), all cells retained a similar amount of BOPP. At the lowest incubation concentration (20 μg/ml, NS), the amount of boron retained was near 10 9 atoms per cell (15 μg B/g cells). Lysosomes containing high

  3. Lipoproteins and lipoprotein mimetics for imaging and drug delivery.

    Science.gov (United States)

    Thaxton, C Shad; Rink, Jonathan S; Naha, Pratap C; Cormode, David P

    2016-11-15

    Lipoproteins are a set of natural nanoparticles whose main role is the transport of fats within the body. While much work has been done to develop synthetic nanocarriers to deliver drugs or contrast media, natural nanoparticles such as lipoproteins represent appealing alternatives. Lipoproteins are biocompatible, biodegradable, non-immunogenic and are naturally targeted to some disease sites. Lipoproteins can be modified to act as contrast agents in many ways, such as by insertion of gold cores to provide contrast for computed tomography. They can be loaded with drugs, nucleic acids, photosensitizers or boron to act as therapeutics. Attachment of ligands can re-route lipoproteins to new targets. These attributes render lipoproteins attractive and versatile delivery vehicles. In this review we will provide background on lipoproteins, then survey their roles as contrast agents, in drug and nucleic acid delivery, as well as in photodynamic therapy and boron neutron capture therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Increased transvascular lipoprotein transport in diabetes

    DEFF Research Database (Denmark)

    Jensen, Jan Skov; Feldt-Rasmussen, Bo; Borch-Johnsen, Knut

    2005-01-01

    CONTEXT: Diabetes is associated with a highly increased risk of atherosclerosis, especially if hypertension or albuminuria is present. OBJECTIVE: We hypothesized that the increased transvascular lipoprotein transport in diabetes may be further accelerated if hypertension or albuminuria is present...... of transvascular transport. RESULTS: Transvascular LDL transport was 1.8 (1.6-2.0), 2.3 (2.0-2.6), and 2.6 (1.3-4.0)%/[h x (liter/m2)] in healthy controls, diabetic controls, and diabetes patients with systolic hypertension or albuminuria, respectively (P = 0.013; F = 4.5; df =2; ANOVA). These differences most...... likely were not caused by altered hepatic LDL receptor expression, glycosylation of LDL, small LDL size, or medicine use. CONCLUSIONS: Transvascular LDL transport is increased in patients with diabetes mellitus, especially if systolic hypertension or albuminuria is present. Accordingly, lipoprotein flux...

  5. Antagonism of Secreted PCSK9 Increases Low Density Lipoprotein Receptor Expression in HepG2 Cells

    Energy Technology Data Exchange (ETDEWEB)

    McNutt, Markey C.; Kwon, Hyock Joo; Chen, Chiyuan; Chen, Justin R.; Horton, Jay D.; Lagace, Thomas A.; (USMC); (UTSMC)

    2009-07-10

    PCSK9 is a secreted protein that degrades low density lipoprotein receptors (LDLRs) in liver by binding to the epidermal growth factor-like repeat A (EGF-A) domain of the LDLR. It is not known whether PCSK9 causes degradation of LDLRs within the secretory pathway or following secretion and reuptake via endocytosis. Here we show that a mutation in the LDLR EGF-A domain associated with familial hypercholesterolemia, H306Y, results in increased sensitivity to exogenous PCSK9-mediated cellular degradation because of enhanced PCSK9 binding affinity. The crystal structure of the PCSK9-EGF-A(H306Y) complex shows that Tyr-306 forms a hydrogen bond with Asp-374 in PCSK9 at neutral pH, which strengthens the interaction with PCSK9. To block secreted PCSK9 activity, LDLR (H306Y) subfragments were added to the medium of HepG2 cells stably overexpressing wild-type PCSK9 or gain-of-function PCSK9 mutants associated with hypercholesterolemia (D374Y or S127R). These subfragments blocked secreted PCSK9 binding to cell surface LDLRs and resulted in the recovery of LDLR levels to those of control cells. We conclude that PCSK9 acts primarily as a secreted factor to cause LDLR degradation. These studies support the concept that pharmacological inhibition of the PCSK9-LDLR interaction extracellularly will increase hepatic LDLR expression and lower plasma low density lipoprotein levels.

  6. Effects of human low and high density lipoproteins on the binding of rat intermediate density lipoproteins to rat liver membranes

    International Nuclear Information System (INIS)

    Brissette, L.; Nol, S.P.

    1986-01-01

    Upon incubation with rat liver membranes, radioiodinated rat intermediate density lipoproteins (IDL) interacted with at least two binding sites having a low and a high affinity as demonstrated by the curvilinear Scatchard plots obtained from the specific binding data. The purpose of our work was to identify the nature of these binding sites. Human low density lipoproteins (LDL), contain apolipoprotein B only, and human high density lipoproteins (HDL3), containing neither apolipoprotein B nor E, were both capable of decreasing the specific binding of rat 125 I-IDL. The Scatchard analysis clearly revealed that only the low affinity component was affected by the addition of these human lipoproteins. In fact, the low affinity binding component gradually decreased as the amount of human LDL or HDL3 increased in the binding assay. At a 200-fold excess of human LDL or HDL3, the low affinity binding was totally masked, and the Scatchard plot of the specific 125 I-IDL binding became linear. Only the high affinity binding component was left, enabling a precise measurement of its binding parameters. In a series of competitive displacement experiments in which the binding assay contained a 200-fold excess of human LDL or HDL3, only unlabeled rat IDL effectively displaced the binding of rat 125 I-IDL. We conclude that the low affinity binding of rat IDL to rat liver membranes is due to weak interactions with unspecified lipoprotein binding sites. The camouflage of these sites by human lipoproteins makes possible the study of IDL binding to the high affinity component which likely represents the combined effect of IDL binding to both the remnant and the LDL receptors

  7. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export

    DEFF Research Database (Denmark)

    Kjølby, Mads Fuglsang; Andersen, Olav Michael; Breiderhoff, Tilman

    2010-01-01

    of lipoproteins from the liver and ameliorates hypercholesterolemia and atherosclerotic lesion formation in LDL receptor-deficient animals. In contrast, sortilin overexpression stimulates hepatic release of lipoproteins and increases plasma LDL levels. Our data have uncovered a regulatory pathway in hepatic...... lipoprotein export and suggest a molecular explanation for the cardiovascular risk being associated with 1p13.3. Udgivelsesdato: september 8...

  8. Apolipoprotein A-V Deficiency Results in MarkedHypertriglyceridemia Attributable to Decreased Lipolysis ofTriglyceride-Rich Lipoproteins and Removal of Their Remnants

    Energy Technology Data Exchange (ETDEWEB)

    Grosskopf, Itamar; Baroukh, Nadine; Lee, Sung-Joon; Kamari,Yehuda; Harats, Dror; Rubin, Edward M.; Pennacchio, Len A.; Cooper, AllenD.

    2005-09-01

    Objective--ApoAV, a newly discovered apoprotein, affectsplasma triglyceride level. To determine how this occurs, we studiedtriglyceride-rich lipoprotein (TRL) metabolism in mice deficient inapoAV. Methods and Results No significant difference in triglycerideproduction rate was found between apoa5_/_ mice and controls. Thepresence or absence of apoAV affected TRL catabolism. After the injectionof 14C-palmitate and 3H-cholesterol labeled chylomicrons and 125I-labeledchylomicron remnants, the disappearance of 14C, 3H, and 125I wassignificantly slower in apoa5_/_ mice relative to controls. This wasbecause of diminished lipolysis of TRL and the reduced rate of uptake oftheir remnants in apoa5_/_ mice. Observed elevated cholesterol level wascaused by increased high-density lipoprotein (HDL) cholesterol inapoa5_/_ mice. VLDL from apoa5_/_ mice were poor substrate forlipoprotein lipase, and did not bind to the low-density lipoprotein (LDL)receptor as well as normal very-low-density lipoprotein (VLDL). LDLreceptor levels were slightly elevated in apoa5_/_ mice consistent withlower remnant uptake rates. These alterations may be the result of thelower apoE-to-apoC ratio found in VLDL isolated from apoa5_/_mice.Conclusions These results support the hypothesis that the absence ofapoAV slows lipolysis of TRL and the removal of their remnants byregulating their apoproteins content after secretion.

  9. Lifecycle of a Lipoprotein from a Biophysical Perspective

    Science.gov (United States)

    Rutledge, John C.; Huser, Thomas; Voss, John; Chan, James; Parikh, Atul

    The goal of our project was to understand how lipids and lipoproteins interact with cell membranes. This chapter will present the five major areas in which we have focused our attention on understanding how lipids and lipoproteins interact with cell membranes (Fig. 11.1): (1) triglycerides and vascular injury, (2) single lipoprotein analysis, (3) apolipoprotein E (apoE) conformation changes in the postprandial state, (4) triglyceride-rich lipoproteins (TGRLs) and endothelial cell inflammation, and (5) TGRL lipolysis products and monocyte activation. For over a hundred years, Western civilization has questioned how the food we eat translates into disease, and specifically atherosclerotic cardiovascular disease. Although most information indicates that this basic pathophysiological process is mediated through consumption of excess saturated fats, much remains unknown. After humans eat a meal, there is an elevation of triglycerides in the blood in the postprandial state. In normal individuals, triglycerides can rise after a meal by 50 to 100%. This has been documented many times in the past, including a paper by Hyson et al, (1998) [1]. In that study, normal healthy individuals were given a 40%-fat meal. Plasma triglycerides, which were modestly elevated initially, rose about 60% higher three to four hours after ingestion of the meal. Subsequently plasma triglycerides fell to baseline levels six hours after the meal. Even in these healthy individuals, a significant elevation of triglycerides was noted after ingestion of a moder ately high-fat meal.

  10. Lipoprotein(a Serum Levels in Diabetic Patients with Retinopathy

    Directory of Open Access Journals (Sweden)

    Giulia Malaguarnera

    2013-01-01

    Full Text Available Background. Atherogenic lipoproteins, such as total cholesterol, LDL cholesterol, oxidized low density lipoprotein, and triglycerides, are associated with progression of retinopathy. Aim. To evaluate the relationship between lipoprotein(a and retinopathy in patients with type 2 diabetes mellitus. Materials and Methods. We enrolled 145 diabetic consecutive patients (82 females, 63 males; mean age 66.8±12 years, mean duration of diabetes 9.4±6.8 years. Presence and severity of retinopathy were evaluated. Serum lipid profile, including Lp(a level, was assessed. Results. High Lp(a levels have been observed in 54 (78.3% subjects and normal levels in 13 (18.85% subjects as regards diabetic patients with retinopathy. Lp(a levels were high in 15 subjects (21.75% and normal in 63 subjects (91.35% as regards patients without retinopathy. Conclusions. Lp(a levels are increased in a significant percentage of patients with retinopathy compared to diabetic patients without retinopathy. The impact of Lp(a levels on diabetic retinopathy needs to be further investigated.

  11. Pneumococcal lipoproteins involved in bacterial fitness, virulence, and immune evasion.

    Science.gov (United States)

    Kohler, Sylvia; Voß, Franziska; Gómez Mejia, Alejandro; Brown, Jeremy S; Hammerschmidt, Sven

    2016-11-01

    Streptococcus pneumoniae (pneumococcus) has evolved sophisticated strategies to survive in several niches within the human body either as a harmless commensal or as a serious pathogen causing a variety of diseases. The dynamic interaction between pneumococci and resident host cells during colonization of the upper respiratory tract and at the site of infection is critical for bacterial survival and the development of disease. Pneumococcal lipoproteins are peripherally anchored membrane proteins and have pivotal roles in bacterial fitness including envelope stability, cell division, nutrient acquisition, signal transduction, transport (as substrate-binding proteins of ABC transporter systems), resistance to oxidative stress and antibiotics, and protein folding. In addition, lipoproteins are directly involved in virulence-associated processes such as adhesion, colonization, and persistence through immune evasion. Conversely, lipoproteins are also targets for the host response both as ligands for toll-like receptors and as targets for acquired antibodies. This review summarizes the multifaceted roles of selected pneumococcal lipoproteins and how this knowledge can be exploited to combat pneumococcal infections. © 2016 Federation of European Biochemical Societies.

  12. Characterization of a family of gamma-ray-induced CHO mutants demonstrates that the ldlA locus is diploid and encodes the low-density lipoprotein receptor

    International Nuclear Information System (INIS)

    Sege, R.D.; Kozarsky, K.F.; Krieger, M.

    1986-01-01

    The ldlA locus is one of four Chinese hamster ovary (CHO) cell loci which are known to be required for the synthesis of functional low-density lipoprotein (LDL) receptors. Previous studies have suggested that the ldlA locus is diploid and encodes the LDL receptor. To confirm this assignment, we have isolated a partial genomic clone of the Chinese hamster LDL receptor gene and used this and other nucleic acid and antibody probes to study a family of ldlA mutants isolated after gamma-irradiation. Our analysis suggests that there are two LDL receptor alleles in wild-type CHO cells. Each of the three mutants isolated after gamma-irradiation had detectable deletions affecting one of the two LDL receptor alleles. One of the mutants also had a disruption of the remaining allele, resulting in the synthesis of an abnormal receptor precursor which was not subject to Golgi-associated posttranslational glycoprotein processing. The correlation of changes in the expression, structure, and function of LDL receptors with deletions in the LDL receptor genes in these mutants directly demonstrated that the ldlA locus in CHO cells is diploid and encodes the LDL receptor. In addition, our analysis suggests that CHO cells in culture may contain a partial LDL receptor pseudogene

  13. Remnant lipoproteins

    DEFF Research Database (Denmark)

    Varbo, Anette; Nordestgaard, Børge G.

    2017-01-01

    Purpose of review: To review recent advances in the field of remnant lipoproteins and remnant cholesterol with a focus on cardiovascular disease risk. Recent findings: In line with previous years' research, current observational, genetic, and mechanistic studies find remnant lipoproteins (defined...... of cardiovascular disease risk reduction through remnant lipoprotein lowering are under way....

  14. Polymorphisms of the low-density lipoprotein receptor gene in Brazilian individuals with heterozygous familial hypercholesterolemia

    Directory of Open Access Journals (Sweden)

    L.A. Salazar

    2000-11-01

    Full Text Available Familial hypercholesterolemia (FH is a metabolic disorder inherited as an autosomal dominant trait characterized by an increased plasma low-density lipoprotein (LDL level. The disease is caused by several different mutations in the LDL receptor gene. Although early identification of individuals carrying the defective gene could be useful in reducing the risk of atherosclerosis and myocardial infarction, the techniques available for determining the number of the functional LDL receptor molecules are difficult to carry out and expensive. Polymorphisms associated with this gene may be used for unequivocal diagnosis of FH in several populations. The aim of our study was to evaluate the genotype distribution and relative allele frequencies of three polymorphisms of the LDL receptor gene, HincII1773 (exon 12, AvaII (exon 13 and PvuII (intron 15, in 50 unrelated Brazilian individuals with a diagnosis of heterozygous FH and in 130 normolipidemic controls. Genomic DNA was extracted from blood leukocytes by a modified salting-out method. The polymorphisms were detected by PCR-RFLP. The FH subjects showed a higher frequency of A+A+ (AvaII, H+H+ (HincII1773 and P1P1 (PvuII homozygous genotypes when compared to the control group (P<0.05. In addition, FH probands presented a high frequency of A+ (0.58, H+ (0.61 and P1 (0.78 alleles when compared to normolipidemic individuals (0.45, 0.45 and 0.64, respectively. The strong association observed between these alleles and FH suggests that AvaII, HincII1773 and PvuII polymorphisms could be useful to monitor the inheritance of FH in Brazilian families.

  15. Secretion of Bacterial Lipoproteins: Through the Cytoplasmic Membrane, the Periplasm and Beyond

    Science.gov (United States)

    Zückert, Wolfram R.

    2014-01-01

    Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., grampositive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep process that involves sequential modification of a cysteine residue and cleavage of the signal peptide by the signal II peptidase Lsp. In both monoderms and diderms, signal peptide processing is preceded by acylation with a diacylglycerol through preprolipoprotein diacylglycerol transferase (Lgt). In diderms but also some monoderms, lipoproteins are further modified with a third acyl chain through lipoprotein N-acyl transferase (Lnt). Fully modified lipoproteins that are destined to be anchored in the inner leaflet of the outer membrane (OM) are selected, transported and inserted by the Lol (lipoprotein outer membrane localization) pathway machinery, which consists of the inner-membrane (IM) ABC transporterlike LolCDE complex, the periplasmic LolA chaperone and the OM LolB lipoprotein receptor. Retention of lipoproteins in the cytoplasmic membrane results from Lol avoidance signals that were originally described as the “+2 rule”. Surface localization of lipoproteins in diderms is rare in most bacteria, with the exception of several spirochetal species. Type 2 (T2SS) and type 5 (T5SS) secretion systems are involved in secretion of specific surface lipoproteins of γ-proteobacteria. In the model spirochete Borrelia burgdorferi, surface lipoprotein secretion does not follow established sorting rules, but remains dependent on N-terminal peptide sequences. Secretion through the outer membrane requires maintenance of lipoproteins in a translocation-competent unfolded conformation

  16. Triglyceride-rich lipoprotein regulates APOB48 receptor gene expression in human THP-1 monocytes and macrophages.

    Science.gov (United States)

    Bermudez, Beatriz; Lopez, Sergio; Varela, Lourdes M; Ortega, Almudena; Pacheco, Yolanda M; Moreda, Wenceslao; Moreno-Luna, Rafael; Abia, Rocio; Muriana, Francisco J G

    2012-02-01

    The postprandial metabolism of dietary fats implies that the production of TG-rich lipoproteins (TRL) contributes to the progression of plaque development. TRL and their remnants cause rapid receptor-mediated monocyte/macrophage lipid engorgement via the cell surface apoB48 receptor (apoB48R). However, the mechanistic basis for apoB48 receptor (APOB48R) regulation by postprandial TRL in monocytes and macrophages is not well established. In this study, we investigated the effects of postprandial TRL from healthy volunteers on the expression of APOB48R mRNA and lipid uptake in human THP-1 monocytes and THP-1-derived macrophages. The expression of APOB48R mRNA was upregulated in THP-1 monocytes, but downregulated in THP-1-derived macrophages when treated with postprandial TRL (P < 0.05), in a dose- and time-dependent manner. TG and free cholesterol were dramatically increased in THP-1-derived macrophages (140 and 50%, respectively; P < 0.05) and in THP-1 monocytes (160 and 95%, respectively; P < 0.05). This lipid accumulation was severely decreased (~50%; P < 0.05) in THP-1-derived macrophages by small interfering RNA (siRNA) targeting of APOB48R. Using PPAR and retinoid X receptor (RXR) agonists, antagonists, and siRNA, our data indicate that PPARα, PPARγ, and RXRα are involved in postprandial TRL-induced APOB48R transcriptional regulation. Co-incubation with acyl-CoA synthetase or acyl-CoA:cholesterol acyltransferase inhibitors potentiated the effects of postprandial TRL on the expression of APOB48R mRNA in THP-1 monocytes and THP-1-derived macrophages. Our findings collectively suggest that APOB48R represents a molecular target of postprandial TRL via PPAR-dependent pathways in human THP-1 monocytes and macrophages and advance a potentially important link between postprandial metabolism of dietary fats and atherogenesis.

  17. Loss of Macrophage Low-Density Lipoprotein Receptor-Related Protein 1 Confers Resistance to the Antiatherogenic Effects of Tumor Necrosis Factor-α Inhibition.

    Science.gov (United States)

    Zhu, Lin; Giunzioni, Ilaria; Tavori, Hagai; Covarrubias, Roman; Ding, Lei; Zhang, Youmin; Ormseth, Michelle; Major, Amy S; Stafford, John M; Linton, MacRae F; Fazio, Sergio

    2016-08-01

    Antiatherosclerotic effects of tumor necrosis factor-α (TNF-α) blockade in patients with systemic inflammatory states are not conclusively demonstrated, which suggests that effects depend on the cause of inflammation. Macrophage LRP1 (low-density lipoprotein receptor-related protein 1) and apoE contribute to inflammation through different pathways. We studied the antiatherosclerosis effects of TNF-α blockade in hyperlipidemic mice lacking either LRP1 (MΦLRP1(-/-)) or apoE from macrophages. Lethally irradiated low-density lipoprotein receptor (LDLR)(-/-) mice were reconstituted with bone marrow from either wild-type, MΦLRP1(-/-), apoE(-/-) or apoE(-/-)/MΦLRP1(-/-)(DKO) mice, and then treated with the TNF-α inhibitor adalimumab while fed a Western-type diet. Adalimumab reduced plasma TNF-α concentration, suppressed blood ly6C(hi) monocyte levels and their migration into the lesion, and reduced lesion cellularity and inflammation in both wild-type→LDLR(-/-) and apoE(-/-)→LDLR(-/-) mice. Overall, adalimumab reduced lesion burden by 52% to 57% in these mice. Adalimumab reduced TNF-α and blood ly6C(hi) monocyte levels in MΦLRP1(-/-)→LDLR(-/-) and DKO→LDLR(-/-) mice, but it did not suppress ly6C(hi) monocyte migration into the lesion or atherosclerosis progression. Our results show that TNF-α blockade exerts antiatherosclerotic effects that are dependent on the presence of macrophage LRP1. © 2016 American Heart Association, Inc.

  18. Revisiting the Gram-negative lipoprotein paradigm.

    Science.gov (United States)

    LoVullo, Eric D; Wright, Lori F; Isabella, Vincent; Huntley, Jason F; Pavelka, Martin S

    2015-05-01

    The processing of lipoproteins (Lpps) in Gram-negative bacteria is generally considered an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein N-acyltransferase. The mature lipoproteins are then sorted by the Lol system, with most Lpps inserted into the outer membrane (OM). We demonstrate here that the lnt gene is not essential to the Gram-negative pathogen Francisella tularensis subsp. tularensis strain Schu or to the live vaccine strain LVS. An LVS Δlnt mutant has a small-colony phenotype on sucrose medium and increased susceptibility to globomycin and rifampin. We provide data indicating that the OM lipoprotein Tul4A (LpnA) is diacylated but that it, and its paralog Tul4B (LpnB), still sort to the OM in the Δlnt mutant. We present a model in which the Lol sorting pathway of Francisella has a modified ABC transporter system that is capable of recognizing and sorting both triacylated and diacylated lipoproteins, and we show that this modified system is present in many other Gram-negative bacteria. We examined this model using Neisseria gonorrhoeae, which has the same Lol architecture as that of Francisella, and found that the lnt gene is not essential in this organism. This work suggests that Gram-negative bacteria fall into two groups, one in which full lipoprotein processing is essential and one in which the final acylation step is not essential, potentially due to the ability of the Lol sorting pathway in these bacteria to sort immature apolipoproteins to the OM. This paper describes the novel finding that the final stage in lipoprotein processing (normally considered an essential process) is not required by Francisella tularensis or Neisseria gonorrhoeae. The paper provides a potential reason for this and shows that it may be widespread in other Gram-negative bacteria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland.

    Science.gov (United States)

    Pivonello, Rosario; Waaijers, Marlijn; Kros, Johan M; Pivonello, Claudia; de Angelis, Cristina; Cozzolino, Alessia; Colao, Annamaria; Lamberts, Steven W J; Hofland, Leo J

    2017-08-01

    The dopamine D 2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D 2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D 2 receptor. D 2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D 2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D 2 receptors. D 2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.

  20. Comparative studies of vertebrate scavenger receptor class B type 1: a high-density lipoprotein binding protein

    Directory of Open Access Journals (Sweden)

    Holmes RS

    2012-06-01

    Full Text Available Roger S Holmes,1,2 Laura A Cox11Department of Genetics and Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA; 2School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland, AustraliaAbstract: Scavenger receptor class B type 1 protein (SCARB1 plays an essential role in cholesterol homeostasis and functions in binding high density lipoprotein cholesterol (HDL in liver and other tissues of the body. SCARB1 also functions in lymphocyte homeostasis and in the uptake of hepatitis C virus (HCV by the liver. A genetic deficiency of this protein results in autoimmune disorders and significant changes in blood cholesterol phenotype. Comparative SCARB1 amino acid sequences and structures and SCARB1 gene locations were examined using data from several vertebrate genome projects. Vertebrate SCARB1 sequences shared 50%–99% identity as compared with 28%–31% sequence identities with other CD36-like superfamily members, ie, SCARB2 and SCARB3 (also called CD36. At least eight N-glycosylation sites were conserved among most of the vertebrate SCARB1 proteins examined. Sequence alignments, key amino acid residues, and conserved predicted secondary structures were also studied, including: cytoplasmic, transmembrane, and exoplasmic sequences; conserved N-terminal and C-terminal transmembrane glycines which participate in oligomer formation; conserved cystine disulfides and a free SH residue which participates in lipid transport; carboxyl terminal PDZ-binding domain sequences (Ala507-Arg/Lys508-Leu509; and 30 conserved proline and 18 conserved glycine residues, which may contribute to short loop formation within the exoplasmic HDL-binding sequence. Vertebrate SCARB1 genes usually contained 12 coding exons. The human SCARB1 gene contained CpG islands, micro RNA binding sites, and several transcription factor binding sites (including PPARG which may contribute to the high level (13.7 times

  1. Purification of a sarcoplasmic reticulum protein that binds Ca2+ and plasma lipoproteins

    International Nuclear Information System (INIS)

    Hofmann, S.L.; Brown, M.S.; Lee, E.; Pathak, R.K.; Anderson, R.G.; Goldstein, J.L.

    1989-01-01

    A protein in the sarcoplasmic reticulum of rabbit skeletal and cardiac muscle was identified because of its ability to bind 125I-labeled low density lipoprotein (LDL) with high affinity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This protein, referred to as the 165-kDa protein, is restricted to striated muscle. It was not detected in 14 other tissues, including several that contain smooth muscle, but it appears in rat L6 myoblasts when they differentiate into myocytes. Immunofluorescence and immunoelectron microscopic studies revealed that the protein is present throughout the sarcoplasmic reticulum and the terminal cisternae. It binds 45Ca2+ on nitrocellulose blots and stains metachromatically with Stains-all, a cationic dye that stains Ca2+-binding proteins. It does not appear to be a glycoprotein, and it appears slightly larger than the 160-kDa glycoprotein previously described in sarcoplasmic reticulum. The 165-kDa protein binds LDL, beta-migrating very low density lipoprotein, and a cholesterol-induced high density lipoprotein particle that contains apoprotein E as its sole apoprotein with much higher affinity than it binds high density lipoprotein. The protein is stable to boiling and to treatment with sodium dodecyl sulfate, but it becomes sensitive to these treatments when its cystine residues are reduced and alkylated. The protein was purified 1300-fold to apparent homogeneity from rabbit skeletal muscle membranes. It differs from the cell surface LDL receptor in that (1) its apparent molecular weight is not changed by reduction and alkylation; (2) it is present in Watanabe-heritable hyperlipidemic rabbits, which lack functional LDL receptors; (3) binding of lipoproteins is not inhibited by EDTA; and (4) it is located within the lumen of the sarcoplasmic reticulum where it has no access to plasma lipoproteins

  2. Lipoprotein complex formation

    International Nuclear Information System (INIS)

    Musliner, T.A.; Krauss, R.M.

    1987-01-01

    Transfers of lipids and proteins between different lipoproteins are known to occur in the course of their metabolism. It is likely that these transfers take place during transient physical associations between lipoprotein particles, but the nature and chemical basis for such interactions are poorly understood. The fact that lipid and apolipoprotein movements are particularly prevalent during the intravascular lipolysis of triglyceride-rich lipoproteins suggested to us that lipolysis products accumulating on these particles might promote physical binding with other lipoproteins. To test this hypothesis, we studied interactions between very low-density, low density, and high-density lipoproteins in the setting of partial lipolysis by bovine milk lipoprotein lipase in the presence of limited unesterified fatty acid acceptor. 2 figs., 1 tab

  3. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB

    OpenAIRE

    Okuda, Suguru; Tokuda, Hajime

    2009-01-01

    Outer membrane-specific lipoproteins in Escherichia coli are released from the inner membrane by an ATP-binding cassette transporter, the LolCDE complex, which causes the formation of a soluble complex with a periplasmic molecular chaperone, LolA. LolA then transports lipoproteins to the outer membrane where an outer membrane receptor, LolB, incorporates lipoproteins into the outer membrane. The molecular mechanisms underlying the Lol-dependent lipoprotein sorting have been clarified in detai...

  4. Small-Molecule Inhibitors of Gram-Negative Lipoprotein Trafficking Discovered by Phenotypic Screening

    Science.gov (United States)

    Fleming, Paul R.; MacCormack, Kathleen; McLaughlin, Robert E.; Whiteaker, James D.; Narita, Shin-ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A.

    2015-01-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  5. Small-molecule inhibitors of gram-negative lipoprotein trafficking discovered by phenotypic screening.

    Science.gov (United States)

    McLeod, Sarah M; Fleming, Paul R; MacCormack, Kathleen; McLaughlin, Robert E; Whiteaker, James D; Narita, Shin-Ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A

    2015-03-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Synthetic Nano-Low Density Lipoprotein as Targeted Drug DeliveryVehicle for Glioblastoma Multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Nikanjam, Mina; Blakely, Eleanor A.; Bjornstad, Kathleen A.; Shu,Xiao; Budinger, Thomas F.; Forte, Trudy M.

    2006-06-14

    This paper discribes a synthetic low density lipoprotein(LDL) made by complexing a 29 amino acid that consists of a lipid bindingdomain and the LDL receptor binding domain with a lipid microemulsion.The nano-LDL particles were intermdiate in size between LDL and HDL andbound to LDL receptors on GBM brain tumor cells. Synthetic nano-LDLuptake by GBM cells was LDL receptor specific and dependent on cellreceptor number. It is suggested that these synthetic particles can serveas a delivery vehicle for hydophobic anti-tumor drugs by targeting theLDL receptor.

  7. Recent angina pectoris: plasma lipoprotein atherogenic parameters and coronary angiographic data

    International Nuclear Information System (INIS)

    Kuznetsova, G.V.; Shcherbakova, I.A.; Gratsianskij, N.A.; Perova, N.V.; Nikitina, N.A.; Nechaev, A.S.; Ozerova, I.N.; Zholus, N.N.

    1986-01-01

    Coronary angiography and the assessment of blood lipoproteins were carried out in 43 patients with recent (not more than three months old) angina. A rise in cholesterol above 270 mg/dl and/or triglycerids bove 200 mg/dl was demonstrated in 19. The level of α-cholesterol was below 35 mg/dl in 11 of 24 normolipidemic patients. The apoprotein B/apoprotein AI ratio was above 1.0 in 7 of 13 patients with normal cholesterol levels. Plasma phospholipid composition was disturbed in 4 of 6 patients with normal apoprotein B/apoprotein AI rations. Therefore atherogenic changes in plasma lipoprotein composition were found in 95% of patients with recent angina

  8. Optical coherence tomography in quantifying the permeation of human plasma lipoproteins in vascular tissues

    Science.gov (United States)

    Ghosn, M. G.; Mashiatulla, M.; Tuchin, V. V.; Morrisett, J. D.; Larin, K. V.

    2012-03-01

    Atherosclerosis is the most common underlying cause of vascular disease, occurring in multiple arterial beds including the carotid, coronary, and femoral arteries. Atherosclerosis is an inflammatory process occurring in arterial tissue, involving the subintimal accumulation of low-density lipoproteins (LDL). Little is known about the rates at which these accumulations occur. Measurements of the permeability rate of LDL, and other lipoproteins such as high-density lipoprotein (HDL) and very low-density lipoprotein (VLDL), could help gain a better understanding of the mechanisms involved in the development of atherosclerotic lesions. The permeation of VLDL, LDL, HDL, and glucose was monitored and quantified in normal and diseased human carotid endarterectomy tissues at 20°C and 37°C using optical coherence tomography (OCT). The rates for LDL permeation through normal tissue at 20°C was (3.16 +/- 0.37) × 10-5 cm/sec and at 37°C was (4.77 +/- 0.48) × 10-5 cm/sec, significantly greater (plipoproteins.

  9. Effect of I125 on oxidation behavior of lipoprotein subpopulations

    International Nuclear Information System (INIS)

    Majtenyi, S.

    2002-07-01

    Lipoproteins play a central role in lipid metabolism. They serve as a transport vehicle for cholesterol and triglycerides keeping them in plasma in solution. Lipoproteins are characterized by the content of specific apoproteins and differences in the hydrated density ranges. Moreover, they are distinguished by electrophoretic mobility and other characteristics as high and low-density lipoproteins, respectively lipoprotein (a). More specifically, HDL is classified into HDL 2 and HDL 3 . In atherogenesis, lipoproteins are considered to play a key-role. Oxidatively modified LDL is selectively taken up via scavenger receptors of the macrophage-monocyte system. These cells are transformed into foam cells promoting atherogenesis in vessels in the subendothelial space. Oxidized HDL essentially appears to loose its protective effects on LDL and its beneficial function in reverse cholesterol transport. Thus, it turns proatherogenic. The effects various species of free radicals exert on lipoproteins are the reason for this oxidative modification. Thyroid function also influences lipoproteins in a complex manner. Based on their hydrated density ranges, lipoprotein subpopulations were fractionated and isolated via isopycnic density gradient ultracentrifugation. After investigation of the general oxidation behavior, initiated by addition of CuSO 4 to the isolated samples of HDL 3 , HDL 2 , LDL and Lp(a), the influence of different activities of radioiodine-125 on the kinetics of the formation of conjugated dienes was assessed. This was achieved by coincubation of plasma with I 125 . The spectrophotometrical measurement of the concentration of conjugated dienes in the course of CuSO 4 -induced lipid peroxidation leads to measurable changes in absorption at 234 nm. These changes in absorption over time result in a characteristically shaped curve graphically plotted. The shape of these curves mirrors different indicators of lipid peroxidation. Therefrom lag time, maximal

  10. Molecular characterization of a novel human hybrid-type receptor that binds the alpha2-macroglobulin receptor-associated protein

    DEFF Research Database (Denmark)

    Jacobsen, Linda; Madsen, P; Moestrup, S K

    1996-01-01

    the corresponding cDNA. The gene, designated SORL1, maps to chromosome 11q 23/24 and encodes a 2214-residue type 1 receptor containing a furin cleavage site immediately preceding the N terminus determined in the purified protein. The receptor, designated sorLA-1, has a short cytoplasmic tail containing a tyrosine...... density lipoprotein receptor gene family receptors, and 3) six tandemly arranged fibronectin type III repeats also found in certain neural adhesion proteins. sorLA-1 may therefore be classified as a hybrid receptor. Northern blotting revealed specific mRNA transcripts in brain, spinal cord, and testis......The 39-40-kDa receptor-associated protein (RAP) binds to the members of the low density lipoprotein receptor gene family and functions as a specialized endoplasmic reticulum/Golgi chaperone. Using RAP affinity chromatography, we have purified a novel approximately 250-kDa brain protein and isolated...

  11. Regulation of low-density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase expression by Zingiber officinale in the liver of high-fat diet-fed rats.

    Science.gov (United States)

    Nammi, Srinivas; Kim, Moon S; Gavande, Navnath S; Li, George Q; Roufogalis, Basil D

    2010-05-01

    Zingiber officinale has been used to control lipid disorders and reported to possess remarkable cholesterol-lowering activity in experimental hyperlipidaemia. In the present study, the effect of a characterized and standardized extract of Zingiber officinale on the hepatic lipid levels as well as on the hepatic mRNA and protein expression of low-density lipoprotein (LDL) receptor and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase was investigated in a high-fat diet-fed rat model. Rats were treated with an ethanol extract of Zingiber officinale (400 mg/kg) extract along with a high-fat diet for 6 weeks. The extract of Zingiber officinale significantly decreased hepatic triglyceride and tended to decrease hepatic cholesterol levels when administered over 6 weeks to the rats fed a high-fat diet. We found that in parallel, the extract up-regulated both LDL receptor mRNA and protein level and down-regulated HMG-CoA reductase protein expression in the liver of these rats. The metabolic control of body lipid homeostasis is in part due to enhanced cholesterol biosynthesis and reduced expression of LDL receptor sites following long-term consumption of high-fat diets. The present results show restoration of transcriptional and post-transcriptional changes in low-density lipoprotein and HMG CoA reductase by Zingiber officinale administration with a high-fat diet and provide a rational explanation for the effect of ginger in the treatment of hyperlipidaemia.

  12. Low Density Lipoprotein and Non-Newtonian Oscillating Flow Biomechanical Parameters for Normal Human Aorta.

    Science.gov (United States)

    Soulis, Johannes V; Fytanidis, Dimitrios K; Lampri, Olga P; Giannoglou, George D

    2016-04-01

    The temporal variation of the hemodynamic mechanical parameters during cardiac pulse wave is considered as an important atherogenic factor. Applying non-Newtonian blood molecular viscosity simulation is crucial for hemodynamic analysis. Understanding low density lipoprotein (LDL) distribution in relation to flow parameters will possibly spot the prone to atherosclerosis aorta regions. The biomechanical parameters tested were averaged wall shear stress (AWSS), oscillatory shear index (OSI) and relative residence time (RRT) in relation to the LDL concentration. Four non-Newtonian molecular viscosity models and the Newtonian one were tested for the normal human aorta under oscillating flow. The analysis was performed via computational fluid dynamic. Tested viscosity blood flow models for the biomechanical parameters yield a consistent aorta pattern. High OSI and low AWSS develop at the concave aorta regions. This is most noticeable in downstream flow region of the left subclavian artery and at concave ascending aorta. Concave aorta regions exhibit high RRT and elevated LDL. For the concave aorta site, the peak LDL value is 35.0% higher than its entrance value. For the convex site, it is 18.0%. High LDL endothelium regions located at the aorta concave site are well predicted with high RRT. We are in favor of using the non-Newtonian power law model for analysis. It satisfactorily approximates the molecular viscosity, WSS, OSI, RRT and LDL distribution. Concave regions are mostly prone to atherosclerosis. The flow biomechanical factor RRT is a relatively useful tool for identifying the localization of the atheromatic plaques of the normal human aorta.

  13. Secretion of bacterial lipoproteins: through the cytoplasmic membrane, the periplasm and beyond.

    Science.gov (United States)

    Zückert, Wolfram R

    2014-08-01

    Bacterial lipoproteins are peripherally anchored membrane proteins that play a variety of roles in bacterial physiology and virulence in monoderm (single membrane-enveloped, e.g., gram-positive) and diderm (double membrane-enveloped, e.g., gram-negative) bacteria. After export of prolipoproteins through the cytoplasmic membrane, which occurs predominantly but not exclusively via the general secretory or Sec pathway, the proteins are lipid-modified at the cytoplasmic membrane in a multistep process that involves sequential modification of a cysteine residue and cleavage of the signal peptide by the signal II peptidase Lsp. In both monoderms and diderms, signal peptide processing is preceded by acylation with a diacylglycerol through preprolipoprotein diacylglycerol transferase (Lgt). In diderms but also some monoderms, lipoproteins are further modified with a third acyl chain through lipoprotein N-acyl transferase (Lnt). Fully modified lipoproteins that are destined to be anchored in the inner leaflet of the outer membrane (OM) are selected, transported and inserted by the Lol (lipoprotein outer membrane localization) pathway machinery, which consists of the inner-membrane (IM) ABC transporter-like LolCDE complex, the periplasmic LolA chaperone and the OM LolB lipoprotein receptor. Retention of lipoproteins in the cytoplasmic membrane results from Lol avoidance signals that were originally described as the "+2 rule". Surface localization of lipoproteins in diderms is rare in most bacteria, with the exception of several spirochetal species. Type 2 (T2SS) and type 5 (T5SS) secretion systems are involved in secretion of specific surface lipoproteins of γ-proteobacteria. In the model spirochete Borrelia burgdorferi, surface lipoprotein secretion does not follow established sorting rules, but remains dependent on N-terminal peptide sequences. Secretion through the outer membrane requires maintenance of lipoproteins in a translocation-competent unfolded conformation

  14. Estrogen receptor alpha localization in the testes of men with normal spermatogenesis Estrogen receptor alpha localization in the testes of men with normal spermatogenesis

    OpenAIRE

    Eliza Filipiak; Dagmara Suliborska; Maria Laszczynska; Renata Walczak-Jedrzejowska; Elzbieta Oszukowska; Katarzyna Marchlewska; Krzysztof Kula; Jolanta Slowikowska-Hilczer

    2012-01-01

    It is known that estrogens act on the male reproductive tract by binding to estrogen receptors (ER) a and
    b. However, studies on ER localization in the human testis are discordant. The aim of this study was to investigate
    the localization of ERa in the testes of adult men with normal spermatogenesis. Semen analysis of ten adult men
    revealed azoospermia. FSH, LH and testosterone serum concentrations were within normal values, and the volume
    of the te...

  15. Lipoprotein-a

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007262.htm Lipoprotein-a To use the sharing features on this page, please enable JavaScript. Lipoproteins are molecules made of proteins and fat. They ...

  16. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy

    OpenAIRE

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M.

    2009-01-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible ...

  17. Central nervous system neuropeptide Y signaling via the Y1 receptor partially dissociates feeding behavior from lipoprotein metabolism in lean rats.

    Science.gov (United States)

    Rojas, Jennifer M; Stafford, John M; Saadat, Sanaz; Printz, Richard L; Beck-Sickinger, Annette G; Niswender, Kevin D

    2012-12-15

    Elevated plasma triglyceride (TG) levels contribute to an atherogenic dyslipidemia that is associated with obesity, diabetes, and metabolic syndrome. Numerous models of obesity are characterized by increased central nervous system (CNS) neuropeptide Y (NPY) tone that contributes to excess food intake and obesity. Previously, we demonstrated that intracerebroventricular (icv) administration of NPY in lean fasted rats also elevates hepatic production of very low-density lipoprotein (VLDL)-TG. Thus, we hypothesize that elevated CNS NPY action contributes to not only the pathogenesis of obesity but also dyslipidemia. Here, we sought to determine whether the effects of NPY on feeding and/or obesity are dissociable from effects on hepatic VLDL-TG secretion. Pair-fed, icv NPY-treated, chow-fed Long-Evans rats develop hypertriglyceridemia in the absence of increased food intake and body fat accumulation compared with vehicle-treated controls. We then modulated CNS NPY signaling by icv injection of selective NPY receptor agonists and found that Y1, Y2, Y4, and Y5 receptor agonists all induced hyperphagia in lean, ad libitum chow-fed Long-Evans rats, with the Y2 receptor agonist having the most pronounced effect. Next, we found that at equipotent doses for food intake NPY Y1 receptor agonist had the most robust effect on VLDL-TG secretion, a Y2 receptor agonist had a modest effect, and no effect was observed for Y4 and Y5 receptor agonists. These findings, using selective agonists, suggest the possibility that the effect of CNS NPY signaling on hepatic VLDL-TG secretion may be relatively dissociable from effects on feeding behavior via the Y1 receptor.

  18. Effect of apolipoprotein M on high density lipoprotein metabolism and atherosclerosis in low density lipoprotein receptor knock-out mice

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Jauhiainen, Matti; Moser, Markus

    2008-01-01

    To investigate the role of apoM in high density lipoprotein (HDL) metabolism and atherogenesis, we generated human apoM transgenic (apoM-Tg) and apoM-deficient (apoM(-/-)) mice. Plasma apoM was predominantly associated with 10-12-nm alpha-migrating HDL particles. Human apoM overexpression (11-fol...

  19. Lipoprotein Apheresis for Lipoprotein(a)-Associated Cardiovascular Disease

    DEFF Research Database (Denmark)

    Roeseler, Eberhard; Julius, Ulrich; Heigl, Franz

    2016-01-01

    OBJECTIVE: Lipoprotein(a)-hyperlipoproteinemia (Lp(a)-HLP) along with progressive cardiovascular disease has been approved as indication for regular lipoprotein apheresis (LA) in Germany since 2008. We aimed to study the long-term preventive effect of LA and to assess hypothetical clinical correl...

  20. Staphylococcus aureus lipoproteins trigger human corneal epithelial innate response through toll-like receptor-2

    OpenAIRE

    Li, Qiong; Kumar, Ashok; Gui, Jian-Fang; Yu, Fu-Shin X.

    2007-01-01

    Bacterial lipoproteins (LP) are a family of cell wall components found in a wide variety of bacteria. In this study, we characterized the response of HUCL, a telomerase-immortalized human corneal epithelial cell (HCEC) line, to LP isolated from Staphylococcus (S) aureus. S. aureus LP (saLP) prepared by Triton X-114 extraction stimulated the activation of NF-κB, JNK, and P38 signaling pathways in HUCL cells. The extracts failed to stimulate NF-κB activation in HUCL cells after lipoprotein lipa...

  1. Inhibitory Effects of North American Wild Rice on Monocyte Adhesion and Inflammatory Modulators in Low-Density Lipoprotein Receptor-Knockout Mice.

    Science.gov (United States)

    Moghadasian, Mohammed H; Zhao, Ruozhi; Ghazawwi, Nora; Le, Khuong; Apea-Bah, Franklin B; Beta, Trust; Shen, Garry X

    2017-10-18

    The present study examined the effects of wild rice on monocyte adhesion, inflammatory and fibrinolytic mediators in low-density lipoprotein receptor-knockout (LDLr-KO) mice. Male LDLr-KO mice received a cholesterol (0.06%, w/w)-supplemented diet with or without white or wild rice (60%, w/w) for 20 weeks. White rice significantly increased monocyte adhesion and abundances of monocyte chemoattractant protein-1, tissue necrosis factor-α, intracellular cell adhesion molecule-1, plasminogen activator inhibitor-1, urokinase plasminogen activator (uPA), and uPA receptor in aortae and hearts of LDLr-KO mice compared to the control diet. Wild rice inhibited monocyte adhesion to the aorta, atherosclerosis, and abundances of the inflammatory and fibrinolytic regulators in the cardiovascular tissue of LDLr-KO mice compared to white rice. White or wild rice did not significantly alter the levels of cholesterol, triglycerides, or antioxidant enzymes in plasma. The anti-atherosclerotic effect of wild rice may result from its inhibition on monocyte adhesion and inflammatory modulators in LDLr-KO mice.

  2. Studies on the metabolism and possible mechanisms of atherogenesis of lipoprotein (a)

    International Nuclear Information System (INIS)

    Krempler, F.

    1984-01-01

    The mechanisms of atherogenesis are under intensive clinical and experimental investigation. It is commonly accepted that lipoproteins play a major role in atherogenesis. The results of several clinical studies suggest that lipoprotein(a) [Lp(a)] represents an independent risk factor for atherosclerosis. In order to obtain information on the physiological and pathological role of LP(a), studies were undertaken to investigate the metabolism, removal sites, and possible atherogenic mechanism of Lp(a). It was found that Lp(a) is not metabolic product of other apoprotein B containing lipoproteins, but appears to be synthesized as a separate lipoprotein. The turnover parameters of Lp(a) resemble those of LDL. Binding studies of Lp(a) with cultured human fibroblasts demonstrated that Lp(a) is bound by the B-E receptor. After binding, Lp(a) is internalized and inhibits cellular cholesterol synthesis. In the presence of dextran sulfate or antibodies to the specific Lp(a) apoprotein or apoprotein B, Lp(a) is avidly taken up by macrophages. A similar mechanism might be responsible for the atherogenic effect of Lp(a). (Author)

  3. Hepatitis C Virus, Cholesterol and Lipoproteins — Impact for the Viral Life Cycle and Pathogenesis of Liver Disease

    Science.gov (United States)

    Felmlee, Daniel J.; Hafirassou, Mohamed Lamine; Lefevre, Mathieu; Baumert, Thomas F.; Schuster, Catherine

    2013-01-01

    Hepatitis C virus (HCV) is a leading cause of chronic liver disease, including chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Hepatitis C infection associates with lipid and lipoprotein metabolism disorders such as hepatic steatosis, hypobetalipoproteinemia, and hypocholesterolemia. Furthermore, virus production is dependent on hepatic very-low-density lipoprotein (VLDL) assembly, and circulating virions are physically associated with lipoproteins in complexes termed lipoviral particles. Evidence has indicated several functional roles for the formation of these complexes, including co-opting of lipoprotein receptors for attachment and entry, concealing epitopes to facilitate immune escape, and hijacking host factors for HCV maturation and secretion. Here, we review the evidence surrounding pathogenesis of the hepatitis C infection regarding lipoprotein engagement, cholesterol and triglyceride regulation, and the molecular mechanisms underlying these effects. PMID:23698400

  4. Intercorrelations among plasma high density lipoprotein, obesity and triglycerides in a normal population.

    Science.gov (United States)

    Albrink, M J; Krauss, R M; Lindgrem, F T; von der Groeben, J; Pan, S; Wood, P D

    1980-09-01

    The interrelationships among fatness measures, plasma triglycerides and high density lipoproteins (HDL) were examined in 131 normal adult subjects: 38 men aged 27-46, 40 men aged 47-66, 29 women aged 27-46 and 24 women aged 47-66. None of the women were taking estrogens or oral contraceptive medication. The HDL concentration was subdivided into HDL2b, HDL2a and HDL3 by a computerized fitting of the total schlieren pattern to reference schlieren patterns. Anthropometric measures employed included skinfolds at 3 sites. 2 weight/height indices and 2 girth measurements. A high correlation was found among the various fatness measures. These measures were negatively correlated with total HDL, reflecting the negative correlation between fatness measures and HDL2 (as the sum of HDL2a and 2b). Fatness measures showed no relationship to HDL3. There was also an inverse correlation between triglyceride concentration and HDL2. No particular fatness measure was better than any other for demonstrating the inverse correlation with HDL but multiple correlations using all of the measures of obesity improved the correlations. Partial correlations controlling for fatness did not reduce any of the significant correlations between triglycerides and HDL2 to insignificance. The weak correlation between fatness and triglycerides was reduced to insignificance when controlled for HDL2.

  5. Hypervariable region 1 deletion and required adaptive envelope mutations confer decreased dependency on scavenger receptor class B type I and low-density lipoprotein receptor for hepatitis C virus

    DEFF Research Database (Denmark)

    Prentoe, Jannick; Serre, Stéphanie B N; Ramirez, Santseharay

    2014-01-01

    -deleted viruses. Apolipoprotein E (ApoE)-specific HCV neutralization was similar for H77, J6, and S52 viruses with and without HVR1. In conclusion, HVR1 and HVR1-related adaptive envelope mutations appeared to be involved in LDLr and SR-BI dependency, respectively. Also, LDLr served Apo....../S733F), S52(ΔHVR1/A369V), and S52(A369V), but not for J6(ΔHVR1). Low-density lipoprotein receptor (LDLr) dependency was decreased for HVR1-deleted viruses, but not for H77(N476D/S733F) and S52(A369V). Soluble LDLr neutralization revealed strong inhibition of parental HCV but limited effect against HVR1...

  6. Effects of High Fat Feeding and Diabetes on Regression of Atherosclerosis Induced by Low-Density Lipoprotein Receptor Gene Therapy in LDL Receptor-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Florian Willecke

    Full Text Available We tested whether a high fat diet (HFD containing the inflammatory dietary fatty acid palmitate or insulin deficient diabetes altered the remodeling of atherosclerotic plaques in LDL receptor knockout (Ldlr-/- mice. Cholesterol reduction was achieved by using a helper-dependent adenovirus (HDAd carrying the gene for the low-density lipoprotein receptor (Ldlr; HDAd-LDLR. After injection of the HDAd-LDLR, mice consuming either HFD, which led to insulin resistance but not hyperglycemia, or low fat diet (LFD, showed regression compared to baseline. However there was no difference between the two groups in terms of atherosclerotic lesion size, or CD68+ cell and lipid content. Because of the lack of effects of these two diets, we then tested whether viral-mediated cholesterol reduction would lead to defective regression in mice with greater hyperglycemia. In both normoglycemic and streptozotocin (STZ-treated hyperglycemic mice, HDAd-LDLR significantly reduced plasma cholesterol levels, decreased atherosclerotic lesion size, reduced macrophage area and lipid content, and increased collagen content of plaque in the aortic sinus. However, reductions in anti-inflammatory and ER stress-related genes were less pronounced in STZ-diabetic mice compared to non-diabetic mice. In conclusion, HDAd-mediated Ldlr gene therapy is an effective and simple method to induce atherosclerosis regression in Ldlr-/- mice in different metabolic states.

  7. Kaempferol stimulates gene expression of low-density lipoprotein receptor through activation of Sp1 in cultured hepatocytes

    Science.gov (United States)

    Ochiai, Ayasa; Miyata, Shingo; Iwase, Masamori; Shimizu, Makoto; Inoue, Jun; Sato, Ryuichiro

    2016-01-01

    A high level of plasma low-density lipoprotein (LDL) cholesterol is considered a risk factor for atherosclerosis. Because the hepatic LDL receptor (LDLR) is essential for clearing plasma LDL cholesterol, activation of LDLR is a promising therapeutic target for patients with atherosclerotic disease. Here we demonstrated how the flavonoid kaempferol stimulated the gene expression and activity of LDLR in HepG2 cells. The kaempferol-mediated stimulation of LDLR gene expression was completely inhibited by knockdown of Sp1 gene expression. Treatment of HepG2 cells with kaempferol stimulated the recruitment of Sp1 to the promoter region of the LDLR gene, as well as the phosphorylation of Sp1 on Thr-453 and Thr-739. Moreover, these kaempferol-mediated processes were inhibited in the presence of U0126, an ERK pathway inhibitor. These results suggest that kaempferol may increase the activity of Sp1 through stimulation of Sp1 phosphorylation by ERK1/2 and subsequent induction of LDLR expression and activity. PMID:27109240

  8. Potential cellular receptors involved in hepatitis C virus entry into cells

    Directory of Open Access Journals (Sweden)

    Muellhaupt Beat

    2005-04-01

    Full Text Available Abstract Hepatitis C virus (HCV infects hepatocytes and leads to permanent, severe liver damage. Since the genomic sequence of HCV was determined, progress has been made towards understanding the functions of the HCV-encoded proteins and identifying the cellular receptor(s responsible for adsorption and penetration of the virus particle into the target cells. Several cellular receptors for HCV have been proposed, all of which are associated with lipid and lipoprotein metabolism. This article reviews the cellular receptors for HCV and suggests a general model for HCV entry into cells, in which lipoproteins play a crucial role.

  9. Lipoprotein profile, lipoprotein-associated phospholipase A2 and cardiovascular risk in hemodialysis patients.

    Science.gov (United States)

    Rolla, Roberta; De Mauri, Andreana; Valsesia, Ambra; Vidali, Matteo; Chiarinotti, Doriana; Bellomo, Giorgio

    2015-12-01

    Cardiovascular disease is the leading cause of morbidity and mortality in hemodialysis patients; the increased risk of cardiovascular disease is due to accelerated atherosclerosis, inflammation and impaired lipoprotein metabolism. We aimed to evaluate lipoprotein-associated phospholipase A2 (Lp-PLA2) and some pro-inflammatory aspects of the lipoprotein profile in dialyzed patients in order to evaluate the relationship with the accelerated atherosclerosis and vascular accidents. In 102 dialysis patients and 40 non-uremic controls, we investigated the lipoprotein plasma profile, high sensitivity C-reactive protein (CRP), ceruloplasmin and serum amyloid A protein (SAA), and followed patients for 1 year to analyze the risk of acute cardiovascular events. Total cholesterol, low-density lipoprotein and high-density lipoprotein plasma levels were significantly lower in uremic patients than controls, whereas CRP, SAA, ceruloplasmin, Lp-PLA2 and their ratio with apolipoprotein A1 were significantly higher. Patients with Lp-PLA2 levels >194 nmol/min/ml had more acute cardiovascular events than patients with lower values. Our results show that in dialysis subjects: (1) low-density lipoproteins show a more atherogenic phenotype than in the general population; (2) high-density lipoproteins are less anti-inflammatory; (3) Lp-PLA2 could potentially be used to evaluate cardiovascular risk.

  10. Sex, plasma lipoproteins, and atherosclerosis: prevailing assumptions and outstanding questions.

    Science.gov (United States)

    Godsland, I F; Wynn, V; Crook, D; Miller, N E

    1987-12-01

    We review the hypothesis that the incidence of coronary heart disease (CHD) is higher in men than in women due to differences in plasma lipoprotein risk factors between the sexes. Men and women appear to be equally susceptible to the effects of lipoprotein risk factors for CHD, and the difference between the sexes in lipoprotein risk factors for CHD appears to be consistent with their being, at least in part, responsible for the sex difference in CHD. This is apparent both when men and women of equal age are compared, and when age-related variations in the sex differences in plasma lipoproteins and CHD are considered. Differences between the sexes in lipoprotein concentrations are still present when sex differences in adiposity, cigarette smoking, physical activity, and diet are taken into account. Evidence relating these sex differences in CHD and lipoproteins to the effects of sex hormones is critically examined. It is commonly accepted that androgens induce changes in lipoprotein concentrations that would predispose towards CHD, whereas estrogens are held to have opposite effects. However, much of the evidence for this comes from studies of changes associated with administration of synthetic gonadal steroids or with changes in gonadal function. Studies of differences in lipoprotein metabolism in normal men and women are extremely limited. In males high-density lipoprotein (HDL) cholesterol levels fall at puberty, correlating with the rise in plasma testosterone concentrations. In females, HDL levels do not change at puberty, despite the rise in estrogen concentrations. Evidence for lipoprotein changes during the menopause, when estrogen levels decline, is equivocal. Similarly, the evidence for an increase in CHD incidence at the menopause is inconclusive. National mortality data indicate that the decreasing sex difference in CHD after 50 years of age is due to a declining rate of increase in men rather than to an acceleration in CHD incidence in women. In men

  11. Identification and Localization of Myxococcus xanthus Porins and Lipoproteins

    Science.gov (United States)

    Bhat, Swapna; Zhu, Xiang; Patel, Ricky P.; Orlando, Ron; Shimkets, Lawrence J.

