WorldWideScience

Sample records for normal human nk

  1. Immune surveillance properties of human NK cell-derived exosomes.

    Science.gov (United States)

    Lugini, Luana; Cecchetti, Serena; Huber, Veronica; Luciani, Francesca; Macchia, Gianfranco; Spadaro, Francesca; Paris, Luisa; Abalsamo, Laura; Colone, Marisa; Molinari, Agnese; Podo, Franca; Rivoltini, Licia; Ramoni, Carlo; Fais, Stefano

    2012-09-15

    Exosomes are nanovesicles released by normal and tumor cells, which are detectable in cell culture supernatant and human biological fluids, such as plasma. Functions of exosomes released by "normal" cells are not well understood. In fact, several studies have been carried out on exosomes derived from hematopoietic cells, but very little is known about NK cell exosomes, despite the importance of these cells in innate and adaptive immunity. In this paper, we report that resting and activated NK cells, freshly isolated from blood of healthy donors, release exosomes expressing typical protein markers of NK cells and containing killer proteins (i.e., Fas ligand and perforin molecules). These nanovesicles display cytotoxic activity against several tumor cell lines and activated, but not resting, immune cells. We also show that NK-derived exosomes undergo uptake by tumor target cells but not by resting PBMC. Exosomes purified from plasma of healthy donors express NK cell markers, including CD56+ and perforin, and exert cytotoxic activity against different human tumor target cells and activated immune cells as well. The results of this study propose an important role of NK cell-derived exosomes in immune surveillance and homeostasis. Moreover, this study supports the use of exosomes as an almost perfect example of biomimetic nanovesicles possibly useful in future therapeutic approaches against various diseases, including tumors.

  2. Secretory products from thrombin-stimulated human platelets exert an inhibitory effect on NK-cytotoxic activity

    DEFF Research Database (Denmark)

    Skov Madsen, P; Hokland, P; Hokland, M

    1987-01-01

    We have investigated the interaction between human platelets and the NK-system, with special emphasis on the action of secretory products from platelets in an NK assay with 51Cr-labelled K562 as target cells. Supernatants from thrombin-stimulated platelets added to the NK assay consistently...... decreased the NK-cytotoxicity by 40% +/- 4.3%, indicating the existence of secreted products from platelets as a source of NK-inhibiting substances. In contrast, no direct cytotoxic effect of these secretory products on the target cells (K562) was seen. Thus, normal human platelets, when stimulated...... with thrombin, are capable of secreting different, yet undefined factors, which significantly inhibit NK activity in vitro. The results also suggest that the role of products from contaminating in vitro activated platelets should be borne in mind when performing conventional NK assays. Udgivelsesdato: 1986-Oct...

  3. HIV-Specific ADCC Improves After Antiretroviral Therapy and Correlates With Normalization of the NK Cell Phenotype

    DEFF Research Database (Denmark)

    Jensen, Sanne S; Hartling, Hans J; Tingstedt, Jeanette L

    2015-01-01

    analyzed. RESULTS: The ability of NK cells to mediate ADCC was significantly increased after only 6 months of HAART and was not explained by a normalization of NK cell subsets (CD56 CD16 and CD56 CD16 NK cells) but rather by normalization in the frequency of NK cells expressing CCR7 and CD27...

  4. Human CD56bright NK Cells

    DEFF Research Database (Denmark)

    Michel, Tatiana; Poli, Aurélie; Cuapio, Angelica

    2016-01-01

    Human NK cells can be subdivided into various subsets based on the relative expression of CD16 and CD56. In particular, CD56(bright)CD16(-/dim) NK cells are the focus of interest. They are considered efficient cytokine producers endowed with immunoregulatory properties, but they can also become c...... NK cell subsets is not fully defined, nor is their precise hematopoietic origin. In this article, we summarize recent studies about CD56(bright) NK cells in health and disease and briefly discuss the current controversies surrounding them....

  5. Effects of low dose irradiation on NK activity of normal individuals and patients with cancer

    International Nuclear Information System (INIS)

    Tian Hailin; Su Liaoyuan

    1994-10-01

    Effects of low dose irradiation on NK activity of lymphocytes and on K 562 cells were studied. The NK activity was determined by means of 3 H-TdR release assay. While 3 H-TdR incorporation was used to reflect functional changes of K 562 cells after low dose irradiation. 21 patients with cancer and 10 normal individuals were detected. The results indicated that the NK activity of lymphocytes in normal individuals increased significantly after 10 and 50 cGy γ-ray irradiation, while in patients with cancer the NK activity of lymphocytes increased only at the dose of 50 cGy irradiation. The increase of NK activity in normal individuals was higher than that in patients with cancer after same doses of irradiation. When K 562 cells were irradiated by 10 cGy γ-rays, the 3 H-TdR incorporation value increased. After exposed to over 50 cGy the stimulating effect disappeared

  6. Induced Human Decidual NK-Like Cells Improve Utero-Placental Perfusion in Mice.

    Directory of Open Access Journals (Sweden)

    Ricardo C Cavalli

    Full Text Available Decidual NK (dNK cells, a distinct type of NK cell, are thought to regulate uterine spiral artery remodeling, a process that allows for increased blood delivery to the fetal-placental unit. Impairment of uterine spiral artery remodeling is associated with decreased placental perfusion, increased uterine artery resistance, and obstetric complications such as preeclampsia and intrauterine growth restriction. Ex vivo manipulation of human peripheral blood NK (pNK cells by a combination of hypoxia, TGFß-1 and 5-aza-2'-deoxycytidine yields cells with phenotypic and in vitro functional similarities to dNK cells, called idNK cells. Here, gene expression profiling shows that CD56Bright idNK cells derived ex vivo from human pNK cells, and to a lesser extent CD56Dim idNK cells, are enriched in the gene expression signature that distinguishes dNK cells from pNK cells. When injected into immunocompromised pregnant mice with elevated uterine artery resistance, idNK cells homed to the uterus and reduced the uterine artery resistance index, suggesting improved placental perfusion.

  7. Rhizopus oryzae hyphae are damaged by human natural killer (NK) cells, but suppress NK cell mediated immunity.

    Science.gov (United States)

    Schmidt, Stanislaw; Tramsen, Lars; Perkhofer, Susanne; Lass-Flörl, Cornelia; Hanisch, Mitra; Röger, Frauke; Klingebiel, Thomas; Koehl, Ulrike; Lehrnbecher, Thomas

    2013-07-01

    Mucormycosis has a high mortality and is increasingly diagnosed in hematopoietic stem cell transplant (HSCT) recipients. In this setting, there is a growing interest to restore host defense to combat infections by adoptively transferring donor-derived immunocompetent cells. Natural killer (NK) cells exhibit antitumor and antiinfective activity, but the interaction with Mucormycetes is unknown. Our data demonstrate that both unstimulated and IL-2 prestimulated human NK cells damage Rhizopus oryzae hyphae, but do not affect resting conidia. The damage of the fungus is mediated, at least in part, by perforin. R. oryzae hyphae decrease the secretion of immunoregulatory molecules by NK cells, such as IFN-γ and RANTES, indicating an immunosuppressive effect of the fungus. Our data indicate that NK cells exhibit activity against Mucormycetes and future research should evaluate NK cells as a potential tool for adoptive immunotherapy in HSCT. Copyright © 2012 Elsevier GmbH. All rights reserved.

  8. The utility of flow cytometry in differentiating NK/T cell lymphoma from indolent and reactive NK cell proliferations.

    Science.gov (United States)

    de Mel, Sanjay; Li, Jenny Bei; Abid, Muhammad Bilal; Tang, Tiffany; Tay, Hui Ming; Ting, Wen Chang; Poon, Li Mei; Chung, Tae Hoon; Mow, Benjamin; Tso, Allison; Ong, Kiat Hoe; Chng, Wee Joo; Liu, Te Chih

    2018-01-01

    The WHO defines three categories of NK cell malignancies; extra nodal NK/T cell lymphoma (NKTCL), aggressive NK cell leukemia, and the provisional entity chronic lymphoproliferative disorder of NK cells (CLPD-NK). Although the flow cytometric (FC) phenotype of CLPD-NK has been described, studies on FC phenotype of NKTCL are limited. To the best of our knowledge ours is the first study to compare the phenotype of NKTCL, CLPD-NK, reactive NK lymphocytosis (RNKL), and normal NK cells using eight color (8C) FC. Specimens analyzed using the Euroflow8C NK Lymphoproliferative Disorder (NKLPD) panel between 2011 and 2014 were identified from our database. All samples were analyzed on the FACSCantoII cytometer. NK cells were identified as CD45+, smCD3-, CD19-, CD56+ and normal T-cells served as internal controls. The majority of NKTCL were CD56 bright, CD16 dim, CD57-, and CD94+. CLPD-NK and RNKL were predominantly CD56+ or dim with positive expression of CD16 and CD57 and weak CD94 expression. Antigen based statistical analyses showed robust division of samples along the NKTCL/normal CD56 bright NK cell and CLPD-NK/RNKL/normal CD56 positive NK cell groups. It was concluded that FC can reliably distinguish NKTCL from CLPD-NK, normal NK cells of CD56+ phenotype, and RNKL. It was proposed that the typical phenotype for NKTCL is: CD56 bright, CD16 dim with positive CD2, CD7, CD94, HLADR, CD25, CD26, and absent CD57. This resembles the phenotype of the CD56 bright immunoregulatory subset of NK cells which we therefore hypothesize is the cell of origin of NKTCL. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.

  9. Tributyltin (TBT) and Dibutyltin (DBT) Alter Secretion of Tumor Necrosis Factor Alpha (TNFα) from Human Natural Killer (NK) Cells and a Mixture of T cells and NK Cells

    Science.gov (United States)

    Hurt, Kelsi; Hurd-Brown, Tasia; Whalen, Margaret

    2012-01-01

    Butyltins (BTs) have been in widespread use. Tributyltin (TBT) has been used as a biocide in a variety of applications and is found in human blood samples. Dibutyltin (DBT) has been used as a stabilizer in polyvinyl chloride plastics and as a de-worming agent in poultry. DBT, like TBT, is found in human blood. Human natural killer (NK) cells are the earliest defense against tumors and viral infections and secrete the cytokine tumor necrosis factor (TNF) alpha (α). TNFα is an important regulator of adaptive and innate immune responses. TNFα promotes inflammation and an association between malignant transformation and inflammation has been established. Previously, we have shown that TBT and DBT were able to interfere with the ability of NK cells to lyse tumor target cells. Here we show that BTs alter cytokine secretion by NK cells as well as a mixture of T and NK lymphocytes (T/NK cells). We examined 24 h, 48 h, and 6 day exposures to TBT (200- 2.5 nM) and DBT (5- 0.05 µM) on TNFα secretion by highly enriched human NK cells and T/NK cells. The results indicate that TBT (200 - 2.5 nM) decreased TNFα secretion from NK cells. In the T/NK cells 200 nM TBT decreased secretion while 100-5 nM TBT increased secretion of TNFα. NK cells or T/NK cells exposed to higher concentrations of DBT showed decreased TNFα secretion while lower concentrations showed increased secretion. The effects of BTs on TNFα secretion are seen at concentrations present in human blood. PMID:23047847

  10. NK cell-released exosomes

    Science.gov (United States)

    Fais, Stefano

    2013-01-01

    We have recently reported that human natural killer (NK) cells release exosomes that express both NK-cell markers and cytotoxic molecules. Similar results were obtained with circulating exosomes from human healthy donors. Both NK-cell derived and circulating exosomes exerted a full functional activity and killed both tumor and activated immune cells. These findings indicate that NK-cell derived exosomes might constitute a new promising therapeutic tool. PMID:23482694