    2011-01-01

    Myxococcus xanthus DK1622 contains inner (IM) and outer membranes (OM) separated by a peptidoglycan layer. Integral membrane, β-barrel proteins are found exclusively in the OM where they form pores allowing the passage of nutrients, waste products and signals. One porin, Oar, is required for intercellular communication of the C-signal. An oar mutant produces CsgA but is unable to ripple or stimulate csgA mutants to develop suggesting that it is the channel for C-signaling. Six prediction programs were evaluated for their ability to identify β-barrel proteins. No program was reliable unless the predicted proteins were first parsed using Signal P, Lipo P and TMHMM, after which TMBETA-SVM and TMBETADISC-RBF identified β-barrel proteins most accurately. 228 β-barrel proteins were predicted from among 7331 protein coding regions, representing 3.1% of total genes. Sucrose density gradients were used to separate vegetative cell IM and OM fractions, and LC-MS/MS of OM proteins identified 54 β-barrel proteins. Another class of membrane proteins, the lipoproteins, are anchored in the membrane via a lipid moiety at the N-terminus. 44 OM proteins identified by LC-MS/MS were predicted lipoproteins. Lipoproteins are distributed between the IM, OM and ECM according to an N-terminal sorting sequence that varies among species. Sequence analysis revealed conservation of alanine at the +7 position of mature ECM lipoproteins, lysine at the +2 position of IM lipoproteins, and no noticable conservation within the OM lipoproteins. Site directed mutagenesis and immuno transmission electron microscopy showed that alanine at the +7 position is essential for sorting of the lipoprotein FibA into the ECM. FibA appears at normal levels in the ECM even when a +2 lysine is added to the signal sequence. These results suggest that ECM proteins have a unique method of secretion. It is now possible to target lipoproteins to specific IM, OM and ECM locations by manipulating the amino acid

  12. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the high-density lipoprotein receptor SR-BI.

    Science.gov (United States)

    Yu, Miao; Lau, Thomas Y; Carr, Steven A; Krieger, Monty

    2012-12-18

    The high-density lipoprotein (HDL) receptor scavenger receptor class B, type I (SR-BI), binds HDL and mediates selective cholesteryl ester uptake. SR-BI's structure and mechanism are poorly understood. We used mass spectrometry to assign the two disulfide bonds in SR-BI that connect cysteines within the conserved Cys(321)-Pro(322)-Cys(323) (CPC) motif and connect Cys(280) to Cys(334). We used site-specific mutagenesis to evaluate the contributions of the CPC motif and the side chain of extracellular Cys(384) to HDL binding and lipid uptake. The effects of CPC mutations on activity were context-dependent. Full wild-type (WT) activity required Pro(322) and Cys(323) only when Cys(321) was present. Reduced intrinsic activities were observed for CXC and CPX, but not XXC, XPX, or XXX mutants (X ≠ WT residue). Apparently, a free thiol side chain at position 321 that cannot form an intra-CPC disulfide bond with Cys(323) is deleterious, perhaps because of aberrant disulfide bond formation. Pro(322) may stabilize an otherwise strained CPC disulfide bond, thus supporting WT activity, but this disulfide bond is not absolutely required for normal activity. C(384)X (X = S, T, L, Y, G, or A) mutants exhibited altered activities that varied with the side chain's size: larger side chains phenocopied WT SR-BI treated with its thiosemicarbazone inhibitor BLT-1 (enhanced binding, weakened uptake); smaller side chains produced almost inverse effects (increased uptake:binding ratio). C(384)X mutants were BLT-1-resistant, supporting the proposal that Cys(384)'s thiol interacts with BLT-1. We discuss the implications of our findings on the functions of the extracellular loop cysteines in SR-BI and compare our results to those presented by other laboratories.

  13. Assessment of permeation of lipoproteins in human carotid tissue

    Science.gov (United States)

    Ghosn, Mohamad G.; Syed, Saba H.; Leba, Michael; Morrisett, Joel D.; Tuchin, Valery V.; Larin, Kirill V.

    2010-02-01

    Cardiovascular disease is among the leading causes of death in the United States. Specifically, atherosclerosis is an increasingly devastating contributor to the tally and has been found to be a byproduct of arterial permeability irregularities in regards to lipoprotein penetration. To further explore arterial physiology and molecular transport, the imaging technique of Optical Coherence Tomography (OCT) was employed. With OCT, the permeation of glucose (MW = 180 Da), low density lipoprotein (LDL; MW = 2.1 × 106 Da), and high density lipoprotein (HDL; MW = 2.5 × 105 Da) in human carotid tissue was studied to determine the effect of different molecular characteristics on permeation in atherosclerotic tissues. The permeability rates calculated from the diffusion of the molecular agents into the abnormal carotid tissue samples is compared to those of normal, healthy tissue. The results show that in the abnormal tissue, the permeation of agents correlate to the size constraints. The larger molecules of LDL diffuse the slowest, while the smallest molecules of glucose diffuse the fastest. However, in normal tissue, LDL permeates at a faster rate than the other two agents, implying the existence of a transport mechanism that facilitates the passage of LDL molecules. These results highlight the capability of OCT as a sensitive and specific imaging technique as well as provide significant information to the understanding of atherosclerosis and its effect on tissue properties.

  14. The antidepressant fluoxetine normalizes the nuclear glucocorticoid receptor evoked by psychosocial stress

    Science.gov (United States)

    Mitić, M.; Simić, I.; Djordjević, J.; Radojčić, M. B.; Adžić, M.

    2011-12-01

    Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis has been implicated in the pathophysiology of depression and stress disorders. Glucocorticoids, key regulators of the stress response, exert diverse effects on cellular processes in the hippocampus. Beside non-genomic pathways, glucocorticoid effects are mediated through activation of the glucocorticoid receptor (GR), a ligand activated transcriptional factor that belongs to the nuclear hormone receptor superfamily. We analysed the GR protein levels both in the cytoplasmic and nuclear compartments of the hippocampus of Wistar rats exposed to chronic psychosocial isolation stress upon chronic fluoxetine (FLU) treatment. Under chronic stress, corticosterone levels (CORT) were decreased compared to the control, and treatment with FLU did not change its level in the stressed rats. At the molecular level, FLU normalized the level of nuclear GR protein in the hippocampus of the stressed rats. Discrepancy between normalization of nuclear GR in the hippocampus and lack of normalization of HPA axis activity judged by CORT, suggests that other brain structures such as the amygdale and prefrontal cortex that also regulate HPA axis activity, seem not to be normalized by the FLU treatment used in our study.

  15. Effect of phospholipase A treatment of low density lipoproteins on the dextran sulfate--lipoprotein interaction.

    Science.gov (United States)

    Nishida, T

    1968-09-01

    The effect of phospholipase A on the interaction of low density lipoproteins of the S(f) 0-10 class with dextran sulfate was studied in phosphate buffer of pH 7.4, ionic strength 0.1, by chemical, spectrophotometric, and centrifugal methods. When low density lipoproteins that had been treated with phospholipase A were substituted for untreated lipoproteins, the amount of insoluble dextran sulfate-lipoprotein complex formed was greatly reduced. Hydrolysis of over 20% of the lecithin and phosphatidyl ethanolamine constituents of the lipoproteins prevented the formation of insoluble complex. However, even the lipoproteins in which almost all the phosphoglycerides were hydrolyzed produced soluble complex, which was converted to insoluble complex upon addition of magnesium sulfate. It is apparent that the lipoproteins altered extensively by treatment with phospholipase A retain many characteristic properties of native low density lipoproteins. Fatty acids, but not lysolecithin, released by the action of phospholipase A interfered with the formation of insoluble complex; this interference was due to association of the fatty acids with the lipoproteins. With increases in the concentration of the associated fatty acids, the amounts of magnesium ion required for the conversion of soluble complex to insoluble complex increased progressively. Charge interaction is evidently of paramount importance in the formation of sulfated polysaccharide-lipoprotein complexes.

  16. Serum lipids and lipoproteins in patients with psoriasis.

    Science.gov (United States)

    Taheri Sarvtin, Mehdi; Hedayati, Mohammad Taghi; Shokohi, Tahereh; HajHeydari, Zohreh

    2014-05-01

    Psoriasis is a common chronic and recurrent inflammatory skin disorder characterized by hyperproliferation of keratinocytes and infiltration of T cells, monocytes/macrophages and neutrophils into dermal and epidermal layers of the skin. The prevalence of cardiovascular disorders in these patients is remarkably higher compared to normal individuals, which seems to be associated with the hyperlipidemia. This study was designed and conducted to investigate the serum lipid profile in psoriatic patients and its association with the severity of disease. This case-control study was performed on 50 plaque-type psoriasis patients and 50 healthy individuals as control, matched for age and sex. Blood samples were collected after 14 h fasting. Serum triglyceride, cholesterol and lipoproteins were assayed using the standard kit (made by Pars Azmon Co. Iran). Certain parameters, including serum triglyceride, cholesterol, low density lipoprotein (LDL), and very low density lipoprotein (VLDL), were significantly higher in the case group compared to the controls (P lipoprotein (HDL) was significantly lower in the former (P < 0.001). In addition, there was a significant relationship between severity of psoriasis and serum lipid profile. The results have revealed the higher plasma level of lipids in psoriatic patients. This may elevate the risk of atherosclerosis, particularly cardiovascular disorders. Therefore, from the epidemiological point of view, screening psoriatic patients, particularly those with severe psoriasis, is recommended.

  17. Chimeric RXFP1 and RXFP2 receptors highlight the similar mechanism of activation utilizing their N-terminal low density lipoprotein class A modules

    Directory of Open Access Journals (Sweden)

    Shoni eBruell

    2013-11-01

    Full Text Available Relaxin family peptide (RXFP receptors 1 and 2 are unique G-protein coupled receptors in that they contain an N-terminal low density lipoprotein type A (LDLa module which is necessary for receptor activation. The current hypothesis suggests that upon ligand binding the LDLa module interacts with the transmembrane (TM domain of a homodimer partner receptor to induce the active receptor conformations. We recently demonstrated that three residues in the N-terminus of the RXFP1 LDLa module are potentially involved in hydrophobic interactions with the receptor to drive activation. RXFP2 shares two out of three of the residues implicated, suggesting that the two LDLa modules could be interchanged without adversely affecting activity. However, in 2007 it was shown that a chimera consisting of the RXFP1 receptor with its LDLa swapped for that of RXFP2 did not signal. We noticed this construct also contained the RXFP2 region linking the LDLa to the leucine-rich repeats. We therefore constructed chimeric RXFP1 and RXFP2 receptors with their LDLa modules swapped immediately C-terminally to the final cysteine residue of the module, retaining the native linker. In addition, we exchanged the TM domains of the chimeras to explore if matching the LDLa module with the TM domain of its native receptor altered activity. All of the chimeras were expressed at the surface of HEK293T cells with ligand binding profiles similar to the wild-type receptors. Importantly, as predicted, ligand binding was able to induce cAMP based signalling. Chimeras of RXFP1 with the LDLa of RXFP2 demonstrated reduced H2 relaxin potency with the pairing of the RXFP2 TM with the RXFP2 LDLa necessary for full ligand efficacy. In contrast the ligand mediated potencies and efficacies on the RXFP2 chimeras were similar suggesting the RXFP1 LDLa module has similar efficacy on the RXFP2 TM domain. Our studies demonstrate the LDLa modules of RXFP1 and RXFP2 modulate receptor activation via a

  18. Sorting of an integral outer membrane protein via the lipoprotein-specific Lol pathway and a dedicated lipoprotein pilotin.

    Science.gov (United States)

    Collin, Séverine; Guilvout, Ingrid; Nickerson, Nicholas N; Pugsley, Anthony P

    2011-05-01

    The lipoprotein PulS is a dedicated chaperone that is required to target the secretin PulD to the outer membrane in Klebsiella or Escherichia coli, and to protect it from proteolysis. Here, we present indirect evidence that PulD protomers do not assemble into the secretin dodecamer before they reach the outer membrane, and that PulS reaches the outer membrane in a soluble heterodimer with the general lipoprotein chaperone LolA. However, we could not find any direct evidence for PulD protomer association with the PulS-LolA heterodimer. Instead, in cells producing PulD and a permanently locked PulS-LolA dimer (in which LolA carries an R43L substitution that prevents lipoprotein transfer to LolB in the outer membrane), LolAR43L was found in the inner membrane, probably still associated with PulS bound to PulD that had been incorrectly targeted because of the LolAR43L substitution. It is speculated that PulD protomers normally cross the periplasm together with PulS bound to LolA but when the latter cannot be separated (due to the mutation in lolA), the PulD protomers form dodecamers that insert into the inner membrane. © 2011 Blackwell Publishing Ltd.

  19. Liver lipase and high-density lipoprotein. Lipoprotein changes after incubation of human serum with rat liver lipase.

    Science.gov (United States)

    Groot, P H; Scheek, L M; Jansen, H

    1983-05-16

    Human sera were incubated with rat liver lipase after inactivation of lecithin:cholesterol acyltransferase, and the changes in serum lipoprotein composition were measured. In the presence of liver lipase serum triacylglycerol and phosphatidylcholine were hydrolyzed. The main changes in the concentrations of these lipids were found in the high-density lipoprotein fraction. Subfractionation of high-density lipoprotein by rate-zonal ultracentrifugation showed a prominent decrease in all constituents of high-density lipoprotein2, a smaller decrease in the 'light' high-density lipoprotein3 and an increase in the 'heavy' high-density lipoprotein3. These data support a concept in which liver lipase is involved in high-density lipoprotein2 phospholipid and triacylglycerol catabolism and suggest that as a result of this action high-density lipoprotein2 is converted into high-density lipoprotein3.

  20. Biogenesis and Membrane Targeting of Lipoproteins.

    Science.gov (United States)

    Narita, Shin-Ichiro; Tokuda, Hajime

    2010-09-01

    Bacterial lipoproteins represent a unique class of membrane proteins, which are anchored to membranes through triacyl chains attached to the amino-terminal cysteine. They are involved in various functions localized in cell envelope. Escherichia coli possesses more than 90 species of lipoproteins, most of which are localized in the outer membrane, with others being in the inner membrane. All lipoproteins are synthesized in the cytoplasm with an N-terminal signal peptide, translocated across the inner membrane by the Sec translocon to the periplasmic surface of the inner membrane, and converted to mature lipoproteins through sequential reactions catalyzed by three lipoprotein-processing enzymes: Lgt, LspA, and Lnt. The sorting of lipoproteins to the outer membrane requires a system comprising five Lol proteins. An ATP-binding cassette transporter, LolCDE, initiates the sorting by mediating the detachment of lipoproteins from the inner membrane. Formation of the LolA-lipoprotein complex is coupled to this LolCDE-dependent release reaction. LolA accommodates the amino-terminal acyl chain of lipoproteins in its hydrophobic cavity, thereby generating a hydrophilic complex that can traverse the periplasmic space by diffusion. Lipoproteins are then transferred to LolB on the outer membrane and anchored to the inner leaflet of the outer membrane by the action of LolB. In contrast, since LolCDE does not recognize lipoproteins possessing Asp at position +2, these lipoproteins remain anchored to the inner membrane. Genes for Lol proteins are widely conserved among gram-negative bacteria, and Lol-mediated outer membrane targeting of lipoproteins is considered to be the general lipoprotein localization mechanism.

  1. Ectodomains of the LDL receptor-related proteins LRP1b and LRP4 have anchorage independent functions in vivo.

    Directory of Open Access Journals (Sweden)

    Martin F Dietrich

    2010-04-01

    Full Text Available The low-density lipoprotein (LDL receptor gene family is a highly conserved group of membrane receptors with diverse functions in developmental processes, lipoprotein trafficking, and cell signaling. The low-density lipoprotein (LDL receptor-related protein 1b (LRP1B was reported to be deleted in several types of human malignancies, including non-small cell lung cancer. Our group has previously reported that a distal extracellular truncation of murine Lrp1b that is predicted to secrete the entire intact extracellular domain (ECD is fully viable with no apparent phenotype.Here, we have used a gene targeting approach to create two mouse lines carrying internally rearranged exons of Lrp1b that are predicted to truncate the protein closer to the N-terminus and to prevent normal trafficking through the secretary pathway. Both mutations result in early embryonic lethality, but, as expected from the restricted expression pattern of LRP1b in vivo, loss of Lrp1b does not cause cellular lethality as homozygous Lrp1b-deficient blastocysts can be propagated normally in culture. This is similar to findings for another LDL receptor family member, Lrp4. We provide in vitro evidence that Lrp4 undergoes regulated intramembraneous processing through metalloproteases and gamma-secretase cleavage. We further demonstrate negative regulation of the Wnt signaling pathway by the soluble extracellular domain.Our results underline a crucial role for Lrp1b in development. The expression in mice of truncated alleles of Lrp1b and Lrp4 with deletions of the transmembrane and intracellular domains leads to release of the extracellular domain into the extracellular space, which is sufficient to confer viability. In contrast, null mutations are embryonically (Lrp1b or perinatally (Lrp4 lethal. These findings suggest that the extracellular domains of both proteins may function as a scavenger for signaling ligands or signal modulators in the extracellular space, thereby

  2. Proteinase-activated receptors - mediators of early and delayed normal tissue radiation responses

    International Nuclear Information System (INIS)

    Hauer-Jensen, M.

    2003-01-01

    Proteinase-activated receptors (PARs) are G-protein coupled receptors that are activated by proteolytic exposure of a receptor-tethered ligand. The discovery of this receptor family represents one of the most intriguing recent developments in signal transduction. PARs are involved in the regulation of many normal and pathophysiological processes, notably inflammatory and fibroproliferative responses to injury. Preclinical studies performed in our laboratory suggest that proteinase-activated receptor-1 (PAR-1) plays a critical role in the mechanism of chronicity of radiation fibrosis, while proteinase-activated receptor-2 (PAR-2) may mediate important fibroproliferative responses in irradiated intestine. Specifically, activation of PAR-1 by thrombin, and PAR-2 by pancreatic trypsin and mast cell proteinases, appears to be involved in acute radiation-induced inflammation, as well as in subsequent extracellular matrix deposition, leading to the development of intestinal wall fibrosis and clinical complications. Pharmacological modulators of PAR-1 or PAR-2 expression or activation would be potentially useful as preventive or therapeutic agents in patients who receive radiation therapy, especially if blockade could be targeted to specific tissues or cellular compartments

  3. Central nervous system regulation of intestinal lipid and lipoprotein metabolism.

    Science.gov (United States)

    Farr, Sarah; Taher, Jennifer; Adeli, Khosrow

    2016-02-01

    In response to nutrient availability, the small intestine and brain closely communicate to modulate energy homeostasis and metabolism. The gut-brain axis involves complex nutrient sensing mechanisms and an integration of neuronal and hormonal signaling. This review summarizes recent evidence implicating the gut-brain axis in regulating lipoprotein metabolism, with potential implications for the dyslipidemia of insulin resistant states. The intestine and brain possess distinct mechanisms for sensing lipid availability, which triggers subsequent regulation of feeding, glucose homeostasis, and adipose tissue metabolism. More recently, central receptors, neuropeptides, and gut hormones that communicate with the brain have been shown to modulate hepatic and intestinal lipoprotein metabolism via parasympathetic and sympathetic signaling. Gut-derived glucagon-like peptides appear to be particularly important in modulating the intestinal secretion of chylomicron particles via a novel brain-gut axis. Dysregulation of these pathways may contribute to postprandial diabetic dyslipidemia. Emerging evidence implicates the central and enteric nervous systems in controlling many aspects of lipid and lipoprotein metabolism. Bidirectional communication between the gut and brain involving neuronal pathways and gut peptides is critical for regulating feeding and metabolism, and forms a neuroendocrine circuit to modulate dietary fat absorption and intestinal production of atherogenic chylomicron particles.

  4. Comparative reactivity of the myeloperoxidase-derived oxidants HOCl and HOSCN with low-density lipoprotein (LDL)

    DEFF Research Database (Denmark)

    Ismael, Fahd O; Proudfoot, Julie M; Brown, Bronwyn E

    2015-01-01

    Atherosclerosis is characterised by the accumulation of lipids within macrophages in the artery wall. Low-density lipoprotein (LDL) is the source of this lipid, owing to the uptake of oxidised LDL by scavenger receptors. Myeloperoxidase (MPO) released by leukocytes during inflammation produces ox...

  5. Vitamin D receptor and estrogen receptor gene polymorphisms in postmenopausal Danish women

    DEFF Research Database (Denmark)

    Bagger, Y Z; Hassager, C; Heegaard, Anne-Marie

    2000-01-01

    To investigate the polymorphisms of the vitamin D receptor (VDR) and estrogen receptor (ER) genes in relation to biochemical markers of bone turnover (serum osteocalcin and urinary collagen type I degradation products (CrossLaps), and to study ER genotypes in relation to serum lipoproteins, blood...... pressure, or changes in these parameters after 2 years of hormone replacement therapy (HRT) in 499 Danish postmenopausal women....

  6. Identification of the Oxidized Low-Density Lipoprotein Scavenger Receptor CD36 in Plasma

    DEFF Research Database (Denmark)

    Handberg, Aase; Levin, Klaus; Højlund, Kurt

    2006-01-01

    BACKGROUND: Macrophage CD36 scavenges oxidized low-density lipoprotein, leading to foam cell formation, and appears to be a key proatherogenic molecule. Increased expression of CD36 has been attributed to hyperglycemia and to defective macrophage insulin signaling in insulin resistance. Premature...

  7. Single-Particle Tracking of Human Lipoproteins.

    Science.gov (United States)

    de Messieres, Michel; Ng, Abby; Duarte, Cornelio J; Remaley, Alan T; Lee, Jennifer C

    2016-01-05

    Lipoproteins, such as high-density lipoprotein (HDL), low-density lipoprotein (LDL), and very-low density lipoprotein (VLDL), play a critical role in heart disease. Lipoproteins vary in size and shape as well as in their apolipoprotein content. Here, we developed a new experimental framework to study freely diffusing lipoproteins from human blood, allowing analysis of even the smallest HDL with a radius of 5 nm. In an easily constructed confinement chamber, individual HDL, LDL, and VLDL particles labeled with three distinct fluorophores were simultaneously tracked by wide-field fluorescence microscopy and their sizes were determined by their motion. This technique enables studies of individual lipoproteins in solution and allows characterization of the heterogeneous properties of lipoproteins which affect their biological function but are difficult to discern in bulk studies.

  8. Lipoprotein(a) and dietary proteins: casein lowers lipoprotein(a) concentrations as compared with soy protein1-3

    DEFF Research Database (Denmark)

    Nilausen, Karin Johanne; Meinertz, H.

    1999-01-01

    Lipoprotein(a), plasma lipoproteins, dietary proteins, soy protein, casein, liquid-formula, coronary artery disease, men, Denmark......Lipoprotein(a), plasma lipoproteins, dietary proteins, soy protein, casein, liquid-formula, coronary artery disease, men, Denmark...

  9. Streptococcus gordonii lipoproteins induce IL-8 in human periodontal ligament cells.

    Science.gov (United States)

    Kim, A Reum; Ahn, Ki Bum; Kim, Hyun Young; Seo, Ho Seong; Kum, Kee-Yeon; Yun, Cheol-Heui; Han, Seung Hyun

    2017-11-01

    Streptococcus gordonii, a Gram-positive oral bacterium, is a life-threatening pathogen that causes infective endocarditis. It is frequently isolated from the periapical lesions of patients with apical periodontitis and has thus been implicated in inflammatory responses. However, little is known about the virulence factors of S. gordonii responsible for the induction of inflammatory responses in the periapical areas. Here, we investigated the role of S. gordonii cell wall-associated virulence factors on interleukin (IL)-8 induction in human periodontal ligament (PDL) cells using ethanol-inactivated wild-type S. gordonii, a lipoteichoic acid (LTA)-deficient mutant (ΔltaS), and a lipoprotein-deficient mutant (Δlgt). Wild-type S. gordonii induced IL-8 expression at both the protein and mRNA levels in human PDL cells in a dose- and time-dependent manner. A transient transfection and reporter gene assay demonstrated that wild-type S. gordonii activated Toll-like receptor 2 (TLR2). Additionally, IL-8 production induced by wild-type S. gordonii was substantially inhibited by anti-TLR2-neutralizing antibodies. Both wild-type S. gordonii and the ΔltaS mutant induced IL-8 production; however, this response was not observed when cells were stimulated with the Δlgt mutant. Interestingly, lipoproteins purified from S. gordonii induced IL-8 production, whereas purified LTA did not. In addition, purified lipoproteins stimulated TLR2 more potently than LTA. Furthermore, S. gordonii-induced IL-8 expression was specifically inhibited by blocking p38 kinase, while lipoprotein-induced IL-8 expression was inhibited by blocking p38 kinase, ERK, or JNK. Of particular note, exogenous addition of purified S. gordonii lipoproteins enhanced Δlgt-induced IL-8 production in human PDL cells to an extent similar to that induced by the wild-type strain. Collectively, these results suggest that lipoproteins are an important component of S. gordonii for the induction of IL-8 production in human

  10. LDL Receptor-Related Protein-1 (LRP1 Regulates Cholesterol Accumulation in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna P Lillis

    Full Text Available Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1 to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR-deficient background (macLRP1-/-. After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.

  11. Two novel mutations in exon 3 and 4 of low density lipoprotein (LDL) receptor gene in patients with heterozygous familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Khan, S.P.

    2011-01-01

    Objective: To determine the common mutation of low density lipoprotein receptor in hypercholesterolemia patients requiring screening for heterozygous familial hypercholesterolemia (HeFH) in Karachi. Study Design: Case-series. Place and Duration of Study: Dr. Ziauddin Hospital Laboratory and Dr. Rubina Ghani's Pathological and Molecular Laboratories, Karachi, for the PCR bench work from June 2008 to October 2009. Methodology: All the patients selected for this study were from Dr. Ziauddin Hospital and National Institute of Cardiovascular Diseases. All the patients having high total cholesterol and LDL-cholesterol were included in this study with premature coronary artery diseases or a family history of hypercholesterolemia. Exclusion criteria included Diabetes mellitus, hypertension, renal disease, hypothyroidism and steroid therapy. After lipid profile with overnight fasting, DNA was extracted from whole blood collected in EDTA (ethylenediamine tetra acetic acid) tube and multiplex PCR (polymerase chain reaction) using forward and reverse primers of exons 3, 4, 9 and 14 of base pairs 162, 431, 550 and 496 respectively. Results: Out of total of 120 hypercholesterolemia cases, 42 patients were classical cases of HeFH (heterozygous familial hypercholesterolemia) with xanthomas, xanthelasmas and LDL-C > 160 mg/dl. The total cholesterol (260 +- 57 mg/dL) and LDL-C (192 +- 39 mg/dL ) of cases was significantly high as compared to, controls having total cholesterol (184 9 +- 27 mg/dL) and LDL-C (105 +- 22 mg/dL), p > 0.001. Two novel point mutations were noted in exon 3 and exon 4. The other 78 cases were probable with raised LDL-C (low density lipoprotein cholesterol) and family history of premature coronary heart diseases. Conclusion: The frequency of HeFH was 35% classical and 65% probable cases out of total 120 hypercholesterolemia patients from two tertiary care hospitals in Karachi. The point mutation on exon 3 and exon 4 of LDLR gene was the most common. PCR is

  12. Assessment of anti-atherogenic drugs in vivo and reconstitution of lipoproteins using radioiodinated cholesteryl iopanoate

    International Nuclear Information System (INIS)

    DeGalan, M.R.

    1987-01-01

    A nonhydrolyzable radioiodinated cholesteryl ester, 125I-cholesteryl iopanoate (125I-Cl), was found to accumulate in high concentrations in atherosclerotic aortas of cholesterol-fed rabbits after intravenous administration. Aortas from normal chow-fed rabbits did not exhibit significant 125I-Cl accumulation. When cholesterol-fed rabbits were intravenously administered Tween-solubilized 125I-Cl and simultaneously treated with either of two anti-atherogenic compounds, estradiol 17β-cypionate or colestipol, the extent of aortic atherosclerosis was found to dramatically decrease. Measurement of aortic radioactivity was found to strongly correlate with the severity of atherosclerosis. Although the specificity of 125I-Cl for atheromatous lesions was very good, gamma-camera scintigraphy of the abdomens of these rabbits 6 days after cessation of 125I-Cl administration was not able to consistently predict the severity of atherosclerosis. Tissue distribution studies suggested that high blood and spinal column bone marrow radioactivity produced aorta:nontarget radioactivity ratios unfavorable with respect to imaging. To improve this ratio so as to permit noninvasive imaging, attempts were made to incorporate 125I-Cl into serum lipoproteins. Labelling of either rabbit LDL by in vivo incorporation or human LDL by transfer of 125I-Cl from liposomes using cholesteryl ester transfer protein resulted in lipoproteins with low specific activity. Higher specific activity was achieved by reconstituting delipidated human LDL with a mixture of 125I-Cl and unlabeled cholesteryl oleate. These particles were taken up in high amounts by monolayers of human fibroblasts but not by fibroblasts deficient in LDL receptors or by normal fibroblasts during competition with unlabeled native LDL

  13. Lipoprotein glomerulopathy treated with LDL-apheresis (Heparin-induced Extracorporeal Lipoprotein Precipitation system: a case report

    Directory of Open Access Journals (Sweden)

    Rivasi Paolo

    2009-12-01

    Full Text Available Abstract Introduction Lipoprotein glomerulopathy is a glomerulonephritis which was described for the first time by Saito in 1989 and is currently acknowledged as a separate nosological entity. It is histologically characterized by a marked dilatation of the glomerular capillaries and the presence of lipoprotein thrombi in the glomerular lumens. The dyslipidemic profile is similar to that of type III dyslipoproteinemia with Apolipoprotein E values that are often high; proteinuria and renal dysfunction are present. Proteinuria often does not respond to steroid and cytostatic treatments. The phenotypic expression of lipoprotein glomerulopathy is most probably correlated to a genetic alteration of the lipoprotein metabolism (mutation of the Apolipoprotein E coding gene. In literature, lipoprotein glomerulopathies have mainly been reported in Japanese and Chinese subjects, except for three cases in the Caucasian race, reported in France and the USA. Case presentation We describe the case of a 60-year-old female, Caucasian patient suffering from lipoprotein glomerulopathy, carrier of a new mutation on the Apolipoprotein E gene (Apolipoprotein EMODENA, and treated successfully with low density lipoprotein-apheresis with the Heparin induced extracorporeal lipoprotein precipitation system. After a first phase of therapeutic protocol with statins, the patient was admitted for nephrotic syndrome, renal failure and hypertension. Since conventional treatment alone was not able to control dyslipidemia, aphaeretic treatment with heparin-induced Extracorporeal Lipoprotein Precipitation - apheresis (HELP-apheresis was started to maintain angiotensin converting enzyme inhibitor therapy for the treatment of hypertension. Treatment with HELP-apheresis led to a complete remission of the proteinuria in a very short time (four months, as well as control of hypercholesterolemia and renal function recovery. Conclusion According to this case of lipoprotein glomerulopathy

  14. Comparative microscopic and biochemical study of the uptake of fluorescent and 125I-labeled lipoproteins by skin fibroblasts, smooth muscle cells, and peritoneal macrophages in culture

    International Nuclear Information System (INIS)

    Reynolds, G.D.; St Clair, R.W.

    1985-01-01

    Uptake of low density lipoprotein (LDL) and of acetyl LDL was compared in skin fibroblasts, smooth muscle cells, and peritoneal macrophages with the use of lipoproteins labeled with either 125 I or the fluorescent probe 3,3'-dioctadecylindocarbocyanine (DiI). The uptake of DiI-labeled lipoproteins was assessed by quantitative spectrofluorometry and by fluorescence microscopy. The DiI was quantitatively retained by the cells, while the 125 I-LDL was degraded and 125 I-labeled degradation products were excreted from the cells. In smooth muscle cells and fibroblasts the uptake of LDL was virtually the same whether measured with the use of the DiI or 125 I-label. The labeling of acetyl LDL with DiI enhanced its uptake in peritoneal macrophages by an average of 18%. With the DiI label, lipoprotein uptake could be determined after as little as 10 minutes of incubation at 37 C. The pattern of uptake of the DiI-labeled lipoproteins was consistent with binding to specific receptors, because no DiI could be detected in mutant cells without LDL receptors, and uptake was competitively inhibited by addition of excess unlabeled lipoprotein. When the DiI-labeled lipoproteins were removed from the medium, there was a 5-15% loss of DiI from all cell types studied over the first 24 hours

  15. Staphylococcus aureus lipoproteins trigger human corneal epithelial innate response through toll-like receptor-2.

    Science.gov (United States)

    Li, Qiong; Kumar, Ashok; Gui, Jian-Fang; Yu, Fu-Shin X

    2008-05-01

    Bacterial lipoproteins (LP) are a family of cell wall components found in a wide variety of bacteria. In this study, we characterized the response of HUCL, a telomerase-immortalized human corneal epithelial cell (HCEC) line, to LP isolated from Staphylococcus (S) aureus. S. aureus LP (saLP) prepared by Triton X-114 extraction stimulated the activation of NF-kappaB, JNK, and P38 signaling pathways in HUCL cells. The extracts failed to stimulate NF-kappaB activation in HUCL cells after lipoprotein lipase treatment and in cell lines expressing TLR4 or TLR9, but not TLR2, indicating lipoprotein nature of the extracts. saLP induced the up-regulation of a variety of inflammatory cytokines and chemokines (IL-6, IL-8, ICAM-1), antimicrobial molecules (hBD-2, LL-37, and iNOS), and homeostasis genes (Mn-SOD) at both the mRNA level and protein level. Similar inflammatory response to saLP was also observed in primarily cultured HCECs using the production of IL-6 as readout. Moreover, TLR2 neutralizing antibody blocked the saLP-induced secretion of IL-6, IL-8 and hBD2 in HUCL cells. Our findings suggest that saLP activates TLR2 and triggers innate immune response in the cornea to S. aureus infection via production of proinflammatory cytokines and defense molecules.

  16. Analyzing the molecular mechanism of lipoprotein localization in Brucella

    CSIR Research Space (South Africa)

    Goolab, S

    2015-10-01

    Full Text Available doi: 10.3389/fmicb.2015.01189 Edited by: Lee Mark Wetzler, Boston University School of Medicine, USA Reviewed by: Moriya Tsuji, Aaron Diamond AIDS Research Center, USA Thomas A. Ficht, Texas A&M University, USA *Correspondence: Shivani Goolab...-associated lipoproteins; POTRA, polypeptide-transport-associated; PRR, pattern-recognition receptors; RGD, Arg- Gly- Asp; Sec, system, general secretory; Tat system, twin-arginine translocation; T1SS, type I secretion system; T2SS, type II secretion system; T3SS, type III...

  17. Low-density lipoprotein receptor genetic polymorphism in chronic hepatitis C virus Egyptian patients affects treatment response.

    Science.gov (United States)

    Naga, Mazen; Amin, Mona; Algendy, Dina; Elbadry, Ahmed; Fawzi, May; Foda, Ayman; Esmat, Serag; Sabry, Dina; Rashed, Laila; Gabal, Samia; Kamal, Manal

    2015-10-21

    To correlate a genetic polymorphism of the low-density lipoprotein (LDL) receptor with antiviral responses in Egyptian chronic hepatitis C virus (HCV) patients. Our study included 657 HCV-infected patients with genotype 4 who received interferon-based combination therapy. Patients were divided into two groups based on their response to therapy: 356 were responders, and 301 were non-responders. Patients were compared to 160 healthy controls. All patients and controls underwent a thorough physical examination, measurement of body mass index (BMI) and the following laboratory tests: serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, albumin, total bilirubin, direct bilirubin, prothrombin time, prothrombin concentration, INR, complete blood count, serum creatinine, fasting blood sugar, HCV antibody, and hepatitis B surface antigen. All HCV patients were further subjected to the following laboratory tests: HCV-RNA using quantitative polymerase chain reaction (PCR), antinuclear antibodies, thyroid-stimulating hormone, an LDL receptor (LDLR) genotype study of LDLR exon8c.1171G>A and exon10c.1413G>A using real-time PCR-based assays, abdominal ultrasonography, ultrasonographic-guided liver biopsy, and histopathological examination of liver biopsies. Correlations of LDL receptor polymorphisms with HAI, METAVIR score, presence of steatosis, and BMI were performed in all cases. There were no statistically significant differences in response rates between the different types of interferon used or LDLR exon10c.1413G>A. However, there was a significant difference in the frequency of the LDL receptor exon8c.1171G>A genotype between cases (AA: 25.9%, GA: 22.2%, GG: 51.9%) and controls (AA: 3.8%, GA: 53.1% and GG: 43.1%) (P A polymorphism between responders (AA: 3.6%, GA: 15.2%, GG: 81.2%) and non-responders (AA: 52.2%, GA: 30.6%, GG: 17.2%) (P A predominated in cases and controls over the A allele, and a statistically significant association with

  18. Utility of soluble lectin-like oxidized low-density lipoprotein receptor-1 (sLOX-1) in the postmortem diagnosis of ischemic heart disease.

    Science.gov (United States)

    Takasu, Shojiro; Matsumoto, Sari; Kanto, Yuko; Iwadate, Kimiharu

    2018-04-01

    Ischemic heart disease (IHD) is a major cause of death in developed countries. Postmortem IHD diagnosis using biochemical markers is difficult because of the postmortem changes. In the present study, we investigated the utility of soluble lectin-like low-density lipoprotein receptor-1 (sLOX-1) in body fluids obtained from forensic autopsy cases. We measured pericardial fluid, urine, and serum sLOX-1 levels; these samples were obtained from medicolegal autopsy cases (n = 149, postmortem interval fluid and urine of patients with acute IHD had higher sLOX-1 levels (p fluid and urine samples obtained postmortem are useful markers of acute IHD. Copyright © 2018 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  19. Combined analysis of six lipoprotein lipase genetic variants on triglycerides, high-density lipoprotein, and ischemic heart disease

    DEFF Research Database (Denmark)

    Wittrup, Hans H; Andersen, Rolf V; Tybjaerg-Hansen, Anne

    2006-01-01

    Genetic variants in lipoprotein lipase may affect triglycerides, high-density lipoprotein (HDL), and risk of ischemic heart disease (IHD).......Genetic variants in lipoprotein lipase may affect triglycerides, high-density lipoprotein (HDL), and risk of ischemic heart disease (IHD)....

  20. Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein.

    Science.gov (United States)

    Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C

    2001-07-01

    The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.

  1. Changes in plasma low-density lipoprotein (LDL)- and high-density lipoprotein cholesterol in hypo- and hyperthyroid patients are related to changes in free thyroxine, not to polymorphisms in LDL receptor or cholesterol ester transfer protein genes

    NARCIS (Netherlands)

    Diekman, M. J.; Anghelescu, N.; Endert, E.; Bakker, O.; Wiersinga, W. M.

    2000-01-01

    Thyroid function disorders lead to changes in lipoprotein metabolism. Both plasma low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) increase in hypothyroidism and decrease in hyperthyroidism. Changes in LDL-C relate to altered clearance of LDL particles

  2. Regulation of hepatic lipase activity by sphingomyelin in plasma lipoproteins.

    Science.gov (United States)

    Yang, Peng; Subbaiah, Papasani V

    2015-10-01

    Hepatic lipase (HL) is an important enzyme in the clearance of triacylglycerol (TAG) from the circulation, and has been proposed to have pro-atherogenic as well as anti-atherogenic properties. It hydrolyzes both phospholipids and TAG of lipoproteins, and its activity is negatively correlated with HDL levels. Although it is known that HL acts preferentially on HDL lipids, the basis for this specificity is not known, since it does not require any specific apoprotein for activity. In this study, we tested the hypothesis that sphingomyelin (SM), whose concentration is much higher in VLDL and LDL compared to HDL, is an inhibitor of HL, and that this could explain the lipoprotein specificity of the enzyme. The results presented show that the depletion of SM from normal lipoproteins activated the HL roughly in proportion to their SM content. SM depletion stimulated the hydrolysis of both phosphatidylcholine (PC) and TAG, although the PC hydrolysis was stimulated more. In the native lipoproteins, HL showed specificity for PC species containing polyunsaturated fatty acids at sn-2 position, and produced more unsaturated lyso PC species. The enzyme also showed preferential hydrolysis of certain TAG species over others. SM depletion affected the specificity of the enzyme towards PC and TAG species modestly. These results show that SM is a physiological inhibitor of HL activity in lipoproteins and that the specificity of the enzyme towards HDL is at least partly due to its low SM content. Published by Elsevier B.V.

  3. Low density lipoprotein receptor gene Ava II polymorphism and serum lipid levels in the Guangxi Bai Ku Yao and Han populations

    Directory of Open Access Journals (Sweden)

    Wu Dong-Feng

    2011-02-01

    Full Text Available Abstract Background Several common genetic polymorphisms in the low density lipoprotein receptor (LDL-R gene have associated with modifications of serum total cholesterol (TC and low density lipoprotein cholesterol (LDL-C levels, but the results are not consistent in different populations. Bai Ku Yao is a special subgroup of the Yao minority in China. The present study was undertaken to detect the association of LDL-R gene Ava Ⅱ polymorphism and serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Methods A total of 1024 subjects of Bai Ku Yao and 792 participants of Han Chinese were randomly selected from our previous stratified randomized cluster samples. Genotyping of the LDL-R gene Ava Ⅱ polymorphism was performed by polymerase chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Results The levels of serum TC, high density lipoprotein cholesterol (HDL-C, LDL-C, apolipoprotein (Apo A1 and the ratio of ApoA1 to ApoB were lower in Bai Ku Yao than in Han (P - and A+ alleles was 65.5% and 34.5% in Bai Ku Yao, and 80.7% and 19.3% in Han (P -A-, A-A+ and A+A+ genotypes was 42.6%, 45.9% and 11.5% in Bai Ku Yao, and 64.9%, 31.6% and 3.5% in Han (P P 3.20 mmol/L subgroups in Bai Ku Yao (P P P P +A+ genotype had higher serum LDL-C, TC, HDL-C or ApoA1 levels than the subjects with A-A+ and A-A- genotypes. Spearman rank correlation analysis revealed that the levels of LDL-C in Bai Ku Yao and HDL-C in Han were correlated with genotypes (P P Conclusions The association of LDL-R gene Ava Ⅱ polymorphism and serum lipid levels is different between the Bai Ku Yao and Han populations. The discrepancy might partly result from different LDL-R gene Ava Ⅱ polymorphism or LDL-R gene-enviromental interactions.

  4. N-isopropyl-p-iodoamphetamine receptors in normal and cancerous tissue of the human lung

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Eiko; Mishima, Michiaki; Kawakami, Kenzo; Sakai, Naoki; Sugiura, Naoharu; Kuno, Kenshi [Kyoto Univ. (Japan). Dept. of Clinical Physiology; Taniguchi, Takashi [Kyoto Pharmaceutical Univ. (Japan). Dept. of Neurobiology

    1993-04-01

    N-Isopropyl-p-iodoamphetamine (IMP) receptors in normal human lung tissue were characterized using a radioligand binding assay with iodine-125 IMP as the ligand. Saturation binding studies revealed the presence of two binding sites with dissociation constant (K[sub d]) values of 53[+-]2 and 4687[+-]124 nM and maximum binding capacity (Bmax) values of 7[+-]1 and 133[+-]27 pmol/mg protein (n=5) respectively. The IC[sub 50] values of various amines were as follows: IMP, 9x10[sup -5] M; propranolol, 5x10[sup -4] M; haloperidol, 6x10[sup -4] M; ketamine, 9x10[sup -3] M; dopamine, 1x10[sup -2] M. The IMP receptors of cancerous tissue obtained from human lung also had two binding sites with K[sub d] values of 54[+-]2 and 5277[+-]652 nM and Bmax values of 7[+-]1 and 103[+-]21 pmol/mg protein (n=3) respectively. There was no significant difference in binding parameters between normal and cancerous lung tissue. These results demonstrate the existence of IMP receptors and suggest that cancer does not affect the nature of IMP receptors in human lung tissue. (orig.).

  5. Chronic Exercise Reduces CETP and Mesterolone Treatment Counteracts Exercise Benefits on Plasma Lipoproteins Profile: Studies in Transgenic Mice.

    Science.gov (United States)

    Casquero, Andrea Camargo; Berti, Jairo Augusto; Teixeira, Laura Lauand Sampaio; de Oliveira, Helena Coutinho Franco

    2017-12-01

    Regular exercise and anabolic androgenic steroids have opposing effects on the plasma lipoprotein profile and risk of cardio-metabolic diseases in humans. Studies in humans and animal models show conflicting results. Here, we used a mice model genetically modified to mimic human lipoprotein profile and metabolism. They under-express the endogenous LDL receptor gene (R1) and express a human transgene encoding the cholesteryl ester transfer protein (CETP), normally absent in mice. The present study was designed to evaluate the independent and interactive effects of testosterone supplementation, exercise training and CETP expression on the plasma lipoprotein profile and CETP activity. CETP/R1 and R1 mice were submitted to a 6-week swimming training and mesterolone (MEST) supplementation in the last 3 weeks. MEST treatment increased markedly LDL levels (40%) in sedentary CETP/R1 mice and reduced HDL levels in exercised R1 mice (18%). A multifactorial ANOVA revealed the independent effects of each factor, as follows. CETP expression reduced HDL (21%) and increased non-HDL (15%) fractions. MEST treatment increased the VLDL concentrations (42%) regardless of other interventions. Exercise training reduced triacylglycerol (25%) and free fatty acids (20%), increased both LDL and HDL (25-33%), and reduced CETP (19%) plasma levels. Significant factor interactions showed that the increase in HDL induced by exercise is explained by reducing CETP activity and that MEST blunted the exercise-induced elevation of HDL-cholesterol. These results reinforce the positive metabolic effects of exercise, resolved a controversy about CETP response to exercise and evidenced MEST potency to counteract specific exercise benefits.

  6. [Residual risk: The roles of triglycerides and high density lipoproteins].

    Science.gov (United States)

    Grammer, Tanja; Kleber, Marcus; Silbernagel, Günther; Scharnagl, Hubert; März, Winfried

    2016-06-01

    In clinical trials, the reduction of LDL-cholesterol (LDL-C) with statins reduces the incidence rate of cardiovascular events by approximately one third. This means, that a sizeable "residual risk" remains. Besides high lipoprotein (a), disorders in the metabolism of triglyceride-rich lipoproteins and high density liproteins have been implicated as effectors of the residual risk. Both lipoprotein parameters correlate inversely with each other. Therefore, the etiological contributions of triglycerides and / or of HDL for developing cardiovascular disease can hardly be estimated from either observational studies or from intervention studies. The largely disappointing results of intervention studies with inhibitors of the cholesteryl ester transfer protein and in particular the available set of genetically-epidemiological studies suggest that in the last decade, the importance of HDL cholesterol has been overvalued, while the importance of triglycerides has been underestimated. High triglycerides not always atherogenic, but only if they are associated with the accumulation relatively cholesterol-enriched, incompletely catabolized remnants of chylomicrons and very low density lipoproteins (familial type III hyperlipidemia, metabolic syndrome, diabetes mellitus). The normalization of the concentration of triglycerides and remnants by inhibiting the expression of apolipoprotein C3 is hence a new, promising therapeutic target. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Lipoprotein Lipase and PPAR Alpha Gene Polymorphisms, Increased Very-Low-Density Lipoprotein Levels, and Decreased High-Density Lipoprotein Levels as Risk Markers for the Development of Visceral Leishmaniasis by Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Márcia Dias Teixeira Carvalho

    2014-01-01

    Full Text Available In visceral leishmaniasis (VL endemic areas, a minority of infected individuals progress to disease since most of them develop protective immunity. Therefore, we investigated the risk markers of VL within nonimmune sector. Analyzing infected symptomatic and, asymptomatic, and noninfected individuals, VL patients presented with reduced high-density lipoprotein cholesterol (HDL-C, elevated triacylglycerol (TAG, and elevated very-low-density lipoprotein cholesterol (VLDL-C levels. A polymorphism analysis of the lipoprotein lipase (LPL gene using HindIII restriction digestion (N = 156 samples (H+ = the presence and H− = the absence of mutation revealed an increased adjusted odds ratio (OR of VL versus noninfected individuals when the H+/H+ was compared with the H−/H− genotype (OR = 21.3; 95% CI = 2.32–3335.3; P = 0.003. The H+/H+ genotype and the H+ allele were associated with elevated VLDL-C and TAG levels (P < 0.05 and reduced HDL-C levels (P < 0.05. An analysis of the L162V polymorphism in the peroxisome proliferator-activated receptor alpha (PPARα gene (n = 248 revealed an increased adjusted OR when the Leu/Val was compared with the Leu/Leu genotype (OR = 8.77; 95% CI = 1.41–78.70; P = 0.014. High TAG (P = 0.021 and VLDL-C (P = 0.023 levels were associated with susceptibility to VL, whereas low HDL (P = 0.006 levels with resistance to infection. The mutated LPL and the PPARα Leu/Val genotypes may be considered risk markers for the development of VL.

  8. Genetic determinants of LDL, lipoprotein(a), triglyceride-rich lipoproteins and HDL: concordance and discordance with cardiovascular disease risk

    DEFF Research Database (Denmark)

    Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2011-01-01

    To evaluate whether new and known genetic determinants of plasma levels of LDL cholesterol, lipoprotein(a), triglyceride-rich lipoproteins, and HDL cholesterol associate with the risk of cardiovascular disease expected from the effect on lipoprotein levels. Concordance or discordance of such gene......To evaluate whether new and known genetic determinants of plasma levels of LDL cholesterol, lipoprotein(a), triglyceride-rich lipoproteins, and HDL cholesterol associate with the risk of cardiovascular disease expected from the effect on lipoprotein levels. Concordance or discordance...

  9. Phytosterols, Phytostanols, and Lipoprotein Metabolism

    Directory of Open Access Journals (Sweden)

    Helena Gylling

    2015-09-01

    Full Text Available The efficacy of phytosterols and phytostanols added to foods and food supplements to obtain significant non-pharmacologic serum and low density lipoprotein (LDL cholesterol reduction is well documented. Irrespective of age, gender, ethnic background, body weight, background diet, or the cause of hypercholesterolemia and, even added to statin treatment, phytosterols and phytostanols at 2 g/day significantly lower LDL cholesterol concentration by 8%–10%. They do not affect the concentrations of high density lipoprotein cholesterol, lipoprotein (a or serum proprotein convertase subtilisin/kexin type 9. In some studies, phytosterols and phytostanols have modestly reduced serum triglyceride levels especially in subjects with slightly increased baseline concentrations. Phytosterols and phytostanols lower LDL cholesterol by displacing cholesterol from mixed micelles in the small intestine so that cholesterol absorption is partially inhibited. Cholesterol absorption and synthesis have been carefully evaluated during phytosterol and phytostanol supplementation. However, only a few lipoprotein kinetic studies have been performed, and they revealed that LDL apoprotein B-100 transport rate was reduced. LDL particle size was unchanged, but small dense LDL cholesterol concentration was reduced. In subjects with metabolic syndrome and moderate hypertriglyceridemia, phytostanols reduced not only non- high density lipoprotein (HDL cholesterol concentration but also serum triglycerides by 27%, and reduced the large and medium size very low density lipoprotein particle concentrations. In the few postprandial studies, the postprandial lipoproteins were reduced, but detailed studies with apoprotein B-48 are lacking. In conclusion, more kinetic studies are required to obtain a more complete understanding of the fasting and postprandial lipoprotein metabolism caused by phytosterols and phytostanols. It seems obvious, however, that the most atherogenic lipoprotein

  10. Phytosterols, Phytostanols, and Lipoprotein Metabolism.

    Science.gov (United States)

    Gylling, Helena; Simonen, Piia

    2015-09-17

    The efficacy of phytosterols and phytostanols added to foods and food supplements to obtain significant non-pharmacologic serum and low density lipoprotein (LDL) cholesterol reduction is well documented. Irrespective of age, gender, ethnic background, body weight, background diet, or the cause of hypercholesterolemia and, even added to statin treatment, phytosterols and phytostanols at 2 g/day significantly lower LDL cholesterol concentration by 8%-10%. They do not affect the concentrations of high density lipoprotein cholesterol, lipoprotein (a) or serum proprotein convertase subtilisin/kexin type 9. In some studies, phytosterols and phytostanols have modestly reduced serum triglyceride levels especially in subjects with slightly increased baseline concentrations. Phytosterols and phytostanols lower LDL cholesterol by displacing cholesterol from mixed micelles in the small intestine so that cholesterol absorption is partially inhibited. Cholesterol absorption and synthesis have been carefully evaluated during phytosterol and phytostanol supplementation. However, only a few lipoprotein kinetic studies have been performed, and they revealed that LDL apoprotein B-100 transport rate was reduced. LDL particle size was unchanged, but small dense LDL cholesterol concentration was reduced. In subjects with metabolic syndrome and moderate hypertriglyceridemia, phytostanols reduced not only non- high density lipoprotein (HDL) cholesterol concentration but also serum triglycerides by 27%, and reduced the large and medium size very low density lipoprotein particle concentrations. In the few postprandial studies, the postprandial lipoproteins were reduced, but detailed studies with apoprotein B-48 are lacking. In conclusion, more kinetic studies are required to obtain a more complete understanding of the fasting and postprandial lipoprotein metabolism caused by phytosterols and phytostanols. It seems obvious, however, that the most atherogenic lipoprotein particles will be

  11. Residues in the 5th module of the low-density lipoprotein receptor that bind apoE and apoB-100

    International Nuclear Information System (INIS)

    Kroon, P.A.; Zhang, H.-Y.; Smith, R.

    2000-01-01

    Full text: The low-density lipoprotein receptor (LDLR) binds and removes cholesterol-rich lipoproteins from the circulation. Its ligand-binding (LB) domain consists of seven cysteine-rich LB modules that bind apoB-100 and apoE. These modules fold into well-defined structures with three disulfide bonds, in the presence of Ca 2+ . The 5th module (LB5) is unique in that it is required to bind both apoB-100 and apoE. The aim of the current study was to map residues in human LB5 that are required for ligand binding. This was done by alanine mutagenesis of a series of residues that are conserved in human, mouse, rat and rabbit LB5 (E9, S14, E16, H19, S21, K31, and K33), but not in the other six modules. E37 (R37 in the rabbit) was included, since it has been previously hypothesized to play a role in binding. The variant LB5 modules were first produced as recombinant peptides, and subjected to oxidative folding to determine whether the mutations interfered with Ca 2+ '-dependent folding. Only the S14A and E16A mutations interfered significantly with folding, suggesting that S14 and E16 are required for the structural framework of LB5 and that their substitution in the LDLR may interfere with its folding. The native LDLR and E9A, H19A, S21A, K31A, K33A and E37A LDLRs were expressed in LDLR negative IdlA-7 CHO cells. Labeling with 125 I-lgG-C7 showed that all receptors were expressed on the cell surface. Binding of Dil-labeled LDL (Dil-LDL) and Dil-labeled DMPC, complexed with the N-terminal receptor-binding domain of apoE3 (Dil-E3), at 4 deg C, was used to assess receptor binding. Binding of Dil-E3 (0.1 μ/ml) to the H19A, S21A, K31A, K33A and E37A LDLRs was 65-92% of binding to the native LDLR. In contrast, the E9A LDLR only bound 3% of that of the native LDLR. The binding of Dil-LDL (0.5 Ag/ml) to the E9A LDLR was 23% of that of the native LDLR, while binding to the remaining variant LDLRs ranged from 44-70% of what of the native LDLR. We conclude that (i) E9 of LB5

  12. Onset of lipoprotein-supported steroidogenesis in differentiating granulosa cells of rats: cellular events involved in mediating FSH-enhanced uptake of low-density lipoproteins

    International Nuclear Information System (INIS)

    Foster, J.D.

    1987-01-01

    Luteal cells use lipoproteins as the main source of cholesterol in steroidogenesis. However, little is known about the mechanisms underlying hormonal control of lipoprotein uptake. Thus, the authors tested the hypothesis that FSH and androgens regulate low density lipoprotein (LDL)-supported steroidogenesis in maturing granulosa cells by affecting receptor-mediated endocytosis of LDL at a cellular level. For this, immature ovarian granulosa cells were cultured with or without hormones, compactin (de novo synthesis inhibitor), or unlabeled or labeled ( 125 I or gold particles) LDL. Nonhormone-treated cultures produced little progestin; FSH and FSH/androstenedione stimulated steroid secretion. Progestin production by hormone-, but not nonhormone-, treated cultures was decreased by compactin, suggesting that de novo synthesis provided sterol for steroidogenesis. EM quantitation of cells exposed to gold-LDL at 37 0 C revealed that, compared to nonhormone-treated cells, FSH-treated cells (1) bound and internalized more gold-LDL, (2) had a smaller percentage of gold-LDL at their surfaces, (3) displayed a faster apparent rate of LDL internalization and delivery to lysosomes, and (4) contained more gold-labeled lysosomes. Data from biochemical studies in which 125 I-LDL was used supported the morphological findings. In conclusion, this study demonstrates that FSH has important effects at the cellular level on LDL uptake, which seem to underlie the striking increase in progestin production accompanying granulosa cell differentiation

  13. Spirochetal Lipoproteins and Immune Evasion

    Science.gov (United States)

    Christodoulides, Alexei; Boyadjian, Ani; Kelesidis, Theodoros

    2017-01-01

    Spirochetes are a major threat to public health. However, the exact pathogenesis of spirochetal diseases remains unclear. Spirochetes express lipoproteins that often determine the cross talk between the host and spirochetes. Lipoproteins are pro-inflammatory, modulatory of immune responses, and enable the spirochetes to evade the immune system. In this article, we review the modulatory effects of spirochetal lipoproteins related to immune evasion. Understanding lipoprotein-induced immunomodulation will aid in elucidating innate pathogenesis processes and subsequent adaptive mechanisms potentially relevant to spirochetal disease vaccine development and treatment. PMID:28424696

  14. C-reactive protein and lipoprotein-a as markers of coronary heart disease in polycystic ovary syndrome.

    Science.gov (United States)

    Güdücü, Nilgün; Işçi, Herman; Yiğiter, Alin Başgül; Dünder, Ilkkan

    2012-01-01

    The aim of this study was to investigate the risk factors of coronary heart disease, CRP and Lipoprotein-a in polycystic ovary syndrome patients. Prospectively collected data of polycystic ovary syndrome patients (n=62) and control group (n=40) were compared. PCOS patients had higher HOMA-IR, CRP, DHEAS, free testosterone, FAI, LH and prolactin levels when compared to the control group. Lipoprotein-a levels did not differ between the groups. The obese PCOS group had statistically significantly higher fasting blood glucose, total cholesterol, triglyceride, free testosterone, insulin, CRP and HOMA-IR and statistically significantly lower HDL and SHBG when compared to normal weight PCOS persons. Fasting blood glucose, total cholesterol, LDL, SHBG, CRP, Lipoprotein-a, FSH, LH, TSH, DHEAS and prolactin levels did not differ between the normal weight and obese control groups. CRP levels increase in polycystic ovary syndrome patients and can be used as a marker of coronary heart disease. Future studies can be directed at treatments to decrease CRP levels, including antiinflammatory treatments.