  11. Neurokinin NK1 and NK3 receptors as targets for drugs to treat gastrointestinal motility disorders and pain.

    Science.gov (United States)

    Sanger, Gareth J

    2004-04-01

    NK1 and NK3 receptors do not appear to play significant roles in normal GI functions, but both may be involved in defensive or pathological processes. NK1 receptor antagonists are antiemetic, operating via vagal sensory and motor systems, so there is a need to study their effects on other gastro-vagal functions thought to play roles in functional bowel disorders. Interactions between NK1 receptors and enteric nonadrenergic, noncholinergic motorneurones suggest a need to explore the role of this receptor in disrupted colonic motility. NK1 receptor antagonism does not exert consistent analgesic activity in humans, but similar studies have not been carried out against pain of GI origin, where NK1 receptors may have additional influences on mucosal inflammatory or "irritant" processes. NK3 receptors mediate certain disruptions of intestinal motility. The activity may be driven by tachykinins released from intrinsic primary afferent neurones (IPANs), which induce slow EPSP activity in connecting IPANs and hence, a degree of hypersensitivity within the enteric nervous system. The same process is also proposed to increase C-fibre sensitivity, either indirectly or directly. Thus, NK3 receptor antagonists inhibit intestinal nociception via a "peripheral" mechanism that may be intestine-specific. Studies with talnetant and other selective NK3 receptor antagonists are, therefore, revealing an exciting and novel pathway by which pathological changes in intestinal motility and nociception can be induced, suggesting a role for NK3 receptor antagonism in irritable bowel syndrome.

  12. Resident Peritoneal NK cells

    Science.gov (United States)

    Gonzaga, Rosemary; Matzinger, Polly; Perez-Diez, Ainhoa

    2011-01-01

    Here we describe a new population of NK cells that reside in the normal, un-inflamed peritoneal cavity. Phenotypically, they share some similarities with the small population of CD49b negative, CD27 positive immature splenic NK cells, and liver NK cells but differ in their expression of CD62L, TRAIL and EOMES. Functionally, the peritoneal NK cells resemble the immature splenic NK cells in their production of IFN-γ, GM-CSF and TNF-α and in the killing of YAC-1 target cells. We also found that the peritoneum induces different behavior in mature and immature splenic NK cells. When transferred intravenously into RAGγcKO mice, both populations undergo homeostatic proliferation in the spleen, but only the immature splenic NK cells, are able to reach the peritoneum. When transferred directly into the peritoneum, the mature NK cells survive but do not divide, while the immature NK cells proliferate profusely. These data suggest that the peritoneum is not only home to a new subset of tissue resident NK cells but that it differentially regulates the migration and homeostatic proliferation of immature versus mature NK cells. PMID:22079985

  13. PGC-1α-Dependent Mitochondrial Adaptation Is Necessary to Sustain IL-2-Induced Activities in Human NK Cells.

    Science.gov (United States)

    Miranda, Dante; Jara, Claudia; Ibañez, Jorge; Ahumada, Viviana; Acuña-Castillo, Claudio; Martin, Adrian; Córdova, Alexandra; Montoya, Margarita

    2016-01-01

    Human Natural Killer (NK) cells are a specialized heterogeneous subpopulation of lymphocytes involved in antitumor defense reactions. NK cell effector functions are critically dependent on cytokines and metabolic activity. Among various cytokines modulating NK cell function, interleukin-2 (IL-2) can induce a more potent cytotoxic activity defined as lymphokine activated killer activity (LAK). Our aim was to determine if IL-2 induces changes at the mitochondrial level in NK cells to support the bioenergetic demand for performing this enhanced cytotoxic activity more efficiently. Purified human NK cells were cultured with high IL-2 concentrations to develop LAK activity, which was assessed by the ability of NK cells to lyse NK-resistant Daudi cells. Here we show that, after 72 h of culture of purified human NK cells with enough IL-2 to induce LAK activity, both the mitochondrial mass and the mitochondrial membrane potential increased in a PGC-1α-dependent manner. In addition, oligomycin, an inhibitor of ATP synthase, inhibited IL-2-induced LAK activity at 48 and 72 h of culture. Moreover, the secretion of IFN-γ from NK cells with LAK activity was also partially dependent on PGC-1α expression. These results indicate that PGC-1α plays a crucial role in regulating mitochondrial function involved in the maintenance of LAK activity in human NK cells stimulated with IL-2.

  14. Genetic engineering of human NK cells to express CXCR2 improves migration to renal cell carcinoma.

    Science.gov (United States)

    Kremer, Veronika; Ligtenberg, Maarten A; Zendehdel, Rosa; Seitz, Christina; Duivenvoorden, Annet; Wennerberg, Erik; Colón, Eugenia; Scherman-Plogell, Ann-Helén; Lundqvist, Andreas

    2017-09-19

    Adoptive natural killer (NK) cell transfer is being increasingly used as cancer treatment. However, clinical responses have so far been limited to patients with hematological malignancies. A potential limiting factor in patients with solid tumors is defective homing of the infused NK cells to the tumor site. Chemokines regulate the migration of leukocytes expressing corresponding chemokine receptors. Various solid tumors, including renal cell carcinoma (RCC), readily secrete ligands for the chemokine receptor CXCR2. We hypothesize that infusion of NK cells expressing high levels of the CXCR2 chemokine receptor will result in increased influx of the transferred NK cells into tumors, and improved clinical outcome in patients with cancer. Blood and tumor biopsies from 14 primary RCC patients were assessed by flow cytometry and chemokine analysis. Primary NK cells were transduced with human CXCR2 using a retroviral system. CXCR2 receptor functionality was determined by Calcium flux and NK cell migration was evaluated in transwell assays. We detected higher concentrations of CXCR2 ligands in tumors compared with plasma of RCC patients. In addition, CXCL5 levels correlated with the intratumoral infiltration of CXCR2-positive NK cells. However, tumor-infiltrating NK cells from RCC patients expressed lower CXCR2 compared with peripheral blood NK cells. Moreover, healthy donor NK cells rapidly lost their CXCR2 expression upon in vitro culture and expansion. Genetic modification of human primary NK cells to re-express CXCR2 improved their ability to specifically migrate along a chemokine gradient of recombinant CXCR2 ligands or RCC tumor supernatants compared with controls. The enhanced trafficking resulted in increased killing of target cells. In addition, while their functionality remained unchanged compared with control NK cells, CXCR2-transduced NK cells obtained increased adhesion properties and formed more conjugates with target cells. To increase the success of NK