  15. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL

    NARCIS (Netherlands)

    Bartuzi, Paulina; Billadeau, Daniel D.; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H.; Huijkman, Nicolette; Kloosterhuis, Niels; Van der Molen, Henk; Brufau, Gemma; Groen, Albert K.; Elliott, Alison M.; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D.; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bart

    2016-01-01

    The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal

  16. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL

    NARCIS (Netherlands)

    Bartuzi, Paulina; Billadeau, Daniel D.; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H.; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K.; Elliott, Alison M.; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D.; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bart

    The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal

  17. Staphylococcus aureus induces IL-8 expression through its lipoproteins in the human intestinal epithelial cell, Caco-2.

    Science.gov (United States)

    Kang, Seok-Seong; Noh, Su Young; Park, Ok-Jin; Yun, Cheol-Heui; Han, Seung Hyun

    2015-09-01

    Staphylococcus aureus can cause the intestinal inflammatory diseases. However, little is known about the molecular mechanism of S. aureus infection in the intestine. In the present study, we investigated whether S. aureus could stimulate human intestinal epithelial cells triggering inflammation. When the human intestinal epithelial cell-line, Caco-2, and the primary colon cells were stimulated with ethanol-inactivated S. aureus, IL-8 expression was induced in a dose-dependent manner. The inactivated S. aureus preferentially stimulated Toll-like receptor (TLR) 2 rather than TLR4. Lipoproteins, lipoteichoic acid (LTA), and peptidoglycan (PGN) are considered as potential TLR2 ligands of S. aureus. Interestingly, S aureus lipoproteins and Pam2CSK4 mimicking Gram-positive bacterial lipoproteins, but not LTA and PGN of S. aureus, significantly induced IL-8 expression in Caco-2 cells. Furthermore, lipoprotein-deficient S. aureus mutant strain failed to induce IL-8 production. Collectively, these results suggest that S. aureus stimulates the human intestinal epithelial cells to induce the chemokine IL-8 production through its lipoproteins, potentially contributing the development of intestinal inflammation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Postprandial triglyceride-rich lipoproteins regulate perilipin-2 and perilipin-3 lipid-droplet-associated proteins in macrophages.

    Science.gov (United States)

    Varela, Lourdes M; López, Sergio; Ortega-Gómez, Almudena; Bermúdez, Beatriz; Buers, Insa; Robenek, Horst; Muriana, Francisco J G; Abia, Rocío

    2015-04-01

    Lipid accumulation in macrophages contributes to atherosclerosis. Within macrophages, lipids are stored in lipid droplets (LDs); perilipin-2 and perilipin-3 are the main LD-associated proteins. Postprandial triglyceride (TG)-rich lipoproteins induce LD accumulation in macrophages. The role of postprandial lipoproteins in perilipin-2 and perilipin-3 regulation was studied. TG-rich lipoproteins (TRLs) induced the levels of intracellular TGs, LDs and perilipin-2 protein expression in THP-1 macrophages and in Apoe(-/-) mice bone-marrow-derived macrophages with low and high basal levels of TGs. Perilipin-3 was only synthesized in mice macrophages with low basal levels of TGs. The regulation was dependent on the fatty acid composition of the lipoproteins; monounsaturated and polyunsaturated fatty acids (PUFAs) more strongly attenuated these effects compared with saturated fatty acids. In THP-1 macrophages, immunofluorescence microscopy and freeze-fracture immunogold labeling indicated that the lipoproteins translocated perilipin-3 from the cytoplasm to the LD surface; only the lipoproteins that were rich in PUFAs suppressed this effect. Chemical inhibition showed that lipoproteins induced perilipin-2 protein expression through the peroxisome proliferator-activated nuclear receptor (PPAR) PPARα and PPARγ pathways. Overall, our data indicate that postprandial TRLs may be involved in atherosclerotic plaque formation through the regulation of perilipin-2 and perilipin-3 proteins in macrophages. Because the fatty acid composition of the lipoproteins is dependent on the type of fat consumed, the ingestion of olive oil, which is rich in monounsaturated fatty acids, and fish oil, which is rich in omega-3 fatty acids, can be considered a good nutritional strategy to reduce the risk of atherosclerosis by LD-associated proteins decrease. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids

    International Nuclear Information System (INIS)

    Saxena, U.; Witte, L.D.; Goldberg, I.J.

    1989-01-01

    Lipoprotein lipase (LPL) bound to the lumenal surface of vascular endothelial cells is responsible for the hydrolysis of triglycerides in plasma lipoproteins. Studies were performed to investigate whether human plasma lipoproteins and/or free fatty acids would release LPL which was bound to endothelial cells. Purified bovine milk LPL was incubated with cultured porcine aortic endothelial cells resulting in the association of enzyme activity with the cells. When the cells were then incubated with media containing chylomicrons or very low density lipoproteins (VLDL), a concentration-dependent decrease in the cell-associated LPL enzymatic activity was observed. In contrast, incubation with media containing low density lipoproteins or high density lipoproteins produced a much smaller decrease in the cell-associated enzymatic activity. The addition of increasing molar ratios of oleic acid:bovine serum albumin to the media also reduced enzyme activity associated with the endothelial cells. To determine whether the decrease in LPL activity was due to release of the enzyme from the cells or inactivation of the enzyme, studies were performed utilizing radioiodinated bovine LPL. Radiolabeled LPL protein was released from endothelial cells by chylomicrons, VLDL, and by free fatty acids (i.e. oleic acid bound to bovine serum albumin). The release of radiolabeled LPL by VLDL correlated with the generation of free fatty acids from the hydrolysis of VLDL triglyceride by LPL bound to the cells. Inhibition of LPL enzymatic activity by use of a specific monoclonal antibody, reduced the extent of release of 125 I-LPL from the endothelial cells by the added VLDL. These results demonstrated that LPL enzymatic activity and protein were removed from endothelial cells by triglyceride-rich lipoproteins (chylomicrons and VLDL) and oleic acid

  20. Radiolabelled lipoproteins and method for making same

    International Nuclear Information System (INIS)

    Lees, R.S.

    1987-01-01

    A method is described for detecting accumulation of low density lipoproteins in an arterial wall, the method comprising the steps of A. preparing a technetium-99m-labelled low density lipoprotein in a solution having a pH between 8 and 9; B. injecting the labelled low density lipoprotein into the vascular system of a patient; C. subsequently viewing the patient's vascular system with extracorporeally-located detecting means capable of detecting the labelled low density lipoprotein; D. determining from the detecting means the locations of the labelled density lipoproteins; and E. quantifying concentrations of the labelled low density lipoproteins at the locations to determine the accumulation of the lipoproteins

  1. Alpha slow-moving high-density-lipoprotein subfraction in serum of a patient with radiation enteritis and peritoneal carcinosis

    International Nuclear Information System (INIS)

    Peynet, J.; Legrand, A.; Messing, B.; Thuillier, F.; Rousselet, F.

    1989-01-01

    An alpha slow-moving high-density-lipoprotein (HDL) subfraction was seen in a patient presenting with radiation enteritis and peritoneal carcinosis, who was given long-term cyclic parenteral nutrition. This subfraction, observed in addition to normal HDL, was precipitated with low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) by sodium phosphotungstate-magnesium chloride. The patient's serum lipoproteins were analyzed after fractionation by density gradient ultracentrifugation. The alpha slow-moving HDL floated in the ultracentrifugation subfractions with densities ranging from 1.028 to 1.084 kg/L, and their main apolipoproteins included apolipoprotein E in addition to apolipoprotein A-I. These HDL were larger than HDL2. The pathogenesis of this unusual HDL subfraction is hypothesized

  2. High-density lipoproteins inhibit urate crystal-induced inflammation in mice

    OpenAIRE

    Scanu Anna; Luisetto Roberto; Oliviero Francesca; Gruaz Lyssia; Sfriso Paolo; Burger Danielle; Punzi Leonardo

    2015-01-01

    Objectives To investigate the effects and mechanisms of action of high density lipoproteins (HDL) in monosodium urate (MSU) crystal induced inflammation—that is gouty inflammation in vivo. Methods Air pouches raised on the backs of mice were injected with MSU crystals or tumour necrosis factor (TNF) in the presence or absence of HDL and/or interleukin (IL) 1 receptor antagonist (IL 1Ra) for 3 h. Leucocyte count and neutrophil percentage in pouch fluids were measured using a haemocytometer an...

  3. Ultrasound-targeted microbubble destruction improves the low density lipoprotein receptor gene expression in HepG2 cells

    International Nuclear Information System (INIS)

    Guo Dongping; Li Xiaoyu; Sun, Ping; Tang Yibo; Chen Xiuying; Chen Qi; Fan Leming; Zang Bin; Shao Lizheng; Li Xiaorong

    2006-01-01

    Ultrasound-targeted microbubble destruction had been employed in gene delivery and promised great potential. Liver has unique features that make it attractive for gene therapy. However, it poses formidable obstacles to hepatocyte-specific gene delivery. This study was designed to test the efficiency of therapeutic gene transfer and expression mediated by ultrasound/microbubble strategy in HepG 2 cell line. Air-filled albumin microbubbles were prepared and mixed with plasmid DNA encoding low density lipoprotein receptor (LDLR) and green fluorescent protein. The mixture of the DNA and microbubbles was administer to cultured HepG 2 cells under variable ultrasound conditions. Transfection rate of the transferred gene and cell viability were assessed by FACS analysis, confocal laser scanning microscopy, Western blot analysis and Trypan blue staining. The result demonstrated that microbubbles with ultrasound irradiation can significantly elevate exogenous LDLR gene expression and the expressed LDLRs were functional and active to uptake their ligands. We conclude that ultrasound-targeted microbubble destruction has the potential to promote safe and efficient LDLR gene transfer into hepatocytes. With further refinement, it may represent an effective nonviral avenue of gene therapy for liver-involved genetic diseases

  4. Involvement of microtubules in lipoprotein degradation and utilization for steroidogenesis in cultured rat luteal cells

    International Nuclear Information System (INIS)

    Rajan, V.P.; Menon, K.M.

    1985-01-01

    Cells isolated from superovulated rat ovaries metabolize low density lipoprotein (LDL) and high density lipoprotein (HDL) of human or rat origin and use the lipoprotein-derived cholesterol as a precursor for progesterone production. Under in vitro conditions, both lipoproteins are internalized and degraded in the lysosomes, although degradation of HDL is of lower magnitude than that of LDL. In this report we have examined the role of cellular microtubules in the internalization and degradation of human LDL and HDL in cultured rat luteal cells. The microtubule depolymerizing agents colchicine, podophyllotoxin, vinblastine, and nocodazole as well as taxol, deuterium oxide, and dimethyl sulfoxide, which are known to rapidly polymerize cellular tubulin into microtubules, were used to block the function of microtubules. When these antimicrotubule agents were included in the incubations, degradation of the apolipoproteins of [ 125 I]iodo-LDL and [ 125 I]iodo-HDL by the luteal cells was inhibited by 50-85% compared to untreated control values. Maximum inhibitory effects were observed when the cells were preincubated with the inhibitor for at least 4 h at 37 C before treatment with the labeled lipoprotein. Lipoprotein-stimulated progesterone production by luteal cells was also inhibited by 50% or more in the presence of antimicrotubule agents. However, basal and hCG-stimulated progesterone production were unaffected by these inhibitors. The binding of [ 125 I]iodo-LDL and [ 125 I]iodo-HDL to luteal cell plasma membrane receptors was not affected by the microtubule inhibitors. Although binding was unaffected and degradation was impaired in the presence of the inhibitors, there was no detectable accumulation of undegraded lipoprotein within the cells during the 24 h of study

  5. Stimulation of cholesteryl ester synthesis in mouse peritoneal macrophages by cholesterol-rich very low density lipoproteins from the Watanabe heritable hyperlipidemic rabbit, an animal model of familial hypercholesterolemia

    International Nuclear Information System (INIS)

    Kita, T.; Yokode, M.; Watanabe, Y.; Narumiya, S.; Kawai, C.

    1986-01-01

    Cholesterol-rich very low density lipoproteins (VLDL) from the homozygous Watanabe heritable hyperlipidemic (WHHL) rabbit induced marked cholesteryl ester accumulation in mouse peritoneal macrophages. This WHHL rabbit, an animal model of human familial hypercholesterolemia, has severe hypercholesterolemia, cutaneous xanthomas, and fulminant atherosclerosis due to the deficiency of the low density lipoprotein (LDL) receptor. When incubated with mouse peritoneal macrophages, the VLDL from WHHL rabbit (WHHL-VLDL) stimulated cholesteryl [ 14 C]oleate synthesis 124-fold more than did VLDL from the normal Japanese White rabbit (control-VLDL). The enhancement in cholesteryl ester synthesis and accumulation of WHHL-VLDL was due to the presence of a high affinity binding receptor site on the macrophage cell surface that mediated the uptake and lysosomal degradation of WHHL-VLDL. Competition studies showed that the uptake and degradation of 125 I-WHHL-VLDL was inhibited by unlabeled excess WHHL-VLDL and beta-migrating VLDL (beta-VLDL), but not LDL. Furthermore, the degradation of WHHL-VLDL was not blocked by either fucoidin, polyinosinic acid, or polyguanylic acid, potent inhibitors of the acetylated (acetyl)-LDL binding site, or by acetyl-LDL. These results suggest that macrophages possess a high affinity receptor that recognizes the cholesterol-rich VLDL present in the plasma of the WHHL rabbit and that the receptor which mediates ingestion of WHHL-VLDL seems to be the same as that for beta-VLDL and leads to cholesteryl ester deposition within macrophages. Thus, the uptake of the cholesterol-rich VLDL from the WHHL rabbit by macrophages in vivo may play a significant role in the pathogenesis of atherosclerosis in the WHHL rabbit

  6. Intracellular transport of low density lipoprotein-derived cholesterol is defective in Niemann-Pick type C fibroblasts

    International Nuclear Information System (INIS)

    Liscum, L.; Ruggiero, R.M.; Faust, J.R.

    1989-01-01

    Niemann-Pick disease type C (NPC) is characterized by substantial intracellular accumulation of unesterified cholesterol. The accumulation of unesterified cholesterol in NPC fibroblasts cultured with low density lipoprotein (LDL) appears to result from the inability of LDL to stimulate cholesterol esterification in addition to impaired LDL-mediated downregulation of LDL receptor activity and cellular cholesterol synthesis. Although a defect in cholesterol transport in NPC cells has been inferred from previous studies, no experiments have been reported that measure the intracellular movement of LDL-cholesterol specifically. We have used four approaches to assess intracellular cholesterol transport in normal and NPC cells and have determined the following: (a) mevinolin-inhibited NPC cells are defective in using LDL-cholesterol for growth. However, exogenously added mevalonate restores cell growth equally in normal and NPC cells; (b) the transport of LDL-derived [3H]cholesterol to the plasma membrane is slower in NPC cells, while the rate of appearance of [3H]acetate-derived, endogenously synthesized [3H]cholesterol at the plasma membrane is the same for normal and NPC cells; (c) in NPC cells, LDL-derived [3H]cholesterol accumulates in lysosomes to higher levels than normal, resulting in defective movement to other cell membranes; and (d) incubation of cells with LDL causes an increase in cholesterol content of NPC lysosomes that is threefold greater than that observed in normal lysosomes. Our results indicate that a cholesterol transport defect exists in NPC that is specific for LDL-derived cholesterol

  7. The low-density lipoprotein receptor-related protein 10 is a negative regulator of the canonical Wnt/β-catenin signaling pathway

    International Nuclear Information System (INIS)

    Jeong, Young-Hee; Sekiya, Manami; Hirata, Michiko; Ye, Mingjuan; Yamagishi, Azumi; Lee, Sang-Mi; Kang, Man-Jong; Hosoda, Akemi; Fukumura, Tomoe; Kim, Dong-Ho; Saeki, Shigeru

    2010-01-01

    Wnt signaling pathways play fundamental roles in the differentiation, proliferation and functions of many cells as well as developmental, growth, and homeostatic processes in animals. Low-density lipoprotein receptor (LDLR)-related protein (LRP) 5 and LRP6 serve as coreceptors of Wnt proteins together with Frizzled receptors, triggering activation of canonical Wnt/β-catenin signaling. Here, we found that LRP10, a new member of the LDLR gene family, inhibits the canonical Wnt/β-catenin signaling pathway. The β-catenin/T cell factor (TCF) transcriptional activity in HEK293 cells was activated by transfection with Wnt3a or LRP6, which was then inhibited by co-transfection with LRP10. Deletion of the extracellular domain of LRP10 negated its inhibitory effect. The inhibitory effect of LRP10 was consistently conserved in HEK293 cells even when GSK3β phosphorylation was inhibited by incubation with lithium chloride and co-transfection with constitutively active S33Y-mutated β-catenin. Nuclear β-catenin accumulation was unaffected by LRP10. The present studies suggest that LRP10 may interfere with the formation of the β-catenin/TCF complex and/or its binding to target DNA in the nucleus, and that the extracellular domain of LRP10 is critical for inhibition of the canonical Wnt/β-catenin signaling pathway.

  8. Identifying low density lipoprotein cholesterol associated variants in the Annexin A2 (ANXA2) gene

    DEFF Research Database (Denmark)

    Fairoozy, Roaa Hani; Cooper, Jackie; White, Jon

    2017-01-01

    Background and aims: Annexin-A2 (AnxA2) is an endogenous inhibitor of proprotein convertase subtilisin/kexin type-9 (PCSK9). The repeat-one (R1) domain of AnxA2 binds to PCSK9, blocking its ability to promote degradation of low-density lipoprotein cholesterol-receptors (LDL-R) and thereby regulat...

  9. Familial lipoprotein lipase deficiency

    Science.gov (United States)

    ... lack an enzyme called lipoprotein lipase. Without this enzyme, the body cannot break down fat from digested food. Fat particles called chylomicrons build up in the blood. Risk factors include a family history of lipoprotein lipase deficiency. The condition is usually ...

  10. Early incorporation of cell-derived cholesterol into pre-beta-migrating high-density lipoprotein

    International Nuclear Information System (INIS)

    Castro, G.R.; Fielding, C.J.

    1988-01-01

    Cultures of human skin fibroblasts were labeled to high cholesterol specific activity with [ 3 H]cholesterol and incubated briefly (1-3 min) with normal human plasma. The plasma was fractionated by two-dimensional agarose-polyacrylamide gel electrophoresis and the early appearance of cholesterol label among plasma lipoproteins determined. A major part of the label at 1-min incubation was in a pre-beta-migrating apo A-I lipoprotein fraction with a molecular weight of ca. 70,000. Label was enriched about 30-fold in this fraction relative to its content of apo A-I (1-2% of total apo A-I). The proportion of label in this lipoprotein was strongly correlated with its concentration in plasma. Further incubation (2 min) in the presence of unlabeled cells demonstrated transfer of label from this fraction to a higher molecular weight pre-beta apo A-I species, to low-density lipoprotein, and to the alpha-migrating apo A-I that made up the bulk (96%) of total apo A-I in plasma. The data suggest that a significant part of cell-derived cholesterol is transferred specifically to a pre-beta-migrating lipoprotein A-I species as part of a cholesterol transport transfer sequence in plasma

  11. Impact of Hypertriglyceridemia on Carotid Stenosis Progression under Normal Low-Density Lipoprotein Cholesterol Levels.

    Science.gov (United States)

    Kitagami, Masayuki; Yasuda, Ryuta; Toma, Naoki; Shiba, Masato; Nampei, Mai; Yamamoto, Yoko; Nakatsuka, Yoshinari; Sakaida, Hiroshi; Suzuki, Hidenori

    2017-08-01

    Dyslipidemia is a well-known risk factor for carotid stenosis progression, but triglycerides have attracted little attention. The aim of this study was to assess if serum triglycerides affect progression of carotid stenosis in patients with well-controlled low-density lipoprotein cholesterol (LDL-C) levels. This is a retrospective study in a single hospital consisting of 71 Japanese patients with internal carotid artery stenosis greater than or equal to 50% and normal serum LDL-C levels who underwent angiographic examination with or without the resultant carotid artery stenting or endarterectomy from 2007 to 2011, and were subsequently followed up for 4 years. Clinical factors including fasting serum triglyceride values were compared between the progression (≥10% increase in degree of carotid stenosis on ultrasonography) and the nonprogression groups. During 4 years, 15 patients (21.1%) had carotid stenosis progression on either side. Cox regression analysis demonstrated that symptomatic cases (hazard ratio [HR], 4.327; P = .019), coexisting intracranial arteriosclerotic stenosis (HR, 5.341; P = .005), and hypertriglyceridemia (HR, 6.228; P = .011) were associated with subsequent progression of carotid stenosis. Kaplan-Meier plots demonstrated that the progression-free survival rate was significantly higher in patients without hypertriglyceridemia and intracranial arteriosclerotic stenosis at baseline. Among patients with moderate to severe carotid stenosis and well-controlled LDL-C, hypertriglyceridemia was an important risk factor for progression of carotid stenosis irrespective of surgical treatments. It would be worthwhile to test if triglyceride-lowering medications suppress carotid stenosis progression. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  12. Synthetic Lipoproteins as Carriers for Drug Delivery.

    Science.gov (United States)

    Huang, Gangliang; Liu, Yang; Huang, Hualiang

    2016-01-01

    Synthetic lipoprotein is an effective carrier of targeted delivery for drugs. It has the very small size, good biocompatibility, suitable half-life, and specific lipoprotein receptorbinding capacity. Compared with the traditional natural lipoprotein, synthetic lipoprotein not only retains the original biological characteristics and functions, but also exhibits the excellent characteristics in drug delivery. Herein, the advantages, development, applications, and prospect of synthetic lipoproteins as drug carriers were summarized.

  13. Estrogen receptor alpha localization in the testes of men with normal spermatogenesis Estrogen receptor alpha localization in the testes of men with normal spermatogenesis

    Directory of Open Access Journals (Sweden)

    Eliza Filipiak

    2012-10-01

    Full Text Available It is known that estrogens act on the male reproductive tract by binding to estrogen receptors (ER a and
    b. However, studies on ER localization in the human testis are discordant. The aim of this study was to investigate
    the localization of ERa in the testes of adult men with normal spermatogenesis. Semen analysis of ten adult men
    revealed azoospermia. FSH, LH and testosterone serum concentrations were within normal values, and the volume
    of the testes was normal, hence obstructive azoospermia was suspected. The tissues from testicular surgical
    biopsies were fixed in Bouin’s fluid and embedded in paraffin. Assessments of the seminiferous epithelium (scoring
    10 to –1, the number of Leydig cells (scoring 1 to 5, the areal fraction of intertubular space (IS, measurements
    of seminiferous tubule diameter, and the thickness of the tubular wall, were performed on microscopic
    sections. Immunohistochemical staining was applied with monoclonal antibodies against ERa. The mean spermatogenesis
    score was 10 points; IS — 30.6 ± 8.1%; seminiferous tubule diameter — 193.9 ± 19.4 μm; thickness of
    tubular wall — 7.44 ± 1.1 μm; number of Leydig cells — 1.6 ± 1.1 points. Immunohistochemical staining showed
    the localization of ERa to be in the Sertoli and Leydig cell cytoplasm, while ERa was absent in germ cells. The
    results of testicular tissue analysis confirmed its normal structure and normal, full spermatogenesis. The presence
    of ERa in Sertoli and Leydig cells in normal human testis demonstrated in this study suggests that estrogens may
    affect testicular function.It is known that estrogens act on the male reproductive tract by binding to estrogen receptors (ER a and
    b. However, studies on ER localization in the human testis are discordant. The aim of this study was to investigate
    the localization of ERa in the testes of adult men with normal spermatogenesis. Semen

  14. Characterization of normal and supersensitive dopamine receptors: Effects of ergot drugs and neuropeptides

    International Nuclear Information System (INIS)

    Fuxe, K.; Agnati, L.F.; Koehler, C.; Kuonen, D.; Oegren, S.-O.; Andersson, K.; Hoekfelt, T.; Astra Pharmaceuticals AB, Soedertaelje; Modena Univ.

    1981-01-01

    Dopamine receptors have been characterized by use of radiolabelled dopamine agonists and antagonists. Using ibotenic acid induced lesions of the striatum, evidence was obtained that 3 H-N-propylnorapomorphine ( 3 H-NPA) binding sites and 3H-bromocriptine binding sites are located both on intrastriatal nerve cells and on extrinsic nerve terminals probably mainly originating in the cerebral cortex. Following a 6-hydroxydopamine induced lesion supersensitive dopamine receptors, an increase of binding sites for 3 H-NPA and after one year two different binding sites and behavioural supersensitivity have been observed. The dopamine receptor agonists and especially the dopaminergic ergot derivates have been characterized by studying their affinities for 3 H-bromocriptine, 3 H-spiperone 3 H-ADTN and 3 H-NPA binding sites in vitro and their effects on the specific in vivo binding of 3 H-spiperone and 3 H-NPA has been studied. There might exist 3 types of dopamine-receptors. Actions of dopaminergic ergot drugs have been evaluated at supersensitive dopamine receptors. There is a highly preferential action of CF25-397 at these receptors. Prolonged treatment with pergolide can produce a down regulation of normal dopamine receptors by reducing the density of such receptors. Colecystokinin peptides can in vitro reduce the number of 3 H-NPA binding sites in the striatum. Thus neuropeptides may represent neuromodulators in the dopamine synapses. (M.J.)

  15. Remnant lipoproteins.

    Science.gov (United States)

    Varbo, Anette; Nordestgaard, Børge G

    2017-08-01

    To review recent advances in the field of remnant lipoproteins and remnant cholesterol with a focus on cardiovascular disease risk. In line with previous years' research, current observational, genetic, and mechanistic studies find remnant lipoproteins (defined in different ways) to be involved in atherosclerosis development and cardiovascular disease risk. High concentrations of remnant cholesterol could explain some of the residual risk of cardiovascular disease seen after LDL cholesterol lowering. This will be increasingly important as populations worldwide become more obese and more have diabetes, both of which elevate remnant cholesterol concentrations. Many smaller scale studies and post hoc analyses show that remnant cholesterol can be lowered by different types of drugs; however, results from large scale studies with the primary aim of reducing cardiovascular disease risk through lowering of remnant cholesterol in individuals with elevated concentrations are still missing, although some are under way. Remnant cholesterol is a risk factor for cardiovascular disease, and can be lowered by different types of drugs; however, large scale studies of cardiovascular disease risk reduction through remnant lipoprotein lowering are under way.

  16. Genetics of non-conventional lipoprotein fractions

    Science.gov (United States)

    Lipoprotein subclass measures associate with cardiometabolic disease risk. Currently the information that lipoproteins convey on disease risk over that of traditional demographic and lipid measures is minimal, and so their use is clinics is limited. However, lipoprotein subclass perturbations repres...

  17. Genomic determinants of triglyceride and cholesterol distribution into lipoprotein fractions in the rat.

    Directory of Open Access Journals (Sweden)

    Miloslava Hodúlová

    Full Text Available The plasma profile of major lipoprotein classes and its subdivision into particular fractions plays a crucial role in the pathogenesis of atherosclerosis and is a major predictor of coronary artery disease. Our aim was to identify genomic determinants of triglyceride and cholesterol distribution into lipoprotein fractions and lipoprotein particle sizes in the recombinant inbred rat set PXO, in which alleles of two rat models of the metabolic syndrome (SHR and PD inbred strains segregate together with those from Brown Norway rat strain. Adult male rats of 15 PXO strains (n = 8-13/strain and two progenitor strains SHR-Lx (n = 13 and BXH2/Cub (n = 18 were subjected to one-week of high-sucrose diet feeding. We performed association analyses of triglyceride (TG and cholesterol (C concentrations in 20 lipoprotein fractions and the size of major classes of lipoprotein particles utilizing 704 polymorphic microsatellite markers, the genome-wide significance was validated by 2,000 permutations per trait. Subsequent in silico focusing of the identified quantitative trait loci was completed using a map of over 20,000 single nucleotide polymorphisms. In most of the phenotypes we identified substantial gradient among the strains (e.g. VLDL-TG from 5.6 to 66.7 mg/dl. We have identified 14 loci (encompassing 1 to 65 genes on rat chromosomes 3, 4, 7, 8, 11 and 12 showing suggestive or significant association to one or more of the studied traits. PXO strains carrying the SHR allele displayed significantly higher values of the linked traits except for LDL-TG and adiposity index. Cholesterol concentrations in large, medium and very small LDL particles were significantly associated to a haplotype block spanning part of a single gene, low density lipoprotein receptor-related protein 1B (Lrp1b. Using genome-wide association we have identified new genetic determinants of triglyceride and cholesterol distribution into lipoprotein fractions in the recombinant

  18. Effects of hormones on lipids and lipoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, R.M.

    1991-12-01

    Levels of plasma lipids and lipoproteins are strong predictors for the development of atherosclerotic cardiovascular disease in postmenopausal women. In women, as in men, numerous factors contribute to variations in plasma lipoproteins that may affect cardiovascular disease risk. These include age, dietary components, adiposity, genetic traits, and hormonal changes. Each of these factors may operate to varying degrees in determining changes in plasma lipoprotein profiles accompanying menopause- Cross-sectional and longitudinal studies have suggested increases in levels of cholesterol, low density lipoproteins (LDL) and triglyceride-rich lipoproteins associated with menopause. High density lipoproteins (HDL), which are higher in women than men and are thought to contribute to relative protection of premenopausal women from cardiovascular disease, remain relatively constant in the years following menopause, although small, and perhaps transient reductions in the HDL{sub 2} subfraction have been reported in relation to reduced estradiol level following menopause. Despite these associations, it has been difficult to determine the role of endogenous hormones in influencing the plasma lipoproteins of postmenopausal women. In principle, the effects of hormone replacement should act to reverse any alterations in lipoprotein metabolism that are due to postmenopausal hormone changes. While there may be beneficial effects on lipoproteins, hormone treatment does not restore a premenopausal lipoprotein profile. Furthermore, it is not dear to what extent exogenous hormone-induced lipoprotein changes contribute to the reduced incidence of cardiovascular disease with hormone replacement therapy.

  19. Revisiting the gram-negative lipoprotein paradigm

    Science.gov (United States)

    The processing of lipoproteins (lpps) in Gram-negative bacteria is generally considered to be an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein n-acyltransferase. The mature lipoproteins are then sorted...

  20. Specific deletion of LDL receptor-related protein on macrophages has skewed in vivo effects on cytokine production by invariant natural killer T cells.

    Directory of Open Access Journals (Sweden)

    Roman Covarrubias

    Full Text Available Expression of molecules involved in lipid homeostasis such as the low density lipoprotein receptor (LDLr on antigen presenting cells (APCs has been shown to enhance invariant natural killer T (iNKT cell function. However, the contribution to iNKT cell activation by other lipoprotein receptors with shared structural and ligand binding properties to the LDLr has not been described. In this study, we investigated whether a structurally related receptor to the LDLr, known as LDL receptor-related protein (LRP, plays a role in iNKT cell activation. We found that, unlike the LDLr which is highly expressed on all immune cells, the LRP was preferentially expressed at high levels on F4/80+ macrophages (MΦ. We also show that CD169+ MΦs, known to present antigen to iNKT cells, exhibited increased expression of LRP compared to CD169- MΦs. To test the contribution of MΦ LRP to iNKT cell activation we used a mouse model of MΦ LRP conditional knockout (LRP-cKO. LRP-cKO MΦs pulsed with glycolipid alpha-galactosylceramide (αGC elicited normal IL-2 secretion by iNKT hybridoma and in vivo challenge of LRP-cKO mice led to normal IFN-γ, but blunted IL-4 response in both serum and intracellular expression by iNKT cells. Flow cytometric analyses show similar levels of MHC class-I like molecule CD1d on LRP-cKO MΦs and normal glycolipid uptake. Survey of the iNKT cell compartment in LRP-cKO mice revealed intact numbers and percentages and no homeostatic disruption as evidenced by the absence of programmed death-1 and Ly-49 surface receptors. Mixed bone marrow chimeras showed that the inability iNKT cells to make IL-4 is cell extrinsic and can be rescued in the presence of wild type APCs. Collectively, these data demonstrate that, although MΦ LRP may not be necessary for IFN-γ responses, it can contribute to iNKT cell activation by enhancing early IL-4 secretion.

  1. Lipid peroxide levels of serum lipoprotein fractions of diabetic patients with angiopathy and 60Co-irradiated rabbit

    International Nuclear Information System (INIS)

    Tsunekawa, Hiroshi

    1982-01-01

    For a better understanding of the relationship between lipid peroxide (LPO) and vascular diseases, the author determined LPO levels and lipid contents of serum lipoprotein fractions of diabetics with angiopathy. The LPO level in high density lipoprotein (HDL) fraction of diabetic serum was significantly higher than that of normal serum whereas no significant increase was observed in the levels of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) fractions of diabetic serum. As to the ratios of LPO to total lipids in these lipoprotein fractions, it was found that the ratio in HDL fraction of the diabetics was markedly higher than that of the normals. These results suggest that the increase in LPO levels in the sera of diabetic patiens is due to that in HDL fraction. To study further this problem, the author employed 60 Co-irradiated rabbit as a model, since it was already reported that radiation affects lipid metabolism and LPO formation, and that it induces the development of atherosclerosis. Upon irradiation with 60 Co ranging from 100R to 700R, serum LPO level of rabbit was significantly increased. Although elevation of LPO level was found in each serum lipoprotein fraction of VLDL, LDL and HDL, LPO level per lipid content was significantly increased only in HDL fraction. In the irradiated rabbit, significant elevation of the level of LPO was also observed in the liver, while no significant increase was found in the kidney and spleen. These results indicate that high level of LPO observed in the serum of irradiated rabbit would be the reflection of the increased LPO in the liver. (J.P.N.)

  2. Classifying lipoproteins based on their polar profiles.

    Science.gov (United States)

    Polanco, Carlos; Castañón-González, Jorge Alberto; Buhse, Thomas; Uversky, Vladimir N; Amkie, Rafael Zonana

    2016-01-01

    The lipoproteins are an important group of cargo proteins known for their unique capability to transport lipids. By applying the Polarity index algorithm, which has a metric that only considers the polar profile of the linear sequences of the lipoprotein group, we obtained an analytical and structural differentiation of all the lipoproteins found in UniProt Database. Also, the functional groups of lipoproteins, and particularly of the set of lipoproteins relevant to atherosclerosis, were analyzed with the same method to reveal their structural preference, and the results of Polarity index analysis were verified by an alternate test, the Cumulative Distribution Function algorithm, applied to the same groups of lipoproteins.

  3. Genetic determinants of LDL, lipoprotein(a), triglyceride-rich lipoproteins and HDL: concordance and discordance with cardiovascular disease risk

    DEFF Research Database (Denmark)

    Nordestgaard, Børge G; Tybjærg-Hansen, Anne

    2011-01-01

    To evaluate whether new and known genetic determinants of plasma levels of LDL cholesterol, lipoprotein(a), triglyceride-rich lipoproteins, and HDL cholesterol associate with the risk of cardiovascular disease expected from the effect on lipoprotein levels. Concordance or discordance...... of such genetic determinants with cardiovascular disease risk will either favor or disfavor that these lipoproteins are causally related to cardiovascular disease....

  4. Effect of dopamine, dopamine D-1 and D-2 receptor modulation on ACTH and cortisol levels in normal men and women

    DEFF Research Database (Denmark)

    Boesgaard, S; Hagen, C; Andersen, A N

    1990-01-01

    The regulation of the hypothalamic-pituitary-adrenal axis by dopamine is not fully understood. Therefore, we have studied the effect of dopamine, metoclopramide, a D-2 receptor antagonist, and fenoldopam, a specific D-1 receptor agonist, on ACTH and cortisol levels in normal subjects. Normal women...

  5. Use of 3H-colesterol and its kinetics to assess the dynamics of the cholesterol metabolism in human lipoprotein fractions

    International Nuclear Information System (INIS)

    Grossmann, K.D.; Marek, H.; Fieber, R.S.

    1982-01-01

    The assessment of the dynamics of 3 H cholesterols in very low, low and high density lipoproteins, resp. lipoproteins after oral administration in normal subjects and in patients with hyperlipoproteinemia type II a and II b is described. Specific activity-time-curves of the lipoprotein fractions isolated by means of discontinuous ultracentrifugation were recorded. In order to optimize the centrifugation activity-electrophoresis-profiles of the separating steps were recorded. The fractions obtained were characterized by the determination of cholesterol, agarose electrophoresis and radioactivity measurement. The turnover of the tracer in the lipoproteins was determined on the basis of the maximum values of the specific activity-time-curves. Hyperlipoproteinemia patients showed time shifts of the maximum values especially with regard to esterized cholesterols and high density lipoprotein cholesterol as compared to healthy persons. (author)

  6. Expression of Peroxisomes-Proliferate Activated Receptors-γ in Diabetics, Obese and Normal Subjects

    International Nuclear Information System (INIS)

    Afzal, N.

    2016-01-01

    Background: Current research in type 2 diabetes mellitus focuses on the role of Peroxisome-Proliferator Activated Receptors (PPARs) in the pathogenesis of the Insulin Resistance Syndrome (IRS), which are pre-diabetic lesion and the hallmark of fully developed type 2 diabetes mellitus. This study aims at identifying the abnormal status of the PPAR-g in adipose tissues of type 2 diabetes mellitus patients, when compared with matched normal controls. Methods: This cross-sectional study was conducted in Ayub Medical College, Abbottabad, from 2012 to 2014. Sample included three equal groups of patients. Group-1 with diagnosed type 2 diabetes mellitus, aged 40-65 years, acting as the test group, Group-2 included non-diabetic obese, and Group-3 with normal subjects. Transcription Factor Assay for Peroxisome Proliferator Activated Receptor Gamma (gamma PPAR) was done on ELISA Technique from Nuclear Extract procured from Adipose Tissue of the subjects. Results: Mean age of enrolled participants was 48.93 SD±6.52.years. Patients ranged between ages of 40 years to 67 years. The mean values of PPAR in normal, obese and diabetic group were 1.72 SD±0.28, 1.282 SE±0.18 and 1.283 SE±0.18 respectively. The difference in mean values of PPAR was significant ρ<0.05. Conclusion: The levels of PPAR-g in patients with type 2 Diabetes Mellitus and Obese cases are significantly lower than normal controls. (author)

  7. The influence of ApoE genotype on the lipid profile and lipoproteins ...

    African Journals Online (AJOL)

    The influence of ApoE genotype on the lipid profile and lipoproteins during normal pregnancy in a Southern African population. Donald Moshen Tanyanyiwa1,2, Adrian David Marais3, Pamela Byrnes3, Sheena Jones3. 1. Division of Human Genetics, Department of Pathology and Institute of Infectious Disease and ...

  8. Neuronal M3 muscarinic acetylcholine receptors are essential for somatotroph proliferation and normal somatic growth.

    Science.gov (United States)

    Gautam, Dinesh; Jeon, Jongrye; Starost, Matthew F; Han, Sung-Jun; Hamdan, Fadi F; Cui, Yinghong; Parlow, Albert F; Gavrilova, Oksana; Szalayova, Ildiko; Mezey, Eva; Wess, Jürgen

    2009-04-14

    The molecular pathways that promote the proliferation and maintenance of pituitary somatotrophs and other cell types of the anterior pituitary gland are not well understood at present. However, such knowledge is likely to lead to the development of novel drugs useful for the treatment of various human growth disorders. Although muscarinic cholinergic pathways have been implicated in regulating somatotroph function, the physiological relevance of this effect and the localization and nature of the receptor subtypes involved in this activity remain unclear. We report the surprising observation that mutant mice that selectively lack the M(3) muscarinic acetylcholine receptor subtype in the brain (neurons and glial cells; Br-M3-KO mice) showed a dwarf phenotype associated with a pronounced hypoplasia of the anterior pituitary gland and a marked decrease in pituitary and serum growth hormone (GH) and prolactin. Remarkably, treatment of Br-M3-KO mice with CJC-1295, a synthetic GH-releasing hormone (GHRH) analog, rescued the growth deficit displayed by Br-M3-KO mice by restoring normal pituitary size and normal serum GH and IGF-1 levels. These findings, together with results from M(3) receptor/GHRH colocalization studies and hypothalamic hormone measurements, support a model in which central (hypothalamic) M(3) receptors are required for the proper function of hypothalamic GHRH neurons. Our data reveal an unexpected and critical role for central M(3) receptors in regulating longitudinal growth by promoting the proliferation of pituitary somatotroph cells.

  9. α-Defensins Induce a Post-translational Modification of Low Density Lipoprotein (LDL) That Promotes Atherosclerosis at Normal Levels of Plasma Cholesterol.

    Science.gov (United States)

    Abu-Fanne, Rami; Maraga, Emad; Abd-Elrahman, Ihab; Hankin, Aviel; Blum, Galia; Abdeen, Suhair; Hijazi, Nuha; Cines, Douglas B; Higazi, Abd Al-Roof

    2016-02-05

    Approximately one-half of the patients who develop clinical atherosclerosis have normal or only modest elevations in plasma lipids, indicating that additional mechanisms contribute to pathogenesis. In view of increasing evidence that inflammation contributes to atherogenesis, we studied the effect of human neutrophil α-defensins on low density lipoprotein (LDL) trafficking, metabolism, vascular deposition, and atherogenesis using transgenic mice expressing human α-defensins in their polymorphonuclear leukocytes (Def(+/+)). Accelerated Def(+/+) mice developed α-defensin·LDL complexes that accelerate the clearance of LDL from the circulation accompanied by enhanced vascular deposition and retention of LDL, induction of endothelial cathepsins, increased endothelial permeability to LDL, and the development of lipid streaks in the aortic roots when fed a regular diet and at normal plasma levels of LDL. Transplantation of bone marrow from Def(+/+) to WT mice increased LDL clearance, increased vascular permeability, and increased vascular deposition of LDL, whereas transplantation of WT bone marrow to Def(+/+) mice prevented these outcomes. The same outcome was obtained by treating Def(+/+) mice with colchicine to inhibit the release of α-defensins. These studies identify a potential new link between inflammation and the development of atherosclerosis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Mood states, sympathetic activity, and in vivo beta-adrenergic receptor function in a normal population.

    Science.gov (United States)

    Yu, Bum-Hee; Kang, Eun-Ho; Ziegler, Michael G; Mills, Paul J; Dimsdale, Joel E

    2008-01-01

    The purpose of this study was to examine the relationship between mood states and beta-adrenergic receptor function in a normal population. We also examined if sympathetic nervous system activity is related to mood states or beta-adrenergic receptor function. Sixty-two participants aged 25-50 years were enrolled in this study. Mood states were assessed using the Profile of Mood States (POMS). Beta-adrenergic receptor function was determined using the chronotropic 25 dose isoproterenol infusion test. Level of sympathetic nervous system activity was estimated from 24-hr urine norepinephrine excretion. Higher tension-anxiety, depression-dejection, and anger-hostility were related to decreased beta-adrenergic receptor sensitivity (i.e., higher chronotropic 25 dose values), but tension-anxiety was the only remaining independent predictor of beta-adrenergic receptor function after controlling for age, gender, ethnicity, and body mass index (BMI). Urinary norepinephrine excretion was unrelated to either mood states or beta-adrenergic receptor function. These findings replicate previous reports that anxiety is related to decreased (i.e., desensitized) beta-adrenergic receptor sensitivity, even after controlling for age, gender, ethnicity, and body mass index.

  11. Lipid peroxide levels of serum lipoprotein fractions of diabetic patients with angiopathy and /sup 60/Co-irradiated rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Tsunekawa, Hiroshi [Nagoya Univ. (Japan). Faculty of Medicine

    1982-09-01

    For a better understanding of the relationship between lipid peroxide (LPO) and vascular diseases, the author determined LPO levels and lipid contents of serum lipoprotein fractions of diabetics with angiopathy. The LPO level in high density lipoprotein (HDL) fraction of diabetic serum was significantly higher than that of normal serum whereas no significant increase was observed in the levels of very low density lipoprotein (VLDL) and low density lipoprotein (LDL) fractions of diabetic serum. As to the ratios of LPO to total lipids in these lipoprotein fractions, it was found that the ratio in HDL fraction of the diabetics was markedly higher than that of the normals. These results suggest that the increase in LPO levels in the sera of diabetic patients is due to that in HDL fraction. To study further this problem, the author employed /sup 60/Co-irradiated rabbit as a model, since it was already reported that radiation affects lipid metabolism and LPO formation, and that it induces the development of atherosclerosis. Upon irradiation with /sup 60/Co ranging from 100R to 700R, serum LPO level of rabbit was significantly increased. Although elevation of LPO level was found in each serum lipoprotein fraction of VLDL, LDL and HDL, LPO level per lipid content was significantly increased only in HDL fraction. In the irradiated rabbit, significant elevation of the level of LPO was also observed in the liver, while no significant increase was found in the kidney and spleen. These results indicate that high level of LPO observed in the serum of irradiated rabbit would be the reflection of the increased LPO in the liver.

  12. Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation.

    Science.gov (United States)

    Miller, Yury I; Shyy, John Y-J

    2017-02-01

    Oxidized low-density lipoprotein (OxLDL), which contains hundreds of different oxidized lipid molecules, is a hallmark of hyperlipidemia and atherosclerosis. The same oxidized lipids found in OxLDL are also formed in apoptotic cells, and are present in tissues as well as in the circulation under pathological conditions. In many disease contexts, oxidized lipids constitute damage signals, or patterns, that activate pattern-recognition receptors (PRRs) and significantly contribute to inflammation. Here, we review recent discoveries and emerging trends in the field of oxidized lipids and the regulation of inflammation, focusing on oxidation products of polyunsaturated fatty acids esterified into cholesteryl esters (CEs) and phospholipids (PLs). We also highlight context-dependent activation and biased agonism of Toll-like receptor-4 (TLR4) and the NLRP3 inflammasome, among other signaling pathways activated by oxidized lipids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Mice lacking the p75 receptor fail to acquire a normal complement of taste buds and geniculate ganglion neurons by adulthood

    OpenAIRE

    Krimm, Robin F.

    2006-01-01

    Brain derived neurotrophic factor and neurotrophin-4 are required for normal taste bud development. Although these neurotrophins normally function via the tyrosine kinase receptor, trkB, they also bind to the pan-neurotrophin receptor, p75. The goal of the present study was to determine whether the p75 receptor is required for the development or maintenance of a full complement of adult taste buds. Mice with p75 null mutations lose 34% of their circumvallate taste buds, 36% of their fungiform...

  14. Low-Density Lipoprotein Modified by Myeloperoxidase in Inflammatory Pathways and Clinical Studies

    Directory of Open Access Journals (Sweden)

    Cédric Delporte

    2013-01-01

    Full Text Available Oxidation of low-density lipoprotein (LDL has a key role in atherogenesis. Among the different models of oxidation that have been studied, the one using myeloperoxidase (MPO is thought to be more physiopathologically relevant. Apolipoprotein B-100 is the unique protein of LDL and is the major target of MPO. Furthermore, MPO rapidly adsorbs at the surface of LDL, promoting oxidation of amino acid residues and formation of oxidized lipoproteins that are commonly named Mox-LDL. The latter is not recognized by the LDL receptor and is accumulated by macrophages. In the context of atherogenesis, Mox-LDL accumulates in macrophages leading to foam cell formation. Furthermore, Mox-LDL seems to have specific effects and triggers inflammation. Indeed, those oxidized lipoproteins activate endothelial cells and monocytes/macrophages and induce proinflammatory molecules such as TNFα and IL-8. Mox-LDL may also inhibit fibrinolysis mediated via endothelial cells and consecutively increase the risk of thrombus formation. Finally, Mox-LDL has been involved in the physiopathology of several diseases linked to atherosclerosis such as kidney failure and consequent hemodialysis therapy, erectile dysfunction, and sleep restriction. All these issues show that the investigations of MPO-dependent LDL oxidation are of importance to better understand the inflammatory context of atherosclerosis.

  15. Metabolic profiles and lipoprotein lipid concentrations in non-obese and obese patients with polycystic ovarian disease.

    Science.gov (United States)

    Mahabeer, S; Naidoo, C; Norman, R J; Jialal, I; Reddi, K; Joubert, S M

    1990-10-01

    Clinical parameters, androgen status and lipoprotein lipid profiles were assessed in 10 non-obese and 10 obese patients with polycystic ovarian disease (PCOD) and reference subjects matched for age, height and weight. Both obese and non-obese women with PCOD had significantly higher androgen levels when compared to the reference groups. When comparison of lipoprotein lipid profiles were made between groups, non-obese women with PCOD had significantly higher total cholesterol, triglycerides and LDL-cholesterol levels than non-obese reference subjects. Obese PCOD women manifested significantly higher total cholesterol, LDL-cholesterol, cholesterol/HDL, and LDL/HDL values than did obese reference subjects. Correlations between serum androgens and lipoprotein lipid concentrations in PCOD and normal women were unhelpful. Both non-obese and obese patients with PCOD had significantly higher systolic and diastolic blood pressures (BPs) than the reference groups. Thus, both non-obese and obese women with PCOD manifest hyperandrogenaemia which may result in a male pattern of lipoprotein lipid concentrations.

  16. Comparison of serum lipid profiles between normal controls and breast cancer patients

    Directory of Open Access Journals (Sweden)

    Pikul Laisupasin

    2013-01-01

    Full Text Available Background: Researchers have reported association of plasma/serum lipids and lipoproteins with different cancers. Increase levels of circulating lipids and lipoproteins have been associated with breast cancer risk. Aim: The aim of this study is to compare serum lipid profiles: total-cholesterol (T-CHOL, triglyceride (TG, high density lipoprotein-cholesterol (HDL-C, low density lipoprotein-cholesterol (LDL-C and very low density lipoprotein-cholesterol (VLDL-C between breast cancer patients and normal participants. Materials and Methods: A total of 403 women in this study were divided into two groups in the period during May 2006-April 2007. Blood samples were collected from 249 patients with early stage breast cancer and 154 normal controls for serum lipid profiles (T-CHOL, TG, HDL-C, LDL-C and VLDL-C analysis using Hitachi 717 Autoanalyzer (Roche Diagnostic GmbH, Germany. TG, LDL-C and VLDL-C levels in breast cancer group were significantly increased as compared with normal controls group (P < 0.001, whereas HDL-C and T-CHOL levels were not. Results: The results of this study suggest that increased serum lipid profiles may associate with breast cancer risk in Thai women. Further studies to group important factors including, cancer stages, types of cancer, parity, and menopausal status that may affect to lipid profiles in breast cancer patients along with an investigation of new lipid profiles to clarify most lipid factors that may involve in breast cancer development are needed.

  17. Lipoprotein biosynthesis as a target for anti-Wolbachia treatment of filarial nematodes

    Directory of Open Access Journals (Sweden)

    Slatko Barton E

    2010-10-01

    Full Text Available Abstract Background Lymphatic filariasis and onchocerciasis are debilitating diseases caused by filarial nematodes. Disease pathogenesis is induced by inflammatory responses following the death of the parasite. Wolbachia endosymbionts of filariae are potent inducers of innate and adaptive inflammation and bacterial lipoproteins have been identified as the ligands that bind toll-like receptors (TLR 2 and TLR6. Lipoproteins are important structural and functional components of bacteria and therefore enzymes involved in Wolbachia lipoprotein biosynthesis are potential chemotherapeutic targets. Results Globomycin, a signal peptidase II (LspA inhibitor, has activity against Gram-negative bacteria and a putative lspA gene has been identified from the Wolbachia genome of Brugia malayi (wBm. The amino acids required for function are strictly conserved and functionality was verified by complementation tests in a temperature-sensitive Escherichia coli lspA mutant. Also, transformation of wild type E. coli with Wolbachia lspA conferred significant globomycin resistance. A cell-based screen has been developed utilizing a Wolbachia-containing Aedes albopictus cell line to assay novel compounds active against Wolbachia. Globomycin was screened using this assay, which resulted in a dose-dependent reduction in Wolbachia load. Furthermore, globomycin was also effective in reducing the motility and viability of adult B. malayi in vitro. Conclusions These studies validate lipoprotein biosynthesis as a target in an organism for which no genetic tools are available. Further studies to evaluate drugs targeting this pathway are underway as part of the A-WOL drug discovery and development program.

  18. Lipoprotein metabolism indicators improve cardiovascular risk prediction.

    Directory of Open Access Journals (Sweden)

    Daniël B van Schalkwijk

    Full Text Available BACKGROUND: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to investigate whether lipoprotein metabolism indicators can improve cardiovascular risk prediction and therapy management. METHODS AND RESULTS: We calculated lipoprotein metabolism indicators for 1981 subjects (145 cases, 1836 controls from the Framingham Heart Study offspring cohort in which NMR lipoprotein profiles were measured. We applied a statistical learning algorithm using a support vector machine to select conventional risk factors and lipoprotein metabolism indicators that contributed to predicting risk for general cardiovascular disease. Risk prediction was quantified by the change in the Area-Under-the-ROC-Curve (ΔAUC and by risk reclassification (Net Reclassification Improvement (NRI and Integrated Discrimination Improvement (IDI. Two VLDL lipoprotein metabolism indicators (VLDLE and VLDLH improved cardiovascular risk prediction. We added these indicators to a multivariate model with the best performing conventional risk markers. Our method significantly improved both CVD prediction and risk reclassification. CONCLUSIONS: Two calculated VLDL metabolism indicators significantly improved cardiovascular risk prediction. These indicators may help to reduce prescription of unnecessary cholesterol-lowering medication, reducing costs and possible side-effects. For clinical application, further validation is required.

  19. Bacterial lipoproteins; biogenesis, sorting and quality control.

    Science.gov (United States)

    Narita, Shin-Ichiro; Tokuda, Hajime

    2017-11-01

    Bacterial lipoproteins are a subset of membrane proteins localized on either leaflet of the lipid bilayer. These proteins are anchored to membranes through their N-terminal lipid moiety attached to a conserved Cys. Since the protein moiety of most lipoproteins is hydrophilic, they are expected to play various roles in a hydrophilic environment outside the cytoplasmic membrane. Gram-negative bacteria such as Escherichia coli possess an outer membrane, to which most lipoproteins are sorted. The Lol pathway plays a central role in the sorting of lipoproteins to the outer membrane after lipoprotein precursors are processed to mature forms in the cytoplasmic membrane. Most lipoproteins are anchored to the inner leaflet of the outer membrane with their protein moiety in the periplasm. However, recent studies indicated that some lipoproteins further undergo topology change in the outer membrane, and play critical roles in the biogenesis and quality control of the outer membrane. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Lipoprotein metabolism indicators improve cardiovascular risk prediction

    NARCIS (Netherlands)

    Schalkwijk, D.B. van; Graaf, A.A. de; Tsivtsivadze, E.; Parnell, L.D.; Werff-van der Vat, B.J.C. van der; Ommen, B. van; Greef, J. van der; Ordovás, J.M.

    2014-01-01

    Background: Cardiovascular disease risk increases when lipoprotein metabolism is dysfunctional. We have developed a computational model able to derive indicators of lipoprotein production, lipolysis, and uptake processes from a single lipoprotein profile measurement. This is the first study to

  1. Reversal of hypercholesterolemia in apolipoprotein E2 and apolipoprotein E3-Leiden transgenic mice by adenovirus-mediated gene transfer of the VLDL receptor

    NARCIS (Netherlands)

    Dijk, K.W. van; Vlijmen, B.J.M. van; Zee, A. van der; Hof, B. van 't; Boom, H. van der; Kobayashi, K.; Chan, L.; Havekes, L.M.; Hofker, M.H.

    1998-01-01

    We have investigated the interaction of apolipoprotein E2(Arg158- Cys) (apoE2) and apolipoprotein E3Leiden (apoE3-Leiden) with the very low density lipoprotein (VLDL) receptor in vivo and in vitro to define the possible role of this receptor in lipoprotein metabolism and atherosclerosis. The in vivo

  2. Scavenger Receptor Structure and Function in Health and Disease

    Directory of Open Access Journals (Sweden)

    Izma Abdul Zani

    2015-05-01

    Full Text Available Scavenger receptors (SRs are a ‘superfamily’ of membrane-bound receptors that were initially thought to bind and internalize modified low-density lipoprotein (LDL, though it is currently known to bind to a variety of ligands including endogenous proteins and pathogens. New family of SRs and their properties have been identified in recent years, and have now been classified into 10 eukaryote families, defined as Classes A-J. These receptors are classified according to their sequences, although in each class they are further classified based in the variations of the sequence. Their ability to bind a range of ligands is reflected on the biological functions such as clearance of modified lipoproteins and pathogens. SR members regulate pathophysiological states including atherosclerosis, pathogen infections, immune surveillance, and cancer. Here, we review our current understanding of SR structure and function implicated in health and disease.

  3. Investigations on the transport and metabolism of high density lipoprotein cholesteryl esters in African green monkeys

    International Nuclear Information System (INIS)

    Sorci-Thomas, M.G.

    1984-01-01

    The metabolic fate of circulating high density lipoprotein cholesteryl esters was studied in African green monkeys to determine the significance of the lipid transfer reaction on the catabolism of lipoprotein cholesteryl esters. A method of doubly labeling both moieties of lipoprotein cholesteryl esters with [ 3 He]cholesteryl oleate and cholesteryl [ 14 C]oleate was developed for the purpose of studying plasma cholesteryl ester metabolism in vivo. In these studies the total plasma [ 3 He]cholesterol turnover resulted in production rates, which ranged from 10-17 mg/kg day, similar to previously reported values in African green monkeys and in normal lipoproteinemic humans. In contrast to the production rates calculated from the decay of plasma 3 He-radioactivity, the production rates calculated from lipoproteins labeled with cholesteryl [ 14 C]oleate were approximately 2-3 times greater. In addition to these studies, a plasma cholesteryl ester transacylation activity was demonstrated in vitro when HDL containing doubly labeled cholesteryl esters were incubated with fresh plasma. These results demonstrated that high density lipoprotein cholesteryl esters undergo transacylation in vitro, resulting in release and reesterification of free [ 3 H]cholesterol

  4. Dietary fish oil stimulates hepatic low density lipoprotein transport in the rat.

    Science.gov (United States)

    Ventura, M A; Woollett, L A; Spady, D K

    1989-01-01

    These studies were undertaken to examine the effect of fish oil, safflower oil, and hydrogenated coconut oil on the major processes that determine the concentration of low density lipoprotein (LDL) in plasma, i.e., the rate of LDL production and the rates of receptor-dependent and receptor-independent LDL uptake in the various organs of the body. When fed at the 20% level, fish oil reduced plasma LDL-cholesterol levels by 38% primarily by increasing LDL receptor activity in the liver. Dietary safflower oil also increased hepatic LDL receptor activity; however, since the rate of LDL production also increased, plasma LDL-cholesterol levels remained essentially unchanged. Hydrogenated coconut oil had no effect on LDL receptor activity but increased the rate of LDL-cholesterol production causing plasma LDL-cholesterol levels to increase 46%. Dietary fish oil had no effect on the receptor-dependent transport of asialofetuin by the liver, suggesting that the effect of fish oil on hepatic LDL receptor activity was specific and not due to a generalized alteration in the physical properties of hepatic membranes. Finally, dietary fish oil increased hepatic cholesteryl ester levels and suppressed hepatic cholesterol synthesis rates, suggesting that the up-regulation of hepatic LDL receptor activity in these animals was not simply a response to diminished cholesterol availability in the liver. PMID:2760200

  5. The VLDL receptor plays a major role in chylomicron metabolism by enhancing LPL-mediated triglyceride hydrolysis

    NARCIS (Netherlands)

    Goudriaan, Jeltje R.; Espirito Santo, Sonia M. S.; Voshol, Peter J.; Teusink, Bas; van Dijk, Ko Willems; van Vlijmen, Bart J. M.; Romijn, Johannes A.; Havekes, Louis M.; Rensen, Patrick C. N.

    2004-01-01

    The VLDL receptor (VLDLr) is involved in tissue delivery of VLDL-triglyceride (TG)-derived FFA by facilitating the expression of lipoprotein lipase (LPL). However, vldlr-/- mice do not show altered plasma lipoprotein levels, despite reduced LPL expression. Because LPL activity is crucial in

  6. Effects of aerobic exercise on lipids and lipoproteins.

    Science.gov (United States)

    Wang, Yating; Xu, Danyan

    2017-07-05

    Dyslipidemia is the risk of cardiovascular disease, and their relationship is clear. Lowering serum cholesterol can reduce the risk of coronary heart disease. At present, the main treatment is taking medicine, however, drug treatment has its limitations. Exercise not only has a positive effect on individuals with dyslipidemia, but can also help improve lipids profile. This review is intending to provide information on the effects of exercise training on both tranditional lipids, for example, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, triglycerides and new lipids and lipoproteins such as non-high-density lipoprotein cholesterol, and postprandial lipoprotein. The mechanisms of aerobic exercise on lipids and lipoproteins are also briefly described.

  7. Cultured human astrocytes secrete large cholesteryl ester- andtriglyceride-rich lipoproteins along with endothelial lipase

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lin; Liu, Yanzhu; Forte, Trudy M.; Chisholm, Jeffrey W.; Parks, John S.; Shachter, Neil S.

    2003-12-01

    We cultured normal human astrocytes and characterized their secreted lipoproteins. Human astrocytes secreted lipoproteins in the size range of plasma VLDL (Peak 1), LDL (Peak 2), HDL (Peak 3) and a smaller peak (Peak 4), as determined by gel filtration chromatography, nondenaturing gradient gel electrophoresis and transmission electron microscopy. Cholesterol enrichment of astrocytes led to a particular increase in Peak 1. Almost all Peak 2, 3 and 4 cholesterol and most Peak 1 cholesterol was esterified (unlike mouse astrocyte lipoproteins, which exhibited similar peaks but where cholesterol was predominantly non-esterified). Triglycerides were present at about 2/3 the level of cholesterol. LCAT was detected along with two of its activators, apolipoprotein (apo) A-IV and apoC-I. ApoA-I and apoA-II mRNA and protein were absent. ApoJ was present equally in all peaks but apoE was present predominantly in peaks 3 and 4. ApoB was not detected. The electron microscopic appearance of Peak 1 lipoproteins suggested partial lipolysis leading to the detection of a heparin-releasable triglyceride lipase consistent with endothelial lipase. The increased neuronal delivery of lipids from large lipoprotein particles, for which apoE4 has greater affinity than does apoE3, may be a mechanism whereby the apoE {var_epsilon}4 allele contributes to neurodegenerative risk.

  8. Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

    Directory of Open Access Journals (Sweden)

    Lemtiri-Chlieh Fouad

    2011-12-01

    Full Text Available Abstract Background Dendritic spines represent the postsynaptic component of the vast majority of excitatory synapses present in the mammalian forebrain. The ability of spines to rapidly alter their shape, size, number and receptor content in response to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP, widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine enlargement and the formation of new dendritic spines. In our studies, we focus on Kalirin-7 (Kal7, a Rho GDP/GTP exchange factor (Rho-GEF localized to the postsynaptic density that plays a crucial role in the development and maintenance of dendritic spines both in vitro and in vivo. Previous studies have shown that mice lacking Kal7 (Kal7KO have decreased dendritic spine density in the hippocampus as well as focal hippocampal-dependent learning impairments. Results We have performed a detailed electrophysiological characterization of the role of Kal7 in hippocampal synaptic plasticity. We show that loss of Kal7 results in impaired NMDA receptor-dependent LTP and long-term depression, whereas a NMDA receptor-independent form of LTP is shown to be normal in the absence of Kal7. Conclusions These results indicate that Kal7 is an essential and selective modulator of NMDA receptor-dependent synaptic plasticity in the hippocampus.

  9. Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity

    KAUST Repository

    Lemtiri-Chlieh, Fouad

    2011-12-19

    Background: Dendritic spines represent the postsynaptic component of the vast majority of excitatory synapses present in the mammalian forebrain. The ability of spines to rapidly alter their shape, size, number and receptor content in response to stimulation is considered to be of paramount importance during the development of synaptic plasticity. Indeed, long-term potentiation (LTP), widely believed to be a cellular correlate of learning and memory, has been repeatedly shown to induce both spine enlargement and the formation of new dendritic spines. In our studies, we focus on Kalirin-7 (Kal7), a Rho GDP/GTP exchange factor (Rho-GEF) localized to the postsynaptic density that plays a crucial role in the development and maintenance of dendritic spines both in vitro and in vivo. Previous studies have shown that mice lacking Kal7 (Kal7 KO) have decreased dendritic spine density in the hippocampus as well as focal hippocampal-dependent learning impairments.Results: We have performed a detailed electrophysiological characterization of the role of Kal7 in hippocampal synaptic plasticity. We show that loss of Kal7 results in impaired NMDA receptor-dependent LTP and long-term depression, whereas a NMDA receptor-independent form of LTP is shown to be normal in the absence of Kal7.Conclusions: These results indicate that Kal7 is an essential and selective modulator of NMDA receptor-dependent synaptic plasticity in the hippocampus. 2011 Lemtiri-Chlieh et al; licensee BioMed Central Ltd.

  10. Androgen receptor signalling in peritubular myoid cells is essential for normal differentiation and function of adult Leydig cells

    DEFF Research Database (Denmark)

    Welsh, M.; Moffat, L.; Belling, Kirstine Christensen

    2012-01-01

    Testosterone synthesis depends on normal Leydig cell (LC) development, but the mechanisms controlling this development remain unclear. We recently demonstrated that androgen receptor (AR) ablation from a proportion of testicular peritubular myoid cells (PTM-ARKO) did not affect LC number, but res......Testosterone synthesis depends on normal Leydig cell (LC) development, but the mechanisms controlling this development remain unclear. We recently demonstrated that androgen receptor (AR) ablation from a proportion of testicular peritubular myoid cells (PTM-ARKO) did not affect LC number......’ subpopulation that had arrested development and only weakly expressed INSL3, luteinizing hormone receptor, and several steroidogenic enzymes. Furthermore, unlike ‘normal’ LCs in PTM-ARKOs, the ‘abnormal’ LCs did not involute as expected in response to exogenous testosterone. Differential function of these LC...... sub-populations is likely to mean that the ‘normal’ LCs work harder to compensate for the ‘abnormal’ LCs to maintain normal serum testosterone. These findings reveal new paracrine mechanisms underlying adult LC development, which can be further investigated using PTM-ARKOs....

  11. Lipoprotein subclass patterns in women with polycystic ovary syndrome (PCOS) compared with equally insulin-resistant women without PCOS.

    LENUS (Irish Health Repository)

    Phelan, N

    2012-02-01

    OBJECTIVES: Women with polycystic ovary syndrome (PCOS) are more insulin resistant and display an atherogenic lipid profile compared with normal women of similar body mass index (BMI). Insulin resistance (IR) at least partially underlies the dyslipidemia of PCOS, but it is unclear whether PCOS status per se confers additional risk. RESEARCH DESIGN AND METHODS: Using a case-control design, we compared plasma lipids and lipoprotein subclasses (using polyacrylamide gel tube electrophoresis) in 70 women with PCOS (National Institutes of Health criteria) and 70 normal women pair matched for age, BMI, and IR (homeostasis model assessment-IR, quantitative insulin sensitivity check index, and the Avignon Index). Subjects were identified as having a (less atherogenic) type A pattern consisting predominantly of large low-density lipoprotein (LDL) subfractions or a (more atherogenic) non-A pattern consisting predominantly of small-dense LDL subfractions. RESULTS: Total, high-density lipoprotein, or LDL cholesterol, or triacylglycerol did not differ between the groups, but very low-density lipoprotein levels (P<0.05) were greater in women with PCOS, whereas a non-A LDL profile was seen in 12.9% compared with 2.9% of controls (P<0.05, chi2). Multiple regression analysis revealed homeostasis model assessment-IR and waist circumference to be independent predictors of very low-density lipoprotein together explaining 40.2% of the overall variance. Logistic regression revealed PCOS status to be the only independent determinant of a non-A LDL pattern (odds ratio 5.48 (95% confidence interval 1.082-27.77; P<0.05). CONCLUSIONS: Compared with women matched for BMI and IR, women with PCOS have potentially important differences in lipid profile with greater very low-density lipoprotein levels and increased rates of a more atherogenic non-A LDL pattern.

  12. PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion

    Science.gov (United States)

    Wang, Ling; Wang, Yu; Liang, Yong; Li, Jia; Liu, Yuchen; Zhang, Jie; Zhang, Aiqian; Fu, Jianjie; Jiang, Guibin

    2014-04-01

    Male BALB/c mice fed with either a regular or high fat diet were exposed to 0, 5 or 20 mg/kg perfluorooctane sulfonate (PFOS) for 14 days. Increased body weight, serum glucose, cholesterol and lipoprotein levels were observed in mice given a high fat diet. However, all PFOS-treated mice got reduced levels of serum lipid and lipoprotein. Decreasing liver glycogen content was also observed, accompanied by reduced serum glucose levels. Histological and ultrastructural examination detected more lipid droplets accumulated in hepatocytes after PFOS exposure. Moreover, transcripitonal activity of lipid metabolism related genes suggests that PFOS toxicity is probably unrelevant to PPARα's transcription. The present study demonstrates a lipid disturbance caused by PFOS and thus point to its role in inhibiting the secretion and normal function of low density lipoproteins.

  13. Transfer of plasma lipoprotein components and of plasma proteins into aortas of cholesterol-fed rabbits. Molecular size as a determinant of plasma lipoprotein influx

    International Nuclear Information System (INIS)

    Stender, S.; Zilversmit, D.B.

    1981-01-01

    The arterial influx of esterified and free cholesterol from low density lipoproteins and very low density lipoproteins in 20 hypercholesterolemic rabbits was measured simultaneously by the use of lipoproteins labeled in vivo with [ 3 H]- and [ 14 C]-cholesterol. The simultaneous arterial influx of either [ 3 H]-leucine-labeled very low density lipoproteins, low density lipoproteins, high density lipoproteins, or plasma proteins was also measured in each rabbit. The arterial influx was calculated as intimal clearance, i.e., the influx of a given fraction divided by its plasma concentration. The intimal clearance of low density lipoprotein esterified cholesterol was equal to that for the apolipoproteins of that fraction, which is compatible with an arterial influx of intact low density lipoprotein molecules. The intimal clearance of very low density apolipoprotein or cholesteryl ester was less than that for low density lipoprotein, whereas high density lipoprotein and albumin clearances exceeded low density lipoprotein clearance by 1.5- to 3-fold. The intimal clearances of plasma proteins, high density, low density, and very low density lipoproteins decreased linearly with the logarithm of the macromolecular diameter. This indicates that the arterial influx of three plasma lipoprotein fractions and of plasma proteins proceeds by similar mechanisms. Apparently the relative intimal clearances of lipoproteins are more dependent on their size relative to pores or vesicular diameters at the plasma-artery interface than on specific interactions between lipoproteins and the arterial intimal surface

  14. Effect of chromium chloride supplementation on glucose tolerance and serum lipids including high-density lipoprotein of adult men.

    Science.gov (United States)

    Riales, R; Albrink, M J

    1981-12-01

    Chromium deficiency may cause insulin resistance, hyperinsulinemia, impaired glucose tolerance, and hyperlipidemia, recovered by chromium supplementation. The effect of chromium supplementation on serum lipids and glucose tolerance was tested in a double-blind 12-wk study of 23 healthy adult men aged 31 to 60 yr. Either 200 micrograms trivalent chromium in 5 ml water (Cr) or 5 ml plain water (W) was ingested daily 5 days each week. Half the subjects volunteered for glucose tolerance tests with insulin levels. At 12 wk high-density lipoprotein cholesterol increased in the Cr group from 35 to 39 mg/dl (p less than 0.05) but did not change in the water group (34 mg/dl). The largest increase in high-density lipoprotein cholesterol and decreases in insulin and glucose were found in those subjects having normal glucose levels together with elevated insulin levels at base-line. The data are thus consistent with the hypothesis that Cr supplementation raises high-density lipoprotein cholesterol and improves insulin sensitivity in those with evidence of insulin resistance but normal glucose tolerance.

  15. Homozygous Familial Hypercholesterolemia Patients With Identical Mutations Variably Express the LDLR (Low-Density Lipoprotein Receptor): Implications for the Efficacy of Evolocumab.

    Science.gov (United States)

    Thedrez, Aurélie; Blom, Dirk J; Ramin-Mangata, Stéphane; Blanchard, Valentin; Croyal, Mikaël; Chemello, Kévin; Nativel, Brice; Pichelin, Matthieu; Cariou, Bertrand; Bourane, Steeve; Tang, Lihua; Farnier, Michel; Raal, Frederick J; Lambert, Gilles

    2018-03-01

    Evolocumab, a PCSK9 (proprotein convertase subtilisin kexin type 9)-neutralizing antibody, lowers low-density lipoprotein cholesterol (LDL-C) in homozygous familial hypercholesterolemic (HoFH) patients with reduced LDLR (low-density lipoprotein receptor) function. However, their individual responses are highly variable, even among carriers of identical LDLR genetic defects. We aimed to elucidate why HoFH patients variably respond to PCSK9 inhibition. Lymphocytes were isolated from 22 HoFH patients enrolled in the TAUSSIG trial (Trial Assessing Long Term Use of PCSK9 Inhibition in Subjects With Genetic LDL Disorders). Ten patients were true homozygotes (FH1/FH1) and 5 identical compound heterozygotes (FH1/FH2). Lymphocytes were plated with or without mevastatin, recombinant PCSK9 (rPCSK9), or a PCSK9-neutralizing antibody. Cell surface LDLR expression was analyzed by flow cytometry. All HoFH lymphocytes had reduced cell surface LDLR expression compared with non-FH lymphocytes, for each treatment modality. Lymphocytes from FH1/FH2 patients (LDLR defective/negative) displayed the lowest LDLR expression levels followed by lymphocytes from FH1/FH1 patients (defective/defective). Mevastatin increased, whereas rPCSK9 reduced LDLR expression. The PCSK9-neutralizing antibody restored LDLR expression. Lymphocytes displaying higher LDLR expression levels were those isolated from patients presenting with lowest levels of LDL-C and apolipoprotein B, before and after 24 weeks of evolocumab treatment. These negative correlations remained significant in FH1/FH1 patients and appeared more pronounced when patients with apolipoprotein E3/E3 genotypes were analyzed separately. Significant positive correlations were found between the levels of LDLR expression and the percentage reduction in LDL-C on evolocumab treatment. Residual LDLR expression in HoFH is a major determinant of LDL-C levels and seems to drive their individual response to evolocumab. © 2017 American Heart Association

  16. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise.

    Science.gov (United States)

    Harrison, Michael; Moyna, Niall M; Zderic, Theodore W; O'Gorman, Donal J; McCaffrey, Noel; Carson, Brian P; Hamilton, Marc T

    2012-07-10

    Many of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS), it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects. Using a randomized cross-over design, very low density lipoprotein (VLDL) responses were evaluated in eight men on the morning after i) an inactive control trial (CON), ii) exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF), and iii) after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL). The intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG) determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70-120 nm (large) particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43-55 nm (medium) particle range. VLDL-TG in smaller particles (29-43 nm) was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL) activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state. These findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in LPL activity.

  17. A Phospholipidomic Analysis of All Defined Human Plasma Lipoproteins

    Science.gov (United States)

    Dashti, Monireh; Kulik, Willem; Hoek, Frans; Veerman, Enno C.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2011-01-01

    Since plasma lipoproteins contain both protein and phospholipid components, either may be involved in processes such as atherosclerosis. In this study the identification of plasma lipoprotein-associated phospholipids, which is essential for understanding these processes at the molecular level, are performed. LC-ESI/MS, LC-ESI-MS/MS and High Performance Thin Layer Chromatography (HPTLC) analysis of different lipoprotein fractions collected from pooled plasma revealed the presence of phosphatidylethanolamine (PE), phosphatidylinositol (PI), and sphingomyeline (SM) only on lipoproteins and phosphatidylcholine (PC), Lyso-PC on both lipoproteins and plasma lipoprotein free fraction (PLFF). Cardiolipin, phosphatidylglycerol (PG) and Phosphatidylserine (PS) were observed neither in the lipoprotein fractions nor in PLFF. All three approaches led to the same results regarding phospholipids occurrence in plasma lipoproteins and PLFF. A high abundancy of PE and SM was observed in VLDL and LDL fractions respectively. This study provides for the first time the knowledge about the phospholipid composition of all defined plasma lipoproteins. PMID:22355656

  18. Aminoacylation of the N-terminal cysteine is essential for Lol-dependent release of lipoproteins from membranes but does not depend on lipoprotein sorting signals.

    Science.gov (United States)

    Fukuda, Ayumu; Matsuyama, Shin-Ichi; Hara, Takashi; Nakayama, Jiro; Nagasawa, Hiromichi; Tokuda, Hajime

    2002-11-08

    Lipoproteins are present in a wide variety of bacteria and are anchored to membranes through lipids attached to the N-terminal cysteine. The Lol system of Escherichia coli mediates the membrane-specific localization of lipoproteins. Aspartate at position 2 functions as a Lol avoidance signal and causes the retention of lipoproteins in the inner membrane, whereas lipoproteins having residues other than aspartate at position 2 are released from the inner membrane and localized to the outer membrane by the Lol system. Phospholipid:apolipoprotein transacylase, Lnt, catalyzes the last step of lipoprotein modification, converting apolipoprotein into mature lipoprotein. To reveal the importance of this aminoacylation for the Lol-dependent membrane localization, apolipoproteins were prepared by inhibiting lipoprotein maturation. Lnt was also purified and used to convert apolipoprotein into mature lipoprotein in vitro. The release of these lipoproteins was examined in proteoliposomes. We show here that the aminoacylation is essential for the Lol-dependent release of lipoproteins from membranes. Furthermore, lipoproteins with aspartate at position 2 were found to be aminoacylated both in vivo and in vitro, indicating that the lipoprotein-sorting signal does not affect lipid modification.

  19. A More Flexible Lipoprotein Sorting Pathway

    Science.gov (United States)

    Chahales, Peter

    2015-01-01

    Lipoprotein biogenesis in Gram-negative bacteria occurs by a conserved pathway, each step of which is considered essential. In contrast to this model, LoVullo and colleagues demonstrate that the N-acyl transferase Lnt is not required in Francisella tularensis or Neisseria gonorrhoeae. This suggests the existence of a more flexible lipoprotein pathway, likely due to a modified Lol transporter complex, and raises the possibility that pathogens may regulate lipoprotein processing to modulate interactions with the host. PMID:25755190

  20. Analyzing the molecular mechanism of lipoprotein localization in Brucella.

    Science.gov (United States)

    Goolab, Shivani; Roth, Robyn L; van Heerden, Henriette; Crampton, Michael C

    2015-01-01

    Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria

  1. Analyzing the molecular mechanism of lipoprotein localization in Brucella

    Science.gov (United States)

    Goolab, Shivani; Roth, Robyn L.; van Heerden, Henriette; Crampton, Michael C.

    2015-01-01

    Bacterial lipoproteins possess diverse structure and functionality, ranging from bacterial physiology to pathogenic processes. As such many lipoproteins, originating from Brucella are exploited as potential vaccines to countermeasure brucellosis infection in the host. These membrane proteins are translocated from the cytoplasm to the cell membrane where they are anchored peripherally by a multifaceted targeting mechanism. Although much research has focused on the identification and classification of Brucella lipoproteins and their potential use as vaccine candidates for the treatment of Brucellosis, the underlying route for the translocation of these lipoproteins to the outer surface of the Brucella (and other pathogens) outer membrane (OM) remains mostly unknown. This is partly due to the complexity of the organism and evasive tactics used to escape the host immune system, the variation in biological structure and activity of lipoproteins, combined with the complex nature of the translocation machinery. The biosynthetic pathway of Brucella lipoproteins involves a distinct secretion system aiding translocation from the cytoplasm, where they are modified by lipidation, sorted by the lipoprotein localization machinery pathway and thereafter equipped for export to the OM. Surface localized lipoproteins in Brucella may employ a lipoprotein flippase or the β-barrel assembly complex for translocation. This review provides an overview of the characterized Brucella OM proteins that form part of the OM, including a handful of other characterized bacterial lipoproteins and their mechanisms of translocation. Lipoprotein localization pathways in gram negative bacteria will be used as a model to identify gaps in Brucella lipoprotein localization and infer a potential pathway. Of particular interest are the dual topology lipoproteins identified in Escherichia coli and Haemophilus influenza. The localization and topology of these lipoproteins from other gram negative bacteria

  2. Low-Density Lipoprotein Receptor–Related Protein-1 Is a Therapeutic Target in Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Stefano Toldo, PhD

    2017-10-01

    Full Text Available Low-density lipoprotein receptor–related protein-1 (LRP1 is a ubiquitous membrane receptor functioning as a scavenger and regulatory receptor, inducing anti-inflammatory and prosurvival signals. Based on the known structure–activity of the LRP1 receptor binding site, the authors synthesized a small peptide (SP16. SP16 induced a >50% reduction in infarct size (p < 0.001 and preservation of left ventricular systolic function (p < 0.001, and treatment with an LRP1 blocking antibody eliminated the protective effects of SP16. In conclusion, LRP1 activation with SP16 given within 30 min of reperfusion during experimental acute myocardial infarction leads to a cardioprotective signal reducing infarct size and preservation of cardiac systolic function.

  3. Hydrolysis products generated by lipoprotein lipase and endothelial lipase differentially impact THP-1 macrophage cell signalling pathways.

    Science.gov (United States)

    Essaji, Yasmin; Yang, Yanbo; Albert, Carolyn J; Ford, David A; Brown, Robert J

    2013-08-01

    Macrophages express lipoprotein lipase (LPL) and endothelial lipase (EL) within atherosclerotic plaques; however, little is known about how lipoprotein hydrolysis products generated by these lipases might affect macrophage cell signalling pathways. We hypothesized that hydrolysis products affect macrophage cell signalling pathways associated with atherosclerosis. To test our hypothesis, we incubated differentiated THP-1 macrophages with products from total lipoprotein hydrolysis by recombinant LPL or EL. Using antibody arrays, we found that the phosphorylation of six receptor tyrosine kinases and three signalling nodes--most associated with atherosclerotic processes--was increased by LPL derived hydrolysis products. EL derived hydrolysis products only increased the phosphorylation of tropomyosin-related kinase A, which is also implicated in playing a role in atherosclerosis. Using electrospray ionization-mass spectrometry, we identified the species of triacylglycerols and phosphatidylcholines that were hydrolyzed by LPL and EL, and we identified the fatty acids liberated by gas chromatography-mass spectrometry. To determine if the total liberated fatty acids influenced signalling pathways, we incubated differentiated THP-1 macrophages with a mixture of the fatty acids that matched the concentrations of liberated fatty acids from total lipoproteins by LPL, and we subjected cell lysates to antibody array analyses. The analyses showed that only the phosphorylation of Akt was significantly increased in response to fatty acid treatment. Overall, our study shows that macrophages display potentially pro-atherogenic signalling responses following acute treatments with LPL and EL lipoprotein hydrolysis products.

  4. Scavenger receptors in homeostasis and immunity.

    Science.gov (United States)

    Canton, Johnathan; Neculai, Dante; Grinstein, Sergio

    2013-09-01

    Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimer's disease.

  5. Nuclear magnetic resonance studies of lipoproteins

    International Nuclear Information System (INIS)

    Hamilton, J.A.; Morrisett, J.D.

    1986-01-01

    Several nuclei in lipoproteins are magnetically active and are thus potential NMR probes of lipoprotein structure. Table I lists the magnetic isotopes preset in the covalent structures of the molecular constituents of lipoproteins: lipids, proteins, and carbohydrates. Every type of nucleus that is part of the endogenous structure of these molecules has at least one magnetic isotope. Each magnetic nucleus represents an intrinsic and completely nonperturbing probe (when at the natural abundance level) of local molecular motion and magnetic environment. The NMR experiment itself is also nonperturbing and nondestructive. Table I also lists for each nucleus its nuclear spin, its natural isotopic abundance, its sensitivity, and its resonance frequency at two commonly employed magnetic in the low field range (21.14 kG or 2.11 Tesla) and the other in the high field range (47.0 kG or 4.70 Tesla). Of the nuclei listed in Table I, /sup 1/H, /sup 13/C, and /sup 31/P have been the primary ones studied in lipoproteins. The general advantages and disadvantages afforded by these and other nuclei as probes of lipoprotein structure are discussed. /sup 13/C NMR spectroscopy, the method which has had the most extensive application (and probably has the greatest future potential) to lipoproteins, is treated in greatest detail, but many of the principles described apply to other nuclei as well

  6. Activated platelets contribute to oxidized low-density lipoproteins and dysfunctional high-density lipoproteins through a phospholipase A2-dependent mechanism

    NARCIS (Netherlands)

    Blache, Denis; Gautier, Thomas; Tietge, Uwe J. F.; Lagrost, Laurent

    Plasma activity of secretory phospholipase A2 (sPLA2) increases in patients with cardiovascular disease. The present study investigated whether platelet-released sPLA2 induces low-density lipoprotein (LDL) and high-density lipoprotein (HDL) modifications that translate into changes in lipoprotein

  7. Low-density lipoprotein analysis in microchip capillary electrophoresis systems

    NARCIS (Netherlands)

    Ceriotti, Laura; Shibata, Takayuki; Folmer, Britta; Weiller, Bruce H.; Roberts, Matthew A.; De Rooij, Nico F.; Verpoorte, Elisabeth

    2002-01-01

    Due to the mounting evidence for altered lipoprotein and cholesterol-lipoprotein content in several disease states, there has been an increasing interest in analytical methods for lipoprotein profiling for diagnosis. The separation of low- and high-density lipoproteins (LDL and HDL, respectively)

  8. Essential oil of Pinus koraiensis leaves exerts antihyperlipidemic effects via up-regulation of low-density lipoprotein receptor and inhibition of acyl-coenzyme A: cholesterol acyltransferase.

    Science.gov (United States)

    Kim, Ji-Hyun; Lee, Hyo-Jung; Jeong, Soo-Jin; Lee, Min-Ho; Kim, Sung-Hoon

    2012-09-01

    Hyperlipidemia is an important factor to induce metabolic syndrome such as obesity, diabetes and cardiovascular diseases. Recently, some antihyperlipidemic agents from herbal medicines have been in the spotlight in the medical science field. Thus, the present study evaluated the antihyperlipidemic activities of the essential oil from the leaves of Pinus koraiensis SIEB (EOPK) that has been used as a folk remedy for heart disease. The reverse transcription polymerase chain reaction (RT-PCR) revealed that EOPK up-regulated low density lipoprotein receptor (LDLR) at the mRNA level as well as negatively suppressed the expression of sterol regulatory element-binding protein (SREBP)-1c, SREBP-2, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), fatty acid synthase (FAS) and glycerol-3-phosphate acyltransferase (GPAT) involved in lipid metabolism in HepG2 cells. Also, western blotting showed that EOPK activated LDLR and attenuated the expression of FAS at the protein level in the cells. Consistently, EOPK significantly inhibited the level of human acylcoenzyme A: cholesterol acyltransferase (hACAT)1 and 2 and reduced the low-density lipoprotein (LDL) oxidation activity. Furthermore, chromatography-mass spectrometry (GC-MS) analysis showed that EOPK, an essential oil mixture, contained camphene (21.11%), d-limonene (21.01%), α-pinene (16.74%) and borneol (11.52%). Overall, the findings suggest that EOPK can be a potent pharmaceutical agent for the prevention and treatment of hyperlipidemia. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Apolipoprotein E in umbilical cord blood plasma

    International Nuclear Information System (INIS)

    Forte, T.M.; Davis, P.A.; Blum, C.B.

    1983-01-01

    Adolipoprotein E (apo E), with a molecular weight of approximately 37,000 daltons, is a minor apolipoprotein constituent in adult plasma lipoproteins. This apolipoprotein, like apolipoprotein B, is a ligand recognized by specific lipoprotein receptor sites (B-E receptors) on cell surfaces. We have recently shown that a pronounced apo E band appears in umbilical cord blood low-density (LDL) lipoproteins and also in high density (HDL) lipoproteins. Densitometric scans of Coomassie blue G-250 stained polyacrylamide gels suggested that apo E was probably elevated in cord blood lipoproteins. To pursue this suggestion, apo E in cord blood was quantitated by radioimmunoassay and correlated with cord blood lipid levels. In addition, apo E levels in 20 normal adult volunteers were also examined

  10. Effect of Porphyromonas gingivalis infection on post-transcriptional regulation of the low-density lipoprotein receptor in mice

    Directory of Open Access Journals (Sweden)

    Miyazawa Haruna

    2012-09-01

    Full Text Available Abstract Background Periodontal disease is suggested to increase the risk of atherothrombotic disease by inducing dyslipidemia. Recently, we demonstrated that proprotein convertase subtilisin/kexin type 9 (PCSK9, which is known to play a critical role in the regulation of circulating low-density lipoprotein (LDL cholesterol levels, is elevated in periodontitis patients. However, the underlying mechanisms of elevation of PCSK9 in periodontitis patients are largely unknown. Here, we explored whether Porphyromonas gingivalis, a representative periodontopathic bacterium, -induced inflammatory response regulates serum PCSK9 and cholesterol levels using animal models. Methods We infected C57BL/6 mice intraperitoneally with Porphyromonas gingivalis, a representative strain of periodontopathic bacteria, and evaluated serum PCSK9 levels and the serum lipid profile. PCSK9 and LDL receptor (LDLR gene and protein expression, as well as liver X receptors (Lxrs, inducible degrader of the LDLR (Idol, and sterol regulatory element binding transcription factor (Srebf2 gene expression, were examined in the liver. Results P. gingivalis infection induced a significant elevation of serum PCSK9 levels and a concomitant elevation of total and LDL cholesterol compared with sham-infected mice. The LDL cholesterol levels were significantly correlated with PCSK9 levels. Expression of the Pcsk9, Ldlr, and Srebf2 genes was upregulated in the livers of the P. gingivalis-infected mice compared with the sham-infected mice. Although Pcsk9 gene expression is known to be positively regulated by sterol regulatory element binding protein (SREBP2 (human homologue of Srebf2, whereas Srebf2 is negatively regulated by cholesterol, the elevated expression of Srebf2 found in the infected mice is thought to be mediated by P. gingivalis infection. Conclusions P. gingivalis infection upregulates PCSK9 production via upregulation of Srebf2, independent of cholesterol levels. Further studies

  11. L-Cysteine-induced up-regulation of the low-density lipoprotein receptor is mediated via a transforming growth factor-alpha signalling pathway.

    Science.gov (United States)

    Tanaka, Yuma; Shimada, Masaya; Nagaoka, Satoshi

    2014-02-14

    Sulphur-containing amino acids regulate plasma cholesterol levels in animals and humans. However, their mechanism of action remains unclear. Low-density lipoprotein receptor (LDLR) plays an important role in cholesterol metabolism. We therefore investigated the effects of sulphur-containing amino acids on the expression of LDLR in hepatocytes. HepG2 cells were cultured in Dulbecco's Modified Eagle's Medium with or without sulphur-containing amino acids and cysteine-containing compounds. We found that L-cysteine increased LDLR mRNA and enhanced LDLR gene promoter activity through the extracellular-signal-related kinase and p38 mitogen-activated protein kinase signalling pathways in HepG2 cells. Moreover, we observed that L-cysteine stimulated the release of transforming growth factor-alpha (TGF-α) and that TGF-α increased the LDLR mRNA levels. This study provides a report of the L-cysteine mediated up-regulation of the LDLR expression via TGF-α signalling pathway. Our findings provide insights into cholesterol homeostasis and amino acid signalling. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Rethinking reverse cholesterol transport and dysfunctional high-density lipoproteins.

    Science.gov (United States)

    Gillard, Baiba K; Rosales, Corina; Xu, Bingqing; Gotto, Antonio M; Pownall, Henry J

    2018-04-12

    Human plasma high-density lipoprotein cholesterol concentrations are a negative risk factor for atherosclerosis-linked cardiovascular disease. Pharmacological attempts to reduce atherosclerotic cardiovascular disease by increasing plasma high-density lipoprotein cholesterol have been disappointing so that recent research has shifted from HDL quantity to HDL quality, that is, functional vs dysfunctional HDL. HDL has varying degrees of dysfunction reflected in impaired reverse cholesterol transport (RCT). In the context of atheroprotection, RCT occurs by 2 mechanisms: one is the well-known trans-hepatic pathway comprising macrophage free cholesterol (FC) efflux, which produces early forms of FC-rich nascent HDL (nHDL). Lecithin:cholesterol acyltransferase converts HDL-FC to HDL-cholesteryl ester while converting nHDL from a disc to a mature spherical HDL, which transfers its cholesteryl ester to the hepatic HDL receptor, scavenger receptor B1 for uptake, conversion to bile salts, or transfer to the intestine for excretion. Although widely cited, current evidence suggests that this is a minor pathway and that most HDL-FC and nHDL-FC rapidly transfer directly to the liver independent of lecithin:cholesterol acyltransferase activity. A small fraction of plasma HDL-FC enters the trans-intestinal efflux pathway comprising direct FC transfer to the intestine. SR-B1 -/- mice, which have impaired trans-hepatic FC transport, are characterized by high plasma levels of a dysfunctional FC-rich HDL that increases plasma FC bioavailability in a way that produces whole-body hypercholesterolemia and multiple pathologies. The design of future therapeutic strategies to improve RCT will have to be formulated in the context of these dual RCT mechanisms and the role of FC bioavailability. Copyright © 2018 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  13. Uptake of low density lipoproteins by the hamster lung. Interactions with capillary endothelium

    International Nuclear Information System (INIS)

    Nistor, A.; Simionescu, M.

    1986-01-01

    The mechanism by which the circulating low density lipoproteins (LDL) contribute to the lung surfactant cholesterol was investigated by perfusing the hamster lung in situ with LDL either radiolabeled or coupled to gold, or both. Part of [ 125 I]-LDL and [ 3 H]-cholesterol LDL were taken up by a specific process which was time- and concentration-dependent and reached saturation within 20 to 30 min of perfusion. Competition experiments and removal of receptor-bound LDL by heparin suggested that about 50% of LDL uptake is receptor-independent. Experiments using double labeled LDL showed a preferential uptake of 3 H-cholesterol versus 125 I by the lung both in situ and in vivo. LDL-gold particles (LDL-Au), recirculated through the isolated lung, bound to the endothelial luminal plasma membrane and to features potentially involved in receptor-mediated endocytosis (coated pits, coated vesicles, lysosomelike structures) and in transcytosis (plasmalemmal vesicles). The results suggest that LDL uptake by the lung takes place by both receptor-mediated and receptor-independent mechanisms. Cholesterol may be in part transferred to the lung without the apoprotein moiety; the alveolar capillary endothelium appears to be the first monitor of this complex process

  14. Serum and urinary lipoproteins in the human nephrotic syndrome: evidence for renal catabolism of lipoproteins

    Energy Technology Data Exchange (ETDEWEB)

    Shore, V.G.; Forte, T.; Licht, H.; Lewis, S.B.

    1982-03-01

    The urinary excretion of lipoproteins and the possibility of catabolic alterations on glomerular filtration were investigated in four nephrotic subjects difering in etiology, serum lipoprotein profile, and 24 hr urinary output of protein and lipids. The apolipoproteins and lipoproteins of urine were compared with those of serum with respect to distribution profile, physical properties, and composition. As expected from molecular sieving effects during glomerular filtration, the urinary HDL were more abundant than the lower density lipoproteins even when the plasma LDL was elevated markedly. Intact apolipoproteins were not found in the concentrated urinary fraction isolated by ultrafiltration between the limits of 10/sup 4/ and 5 x 10/sup 4/ daltons. On the basis of immunoreactivity, gel electrophoresis, and amino acid composition, apolipoproteins B and AI are the major and minor proteins, respectively, of urinary LDL, and apo B is the major protein of the urinary IDL and VLDL. Apolipoproteins AI, AII, CI, CIII, and possibly AIV were isolated from the urinary HDL. As much as 20% of the protein moiety of the urinary HDL appeared to be large apolipoprotien fragments with molecular weights and isoelectric points similar to those of apo CII and apo CIII. The lower density classes of urinary lipoproteins also appeared to have lost apo E and apo C's and to have undergone partial proteolysis.

  15. Comparison of gemfibrozil versus simvastatin in familial combined hyperlipidemia and effects on apolipoprotein-B-containing lipoproteins, low-density lipoprotein subfraction profile, and low-density lipoprotein oxidizability

    NARCIS (Netherlands)

    Bredie, S. J.; de Bruin, T. W.; Demacker, P. N.; Kastelein, J. J.; Stalenhoef, A. F.

    1995-01-01

    We evaluated in a double-blind, placebo-controlled, randomized trial of 45 well-defined patients with familial combined hyperlipidemia, the effect of gemfibrozil (1,200 mg/day) or simvastatin (20 mg/day) on apolipoprotein-B (apo-B)-containing lipoproteins, low-density lipoprotein (LDL) subfraction

  16. A more flexible lipoprotein sorting pathway.

    Science.gov (United States)

    Chahales, Peter; Thanassi, David G

    2015-05-01

    Lipoprotein biogenesis in Gram-negative bacteria occurs by a conserved pathway, each step of which is considered essential. In contrast to this model, LoVullo and colleagues demonstrate that the N-acyl transferase Lnt is not required in Francisella tularensis or Neisseria gonorrhoeae. This suggests the existence of a more flexible lipoprotein pathway, likely due to a modified Lol transporter complex, and raises the possibility that pathogens may regulate lipoprotein processing to modulate interactions with the host. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Postprandial triglyceride-rich lipoproteins promote lipid accumulation and apolipoprotein B-48 receptor transcriptional activity in human circulating and murine bone marrow neutrophils in a fatty acid-dependent manner.

    Science.gov (United States)

    Ortega-Gómez, Almudena; Varela, Lourdes M; López, Sergio; Montserrat de la Paz, Sergio; Sánchez, Rosario; Muriana, Francisco J G; Bermúdez, Beatriz; Abia, Rocío

    2017-09-01

    Postprandial triglyceride-rich lipoproteins (TRLs) promote atherosclerosis. Recent research points the bone marrow (BM) as a primary site in atherosclerosis. We elucidated how the acute administration of monounsaturated fatty acids (MUFAs) MUFAs, omega-3 polyunsaturated fatty acids (PUFAs) PUFAs and saturated fatty acids (SFAs) affects human circulating and murine BM neutrophil lipid accumulation and functionality. Postprandial hypertriglyceridemia was induced in healthy subjects and Apoe -/- mice by the acute administration of dietary fats enriched in MUFAs, PUFAs, or SFAs. Postprandial hypertriglyceridemia increased apolipoprotein-B48 receptor (ApoB48R) transcriptional activity that was linearly correlated with intracellular triglycerides (TGs) TGs accumulation in human circulating and murine BM neutrophils. MUFA and omega-3 PUFAs attenuated ApoB48R gene expression and intracellular TG accumulation compared to SFAs. TRLs induced apoB48R-dependent TG accumulation in human neutrophils ex vivo. Murine BM neutrophils showed a decrease in surface L-selectin and an increase in TNF-α and IL-1β mRNA expressions only after SFAs administration. TRLs enriched in SFAs induced BM neutrophil degranulation ex vivo suggesting cell priming/activation. Postprandial TRLs disrupts the normal biology and function of circulating and BM neutrophils. MUFA- and omega-3 PUFA-rich dietary fats such as virgin olive oil or fish oil has the potential to prevent excessive neutrophil lipid accumulation and activation by targeting the fatty acid composition of TRLs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Outer membrane lipoprotein biogenesis: Lol is not the end.

    Science.gov (United States)

    Konovalova, Anna; Silhavy, Thomas J

    2015-10-05

    Bacterial lipoproteins are lipid-anchored proteins that contain acyl groups covalently attached to the N-terminal cysteine residue of the mature protein. Lipoproteins are synthesized in precursor form with an N-terminal signal sequence (SS) that targets translocation across the cytoplasmic or inner membrane (IM). Lipid modification and SS processing take place at the periplasmic face of the IM. Outer membrane (OM) lipoproteins take the localization of lipoproteins (Lol) export pathway, which ends with the insertion of the N-terminal lipid moiety into the inner leaflet of the OM. For many lipoproteins, the biogenesis pathway ends here. We provide examples of lipoproteins that adopt complex topologies in the OM that include transmembrane and surface-exposed domains. Biogenesis of such lipoproteins requires additional steps beyond the Lol pathway. In at least one case, lipoprotein sequences reach the cell surface by being threaded through the lumen of a beta-barrel protein in an assembly reaction that requires the heteropentomeric Bam complex. The inability to predict surface exposure reinforces the importance of experimental verification of lipoprotein topology and we will discuss some of the methods used to study OM protein topology. © 2015 The Author(s).

  19. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise

    Directory of Open Access Journals (Sweden)

    Harrison Michael

    2012-07-01

    Full Text Available Abstract Background Many of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS, it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects. Methods Using a randomized cross-over design, very low density lipoprotein (VLDL responses were evaluated in eight men on the morning after i an inactive control trial (CON, ii exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF, and iii after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL. Results The intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70–120 nm (large particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43–55 nm (medium particle range. VLDL-TG in smaller particles (29–43 nm was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state. Conclusions These findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in

  20. Lipoprotein particle distribution and skeletal muscle lipoprotein lipase activity after acute exercise

    LENUS (Irish Health Repository)

    Harrison, Michael

    2012-06-06

    AbstractBackgroundMany of the metabolic effects of exercise are due to the most recent exercise session. With recent advances in nuclear magnetic resonance spectroscopy (NMRS), it is possible to gain insight about which lipoprotein particles are responsible for mediating exercise effects.MethodsUsing a randomized cross-over design, very low density lipoprotein (VLDL) responses were evaluated in eight men on the morning after i) an inactive control trial (CON), ii) exercising vigorously on the prior evening for 100 min followed by fasting overnight to maintain an energy and carbohydrate deficit (EX-DEF), and iii) after the same exercise session followed by carbohydrate intake to restore muscle glycogen and carbohydrate balance (EX-BAL).ResultsThe intermediate, low and high density lipoprotein particle concentrations did not differ between trials. Fasting triglyceride (TG) determined biochemically, and mean VLDL size were lower in EX-DEF but not in EX-BAL compared to CON, primarily due to a reduction in VLDL-TG in the 70–120 nm (large) particle range. In contrast, VLDL-TG was lower in both EX-DEF and EX-BAL compared to CON in the 43–55 nm (medium) particle range. VLDL-TG in smaller particles (29–43 nm) was unaffected by exercise. Because the majority of VLDL particles were in this smallest size range and resistant to change, total VLDL particle concentration was not different between any of these conditions. Skeletal muscle lipoprotein lipase (LPL) activity was also not different across these 3 trials. However, in CON only, the inter-individual differences in LPL activity were inversely correlated with fasting TG, VLDL-TG, total, large and small VLDL particle concentration and VLDL size, indicating a regulatory role for LPL in the non-exercised state.ConclusionsThese findings reveal a high level of differential regulation between different sized triglyceride-rich lipoproteins following exercise and feeding, in the absence of changes in LPL activity.

  1. Triglycerides, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in rats exposed to premium motor spirit fumes.

    Science.gov (United States)

    Aberare, Ogbevire L; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard

    2011-06-01

    Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Twenty-five Wister albino rats (of both sexes) were used for this study between the 4(th) of August and 7(th) of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. These results showed that frequent exposure to petrol fumes may be highly deleterious to the liver cells.

  2. Current guidelines for high-density lipoprotein cholesterol in therapy and future directions

    Directory of Open Access Journals (Sweden)

    Subedi BH

    2014-04-01

    Full Text Available Bishnu H Subedi,1,2 Parag H Joshi,1 Steven R Jones,1 Seth S Martin,1 Michael J Blaha,1 Erin D Michos1 1Johns Hopkins Ciccarone Center for the Prevention of Heart Disease, 2Greater Baltimore Medical Center, Baltimore, MD, USA Abstract: Many studies have suggested that a significant risk factor for atherosclerotic cardiovascular disease (ASCVD is low high-density lipoprotein cholesterol (HDL-C. Therefore, increasing HDL-C with therapeutic agents has been considered an attractive strategy. In the prestatin era, fibrates and niacin monotherapy, which cause modest increases in HDL-C, reduced ASCVD events. Since their introduction, statins have become the cornerstone of lipoprotein therapy, the benefits of which are primarily attributed to decrease in low-density lipoprotein cholesterol. Findings from several randomized trials involving niacin or cholesteryl ester transfer protein inhibitors have challenged the concept that a quantitative elevation of plasma HDL-C will uniformly translate into ASCVD benefits. Consequently, the HDL, or more correctly, HDL-C hypothesis has become more controversial. There are no clear guidelines thus far for targeting HDL-C or HDL due to lack of solid outcomes data for HDL specific therapies. HDL-C levels are only one marker of HDL out of its several structural or functional properties. Novel approaches are ongoing in developing and assessing agents that closely mimic the structure of natural HDL or replicate its various functions, for example, reverse cholesterol transport, vasodilation, anti-inflammation, or inhibition of platelet aggregation. Potential new approaches like HDL infusions, delipidated HDL, liver X receptor agonists, Apo A-I upregulators, Apo A mimetics, and gene therapy are in early phase trials. This review will outline current therapies and describe future directions for HDL therapeutics. Keywords: high-density lipoprotein, lipids, cholesterol, atherosclerosis, cardiovascular disease, therapy

  3. Transendothelial lipoprotein exchange and microalbuminuria

    DEFF Research Database (Denmark)

    Jensen, Jan Skov; Feldt-Rasmussen, Bo; Jensen, Kurt Svarre

    2004-01-01

    OBJECTIVE: Microalbuminuria associates with increased risk of atherosclerosis in individuals without diabetes. We hypothesized that transendothelial lipoprotein exchange is elevated among such individuals, possibly explaining increased intimal lipoprotein accumulation and thus atherosclerosis....... METHODS: Using an in vivo isotope technique, transendothelial exchange of low density lipoprotein (LDL) was measured in 77 non-diabetic individuals. Autologous 131-iodinated LDL was reinjected intravenously, and the 1-h fractional escape rate was calculated as index of transendothelial exchange. RESULTS......: There was no difference in transendothelial LDL exchange between subjects with microalbuminuria versus normoalbuminuria (mean (95% confidence interval) 3.8%/h (3.3-4.3%/h) versus 4.2%/h (3.7-4.7%/h); P=0.33). In contrast, there was a positive correlation between transendothelial LDL exchange and (logarithmically...

  4. Identification of Lipoproteins Using Globomycin and Radioactive Palmitate.

    Science.gov (United States)

    Buddelmeijer, Nienke

    2017-01-01

    Bacterial lipoproteins are characterized by fatty acids that are covalently attached to their amino terminus via posttranslational modification in the cytoplasmic membrane. Three enzymatic steps are involved in the synthesis of mature triacylated lipoprotein: prolipoprotein converts into diacylglyceryl-prolipoprotein that in turn converts into apolipoprotein, which is finally converted into mature triacylated lipoprotein. Here we describe the detection of one of these intermediate forms of lipoprotein, diacylglyceryl-prolipoprotein, using 3 H-palmitate labeling and inhibition by globomycin and detection by fluorography.

  5. The role of lipolysis stimulated lipoprotein receptor in breast cancer and directing breast cancer cell behavior.

    Directory of Open Access Journals (Sweden)

    Denise K Reaves

    Full Text Available The claudin-low molecular subtype of breast cancer is of particular interest for clinically the majority of these tumors are poor prognosis, triple negative, invasive ductal carcinomas. Claudin-low tumors are characterized by cancer stem cell-like features and low expression of cell junction and adhesion proteins. Herein, we sought to define the role of lipolysis stimulated lipoprotein receptor (LSR in breast cancer and cancer cell behavior as LSR was recently correlated with tumor-initiating features. We show that LSR was expressed in epithelium, endothelium, and stromal cells within the healthy breast tissue, as well as in tumor epithelium. In primary breast tumor bioposies, LSR expression was significantly correlated with invasive ductal carcinomas compared to invasive lobular carcinomas, as well as ERα positive tumors and breast cancer cell lines. LSR levels were significantly reduced in claudin-low breast cancer cell lines and functional studies illustrated that re-introduction of LSR into a claudin-low cell line suppressed the EMT phenotype and reduced individual cell migration. However, our data suggest that LSR may promote collective cell migration. Re-introduction of LSR in claudin-low breast cancer cell lines reestablished tight junction protein expression and correlated with transepithelial electrical resistance, thereby reverting claudin-low lines to other intrinsic molecular subtypes. Moreover, overexpression of LSR altered gene expression of pathways involved in transformation and tumorigenesis as well as enhanced proliferation and survival in anchorage independent conditions, highlighting that reestablishment of LSR signaling promotes aggressive/tumor initiating cell behaviors. Collectively, these data highlight a direct role for LSR in driving aggressive breast cancer behavior.

  6. Oral administration of a Spirulina extract enriched for Braun-type lipoproteins protects mice against influenza A(H1N1) virus infection

    Science.gov (United States)

    Previous studies indicate that Immulina, a commercial extract of Arthrospira (Spirulina) platensis, is a potent activator of innate immune cells and that Braun-type lipoproteins (a principal toll-like receptor (TLR) 2 ligand) are the main active components within this product. In the present study, ...

  7. Increased cell motility and invasion upon knockdown of lipolysis stimulated lipoprotein receptor (LSR in SW780 bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Ørntoft Torben F

    2008-07-01

    Full Text Available Abstract Background Mechanisms underlying the malignant development in bladder cancer are still not well understood. Lipolysis stimulated lipoprotein receptor (LSR has previously been found to be upregulated by P53. Furthermore, we have previously found LSR to be differentially expressed in bladder cancer. Here we investigated the role of LSR in bladder cancer. Methods A time course siRNA knock down experiment was performed to investigate the functional role of LSR in SW780 bladder cancer cells. Since LSR was previously shown to be regulated by P53, siRNA against TP53 was included in the experimental setup. We used Affymetrix GeneChips for measuring gene expression changes and we used Ingenuity Pathway Analysis to investigate the relationship among differentially expressed genes upon siRNA knockdown. Results By Ingenuity Pathway analysis of the microarray data from the different timepoints we identified six gene networks containing genes mainly related to the functional categories "cancer", "cell death", and "cellular movement". We determined that genes annotated to the functional category "cellular movement" including "invasion" and "cell motility" were highly significantly overrepresented. A matrigel assay showed that 24 h after transfection the invasion capacity was significantly increased 3-fold (p Conclusion We conclude that LSR may impair bladder cancer cells from gaining invasive properties.

  8. Lipoprotein receptors in copper-deficient rats: in vitro binding of high-density lipoprotein subfractions to liver membranes

    International Nuclear Information System (INIS)

    Hassel, C.A.

    1986-01-01

    Three studies were conducted to determine whether the elevated plasma and HDL cholesterol levels observed in copper-deficient rats could be explained by the interaction of 125 I-HDL subfractions with liver membrane preparations in vitro. Rats from all studies were randomly divided into two dietary treatments, copper-deficient and adequate (0.7 mg and 8.0 mg Cukg diet, respectively). Total binding data and computer derived estimates (K/sub d/ and B/sub max/) were used to compare differences between treatments. Binding data from all experiments conformed to a one-site model. In all cases, binding was saturable and EDTA and pronase insensitive. Treatment differences were observed in Study I ( 125 I-apo E-free HDL binding to crude liver membranes). Significantly lower total binding and B/sub max/ were observed when lipoproteins and membranes from copper-deficient animals were used in the assay. Competition experiments from Studies II and III demonstrate that the different HDL subfractions competed effectively with one another for binding sites, indicating that apo E is not a determinant in binding of rat 125 I-HDL subfractions to purified liver plasma membranes

  9. Hemodynamics alter arterial low-density lipoprotein metabolism

    International Nuclear Information System (INIS)

    Warty, V.S.; Calvo, W.J.; Berceli, S.A.; Pham, S.M.; Durham, S.J.; Tanksale, S.K.; Klein, E.C.; Herman, I.M.; Borovetz, H.S.

    1989-01-01

    We have investigated the role of hemodynamic factors on low-density lipoprotein transport and metabolism in the intact arterial wall. Freshly excised canine carotid blood vessels were exposed to well-defined pulsatile flow in vitro for continuous periods up to 20 hours. We chose to impose the following hemodynamic conditions on our test carotid arteries: normotension, hypertension (at physiologic flow conditions), and hypertension coupled with elevated flow of canine serum perfusate. In several experiments the effect of endothelial denudation was examined in carotid arteries exposed to normotensive pulsatile flow. A trapped ligand method was used for quantitating low-density lipoprotein uptake and metabolism in the arterial wall. The distribution of both intact and degraded low-density lipoprotein fractions was determined from measurements of radiolabelled low-density lipoprotein activity within thin radial sections of perfused arteries. Our results suggest that both hypertensive hemodynamic simulations exacerbate the uptake of low-density lipoprotein within the arterial wall (by a factor of three to nine). The percentage of low-density lipoprotein that undergoes irreversible degradation falls from 41% under normotensive conditions to below 30% when hypertensive conditions are imposed, indicating that degradative processes are not proportionally elevated with the accelerated influx. A similar pattern is observed for deendothelialized vessels

  10. Genetic variation in liver x receptor alpha and risk of ischemic vascular disease in the general population

    DEFF Research Database (Denmark)

    Stender, Stefan; Frikke-Schmidt, Ruth; Anestis, Aristomenis

    2011-01-01

    Although animal studies indicate that liver X receptor alpha (LXRα) might influence risk of atherosclerosis, data in humans remain scarce. We tested the hypothesis that genetic variation in LXRα associates with risk of ischemic vascular disease and/or plasma lipid and lipoprotein levels in the ge......Although animal studies indicate that liver X receptor alpha (LXRα) might influence risk of atherosclerosis, data in humans remain scarce. We tested the hypothesis that genetic variation in LXRα associates with risk of ischemic vascular disease and/or plasma lipid and lipoprotein levels...... in the general population....

  11. Genetic variation in liver x receptor alpha and risk of ischemic vascular disease in the general population

    DEFF Research Database (Denmark)

    Stender, Stefan; Frikke-Schmidt, Ruth; Anestis, Aristomenis

    2011-01-01

    Although animal studies indicate that liver X receptor alpha (LXRa) might influence risk of atherosclerosis, data in humans remain scarce. We tested the hypothesis that genetic variation in LXRa associates with risk of ischemic vascular disease and/or plasma lipid and lipoprotein levels in the ge......Although animal studies indicate that liver X receptor alpha (LXRa) might influence risk of atherosclerosis, data in humans remain scarce. We tested the hypothesis that genetic variation in LXRa associates with risk of ischemic vascular disease and/or plasma lipid and lipoprotein levels...... in the general population....