  15. Diet-Induced Obesity Is Associated with an Impaired NK Cell Function and an Increased Colon Cancer Incidence

    Directory of Open Access Journals (Sweden)

    Ina Bähr

    2017-01-01

    Full Text Available Obesity is associated with an increased colon cancer incidence, but underlying mechanisms remained unclear. Previous studies showed altered Natural killer (NK cell functions in obese individuals. Therefore, we studied the impact of an impaired NK cell functionality on the increased colon cancer risk in obesity. In vitro investigations demonstrated a decreased IFN-γ secretion and cytotoxicity of human NK cells against colon tumor cells after NK cell preincubation with the adipokine leptin. In addition, leptin incubation decreased the expression of activating NK cell receptors. In animal studies, colon cancer growth was induced by injection of azoxymethane (AOM in normal weight and diet-induced obese rats. Body weight and visceral fat mass were increased in obese animals compared to normal weight rats. AOM-treated obese rats showed an increased quantity, size, and weight of colon tumors compared to the normal weight tumor group. Immunohistochemical analyses demonstrated a decreased number of NK cells in spleen and liver in obesity. Additionally, the expression levels of activating NK cell receptors were lower in spleen and liver of obese rats. The results show for the first time that the decreased number and impaired NK cell function may be one cause for the higher colon cancer risk in obesity.

  16. Neurokinin NK1 and NK3 receptors as targets for drugs to treat gastrointestinal motility disorders and pain

    OpenAIRE

    Sanger, Gareth J

    2004-01-01

    NK1 and NK3 receptors do not appear to play significant roles in normal GI functions, but both may be involved in defensive or pathological processes. NK1 receptor antagonists are antiemetic, operating via vagal sensory and motor systems, so there is a need to study their effects on other gastro-vagal functions thought to play roles in functional bowel disorder's. Interactions between NK1 receptors and enteric nonadrenergic, noncholinergic motorneurones suggest a need to explore the role of t...

  17. ADCC employing an NK cell line (haNK) expressing the high affinity CD16 allele with avelumab, an anti-PD-L1 antibody.

    Science.gov (United States)

    Jochems, Caroline; Hodge, James W; Fantini, Massimo; Tsang, Kwong Y; Vandeveer, Amanda J; Gulley, James L; Schlom, Jeffrey

    2017-08-01

    NK-92 cells, and their derivative, designated aNK, were obtained from a patient with non-Hodgkin lymphoma. Prior clinical studies employing adoptively transferred irradiated aNK cells have provided evidence of clinical benefit and an acceptable safety profile. aNK cells have now been engineered to express IL-2 and the high affinity (ha) CD16 allele (designated haNK). Avelumab is a human IgG1 anti-PD-L1 monoclonal antibody, which has shown evidence of clinical activity in a range of human tumors. Prior in vitro studies have shown that avelumab has the ability to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) of human tumor cells when combined with NK cells. In the studies reported here, the ability of avelumab to enhance the lysis of a range of human carcinoma cells by irradiated haNK cells via the ADCC mechanism is demonstrated; this ADCC is shown to be inhibited by anti-CD16 blocking antibody and by concanamycin A, indicating the use of the granzyme/perforin pathway in tumor cell lysis. Studies also show that while NK cells have the ability to lyse aNK or haNK cells, the addition of NK cells to irradiated haNK cells does not inhibit haNK-mediated lysis of human tumor cells, with or without the addition of avelumab. Avelumab-mediated lysis of tumor cells by irradiated haNK cells is also shown to be similar to that of NK cells bearing the V/V Fc receptor high affinity allele. These studies thus provide the rationale for the clinical evaluation of the combined use of avelumab with that of irradiated adoptively transferred haNK cells. © 2017 UICC.

  18. Effect of tributyltin (TBT) on ATP levels in human natural killer (NK) cells: relationship to TBT-induced decreases in NK function.

    Science.gov (United States)

    Dudimah, Fred D; Odman-Ghazi, Sabah O; Hatcher, Frank; Whalen, Margaret M

    2007-01-01

    The purpose of this study was to investigate the role that tributyltin (TBT)-induced decreases in ATP levels may play in TBT-induced decreases in the tumor lysing (lytic) function of natural killer (NK) cells. NK cells are a subset of lymphocytes that act as an initial immune defense against tumor cells and virally infected cells. TBT is an environmental contaminant that has been detected in human blood, which has been shown to interfere with ATP synthesis. Previous studies have shown that TBT is able to decrease very significantly the lytic function of NK cells. In this study NK cells were exposed to various concentrations of TBT and to two other compounds that interfere with ATP synthesis (rotenone a complex I inhibitor and oligomycin an ATP synthase inhibitor) for various lengths of time before determining the levels of ATP and lytic function. Exposures of NK cells to 10, 25, 50 and 100 nm TBT did not significantly reduce ATP levels after 24 h. However, these same exposures caused significant decreases in cytotoxic function. Studies of brief 1 h exposures to a range of TBT, rotenone and oligomycin concentrations followed by 24 h, 48 h and 6 day periods in compound-free media prior to assaying for ATP levels or cytotoxic function showed that each of the compounds caused persistent decreases in ATP levels and lytic function of NK cells. Exposures to 0.05-5 microm rotenone or oligomycin for 1 h reduced ATP levels by 20-25% but did not have any measurable effect on the ability of NK cells to lyse tumor cells. ATP levels were also decreased by about 20-25% after 24 h or 48 h exposures to rotenone or oligomycin (0.5 microm ), and the lytic function was decreased by about 50%. The results suggest that TBT-induced decreases in ATP levels were not responsible for the loss of cytotoxic function seen at 1 h and 24 h. However, TBT-induced decreases of NK-ATP levels may be at least in part responsible for losses of NK-cytotoxic function seen after 48 h and 6 day exposures