  12. Pattern of somatostatin receptors expression in normal and bladder cancer tissue samples.

    Science.gov (United States)

    Karavitakis, Markos; Msaouel, Pavlos; Michalopoulos, Vassilis; Koutsilieris, Michael

    2014-06-01

    Known risks factors for bladder cancer progression and recurrence are limited regarding their prognostic ability. Therefore identification of molecular determinants of disease progression could provide with more specific prognostic information and could be translated into new approaches for biomarker development. In the present study we evaluated, the expression patterns of somatostatin receptors 1-5 (SSTRs) in normal and tumor bladder tissues. The expression of SSTR1-5 was characterized in 45 normal and bladder cancer tissue samples using reverse transcriptase-polymerase chain reaction (RT-PCR). SSTR1 was expressed in 24 samples, SSTR2 in 15, SSTR3 in 23, SSTR4 in 16 and SSTR5 in all but one sample. Bladder cancer tissue samples expressed lower levels of SSTR3. Co-expression of SSTRs was associated with superficial disease. Our results demonstrate, for the first time, that there is expression of SSTR in normal and bladder cancer urothelium. Further studies are required to evaluate the prognostic and therapeutic significance of these findings. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  13. The biology of PCSK9 from the endoplasmic reticulum to lysosomes: new and emerging therapeutics to control low-density lipoprotein cholesterol

    Directory of Open Access Journals (Sweden)

    Poirier S

    2013-10-01

    Full Text Available Steve Poirier,1,2 Gaétan Mayer1–31Laboratory of Molecular Cell Biology, Montreal Heart Institute, Montréal, QC, Canada; 2Départements de Pharmacologie, 3Médecine, Faculté de Médecine, Université de Montréal, Montréal, QC, CanadaAbstract: Proprotein convertase subtilisin/kexin type 9 (PCSK9 directly binds to the epidermal growth factor-like repeat A domain of low-density lipoprotein receptor and induces its degradation, thereby controlling circulating low-density lipoprotein cholesterol (LDL-C concentration. Heterozygous loss-of-function mutations in PCSK9 can decrease the incidence of coronary heart disease by up to 88%, owing to lifelong reduction of LDL-C. Moreover, two subjects with PCSK9 loss-of-function mutations on both alleles, resulting in a total absence of functional PCSK9, were found to have extremely low circulating LDL-C levels without other apparent abnormalities. Accordingly, PCSK9 could represent a safe and effective pharmacological target to increase clearance of LDL-C and to reduce the risk of coronary heart disease. Recent clinical trials using anti-PCSK9 monoclonal antibodies that block the PCSK9:low-density lipoprotein receptor interaction were shown to considerably reduce LDL-C levels by up to 65% when given alone and by up to 72% in patients already receiving statin therapy. In this review, we will discuss how major scientific breakthroughs in PCSK9 cell biology have led to the development of new and forthcoming LDL-C-lowering pharmacological agents.Keywords: PCSK9, LDLR, LDL-cholesterol, lipoproteins, coronary heart disease, inhibitors, monoclonal antibody therapy

  14. Cholesterol synthesis by human fetal hepatocytes: effect of lipoproteins

    International Nuclear Information System (INIS)

    Carr, B.R.; Simpson, E.R.

    1984-01-01

    The purpose of the present investigation was to determine the effect of various lipoproteins on the rate of cholesterol synthesis of human fetal liver cells maintained in culture. This was accomplished by measuring the rate of incorporation of tritium from tritiated water or carbon 14-labeled acetate into cholesterol in human fetal liver cells. Optimal conditions for each assay were determined. When human fetal liver cells were maintained in the presence of low-density lipoprotein, cholesterol synthesis was inhibited in a concentration-dependent fashion. Intermediate--density lipoprotein and very-low-density lipoprotein also suppressed cholesterol synthesis in human fetal liver cells. In contrast, high-density lipoprotein stimulated cholesterol synthesis in human fetal liver cells. The results of the present as well as our previous investigations suggest that multiple interrelationships exist between fetal liver cholesterol synthesis and lipoprotein-cholesterol utilization by the human fetal adrenal gland and that these processes serve to regulate the lipoprotein-cholesterol levels in fetal plasma

  15. Modified Lipids and Lipoproteins in Chronic Kidney Disease: A New Class of Uremic Toxins.

    Science.gov (United States)

    Florens, Nans; Calzada, Catherine; Lyasko, Egor; Juillard, Laurent; Soulage, Christophe O

    2016-12-16

    Chronic kidney disease (CKD) is associated with an enhanced oxidative stress and deep modifications in lipid and lipoprotein metabolism. First, many oxidized lipids accumulate in CKD and were shown to exert toxic effects on cells and tissues. These lipids are known to interfere with many cell functions and to be pro-apoptotic and pro-inflammatory, especially in the cardiovascular system. Some, like F2-isoprostanes, are directly correlated with CKD progression. Their accumulation, added to their noxious effects, rendered their nomination as uremic toxins credible. Similarly, lipoproteins are deeply altered by CKD modifications, either in their metabolism or composition. These impairments lead to impaired effects of HDL on their normal effectors and may strongly participate in accelerated atherosclerosis and failure of statins in end-stage renal disease patients. This review describes the impact of oxidized lipids and other modifications in the natural history of CKD and its complications. Moreover, this review focuses on the modifications of lipoproteins and their impact on the emergence of cardiovascular diseases in CKD as well as the appropriateness of considering them as actual mediators of uremic toxicity.

  16. 21 CFR 862.1475 - Lipoprotein test system.

    Science.gov (United States)

    2010-04-01

    ... measure lipoprotein in serum and plasma. Lipoprotein measurements are used in the diagnosis and treatment of lipid disorders (such as diabetes mellitus), atherosclerosis, and various liver and renal diseases...

  17. Human placenta secretes apolipoprotein B-100-containing lipoproteins

    DEFF Research Database (Denmark)

    Munk-Madsen, Eva; Lindegaard, Marie Louise Skakkebæk; Andersen, Claus B

    2004-01-01

    Supply of lipids from the mother is essential for fetal growth and development. In mice, disruption of yolk sac cell secretion of apolipoprotein (apo) B-containing lipoproteins results in embryonic lethality. In humans, the yolk sac is vestigial. Nutritional functions are instead established very...... lipoproteins secreted from placental tissue showed spherical particles with a diameter of 47 +/- 10 nm. These results demonstrate that human placenta expresses both apoB and MTP and consequently synthesize and secrete apoB-100-containing lipoproteins. Placental lipoprotein formation constitutes a novel pathway...

  18. Aerosol preparation of intact lipoproteins

    Science.gov (United States)

    Benner, W Henry [Danville, CA; Krauss, Ronald M [Berkeley, CA; Blanche, Patricia J [Berkeley, CA

    2012-01-17

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  19. Ion mobility analysis of lipoproteins

    Science.gov (United States)

    Benner, W. Henry; Krauss, Ronald M.; Blanche, Patricia J.

    2007-08-21

    A medical diagnostic method and instrumentation system for analyzing noncovalently bonded agglomerated biological particles is described. The method and system comprises: a method of preparation for the biological particles; an electrospray generator; an alpha particle radiation source; a differential mobility analyzer; a particle counter; and data acquisition and analysis means. The medical device is useful for the assessment of human diseases, such as cardiac disease risk and hyperlipidemia, by rapid quantitative analysis of lipoprotein fraction densities. Initially, purification procedures are described to reduce an initial blood sample to an analytical input to the instrument. The measured sizes from the analytical sample are correlated with densities, resulting in a spectrum of lipoprotein densities. The lipoprotein density distribution can then be used to characterize cardiac and other lipid-related health risks.

  20. Differential expression of oestrogen receptor isoforms and androgen receptor in the normal vulva and vagina compared with vulval lichen sclerosus and chronic vaginitis.

    Science.gov (United States)

    Taylor, A H; Guzail, M; Al-Azzawi, F

    2008-02-01

    Although the expression of the oestrogen receptor (ER) alpha isoform and androgen receptor (AR) has been examined in vulval lichen sclerosus (VLS), the distribution pattern of ERalpha, ERbeta and AR has not been described in chronic atrophic vaginitis nor correlated with markers of proliferation (Ki-67) in either of these diseased tissues. To measure the levels and distribution of ERalpha, ERbeta and AR immunoreactivity in relation to Ki-67 in normal and diseased vulva and vagina. The expression of ERalpha, ERbeta and AR in relation to the proliferation marker Ki-67 in VLS, squamous hyperplasia of the vulva and chronic atrophic vaginitis was determined by immunohistomorphometric analysis and compared with that in normal vulva and vagina. VLS showed similar ERalpha and ERbeta expression in the 'epidermal' and 'dermal' tissue layers to that of normal vulvae, whereas AR expression appeared to be absent in most cases. ERbeta and Ki-67 expression was correlated with ERalpha expression but only in the 'fibrovascular' layer of the vulva. ERalpha expression was absent from the 'fibromuscular' layer of diseased vulvae, while ERbeta expression was absent in normal tissues but was highly expressed in diseased vulvae. ERalpha expression was significantly correlated with AR expression in the fibrovascular layer of the vagina and inversely correlated with Ki-67 staining in the parabasal cells of the epidermis in patients with chronic atrophic vaginitis. These data suggest that ER expression and levels may be implicated in the aetiopathology of VLS and chronic atrophic vaginitis.

  1. Genetics of Lipid and Lipoprotein Disorders and Traits.

    Science.gov (United States)

    Dron, Jacqueline S; Hegele, Robert A

    2016-01-01

    Plasma lipids, namely cholesterol and triglyceride, and lipoproteins, such as low-density lipoprotein (LDL) and high-density lipoprotein, serve numerous physiological roles. Perturbed levels of these traits underlie monogenic dyslipidemias, a diverse group of multisystem disorders. We are on the verge of having a relatively complete picture of the human dyslipidemias and their components. Recent advances in genetics of plasma lipids and lipoproteins include the following: (1) expanding the range of genes causing monogenic dyslipidemias, particularly elevated LDL cholesterol; (2) appreciating the role of polygenic effects in such traits as familial hypercholesterolemia and combined hyperlipidemia; (3) accumulating a list of common variants that determine plasma lipids and lipoproteins; (4) applying exome sequencing to identify collections of rare variants determining plasma lipids and lipoproteins that via Mendelian randomization have also implicated gene products such as NPC1L1 , APOC3 , LDLR , APOA5 , and ANGPTL4 as causal for atherosclerotic cardiovascular disease; and (5) using naturally occurring genetic variation to identify new drug targets, including inhibitors of apolipoprotein (apo) C-III, apo(a), ANGPTL3, and ANGPTL4. Here, we compile this disparate range of data linking human genetic variation to plasma lipids and lipoproteins, providing a "one stop shop" for the interested reader.

  2. Heritability of Biomarkers of Oxidized Lipoproteins: Twin Pair Study.

    Science.gov (United States)

    Rao, Fangwen; Schork, Andrew J; Maihofer, Adam X; Nievergelt, Caroline M; Marcovina, Santica M; Miller, Elizabeth R; Witztum, Joseph L; O'Connor, Daniel T; Tsimikas, Sotirios

    2015-07-01

    To determine whether biomarkers of oxidized lipoproteins are genetically determined. Lipoprotein(a) (Lp[a]) is a heritable risk factor and carrier of oxidized phospholipids (OxPL). We measured oxidized phospholipids on apolipoprotein B-containing lipoproteins (OxPL-apoB), Lp(a), IgG, and IgM autoantibodies to malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes in 386 monozygotic and dizygotic twins to estimate trait heritability (h(2)) and determine specific genetic effects among traits. A genome-wide linkage study followed by genetic association was performed. The h(2) (scale: 0-1) for Lp(a) was 0.91±0.01 and for OxPL-apoB 0.87±0.02, which were higher than physiological, inflammatory, or lipid traits. h(2) of IgM malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes were 0.69±0.04, 0.67±0.05, and 0.80±0.03, respectively, and for IgG malondialdehyde-modified low-density lipoprotein, copper oxidized low-density lipoprotein, and apoB-immune complexes 0.62±0.05, 0.52±0.06, and 0.53±0.06, respectively. There was an inverse correlation between the major apo(a) isoform and OxPL-apoB (R=-0.49; Plipoprotein and copper oxidized low-density lipoprotein, and apoB-immune complexes. Sib-pair genetic linkage of the Lp(a) trait revealed that single nucleotide polymorphism rs10455872 was significantly associated with OxPL-apoB after adjusting for Lp(a). OxPL-apoB and other biomarkers of oxidized lipoproteins are highly heritable cardiovascular risk factors that suggest novel genetic origins of atherothrombosis. © 2015 American Heart Association, Inc.

  3. Isolation and characterization of human apolipoprotein M-containing lipoproteins

    DEFF Research Database (Denmark)

    Christoffersen, Christina; Nielsen, Lars Bo; Axler, Olof

    2006-01-01

    Apolipoprotein M (apoM) is a novel apolipoprotein with unknown function. In this study, we established a method for isolating apoM-containing lipoproteins and studied their composition and the effect of apoM on HDL function. ApoM-containing lipoproteins were isolated from human plasma...... with immunoaffinity chromatography and compared with lipoproteins lacking apoM. The apoM-containing lipoproteins were predominantly of HDL size; approximately 5% of the total HDL population contained apoM. Mass spectrometry showed that the apoM-containing lipoproteins also contained apoJ, apoA-I, apoA-II, apoC-I, apo...

  4. New Horizons for Lipoprotein ReceptorsCommunication by β-propellers

    DEFF Research Database (Denmark)

    Andersen, Olav Michael; Dagil, Robert; Kragelund, Birthe B

    2013-01-01

    , this dogma has transformed with the observation that β-propellers of some LRs actively engage in complex formation too. Based on an in-depth decomposition of current structures and sequences, we suggest that exploitation of the β-propellers as binding targets depends on receptor subgroups. In particular, we...

  5. Lipoprotein (a) Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... this page: https://medlineplus.gov/labtests/lipoproteinabloodtest.html Lipoprotein (a) Blood Test To use the sharing features ... this page, please enable JavaScript. What is a Lipoprotein (a) Blood Test? A lipoprotein (a) test measures ...

  6. Changes in lipoprotein kinetics associated with type 2 diabetes affect the distribution of lipopolysaccharides among lipoproteins.

    Science.gov (United States)

    Vergès, Bruno; Duvillard, Laurence; Lagrost, Laurent; Vachoux, Christelle; Garret, Céline; Bouyer, Karine; Courtney, Michael; Pomié, Céline; Burcelin, Rémy

    2014-07-01

    Lipopolysaccharides (LPSs) are inflammatory components of the outer membrane of Gram-negative bacteria and, in plasma, are mostly associated with lipoproteins. This association is thought to promote their catabolism while reducing their proinflammatory effects. Our aim was to determine the impact of lipoprotein kinetics on plasma LPS distribution and how it may affect patients with type 2 diabetes mellitus (T2DM). We performed a kinetic study in 30 individuals (16 T2DM patients, 14 controls) and analyzed the impact of changes in lipoprotein kinetics on LPS distribution among lipoproteins. Plasma LPS levels in T2DM patients were not different from those in controls, but LPS distribution in the two groups was different. Patients with T2DM had higher LPS-very low-density lipoprotein (VLDL; 31% ± 7% vs 22% ± 11%, P = .002), LPS-high-density lipoprotein (HDL; 29% ± 9% vs 19% ± 10%, P = .015), free (nonlipoprotein bound) LPS (10% ± 4% vs 7% ± 4%, P = .043) and lower LPS-low-density lipoprotein (LDL; 30% ± 13% vs 52% ± 16%, P = .001). In multivariable analysis, VLDL-LPS was associated with HDL-LPS (P < .0001); LDL-LPS was associated with VLDL-LPS (P = .004), and VLDL apolipoprotein (apo) B100 catabolism (P = .002); HDL-LPS was associated with free LPS (P < .0001) and VLDL-LPS (P = .033); free LPS was associated with HDL-LPS (P < .0001). In a patient featuring a dramatic decrease in VLDL catabolism due to apoA-V mutation, LDL-LPS was severely decreased (0.044 EU/mL vs 0.788 EU/mL in controls). The difference between T2DM patients and controls for LDL-LPS fraction was no longer significant after controlling for VLDL apoB100 total fractional catabolic rate. Our data suggest that in humans, free LPS transfers first to HDL and then to VLDL, whereas the LPS-bound LDL fraction is mainly derived from VLDL catabolism; the latter may hence represent a LPS catabolic pathway. T2DM patients show lower LDL-LPS secondary to reduced VLDL catabolism, which may represent an

  7. The Orphan Nuclear Receptor TR4 Is a Vitamin A-activated Nuclear Receptor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X. Edward; Suino-Powell, Kelly M.; Xu, Yong; Chan, Cee-Wah; Tanabe, Osamu; Kruse, Schoen W.; Reynolds, Ross; Engel, James Douglas; Xu, H. Eric (Michigan-Med); (Van Andel)

    2015-11-30

    Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

  8. In vitro biological efficacy of boronated low density lipoproteins for NCT

    International Nuclear Information System (INIS)

    Kahl, S.B.; Pate, D.; Laster, B.H.; Popenoe, E.A.; Fairchild, R.G.

    1992-01-01

    Low Density Lipoproteins (LDLs) are known to be internalized within the cell by receptor-mediated mechanisms. There is evidence that LDLs may be taken up avidly by tumor cells to provide cholesterol for the synthesis of cell membrane. Thus, the possibility exists that LDLs may provide an ideal vehicle for the transport of boron to tumor cells for Neutron Capture Therapy (NCT). A boronated analog of LDL has recently been synthesized for possible application in NCT. The analog was tested in cell culture for uptake and biological efficacy in the thermal neutron beam at the Brookhaven Medical Research Reactor (BMRR). It was found that boron concentrations ten times higher than that required for NCT were easily obtained, and that uptake data were constant with a receptor mediated binding mechanism. The measured intracellular concentration of ∼240 μg 10 B/g cells is significantly higher than that obtained with any other boron compound previously evaluated for possible clinical application

  9. Induction of bacterial lipoprotein tolerance is associated with suppression of toll-like receptor 2 expression.

    LENUS (Irish Health Repository)

    Wang, Jiang Huai

    2012-02-03

    Tolerance to bacterial cell wall components including lipopolysaccharide (LPS) may represent an essential regulatory mechanism during bacterial infection. Two members of the Toll-like receptor (TLR) family, TLR2 and TLR4, recognize the specific pattern of bacterial cell wall components. TLR4 has been found to be responsible for LPS tolerance. However, the role of TLR2 in bacterial lipoprotein (BLP) tolerance and LPS tolerance is unclear. Pretreatment of human THP-1 monocytic cells with a synthetic bacterial lipopeptide induced tolerance to a second BLP challenge with diminished tumor necrosis factor-alpha and interleukin-6 production, termed BLP tolerance. Furthermore, BLP-tolerized THP-1 cells no longer responded to LPS stimulation, indicating a cross-tolerance to LPS. Induction of BLP tolerance was CD14-independent, as THP-1 cells that lack membrane-bound CD14 developed tolerance both in serum-free conditions and in the presence of a specific CD14 blocking monoclonal antibody (MEM-18). Pre-exposure of THP-1 cells to BLP suppressed mitogen-activated protein kinase phosphorylation and nuclear factor-kappaB activation in response to subsequent BLP and LPS stimulation, which is comparable with that found in LPS-tolerized cells, indicating that BLP tolerance and LPS tolerance may share similar intracellular pathways. However, BLP strongly enhanced TLR2 expression in non-tolerized THP-1 cells, whereas LPS stimulation had no effect. Furthermore, a specific TLR2 blocking monoclonal antibody (2392) attenuated BLP-induced, but not LPS-induced, tumor necrosis factor-alpha and interleukin-6 production, indicating BLP rather than LPS as a ligand for TLR2 engagement and activation. More importantly, pretreatment of THP-1 cells with BLP strongly inhibited TLR2 activation in response to subsequent BLP stimulation. In contrast, LPS tolerance did not prevent BLP-induced TLR2 overexpression. These results demonstrate that BLP tolerance develops through down-regulation of TLR2

  10. Estrogen receptor alpha localization in the testes of men with normal spermatogenesis.

    Science.gov (United States)

    Filipiak, Eliza; Suliborska, Dagmara; Laszczynska, Maria; Walczak-Jedrzejowska, Renata; Oszukowska, Elzbieta; Marchlewska, Katarzyna; Kula, Krzysztof; Slowikowska-Hilczer, Jolanta

    2013-10-08

    It is known that estrogens act on the male reproductive tract by binding to estrogen receptors (ER) α and β. However, studies on ER localization in the human testis are discordant. The aim of this study was to investigate the localization of ERα in the testes of adult men with normal spermatogenesis. Semen analysis of ten adult men revealed azoospermia. FSH, LH and testosterone serum concentrations were within normal values, and the volume of the testes was normal, hence obstructive azoospermia was suspected. The tissues from testicular surgical biopsies were fixed in Bouin's fluid and embedded in paraffin. Assessments of the seminiferous epithelium (scoring 10 to -1), the number of Leydig cells (scoring 1 to 5), the areal fraction of intertubular space (IS), measurements of seminiferous tubule diameter, and the thickness of the tubular wall, were performed on microscopic sections. Immunohistochemical staining was applied with monoclonal antibodies against ERα. The mean spermatogenesis score was 10 points; IS - 30.6 ± 8.1%; seminiferous tubule diameter - 193.9 ± 19.4 μm; thickness of tubular wall - 7.44 ± 1.1 μm; number of Leydig cells - 1.6 ± 1.1 points. Immunohistochemical staining showed the localization of ERα to be in the Sertoli and Leydig cell cytoplasm, while ERα was absent in germ cells. The results of testicular tissue analysis confirmed its normal structure and normal, full spermatogenesis. The presence of ERα in Sertoli and Leydig cells in normal human testis demonstrated in this study suggests that estrogens may affect testicular function.

  11. Roles of the Protruding Loop of Factor B Essential for the Localization of Lipoproteins (LolB) in the Anchoring of Bacterial Triacylated Proteins to the Outer Membrane*

    Science.gov (United States)

    Hayashi, Yumi; Tsurumizu, Ryoji; Tsukahara, Jun; Takeda, Kazuki; Narita, Shin-ichiro; Mori, Makiko; Miki, Kunio; Tokuda, Hajime

    2014-01-01

    The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed. PMID:24569999

  12. Roles of the protruding loop of factor B essential for the localization of lipoproteins (LolB) in the anchoring of bacterial triacylated proteins to the outer membrane.

    Science.gov (United States)

    Hayashi, Yumi; Tsurumizu, Ryoji; Tsukahara, Jun; Takeda, Kazuki; Narita, Shin-ichiro; Mori, Makiko; Miki, Kunio; Tokuda, Hajime

    2014-04-11

    The Lol system comprising five Lol proteins, LolA through LolE, sorts Escherichia coli lipoproteins to outer membranes. The LolCDE complex, an ATP binding cassette transporter in inner membranes, releases outer membrane-specific lipoproteins in an ATP-dependent manner, causing formation of the LolA-lipoprotein complex in the periplasm. LolA transports lipoproteins through the periplasm to LolB on outer membranes. LolB is itself a lipoprotein anchored to outer membranes, although the membrane anchor is functionally dispensable. LolB then localizes lipoproteins to outer membranes through largely unknown mechanisms. The crystal structure of LolB is similar to that of LolA, and it possesses a hydrophobic cavity that accommodates acyl chains of lipoproteins. To elucidate the molecular function of LolB, a periplasmic version of LolB, mLolB, was mutagenized at various conserved residues. Despite the lack of acyl chains, most defective mutants were insoluble. However, a derivative with glutamate in place of leucine 68 was soluble and unable to localize lipoproteins to outer membranes. This leucine is present in a loop protruding from mLolB into an aqueous environment, and no analogous loop is present in LolA. Thus, leucine 68 was replaced with other residues. Replacement by acidic, but not hydrophobic, residues generated for the first time mLolB derivatives that can accept but cannot localize lipoproteins to outer membranes. Moreover, deletion of the leucine with neighboring residues impaired the lipoprotein receptor activity. Based on these observations, the roles of the protruding loop of LolB in the last step of lipoprotein sorting are discussed.

  13. Oxidized low-density lipoprotein in postmenopausal women

    DEFF Research Database (Denmark)

    Jankowski, Vera; Just, Alexander R; Pfeilschifter, Johannes

    2014-01-01

    BACKGROUND: Oxidized low-density lipoprotein (oxLDL) leads to atherosclerosis and cardiovascular disease, the most frequent causes of death worldwide. After menopause, lipid and lipoprotein metabolism changes and women are at greater risk of cardiovascular disease compared to fertile women. The aim.......10-0.43). Although intima-media thickness did not differ, postmenopausal women with serous oxLDL had more often atherosclerotic plaques compared to women without oxLDL (6/66 vs. 0/467; P lipoprotein, impaired glucose intolerance, and DBP were independently associated...... with the occurrence of oxLDL. If oxLDL was present, higher high-density lipoprotein and glucose intolerance were associated with higher concentrations of oxLDL. In contrast, higher blood urea concentrations were associated with lower concentrations of oxLDL. CONCLUSION: This study presents the prevalence...

  14. The Hypocholesterolemic Effect of Germinated Brown Rice Involves the Upregulation of the Apolipoprotein A1 and Low-Density Lipoprotein Receptor Genes

    Directory of Open Access Journals (Sweden)

    Mustapha Umar Imam

    2013-01-01

    Full Text Available Germinated brown rice (GBR is rich in bioactive compounds, which confer GBR with many functional properties. Evidence of its hypocholesterolemic effects is emerging, but the exact mechanisms of action and bioactive compounds involved have not been fully documented. Using type 2 diabetic rats, we studied the effects of white rice, GBR, and brown rice (BR on lipid profile and on the regulation of selected genes involved in cholesterol metabolism. Our results showed that the upregulation of apolipoprotein A1 and low-density lipoprotein receptor genes was involved in the hypocholesterolemic effects of GBR. Additionally, in vitro studies using HEPG2 cells showed that acylated steryl glycoside, gamma amino butyric acid, and oryzanol and phenolic extracts of GBR contribute to the nutrigenomic regulation of these genes. Transcriptional and nontranscriptional mechanisms are likely involved in the overall hypocholesterolemic effects of GBR suggesting that it may have an impact on the prevention and/or management of hypercholesterolemia due to a wide variety of metabolic perturbations. However, there is need to conduct long-term clinical trials to determine the clinical relevance of the hypocholesterolemic effects of GBR determined through animal studies.

  15. Novel mutations in scavenger receptor BI associated with high HDL cholesterol in humans

    NARCIS (Netherlands)

    Brunham, Liam R.; Tietjen, Ian; Bochem, Andrea E.; Singaraja, Roshni R.; Franchini, Patrick L.; Radomski, Chris; Mattice, Maryanne; Legendre, Annick; Hovingh, G. Kees; Kastelein, John J. P.; Hayden, Michael R.

    2011-01-01

    The scavenger receptor class B, member 1 (SR-BI), is a key cellular receptor for high-density lipoprotein (HDL) in mice, but its relevance to human physiology has not been well established. Recently a family was reported with a mutation in the gene encoding SR-BI and high HDL cholesterol (HDL-C).

  16. Activated α2 -Macroglobulin Induces Mesenchymal Cellular Migration Of Raw264.7 Cells Through Low-Density Lipoprotein Receptor-Related Protein 1.

    Science.gov (United States)

    Ferrer, Darío G; Dato, Virginia Actis; Fincati, Javier R Jaldín; Lorenc, Valeria E; Sánchez, María C; Chiabrando, Gustavo A

    2017-07-01

    Distinct modes of cell migration contribute to diverse types of cell movements. The mesenchymal mode is characterized by a multistep cycle of membrane protrusion, the formation of focal adhesion, and the stabilization at the leading edge associated with the degradation of extracellular matrix (ECM) components and with regulated extracellular proteolysis. Both α 2 -Macroglobulin (α 2 M) and its receptor, low density lipoprotein receptor-related protein 1 (LRP1), play important roles in inflammatory processes, by controlling the extracellular activity of several proteases. The binding of the active form of α 2 M (α 2 M*) to LRP1 can also activate different signaling pathways in macrophages, thus inducing extracellular matrix metalloproteinase-9 (MMP-9) activation and cellular proliferation. In the present study, we investigated whether the α 2 M*/LRP1 interaction induces cellular migration of the macrophage-derived cell line, Raw264.7. By using the wound-scratch migration assay and confocal microscopy, we demonstrate that α 2 M* induces LRP1-mediated mesenchymal cellular migration. This migration exhibits the production of enlarged cellular protrusions, MT1-MMP distribution to these leading edge protrusions, actin polymerization, focal adhesion formation, and increased intracellular LRP1/β1-integrin colocalization. Moreover, the presence of calphostin-C blocked the α 2 M*-stimulated cellular protrusions, suggesting that the PKC activation is involved in the cellular motility of Raw264.7 cells. These findings could constitute a therapeutic target for inflammatory processes with deleterious consequences for human health, such as rheumatoid arthritis, atherosclerosis and cancer. J. Cell. Biochem. 118: 1810-1818, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Identification of the receptor scavenging hemopexin-heme complexes

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Maniecki, Maciej B; Jacobsen, Christian

    2005-01-01

    and is suggested to facilitate cellular heme metabolism. Using a ligand-affinity approach, we purified the human hemopexin-heme receptor and identified it as the low-density lipoprotein receptor-related protein (LRP)/CD91, a receptor expressed in several cell types including macrophages, hepatocytes, neurons......, and syncytiotrophoblasts. Binding experiments, including Biacore analysis, showed that hemopexin-heme complex formation elicits the high receptor affinity. Uptake studies of radio-labeled hemopexin-heme complex in LRP/CD91-expressing COS cells and confocal microscopy of the cellular processing of fluorescent hemopexin......-heme complexes are removed by a receptor-mediated pathway showing striking similarities to the CD163-mediated haptoglobin-hemoglobin clearance in macrophages. Furthermore, the data indicate a hitherto unknown role of LRP/CD91 in inflammation....

  18. Inhibition of lectin-like oxidized low-density lipoprotein receptor-1 reduces cardiac fibroblast proliferation by suppressing GATA Binding Protein 4

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Liu, Ning-Ning; Liu, Wei-Hua; Zhang, Shuang-Wei; Zhang, Jing-Zhi; Li, Ai-Qun [Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Guangzhou Institute of Cardiovascular Disease, Guangzhou (China); Liu, Shi-Ming, E-mail: gzliushiming@126.com [Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Guangzhou Institute of Cardiovascular Disease, Guangzhou (China)

    2016-07-08

    Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and GATA Binding Protein 4 (GATA4) are important for the growth of cardiac fibroblasts (CFs). When deregulated, LOX-1 and GATA4 can cause cardiac remodeling. In the present study, we found novel evidence that GATA4 was required for the LOX-1 regulation of CF proliferation. The inhibition of LOX-1 by RNA interference LOX-1 lentivirus resulted in the loss of PI3K/Akt activation and GATA4 protein expression. The overexpression of LOX-1 by lentivirus rescued CF proliferation, PI3K/Akt activation, and GATA4 protein expression. Moreover, GATA4 overexpression enhanced CF proliferation with LOX-1 inhibition. We also found that the inhibition of PI3K/Akt activation by LY294002, a PI3K inhibitor, reduced cell proliferation and protein level of GATA4. In summary, GATA4 may play an important role in the LOX-1 and PI3K/Akt regulation of CF proliferation. -- Highlights: •GATA4 is regulated by LOX-1 signaling in CFs. •GATA4 is involved in LOX-1 regulating CF proliferation. •GATA4 is regulated by PI3K/Akt signaling in CFs.

  19. Determination of plasminogen/plasmin system components and indicators of lipoproteins oxidative modification under arterial hypertension

    Directory of Open Access Journals (Sweden)

    O. I. Yusova

    2018-02-01

    Full Text Available The present study was investigated of levels of oxidative modification of lipoproteins and content of plasminogen/plasmin system components – tissue-type plasminogen activator (t-PA and plasminogen activators inhibitor-1 (PAI-I, in patients with stage II arterial hypertension (AHT and resistant form. It was established that t-PA level in blood plasma of the patients is 2 times lower under stage II hypertension than normal and 2.5 times lower under resistant AHT. The inhibitor activity is 1.5 and 2 times higher consequently. It is concluded that patients with AHT have a decreased fibrinolytic potential, which can cause thrombotic states. Our evaluation showed a significant accumulation of products of lipid and protein oxidation, decrease of activity of antioxidant enzymes and changes of the activity of high density-lipoproteins-associated enzymes (decrease of paraoxonase-1 activity, increase of myeloperoxidase activity. Oxidized lipoproteins, t-PA and PAI-1 can be used as prognostic markers of development of complications and for evaluating the efficacy of therapy in patients with arterial hypertension.

  20. Antioxidant and Hypolipidemic Effects of Olive Oil in Normal and Diabetic Male Rats

    International Nuclear Information System (INIS)

    Alhazza, I. M.

    2007-01-01

    Diabetes mellitus manifests itself in a wide variety of complications and the symptoms of the disease are multifactorial. The lipid hydroperoxide level and lipid profile were investigated in plasma of normal and Alloxan-induced diabetic rats treated with olive oil for six weeks. Diabetic rats exhibited an increase in the levels of hydroperoxide, cholesterol, triglycerides and low density lipoprotein (LDL), and a decrease in the level of high density lipoprotein (HDL). The administration of olive oil showed a better profile in the lipid as well as decreases in the concentration of lipid hydroperoxides either in normal or diabetic rats. The results are discussed according to antioxidant property of olive oil. (author)

  1. Suppression of cholesterol synthesis in cultured fibroblasts from a patient with homozygous familial hypercholesterolemia by her own low density lipoprotein density fraction. A possible role of apolipoprotein E

    NARCIS (Netherlands)

    Havekes, L.; Vermeer, B.J.; Wit, E. de

    1980-01-01

    The suppression of cellular cholesterol synthesis by low density lipoprotein (LDL) from a normal and from a homozygous familial hypercholesterolemic subject was measured on normal fibroblasts and on fibroblasts derived from the same homozygous familial hypercholesterolemic patient. On normal

  2. Nicotinic receptor imaging with F-18 A85380 PET in Alzheimer's disease and normal ageing

    International Nuclear Information System (INIS)

    Bottlaender, M.; Maziere, B.; Pappata, S.; Dolle, F.; Rowe, C.; Tochon-Danguy, H.; Reutens, D.; Chan, G.; Woodward, M.

    2002-01-01

    Full text: Central nicotinic acetylcholine receptors (nAChR) mediate excitatory neurotransmission and contribute to a variety of brain functions including learning and memory. Post mortem studies in patients with Alzheimer's disease have revealed losses of nAChR from the neocortex and hippocampal formation with ligand binding studies showing a reduction of over 50% compared to normal elderly brains in the temporal cortex and hippocampus (Sabbagh 1998). This is consistent with the loss of cholinergic neurones that has been well documented in this condition. Nicotinic AChR are predominantly located presynaptically on the cholinergic neurones. Consequently the ability to image and quantify these receptors may provide a measure of cholinergic loss and therefore a test for the early diagnosis of Alzheimer's disease and for monitoring therapy designed' to preserve cholinergic neurones. Aging is known to effect nAChR (Hellstrom-Lindahl 2000) so this variable must be quantified and incorporated into analysis of the scans. Nicotinic receptors also have important modulatory effects on glutamate, dopamine, serotonin and noradrenaline release and profound receptor loss has been documented in Parkinson's disease and Diffuse Lewy Body disease in addition to AD. Abnormalities in the alpha 7 subtype have been reported in schizophrenia. Imaging studies of nAChR have been hampered by the lack of a suitable tracer for in-vivo imaging. Nicotine itself labelled with carbon-11 for PET imaging has been used but has been shown to reflect regional cerebral blood flow not nAChR due to high nonspecific binding (Nyback et al, 1994). Potent nAChR ligands such as Epibatidine have been very useful for in-vitro studies but are too toxic for routine human use due to strong activation of nAChR including those in the sympathetic ganglia (A3B4 subtype). Recently, the Abbott Laboratories developed A85380 (3-[2(S)-2- azetidinylmethoxyl]pyridine) an azetidine derivative of the 3-pyridyl ethers that has

  3. Structural studies on lipoprotein lipase

    International Nuclear Information System (INIS)

    Socorro, L.

    1985-01-01

    The structure of lipoprotein lipase is not known. The lack of information on its primary sequence has been due to the inability of preparing it in homogeneous and stable form. This research has focused on the structural characterization of lipoprotein lipase. The first approach taken was to develop a purification method using bovine milk and affinity chromatography on heparin-Sepharose. The protein obtained was a heterogeneous peak with the activity shifted towards the trailing edge fractions. These fractions only presented a 55 Kdalton band on polyacrylamide gel electrophoresis. Monoclonal antibodies against this band detected an endogenous, phenyl methane sulfonyl fluoride-sensitive protease responsible for the presence of lower molecular weight fragments. The second approach was to label the lipoprotein lipase with a radioactive, active site, directed probe. After incubation and affinity chromatography a complex [ 3 H]inhibitor enzyme was isolated with a stoichiometry of 1.00 +/- 0.2. The complex was digested with CNBr and the insoluble peptides at low ionic strength (>90% [ 3 H]dpm) were used for further purification. Differential extraction of the [ 3 H]-peptide, digestion with S. aureus V8 protease, and high performance liquid chromatography yielded a hexapeptide with a composition consistent with the consensus sequence of the active site peptides of many serine-esterase. This and the kinetic data imply this being the mechanism of action for lipoprotein lipase

  4. Intermittent hypoxia and hypercapnia induce pulmonary artery atherosclerosis and ventricular dysfunction in low density lipoprotein receptor deficient mice.

    Science.gov (United States)

    Douglas, Robert M; Bowden, Karen; Pattison, Jennifer; Peterson, Alexander B; Juliano, Joseph; Dalton, Nancy D; Gu, Yusu; Alvarez, Erika; Imamura, Toshihiro; Peterson, Kirk L; Witztum, Joseph L; Haddad, Gabriel G; Li, Andrew C

    2013-12-01

    Patients with obstructive sleep apnea, who experience episodic hypoxia and hypercapnia during sleep, often demonstrate increased inflammation, oxidative stress, and dyslipidemia. We hypothesized that sleep apnea patients would be predisposed to the development of atherosclerosis. To dissect the mechanisms involved, we developed an animal model in mice whereby we expose mice to intermittent hypoxia/hypercapnia (IHH) in normobaric environments. Two- to three-month-old low-density lipoprotein receptor deficient (Ldlr(-/-)) mice were fed a high-fat diet for 8 or 16 wk while being exposed to IHH for either 10 h/day or 24 h/day. Plasma lipid levels, pulmonary artery and aortic atherosclerotic lesions, and cardiac function were then assayed. Surprisingly, atherosclerosis in the aorta of IHH mice was similar compared with controls. However, in IHH mice, atherosclerosis was markedly increased in the trunk and proximal branches of the pulmonary artery of exposed mice; even though plasma cholesterol and triglycerides were lower than in controls. Hemodynamic analysis revealed that right ventricular maximum pressure and isovolumic relaxation constant were significantly increased in IHH exposed mice and left ventricular % fractional shortening was reduced. In conclusion, 1) Intermittent hypoxia/hypercapnia remarkably accelerated atherosclerotic lesions in the pulmonary artery of Ldlr(-/-) mice and 2) increased lesion formation in the pulmonary artery was associated with right and left ventricular dysfunction. These findings raise the possibility that patients with obstructive sleep apnea may be susceptible to atherosclerotic disease in the pulmonary vasculature, an observation that has not been previously recognized.

  5. Effects of gemfibrozil or simvastatin on apolipoprotein-B-containing lipoproteins, apolipoprotein-CIII and lipoprotein(a) in familial combined hyperlipidaemia

    NARCIS (Netherlands)

    Bredie, S. J.; Westerveld, H. T.; Knipscheer, H. C.; de Bruin, T. W.; Kastelein, J. J.; Stalenhoef, A. F.

    1996-01-01

    Familial combined hyperlipidaemia (FCH), characterized by elevated very-low-density lipoprotein (VLDL) and/or low-density lipoprotein (LDL), is associated with an increased prevalence of premature cardiovascular disease. Therefore, lipid-lowering is frequently indicated. We evaluated in a parallel,

  6. The 19?kDa Mycobacterium tuberculosis Lipoprotein (LpqH) Induces Macrophage Apoptosis through Extrinsic and Intrinsic Pathways: A Role for the Mitochondrial Apoptosis-Inducing Factor

    OpenAIRE

    S?nchez, Alejandro; Espinosa, Patricia; Garc?a, Teresa; Mancilla, Ra?l

    2012-01-01

    We describe the association of caspase-dependent and caspase-independent mechanisms in macrophage apoptosis induced by LpqH, a 19 kDa Mycobacterium tuberculosis lipoprotein. LpqH triggered TLR2 activation, with upregulation of death receptors and ligands, which was followed by a death receptor signaling cascade with activation of initiator caspase 8 and executioner caspase 3. In this caspase-mediated phase, mitochondrial factors were involved in loss of mitochondrial transmembrane potential (...

  7. Genetic Variant of the Scavenger Receptor BI in Humans

    NARCIS (Netherlands)

    Vergeer, Menno; Korporaal, Suzanne J. A.; Franssen, Remco; Meurs, Illiana; Out, Ruud; Hovingh, G. Kees; Hoekstra, Menno; Sierts, Jeroen A.; Dallinga-Thie, Geesje M.; Motazacker, Mohammad Mahdi; Holleboom, Adriaan G.; van Berkel, Theo J. C.; Kastelein, John J. P.; van Eck, Miranda; Kuivenhoven, Jan Albert

    2011-01-01

    BACKGROUND In mice, the scavenger receptor class B type I (SR-BI) is essential for the delivery of high-density lipoprotein (HDL) cholesterol to the liver and steroidogenic organs. Paradoxically, elevated HDL cholesterol levels are associated with increased atherosclerosis in SR-BI-knockout mice. It

  8. Genetic variant of the scavenger receptor BI in humans

    NARCIS (Netherlands)

    Vergeer, Menno; Korporaal, Suzanne J A; Franssen, Remco; Meurs, Illiana; Out, Ruud; Hovingh, G Kees; Hoekstra, Menno; Sierts, Jeroen A; Dallinga-Thie, Geesje M; Motazacker, Mohammad Mahdi; Holleboom, Adriaan G; Van Berkel, Theo J C; Kastelein, John J P; Van Eck, Miranda; Kuivenhoven, Jan Albert

    2011-01-01

    BACKGROUND: In mice, the scavenger receptor class B type I (SR-BI) is essential for the delivery of high-density lipoprotein (HDL) cholesterol to the liver and steroidogenic organs. Paradoxically, elevated HDL cholesterol levels are associated with increased atherosclerosis in SR-BI-knockout mice.

  9. Unusual xanthomas in a young patient with heterozygous familial hypercholesterolemia and type III hyperlipoproteinemia

    Energy Technology Data Exchange (ETDEWEB)

    Feussner, G.; Dobmeyer, J. [Univ. of Heidelberg (Germany); Nissen, H.; Hansen, T.S. [Odense Univ. Hospital (Denmark)

    1996-10-16

    We report on a 20-year-old man with the combination of two independent familial lipoprotein disorders: heterozygous familial hypercholesterolemia (FH) and type III hyperlipoproteinemia (HLP). Familial hypercholesterolemia was diagnosed by elevated total and low density lipoprotein cholesterol levels and family history. By denaturing gradient gel electrophoresis, DNA sequencing and restriction fragment length polymorphism analysis, a G{r_arrow}A splice donor mutation in intron 3 of the proband`s low density lipoprotein receptor gene was identified as the underlying molecular defect. This mutation was described previously as a receptor-negative founder mutation in Norway (FH-Elverum) and subsequently in 6 unrelated heterozygous English patients, creating a severe phenotype of familial hypercholesterolemia. Type III HLP was confirmed by homozygosity for apolipoprotein (apo) E2 and an elevated ratio of very low density lipoprotein cholesterol to serum triglycerides (0.40; normal ratio about 0.20). The patient has unusual flat xanthomas in the interdigital webs of the hands which are normally not found in either disease. These dermatological findings might therefore be indicative of the rare combination of both disorders of lipoprotein metabolism in one individual. 29 refs., 5 figs., 1 tab.

  10. Iodine-125-labeled lipoprotein lipase as a tool to detect and study spontaneous lipolysis in bovine milk

    International Nuclear Information System (INIS)

    Sundheim, G.; Bengtsson-Olivecrona, G.

    1986-01-01

    The distribution of lipoprotein lipase among cream, casein, and milk serum can be evaluated by addition of a trace amount of 125 I-labeled lipoprotein lipase to milk. Radioactive lipase was distributed in parallel to endogenous lipase under several conditions. In some milk samples, binding of lipase to cream increased when the milk was cooled. Correlation was good between bound labeled lipase and degree of cold-induced lipolysis in corresponding milk samples. Binding of lipase to cream or to casein was not saturable by addition of two-to threefold more lipase than is normally present in milk. In milk with a relatively high fraction of lipase bound to cream, a correspondingly lower fraction was associated with casein, whereas the fraction of lipase in milk serum was similar in all milk samples. Cold-induced binding of lipoprotein lipase to cream was not fully reversed when the milk was warmed again. Heparin released lipase from casein and increased the amount of lipase bound to cream after cooling

  11. Modified Lipids and Lipoproteins in Chronic Kidney Disease: A New Class of Uremic Toxins

    Directory of Open Access Journals (Sweden)

    Nans Florens

    2016-12-01

    Full Text Available Chronic kidney disease (CKD is associated with an enhanced oxidative stress and deep modifications in lipid and lipoprotein metabolism. First, many oxidized lipids accumulate in CKD and were shown to exert toxic effects on cells and tissues. These lipids are known to interfere with many cell functions and to be pro-apoptotic and pro-inflammatory, especially in the cardiovascular system. Some, like F2-isoprostanes, are directly correlated with CKD progression. Their accumulation, added to their noxious effects, rendered their nomination as uremic toxins credible. Similarly, lipoproteins are deeply altered by CKD modifications, either in their metabolism or composition. These impairments lead to impaired effects of HDL on their normal effectors and may strongly participate in accelerated atherosclerosis and failure of statins in end-stage renal disease patients. This review describes the impact of oxidized lipids and other modifications in the natural history of CKD and its complications. Moreover, this review focuses on the modifications of lipoproteins and their impact on the emergence of cardiovascular diseases in CKD as well as the appropriateness of considering them as actual mediators of uremic toxicity.

  12. Human Lipoproteins at Model Cell Membranes

    DEFF Research Database (Denmark)

    Browning, K L; Lind, T K; Maric, S

    2017-01-01

    High and low density lipoproteins (HDL and LDL) are thought to play vital roles in the onset and development of atherosclerosis; the biggest killer in the western world. Key issues of initial lipoprotein (LP) interactions at cellular membranes need to be addressed including LP deposition and lipid...... exchange. Here we present a protocol for monitoring the in situ kinetics of lipoprotein deposition and lipid exchange/removal at model cellular membranes using the non-invasive, surface sensitive methods of neutron reflection and quartz crystal microbalance with dissipation. For neutron reflection, lipid...... support the notion of HDL acting as the 'good' cholesterol, removing lipid material from lipid-loaded cells, whereas LDL acts as the 'bad' cholesterol, depositing lipid material into the vascular wall....

  13. Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase.

    Science.gov (United States)

    Reith, A D; Ellis, C; Lyman, S D; Anderson, D M; Williams, D E; Bernstein, A; Pawson, T

    1991-09-01

    Germline mutations at the Dominant White Spotting (W) and Steel (Sl) loci have provided conclusive genetic evidence that c-kit mediated signal transduction pathways are essential for normal mouse development. We have analysed the interactions of normal and mutant W/c-kit gene products with cytoplasmic signalling proteins, using transient c-kit expression assays in COS cells. In addition to the previously identified c-kit gene product (Kit+), a second normal Kit isoform (KitA+) containing an in-frame insertion, Gly-Asn-Asn-Lys, within the extracellular domain, was detected in murine mast cell cultures and mid-gestation placenta. Both Kit+ and KitA+ isoforms showed increased autophosphorylation and enhanced association with phosphatidylinositol (PI) 3' kinase and PLC gamma 1, when stimulated with recombinant soluble Steel factor. No association or increase in phosphorylation of GAP and two GAP-associated proteins, p62 and p190, was observed. The two isoforms had distinct activities in the absence of exogenous soluble Steel factor; Kit+, but not KitA+, showed constitutive tyrosine phosphorylation that was accompanied by a low constitutive level of association with PI-3' kinase and PLC gamma 1. Introduction of the point substitutions associated with W37 (Glu582----Lys) or W41 (Val831----Met) mutant alleles into c-kit expression constructs abolished (W37) or reduced (W41) the Steel factor-induced association of the Kit receptor with signalling proteins in a manner proportional to the overall severity of the corresponding W mutant phenotype. These data suggest a diversity of normal Kit signalling pathways and indicate that W mutant phenotypes result from primary defects in the Kit receptor that affect its interaction with cytoplasmic signalling proteins.

  14. Metabolism of cholesteryl esters of rat very low density lipoproteins.

    Science.gov (United States)

    Faergeman, O; Havel, R J

    1975-06-01

    Rat very low density lipoproteins (d smaller than 1.006), biologically labeled in esterified and free cholesterol, were obtained form serum 6 h after intravenous injection of particulate (3-H) cholesterol. When injected into recipient animals, the esterified cholesterol was cleared form plasma with a half-life of 5 min. After 15 min, 71% of the injected esterified (3-H) cholesterol had been taken up by the liver, where it was rapidly hydrolyzed. After 60 min only 3.3% of the amount injected had been transferred, via lipoproteins of intermediate density, to the low density lipoproteins of plasma (d 1.019-1.063). Both uptake in the liver and transfer to low density lipoproteins occurred without change of distribution of 3-H in the various cholesteryl esters. 3-H appearing in esterified cholesterol of high density lipoproteins (d greater than 1.063) was derived from esterification, presumably by lecithin: cholesterol acyltransferase, of simultaneously injected free (3-H) cholesterol. Content of free (3-H) cholesterol in the very low density lipoproteins used for injection could be reduced substantially by incubation with erythrocytes. This procedure, however, increased the rate of clearance of the lipoproteins after injection into recipient rats. These studies show that hepatic removal is the major catabolic pathway for cholesteryl esters of rat very low density lipoproteins and that transfer to low density lipoproteins occurs to only a minor extent.

  15. The Dual Role of Lipids of the Lipoproteins in Trumenba, a Self-Adjuvanting Vaccine Against Meningococcal Meningitis B Disease.

    Science.gov (United States)

    Luo, Yin; Friese, Olga V; Runnels, Herbert A; Khandke, Lakshmi; Zlotnick, Gary; Aulabaugh, Ann; Gore, Thomas; Vidunas, Eugene; Raso, Stephen W; Novikova, Elena; Byrne, Emilia; Schlittler, Michael; Stano, Donald; Dufield, Robert L; Kumar, Sandeep; Anderson, Annaliesa S; Jansen, Kathrin U; Rouse, Jason C

    2016-11-01

    Trumenba (bivalent rLP2086) is a vaccine licensed for the prevention of meningococcal meningitis disease caused by Neisseria meningitidis serogroup B (NmB) in individuals 10-25 years of age in the USA. The vaccine is composed of two factor H binding protein (fHbp) variants that were recombinantly expressed in Escherichia coli as native lipoproteins: rLP2086-A05 and rLP2086-B01. The vaccine was shown to induce potent bactericidal antibodies against a broad range of NmB isolates expressing fHbp that were different in sequence from the fHbp vaccine antigens. Here, we describe the characterization of the vaccine antigens including the elucidation of their structure which is characterized by two distinct motifs, the polypeptide domain and the N-terminal lipid moiety. In the vaccine formulation, the lipoproteins self-associate to form micelles driven by the hydrophobicity of the lipids and limited by the size of the folded polypeptides. The micelles help to increase the structural stability of the lipoproteins in the absence of bacterial cell walls. Analysis of the lipoproteins in Toll-like receptor (TLR) activation assays revealed their TLR2 agonist activity. This activity was lost with removal of the O-linked fatty acids, similar to removal of all lipids, demonstrating that this moiety plays an adjuvant role in immune activation. The thorough understanding of the structure and function of each moiety of the lipoproteins, as well as their relationship, lays the foundation for identifying critical parameters to guide vaccine development and manufacture.

  16. Prediction of lipoprotein signal peptides in Gram-negative bacteria.

    Science.gov (United States)

    Juncker, Agnieszka S; Willenbrock, Hanni; Von Heijne, Gunnar; Brunak, Søren; Nielsen, Henrik; Krogh, Anders

    2003-08-01

    A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions by the HMM agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/services/LipoP/.

  17. Quantification of Estrogen Receptor Expression in Normal Breast Tissue in Postmenopausal Women With Breast Cancer and Association With Tumor Subtypes.

    Science.gov (United States)

    Gulbahce, H Evin; Blair, Cindy K; Sweeney, Carol; Salama, Mohamed E

    2017-09-01

    Estrogen exposure is important in the pathogenesis of breast cancer and is a contributing risk factor. In this study we quantified estrogen receptor (ER) alpha expression in normal breast epithelium (NBR) in women with breast cancer and correlated it with breast cancer subtypes. Tissue microarrays were constructed from 204 breast cancer patients for whom normal breast tissue away from tumor was available. Slides stained with ER were scanned and expression in normal terminal duct lobular epithelium was quantitated using computer-assisted image analysis. ER expression in normal terminal duct lobular epithelium of postmenopausal women with breast cancer was significantly associated with estrogen and triple (estrogen, progesterone receptors, and HER2) negative phenotypes. Also increased age at diagnosis was significantly associated with ER expression in NBR. ER positivity in normal epithelium did not vary by tumor size, lymph node status, tumor grade, or stage. On the basis of quantitative image analysis, we confirm that ER expression in NBR increases with age in women with breast cancer, and report for the first time, a significant association between ER expression in NBR with ER-negative and triple-negative cancers in postmenopausal women.

  18. A 90 minute soccer match decreases triglyceride and low density lipoprotein but not high-density lipoprotein and cholesterol levels

    Directory of Open Access Journals (Sweden)

    Nader - Rahnama

    2009-11-01

    profiles, the lower rate of LDL, cholesterol and triglyceride as well as the higher level of HDL in players suggest a beneficial effect of regular soccer training on arthrosclerosis and perhaps on CHD risk as well.

  19. KEYWORDS: Coronary Heart Disease, Triglyceride, Cholesterol, Low-Density Lipoprotein, High-Density Lipoprotein, Soccer.
  20. Challenging the roles of CD44 and lipolysis stimulated lipoprotein receptor in conveying Clostridium perfringens iota toxin cytotoxicity in breast cancer.

    Science.gov (United States)

    Fagan-Solis, Katerina D; Reaves, Denise K; Rangel, M Cristina; Popoff, Michel R; Stiles, Bradley G; Fleming, Jodie M

    2014-07-02

    Translational exploration of bacterial toxins has come to the forefront of research given their potential as a chemotherapeutic tool. Studies in select tissues have demonstrated that Clostridium perfringens iota toxin binds to CD44 and lipolysis stimulated lipoprotein receptor (LSR) cell-surface proteins. We recently demonstrated that LSR expression correlates with estrogen receptor positive breast cancers and that LSR signaling directs aggressive, tumor-initiating cell behaviors. Herein, we identify the mechanisms of iota toxin cytotoxicity in a tissue-specific, breast cancer model with the ultimate goal of laying the foundation for using iota toxin as a targeted breast cancer therapy. In vitro model systems were used to determine the cytotoxic effect of iota toxin on breast cancer intrinsic subtypes. The use of overexpression and knockdown technologies confirmed the roles of LSR and CD44 in regulating iota toxin endocytosis and induction of cell death. Lastly, cytotoxicity assays were used to demonstrate the effect of iota toxin on a validated set of tamoxifen resistant breast cancer cell lines. Treatment of 14 breast cancer cell lines revealed that LSR+/CD44- lines were highly sensitive, LSR+/CD44+ lines were slightly sensitive, and LSR-/CD44+ lines were resistant to iota cytotoxicity. Reduction in LSR expression resulted in a significant decrease in toxin sensitivity; however, overexpression of CD44 conveyed toxin resistance. CD44 overexpression was correlated with decreased toxin-stimulated lysosome formation and decreased cytosolic levels of iota toxin. These findings indicated that expression of CD44 drives iota toxin resistance through inhibition of endocytosis in breast cancer cells, a role not previously defined for CD44. Moreover, tamoxifen-resistant breast cancer cells exhibited robust expression of LSR and were highly sensitive to iota-induced cytotoxicity. Collectively, these data are the first to show that iota toxin has the potential to be an

  21. Interrelationships between postprandial lipoprotein B:CIII particle changes and high-density lipoprotein subpopulation profiles in mixed hyperlipoproteinemia.