  19. NK cell-released exosomes: Natural nanobullets against tumors.

    Science.gov (United States)

    Fais, Stefano

    2013-01-01

    We have recently reported that human natural killer (NK) cells release exosomes that express both NK-cell markers and cytotoxic molecules. Similar results were obtained with circulating exosomes from human healthy donors. Both NK-cell derived and circulating exosomes exerted a full functional activity and killed both tumor and activated immune cells. These findings indicate that NK-cell derived exosomes might constitute a new promising therapeutic tool.

  20. IL-15 Overcomes Hepatocellular Carcinoma-Induced NK Cell Dysfunction

    Directory of Open Access Journals (Sweden)

    Nicholas J. W. Easom

    2018-05-01

    Full Text Available NK cells have potent antitumor capacity. They are enriched in the human liver, with a large subset specialized for tissue-residence. The potential for liver-resident versus liver-infiltrating NK cells to populate, and exert antitumor functions in, human liver tumors has not been studied. We examined liver-resident and liver-infiltrating NK cells directly ex vivo from human hepatocellular carcinomas (HCCs and liver colorectal (CRC metastases, compared with matched uninvolved liver tissue. We found that NK cells were highly prevalent in both HCC and liver CRC metastases, although at lower frequencies than unaffected liver. Up to 79% of intratumoral NK cells had the CXCR6+CD69+ liver-resident phenotype. Direct ex vivo staining showed that liver-resident NK cells had increased NKG2D expression compared to their non-resident counterparts, but both subsets had NKG2D downregulation within liver tumors compared to uninvolved liver. Proliferation of intratumoral NK cells (identified by Ki67 was selectively impaired in those with the most marked NKG2D downregulation. Human liver tumor NK cells were functionally impaired, with reduced capacity for cytotoxicity and production of cytokines, even when compared to the hypo-functional tissue-resident NK cells in unaffected liver. Coculture of human liver NK cells with the human hepatoma cell line PLC/PRF/5, or with autologous HCC, recapitulated the defects observed in NK cells extracted from tumors, with downmodulation of NKG2D, cytokine production, and target cell cytotoxicity. Transwells and conditioned media confirmed a requirement for cell contact with PLC/PRF/5 to impose NK cell inhibition. IL-15 was able to recover antitumor functionality in NK cells inhibited by in vitro exposure to HCC cell lines or extracted directly from HCC. In summary, our data suggest that the impaired antitumor function of local NK cells reflects a combination of the tolerogenic features inherent to liver-resident NK cells

  1. Radiodinated L-703,606: a potent selective antagonist to the human NK[sub 1] receptor

    Energy Technology Data Exchange (ETDEWEB)

    Francis, B E; Burns, H D [Merck Research Labs., West Point, PA (United States). Dept. of Radiopharmacology; Swain, C; Sabin, V [Merck Sharp and Dohme Research Labs., Harlow (United Kingdom). The Neuroscience Centre

    1994-01-01

    A new, radioiodinated, NK[sub 1] selective radiotracer ([[sup 125]I]L-703,606) was prepared. L-703,606 is an iodinated analog of the NK[sub 1] antagonist CP-96,345 in which the methoxy group has been replaced by an iodine substituent. [[sup 125]I]L-703,606 was made from the corresponding trimethylsilyl compound by treatment with no carrier added Na[sub 125]I and an Iodobead in TFA. The tracer was prepared at a specific activity of approx. 1100 Ci/mmol and preliminary binding studies demonstrated that [[sup 125]I]L=703,606 binds selectively to NK[sub 1] receptors. These results suggest that this radioligand will be useful for the biochemical and pharmacological characterization of the human NK[sub 1] receptor and, if labeled with I-123, may be useful for non-invasive NK[sub 1] receptor imaging via SPECT. (author).

  2. Circadian variations of interferon-induced enhancement of human natural killer (NK) cell activity.

    Science.gov (United States)

    Gatti, G; Cavallo, R; Sartori, M L; Carignola, R; Masera, R; Delponte, D; Salvadori, A; Angeli, A

    1988-01-01

    We searched for circadian changes in the enhancement of the NK activity after exposure to IFN-gamma of peripheral blood mononuclear (PBM) cells obtained serially throughout the 24-h cycle. In August-October 1986, blood was drawn from 7 healthy, diurnally active and nocturnally resting male volunteers (22-34 yr) at 4-h intervals for 24 h starting at 08:00. PBM cells were immediately separated and assayed for NK cell activity, using K 562 cultured cells as a target in a 4-h 51Cr release assay after prior incubation for 20 h with buffer or 300 IU rIFN-gamma. Circadian variations of the spontaneous NK cell cytotoxicity were apparent; the activity was at its maximum at the end of the night or in the early morning and then declined in the afternoon. The 24-h rhythmic pattern was validated with statistical significance by the Cosinor method (p less than 0.02; acrophase 04:22). Maximum enhancement by IFN-gamma was attained in the second part of the night or in the early morning, i.e. in phase with the peak of the spontaneous NK cell activity. A significant circadian rhythm of the percent increase above control levels was validated by the Cosinor method (p less than 0.01; acrophase 04:03). Our findings may be of relevance to a better understanding of the mechanisms of control of human NK activity and warrant consideration as an approach to improve the effectiveness of time-qualified immunotherapy.

  3. Ex-vivo expanded human NK cells express activating receptors that mediate cytotoxicity of allogeneic and autologous cancer cell lines by direct recognition and antibody directed cellular cytotoxicity

    Directory of Open Access Journals (Sweden)

    Campana Dario

    2010-10-01

    Full Text Available Abstract Background The possibility that autologous NK cells could serve as an effective treatment modality for solid tumors has long been considered. However, implementation is hampered by (i the small number of NK cells in peripheral blood, (ii the difficulties associated with large-scale production of GMP compliant cytolytic NK cells, (iii the need to activate the NK cells in order to induce NK cell mediated killing and (iv the constraints imposed by autologous inhibitory receptor-ligand interactions. To address these issues, we determined (i if large numbers of NK cells could be expanded from PBMC and GMP compliant cell fractions derived by elutriation, (ii their ability to kill allogeneic and autologous tumor targets by direct cytotoxitiy and by antibody-mediated cellular cytotoxicity and (iii defined NK cell specific receptor-ligand interactions that mediate tumor target cell killing. Methods Human NK cells were expanded during 14 days. Expansion efficiency, NK receptor repertoire before and after expansion, expression of NK specific ligands, cytolytic activity against allogeneic and autologous tumor targets, with and without the addition of chimeric EGFR monoclonal antibody, were investigated. Results Cell expansion shifted the NK cell receptor repertoire towards activation and resulted in cytotoxicity against various allogeneic tumor cell lines and autologous gastric cancer cells, while sparing normal PBMC. Blocking studies confirmed that autologous cytotoxicity is established through multiple activating receptor-ligand interactions. Importantly, expanded NK cells also mediated ADCC in an autologous and allogeneic setting by antibodies that are currently being used to treat patients with select solid tumors. Conclusion These data demonstrate that large numbers of cytolytic NK cells can be generated from PBMC and lymphocyte-enriched fractions obtained by GMP compliant counter current elutriation from PBMC, establishing the preclinical

  4. Low baseline levels of NK cells may predict a positive response to ipilimumab in melanoma therapy.

    Science.gov (United States)

    Tietze, Julia K; Angelova, Daniela; Heppt, Markus V; Ruzicka, Thomas; Berking, Carola

    2017-07-01

    The introduction of immune checkpoint blockade (ICB) has been a breakthrough in the therapy of metastatic melanoma. The influence of ICB on T-cell populations has been studied extensively, but little is known about the effect on NK cells. In this study, we analysed the relative and absolute amounts of NK cells and of the subpopulations of CD56 dim and CD56 bright NK cells among the peripheral blood mononuclear cells (PBMCs) of 32 patients with metastatic melanoma before and under treatment with ipilimumab or pembrolizumab by flow cytometry. In 15 (47%) patients, an abnormal low amount of NK cells was found at baseline. Analysis of the subpopulations showed also low or normal baseline levels for CD56 dim NK cells, whereas the baseline levels of CD56 bright NK cells were either normal or abnormally high. The relative and absolute amounts of NK cells and of CD56 dim and CD56 bright NK cell subpopulations in patients with a normal baseline did not change under treatment. However, patients with a low baseline of NK cells and CD56 dim NK cells showed a significant increase in these immune cell subsets, but the amounts remained to be lower than the normal baseline. The amount of CD56 bright NK cells was unaffected by treatment. The baseline levels of NK cells were correlated with the number of metastatic organs. Their proportion increased, whereas the expression of NKG2D decreased significantly when more than one organ was affected by metastases. Low baseline levels of NK cells and CD56 dim NK cells as well as normal baseline levels of CD56 bright NK cells correlated significantly with a positive response to ipilimumab but not to pembrolizumab. Survival curves of patients with low amounts of CD56 dim NK cells treated with ipilimumab showed a trend to longer survival. Normal baseline levels of CD56 bright NK cells were significantly correlated with longer survival as compared to patients with high baseline levels. In conclusion, analysis of the amounts of total NK cells

  5. The Adhesion G Protein-Coupled Receptor GPR56/ADGRG1 Is an Inhibitory Receptor on Human NK Cells

    Directory of Open Access Journals (Sweden)

    Gin-Wen Chang

    2016-05-01

    Full Text Available Natural killer (NK cells possess potent cytotoxic mechanisms that need to be tightly controlled. Here, we explored the regulation and function of GPR56/ADGRG1, an adhesion G protein-coupled receptor implicated in developmental processes and expressed distinctively in mature NK cells. Expression of GPR56 was triggered by Hobit (a homolog of Blimp-1 in T cells and declined upon cell activation. Through studying NK cells from polymicrogyria patients with disease-causing mutations in ADGRG1, encoding GPR56, and NK-92 cells ectopically expressing the receptor, we found that GPR56 negatively regulates immediate effector functions, including production of inflammatory cytokines and cytolytic proteins, degranulation, and target cell killing. GPR56 pursues this activity by associating with the tetraspanin CD81. We conclude that GPR56 inhibits natural cytotoxicity of human NK cells.

  6. Activated human primary NK cells efficiently kill colorectal cancer cells in 3D spheroid cultures irrespectively of the level of PD-L1 expression.