    Science.gov (United States)

    Saïdi, Y; Sich, D; Camproux, A; Egloff, M; Federspiel, M C; Gautier, V; Raisonnier, A; Turpin, G; Beucler, I

    1999-01-01

    We studied the relationships postprandially between triglyceride-rich lipoprotein (TRL) and high-density lipoprotein (HDL) in 11 mixed hyperlipoproteinemia (MHL) and 11 hypercholesterolemia (HCL) patients. The high and prolonged postprandial triglyceridemia response observed in MHL but not HCL patients was essentially dependent on very-low-density lipoprotein (VLDL) changes. This abnormal response was related to decreased lipoprotein lipase (LPL) activity (-48.7%, P<.01) in MHL compared with HCL subjects. Cholesteryl ester transfer protein (CETP) activity was postprandially enhanced only in MHL patients, and this elevation persisted in the late period (+19% at 12 hours, P<.05), sustaining the delayed enrichment of VLDL with cholesteryl ester (CE). The late postprandial period in MHL patients was also characterized by high levels of apolipoprotein B (apoB)-containing lipoproteins with apoCIII ([LpB:CIII] +36% at 12 hours, P<.01) and decreased levels of apoCIII contained in HDL ([LpCIII-HDL] -34% at 12 hours, P<.01), reflecting probably a defective return of apoCIII from TRL toward HDL. In MHL compared with HCL patients, decreased HDL2 levels were related to both HDL2b and HDL2a subpopulations (-57% and -49%, respectively, P<.01 for both) and decreased apoA-I levels (-53%, P<.01) were equally linked to decreased HDL2 with apoA-I only (LpA-I) and HDL2 with both apoA-I and apoA-II ([LpA-I:A-II] -55% and -52%, respectively, P<.01 for both). The significant inverse correlations between the postprandial magnitude of LpB:CIII and HDL2-LpA-I and HDL2b levels in MHL patients underline the close TRL-HDL interrelationships. Our findings indicate that TRL and HDL abnormalities evidenced at fasting were postprandially amplified, tightly interrelated, and persistent during the late fed period in mixed hyperlipidemia. Thus, these fasting abnormalities are likely postprandially originated and may constitute proatherogenic lipoprotein disorders additional to the HCL in MHL patients.

  1. Peroxisomal proliferator activated receptor-γ deficiency in a Canadian kindred with familial partial lipodystrophy type 3 (FPLD3

    Directory of Open Access Journals (Sweden)

    Cao Henian

    2006-01-01

    Full Text Available Abstract Background Familial partial lipodystrophy (Dunnigan type 3 (FPLD3, Mendelian Inheritance in Man [MIM] 604367 results from heterozygous mutations in PPARG encoding peroxisomal proliferator-activated receptor-γ. Both dominant-negative and haploinsufficiency mechanisms have been suggested for this condition. Methods We present a Canadian FPLD3 kindred with an affected mother who had loss of fat on arms and legs, but no increase in facial, neck, suprascapular or abdominal fat. She had profound insulin resistance, diabetes, severe hypertriglyceridemia and relapsing pancreatitis, while her pre-pubescent daughter had normal fat distribution but elevated plasma triglycerides and C-peptide and depressed high-density lipoprotein cholesterol. Results The mother and daughter were each heterozygous for PPARG nonsense mutation Y355X, whose protein product in vitro was transcriptionally inactive with no dominant-negative activity against the wild-type receptor. In addition the mutant protein appeared to be markedly unstable. Conclusion Taken together with previous studies of human PPARG mutations, these findings suggest that PPAR-γ deficiency due either to haploinsufficiency or to substantial activity loss due to dominant negative interference of the normal allele product's function can each contribute to the FPLD3 phenotype.

  2. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB.

    Science.gov (United States)

    Okuda, Suguru; Tokuda, Hajime

    2009-04-07

    Outer membrane-specific lipoproteins in Escherichia coli are released from the inner membrane by an ATP-binding cassette transporter, the LolCDE complex, which causes the formation of a soluble complex with a periplasmic molecular chaperone, LolA. LolA then transports lipoproteins to the outer membrane where an outer membrane receptor, LolB, incorporates lipoproteins into the outer membrane. The molecular mechanisms underlying the Lol-dependent lipoprotein sorting have been clarified in detail. However, it remained unclear how Lol factors interact with each other to conduct very efficient lipoprotein transfer in the periplasm where ATP is not available. To address this issue, a photo-reactive phenylalanine analogue, p-benzoyl-phenylalanine, was introduced at various positions of LolA and LolB, of which the overall structures are very similar and comprise an incomplete beta-barrel with a hydrophobic cavity inside. Cells expressing LolA or LolB derivatives containing the above analogue were irradiated with UV for in vivo photo-cross-linking. These analyses revealed a hot area in the same region of LolA and LolB, through which LolA and LolB interact with each other. This area is located at the entrance of the hydrophobic cavity. Moreover, this area in LolA is involved in the interaction with a membrane subunit, LolC, whereas no cross-linking occurs between LolA and the other membrane subunit, LolE, or ATP-binding subunit LolD, despite the structural similarity between LolC and LolE. The hydrophobic cavities of LolA and LolB were both found to bind lipoproteins inside. These results indicate that the transfer of lipoproteins through Lol proteins occurs in a mouth-to-mouth manner.

  3. Scavenger Receptor BI Plays a Role in Facilitating Chylomicron Metabolism

    NARCIS (Netherlands)

    Out, R.; Kruijt, J.K.; Rensen, P.C.N.; Hildebrand, R.B.; Vos, P. de; Eck, M. van; Berkel, T.J.C. van

    2004-01-01

    The function of scavenger receptor class B type I (SR-BI) in mediating the selective uptake of high density lipoprotein (HDL) cholesterol esters is well established. However, the potential role of SR-BI in chylomicron and chylomicron remnant metabolism is largely unknown. In the present

  4. One precursor, three apolipoproteins: the relationship between two crustacean lipoproteins, the large discoidal lipoprotein and the high density lipoprotein/β-glucan binding protein.

    Science.gov (United States)

    Stieb, Stefanie; Roth, Ziv; Dal Magro, Christina; Fischer, Sabine; Butz, Eric; Sagi, Amir; Khalaila, Isam; Lieb, Bernhard; Schenk, Sven; Hoeger, Ulrich

    2014-12-01

    The novel discoidal lipoprotein (dLp) recently detected in the crayfish, differs from other crustacean lipoproteins in its large size, apoprotein composition and high lipid binding capacity, We identified the dLp sequence by transcriptome analyses of the hepatopancreas and mass spectrometry. Further de novo assembly of the NGS data followed by BLAST searches using the sequence of the high density lipoprotein/1-glucan binding protein (HDL-BGBP) of Astacus leptodactylus as query revealed a putative precursor molecule with an open reading frame of 14.7 kb and a deduced primary structure of 4889 amino acids. The presence of an N-terminal lipid bind- ing domain and a DUF 1943 domain suggests the relationship with the large lipid transfer proteins. Two-putative dibasic furin cleavage sites were identified bordering the sequence of the HDL-BGBP. When subjected to mass spectroscopic analyses, tryptic peptides of the large apoprotein of dLp matched the N-terminal part of the precursor, while the peptides obtained for its small apoprotein matched the C-terminal part. Repeating the analysis in the prawn Macrobrachium rosenbergii revealed a similar protein with identical domain architecture suggesting that our findings do not represent an isolated instance. Our results indicate that the above three apolipoproteins (i.e HDL-BGBP and both the large and the small subunit of dLp) are translated as a large precursor. Cleavage at the furin type sites releases two subunits forming a heterodimeric dLP particle, while the remaining part forms an HDL-BGBP whose relationship with other lipoproteins as well as specific functions are yet to be elucidated.

  5. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease

    DEFF Research Database (Denmark)

    Zanoni, Paolo; Khetarpal, Sumeet A; Larach, Daniel B

    2016-01-01

    Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-...

  6. High-Density and Very-Low-Density Lipoprotein Have Opposing Roles in Regulating Tumor-Initiating Cells and Sensitivity to Radiation in Inflammatory Breast Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, Adam R. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Atkinson, Rachel L. [Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Reddy, Jay P. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Debeb, Bisrat G.; Larson, Richard; Li, Li [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Masuda, Hiroko; Brewer, Takae [Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Atkinson, Bradley J. [Department of Clinical Pharmacy Services, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Brewster, Abeena [Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ueno, Naoto T. [Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Woodward, Wendy A., E-mail: wwoodward@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2015-04-01

    Purpose: We previously demonstrated that cholesterol-lowering agents regulate radiation sensitivity of inflammatory breast cancer (IBC) cell lines in vitro and are associated with less radiation resistance among IBC patients who undergo postmastectomy radiation. We hypothesized that decreasing IBC cellular cholesterol induced by treatment with lipoproteins would increase radiation sensitivity. Here, we examined the impact of specific transporters of cholesterol (ie lipoproteins) on the responses of IBC cells to self-renewal and to radiation in vitro and on clinical outcomes in IBC patients. Methods and Materials: Two patient-derived IBC cell lines, SUM 149 and KPL4, were incubated with low-density lipoproteins (LDL), very-low-density lipoproteins (VLDL), or high-density lipoproteins (HDL) for 24 hours prior to irradiation (0-6 Gy) and mammosphere formation assay. Cholesterol panels were examined in a cohort of patients with primary IBC diagnosed between 1995 and 2011 at MD Anderson Cancer Center. Lipoprotein levels were then correlated to patient outcome, using the log rank statistical model, and examined in multivariate analysis using Cox regression. Results: VLDL increased and HDL decreased mammosphere formation compared to untreated SUM 149 and KPL4 cells. Survival curves showed enhancement of survival in both of the IBC cell lines when pretreated with VLDL and, conversely, radiation sensitization in all cell lines when pretreated with HDL. In IBC patients, higher VLDL values (>30 mg/dL) predicted a lower 5-year overall survival rate than normal values (hazard ratio [HR] = 1.9 [95% confidence interval [CI]: 1.05-3.45], P=.035). Lower-than-normal patient HDL values (<60 mg/dL) predicted a lower 5-year overall survival rate than values higher than 60 mg/dL (HR = 3.21 [95% CI: 1.25-8.27], P=.015). Conclusions: This study discovered a relationship among the plasma levels of lipoproteins, overall patient response, and radiation resistance in IBC patients

  7. High-Density and Very-Low-Density Lipoprotein Have Opposing Roles in Regulating Tumor-Initiating Cells and Sensitivity to Radiation in Inflammatory Breast Cancer

    International Nuclear Information System (INIS)

    Wolfe, Adam R.; Atkinson, Rachel L.; Reddy, Jay P.; Debeb, Bisrat G.; Larson, Richard; Li, Li; Masuda, Hiroko; Brewer, Takae; Atkinson, Bradley J.; Brewster, Abeena; Ueno, Naoto T.; Woodward, Wendy A.

    2015-01-01

    Purpose: We previously demonstrated that cholesterol-lowering agents regulate radiation sensitivity of inflammatory breast cancer (IBC) cell lines in vitro and are associated with less radiation resistance among IBC patients who undergo postmastectomy radiation. We hypothesized that decreasing IBC cellular cholesterol induced by treatment with lipoproteins would increase radiation sensitivity. Here, we examined the impact of specific transporters of cholesterol (ie lipoproteins) on the responses of IBC cells to self-renewal and to radiation in vitro and on clinical outcomes in IBC patients. Methods and Materials: Two patient-derived IBC cell lines, SUM 149 and KPL4, were incubated with low-density lipoproteins (LDL), very-low-density lipoproteins (VLDL), or high-density lipoproteins (HDL) for 24 hours prior to irradiation (0-6 Gy) and mammosphere formation assay. Cholesterol panels were examined in a cohort of patients with primary IBC diagnosed between 1995 and 2011 at MD Anderson Cancer Center. Lipoprotein levels were then correlated to patient outcome, using the log rank statistical model, and examined in multivariate analysis using Cox regression. Results: VLDL increased and HDL decreased mammosphere formation compared to untreated SUM 149 and KPL4 cells. Survival curves showed enhancement of survival in both of the IBC cell lines when pretreated with VLDL and, conversely, radiation sensitization in all cell lines when pretreated with HDL. In IBC patients, higher VLDL values (>30 mg/dL) predicted a lower 5-year overall survival rate than normal values (hazard ratio [HR] = 1.9 [95% confidence interval [CI]: 1.05-3.45], P=.035). Lower-than-normal patient HDL values (<60 mg/dL) predicted a lower 5-year overall survival rate than values higher than 60 mg/dL (HR = 3.21 [95% CI: 1.25-8.27], P=.015). Conclusions: This study discovered a relationship among the plasma levels of lipoproteins, overall patient response, and radiation resistance in IBC patients

  8. IS LIPOPROTEIN (A A PREDICTOR OF CORONARY ARTERY DISEASE SEVERITY?

    Directory of Open Access Journals (Sweden)

    Tayyebeh Miandoabi

    2010-12-01

    Full Text Available Abstract    INTRODUCTION: Studies on the association between the plasma concentration of lipoprotein (a and coronary heart disease (CHD have reported conflicting findings.    METHOD AND MATERIALS: The objective of the present study was to evaluate the association between serum levels of lipoprotein (a and ischemic heart disease as well as other cardiovascular risk factors in a population-based study. Lipoprotein (a serum was measured in 142 patients with chronic stable angina undergoing clinically indicated coronary angiography. Lipid profile, fasting blood glucose, anthropometric and clinical parameters were analyzed.    RESULTS: Lipoprotein (a levels were significantly associated with coronary artery stenosis in men, but not in women. Also, an direct association between mean levels of lipoprotein (a and coronary artery stenosis in men younger than 55 years old and an inverse association in men older than 55 years old were observed.     CONCLUSION: Multivariate analysis revealed that lipoprotein (a was considered an independent predictor for severity of CAD in men, especially in younger ages.      Keywords: Lipoprotein (a, cardiovascular risk factors, Ischemic heart disease, coronary angiography.

  9. The Acylation State of Surface Lipoproteins of Mollicute Acholeplasma laidlawii*

    Science.gov (United States)

    Serebryakova, Marina V.; Demina, Irina A.; Galyamina, Maria A.; Kondratov, Ilya G.; Ladygina, Valentina G.; Govorun, Vadim M.

    2011-01-01

    Acylation of the N-terminal Cys residue is an essential, ubiquitous, and uniquely bacterial posttranslational modification that allows anchoring of proteins to the lipid membrane. In Gram-negative bacteria, acylation proceeds through three sequential steps requiring lipoprotein diacylglyceryltransferase, lipoprotein signal peptidase, and finally lipoprotein N-acyltransferase. The apparent lack of genes coding for recognizable homologs of lipoprotein N-acyltransferase in Gram-positive bacteria and Mollicutes suggests that the final step of the protein acylation process may be absent in these organisms. In this work, we monitored the acylation state of eight major lipoproteins of the mollicute Acholeplasma laidlawii using a combination of standard two-dimensional gel electrophoresis protein separation, blotting to nitrocellulose membranes, and MALDI-MS identification of modified N-terminal tryptic peptides. We show that for each A. laidlawii lipoprotein studied a third fatty acid in an amide linkage on the N-terminal Cys residue is present, whereas diacylated species were not detected. The result thus proves that A. laidlawii encodes a lipoprotein N-acyltransferase activity. We hypothesize that N-acyltransferases encoded by genes non-homologous to N-acyltransferases of Gram-negative bacteria are also present in other mollicutes and Gram-positive bacteria. PMID:21540185

  10. Bio F1B hamster: a unique animal model with reduced lipoprotein lipase activity to investigate nutrient mediated regulation of lipoprotein metabolism

    Directory of Open Access Journals (Sweden)

    Cornish Marion L

    2007-12-01

    Full Text Available Abstract Background Bio F1B hamster is an inbred hybrid strain that is highly susceptible to diet-induced atherosclerosis. We previously reported that feeding a high fat fish oil diet to Bio F1B hamster caused severe hyperlipidaemia. In this study we compared the effects of various diets in the Bio F1B hamster and the Golden Syrian hamster, which is an outbred hamster strain to investigate whether genetic background plays an important role in dietary fat mediated regulation of lipoprotein metabolism. We further investigated the mechanisms behind diet-induced hyperlipidaemia in F1B hamster. Methods The Bio F1B and Golden Syrian hamsters, 8 weeks old, were fed high fat diets rich in either monounsaturated fatty acids, an n-6: n-3 ratio of 5 or a fish oil diet for 4 weeks. Animals were fasted overnight and blood and tissue samples were collected. Plasma was fractionated into various lipoprotein fractions and assayed for triacylglycerol and cholesterol concentrations. Plasma lipoprotein lipase activity was measured using radioisotope method. Microsomal triglyceride transfer protein activity was measured in the liver and intestine. Plasma apolipoproteinB48, -B100 and apolipoprotein E was measured using Western blots. Two-way ANOVA was used to determine the effect of diet type and animal strain. Results The fish oil fed F1B hamsters showed milky plasma after a 14-hour fast. Fish oil feeding caused accumulation of apolipoproteinB48 containing lipoprotein particles suggesting hindrance of triglyceride-rich lipoprotein clearance. There was no significant effect of diet or strain on hepatic or intestinal microsomal triglyceride transfer protein activity indicating that hyperlipidaemia is not due to an increase in the assembly or secretion of lipoprotein particles. F1B hamsters showed significantly reduced levels of lipoprotein lipase activity, which was inhibited by fish oil feeding. Conclusion Evidence is presented for the first time that alterations in

  11. Intermittent hypoxia and hypercapnia induce pulmonary artery atherosclerosis and ventricular dysfunction in low density lipoprotein receptor deficient mice

    Science.gov (United States)

    Bowden, Karen; Pattison, Jennifer; Peterson, Alexander B.; Juliano, Joseph; Dalton, Nancy D.; Gu, Yusu; Alvarez, Erika; Imamura, Toshihiro; Peterson, Kirk L.; Witztum, Joseph L.; Haddad, Gabriel G.; Li, Andrew C.

    2013-01-01

    Patients with obstructive sleep apnea, who experience episodic hypoxia and hypercapnia during sleep, often demonstrate increased inflammation, oxidative stress, and dyslipidemia. We hypothesized that sleep apnea patients would be predisposed to the development of atherosclerosis. To dissect the mechanisms involved, we developed an animal model in mice whereby we expose mice to intermittent hypoxia/hypercapnia (IHH) in normobaric environments. Two- to three-month-old low-density lipoprotein receptor deficient (Ldlr−/−) mice were fed a high-fat diet for 8 or 16 wk while being exposed to IHH for either 10 h/day or 24 h/day. Plasma lipid levels, pulmonary artery and aortic atherosclerotic lesions, and cardiac function were then assayed. Surprisingly, atherosclerosis in the aorta of IHH mice was similar compared with controls. However, in IHH mice, atherosclerosis was markedly increased in the trunk and proximal branches of the pulmonary artery of exposed mice; even though plasma cholesterol and triglycerides were lower than in controls. Hemodynamic analysis revealed that right ventricular maximum pressure and isovolumic relaxation constant were significantly increased in IHH exposed mice and left ventricular % fractional shortening was reduced. In conclusion, 1) Intermittent hypoxia/hypercapnia remarkably accelerated atherosclerotic lesions in the pulmonary artery of Ldlr−/− mice and 2) increased lesion formation in the pulmonary artery was associated with right and left ventricular dysfunction. These findings raise the possibility that patients with obstructive sleep apnea may be susceptible to atherosclerotic disease in the pulmonary vasculature, an observation that has not been previously recognized. PMID:23990245

  12. Native High Density Lipoproteins (HDL Interfere with Platelet Activation Induced by Oxidized Low Density Lipoproteins (OxLDL

    Directory of Open Access Journals (Sweden)

    Ivo Volf

    2013-05-01

    Full Text Available Platelets and lipoproteins play a crucial role in atherogenesis, in part by their ability to modulate inflammation and oxidative stress. While oxidized low density lipoproteins (OxLDL play a central role in the development of this disease, high density lipoproteins (HDL represent an atheroprotective factor of utmost importance. As platelet function is remarkably sensitive to the influence of plasma lipoproteins, it was the aim of this study to clarify if HDL are able to counteract the stimulating effects of OxLDL with special emphasis on aspects of platelet function that are relevant to inflammation. Therefore, HDL were tested for their ability to interfere with pro-thrombotic and pro-inflammatory aspects of platelet function. We are able to show that HDL significantly impaired OxLDL-induced platelet aggregation and adhesion. In gel-filtered platelets, HDL decreased both the formation of reactive oxygen species and CD40L expression. Furthermore, HDL strongly interfered with OxLDL-induced formation of platelet-neutrophil aggregates in whole blood, suggesting that platelets represent a relevant and sensitive target for HDL. The finding that HDL effectively competed with the binding of OxLDL to the platelet surface might contribute to their atheroprotective and antithrombotic properties.

  13. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management

    DEFF Research Database (Denmark)

    Chapman, M John; Ginsberg, Henry N; Amarenco, Pierre

    2011-01-01

    Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high......-density lipoprotein cholesterol (HDL-C) as cardiovascular risk factors, and (ii) to advise on therapeutic strategies for management. Current evidence supports a causal association between elevated TRL and their remnants, low HDL-C, and cardiovascular risk. This interpretation is based on mechanistic and genetic...

  14. 21 CFR 866.5590 - Lipoprotein X immunolog-ical test system.

    Science.gov (United States)

    2010-04-01

    ... device that consists of the reagents used to measure by immunochemical techniques lipoprotein X (a high-density lipoprotein) in serum and other body fluids. Measurement of lipoprotein X aids in the diagnosis of obstructive liver disease. (b) Classification. Class I (general controls). The device is exempt from the...

  15. Insulin binding and stimulation of hexose and amino acid transport by normal and receptor-defective human fibroblasts

    International Nuclear Information System (INIS)

    Longo, N.; Nagata, N.; Danner, D.; Priest, J.; Elsas, L.

    1986-01-01

    The authors analyzed insulin receptors in cells cultured from a sibship of related parents who had two offspring with severe insulin resistance (Leprechaunism). 124 I-Insulin (1 ng/ml) binding to skin fibroblasts from the proband, mother, and father was 9, 60 and 62% of control cells, respectively, at equilibrium, Non-linear regression analysis, utilizing a two receptors model, of curvilinear Scatchard plots indicated a reduced number of high-affinity binding sites in both parents. Influx of L-Proline (System A), L-Serine (ASC) and L-Leucine (L) was similar in control and mutant cells. Similarly, during the depletion of intracellular amino acid pools, there was a release from transinhibition for System A and a decrease of transstimulation of Systems ASC and L in both cell lines. Surprisingly, insulin augmented, normally, A system influx with an ED 50 = 70 ng/ml at 24 0 C and 7 ng/ml at 37 0 C. By contrast insulin failed to simulated 3-0-methyl-D-glucose influx into the proband's cells, while normal cells were stimulated 30% with an ED 50 of 6 ng/ml. These results indicate that defective high-affinity insulin binding is inherited as an autosomal recessive trait; that general membrane functions are intact; that insulin regulates A system amino acid and hexose transport by two different mechanisms; and, that the latter mechanism is impaired by this family's receptor mutation

  16. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease

    Science.gov (United States)

    Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C l...

  17. Characterization of the Pseudomonas aeruginosa Lol system as a lipoprotein sorting mechanism.

    Science.gov (United States)

    Tanaka, Shin-Ya; Narita, Shin-Ichiro; Tokuda, Hajime

    2007-05-04

    Escherichia coli lipoproteins are localized to either the inner or the outer membrane depending on the residue that is present next to the N-terminal acylated Cys. Asp at position 2 causes the retention of lipoproteins in the inner membrane. In contrast, the accompanying study (9) revealed that the residues at positions 3 and 4 determine the membrane specificity of lipoproteins in Pseudomonas aeruginosa. Since the five Lol proteins involved in the sorting of E. coli lipoproteins are conserved in P. aeruginosa, we examined whether or not the Lol proteins of P. aeruginosa are also involved in lipoprotein sorting but utilize different signals. The genes encoding LolCDE, LolA, and LolB homologues were cloned and expressed. The LolCDE homologue thus purified was reconstituted into proteoliposomes with lipoproteins. When incubated in the presence of ATP and a LolA homologue, the reconstituted LolCDE homologue released lipoproteins, leading to the formation of a LolA-lipoprotein complex. Lipoproteins were then incorporated into the outer membrane depending on a LolB homologue. As revealed in vivo, lipoproteins with Lys and Ser at positions 3 and 4, respectively, remained in proteoliposomes. On the other hand, E. coli LolCDE released lipoproteins with this signal and transferred them to LolA of not only E. coli but also P. aeruginosa. These results indicate that Lol proteins are responsible for the sorting of lipoproteins to the outer membrane of P. aeruginosa, as in the case of E. coli, but respond differently to inner membrane retention signals.

  18. Plasma lipids, lipoproteins, and triglyceride turnover in eu- and hypo-thyroid rats and rats on a hypocaloric diet.

    Science.gov (United States)

    Dory, L; Krause, B R; Roheim, P S

    1981-08-01

    Lipid and lipoprotein concentration, and triglyceride turnover were studied in control, thyroidectomized, and pair-fed control rats (pair-fed to match the food intake of the thyroidectomized rats). Thyroidectomy induced a significant increase in plasma cholesterol (and low density lipoprotein) concentrations and a decrease in plasma triglyceride (and very low density lipoprotein) concentrations. Changes in similar direction but of smaller magnitude were observed in the plasma of the pair-fed control rats. To further investigate triglyceride metabolism in these three groups of animals, triglyceride turnover was studied in fasted, unrestrained, and unanesthetized rats, following injection of [2-3H]glycerol. Peak incorporation of [2-3H]glycerol into plasma triglyceride occurred in all three groups of animals at 25 min after precursor administration, although the maximal incorporation was substantially lower in the thyroidectomized group than in either of the control groups. Thereafter, plasma triglyceride radioactivity decayed monoexponentially with a half-life of 24 +/- 1 min for both normal and pair-fed control rats, compared with the half-life of 41 +/- 3 min observed in the thyroidectomized rats. The calculated apparent fractional catabolic rates were thus 0.029 min-1 for both control groups and only 0.017 min-1 for the thyroidectomized animals. The apparent total catabolic rates of plasma triglyceride were 299 +/- 11, 138 +/- 11, and 48 +/- 4 micrograms triglyceride . min-1 for the normal controls, pair-fed controls, and thyroidectomized rats, respectively. These data further emphasize the importance of thyroid hormones in regulating plasma lipid and lipoprotein metabolism and, specifically, indicate that hypothyroidism results in a reduction of triglyceride secretion into, and the removal from, circulation. Furthermore, evidence was presented that the decreased caloric intake of the hypothyroid animals cannot, in itself, account for this observation.

  19. Comparison of lipoprotein electrophoresis and apolipoprotein e genotyping in investigating dysbetalipoproteinemia

    International Nuclear Information System (INIS)

    Ahmed, F.; Kadiki, A.E.

    2017-01-01

    Dysbetalipoproteinemia is often associated with apolipoprotein E2E2 homozygosity; however, lipoprotein electrophoresis may also be used to assist in the diagnosis. The aim of this study was to compare apolipoprotein E (apo E) genotyping and lipoprotein electrophoresis in investigating dysbetalipoproteinemia. Data were collected over a three-year period from a lipid clinic in a tertiary referral centre and reviewed for apo E genotyping and lipoprotein electrophoresis. Sixty-two patients had both apo E genotyping and lipoprotein electrophoresis. Of these, 16 patients showed broad beta band on electrophoresis. However, only 3 of them had apo E2E2 homozygosity on genotyping. Lipoprotein electrophoresis and apo E genotyping results showed poor concordance. This was primarily due to visual interpretation error of lipoprotein electrophoresis which may over diagnose dysbetalipoproteinemia. (author)

  20. Comparison of Lipoprotein Electrophoresis and Apolipoprotein E Genotyping in Investigating Dysbetalipoproteinemia.

    Science.gov (United States)

    Ahmed, Farhan; El-Kadiki, Alia; Gibbons, Stephen

    2017-06-01

    Dysbetalipoproteinemia is often associated with apolipoprotein E2E2 homozygosity; however, lipoprotein electrophoresis may also be used to assist in the diagnosis. The aim of this study was to compare apolipoprotein E (apo E) genotyping and lipoprotein electrophoresis in investigating dysbetalipoproteinemia. Data were collected over a three-year period from a lipid clinic in a tertiary referral centre and reviewed for apo E genotyping and lipoprotein electrophoresis. Sixty-two patients had both apo E genotyping and lipoprotein electrophoresis. Of these, 16 patients showed broad beta band on electrophoresis. However, only 3 of them had apo E2E2 homozygosity on genotyping. Lipoprotein electrophoresis and apo E genotyping results showed poor concordance. This was primarily due to visual interpretation error of lipoprotein electrophoresis which may over diagnose dysbetalipoproteinemia.

  1. Scratching the surface: Regulation of cell surface receptors in cholesterol metabolism

    NARCIS (Netherlands)

    Nelson, J.K.

    2016-01-01

    Elevated plasma levels of low density lipoprotein cholesterol (LDL) are an established risk factor for the development of atherosclerosis and cardiovascular diseases. The LDL-Receptor is a key determinant in regulating LDL levels in plasma, and current lipid-lowering strategies aim to increase its

  2. Correlation between serum lipoproteins and abdominal fat pad in ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... Triglyceride, cholesterol and VLDL concentrations were positively correlated with ... negative correlation was observed between high-density lipoprotein and ... Abbreviations: HDL, High density lipoprotein; VLDL, very low.

  3. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management

    NARCIS (Netherlands)

    Chapman, M. John; Ginsberg, Henry N.; Amarenco, Pierre; Andreotti, Felicita; Borén, Jan; Catapano, Alberico L.; Descamps, Olivier S.; Fisher, Edward; Kovanen, Petri T.; Kuivenhoven, Jan Albert; Lesnik, Philippe; Masana, Luis; Nordestgaard, Børge G.; Ray, Kausik K.; Reiner, Zeljko; Taskinen, Marja-Riitta; Tokgözoglu, Lale; Tybjærg-Hansen, Anne; Watts, Gerald F.

    2011-01-01

    Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density

  4. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management

    DEFF Research Database (Denmark)

    Chapman, M John; Ginsberg, Henry N; Amarenco, Pierre

    2011-01-01

    Even at low-density lipoprotein cholesterol (LDL-C) goal, patients with cardiometabolic abnormalities remain at high risk of cardiovascular events. This paper aims (i) to critically appraise evidence for elevated levels of triglyceride-rich lipoproteins (TRLs) and low levels of high-density lipop...

  5. The effects of dietary fatty acids on the postprandial triglyceride-rich lipoprotein/apoB48 receptor axis in human monocyte/macrophage cells.

    Science.gov (United States)

    Varela, Lourdes M; Ortega-Gomez, Almudena; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G; Bermudez, Beatriz

    2013-12-01

    Intestinally produced triglyceride-rich lipoproteins (TRL) play an important role in the progression of atherosclerosis. In this study, we investigated the relevance of monounsaturated fatty acid (MUFA) and saturated fatty acid (SFA) in postprandial TRL in affecting the transcriptional activity of the apolipoprotein-B48 receptor (ApoB48R) and its functionality in human monocyte/macrophage cells. Healthy male volunteers were administered four standardized high-fat meals containing butter, high-palmitic sunflower oil, olive oil (ROO) or a mixture of vegetable and fish oils (50 g/m(2) body surface area) to obtain a panel of postprandial TRL with gradual MUFA oleic acid-to-SFA palmitic acid ratios. The increase in this ratio was linearly associated with a decrease of ApoB48R up-regulation and lipid accumulation in THP-1 and primary monocytes. ApoB48R mRNA levels and intracellular triglycerides were also lower in the monocytes from volunteers after the ingestion of the ROO meal when compared to the ingestion of the butter meal. In THP-1 macrophages, the increase in the MUFA oleic acid-to-SFA palmitic acid ratio in the postprandial TRL was linearly correlated with an increase in ApoB48R down-regulation and a decrease in lipid accumulation. We also revealed that the nuclear receptor transcription factors PPARα, PPARβ/δ, and PPARγ and the PPAR-RXR transcriptional complex were involved in sensing the proportion of MUFA oleic acid and SFA palmitic acid, and these were also involved in adjusting the transcriptional activity of ApoB48R. The results of this study support the notion that MUFA-rich dietary fats may prevent excessive lipid accumulation in monocyte/macrophage cells by targeting the postprandial TRL/ApoB48R axis. © 2013.

  6. Postprandial Hyperlipidemia and Remnant Lipoproteins.

    Science.gov (United States)

    Masuda, Daisaku; Yamashita, Shizuya

    2017-02-01

    Fasting hypertriglyceridemia is positively associated with the morbidity of coronary heart disease (CHD), and postprandial (non-fasting) hypertriglyceridemia is also correlated with the risk status for CHD, which is related to the increase in chylomicron (CM) remnant lipoproteins produced from the intestine. CM remnant particles, as well as oxidized low density lipoprotein (LDL) or very low density lipoprotein (VLDL) remnants, are highly atherogenic and act by enhancing systemic inflammation, platelet activation, coagulation, thrombus formation, and macrophage foam cell formation. The cholesterol levels of remnant lipoproteins significantly correlate with small, dense LDL; impaired glucose tolerance (IGT) and CHD prevalence. We have developed an assay of apolipoprotein (apo)B-48 levels to evaluate the accumulation of CM remnants. Fasting apoB-48 levels correlate with the morbidity of postprandial hypertriglyceridemia, obesity, type III hyperlipoproteinemia, the metabolic syndrome, hypothyroidism, chronic kidney disease, and IGT. Fasting apoB-48 levels also correlate with carotid intima-media thickening and CHD prevalence, and a high apoB-48 level is a significant predictor of CHD risk, independent of the fasting TG level. Diet interventions, such as dietary fibers, polyphenols, medium-chain fatty acids, diacylglycerol, and long-chain n-3 polyunsaturated fatty acids (PUFA), ameliorate postprandial hypertriglyceridemia, moreover, drugs for dyslipidemia (n-3 PUFA, statins, fibrates or ezetimibe) and diabetes concerning incretins (dipeptidyl-peptidase IV inhibitor or glucagon like peptide-1 analogue) may improve postprandial hypertriglyceridemia. Since the accumulation of CM remnants correlates to impaired lipid and glucose metabolism and atherosclerotic cardiovascular events, further studies are required to investigate the characteristics, physiological activities, and functions of CM remnants for the development of new interventions to reduce atherogenicity.

  7. Uptake of [3H]vitamin D3 from low and high density lipoproteins by cultured human fibroblasts

    International Nuclear Information System (INIS)

    Shireman, R.B.; Williams, D.; Remsen, J.F.

    1986-01-01

    The plasma distribution and cellular uptake of [ 3 H]vitamin D 3 was studied in vitro using cultured human fibroblasts. Incubation of [ 3 H]vitamin D 3 (cholecalciferol) with plasma followed by sequential ultracentrifugal fractionation of the lipoproteins indicated that 2-4% of the radioactivity associated with the very low density lipoprotein (VLDL), 12% with low density lipoprotein (LDL), and approximately 60% with the high density lipoprotein (HDL). The remaining radioactivity, 25%, was associated with the sedimented plasma fractions. By comparison, an average of 86% of the radioactivity from [ 3 H] 1,25-dihydroxycholecalciferol associated with the sedimented plasma fractions. The uptake of [ 3 H]vitamin D 3 from plasma, LDL, or HDL was studied in cultured human cells; uptake by normal fibroblasts was greatest from LDL and least from plasma. The cellular association of vitamin D 3 was time, concentration, and temperature dependent. At a concentration of 50 μg LDL/ml of medium, the uptake of [ 3 H]vitamin D 3 from LDL at 37 0 C was rapid and reached a maximum at approximately 4 hr; it was slower from HDL but continued to increase slowly up to 24 hr. The significance of these in vitro findings is uncertain since much of the vitamin D 3 absorbed from the intestine reportedly associates with chylomicrons and is rapidly taken up by the liver

  8. Epidermal growth factor receptor-induced activato protein 1 activity controls density-dependent growht inhibition in normal rat kidney fibroblasts.

    NARCIS (Netherlands)

    Hornberg, J.J.; Dekker, H.; Peters, P.H.J.; Langerak, P.; Westerhoff, H.V.; Lankelma, J.; Zoelen, E.J.J.

    2006-01-01

    Density-dependent growth inhibition secures tissue homeostasis. Dysfunction of the mechanisms, which regulate this type of growth control is a major cause of neoplasia. In confluent normal rat kidney (NRK) fibroblasts, epidermal growth factor (EGF) receptor levels decline, ultimately rendering these

  9. Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Ikuko, E-mail: nakamuri@riken.jp [RIKEN Center for Molecular Imaging Science, Kobe (Japan); Department of Cardiovascular Medicine, Saga University, Saga (Japan); Hasegawa, Koki [RIKEN Center for Molecular Imaging Science, Kobe (Japan); Department of Pathology and Experimental Medicine, Kumamoto University, Kumamoto (Japan); Wada, Yasuhiro [RIKEN Center for Molecular Imaging Science, Kobe (Japan); Hirase, Tetsuaki; Node, Koichi [Department of Cardiovascular Medicine, Saga University, Saga (Japan); Watanabe, Yasuyoshi, E-mail: yywata@riken.jp [RIKEN Center for Molecular Imaging Science, Kobe (Japan)

    2013-03-29

    Highlights: ► P-selectin regulates leukocyte recruitment as an early stage event of atherogenesis. ► We developed an antibody-based molecular imaging probe targeting P-selectin for PET. ► This is the first report on successful PET imaging for delineation of P-selectin. ► P-selectin is a candidate target for atherosclerotic plaque imaging by clinical PET. -- Abstract: Background: Sensitive detection and qualitative analysis of atherosclerotic plaques are in high demand in cardiovascular clinical settings. The leukocyte–endothelial interaction mediated by an adhesion molecule P-selectin participates in arterial wall inflammation and atherosclerosis. Methods and results: A {sup 64}Cu-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid conjugated anti-P-selectin monoclonal antibody ({sup 64}Cu-DOTA-anti-P-selectin mAb) probe was prepared by conjugating an anti-P-selectin monoclonal antibody with DOTA followed by {sup 64}Cu labeling. Thirty-six hours prior to PET and CT fusion imaging, 3 MBq of {sup 64}Cu-DOTA-anti-P-selectin mAb was intravenously injected into low density lipoprotein receptor-deficient Ldlr-/- mice. After a 180 min PET scan, autoradiography and biodistribution of {sup 64}Cu-DOTA-anti-P-selectin monoclonal antibody was examined using excised aortas. In Ldlr-/- mice fed with a high cholesterol diet for promotion of atherosclerotic plaque development, PET and CT fusion imaging revealed selective and prominent accumulation of the probe in the aortic root. Autoradiography of aortas that demonstrated probe uptake into atherosclerotic plaques was confirmed by Oil red O staining for lipid droplets. In Ldlr-/- mice fed with a chow diet to develop mild atherosclerotic plaques, probe accumulation was barely detectable in the aortic root on PET and CT fusion imaging. Probe biodistribution in aortas was 6.6-fold higher in Ldlr-/- mice fed with a high cholesterol diet than in those fed with a normal chow diet. {sup 64}Cu-DOTA-anti-P-selectin m

  10. Immune Response to Lipoproteins in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sonia Samson

    2012-01-01

    Full Text Available Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  11. Serum lipid and lipoprotein patterns of Iranian horses.

    Science.gov (United States)

    Asadi, F; Asadian, P; Shahriari, A; Pourkabir, M; Kazemi, A

    2011-12-01

    Patterns of serum biochemical parameters vary among horse breeds. The objective of the present study was to compare serum lipoproteins of Iranian Caspian ponies with those of other horses (Arabs and Thoroughbreds) in the Iranian region. Serum lipoprotein values were determined by agar-agarose gel electrophoresis and measured by scan densitometry. Moreover, serum triglyceride and cholesterol concentrations were determined and the results were analysed by one-way analysis of variance. Serum triglyceride and cholesterol values were 1.13 +/- 0.23 and 2.38 +/- 0.18 mmol/l in Caspian ponies, 1.96 +/- 0.49 and 1.92 +/- 0.25 mmol/l in Arab horses and 1.38 +/- 0.26 and 2.17 +/- 0.53 mmol/l in Thoroughbred horses. The relative percentages of alpha- (72.63 +/- 17.76%) and beta-lipoproteins (29.10 +/- 5.49%) in serum electrophoretic tracings from Caspian ponies were not significantly different from those of other horses (p > 0.05). The lipoprotein phenotype in Caspian ponies may be useful for evaluating metabolic diseases.

  12. The Influence of Decreased Levels of High Density Lipoprotein ...

    African Journals Online (AJOL)

    very low density lipoprotein cholesterol, and triglyceride were assayed. ... Abiodun and Gwarzo: Association of high density lipoprotein cholesterol with haemolysis in sickle cell disease ... analyses were carried out to determine the correlation.

  13. Association of the Lipoprotein Receptor SCARB1 Common Missense Variant rs4238001 with Incident Coronary Heart Disease.

    Directory of Open Access Journals (Sweden)

    Ani Manichaikul

    Full Text Available Previous studies in mice and humans have implicated the lipoprotein receptor SCARB1 in association with atherosclerosis and lipid levels. In the current study, we sought to examine association of SCARB1 missense single nucleotide polymorphism (SNP rs4238001 with incident coronary heart disease (CHD.Genotypes for rs4238001 were imputed for 2,319 White, 1,570 African American, and 1,292 Hispanic-American MESA participants using the 1,000 Genomes reference set. Cox proportional hazards models were used to determine association of rs4238001 with incident CHD, with adjustments for age, sex, study site, principal components of ancestry, body mass index, diabetes status, serum creatinine, lipid levels, hypertension status, education and smoking exposure. Meta-analysis across race/ethnic groups within MESA showed statistically significant association of the T allele with higher risk of CHD under a consistent and formally adjudicated definition of CHD events in this contemporary cohort study (hazard ratio [HR] = 1.49, 95% CI [1.04, 2.14], P = 0.028. Analyses combining MESA with additional population-based cohorts expanded our samples in Whites (total n = 11,957 with 871 CHD events and African Americans (total n = 5,962 with 355 CHD events and confirmed an increased risk of CHD overall (HR of 1.19 with 95% CI [1.04, 1.37], P = 0.013, in African Americans (HR of 1.49 with 95% CI [1.07, 2.06], P = 0.019, in males (HR of 1.29 with 95% CI [1.08, 1.54], P = 4.91 x 10(-3 and in White males (HR of 1.24 with 95% CI [1.03, 1.51], P = 0.026.SCARB1 missense rs4238001 is statistically significantly associated with incident CHD across a large population of multiple race/ethnic groups.

  14. Preparation and Characterization of Stable α-Synuclein Lipoprotein Particles.

    Science.gov (United States)

    Eichmann, Cédric; Campioni, Silvia; Kowal, Julia; Maslennikov, Innokentiy; Gerez, Juan; Liu, Xiaoxia; Verasdonck, Joeri; Nespovitaya, Nadezhda; Choe, Senyon; Meier, Beat H; Picotti, Paola; Rizo, Josep; Stahlberg, Henning; Riek, Roland

    2016-04-15

    Multiple neurodegenerative diseases are caused by the aggregation of the human α-Synuclein (α-Syn) protein. α-Syn possesses high structural plasticity and the capability of interacting with membranes. Both features are not only essential for its physiological function but also play a role in the aggregation process. Recently it has been proposed that α-Syn is able to form lipid-protein particles reminiscent of high-density lipoproteins. Here, we present a method to obtain a stable and homogeneous population of nanometer-sized particles composed of α-Syn and anionic phospholipids. These particles are called α-Syn lipoprotein (nano)particles to indicate their relationship to high-density lipoproteins formed by human apolipoproteins in vivo and of in vitro self-assembling phospholipid bilayer nanodiscs. Structural investigations of the α-Syn lipoprotein particles by circular dichroism (CD) and magic angle solid-state nuclear magnetic resonance (MAS SS-NMR) spectroscopy establish that α-Syn adopts a helical secondary structure within these particles. Based on cryo-electron microscopy (cryo-EM) and dynamic light scattering (DLS) α-Syn lipoprotein particles have a defined size with a diameter of ∼23 nm. Chemical cross-linking in combination with solution-state NMR and multiangle static light scattering (MALS) of α-Syn particles reveal a high-order protein-lipid entity composed of ∼8-10 α-Syn molecules. The close resemblance in size between cross-linked in vitro-derived α-Syn lipoprotein particles and a cross-linked species of endogenous α-Syn from SH-SY5Y human neuroblastoma cells indicates a potential functional relevance of α-Syn lipoprotein nanoparticles. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. In vitro studies on the distribution of probucol among human plasma lipoproteins

    International Nuclear Information System (INIS)

    Urien, S.; Riant, P.; Albengres, E.; Brioude, R.; Tillement, J.P.

    1984-01-01

    The role of human plasma lipoproteins as carriers in the blood transport of the cholesterol-lowering and water-insoluble drug, probucol, was investigated in in vitro studies. [ 14 C]Probucol was incubated in whole human blood, a serum pool, individual diluted sera, and isolated protein and lipoprotein fractions. In whole blood, about 90% partitioned in plasma. Following ultracentrifugal fractionation of the serum, it was found that less than 5% distributed in the d greater than 1.20 protein fraction (albumin-rich fraction) and more than 95% in the lipoprotein fractions. The distribution of probucol in the lipoprotein fractions correlated with the lipoprotein total lipid volume under saturation conditions (incubation of isolated lipoprotein fractions) as well as nonsaturation conditions (fractionation of serum exposed to [ 14 C]probucol). Incubation of the albumin-rich fraction and of apolipoproteins originating from the isolated lipoprotein fractions showed that they account for a negligible part in the interaction of probucol with blood components. The probucol uptake of individual sera was shown to be correlated to the lipid content of the serum. When probucol was incubated in erythrocyte suspensions containing variable amounts of lipoproteins, probucol partitioned less in erythrocytes as the lipoprotein concentration increased in the suspension

  16. Withdrawal from high-carbohydrate, high-saturated-fat diet changes saturated fat distribution and improves hepatic low-density-lipoprotein receptor expression to ameliorate metabolic syndrome in rats.

    Science.gov (United States)

    Hazarika, Ankita; Kalita, Himadri; Kalita, Mohan Chandra; Devi, Rajlakshmi

    2017-06-01

    The "lipid hypothesis" determined that saturated fatty acid (SFA) raises low-density lipoprotein cholesterol, thereby increasing the risk for metabolic syndrome (MetS). The aim of this study was to investigate the effect of subchronic withdrawal from a high-carbohydrate, high-saturated fat (HCHF) diet during MetS with reference to changes in deleterious SFA (C12:0, lauric acid; C14:0, myristic acid; C16:0, palmitic acid; C18:0, stearic acid) distribution in liver, white adipose tissue (WAT), and feces. MetS induced by prolonged feeding of an HCHF diet in Wistar albino rat is used as a model of human MetS. The MetS-induced rats were withdrawn from the HCHF diet and changed to a basal diet for final 4 wk of the total experimental duration of 16 wk. SFA distribution in target tissues and hepatic low-density lipoprotein receptor (LDLr) expression were analyzed. Analyses of changes in SFA concentration of target tissues indicate that C16:0 and C18:0 reduced in WAT and liver after withdrawal of the HCHF diet. There was a significant (P < 0.001) decrease in fecal C12:0 with HCHF feeding, which significantly (P < 0.01) increased after withdrawal of this diet. Also, an improvement in expression of hepatic LDLr was observed after withdrawal of HCHF diet. The prolonged consumption of an HCHF diet leads to increased SFA accumulation in liver and WAT, decreased SFA excretion, and reduced hepatic LDLr expression during MetS, which is prominently reversed after subchronic withdrawal of the HCHF diet. This can contribute to better understanding of the metabolic fate of dietary SFA during MetS and may apply to the potential reversal of complications by the simple approach of nutritional modification. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. The alpha-fetoprotein third domain receptor binding fragment: in search of scavenger and associated receptor targets.

    Science.gov (United States)

    Mizejewski, G J

    2015-01-01

    Recent studies have demonstrated that the carboxyterminal third domain of alpha-fetoprotein (AFP-CD) binds with various ligands and receptors. Reports within the last decade have established that AFP-CD contains a large fragment of amino acids that interact with several different receptor types. Using computer software specifically designed to identify protein-to-protein interaction at amino acid sequence docking sites, the computer searches identified several types of scavenger-associated receptors and their amino acid sequence locations on the AFP-CD polypeptide chain. The scavenger receptors (SRs) identified were CD36, CD163, Stabilin, SSC5D, SRB1 and SREC; the SR-associated receptors included the mannose, low-density lipoprotein receptors, the asialoglycoprotein receptor, and the receptor for advanced glycation endproducts (RAGE). Interestingly, some SR interaction sites were localized on the AFP-derived Growth Inhibitory Peptide (GIP) segment at amino acids #480-500. Following the detection studies, a structural subdomain analysis of both the receptor and the AFP-CD revealed the presence of epidermal growth factor (EGF) repeats, extracellular matrix-like protein regions, amino acid-rich motifs and dimerization subdomains. For the first time, it was reported that EGF-like sequence repeats were identified on each of the three domains of AFP. Thereafter, the localization of receptors on specific cell types were reviewed and their functions were discussed.

  18. Nonpharmacological lipoprotein apheresis reduces arterial inflammation in familial hypercholesterolemia

    NARCIS (Netherlands)

    van Wijk, Diederik F.; Sjouke, Barbara; Figueroa, Amparo; Emami, Hamed; van der Valk, Fleur M.; MacNabb, Megan H.; Hemphill, Linda C.; Schulte, Dominik M.; Koopman, Marion G.; Lobatto, Mark E.; Verberne, Hein J.; Fayad, Zahi A.; Kastelein, John J. P.; Mulder, Willem J. M.; Hovingh, G. Kees; Tawakol, Ahmed; Stroes, Erik S. G.

    2014-01-01

    Patients with familial hypercholesterolemia (FH) are characterized by elevated atherogenic lipoprotein particles, predominantly low-density lipoprotein cholesterol (LDL-C), which is associated with accelerated atherogenesis and increased cardiovascular risk. This study used (18)F-fluorodeoxyglucose

  19. [Relationship between Ghrelin polymorphism and serum lipoprotein levels in Han Chinese with or without coronary heart disease risk factors].

    Science.gov (United States)

    Xie, Xuan; Zhang, Jing; Wang, Yu-huan; Wang, Jun-hong; Zhang, Chun-hong; Ni, Hong-yan; Yuan, Xiao-hong

    2008-04-01

    To investigate the relationship between polymorphism of Ghrelin gene and serum levels of lipoprotein in Han Chinese with or without coronary heart disease (CHD) risk factors. PCR restriction fragment length polymorphism assay was used to detect the distribution of genotypes of Ghrelin gene in 225 Han Chinese (40 to 69 years-old) with CHD risk factors, 78 subjects without CHD risk factors served as normal controls. Serum levels of total cholesterol (TC), triglyceride (TG), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C) and very low-density lipoprotein (VLDL) were measured to analyze the relationship with the polymorphism of Ghrelin gene. Ghrelin genotype frequencies of AA, AG, GG (0.975, 0.025, 0.00 in control group and 0.956, 0.040, 0.004 in the high-risk group, all P > 0.05) as well as the allele frequencies of A, G (0.987, 0.013 in control group and 0.976, 0.024 in the high-risk group, all P > 0.05) were similar between the groups. HDL-C levels of the Arg/Gln carriers were significantly lower than those of Arg/Arg carriers in control group and in the high-risk group (all P < 0.05). Arg/Gln carriers were associated lower HDL-C levels in Han Chinese.

  20. The Journey of Lipoproteins Through the Cell: One Birthplace, Multiple Destinations.

    Science.gov (United States)

    Szewczyk, J; Collet, J-F

    2016-01-01

    Bacterial lipoproteins are a very diverse group of proteins characterized by the presence of an N-terminal lipid moiety that serves as a membrane anchor. Lipoproteins have a wide variety of crucial functions, ranging from envelope biogenesis to stress response. In Gram-negative bacteria, lipoproteins can be targeted to various destinations in the cell, including the periplasmic side of the cytoplasmic or outer membrane, the cell surface or the external milieu. The sorting mechanisms have been studied in detail in Escherichia coli, but exceptions to the rules established in this model bacterium exist in other bacteria. In this chapter, we will present the current knowledge on lipoprotein sorting in the cell. Our particular focus will be on the surface-exposed lipoproteins that appear to be much more common than previously assumed. We will discuss the different targeting strategies, provide numerous examples of surface-exposed lipoproteins and discuss the techniques used to assess their surface exposure. © 2016 Elsevier Ltd All rights reserved.

  1. Redefining the essential trafficking pathway for outer membrane lipoproteins

    OpenAIRE

    Grabowicz, Marcin; Silhavy, Thomas J.

    2017-01-01

    In Gram-negative bacteria, most lipoproteins synthesized in the inner membrane (IM) are trafficked to the outer membrane (OM). The Lol pathway is the trafficking paradigm: LolCDE releases lipoproteins from the IM; LolA shuttles them between membranes to LolB in the OM. Several OM lipoproteins are essential for viability. In apparent concordance, the Lol proteins are each essential in wild-type cells. However, we show that Escherichia coli grows well without LolA and LolB in the absence of one...

  2. Effect of the Composition of Infusion Media on the Blood Lipoprotein Profile in the Treatment of Gestosis

    Directory of Open Access Journals (Sweden)

    L. N. Shcherbakova

    2009-01-01

    Full Text Available Objective: to study whether reamberin and hydroxyethyl starch may be used to correct dyslipoproteinemia in gestosis. Subjects and methods: Twenty-two patients with early postoperative gestosis were examined. Group 1 patients (n=8 received the standard treatment. In addition to the standard treatment, Group 2 patients (n=7 were given 6% hydroxyethyl starch solution infusion at concentrations of 5-6 ml/kg body weight at a rate of 3 ml/ml. Just after hydroxyethyl starch infusion, Group 3 patients (n=7 were additionally injected 1.5% reamberin by the above scheme. The results of examinations were compared with the data obtained on examination of 8 puerperas after pregnancy and normal delivery (Group 4. The plasma concentration of triglycerides, total cholesterol (TC, and the cholesterols of high-density lipoprotein (HDL, low-density lipoprotein (LDL, and very low-density lipoprotein (VLDL were measured. Results and discussion. All the puerperas with gestosis were found to have hypertriglyceridemia and elevated levels of VLDL cholesterol with decreased concentrations of HDL cholesterol. The moderately higher levels of triglycerides and TC were also observed in patients without gestosis. Hydroxyethyl starch lowered the concentration of triglycerides by postpartum days 3—4. When hydroxyethyl starch was used in combination with reamberin, there was a significant reduction in the concentrations of triglycerides and VLDL and LDL cholesterols and a substantial rise in the level of HDL cholesterol. By postpartum days 3 and 4, Group 1 showed a considerable increase in the atherogenicity coefficient, which was significant as compared with the baseline level. Hydroxyethyl starch alone prevented an increase in the atherogenici-ty coefficient while its use in combination with reamberin significantly lowered this index and normalized it by postpartum days 3—4. Conclusion. Hydroxyethyl starch alone and in combination with reamberin shows an antiatherogenic

  3. Exposure to long wavelength ultraviolet radiation decreases processing of low density lipoprotein by cultured human fibroblasts

    International Nuclear Information System (INIS)

    Djavaheri-Mergny, M.; Santus, R.; Mora, L.; Maziere, J.C.; Faculte de Medecine Saint-Antoine, 75 -Paris; Maziere, C.; Auclair, M.; Dubertret, L.

    1993-01-01

    Exposure of MRC5 human fibroblasts to UVA radiation (365 nm) resulted in a dose-dependent decrease in low density lipoprotein (LDL) uptake and degradation by cells. Following a 25 J/cm 2 irradiation dose, about 45% and 70% reduction in 125 I-LDL uptake and degradation were observed, respectively. Under the same conditions, the 14 C-sucrose uptake was also decreased to about the same extent as LDL uptake. Cell pretreatment with the antioxidants vitamin E and vitamin C did not prevent the UVA-induced fall in LDL degradation. These results point to the possible effects of UVA radiation on receptor-mediated and nonspecific uptake of exogenous molecules. With special regard to the alterations in receptor-mediated processing of exogenous ligands, such a phenomenon could be of importance in UVA-induced skin degenerative processes. (Author)

  4. Blood lipid and lipoprotein profile of female athletes with respect to their jobs and nutrients intake.

    Science.gov (United States)

    Mazloom, Z; Salehi, M; Eftekhari, M H

    2008-01-01

    There is general believe that exercise may results in changes that likely reduce the risk of developing cardiovascular disease and may slow the progression of established coronary artery disease. Chronic cardiovascular training results in changes in lipoproteins and apolipoproteins that reflect adaptation to the increased metabolic demands imposed by frequent, vigorous exercise. Moreover, the alterations in lipoproteins vary according to level of physical conditioning and intensity of exercise. One hundred three pre-menopausal physically active women ages 20-50 years old which have been exercising for at least 6 months involve in this study. Upon entering the study subjects were asked to complete questionnaire, regarding personal health and diet history (24 h recall plus 7 days food frequency list). Total calorie intake, level of carbohydrate, protein and fat in the subjects' diet were analyzed. In addition the concentration of women's plasma triglycerides, total cholesterol, LDL-C and HDL-C were also measured and compared with normal value. The results of the present study showed that, the mean total caloric intake of women were 1812.54 kilocalories, where their carbohydrate, protein and fat intake were 67.28, 12.83 and 19.89% of their total calories, respectively. The average age, weight, height and Body Mass Index (BMI) of the women involved in the study were, 30.81+/-8.87 years, 57.85+/-7.79 kg, 160.32+/-5.36 cm and 22.53+/-2.82 kg m(-2), respectively. Plasma lipid and lipoprotein concentration of women were also in normal range with the lowest in those who exercise for more than one year and physical education teacher.

  5. Do receptors get pregnant too? Adrenergic receptor alterations in human pregnancy.

    Science.gov (United States)

    Smiley, R M; Finster, M

    1996-01-01

    In this review we discuss adrenergic receptor number and function during pregnancy, with emphasis on evidence that pregnancy results in specific receptor alterations from the nonpregnant state. Changes in adrenergic receptor function or distribution in vascular smooth muscle may be in part responsible for the decreased vascular responsiveness seen in human pregnancy, and the lack of the normal alterations may be a part of the syndromes of gestational hypertension, including preeclampsia-eclampsia. The onset of labor may be influenced by adrenergic modulation, and receptor or postreceptor level molecular alterations may trigger or facilitate normal or preterm labor. Human studies are emphasized when possible to assess the role of adrenergic signal transduction regulation in the physiology and pathophysiology of normal and complicated human pregnancy.