    Science.gov (United States)

    Lanuza, Pilar M; Vigueras, Alan; Olivan, Sara; Prats, Anne C; Costas, Santiago; Llamazares, Guillermo; Sanchez-Martinez, Diego; Ayuso, José María; Fernandez, Luis; Ochoa, Ignacio; Pardo, Julián

    2018-01-01

    Haploidentical Natural Killer (NK) cells have been shown as an effective and safe alternative for the treatment of haematological malignancies with poor prognosis for which traditional therapies are ineffective. In contrast to haematological cancer cells, that mainly grow as single suspension cells, solid carcinomas are characterised by a tridimensional (3D) architecture that provide specific surviving advantages and resistance against chemo- and radiotherapy. However, little is known about the impact of 3D growth on solid cancer immunotherapy especially adoptive NK cell transfer. We have recently developed a protocol to activate ex vivo human primary NK cells using B lymphoblastic cell lines, which generates NK cells able to overcome chemoresistance in haematological cancer cells. Here we have analysed the activity of these allogeneic NK cells against colorectal (CRC) human cell lines growing in 3D spheroid culture and correlated with the expression of some of the main ligands regulating NK cell activity. Our results indicate that activated NK cells efficiently kill colorectal tumour cell spheroids in both 2D and 3D cultures. Notably, although 3D CRC cell cultures favoured the expression of the inhibitory immune checkpoint PD-L1, it did not correlate with increased resistance to NK cells. Finally, we have analysed in detail the infiltration of NK cells in 3D spheroids by microscopy and found that at low NK cell density, cell death is not observed although NK cells are able to infiltrate into the spheroid. In contrast, higher densities promote tumoural cell death before infiltration can be detected. These findings show that highly dense activated human primary NK cells efficiently kill colorectal carcinoma cells growing in 3D cultures independently of PD-L1 expression and suggest that the use of allogeneic activated NK cells could be beneficial for the treatment of colorectal carcinoma.

  7. The NK-1 Receptor Antagonist L-732,138 Induces Apoptosis and Counteracts Substance P-Related Mitogenesis in Human Melanoma Cell Lines

    Directory of Open Access Journals (Sweden)

    Miguel Muñoz

    2010-04-01

    Full Text Available It has been recently demonstrated that substance P (SP and neurokinin-1 (NK-1 receptor antagonists induce cell proliferation and cell inhibition in human melanoma cells, respectively. However, the antitumor action of the NK-1 receptor antagonist L-732,138 on such cells is unknown. The aim of this study was to demonstrate an antitumor action of L-732,138 against three human melanoma cell lines (COLO 858, MEL HO, COLO 679. We found that L-732,138 elicits cell growth inhibition in a concentration dependent manner in the melanoma cells studied. Moreover, L-732,138 blocks SP mitogen stimulation. The specific antitumor action of L-732,138 occurred through the NK-1 receptor and melanoma cell death was by apoptosis. These findings indicate that the NK-1 receptor antagonist L-732,138 could be a new antitumor agent in the treatment of human melanoma.

  8. The NK-1 Receptor Antagonist L-732,138 Induces Apoptosis and Counteracts Substance P-Related Mitogenesis in Human Melanoma Cell Lines

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Miguel, E-mail: mmunoz@cica.es; Rosso, Marisa; González-Ortega, Ana [Research Laboratory on Neuropeptides, Virgen del Rocío University Hospital, Sevilla (Spain); Coveñas, Rafael [Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Laboratory 14), Salamanca (Spain)

    2010-04-20

    It has been recently demonstrated that substance P (SP) and neurokinin-1 (NK-1) receptor antagonists induce cell proliferation and cell inhibition in human melanoma cells, respectively. However, the antitumor action of the NK-1 receptor antagonist L-732,138 on such cells is unknown. The aim of this study was to demonstrate an antitumor action of L-732,138 against three human melanoma cell lines (COLO 858, MEL HO, COLO 679). We found that L-732,138 elicits cell growth inhibition in a concentration dependent manner in the melanoma cells studied. Moreover, L-732,138 blocks SP mitogen stimulation. The specific antitumor action of L-732,138 occurred through the NK-1 receptor and melanoma cell death was by apoptosis. These findings indicate that the NK-1 receptor antagonist L-732,138 could be a new antitumor agent in the treatment of human melanoma.

  9. Imatinib and Nilotinib Off-Target Effects on Human NK Cells, Monocytes, and M2 Macrophages.

    Science.gov (United States)

    Bellora, Francesca; Dondero, Alessandra; Corrias, Maria Valeria; Casu, Beatrice; Regis, Stefano; Caliendo, Fabio; Moretta, Alessandro; Cazzola, Mario; Elena, Chiara; Vinti, Luciana; Locatelli, Franco; Bottino, Cristina; Castriconi, Roberta

    2017-08-15

    Tyrosine kinase inhibitors (TKIs) are used in the clinical management of hematological neoplasms. Moreover, in solid tumors such as stage 4 neuroblastomas (NB), imatinib showed benefits that might depend on both on-target and immunological off-target effects. We investigated the effects of imatinib and nilotinib on human NK cells, monocytes, and macrophages. High numbers of monocytes died upon exposure to TKI concentrations similar to those achieved in patients. Conversely, NK cells were highly resistant to the TKI cytotoxic effect, were properly activated by immunostimulatory cytokines, and degranulated in the presence of NB cells. In NB, neither drug reduced the expression of ligands for activating NK receptors or upregulated that of HLA class I, B7-H3, PD-L1, and PD-L2, molecules that might limit NK cell function. Interestingly, TKIs modulated the chemokine receptor repertoire of immune cells. Acting at the transcriptional level, they increased the surface expression of CXCR4, an effect observed also in NK cells and monocytes of patients receiving imatinib for chronic myeloid leukemia. Moreover, TKIs reduced the expression of CXCR3 (in NK cells) and CCR1 (in monocytes). Monocytes also decreased the expression of M-CSFR, and low numbers of cells underwent differentiation toward macrophages. M0 and M2 macrophages were highly resistant to TKIs and maintained their phenotypic and functional characteristics. Importantly, also in the presence of TKIs, the M2 immunosuppressive polarization was reverted by TLR engagement, and M1-oriented macrophages fully activated autologous NK cells. Our results contribute to better interpreting the off-target efficacy of TKIs in tumors and to envisaging strategies aimed at facilitating antitumor immune responses. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk--a pivotal role of HMGB1.