  6. The use of transgenic animals to study lipoprotein metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, E.M.; Plump, A.S.

    1993-12-01

    The application of transgenic technology to lipoprotein metabolism and atherosclerosis was first reported in 1988. Today, a large percentage of the genes involved in lipoprotein metabolism have been overexpressed in mice, and a substantial number of these same genes have been disrupted by homologous recombination in embryonic stem (ES) cells. The utility of animal models of lipoprotein metabolism and atherosclerosis is far-reaching given the complex nature of these systems. There are at least 17 known genes directly involved in lipoprotein metabolism and likely dozens more may be involved. This massive network of interacting factors has necessitated the development of in vivo systems which can be subject to genetic manipulation. The power of overexpression is obvious: elucidating function in a relatively controlled genetic environment in which the whole system is present and operational. The not-so-obvious problem with transgenics is ``background,`` or for purposes of the current discussion, the mouse`s own lipoprotein system. With the advent of gene knockout, we have been given the ability to overcome ``background.`` By recreating the genetic complement of the mouse we can alter a system in essentially any manner desired. As unique tools, and in combination with one another, the overexpression of foreign genes and the targeted disruption or alteration of endogenous genes has already and will continue to offer a wealth of information on the biology of lipoprotein metabolism and its effect on atherosclerosis susceptibility.

  7. Serum lipid and lipoprotein concentrations following exposure to ozone

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, W J; Adamson, G L; Lindgren, F T; Schooley, J.C.

    1984-07-01

    The effects of exposure to ozone (O/sub 3/) on concentrations of serum lipids and lipoproteins were investigated. Male and female guinea pigs were exposed to O/sub 3/ at 1 ppm for two weeks. Serum concentrations of cholesterol, triglycerides, low density (LDL) and very low density (VLDL) lipoproteins were elevated after O/sub 3/ exposure, particularly in males. During O/sub 3/ exposure the food intake per day decreased (for a constant body weight), suggesting that metabolic rate and possibly basal metabolic rate was lower. Lung wet weights increased during O/sub 3/ exposure by 87% for males and 45% for females. When individual lung weight/body weight ratios were correlated with cholesterol and LDL values from the same animal, a high correlation is found for males (r . 0.81, P less than 0.05), suggesting that there may be a relationship between lipoprotein elevations and lung damage for males. Because elevated concentrations of lipids and lipoproteins in humans increase the risk of coronary heart disease (CHD), the lipoprotein results suggest that an epidemiological study of the incidence of CHD with metropolitan O/sub 3/ levels may be warranted.

  8. Role of the multichain IL-2 receptor complex in the control of normal and malignant T-cell proliferation

    International Nuclear Information System (INIS)

    Waldmann, T.A.

    1987-01-01

    Antigen-induced activation of resting T-cells induces the synthesis of interleukin-2 (IL-2), as well as the expression of specific cell surface receptors for this lymphokine. There are at least two forms of the cellular receptors for IL-2, one with a very high affinity and the other with a lower affinity. The authors have identified two IL-2 binding peptides, a 55-kd peptide reactive with the anti-Tac monoclonal antibody, and a novel 75-kd non-Tac IL-2 binding peptide. Cell lines bearing either the p55, Tac, or the p75 peptide along manifested low-affinity IL-2 binding, whereas cell lines bearing both peptides manifested both high- and low-affinity receptors. Fusion of cell membranes from low-affinity IL-2 binding cells bearing the Tac peptide alone with membranes from a cell line bearing the p75 peptide alone generates hybrid membranes bearing high-affinity receptors. They propose a multichain model for the high-affinity IL-2 receptor in which both the Tac and the p75 IL-2 binding peptides are associated in a receptor complex. In contrast to resting T-cells, human T-cell lymphotropic virus I-associated adult T-cell leukemia cells constitutively express large numbers of IL-2 receptors. Because IL-2 receptors are present on the malignant T-cells but not on normal resting cells, clinical trials have been initiated in which patients with adult T-cell leukemia are being treated with either unmodified or toxin-conjugated forms of anti-Tac monoclonal antibody directed toward this growth factor receptor. Cross-linking studies were done using [ 125 I] IL-2

  9. Histamine type I (H1) receptor radioligand binding studies on normal T cell subsets, B cells, and monocytes

    International Nuclear Information System (INIS)

    Cameron, W.; Doyle, K.; Rocklin, R.E.

    1986-01-01

    A single, specific binding site for [ 3 H]pyrilamine on normal human T helper, T suppressor, B cells, and monocytes was documented. The binding of the radioligand to its receptor is reversible with cold H 1 antagonist, saturates at 40 to 60 nM, and binding equilibrium is achieved in 2 to 4 min. Using a computer program (Ligand), the authors calculated the dissociation constants, binding capacities, and numbers of receptors per cell for each of the different cell types. Monocytes were found to have the highest affinity for [ 3 H]pyrilamine, followed by T helper cells, B cells and T suppressor cells (K/sub D/ = 44.6 +/- 49.4 nM). T suppressor cells were found to express the higher number of H 1 receptors per cell followed by B cells, T helper cells, and monocytes. The binding affinity for [ 3 H]pyrilamine increased over a 48-hr period, whereas the number of receptors per T cell was essentially unchanged. In contrast, T cells stimulated with Con A or PHA were shown to have a greater than fourfold increase in the number of receptors per cell, whereas the binding affinity for [ 3 H]pyrilamine decreased over the 48-hr period. Although the function of H 1 receptors on T cells, B cells, and monocytes has not been completely defined, this receptor has the potential of playing an important role in the modulating the immune response

  10. Plasma Cholesteryl Ester Transfer, But Not Cholesterol Esterification, Is Related to Lipoprotein-Associated Phospholipase A(2) : Possible Contribution to an Atherogenic Lipoprotein Profile

    NARCIS (Netherlands)

    Dullaart, Robin P. F.; Constantinides, Alexander; Perton, Frank G.; van Leeuwen, Jeroen J. J.; van Pelt, Joost L.; de Vries, Rindert; van Tol, Arie

    Context: Plasma lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) predicts incident cardiovascular disease and is associated preferentially with negatively charged apolipoprotein B-containing lipoproteins. The plasma cholesteryl ester transfer (CET) process, which contributes to low high-density

  11. A Phospholipidomic Analysis of All Defined Human Plasma Lipoproteins

    NARCIS (Netherlands)

    Dashti, Monireh; Kulik, Willem; Hoek, Frans; Veerman, Enno C.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2011-01-01

    Since plasma lipoproteins contain both protein and phospholipid components, either may be involved in processes such as atherosclerosis. In this study the identification of plasma lipoprotein-associated phospholipids, which is essential for understanding these processes at the molecular level, are

  12. A phospholipidomic analysis of all defined human plasma lipoproteins

    NARCIS (Netherlands)

    Dashti, Monireh; Kulik, Willem; Hoek, Frans; Veerman, Enno C.; Peppelenbosch, Maikel P.; Rezaee, Farhad

    2011-01-01

    Since plasma lipoproteins contain both protein and phospholipid components, either may be involved in processes such as atherosclerosis. In this study the identification of plasma lipoprotein-associated phospholipids, which is essential for understanding these processes at the molecular level, are

  13. [Plasma lipoproteins as drug carriers. Effect of phospholipid formulations].

    Science.gov (United States)

    Torkhovskaia, T I; Ipatova, O M; Medvedeva, N V; Ivanov, V S; Ivanova, L I

    2010-01-01

    The extensive development of nanotechnologies in the last two decades has brought about new understanding of plasma lipoproteins (LP) as natural drug nanocarriers that escape interaction with immune and reticuloendothelial systems. Drugs bound to LP (especially LDL) can more actively penetrate into cells of many cancer and inflammation tissues with enhanced expression or/and dysregulation of B,E receptors or possibly scavenger SR-BI receptors. Relevant studies are focused on the development of new dosage forms by conjugating lipophilic drugs either with isolated plasma LP or with their model formulations, such as nanoemulsions, mimetics, lipid nanospheres, etc. Some authors include in these particles serum or recombinant apoproteins, peptides, and modified polymer products. As shown recently, protein-free lipid nanoemulsions in plasma take up free apoA and apoE. Complexes with various LP also form after direct administration of lypophilic drugs into blood especially those enclosed in phospholipid formulations, e.g. liposomes. Results of evaluation of some lipophilic dugs (mainly cytostatics, amphotericin B, cyclosporine A, etc.) are discussed. Original data are presented on the influence of phospholipid formulations on the distribution of doxorubicin and indomethacin between LP classes after in vitro incubation in plasma. On the whole, the review illustrates the importance of research on LP and phospholi pid forms as drug nanocarriers to be used to enhance effect of therapy.

  14. Surface-Exposed Lipoproteins: An Emerging Secretion Phenomenon in Gram-Negative Bacteria.

    Science.gov (United States)

    Wilson, Marlena M; Bernstein, Harris D

    2016-03-01

    Bacterial lipoproteins are hydrophilic proteins that are anchored to a cell membrane by N-terminally linked fatty acids. It is widely believed that nearly all lipoproteins produced by Gram-negative bacteria are either retained in the inner membrane (IM) or transferred to the inner leaflet of the outer membrane (OM). Lipoproteins that are exposed on the cell surface have also been reported but are generally considered to be rare. Results from a variety of recent studies, however, now suggest that the prevalence of surface-exposed lipoproteins has been underestimated. In this review we describe the evidence that the surface exposure of lipoproteins in Gram-negative bacteria is a widespread phenomenon and discuss possible mechanisms by which these proteins might be transported across the OM. Published by Elsevier Ltd.

  15. Follicular localization of growth differentiation factor 8 and its receptors in normal and polycystic ovary syndrome ovaries.

    Science.gov (United States)

    Lin, Ting-Ting; Chang, Hsun-Ming; Hu, Xiao-Ling; Leung, Peter C K; Zhu, Yi-Min

    2018-05-01

    Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age and its etiology has not been characterized. Growth differentiation factor 8 (GDF8) is a member of the transforming growth factor-β superfamily that plays a critical role in the regulation of ovarian functions. However, the expression pattern of GDF8 in the human ovary is not yet clear. This study examined the cellular distribution of GDF8 and its putative cellular receptors (ACVR2A, ACVR2B, and ALK5) in a series of normal (n = 34) and PCOS ovaries (n = 14). The immunostaining of GDF8, ACVR2A, ACVR2B, and ALK5 was detected in the oocytes regardless of the developmental stage. All these proteins were localized in antral follicles in normal and PCOS ovaries, and the expression of these proteins increased with increasing follicle diameter. A significantly higher expression of GDF8 was detected in the granulosa cells than in the matched theca cells (TCs). These proteins were also localized in the luteal cells of the corpus luteum. Granulosa cells and TCs of large antral follicles in PCOS ovaries display a higher expression of these proteins. The higher expression levels of GDF8 and its functional receptors (ACVR2A, ACVR2B, and ALK5) in antral follicles of PCOS ovaries than those in normal ovaries suggest the possible involvement of dysregulated GDF8 in the pathogenesis of PCOS.

  16. Androgen and FSH synergistically stimulate lipoprotein degradation and utilization by ovary granulosa cells

    International Nuclear Information System (INIS)

    Schreiber, J.R.; Nakamura, K.; Schmit, V.; Weinstein, D.B.

    1984-01-01

    Androgen can directly modulate the induction of steroidogenic enzymes by FSH (follicle stimulating hormone) in ovary granulosa cells. In studies of its mechanism of action, the authors examined the androgen effect on granulosa cell interaction with lipoproteins, the physiologic source of cholesterol. After granulosa cells were cultured for 48 hours with and without androgen and/or FSH, the cells were incubated for 24 hours with 125 I-lipoproteins [human high density lipoprotein (HDL), rat HDL, or human low density lipoprotein (LDL)]. The media were then analyzed for lipoprotein protein coat degradation products (mainly 125 I-monoiodotyrosine) and progestin [mainly 20 alpha-dihydroprogesterone (20 alpha-DHP)]. In the absence of FSH and androgen, 2 X 10(5) granulosa cells degraded basal levels of all three lipoproteins, but produced no measurable 20 alpha-DHP. The addition of 10(-7) M androstenedione (A), testosterone (T), or 5 alpha-dihydrotestosterone (DHT) had no effect on lipoprotein protein degradation or 20 alpha-DHP production. FSH alone stimulated lipoprotein protein degradation by 50 to 300% while the addition of androgen synergistically augmented the FSH-stimulated 20 alpha-DHP production as well as protein coat degradation of all three lipoproteins. DHT and T were both effective, indicating that androgens themselves, and not estrogen products, were responsible for the effect on lipoprotein protein degradation and 20 alpha-DHP production

  17. Lipoproteins in Drosophila melanogaster—Assembly, Function, and Influence on Tissue Lipid Composition

    Science.gov (United States)

    Palm, Wilhelm; Sampaio, Julio L.; Brankatschk, Marko; Carvalho, Maria; Mahmoud, Ali; Shevchenko, Andrej; Eaton, Suzanne

    2012-01-01

    Interorgan lipid transport occurs via lipoproteins, and altered lipoprotein levels correlate with metabolic disease. However, precisely how lipoproteins affect tissue lipid composition has not been comprehensively analyzed. Here, we identify the major lipoproteins of Drosophila melanogaster and use genetics and mass spectrometry to study their assembly, interorgan trafficking, and influence on tissue lipids. The apoB-family lipoprotein Lipophorin (Lpp) is the major hemolymph lipid carrier. It is produced as a phospholipid-rich particle by the fat body, and its secretion requires Microsomal Triglyceride Transfer Protein (MTP). Lpp acquires sterols and most diacylglycerol (DAG) at the gut via Lipid Transfer Particle (LTP), another fat body-derived apoB-family lipoprotein. The gut, like the fat body, is a lipogenic organ, incorporating both de novo–synthesized and dietary fatty acids into DAG for export. We identify distinct requirements for LTP and Lpp-dependent lipid mobilization in contributing to the neutral and polar lipid composition of the brain and wing imaginal disc. These studies define major routes of interorgan lipid transport in Drosophila and uncover surprising tissue-specific differences in lipoprotein lipid utilization. PMID:22844248

  18. Quantification of 5-hydroxytryptamine1A receptors in the cerebellum of normal and x-irradiated rats during postnatal development

    International Nuclear Information System (INIS)

    Matthiessen, L.; Daval, G.; Bailly, Y.; Gozlan, H.; Hamon, M.; Verge, D.

    1992-01-01

    5-Hydroxytryptamine 1A receptors were studied in rats during the first postnatal month in the normal cerebellum and in the granule cell-deprived cerebellum produced by X-irradiation at postnatal day 5. Quantitative autoradiographic studies on sagittal sections of cerebellar vermis, using [ 125 1]BH-8-MeO-N-PAT as radioligand or specific anti-receptor antibodies, revealed that 5-hydroxytryptamine 1A receptors existed in the molecular/Purkinje cell layer but at variable density from one lobule to another. Thus, in both normal and X-irradiated rats, the posterior lobules were more heavily labelled than the anterior ones, and the density of 5-hydroxytryptamine 1A sites decreased progressively in all the cerebellar folia down to hardly detectable levels at postnatal day 21. However, the intensity of labelling remained higher at postnatal day 8 and postnatal day 12 in X-irradiated rats than in age-paired controls. Measurements of [ 3 H]8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin] specific binding to membranes from whole cerebellum confirmed that the density of 5-hydroxytryptamine 1A sites per mg membrane protein (B max ) was higher in X-irradiated animals than in age-paired controls. However, on a ''per cerebellum'' basis, no significant difference could be detected between the total number of 5-hydroxytryptamine 1A sites, which progressively increased in both control and X-irradiated animals during the first postnatal month. These results therefore show that 5-hydroxytryptamine 1A receptors are not located on developing granule cells. (author)

  19. TRIIODOTHYRONINE RAPIDLY LOWERS PLASMA-LIPOPROTEIN (A) IN HYPOTHYROID SUBJECTS

    NARCIS (Netherlands)

    DULLAART, RPF; VANDOORMAAL, JJ; HOOGENBERG, K; SLUITER, WJ

    Background: Increases in plasma low-density-lipoprotein (LDL) cholesterol and apolipoprotein B (apo-B) are well known in primary hypothyroidism, but it is uncertain whether thyroid dysfunction is associated with elevated levels of the atherogenic lipoprotein (a) (Lp(a)). Methods: The effect of

  20. Prediction of lipoprotein signal peptides in Gram-negative bacteria

    DEFF Research Database (Denmark)

    Juncker, Agnieszka; Willenbrock, Hanni; Von Heijne, G.

    2003-01-01

    A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor ...

  1. Influence of medium components on the expression of recombinant lipoproteins in Escherichia coli.

    Science.gov (United States)

    Tseng, Chi-Ling; Leng, Chih-Hsiang

    2012-02-01

    Bacterial lipoproteins are crucial antigens for protective immunity against bacterial pathogens. Expression of exogenous lipoproteins in Escherichia coli at high levels is thought to be an extremely difficult endeavor because it frequently results in incomplete or absent lipid modification. Previously, we identified a fusion sequence (D1) from a Neisseria meningitidis lipoprotein that induced a non-lipidated protein, E3 (the domain III of the dengue virus envelope protein), to become lipidated. However, without optimizing the growth conditions, some of the D1-fusion proteins were not lipidated. Here, we report the influence of medium components on the expression of recombinant lipoproteins in E. coli. For high-level expression of mature lipoproteins in the C43 (DE3) strain, M9 medium was better than M63 and the rich medium. Furthermore, we analyzed the influence of other media factors (including nitrogen and carbon sources, phosphate, ferrous ions, calcium, magnesium, and pH) on the levels of lipoprotein expression. The results showed that excess nitrogen sources and phosphate in M9 medium could increase the amount of immature lipoproteins, and glucose was a better carbon source than glycerol for expressing mature lipoproteins. We also found that lipoproteins tended to be completely processed in the alkaline environment, even in the nutrient-rich medium. Additional constructs expressing different immunogens or lipid signal peptides as targets were also utilized, demonstrating that these targets could be expressed as completely mature lipoproteins in the M9 medium but not in the rich medium. Our results provide the useful information for expressing mature exogenous lipoproteins in E. coli.

  2. Butyrylcholinesterase (BChE) activity is associated with the risk of preeclampsia: influence on lipid and lipoprotein metabolism and oxidative stress.

    Science.gov (United States)

    Rahimi, Zohreh; Ahmadi, Reza; Vaisi-Raygani, Asad; Rahimi, Ziba; Bahrehmand, Fariborz; Parsian, Abbas

    2013-11-01

    To determine the butyrylcholinesterase (BChE) activity and phenotypes in preeclampsia and its possible association with lipid and lipoprotein metabolism and oxidative stress in preeclamptic women. In a case-control study, 101 pregnant women with normal pregnancy and 198 women with preeclampsia from Western Iran were studied. The serum BChE activity and phenotypes were measured using spectrophotometric method. The apolipoprotein E (APOE) genotypes were identified using PCR-RFLP. The serum malondialdehyde (MDA) level and total antioxidant capacity (TAC) were determined by HPLC and commercial kits, respectively. The BChE activity and the frequency of non-usual BChE phenotype in preeclamptic women were significantly lower and higher, respectively compared to controls. There was a higher BChE activity in the presence of APOE ε3ε4 compared to ε3ε3 genotype in preeclamptic women. In addition, there were significant positive correlations between BChE activity and the levels of low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol, total cholesterol (TC) and TAC. However, there was a negative but significant correlation between BChE activity and MDA level. Our study for the first time indicated that BChE activity might be involved in the pathogenesis of preeclampsia through influence on lipid and lipoprotein metabolism and oxidative stress.

  3. Estrogen Receptor and Progesterone Receptor Expression in Normal Terminal Duct Lobular Units Surrounding Invasive Breast Cancer

    Science.gov (United States)

    Yang, Xiaohong R.; Figueroa, Jonine D.; Hewitt, Stephen M.; Falk, Roni T.; Pfeiffer, Ruth M.; Lissowska, Jolanta; Peplonska, Beata; Brinton, Louise A.; Garcia-Closas, Montserrat; Sherman, Mark E.

    2014-01-01

    Introduction Molecular and morphological alterations related to carcinogenesis have been found in terminal duct lobular units (TDLUs), the microscopic structures from which most breast cancer precursors and cancers develop, and therefore, analysis of these structures may reveal early changes in breast carcinogenesis and etiologic heterogeneity. Accordingly, we evaluated relationships of breast cancer risk factors and tumor pathology to estrogen receptor (ER) and progesterone receptor (PR) expression in TDLUs surrounding breast cancers. Methods We analyzed 270 breast cancer cases included in a population-based breast cancer case-control study conducted in Poland. TDLUs were mapped in relation to breast cancer: within the same block as the tumor (TDLU-T), proximal to tumor (TDLU-PT), or distant from (TDLU-DT). ER/PR was quantitated using image analysis of immunohistochemically stained TDLUs prepared as tissue microarrays. Results In surgical specimens containing ER-positive breast cancers, ER and PR levels were significantly higher in breast cancer cells than in normal TDLUs, and higher in TDLU-T than in TDLU-DT or TDLU-PT, which showed similar results. Analyses combining DT-/PT TDLUs within subjects demonstrated that ER levels were significantly lower in premenopausal women vs. postmenopausal women (odds ratio [OR]=0.38, 95% confidence interval [CI]=0.19, 0.76, P=0.0064) and among recent or current menopausal hormone therapy users compared with never users (OR=0.14, 95% CI=0.046–0.43, Ptrend=0.0006). Compared with premenopausal women, TDLUs of postmenopausal women showed lower levels of PR (OR=0.90, 95% CI=0.83–0.97, Ptrend=0.007). ER and PR expression in TDLUs was associated with epidermal growth factor receptor (EGFR) expression in invasive tumors (P=0.019 for ER and P=0.03 for PR), but not with other tumor features. Conclusions Our data suggest that TDLUs near breast cancers reflect field effects, whereas those at a distance demonstrate influences of breast

  4. Wolbachia lipoproteins: abundance, localisation and serology of Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6 from Brugia malayi and Aedes albopictus.

    Science.gov (United States)

    Voronin, Denis; Guimarães, Ana F; Molyneux, Gemma R; Johnston, Kelly L; Ford, Louise; Taylor, Mark J

    2014-10-06

    Lipoproteins are the major agonists of Wolbachia-dependent inflammatory pathogenesis in filariasis and a validated target for drug discovery. Here we characterise the abundance, localisation and serology of the Wolbachia lipoproteins: Wolbachia peptidoglycan associated lipoprotein and the Type IV Secretion System component, VirB6. We used proteomics to confirm lipoprotein presence and relative abundance; fractionation, immunoblotting and confocal and electron immuno-microscopy for localisation and ELISA for serological analysis. Proteomic analysis of Brugia malayi adult female protein extracts confirmed the presence of two lipoproteins, previously predicted through bioinformatics: Wolbachia peptidoglycan associated lipoprotein (wBmPAL) and the Type IV Secretion System component, VirB6 (wBmVirB6). wBmPAL was among the most abundant Wolbachia proteins present in an extract of adult female worms with wBmVirB6 only detected at a much lower abundance. This differential abundance was reflected in the immunogold-labelling, which showed wBmPAL localised at numerous sites within the bacterial membranes, whereas wBmVirB6 was present as a single cluster on each bacterial cell and also located within the bacterial membranes. Immunoblotting of fractionated extracts confirmed the localisation of wBmPAL to membranes and its absence from cytosolic fractions of C6/36 mosquito cells infected with wAlbB. In whole worm mounts, antibody labelling of both lipoproteins were associated with Wolbachia. Serological analysis showed that both proteins were immunogenic and raised antibody responses in the majority of individuals infected with Wuchereria bancrofti. Two Wolbachia lipoproteins, wBmPAL and wBmVirB6, are present in extracts of Brugia malayi with wBmPAL among the most abundant of Wolbachia proteins. Both lipoproteins localised to bacterial membranes with wBmVirB6 present as a single cluster suggesting a single Type IV Secretory System on each Wolbachia cell.

  5. Mycobacterium tuberculosis lipoproteins in virulence and immunity - fighting with a double-edged sword.

    Science.gov (United States)

    Becker, Katja; Sander, Peter

    2016-11-01

    Bacterial lipoproteins are secreted membrane-anchored proteins characterized by a lipobox motif. This lipobox motif directs post-translational modifications at the conserved cysteine through the consecutive action of three enzymes: Lgt, LspA and Lnt, which results in di- or triacylated forms. Lipoproteins are abundant in all bacteria including Mycobacterium tuberculosis and often involved in virulence and immunoregulatory processes. On the one hand, disruption of the biosynthesis pathway of lipoproteins leads to attenuation of M. tuberculosis in vivo, and mycobacteria deficient for certain lipoproteins have been assessed as attenuated live vaccine candidates. On the other hand, several mycobacterial lipoproteins form immunodominant antigens which promote an immune response. Some of these have been explored in DNA or subunit vaccination approaches against tuberculosis. The immune recognition of specific lipoproteins, however, might also benefit long-term survival of M. tuberculosis through immune modulation, while others induce protective responses. Exploiting lipoproteins as vaccines is thus a complex matter which requires deliberative investigation. The dual role of lipoproteins in the immunity to and pathogenicity of mycobacteria is discussed here. © 2016 Federation of European Biochemical Societies.

  6. Degradation of high density lipoprotein in cultured rat luteal cells

    International Nuclear Information System (INIS)

    Rajan, V.P.; Menon, K.M.J.

    1986-01-01

    In rat ovary luteal cells, degradation of high density lipoprotein (HDL) to tricholoracetic acid (TCA)-soluble products accounts for only a fraction of the HDL-derived cholesterol used for steroidogenesis. In this study the authors have investigated the fate of 125 I]HDL bound to cultured luteal cells using pulse-chase technique. Luteal cell cultures were pulse labeled with [ 125 I]HDL 3 and reincubated in the absence of HDL. By 24 h about 50% of the initallay bound radioactivity was released into the medium, of which 60-65% could be precipitated with 10% TCA. Gel filtration of the chase incubation medium on 10% agarose showed that the amount of TCA-soluble radioactivity was nearly completely accounted for by a sharp peak in the low molecular weight region which was identified as 96% monoiodotyrosine by paper chromatography. The TCA-precipitable radioactivity was nearly completely accounted for by a sharp peak in the low molecular weight region which was identified as 96% monoiodotyrosine by paper chromatography. The TCA-precipitable radioactivity eluted over a wide range of molecular weights (15,000-80,000), and there was very little intact HDL present. Electrophoresis of the chase medium showed that component of the TCA-precipitable portion had mobility similar to apo AI. Lysosomal inhibitors of receptor-mediated endocytosis had no effect on the composition or quantity of radioactivity released during chase incubation. The results show that HDL 3 binding to luteal cells is followed by complete degradation of the lipoprotein, although the TCA-soluble part does not reflect the extent of degradation

  7. The Impact of Cardiorespiratory Fitness on Age-Related Lipids and Lipoproteins

    Science.gov (United States)

    Park, Yong-Moon Mark; Sui, Xuemei; Liu, Junxiu; Zhou, Haiming; Kokkinos, Peter F.; Lavie, Carl J.; Hardin, James W.; Blair, Steven N.

    2015-01-01

    Background Evidence on the effect of cardiorespiratory fitness (CRF) on age-related longitudinal changes of lipids and lipoproteins is scarce. Objectives This study sought to assess the longitudinal, aging trajectory of lipids and lipoproteins for the life course in adults, and to determine whether CRF modifies the age-associated trajectory of lipids and lipoproteins. Methods Data came from 11,418 men, 20 to 90 years of age, without known high cholesterol, high triglycerides, cardiovascular disease, and cancer at baseline and during follow-up from the Aerobics Center Longitudinal Study. There were 43,821 observations spanning 2 to 25 (mean 3.5) health examinations between 1970 and 2006. CRF was quantified by a maximal treadmill exercise test. Marginal models using generalized estimating equations were applied. Results Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), and non-high-density lipoprotein cholesterol (non-HDL-C) presented similar inverted U-shaped quadratic trajectories with aging: gradual increases were noted until the mid-40s to early 50s, with subsequent declines (all p lipoproteins in young to middle-aged men than in older men. Conclusions Our investigation reveals a differential trajectory of lipids and lipoproteins with aging according to CRF in healthy men, and suggests that promoting increased CRF levels may help delay the development of dyslipidemia. PMID:25975472

  8. The effect of cardiorespiratory fitness on age-related lipids and lipoproteins.

    Science.gov (United States)

    Park, Yong-Moon Mark; Sui, Xuemei; Liu, Junxiu; Zhou, Haiming; Kokkinos, Peter F; Lavie, Carl J; Hardin, James W; Blair, Steven N

    2015-05-19

    Evidence on the effect of cardiorespiratory fitness (CRF) on age-related longitudinal changes of lipids and lipoproteins is scarce. This study sought to assess the longitudinal aging trajectory of lipids and lipoproteins for the life course in adults and to determine whether CRF modifies the age-associated trajectory of lipids and lipoproteins. Data came from 11,418 men, 20 to 90 years of age, without known high cholesterol, high triglycerides, cardiovascular disease, and cancer at baseline and during follow-up from the Aerobics Center Longitudinal Study. There were 43,821 observations spanning 2 to 25 health examinations (mean 3.5 examinations) between 1970 and 2006. CRF was quantified by a maximal treadmill exercise test. Marginal models using generalized estimating equations were applied. Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglycerides, and non-high-density lipoprotein cholesterol (non-HDL-C) presented similar inverted U-shaped quadratic trajectories with aging: gradual increases were noted until age mid-40s to early 50s, with subsequent declines (all p lipoproteins in young to middle-age men than in older men. Our investigation reveals a differential trajectory of lipids and lipoproteins with aging according to CRF in healthy men and suggests that promoting increased CRF levels may help delay the development of dyslipidemia. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells

    Science.gov (United States)

    Jain, Anupriya; Jain, Keerti; Mehra, Neelesh Kumar; Jain, N. K.

    2013-10-01

    In the present investigation, poly (propylene imine) dendrimers up to fifth generation (PPI G5.0) were synthesized using ethylene diamine and acrylonitrile. Lipoproteins (high-density lipoprotein; HDL and low-density lipoprotein; LDL) were isolated from human plasma by discontinuous density gradient ultracentrifugation, characterized and tethered to G5.0 PPI dendrimers to construct LDL- and HDL-conjugated dendrimeric nanoconstructs for tumor-specific delivery of docetaxel. Developed formulations showed sustained release characteristics in in vitro drug release and in vivo pharmacokinetic studies. The cancer targeting potential of lipoprotein coupled dendrimers was investigated by ex vivo cytotoxicity and cell uptake studies using human hepatocellular carcinoma cell lines (HepG2 cells) and biodistribution studies in albino rats of Sprague-Dawley strain. Lipoprotein anchored dendrimeric nanoconstructs showed significant uptake by cancer cells as well as higher biodistribution of docetaxel to liver and spleen. It is concluded that these precisely synthesized engineered dendrimeric nanoconstructs could serve as promising drug carrier for fighting with the fatal disease, i.e., cancer, attributed to their defined targeting and therapeutic potential.

  10. Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Anupriya; Jain, Keerti, E-mail: keertijain02@gmail.com; Mehra, Neelesh Kumar, E-mail: neelesh81mph@gmail.com; Jain, N. K., E-mail: dr.jnarendr@gmail.com [Dr. H. S. Gour University, Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences (India)

    2013-10-15

    In the present investigation, poly (propylene imine) dendrimers up to fifth generation (PPI G5.0) were synthesized using ethylene diamine and acrylonitrile. Lipoproteins (high-density lipoprotein; HDL and low-density lipoprotein; LDL) were isolated from human plasma by discontinuous density gradient ultracentrifugation, characterized and tethered to G5.0 PPI dendrimers to construct LDL- and HDL-conjugated dendrimeric nanoconstructs for tumor-specific delivery of docetaxel. Developed formulations showed sustained release characteristics in in vitro drug release and in vivo pharmacokinetic studies. The cancer targeting potential of lipoprotein coupled dendrimers was investigated by ex vivo cytotoxicity and cell uptake studies using human hepatocellular carcinoma cell lines (HepG2 cells) and biodistribution studies in albino rats of Sprague-Dawley strain. Lipoprotein anchored dendrimeric nanoconstructs showed significant uptake by cancer cells as well as higher biodistribution of docetaxel to liver and spleen. It is concluded that these precisely synthesized engineered dendrimeric nanoconstructs could serve as promising drug carrier for fighting with the fatal disease, i.e., cancer, attributed to their defined targeting and therapeutic potential.

  11. Lipoprotein Transport: Greasing the Machines of Outer Membrane Biogenesis: Re-Examining Lipoprotein Transport Mechanisms Among Diverse Gram-Negative Bacteria While Exploring New Discoveries and Questions.

    Science.gov (United States)

    Grabowicz, Marcin

    2018-04-01

    The Gram-negative outer membrane (OM) is a potent permeability barrier against antibiotics, limiting clinical options amid mounting rates of resistance. The Lol transport pathway delivers lipoproteins to the OM. All the OM assembly machines require one or more OM lipoprotein to function, making the Lol pathway central for all aspects of OM biogenesis. The Lol pathways of many medically important species clearly deviate from the Escherichia coli paradigm, perhaps with implications for efforts to develop novel antibiotics. Moreover, recent work reveals the existence of an undiscovered alternate route for bringing lipoproteins to the OM. Here, lipoprotein transport mechanisms, and the quality control systems that underpin them, is re-examined in context of their diversity. © 2018 WILEY Periodicals, Inc.

  12. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease

    DEFF Research Database (Denmark)

    Nordestgaard, Børge G

    2016-01-01

    Scientific interest in triglyceride-rich lipoproteins has fluctuated over the past many years, ranging from beliefs that these lipoproteins cause atherosclerotic cardiovascular disease (ASCVD) to being innocent bystanders. Correspondingly, clinical recommendations have fluctuated from a need.......1-fold for myocardial infarction, 3.2-fold for ischemic heart disease, 3.2-fold for ischemic stroke, and 2.2-fold for all-cause mortality. Also, genetic studies using the Mendelian randomization design, an approach that minimizes problems with confounding and reverse causation, now demonstrate...

  13. Lipoprotein (a) and biochemical parameters in elderly

    OpenAIRE

    Yuttana Sudjaroen

    2016-01-01

    Background: Lipoprotein (a) [Lp(a)] is an low-density lipoprotein like particle and is an important independent risk factor for coronary artery diseases (CAD). Few studies on Lp(a) level in Thai elderly to screening risk of CAD may concerned. Aims: To study the relation of Lp(a) level and routine biochemical parameters including lipid profiles and fasting blood glucose in elderly and to determine risk of subclinical symptoms by using Lp(a) levels as early risk predictor. Settings and Design: ...

  14. Expressions of the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl coenzyme A reductase genes are stimulated by recombinant platelet-derived growth factor isomers

    International Nuclear Information System (INIS)

    Roth, M.; Emmons, L.R.; Perruchoud, A.; Block, L.H.

    1991-01-01

    The plausible role that platelet-derived growth factor (PDGF) has in the localized pathophysiological changes that occur in the arterial wall during development of atherosclerotic lesions led the authors to investigate the influence of recombinant (r)PDGF isomers -AA, -AB, and -BB on the expression of low density lipoprotein receptor (LDL-R) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG0CoA) reductase [(S)-mevalonate:NAD + oxidoreductase (CoA-acylating), EC 1.1.1.88] genes. In addition, they clarified the role of protein kinase C (PKC) in expression of the two genes in human skin fibroblasts and vascular smooth muscle cells. The various rPDGF isoforms are distinct in their ability to activate transcription of both genes: (i) both rPDGF-AA and -BB stimulate transcription of the LDL-R gene; in contrast, rPDGF-BB but not -AA, activates transcription of the HMG-CoA reductase gene; (ii) all recombinant isoforms of PDGF activate transcription of the c-fos gene; (iii) while rPDGF-dependent transcription of the lDL-R gene occurs independently of PKC, transcription of the HMG-CoA reductase gene appears to involve the action of that enzyme

  15. Drosophila lipophorin receptors mediate the uptake of neutral lipids in oocytes and imaginal disc cells by an endocytosis-independent mechanism.

    Directory of Open Access Journals (Sweden)

    Esmeralda Parra-Peralbo

    2011-02-01

    Full Text Available Lipids are constantly shuttled through the body to redistribute energy and metabolites between sites of absorption, storage, and catabolism in a complex homeostatic equilibrium. In Drosophila, lipids are transported through the hemolymph in the form of lipoprotein particles, known as lipophorins. The mechanisms by which cells interact with circulating lipophorins and acquire their lipidic cargo are poorly understood. We have found that lipophorin receptor 1 and 2 (lpr1 and lpr2, two partially redundant genes belonging to the Low Density Lipoprotein Receptor (LDLR family, are essential for the efficient uptake and accumulation of neutral lipids by oocytes and cells of the imaginal discs. Females lacking the lpr2 gene lay eggs with low lipid content and have reduced fertility, revealing a central role for lpr2 in mediating Drosophila vitellogenesis. lpr1 and lpr2 are transcribed into multiple isoforms. Interestingly, only a subset of these isoforms containing a particular LDLR type A module mediate neutral lipid uptake. Expression of these isoforms induces the extracellular stabilization of lipophorins. Furthermore, our data indicate that endocytosis of the lipophorin receptors is not required to mediate the uptake of neutral lipids. These findings suggest a model where lipophorin receptors promote the extracellular lipolysis of lipophorins. This model is reminiscent of the lipolytic processing of triglyceride-rich lipoproteins that occurs at the mammalian capillary endothelium, suggesting an ancient role for LDLR-like proteins in this process.

  16. Environment-Mediated Accumulation of Diacyl Lipoproteins over Their Triacyl Counterparts in Staphylococcus aureus

    Science.gov (United States)

    Kurokawa, Kenji; Kim, Min-Su; Ichikawa, Rie; Ryu, Kyoung-Hwa; Dohmae, Naoshi

    2012-01-01

    Bacterial lipoproteins are believed to exist in only one specific lipid-modified structure, such as the diacyl form or the triacyl form, in each bacterium. In the case of Staphylococcus aureus, recent extensive matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry analysis revealed that S. aureus lipoproteins exist in the α-aminoacylated triacyl form. Here, we discovered conditions that induce the accumulation of diacyl lipoproteins that lack α-aminoacylation in S. aureus. The accumulation of diacyl lipoproteins required a combination of conditions, including acidic pH and a post-logarithmic-growth phase. High temperatures and high salt concentrations additively accelerated the accumulation of the diacyl lipoprotein form. Following a post-logarithmic-growth phase where S. aureus MW2 cells were grown at pH 6, SitC lipoprotein was found almost exclusively in its diacyl structure rather than in its triacyl structure. This is the first report showing that the environment mediates lipid-modified structural alterations of bacterial lipoproteins. PMID:22467779

  17. The lipid- and lipoprotein- [LDL-Lp(a)] apheresis techniques. Updating.

    Science.gov (United States)

    Stefanutti, C; Morozzi, C; Perrone, G; Di Giacomo, S; Vivenzio, A; D'Alessandri, G

    2012-01-01

    Therapeutic plasmapheresis allows the extracorporeal removal of plasmatic lipoproteins (Lipid-apheresis) (LA). It can be non selective (non specific), semi - selective or selective low density lipoprotein-lipoprotein(a) (specific [LDL- Lp(a)] apheresis) (Lipoprotein apheresis, LDLa). The LDL removal rate is a perfect parameter to assess the system efficiency. Plasma-Exchange (PEX) cannot be considered either specific nor, selective. In PEX the whole blood is separated into plasma and its corpuscular components usually through centrifugation or rather filtration. The corpuscular components mixed with albumin solution plus saline (NaCl 0.9%) solution at 20%-25%, are then reinfused to the patient, to substitute the plasma formerly removed. PEX eliminates atherogenic lipoproteins, but also other essential plasma proteins, such as albumin, immunoglobulins, and hemocoagulatory mediators. Cascade filtration (CF) is a method based on plasma separation and removal of plasma proteins through double filtration. During the CF two hollow-fiber filters with pores of different diameter are used to eliminate the plasma components of different weight and molecular diameter. A CF system uses a first polypropylene filter with 0.55 µm diameter pores and a second one of diacetate of cellulose with 0.02 µm pores. The first filter separates the whole blood, and the plasma is then perfused through a second filter which allows the recovery of molecules with a diameter lower than 0.02 µm, and the removal of molecules larger in diameter as apoB100-containing lipoproteins. Since both albumin and immunoglobulins are not removed, or to a negligible extent, plasma-expanders, substitution fluids, and in particular albumin, as occurs in PEX are not needed. CF however, is characterized by lower selectivity since removes also high density lipoprotein (HDL) particles which have an antiatherogenic activity. In the 80's, a variation of Lipid-apheresis has been developed which allows the LDL

  18. Changes in erythrocyte insulin receptors in normal dogs and keeshond dogs with inheritable, early onset, insulin dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Klaassen, J.K.

    1986-01-01

    Validation of a procedure to evaluate insulin receptors on erythrocytes (RBC-IR) in dogs is described. The specific binding of ( 125 I)iodoinsulin to RBC-IR of normal dogs is significantly greater than binding in keeshonds with an inheritable form of early onset diabetes mellitus. This decreased binding was due to a significant decrease in RBC-IR affinity in the diabetic keeshonds. To determine the effect on RBC-IR, normal dogs were treated with either dexamethasone (0.1 mg/kg) or prednisone (0.3 mg/kg) for 10 days: concentrations of plasma cortisol, glucose, and insulin, plus binding characteristics of RBC-IR were determined. In the dexamethasone treated group, plasma glucose concentrations were elevated significantly by day 6 and continued through day 10. Insulin concentrations were elevated significantly by day 3 and remained elevated through day 10. In the prednisone treated group, glucose concentrations were elevated significantly by day 3, while insulin concentrations were elevated significantly by day 8. Maximum binding of RBC-IR was unaffected by prednisone and neither affinities nor receptor numbers were significantly different from day 1. No changes in plasma cortisol concentration were seen. Diabetic keeshonds on daily insulin treatment were removed from exogenous insulin therapy for 48 hours. Significant increases in glucose concentrations were observed, but no significant changes in cortisol, insulin, average receptor binding affinity, or RBC-IR number per cell occurred

  19. Activation of Peripheral κ-Opioid Receptors Normalizes Caffeine Effects Modified in Nicotine-Dependent Rats during Nicotine Withdrawal.

    Science.gov (United States)

    Sudakov, S K; Bogdanova, N G

    2016-10-01

    The study examined the effect of peripheral (intragastric) ICI-204,448, an agonist of gastric κ-opioid receptors, on the psychostimulating and anxiolytic effects of caffeine in nicotinedependent rats at the stage of nicotine withdrawal. In these rats, the effects of caffeine (10 mg/kg) were perverted. In nicotine-dependent rats, caffeine produced an anxiolytic effect accompanied by pronounced stimulation of motor activity, in contrast to anxiogenic effect induced by caffeine in intact rats without nicotine dependence. During nicotine withdrawal, nicotine-dependent rats demonstrated enhanced sensitivity to nicotine. Intragastric administration of κ-opioid receptor agonist ICI-204,448 normalized the effect of caffeine in nicotinedependent rats. We have previously demonstrated that activation of peripheral κ-opioid receptors inhibited central κ-opioid activity and eliminated manifestations of nicotine withdrawal syndrome in nicotine-dependent rats, e.g. metabolism activation, stimulation of motor activity, and enhancement of food consumption. In its turn, inhibition of central κ-opioid structures activates the brain adenosine system, which can attenuate the caffeine-induced effects in nicotine-dependent rats.

  20. Effect of estrogen receptor-alpha (ESR1 gene polymorphism on high density lipoprotein levels in response to hormone replacement therapy

    Directory of Open Access Journals (Sweden)

    N.C. Nogueira-de-Souza

    2009-12-01

    Full Text Available Studies have shown that estrogen replacement therapy and estrogen plus progestin replacement therapy alter serum levels of total, LDL and HDL cholesterol levels. However, HDL cholesterol levels in women vary considerably in response to hormone replacement therapy (HRT. A significant portion of the variability of these levels has been attributed to genetic factors. Therefore, we investigated the influence of estrogen receptor-alpha (ESR1 gene polymorphisms on HDL levels in response to postmenopausal HRT. We performed a prospective cohort study on 54 postmenopausal women who had not used HRT before the study and had no significant general medical illness. HRT consisted of conjugated equine estrogen and medroxyprogesterone acetate continuously for 1 year. The lipoprotein levels were measured from blood samples taken before the start of therapy and after 1 year of HRT. ESR1 polymorphism (MspI C>T, HaeIII C>T, PvuII C>T, and XbaI A>G frequencies were assayed by restriction fragment length polymorphism. A general linear model was used to describe the relationships between HDL levels and genotypes after adjusting for age. A significant increase in HDL levels was observed after HRT (P = 0.029. Women with the ESR1 PvuII TT genotype showed a statistically significant increase in HDL levels after HRT (P = 0.032. No association was found between other ESR1 polymorphisms and HDL levels. According to our results, the ESR1 PvuII TT genotype was associated with increased levels of HDL after 1 year of HRT.

  1. The Influence of Decreased Levels of High Density Lipoprotein ...

    African Journals Online (AJOL)

    Background: Changes in lipoproteins levels in sickle cell disease (SCD) patients are well.known, but the physiological ramifications of the low levels observed have not been entirely resolved. Aim: The aim of this study is to evaluate the impact of decreased levels of high density lipoprotein cholesterol (HDL.c) on ...

  2. Adeno-associated virus LPL(S447X) gene therapy in LDL receptor knockout mice

    NARCIS (Netherlands)

    Rip, Jaap; Sierts, Jeroen A.; Vaessen, Stefan F. C.; Kastelein, John J. P.; Twisk, Jaap; Kuivenhoven, Jan Albert

    2007-01-01

    BACKGROUND: Overexpression of lipoprotein lipase (LPL) protects against atherosclerosis in genetically engineered mice. We tested whether a gene therapy vector that delivers human (h) LPL(S447X) cDNA to skeletal muscle could induce similar effects. METHODS: LDL receptor knockout (LDLr-/-) mice were

  3. Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.

    Science.gov (United States)

    Yang, Wei-Na; Ma, Kai-Ge; Qian, Yi-Hua; Zhang, Jian-Shui; Feng, Gai-Feng; Shi, Li-Li; Zhang, Zhi-Chao; Liu, Zhao-Hui

    2015-07-01

    Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aβ). Reuptake of extracellular Aβ is believed to contribute significantly to the intraneuronal Aβ pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aβ1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aβ internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aβ1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aβ internalization in neurons. We found that extracellular Aβ1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aβ1-42 and LRP1 were also found co-localized in neurons during Aβ1-42 internalization, and they could form Aβ1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aβ1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aβ1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aβ1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aβ levels and served a potential therapeutic target for AD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. High-density lipoproteins and adrenal steroidogenesis : A population-based study

    NARCIS (Netherlands)

    Buitenwerf, Edward; Kerstens, Michiel N.; Links, Thera P.; Kema, Ido P.; Dullaart, Robin P. F.

    BACKGROUND: Cholesterol trafficked within plasma lipoproteins, in particular high-density lipoproteins (HDL), may represent an important source of cholesterol that is required for adrenal steroidogenesis. Based on a urinary gas chromatography method, compromised adrenal function has been suggested

  5. Mechanism of action of gemfibrozil on lipoprotein metabolism.

    OpenAIRE

    Saku, K; Gartside, P S; Hynd, B A; Kashyap, M L

    1985-01-01

    Gemfibrozil is a potent lipid regulating drug whose major effects are to increase plasma high density lipoproteins (HDL) and to decrease plasma triglycerides (TG) in a wide variety of primary and secondary dyslipoproteinemias. Its mechanism of action is not clear. Six patients with primary familial endogenous hypertriglyceridemia with fasting chylomicronemia (type V lipoprotein phenotype) with concurrent subnormal HDL cholesterol levels (HDL deficiency) were treated initially by diet and once...

  6. Influence of impaired lipoprotein biogenesis on surface and exoproteome of Streptococcus pneumoniae.

    Science.gov (United States)

    Pribyl, Thomas; Moche, Martin; Dreisbach, Annette; Bijlsma, Jetta J E; Saleh, Malek; Abdullah, Mohammed R; Hecker, Michael; van Dijl, Jan Maarten; Becher, Dörte; Hammerschmidt, Sven

    2014-02-07

    Surface proteins are important for the fitness and virulence of the Gram-positive pathogen Streptococcus pneumoniae. They are crucial for interaction of the pathogen with its human host during infection. Therefore, the analysis of the pneumococcal surface proteome is an important task that requires powerful tools. In this study, two different methods, an optimized biotinylation approach and shaving with trypsin beads, were applied to study the pneumococcal surface proteome and to identify surface-exposed protein domains, respectively. The identification of nearly 95% of the predicted lipoproteins and 75% of the predicted sortase substrates reflects the high coverage of the two classical surface protein classes accomplished in this study. Furthermore, the biotinylation approach was applied to study the impact of an impaired lipoprotein maturation pathway on the cell envelope proteome and exoproteome. Loss of the lipoprotein diacylglyceryl transferase Lgt leads to striking changes in the lipoprotein distribution. Many lipoproteins disappear from the surface proteome and accumulate in the exoproteome. Further insights into lipoprotein processing in pneumococci are provided by immunoblot analyses of bacterial lysates and corresponding supernatant fractions. Taken together, the first comprehensive overview of the pneumococcal surface and exoproteome is presented, and a model for lipoprotein processing in S. pneumoniae is proposed.

  7. High hydrostatic pressure specifically affects molecular dynamics and shape of low-density lipoprotein particles

    Science.gov (United States)

    Golub, M.; Lehofer, B.; Martinez, N.; Ollivier, J.; Kohlbrecher, J.; Prassl, R.; Peters, J.

    2017-04-01

    Lipid composition of human low-density lipoprotein (LDL) and its physicochemical characteristics are relevant for proper functioning of lipid transport in the blood circulation. To explore dynamical and structural features of LDL particles with either a normal or a triglyceride-rich lipid composition we combined coherent and incoherent neutron scattering methods. The investigations were carried out under high hydrostatic pressure (HHP), which is a versatile tool to study the physicochemical behavior of biomolecules in solution at a molecular level. Within both neutron techniques we applied HHP to probe the shape and degree of freedom of the possible motions (within the time windows of 15 and 100 ps) and consequently the flexibility of LDL particles. We found that HHP does not change the types of motion in LDL, but influences the portion of motions participating. Contrary to our assumption that lipoprotein particles, like membranes, are highly sensitive to pressure we determined that LDL copes surprisingly well with high pressure conditions, although the lipid composition, particularly the triglyceride content of the particles, impacts the molecular dynamics and shape arrangement of LDL under pressure.

  8. Quantification of 5-hydroxytryptamine[sub 1A] receptors in the cerebellum of normal and x-irradiated rats during postnatal development

    Energy Technology Data Exchange (ETDEWEB)

    Matthiessen, L; Daval, G; Bailly, Y [Pierre et Marie Curie Univ., Paris (France). Centre National de la Recherche Scientifique, UA; Gozlan, H; Hamon, M; Verge, D [INSERM, Paris (France). Lab. de Neurobiologie Cellulaire et Fonctionnelle

    1992-11-01

    5-Hydroxytryptamine[sub 1A] receptors were studied in rats during the first postnatal month in the normal cerebellum and in the granule cell-deprived cerebellum produced by X-irradiation at postnatal day 5. Quantitative autoradiographic studies on sagittal sections of cerebellar vermis, using [[sup 125]1]BH-8-MeO-N-PAT as radioligand or specific anti-receptor antibodies, revealed that 5-hydroxytryptamine[sub 1A] receptors existed in the molecular/Purkinje cell layer but at variable density from one lobule to another. Thus, in both normal and X-irradiated rats, the posterior lobules were more heavily labelled than the anterior ones, and the density of 5-hydroxytryptamine[sub 1A] sites decreased progressively in all the cerebellar folia down to hardly detectable levels at postnatal day 21. However, the intensity of labelling remained higher at postnatal day 8 and postnatal day 12 in X-irradiated rats than in age-paired controls. Measurements of [[sup 3]H]8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin] specific binding to membranes from whole cerebellum confirmed that the density of 5-hydroxytryptamine[sub 1A] sites per mg membrane protein (B[sub max]) was higher in X-irradiated animals than in age-paired controls. However, on a ''per cerebellum'' basis, no significant difference could be detected between the total number of 5-hydroxytryptamine[sub 1A] sites, which progressively increased in both control and X-irradiated animals during the first postnatal month. These results therefore show that 5-hydroxytryptamine[sub 1A] receptors are not located on developing granule cells. (author).

  9. Plasma Lipoprotein(a Levels and Atherosclerotic Renal Artery Stenosis in Hypertensive Patients

    Directory of Open Access Journals (Sweden)

    Cristiana Catena

    2015-03-01

    Full Text Available Background/Aims: The contribution of emergent cardiovascular risk factors to atherosclerotic renal artery stenosis (ARAS is debated. We investigated the relationship of lipoprotein(a and prothrombotic factors with ARAS in hypertension. Methods: In 50 hypertensive patients with angiographic evidence of ARAS and 58 hypertensive patients who had comparable cardiovascular risk factor burden but no evidence of renovascular disease, we measured renal function, lipoprotein(a, homocysteine, and hemostatic-fibrinolytic markers. Results: Patients with ARAS were more frequently smokers and had longer duration of hypertension, heavier antihypertensive treatment, and worse renal function than controls. Lipoprotein(a was higher in patients with ARAS than controls, whereas no differences were found in homocysteine and all hemostatic variables. Multivariate analysis showed that lipoprotein(a was associated with ARAS independent of other confounders including renal function and history of coronary heart, cerebrovascular, and peripheral artery disease. Conclusion: Lipoprotein(a might contribute to the development of ARAS and detection of elevated levels of this lipoprotein could raise the suspicion of renovascular disease in patients with high blood pressure.

  10. Uterine and placental expression of canine oxytocin receptor during pregnancy and normal and induced parturition.

    Science.gov (United States)

    Gram, A; Boos, A; Kowalewski, M P

    2014-06-01

    Oxytocin (OT) plays an important role as an inducer of uterine contractility, acting together with its receptor (OTR) to increase synthesis of prostaglandins. Although OT is commonly used in the treatment for dystocia and uterine inertia in the bitch, little attention has been paid to the role of OT in mechanisms regulating parturition in the dog, so that knowledge about the expression of OTR in the canine uterus and placenta is sparse. Consequently, the expression and cellular localization of OTR were investigated in canine utero/placental compartments and interplacental sites throughout pregnancy and at normal and antigestagen-induced parturition, by real-time PCR, immunohistochemistry, western blot and in situ hybridization. The utero/placental and interplacental expression of OTR was constant from pre-implantation until mid-gestation, with a significant increase observed at prepartum luteolysis. In antigestagen-treated mid-pregnant dogs, OTR was upregulated in both interplacental and utero/placental samples. Besides clear myometrial signals, cellular localization of OTR was evident in the endometrial surface epithelial, stromal and vascular endothelial cells. Weaker signals were observed in superficial and deep uterine glandular epithelial cells. Placental OTR was localized in maternal decidual cells and capillary pericytes. Finally, OTR was colocalized with the progesterone receptor (PGR) in maternal decidual cells, coinciding with previously reported increased availability of prostaglandins in the foetal part of the placenta during normal and induced parturition. These findings suggest involvement of OTR in the signalling cascade leading to the prepartum release of prostaglandins from the pregnant canine uterus. © 2014 Blackwell Verlag GmbH.

  11. Structural and metabolic heterogeneity of plasma low density lipoproteins in nonhuman primates

    International Nuclear Information System (INIS)

    Marzetta, C.A.

    1986-01-01

    To test the hypothesis that a variety of precursor particles secreted by the liver could result in heterogeneity of LDL products in plasma, the metabolic fate of selected radiolabeled hepatic lipoproteins evaluated was determined in vivo. The hepatic lipoproteins evaluated were isolated from liver perfusate and were triglyceride-rich VLDL (d < 1.006 or d < 1.017) and phospholipid-rich LDL (1.017 < d < 1.049 or 1.030 < d < 1.063). Radiolabeled autologous plasma LDL were injected into recipient animals together with the radiolabeled hepatic lipoproteins. Density gradient ultracentrifugation and gel filtration were used to characterize the distribution of radiolabeled lipoproteins in the plasma at selected times after injection. A variety of hepatic lipoproteins were precursors to lipoproteins that resembled plasma LDL. Between 22 to 80% of the injected dose of radiolabeled hepatic lipoprotein apo B-100 was converted to plasma LDL-like particles, regardless of the type of hepatic lipoprotein injected. A kinetic model was generated to describe the metabolic behavior of hepatic VLDL-derived and plasma LDL-derived apo B-100 radioactivity. Both models required multiple metabolic pools to fit the data. Hepatic VLDL-derived apo B-100 radioactivity was metabolized rapidly into various kinds of LDL subfractions. This rapid conversion of hepatic VLDL apo B-100 to LDL apo B-100 may be analogous to the portion of plasma VLDL that gets converted to LDL without passing through the delipidation cascade that has been described in humans and has been termed direct LDL production

  12. Triglyceride-rich lipoproteins as a causal factor for cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Toth PP

    2016-05-01

    Full Text Available Peter P Toth1,2 1Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, 2Preventive Cardiology, CGH Medical Center, Sterling, IL, USA Abstract: Approximately 25% of US adults are estimated to have hypertriglyceridemia (triglyceride [TG] level ≥150 mg/dL [≥1.7 mmol/L]. Elevated TG levels are associated with increased cardiovascular disease (CVD risk, and severe hypertriglyceridemia (TG levels ≥500 mg/dL [≥5.6 mmol/L] is a well-established risk factor for acute pancreatitis. Plasma TG levels correspond to the sum of the TG content in TG-rich lipoproteins (TRLs; ie, very low-density lipoproteins plus chylomicrons and their remnants. There remains some uncertainty regarding the direct causal role of TRLs in the progression of atherosclerosis and CVD, with cardiovascular outcome studies of TG-lowering agents, to date, having produced inconsistent results. Although low-density lipoprotein cholesterol (LDL-C remains the primary treatment target to reduce CVD risk, a number of large-scale epidemiological studies have shown that elevated TG levels are independently associated with increased incidence of cardiovascular events, even in patients treated effectively with statins. Genetic studies have further clarified the causal association between TRLs and CVD. Variants in several key genes involved in TRL metabolism are strongly associated with CVD risk, with the strength of a variant's effect on TG levels correlating with the magnitude of the variant's effect on CVD. TRLs are thought to contribute to the progression of atherosclerosis and CVD via a number of direct and indirect mechanisms. They directly contribute to intimal cholesterol deposition and are also involved in the activation and enhancement of several proinflammatory, proapoptotic, and procoagulant pathways. Evidence suggests that non-high-density lipoprotein cholesterol, the sum of the total cholesterol carried by

  13. Overexpression of porcine lipoprotein-associated phospholipase A2 in swine

    NARCIS (Netherlands)

    Tang, Xiaochun; Wang, Gangqi; Liu, Xingxing; Han, Xiaolei; Li, Zhuang; Ran, Guangyao; Li, Zhanjun; Song, Qi; Ji, Y; Wang, Haijun; Wang, Yuhui; Ouyang, Hongsheng; Pang, Daxin

    2015-01-01

    Lipoprotein-associated phospholipase A 2 (Lp-PLA2) is associated with the risk of vascular disease. It circulates in human blood predominantly in association with low-density lipoprotein cholesterol (LDL-C) and hydrolyses oxidized phospholipids into pro-inflammatory products. However, in the mouse

  14. Human luteinized granulosa cells secrete apoB100-containing lipoproteins

    NARCIS (Netherlands)

    Gautier, Thomas; Becker, Steffi; Drouineaud, Veronique; Menetrier, Franck; Sagot, Paul; Nofer, Jerzy-Roch; von Otte, Soeren; Lagrost, Laurent; Masson, David; Tietge, Uwe J. F.

    Thus far, liver, intestine, heart, and placenta have been shown to secrete apolipoprotein (apo) B-containing lipoproteins. In the present study, we first investigated lipoproteins in human follicular fluid (FF), surrounding developing oocytes within the ovary, as well as in corresponding plasma

  15. SR-BI: Linking Cholesterol and Lipoprotein Metabolism with Breast and Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Jorge L. Gutierrez-Pajares

    2016-10-01

    Full Text Available Studies have demonstrated the significant role of cholesterol and lipoprotein metabolism in the progression of cancer. The SCARB1 gene encodes the scavenger receptor class B type I (SR-BI, which is an 82-kDa glycoprotein with two transmembrane domains separated by a large extracellular loop. SR-BI plays an important role in the regulation of cholesterol exchange between cells and high-density lipoproteins. Accordingly, hepatic SR-BI has been shown to play an essential role in the regulation of the reverse cholesterol transport pathway, which promotes the removal and excretion of excess body cholesterol. In the context of atherosclerosis, SR-BI has been implicated in the regulation of intracellular signaling, lipid accumulation, foam cell formation, and cellular apoptosis. Furthermore, since lipid metabolism is a relevant target for cancer treatment, recent studies have focused on examining the role of SR-BI in this pathology. While signaling pathways have initially been explored in non-tumoral cells, studies with cancer cells have now demonstrated SR-BI’s function in tumor progression. In this review, we will discuss the role of SR-BI during tumor development and malignant progression. In addition, we will provide insights into the transcriptional and post-transcriptional regulation of the SCARB1 gene. Overall, studying the role of SR-BI in tumor development and progression should allow us to gain useful information for the development of new therapeutic strategies.

  16. Cholesterol: Its Regulation and Role in Central Nervous System Disorders

    OpenAIRE

    Matthias Orth; Stefano Bellosta

    2012-01-01

    Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein...

  17. Spatial distribution of cannabinoid receptor type 1 (CB1 in normal canine central and peripheral nervous system.

    Directory of Open Access Journals (Sweden)

    Jessica Freundt-Revilla

    Full Text Available The endocannabinoid system is a regulatory pathway consisting of two main types of cannabinoid receptors (CB1 and CB2 and their endogenous ligands, the endocannabinoids. The CB1 receptor is highly expressed in the central and peripheral nervous systems (PNS in mammalians and is involved in neuromodulatory functions. Since endocannabinoids were shown to be elevated in cerebrospinal fluid of epileptic dogs, knowledge about the species specific CB receptor expression in the nervous system is required. Therefore, we assessed the spatial distribution of CB1 receptors in the normal canine CNS and PNS. Immunohistochemistry of several regions of the brain, spinal cord and peripheral nerves from a healthy four-week-old puppy, three six-month-old dogs, and one ten-year-old dog revealed strong dot-like immunoreactivity in the neuropil of the cerebral cortex, Cornu Ammonis (CA and dentate gyrus of the hippocampus, midbrain, cerebellum, medulla oblongata and grey matter of the spinal cord. Dense CB1 expression was found in fibres of the globus pallidus and substantia nigra surrounding immunonegative neurons. Astrocytes were constantly positive in all examined regions. CB1 labelled neurons and satellite cells of the dorsal root ganglia, and myelinating Schwann cells in the PNS. These results demonstrate for the first time the spatial distribution of CB1 receptors in the healthy canine CNS and PNS. These results can be used as a basis for further studies aiming to elucidate the physiological consequences of this particular anatomical and cellular distribution.

  18. Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration.

    Science.gov (United States)

    Koo, Euna; Neuringer, Martha; SanGiovanni, John Paul

    2014-07-01

    Plant-based macular xanthophylls (MXs; lutein and zeaxanthin) and the lutein metabolite meso-zeaxanthin are the major constituents of macular pigment, a compound concentrated in retinal areas that are responsible for fine-feature visual sensation. There is an unmet need to examine the genetics of factors influencing regulatory mechanisms and metabolic fates of these 3 MXs because they are linked to processes implicated in the pathogenesis of age-related macular degeneration (AMD). In this work we provide an overview of evidence supporting a molecular basis for AMD-MX associations as they may relate to DNA sequence variation in AMD- and lipoprotein-related genes. We recognize a number of emerging research opportunities, barriers, knowledge gaps, and tools offering promise for meaningful investigation and inference in the field. Overviews on AMD- and high-density lipoprotein (HDL)-related genes encoding receptors, transporters, and enzymes affecting or affected by MXs are followed with information on localization of products from these genes to retinal cell types manifesting AMD-related pathophysiology. Evidence on the relation of each gene or gene product with retinal MX response to nutrient intake is discussed. This information is followed by a review of results from mechanistic studies testing gene-disease relations. We then present findings on relations of AMD with DNA sequence variants in MX-associated genes. Our conclusion is that AMD-associated DNA variants that influence the actions and metabolic fates of HDL system constituents should be examined further for concomitant influence on MX absorption, retinal tissue responses to MX intake, and the capacity to modify MX-associated factors and processes implicated in AMD pathogenesis. © 2014 American Society for Nutrition.

  19. Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor.

    Directory of Open Access Journals (Sweden)

    Yingying Cai

    Full Text Available Family B G protein-coupled receptors (GPCRs play vital roles in hormone-regulated homeostasis. They are drug targets for metabolic diseases, including type 2 diabetes and osteoporosis. Despite their importance, the signaling mechanisms for family B GPCRs at the molecular level remain largely unexplored due to the challenges in purification of functional receptors in sufficient amount for biophysical characterization. Here, we purified the family B GPCR human glucagon-like peptide-1 (GLP-1 receptor (GLP1R, whose agonists, e.g. exendin-4, are used for the treatment of type 2 diabetes mellitus. The receptor was expressed in HEK293S GnTl- cells using our recently developed protocol. The protocol incorporates the receptor into the native-like lipid environment of reconstituted high density lipoprotein (rHDL particles, also known as nanodiscs, immediately after the membrane solubilization step followed by chromatographic purification, minimizing detergent contact with the target receptor to reduce denaturation and prolonging stabilization of receptor in lipid bilayers without extra steps of reconstitution. This method yielded purified GLP1R in nanodiscs that could bind to GLP-1 and exendin-4 and activate Gs protein. This nanodisc purification method can potentially be a general strategy to routinely obtain purified family B GPCRs in the 10s of microgram amounts useful for spectroscopic analysis of receptor functions and activation mechanisms.

  20. Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor.

    Science.gov (United States)

    Cai, Yingying; Liu, Yuting; Culhane, Kelly J; DeVree, Brian T; Yang, Yang; Sunahara, Roger K; Yan, Elsa C Y

    2017-01-01

    Family B G protein-coupled receptors (GPCRs) play vital roles in hormone-regulated homeostasis. They are drug targets for metabolic diseases, including type 2 diabetes and osteoporosis. Despite their importance, the signaling mechanisms for family B GPCRs at the molecular level remain largely unexplored due to the challenges in purification of functional receptors in sufficient amount for biophysical characterization. Here, we purified the family B GPCR human glucagon-like peptide-1 (GLP-1) receptor (GLP1R), whose agonists, e.g. exendin-4, are used for the treatment of type 2 diabetes mellitus. The receptor was expressed in HEK293S GnTl- cells using our recently developed protocol. The protocol incorporates the receptor into the native-like lipid environment of reconstituted high density lipoprotein (rHDL) particles, also known as nanodiscs, immediately after the membrane solubilization step followed by chromatographic purification, minimizing detergent contact with the target receptor to reduce denaturation and prolonging stabilization of receptor in lipid bilayers without extra steps of reconstitution. This method yielded purified GLP1R in nanodiscs that could bind to GLP-1 and exendin-4 and activate Gs protein. This nanodisc purification method can potentially be a general strategy to routinely obtain purified family B GPCRs in the 10s of microgram amounts useful for spectroscopic analysis of receptor functions and activation mechanisms.

  1. Serum Lipoprotein (a Levels in Black South African Type 2 Diabetes Mellitus Patients

    Directory of Open Access Journals (Sweden)

    Jim Joseph

    2016-01-01

    Full Text Available Lipoprotein (a (Lp(a which is a low-density lipoprotein-like particle containing apo(a is considered as an emergent cardiovascular risk factor. Type 2 diabetes mellitus (T2DM is associated with a two- to threefold increase in the risk of cardiovascular disease (CVD. The aim of this study was to investigate the levels of Lp(a in Black South African T2DM patients and its association with other metabolic factors. 67 T2DM patients and 48 healthy control participants were recruited for the cross-sectional study. The Lp(a level was determined by ELISA and the result was analyzed using SPSS. The Lp(a level in diabetics was found to be significantly increased (P=0.001 when compared to the normal healthy group. In the diabetic group, the Lp(a levels correlated significantly with the duration of diabetes (P=0.008 and oxidized LDL (ox-LDL levels (P=0.03 and decreased total antioxidant capacity (P=0.001. The third tertile of Lp(a was significantly correlated with increased ox-LDL, C-reactive protein, and triglycerides and decreased total antioxidant capacity.

  2. A clustering analysis of lipoprotein diameters in the metabolic syndrome

    Science.gov (United States)

    The presence of smaller low-density lipoproteins (LDL) has been associated with atherosclerosis risk, and the insulin resistance (IR) underlying the metabolic syndrome (MetS). In addition, some research has supported the association of very low-, low- and high-density lipoprotein (VLDL HDL) particle...

  3. Hepatitis C virus relies on lipoproteins for its life cycle.

    Science.gov (United States)

    Grassi, Germana; Di Caprio, Giorgia; Fimia, Gian Maria; Ippolito, Giuseppe; Tripodi, Marco; Alonzi, Tonino

    2016-02-14

    Hepatitis C virus (HCV) infects over 150 million people worldwide. In most cases, HCV infection becomes chronic causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. Viral persistence and pathogenesis are due to the ability of HCV to deregulate specific host processes, mainly lipid metabolism and innate immunity. In particular, HCV exploits the lipoprotein machineries for almost all steps of its life cycle. The aim of this review is to summarize current knowledge concerning the interplay between HCV and lipoprotein metabolism. We discuss the role played by members of lipoproteins in HCV entry, replication and virion production.

  4. Impact of hormonal contraception and weight loss on high-density lipoprotein cholesterol efflux and lipoprotein particles in women with polycystic ovary syndrome.

    Science.gov (United States)

    Dokras, Anuja; Playford, Martin; Kris-Etherton, Penny M; Kunselman, Allen R; Stetter, Christy M; Williams, Nancy I; Gnatuk, Carol L; Estes, Stephanie J; Sarwer, David B; Allison, Kelly C; Coutifaris, Christos; Mehta, Nehal; Legro, Richard S

    2017-05-01

    To study the effects of oral contraceptive pills (OCP), the first-line treatment for PCOS, on high-density lipoprotein cholesterol (HDL-C) function (reverse cholesterol efflux capacity) and lipoprotein particles measured using nuclear magnetic resonance spectroscopy in obese women. Secondary analysis of a randomized controlled trial (OWL-PCOS) of OCP or Lifestyle (intensive Lifestyle modification) or Combined (OCP + Lifestyle) treatment groups for 16 weeks. Eighty-seven overweight/obese women with PCOS at two academic centres. Change in HDL-C efflux capacity and lipoprotein particles. High-density lipoprotein cholesterol efflux capacity increased significantly at 16 weeks in the OCP group [0·11; 95% confidence interval (CI) 0·03, 0·18, P = 0·008] but not in the Lifestyle (P = 0·39) or Combined group (P = 0·18). After adjusting for HDL-C and TG levels, there was significant mean change in efflux in the Combined group (0·09; 95% CI 0·01, 0·15; P = 0·01). Change in HDL-C efflux correlated inversely with change in serum testosterone (r s = -0·21; P = 0·05). In contrast, OCP use induced an atherogenic low-density lipoprotein cholesterol (LDL-C) profile with increase in small (P = 0·006) and large LDL-particles (P = 0·002). Change in small LDL-particles correlated with change in serum testosterone (r s = -0·31, P = 0·009) and insulin sensitivity index (ISI; r s = -0·31, P = 0·02). Both Lifestyle and Combined groups did not show significant changes in the atherogenic LDL particles. Oral contraceptive pills use is associated with improved HDL-C function and a concomitant atherogenic LDL-C profile. Combination of a Lifestyle program with OCP use improved HDL-C function and mitigated adverse effects of OCP on lipoproteins. Our study provides evidence for use of OCP in overweight/obese women with PCOS when combined with Lifestyle changes. © 2017 John Wiley & Sons Ltd.

  5. Comparison of 2 electrophoretic methods and a wet-chemistry method in the analysis of canine lipoproteins.

    Science.gov (United States)

    Behling-Kelly, Erica

    2016-03-01

    The evaluation of lipoprotein metabolism in small animal medicine is hindered by the lack of a gold standard method and paucity of validation data to support the use of automated chemistry methods available in the typical veterinary clinical pathology laboratory. The physical and chemical differences between canine and human lipoproteins draw into question whether the transference of some of these human methodologies for the study of canine lipoproteins is valid. Validation of methodology must go hand in hand with exploratory studies into the diagnostic or prognostic utility of measuring specific lipoproteins in veterinary medicine. The goal of this study was to compare one commercially available wet-chemistry method to manual and automated lipoprotein electrophoresis in the analysis of canine lipoproteins. Canine lipoproteins from 50 dogs were prospectively analyzed by 2 electrophoretic methods, one automated and one manual method, and one wet-chemistry method. Electrophoretic methods identified a higher proportion of low-density lipoproteins than the wet-chemistry method. Automated electrophoresis occasionally failed to identify very low-density lipoproteins. Wet-chemistry methods designed for evaluation of human lipoproteins are insensitive to canine low-density lipoproteins and may not be applicable to the study of canine lipoproteins. Automated electrophoretic methods will likely require significant modifications if they are to be used in the analysis of canine lipoproteins. Studies aimed at determining the impact of a disease state on lipoproteins should thoroughly investigate the selected methodology prior to the onset of the study. © 2016 American Society for Veterinary Clinical Pathology.

  6. Application of directly coupled HPLC MMR to separation and characterization of lipoproteins from human serum

    DEFF Research Database (Denmark)

    Daykin, C. A.; Corcoran, O.; Hansen, S. H.

    2001-01-01

    method for the separation of highdensity lipoprotein, low-density lipoprotein, and very low-density lipoprotein from intact serum or plasma. The separation was achieved using a hydroxyapatite column and elution with pH 7.4 phosphate buffer with 100-muL injections of whole plasma. Coelution of HDL...... run time was 90 min with stopped-now 600-MHz NMR spectra of each lipoprotein being collected using 128 scans, in 7 min. The H-1 NMR chemical shifts of lipid signals were identical to conventional NMR spectra of freshly prepared lipoprotein standards, confirming that the lipoproteins were not degraded...

  7. The effect of interaction between Lipoprotein Lipase and ApoVLDL-II ...

    African Journals Online (AJOL)

    GREGO

    2007-04-02

    Apr 2, 2007 ... correlation between growth and fitness is not absolute, it ... significant differences are found in the plasma triglyceride ... (VLDL) and high density lipoprotein (HDL) concentration ... High-density lipoprotein cholesterol was.

  8. The biological properties of iron oxide core high-density lipoprotein in experimental atherosclerosis

    NARCIS (Netherlands)

    Skajaa, Torjus; Cormode, David P.; Jarzyna, Peter A.; Delshad, Amanda; Blachford, Courtney; Barazza, Alessandra; Fisher, Edward A.; Gordon, Ronald E.; Fayad, Zahi A.; Mulder, Willem J. M.

    2011-01-01

    Lipoproteins are a family of plasma nanoparticles responsible for the transportation of lipids throughout the body. High-density lipoprotein (HDL), the smallest of the lipoprotein family, measures 7-13 nm in diameter and consists of a cholesteryl ester and triglyceride core that is covered with a

  9. Human macrophage scavenger receptors: Primary structure, expression, and localization in atherosclerotic lesions

    International Nuclear Information System (INIS)

    Matsumoto, Akiyo; Itakura, Hiroshige; Kodama, Tatsuhiko; Naito, Makoto; Takahashi, Kiyoshi; Ikemoto, Shinji; Asaoka, Hitoshi; Hayakawa, Ikuho; Kanamori, Hiroshi; Takaku, Fumimaro; Aburatani, Hiroyuki; Suzuki, Hiroshi; Kobari, Yukage; Miyai, Tatsuya; Cohen, E.H.; Wydro, R.; Housman, D.E.

    1990-01-01

    Two types of cDNAs for human macrophage scavenger receptors were cloned from a cDNA library derived from the phorbol ester-treated human monocytic cell line THP-1. The type I and type II human scavenger receptors encoded by these cDNAs are homologous (73% and 71% amino acid identity) to their previously characterized bovine counterparts and consist of six domains: cytoplasmic (I), membrane-spanning (II), spacer (III), α-helical coiled-coil (IV), collagen-like (V), and a type-specific C-terminal (VI). The receptor gene is located on human chromosome 8. The human receptors expressed in CHO-K1 cells mediated endocytosis of modified low density lipoproteins. Two mRNAs, 4.0 and 3.2 kilobases, have been detected in human liver, placenta, and brain. Immunohistochemical studies using an anti-peptide antibody which recognizes human scavenger receptors indicated the presence of the scavenger receptors in the macrophages of lipid-rich atherosclerotic lesions, suggesting the involvement of scavenger receptors in atherogenesis

  10. A haptoglobin-hemoglobin receptor conveys innate immunity to Trypanosoma brucei in humans

    DEFF Research Database (Denmark)

    Vanhollebeke, Benoit; De Muylder, Géraldine; Nielsen, Marianne J

    2008-01-01

    The protozoan parasite Trypanosoma brucei is lysed by apolipoprotein L-I, a component of human high-density lipoprotein (HDL) particles that are also characterized by the presence of haptoglobin-related protein. We report that this process is mediated by a parasite glycoprotein receptor, which...... binds the haptoglobin-hemoglobin complex with high affinity for the uptake and incorporation of heme into intracellular hemoproteins. In mice, this receptor was required for optimal parasite growth and the resistance of parasites to the oxidative burst by host macrophages. In humans, the trypanosome...... immunity against the parasite....

  11. Acute exposure to crystalline silica reduces macrophage activation in response to bacterial lipoproteins

    Directory of Open Access Journals (Sweden)

    Gillian Lee Beamer

    2016-02-01

    Full Text Available Numerous studies have examined the relationship between alveolar macrophages (AM and crystalline silica (SiO2 using in vitro and in vivo immunotoxicity models; however, exactly how exposure to SiO2 alters the functionality of AM and the potential consequences for immunity to respiratory pathogens remains largely unknown. Because recognition and clearance of inhaled particulates and microbes is largely mediated by pattern recognition receptors (PRR on the surface of AM, we hypothesized that exposure to SiO2 limits the ability of AM to respond to bacterial challenge by altering PRR expression. Alveolar and bone marrow-derived macrophages downregulate TLR2 expression following acute SiO2 exposure (e.g. 4 hours. Interestingly, these responses were dependent upon interactions between SiO2 and the class A scavenger receptor CD204, but not MARCO. Furthermore, SiO2 exposure decreased uptake of fluorescently labeled Pam2CSK4 and Pam3CSK4, resulting in reduced secretion of IL-1β, but not IL-6. Collectively, our data suggest that SiO2 exposure alters AM phenotype, which in turn affects their ability to uptake and respond to bacterial lipoproteins.

  12. Antiatherosclerotic Effects of 1-Methylnicotinamide in Apolipoprotein E/Low-Density Lipoprotein Receptor-Deficient Mice: A Comparison with Nicotinic Acid.

    Science.gov (United States)

    Mateuszuk, Lukasz; Jasztal, Agnieszka; Maslak, Edyta; Gasior-Glogowska, Marlena; Baranska, Malgorzata; Sitek, Barbara; Kostogrys, Renata; Zakrzewska, Agnieszka; Kij, Agnieszka; Walczak, Maria; Chlopicki, Stefan

    2016-02-01

    1-Methylnicotinamide (MNA), the major endogenous metabolite of nicotinic acid (NicA), may partially contribute to the vasoprotective properties of NicA. Here we compared the antiatherosclerotic effects of MNA and NicA in apolipoprotein E (ApoE)/low-density lipoprotein receptor (LDLR)-deficient mice. ApoE/LDLR(-/-) mice were treated with MNA or NicA (100 mg/kg). Plaque size, macrophages, and cholesterol content in the brachiocephalic artery, endothelial function in the aorta, systemic inflammation, platelet activation, as well as the concentration of MNA and its metabolites in plasma and urine were measured. MNA and NicA reduced atherosclerotic plaque area, plaque inflammation, and cholesterol content in the brachiocephalic artery. The antiatherosclerotic actions of MNA and NicA were associated with improved endothelial function, as evidenced by a higher concentration of 6-keto-prostaglandin F1 α and nitrite/nitrate in the aortic ring effluent, inhibition of platelets (blunted thromboxane B2 generation), and inhibition of systemic inflammation (lower plasma concentration of serum amyloid P, haptoglobin). NicA treatment resulted in an approximately 2-fold higher concentration of MNA and its metabolites in urine and a 4-fold higher nicotinamide/MNA ratio in plasma, compared with MNA treatment. In summary; MNA displays pronounced antiatherosclerotic action in ApoE/LDLR(-/-) mice, an effect associated with an improvement in prostacyclin- and nitric oxide-dependent endothelial function, inhibition of platelet activation, inhibition of inflammatory burden in plaques, and diminished systemic inflammation. Despite substantially higher MNA availability after NicA treatment, compared with an equivalent dose of MNA, the antiatherosclerotic effect of NicA was not stronger. We suggest that detrimental effects of NicA or its metabolites other than MNA may limit beneficial effects of NicA-derived MNA. Copyright © 2016 by The American Society for Pharmacology and Experimental

  13. High lipoprotein(a) as a possible cause of clinical familial hypercholesterolaemia

    DEFF Research Database (Denmark)

    Langsted, Anne; Kamstrup, Pia Rørbœk; Benn, Marianne

    2016-01-01

    , and that individuals with both high lipoprotein(a) concentrations and clinical familial hypercholesterolaemia have the highest risk of myocardial infarction. METHODS: We did a prospective cohort study that included data from 46 200 individuals from the Copenhagen General Population Study who had lipoprotein...... cholesterol, mean lipoprotein(a) concentrations were 23 mg/dL in individuals unlikely to have familial hypercholesterolaemia, 32 mg/dL in those with possible familial hypercholesterolaemia, and 35 mg/dL in those with probable or definite familial hypercholesterolaemia (ptrend... LDL cholesterol for lipoprotein(a) cholesterol content the corresponding values were 24 mg/dL for individuals unlikely to have familial hypercholesterolaemia, 22 mg/dL for those with possible familial hypercholesterolaemia, and 21 mg/dL for those with probable or definite familial...

  14. Dietary fatty acids were not independently associated with lipoprotein subclasses in elderly women.

    Science.gov (United States)

    Alaghehband, Fatemeh Ramezan; Lankinen, Maria; Värri, Miika; Sirola, Joonas; Kröger, Heikki; Erkkilä, Arja T

    2017-07-01

    Dietary fatty acids are known to affect serum lipoproteins; however, little is known about the associations between consumption of dietary fatty acids and lipoprotein subclasses. In this study, we hypothesized that there is an association between dietary fatty acids and lipoprotein subclasses and investigated the cross-sectional association of dietary fat intake with subclasses of lipoproteins in elderly women. Altogether, 547 women (aged ≥65 years) who were part of OSTPRE cohort participated. Dietary intake was assessed by 3-day food records, lifestyle, and health information obtained through self-administrated questionnaires, and lipoprotein subclasses were determined by nuclear magnetic resonance spectroscopy. To analyze the associations between fatty acids and lipoprotein subclasses, we used Pearson and Spearman correlation coefficients and the analysis of covariance (ANCOVA) test with, adjustment for physical activity, body mass index, age, smoking status, and intake of lipid-lowering drugs. There were significant correlations between saturated fatty acids (SFA; % of energy) and concentrations of large, medium, and small low-density lipoproteins (LDL); total cholesterol in large, medium, and small LDL; and phospholipids in large, medium, and small LDL, after correction for multiple testing. After adjustment for covariates, the higher intake of SFA was associated with smaller size of LDL particles (P = .04, ANCOVA) and lower amount of triglycerides in small very low-density lipoproteins (P = .046, ANCOVA). However, these associations did not remain significant after correction for multiple testing. In conclusion, high intake of SFA may be associated with the size of LDL particles, but the results do not support significant, independent associations between dietary fatty acids and lipoprotein subclasses. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Normalized Synergy Predicts That CD8 Co-Receptor Contribution to T Cell Receptor (TCR and pMHC Binding Decreases As TCR Affinity Increases in Human Viral-Specific T Cells

    Directory of Open Access Journals (Sweden)

    Chad M. Williams

    2017-07-01

    Full Text Available The discovery of naturally occurring T cell receptors (TCRs that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC has previously been correlated with the activation and responsiveness of CD8+ T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands. CD8 contribution in a native human antigen-specific T cell response remains elusive. Here, using Hepatitis C Virus-specific precursor CTLs spanning a large range of TCR affinities, we discovered that the functional responsiveness of any given TCR correlated with the contribution of CD8 to TCR/pMHC binding. Furthermore, we found that CD8 contribution to TCR/pMHC binding in the two-dimensional (2D system was more accurately reflected by normalized synergy (CD8 cooperation normalized by total TCR/pMHC bonds rather than synergy (total CD8 cooperation alone. While synergy showed an increasing trend with TCR affinity, normalized synergy was demonstrated to decrease with the increase of TCR affinity. Critically, normalized synergy was shown to correlate with CTL functionality and peptide sensitivity, corroborating three-dimensional (3D analysis of CD8 contribution with respect to TCR affinity. In addition, we identified TCRs that were independent of CD8 for TCR/pMHC binding. Our results resolve the current discrepancy between 2D and 3D analysis on CD8 contribution to TCR/pMHC binding, and demonstrate that naturally occurring high-affinity TCRs are more capable of CD8-independent interactions that yield greater functional responsiveness even with CD8 blocking. Taken together, our data suggest that addition of the normalized synergy parameter to our

  16. Sezary syndrome cells unlike normal circulating T lymphocytes fail to migrate following engagement of NT1 receptor.

    Science.gov (United States)

    Magazin, Marilyn; Poszepczynska-Guigné, Ewa; Bagot, Martine; Boumsell, Laurence; Pruvost, Christelle; Chalon, Pascale; Culouscou, Jean-Michel; Ferrara, Pascual; Bensussan, Armand

    2004-01-01

    Circulating malignant Sezary cells are a clonal proliferation of CD4+CD45RO+ T lymphocytes primarily involving the skin. To study the biology of these malignant T lymphocytes, we tested their ability to migrate in chemotaxis assays. Previously, we had shown that the neuropeptide neurotensin (NT) binds to freshly isolated Sezary malignant cells and induces through NT1 receptors the cell migration of the cutaneous T cell lymphoma cell line Cou-L. Here, we report that peripheral blood Sezary cells as well as the Sezary cell line Pno fail to migrate in response to neurotensin although they are capable of migrating to the chemokine stromal-cell-derived factor 1 alpha. This is in contrast with normal circulating CD4+ or CD8+ lymphocytes, which respond to both types of chemoattractants except after ex vivo short-time anti-CD3 monoclonal antibody activation, which abrogates the neurotensin-induced lymphocyte migration. Furthermore, we demonstrate that neurotensin-responsive T lymphocytes express the functional NT1 receptor responsible for chemotaxis. In these cells, but not in Sezary cells, neurotensin induces recruitment of phosphatidylinositol-3 kinase, and redistribution of phosphorylated cytoplasmic tyrosine kinase focal adhesion kinase and filamentous actin. Taken together, these results, which show functional distinctions between normal circulating lymphocytes and Sezary syndrome cells, contribute to further understanding of the physiopathology of these atypical cells.

  17. Macroporous poly(vinyl alcohol) microspheres bearing phosphate groups as a new adsorbent for low-density lipoprotein apheresis

    Energy Technology Data Exchange (ETDEWEB)

    Wang Weichao; Xie Hui; Ou Lailiang; Wang Lianyong; Yu Yaoting; Kong Deling [Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071 (China); Sun Lisha, E-mail: wly@nankai.edu.c, E-mail: kongdeling@nankai.edu.c [General Hospital, Tianjin Medical University, Tianjin 300052 (China)

    2009-12-15

    A new low-density lipoprotein (LDL) adsorbent with phosphate groups as the ligand was prepared in this study. Macroporous poly(vinyl acetate-co-triallyl isocyanurate) microspheres were prepared using a free-radical suspension polymerization method. A hydrolysis reaction in sodium hydroxide/methanol changed the materials into poly(vinyl alcohol) (PVA) microspheres. Further reaction with phosphorus oxychloride in anhydrous DMF led to the LDL adsorbent PVA-phosphate microspheres. The preparation conditions such as reaction time, temperature and the amount of phosphorus oxychloride were optimized. The adsorption of plasma lipoproteins was examined by in vitro adsorption assays. The influence of adsorption time, plasma volume and ionic strength on the adsorption capacity was investigated. The circulation adsorption showed that the pathogenic lipoproteins in the plasma such as total cholesterol (TC), LDL and triglyceride (TG) could be removed markedly, in which the removal percentages were 42.9%, 45.0% and 44.74%, respectively. However, the reduction of high-density lipoprotein (HDL) and other normal plasma components was very slight. For in vivo experiment, rabbits were fed with high-cholesterol food to develop a hyperlipidemia model and treated by extracorporeal blood perfusion using the PVA-phosphate columns. Eight hyperlipidemia rabbits were treated with the PVA-phosphate adsorbent, and the removal of TC, LDL and TG was 45.03 +- 6.64%, 48.97 +- 9.92% and 35.42 +- 14.17%, respectively. The sterilization and storage tests showed that the adsorbent was chemically and functionally stable. It could be easily sterilized by a common method and stored for months without loss of adsorption capacity. Therefore, this new PVA-phosphate-based LDL adsorbent may have potential for application in LDL apheresis.

  18. Macroporous poly(vinyl alcohol) microspheres bearing phosphate groups as a new adsorbent for low-density lipoprotein apheresis

    International Nuclear Information System (INIS)

    Wang Weichao; Xie Hui; Ou Lailiang; Wang Lianyong; Yu Yaoting; Kong Deling; Sun Lisha

    2009-01-01

    A new low-density lipoprotein (LDL) adsorbent with phosphate groups as the ligand was prepared in this study. Macroporous poly(vinyl acetate-co-triallyl isocyanurate) microspheres were prepared using a free-radical suspension polymerization method. A hydrolysis reaction in sodium hydroxide/methanol changed the materials into poly(vinyl alcohol) (PVA) microspheres. Further reaction with phosphorus oxychloride in anhydrous DMF led to the LDL adsorbent PVA-phosphate microspheres. The preparation conditions such as reaction time, temperature and the amount of phosphorus oxychloride were optimized. The adsorption of plasma lipoproteins was examined by in vitro adsorption assays. The influence of adsorption time, plasma volume and ionic strength on the adsorption capacity was investigated. The circulation adsorption showed that the pathogenic lipoproteins in the plasma such as total cholesterol (TC), LDL and triglyceride (TG) could be removed markedly, in which the removal percentages were 42.9%, 45.0% and 44.74%, respectively. However, the reduction of high-density lipoprotein (HDL) and other normal plasma components was very slight. For in vivo experiment, rabbits were fed with high-cholesterol food to develop a hyperlipidemia model and treated by extracorporeal blood perfusion using the PVA-phosphate columns. Eight hyperlipidemia rabbits were treated with the PVA-phosphate adsorbent, and the removal of TC, LDL and TG was 45.03 ± 6.64%, 48.97 ± 9.92% and 35.42 ± 14.17%, respectively. The sterilization and storage tests showed that the adsorbent was chemically and functionally stable. It could be easily sterilized by a common method and stored for months without loss of adsorption capacity. Therefore, this new PVA-phosphate-based LDL adsorbent may have potential for application in LDL apheresis.

  19. Lipoprotein lipase activity in surgical patients: influence of trauma and infection.

    Science.gov (United States)

    Robin, A P; Askanazi, J; Greenwood, M R; Carpentier, Y A; Gump, F E; Kinney, J M

    1981-08-01

    Hypertriglyceridemia commonly accompanies clinical sepsis and may be caused by increased hepatic production or decreased clearance of triglyceride from the bloodstream. In contrast, enhanced lipid clearing capacity is usually seen after uncomplicated trauma. The purpose of the study was to determine the role of lipoprotein lipase (LPL) in effecting the above changes. Enzyme activity was assayed in skeletal muscle and adipose tissue biopsy samples from 11 normal subjects and from 17 injured and 11 infected surgical patients. Normal subjects after 4 days of 5% dextrose infusion (D5) showed a significant decrease in adipose tissue LPL activity but no change in skeletal muscle activity. Trauma patients after several days of D5 had higher activity in adipose tissue and higher plasma insulin levels than diet-matched control subjects but showed no change in skeletal muscle activity. Infected patients with high plasma triglyceride levels had significantly decreased LPL activity in both tissues. A linear relationship was found between insulin concentration and adipose tissue LPL activity in normal subjects. We conclude that: (1) low tissue LPL activity in sepsis may result in diminished lipid clearance and contribute to hypertriglyceridemia, (2) after trauma, changes in tissue LPL activity as well as other factors such as altered hemodynamics play a role in determining in vivo lipid clearance, and (3) adipose tissue LPL activity is related to the plasma insulin concentration in normal subjects.

  20. Elevated plasma low-density lipoprotein and high-density lipoprotein cholesterol levels in amenorrheic athletes: effects of endogenous hormone status and nutrient intake.

    Science.gov (United States)

    Friday, K E; Drinkwater, B L; Bruemmer, B; Chesnut, C; Chait, A

    1993-12-01

    To determine the interactive effects of hormones, exercise, and diet on plasma lipids and lipoproteins, serum estrogen and progesterone levels, nutrient intake, and plasma lipid, lipoprotein, and apolipoprotein concentrations were measured in 24 hypoestrogenic amenorrheic and 44 eumenorrheic female athletes. When compared to eumenorrheic athletes, amenorrheic athletes had higher levels of plasma cholesterol (5.47 +/- 0.17 vs. 4.84 +/- 0.12 mmol/L, P = 0.003), triglyceride (0.75 +/- 0.06 vs. 0.61 +/- 0.03 mmol/L, P = 0.046), low-density lipoprotein (LDL; 3.16 +/- 0.15 vs. 2.81 +/- 0.09 mmol/L, P = 0.037), high-density lipoprotein (HDL; 1.95 +/- 0.07 vs. 1.73 +/- 0.05 mmol/L, P = 0.007), and HDL2 (0.84 +/- 0.06 vs. 0.68 +/- 0.04 mmol/L, P = 0.02) cholesterol. Plasma LDL/HDL cholesterol ratios, very low-density lipoprotein and HDL3 cholesterol, and apolipoprotein A-I and A-II levels were similar in the two groups. Amenorrheic athletes consumed less fat than eumenorrheic subjects (52 +/- 5 vs. 75 +/- 3 g/day, P = 0.02), but similar amounts of calories, cholesterol, protein, carbohydrate, and ethanol. HDL cholesterol levels in amenorrheic subjects correlated positively with the percent of dietary calories from fat (r = 0.42, n = 23, P = 0.045) but negatively with the percent from protein (r = -0.49, n = 23, P = 0.017). Thus, exercise-induced amenorrhea may adversely affect cardiovascular risk by increasing plasma LDL and total cholesterol. However, cardioprotective elevations in plasma HDL and HDL2 cholesterol may neutralize the risk of cardiovascular disease in amenorrheic athletes.

  1. Comparison of soymilk and probiotic soymilk effects on serum high-density lipoprotein cholesterol and low-density lipoprotein cholesterol in diabetic Wistar rats

    Directory of Open Access Journals (Sweden)

    Mina Babashahi

    2015-04-01

    Full Text Available BACKGROUND: Soy milk (SM and its fermented products are identified as rich sources of bioactive compounds helping to manage and to reduce the risk of chronic disease. This study aimed to compare the effects of SM and probiotic SM (PSM consumption on serum low-density lipoprotein cholesterol (LDL-C and high-density lipoprotein cholesterol (HDL-C in diabetic Wistar rats. METHODS: Probiotic SM was prepared by fermentation of the plain SM with a native strain of Lactobacillus plantarum. 20 streptozotocin-nicotinamide-induced diabetic Wistar rats were divided into two groups based on the type of administered SM (SM group and PSM group. The animals were fed with 1 ml/day of either soy or PSM for 21 days. The serum lipoprotein levels were analyzed at baseline and the end of the intervention period. RESULTS: HDL-C increased significantly in PSM group. Furthermore, this group showed more percent of change in increased HDL-C in compression with SM group (P < 0.050. Regarding LDL-C level, rats fed with SM was not significantly different from the PSM group (P < 0.050; though, this biomarker was reduced in both group. CONCLUSION: Probiotic SM could modulate blood lipoprotein levels. Thus, it may be considered in managing diabetes complications and atherosclerotic risks. 

  2. A high-density lipoprotein-mediated drug delivery system.

    Science.gov (United States)

    Mo, Zhong-Cheng; Ren, Kun; Liu, Xing; Tang, Zhen-Li; Yi, Guang-Hui

    2016-11-15

    High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Serum amyloid A is found on ApoB-containing lipoproteins in obese humans with diabetes.

    Science.gov (United States)

    Jahangiri, Anisa; Wilson, Patricia G; Hou, Tianfei; Brown, Aparna; King, Victoria L; Tannock, Lisa R

    2013-05-01

    In murine models of obesity/diabetes, there is an increase in plasma serum amyloid A (SAA) levels along with redistribution of SAA from high-density lipoprotein (HDL) to apolipoprotein B (apoB)-containing lipoprotein particles, namely, low-density lipoprotein and very low-density lipoprotein. The goal of this study was to determine if obesity is associated with similar SAA lipoprotein redistribution in humans. Three groups of obese individuals were recruited from a weight loss clinic: healthy obese (n = 14), metabolic syndrome (MetS) obese (n = 8), and obese with type 2 diabetes (n = 6). Plasma was separated into lipoprotein fractions by fast protein liquid chromatography, and SAA was measured in lipid fractions using enzyme-linked immunosorbent assay and Western blotting. Only the obese diabetic group had SAA detectable in apoB-containing lipoproteins, and SAA reverted back to HDL with active weight loss. In human subjects, SAA is found in apoB-containing lipoprotein particles only in obese subjects with type 2 diabetes, but not in healthy obese or obese subjects with MetS. Copyright © 2012 The Obesity Society.

  4. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy.

    Science.gov (United States)

    Zabirnyk, Olga; Liu, Wei; Khalil, Shadi; Sharma, Anit; Phang, James M

    2010-03-01

    Epidemiological studies showed that high levels of oxidized low-density lipoproteins (oxLDLs) are associated with increased cancer risk. We examined the direct effect of physiologic concentrations oxLDL on cancer cells. OxLDLs were cytotoxic and activate both apoptosis and autophagy. OxLDLs have ligands for peroxisome proliferator-activated receptor gamma and upregulated proline oxidase (POX) through this nuclear receptor. We identified 7-ketocholesterol (7KC) as a main component responsible for the latter. To elucidate the role of POX in oxLDL-mediated cytotoxicity, we knocked down POX via small interfering RNA and found that this (i) further reduced viability of cancer cells treated with oxLDL; (ii) decreased oxLDL-associated reactive oxygen species generation; (iii) decreased autophagy measured via beclin-1 protein level and light-chain 3 protein (LC3)-I into LC3-II conversion. Using POX-expressing cell model, we established that single POX overexpression was sufficient to activate autophagy. Thus, it led to autophagosomes accumulation and increased conversion of LC3-I into LC3-II. Moreover, beclin-1 gene expression was directly dependent on POX catalytic activity, namely the generation of POX-dependent superoxide. We conclude that POX is critical in the cellular response to the noxious effects of oxLDL by activating protective autophagy.

  5. The structure of KPN03535 (gi|152972051), a novel putative lipoprotein from Klebsiella pneumoniae, reveals an OB-fold

    International Nuclear Information System (INIS)

    Das, Debanu; Kozbial, Piotr; Han, Gye Won; Carlton, Dennis; Jaroszewski, Lukasz; Abdubek, Polat; Astakhova, Tamara; Axelrod, Herbert L.; Bakolitsa, Constantina; Chen, Connie; Chiu, Hsiu-Ju; Chiu, Michelle; Clayton, Thomas; Deller, Marc C.; Duan, Lian; Ellrott, Kyle; Elsliger, Marc-André; Ernst, Dustin; Farr, Carol L.; Feuerhelm, Julie; Grzechnik, Anna; Grant, Joanna C.; Jin, Kevin K.; Johnson, Hope A.; Klock, Heath E.; Knuth, Mark W.; Krishna, S. Sri; Kumar, Abhinav; Marciano, David; McMullan, Daniel; Miller, Mitchell D.; Morse, Andrew T.; Nigoghossian, Edward; Nopakun, Amanda; Okach, Linda; Oommachen, Silvya; Paulsen, Jessica; Puckett, Christina; Reyes, Ron; Rife, Christopher L.; Sefcovic, Natasha; Tien, Henry J.; Trame, Christine B.; Bedem, Henry van den; Weekes, Dana; Wooten, Tiffany; Xu, Qingping; Hodgson, Keith O.; Wooley, John; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2009-01-01

    KPN03535 is a protein unique to K. pneumoniae. The crystal structure reveals that KPN03535 represents a novel variant of the OB-fold and is likely to be a DNA-binding lipoprotein. KPN03535 (gi|152972051) is a putative lipoprotein of unknown function that is secreted by Klebsiella pneumoniae MGH 78578. The crystal structure reveals that despite a lack of any detectable sequence similarity to known structures, it is a novel variant of the OB-fold and structurally similar to the bacterial Cpx-pathway protein NlpE, single-stranded DNA-binding (SSB) proteins and toxins. K. pneumoniae MGH 78578 forms part of the normal human skin, mouth and gut flora and is an opportunistic pathogen that is linked to about 8% of all hospital-acquired infections in the USA. This structure provides the foundation for further investigations into this divergent member of the OB-fold family

  6. Recent advances in lipoprotein and atherosclerosis: A nutrigenomic approach

    OpenAIRE

    López, Sergio; Ortega, Almudena; Varela, Lourdes; Bermúdez, Beatriz; Muriana, Francisco JG; Abia, Rocío

    2009-01-01

    Atherosclerosis is a disease in which multiple factors contribute to the degeneration of the vascular wall. Many risk factors have been identified as having influence on the progression of atherosclerosis among them, the type of diet. Multifactorial interaction among lipoproteins, vascular wall cells, and inflammatory mediators has been recognised as the basis of atherogenesis. Dietary intake affects lipoprotein concentration and composition providing risk or protection at several stages of a...

  7. The Immunoexpression of Glucocorticoid Receptors in Breast Carcinomas, Lactational Change, and Normal Breast Epithelium and Its Possible Role in Mammary Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Raja Alyusuf

    2017-01-01

    Full Text Available The role of estrogen and progesterone receptors in breast cancer biology is well established. In contrast, other steroid hormones are less well studied. Glucocorticoids (GCs are known to play a role in mammary development and differentiation; thus, it is of interest to attempt to delineate their immunoexpression across a spectrum of mammary epithelia. Aim. To delineate the distribution pattern of glucocorticoid receptors (GRs in malignant versus nonmalignant epithelium with particular emphasis on lactational epithelium. Materials and Methods. Immunohistochemistry (IHC for GRs was performed on archival formalin-fixed paraffin-embedded tissue blocks of 96 cases comprising 52 invasive carcinomas, 21 cases with lactational change, and 23 cases showing normal mammary tissue histology. Results. Results reveal an overexpression of GRs in mammary malignant epithelium as compared to both normal and lactational groups individually and combined. GR overexpression is significantly more pronounced in HER-2-negative cancers. Discussion. This is the first study to compare GR expression in human lactating epithelium versus malignant and normal epithelium. The article discusses the literature related to the pathobiology of GCs in the breast with special emphasis on breast cancer. Conclusion. The lactational epithelium did not show overexpression of GR, while GR was overexpressed in mammary NST (ductal carcinoma, particularly HER-2-negative cancers.

  8. Obtention of scintillography images by low density lipoproteins labelled with technetium 99

    International Nuclear Information System (INIS)

    Silva, S.; Coelho, I.; Zanardo, E.; Pileggi, F.; Meneguethi, C.; Maranhao, R.C.

    1992-01-01

    The low density lipoproteins carry the most part of the cholesterol in the blood plasma. These lipoproteins are labelled with technetium-99-m and have been used for obtaining images in nuclear medicine. The introduction of this technique is presented, aiming futures clinical uses. Scintillographic images are obtained 25 minutes and 24 hours after the injection of 3 m Ci of low density lipoproteins - technetium-99 m in rabbits. (C.G.C.)

  9. Insulin receptor binding and tyrosine kinase activity in skeletal muscle from normal pregnant women and women with gestational diabetes

    DEFF Research Database (Denmark)

    Damm, P.; Handberg, A.; Kühl, C.

    1993-01-01

    OBJECTIVE: To ascertain whether the decreased glucose tolerance and insulin resistance found in normal and gestational diabetic pregnancy might be associated with changes in insulin receptor function. METHODS: Eight nonpregnant healthy women (nonpregnant controls), eight healthy pregnant women...... (pregnant controls), and eight women with gestational diabetes were investigated. All were non-obese. Muscle biopsies were obtained from the vastus lateralis muscle, and insulin binding and tyrosine kinase activities in partially purified skeletal muscle insulin receptors were studied. The pregnant controls...... with gestational diabetes compared to nonpregnant controls (P pregnant women did not differ from the other two groups. Postpartum, no differences in insulin binding were found between the groups. Basal and maximal tyrosine kinase activities toward the exogenous substrate poly(Glu4Tyr1) were...

  10. Lipoprotein (a) Management: Lifestyle and Hormones.

    Science.gov (United States)

    Garcia-Rios, Antonio; Leon-Acuna, Ana; Lopez-Miranda, Jose; Perez-Martinez, Pablo

    2017-01-01

    Cardiovascular disease (CVD) continues to be the first cause of mortality in developed countries. Moreover, far from diminishing, the cardiovascular risk factors leading towards the development of CVD are on the rise. Therefore, the preventive and therapeutic management which is currently in place is clearly not enough to stop this pandemic. In this context, a major resurgence in interest in lipoprotein (a) [Lp(a)] has occurred in light of its association with CVD. This series aims to review the basic and clinical aspects of Lp(a) biology. Specifically, the present review considers the current situation regarding the influence of lifestyle, hormones and other physiological or pathological conditions on Lp(a) plasma concentrations which might mitigate the harmful effects of this lipoprotein. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Effect of Ascorbic Acid on Lipoprotein Lipase Activity | Kotze | South ...

    African Journals Online (AJOL)

    Baboons kept on hypovitaminotic C diets, but without clinical signs of scurvy, had significantly higher heart muscle lipoprotein lipase activity than baboons on vitamin C 34 mg/kg body mass/day. When the serum vitamin C levels were above 0,35 mg/100 ml the heart muscle lipoprotein lipase was repressed. Serum vitamin C ...

  12. Apolipoprotein B-containing lipoproteins and atherosclerotic cardiovascular disease [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Michael D. Shapiro

    2017-02-01

    Full Text Available Cholesterol-rich, apolipoprotein B (apoB-containing lipoproteins are now widely accepted as the most important causal agents of atherosclerotic cardiovascular disease. Multiple unequivocal and orthogonal lines of evidence all converge on low-density lipoprotein and related particles as being the principal actors in the genesis of atherosclerosis. Here, we review the fundamental role of atherogenic apoB-containing lipoproteins in cardiovascular disease and several other humoral and parietal factors that are required to initiate and maintain arterial degeneration. The biology of foam cells and their interactions with high-density lipoproteins, including cholesterol efflux, are also briefly reviewed.

  13. Characteristics of 2,4,5,2',4',5'-hexachlorobiphenyl distribution among lipoproteins in vitro

    International Nuclear Information System (INIS)

    Vomachka, M.S.; Vodicnik, M.J.; Lech, J.J.

    1983-01-01

    The uptake, distribution, and transfer of 2,4,5,2',4',5'-hexachlorobiphenyl (6-CB) were examined in vitro with human and rat whole blood, plasma, and lipoprotein fractions. 6-CB distribution between plasma and erythrocytes as well as among lipoproteins was determined following sedimentation of erythrocytes and ultracentrifugal fractionation of plasma. In both rat and human whole blood, 70 to 75% of 6-CB partitioned into plasma and 25 to 30% into erythrocytes. The uptake of 6-CB into plasma was extremely rapid and the rate of uptake was found to be dependent upon temperature. The distribution of 6-CB among lipoproteins was relatively homogeneous with 20 to 30% being distributed in very low-density lipoproteins (VLDL, d . 0.95-1.006 g/ml), 15 to 20% in low-density lipoproteins (LDL, d . 1.006-1.063 g/ml), and 15 to 25% in high-density lipoproteins (HDL, d . 1.063-1.21 g/ml). Over 25% of 6-CB was found in the remaining bottom fraction. In addition, each isolated fraction when incubated alone with 6-CB was shown capable of uptake. The relative proportion of 6-CB among the lipoproteins was independent of the level taken up by plasma. 6-CB was also found to transfer among lipoproteins. This exchange of 6-CB proved to be dependent upon the concentrations of both protein and triacylglycerol in the incubations. Two proteins in the bottom fraction (Bf), albumin and a steroid binding globulin, were capable of competing with the lipoproteins for 6-CB uptake

  14. High-density lipoproteins: a novel therapeutic target for cardiovascular disease

    Directory of Open Access Journals (Sweden)

    TS Mohamed Saleem

    2011-01-01

    Full Text Available TS Mohamed Saleem1, PV Sandhya Rani1, K Gauthaman21Department of Pharmacology, Annamacharya College of Pharmacy, New Boyanapalli, Andhrapradesh, India; 2Department of Drug Technology, Faculty of Medical Technology, Derna, LibyaAbstract: Cardiovascular disease has a high rate of mortality in both Western and developing countries. Atherosclerosis and generation of reactive oxygen species through oxidative stress is the major risk factor for cardiovascular disease. Atherothrombosis with low levels of high-density lipoprotein (HDL and high levels of low-density lipoprotein is a major risk factor for atherosclerosis-induced cardiovascular disease. Lipid-lowering drugs like statins, niacin, fibrates, and some newer agents, ie, the apolipoprotein A-I mimetics and the cholesteryl ester transfer protein inhibitors, not only increase HDL levels but are also effective in reducing key atherogenic lipid components, including triglyceride-rich lipoproteins. The aim of this review is to discuss the accumulating evidence suggesting that HDL possesses a diverse range of biological actions, and that increasing HDL levels by drug treatment may be beneficial in the prevention of cardiovascular disease.Keywords: cardiovascular disease, lipoproteins, statins, apolipoprotein, atherosclerosis

  15. Transvascular lipoprotein transport in patients with chronic renal disease

    DEFF Research Database (Denmark)

    Jensen, Trine Krogsgaard; Nordestgaard, Børge Grønne; Feldt-Rasmussen, Bo

    2004-01-01

    BACKGROUND: While increased plasma cholesterol is a well-established cardiovascular risk factor in the general population, this is not so among patients with chronic renal disease. We hypothesized that the transvascular lipoprotein transport, in addition to the lipoprotein concentration in plasma......, determines the degree of atherosclerosis among patients with chronic renal disease. METHODS: We used an in vivo method for measurement of transvascular transport of low-density lipoprotein (LDL) in 21 patients with chronic renal disease and in 42 healthy control patients. Autologous 131-iodinated LDL...... was reinjected intravenously, and the 1-hour fractional escape rate was taken as index of transvascular transport. RESULTS: Transvascular LDL transport tended to be lower in patients with chronic renal disease than in healthy control patients [3.3 (95% CI 2.4-4.2) vs. 4.2 (3.7-4.2)%/hour; NS]. However...

  16. B cell attracting chemokine 1 (CXCL13) and its receptor CXCR5 are expressed in normal and aberrant gut associated lymphoid tissue

    OpenAIRE

    Carlsen, H S; Baekkevold, E S; Johansen, F-E; Haraldsen, G; Brandtzaeg, P

    2002-01-01

    Background and aims: In mice, the B lymphocyte chemoattractant (BLC) CXC chemokine ligand 13 (CXCL13) is sufficient to induce a series of events leading to the formation of organised lymphoid tissue. Its receptor, CXCR5, is required for normal development of secondary lymphoid tissue. However, the human counterpart, B cell attracting chemokine 1 (BCA-1) has only been detected in the stomach and appendix and not in other parts of normal or diseased gut. Hence to elucidate the potential role of...

  17. Macular xanthophylls, lipoprotein-related genes, and age-related macular degeneration1234

    Science.gov (United States)

    Koo, Euna; Neuringer, Martha; SanGiovanni, John Paul

    2014-01-01

    Plant-based macular xanthophylls (MXs; lutein and zeaxanthin) and the lutein metabolite meso-zeaxanthin are the major constituents of macular pigment, a compound concentrated in retinal areas that are responsible for fine-feature visual sensation. There is an unmet need to examine the genetics of factors influencing regulatory mechanisms and metabolic fates of these 3 MXs because they are linked to processes implicated in the pathogenesis of age-related macular degeneration (AMD). In this work we provide an overview of evidence supporting a molecular basis for AMD-MX associations as they may relate to DNA sequence variation in AMD- and lipoprotein-related genes. We recognize a number of emerging research opportunities, barriers, knowledge gaps, and tools offering promise for meaningful investigation and inference in the field. Overviews on AMD- and high-density lipoprotein (HDL)–related genes encoding receptors, transporters, and enzymes affecting or affected by MXs are followed with information on localization of products from these genes to retinal cell types manifesting AMD-related pathophysiology. Evidence on the relation of each gene or gene product with retinal MX response to nutrient intake is discussed. This information is followed by a review of results from mechanistic studies testing gene-disease relations. We then present findings on relations of AMD with DNA sequence variants in MX-associated genes. Our conclusion is that AMD-associated DNA variants that influence the actions and metabolic fates of HDL system constituents should be examined further for concomitant influence on MX absorption, retinal tissue responses to MX intake, and the capacity to modify MX-associated factors and processes implicated in AMD pathogenesis. PMID:24829491

  18. Lipoprotein(a) as a cardiovascular risk factor: current status

    DEFF Research Database (Denmark)

    Nordestgaard, Børge G; Chapman, M John; Ray, Kausik

    2010-01-01

    The aims of the study were, first, to critically evaluate lipoprotein(a) [Lp(a)] as a cardiovascular risk factor and, second, to advise on screening for elevated plasma Lp(a), on desirable levels, and on therapeutic strategies.......The aims of the study were, first, to critically evaluate lipoprotein(a) [Lp(a)] as a cardiovascular risk factor and, second, to advise on screening for elevated plasma Lp(a), on desirable levels, and on therapeutic strategies....

  19. Cholesterol: Its Regulation and Role in Central Nervous System Disorders

    Directory of Open Access Journals (Sweden)

    Matthias Orth

    2012-01-01

    Full Text Available Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer’s disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules. We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.

  20. Lipoprotein(a) and ischemic heart disease-A causal association? A review

    DEFF Research Database (Denmark)

    Kamstrup, P.R.

    2010-01-01

    association of LPA copy number variants, influencing levels of lipoprotein(a), with risk of IHD. In conclusion, results from epidemiologic, in vitro, animal, and genetic epidemiologic studies support a causal association of lipoprotein(a) with risk of IHD, while results from randomized clinical trials...