    Directory of Open Access Journals (Sweden)

    Marie-Thérèse Melki

    2010-04-01

    Full Text Available Early stages of Human Immunodeficiency Virus-1 (HIV-1 infection are associated with local recruitment and activation of important effectors of innate immunity, i.e. natural killer (NK cells and dendritic cells (DCs. Immature DCs (iDCs capture HIV-1 through specific receptors and can disseminate the infection to lymphoid tissues following their migration, which is associated to a maturation process. This process is dependent on NK cells, whose role is to keep in check the quality and the quantity of DCs undergoing maturation. If DC maturation is inappropriate, NK cells will kill them ("editing process" at sites of tissue inflammation, thus optimizing the adaptive immunity. In the context of a viral infection, NK-dependent killing of infected-DCs is a crucial event required for early elimination of infected target cells. Here, we report that NK-mediated editing of iDCs is impaired if DCs are infected with HIV-1. We first addressed the question of the mechanisms involved in iDC editing, and we show that cognate NK-iDC interaction triggers apoptosis via the TNF-related apoptosis-inducing ligand (TRAIL-Death Receptor 4 (DR4 pathway and not via the perforin pathway. Nevertheless, once infected with HIV-1, DC(HIV become resistant to NK-induced TRAIL-mediated apoptosis. This resistance occurs despite normal amounts of TRAIL released by NK cells and comparable DR4 expression on DC(HIV. The escape of DC(HIV from NK killing is due to the upregulation of two anti-apoptotic molecules, the cellular-Flice like inhibitory protein (c-FLIP and the cellular inhibitor of apoptosis 2 (c-IAP2, induced by NK-DC(HIV cognate interaction. High-mobility group box 1 (HMGB1, an alarmin and a key mediator of NK-DC cross-talk, was found to play a pivotal role in NK-dependent upregulation of c-FLIP and c-IAP2 in DC(HIV. Finally, we demonstrate that restoration of DC(HIV susceptibility to NK-induced TRAIL killing can be obtained either by silencing c-FLIP and c-IAP2 by specific

  11. Location and cellular stages of NK cell development

    Science.gov (United States)

    Yu, Jianhua; Freud, Aharon G.; Caligiuri, Michael A

    2013-01-01

    The identification of distinct tissue-specific natural killer (NK) cell populations that apparently mature from local precursor populations has brought new insight into the diversity and developmental regulation of this important lymphoid subset. NK cells provide a necessary link between the early (innate) and late (adaptive) immune responses to infection. Gaining a better understanding of the processes that govern NK cell development should allow us to better harness NK cell functions in multiple clinical settings as well as to gain further insight into how these cells undergo malignant transformation. In this review, we summarize recent advances in understanding sites and cellular stages of NK cell development in humans and mice. PMID:24055329

  12. Memory NK cells: why do they reside in the liver?

    Science.gov (United States)

    Jiang, Xiaojun; Chen, Yonglin; Peng, Hui; Tian, Zhigang

    2013-05-01

    Immune memory is the hallmark of adaptive immunity. However, recent studies have shown that natural killer (NK) cells, key components of the innate immune system, also mediate memory responses in mice and humans. Strikingly, memory NK cells were liver-resident in some models, raising the question as to whether the liver is a special organ for the acquisition of NK cell memory. Here, we review the characteristics of NK cell memory by summarizing recent progress and discuss how the liver may generate both the initiation and the recall phase of memory. We propose that the liver may have unique precursors for memory NK cells, which are developmentally distinct from NK cells derived from bone marrow.

  13. Defensive and pathological functions of the gastrointestinal NK3 receptor.

    Science.gov (United States)

    Sanger, Gareth J; Tuladhar, Bishwa R; Bueno, Lionel; Furness, John B

    2006-10-01

    In general, normal gut functions are unaffected by selective NK(3) receptor antagonists such as talnetant (SB-223412), osanetant (SR 142901) or SB-235375. However, NK(3) receptors may mediate certain defensive or pathological intestinal processes. The precise mechanisms, by which this role is achieved, are not fully understood. In summary, intense stimulation of the intrinsic primary afferent neurones (IPANs) of the enteric nervous system is thought to release tachykinins from these neurones, to induce slow excitation (slow EPSPs) of connecting IPANs. This is hypothesised to cause hypersensitivity and disrupt intestinal motility, at least partly explaining why NK(3) receptor antagonism can reduce the level of disruption caused by supramaximal distension pressures in vitro. Tachykinin release from IPANs may also increase C-fibre sensitivity, directly or indirectly. Thus, NK(3) receptor antagonists can inhibit nociception associated with intestinal distension, in normal animals or after pre-sensitisation by restraint stress. Importantly, such inhibition has been found with SB-235375, a peripherally restricted antagonist. SB-235375 can also reduce a visceromotor response to brief colorectal distension without affecting similar responses to skin pinch, providing additional evidence for intestinal-specific activity. NK(3) receptor biology is, therefore, revealing a novel pathway by which disruptions in intestinal motility and nociception can be induced.

  14. Memory NK cells: why do they reside in the liver?

    OpenAIRE

    Jiang, Xiaojun; Chen, Yonglin; Peng, Hui; Tian, Zhigang

    2013-01-01

    Immune memory is the hallmark of adaptive immunity. However, recent studies have shown that natural killer (NK) cells, key components of the innate immune system, also mediate memory responses in mice and humans. Strikingly, memory NK cells were liver-resident in some models, raising the question as to whether the liver is a special organ for the acquisition of NK cell memory. Here, we review the characteristics of NK cell memory by summarizing recent progress and discuss how the liver may ge...

  15. A potential therapy for chordoma via antibody-dependent cell-mediated cytotoxicity employing NK or high-affinity NK cells in combination with cetuximab.

    Science.gov (United States)

    Fujii, Rika; Schlom, Jeffrey; Hodge, James W

    2018-05-01

    OBJECTIVE Chordoma is a rare bone tumor derived from the notochord and is resistant to conventional therapies such as chemotherapy, radiotherapy, and targeting therapeutics. Expression of epidermal growth factor receptor (EGFR) in a large proportion of chordoma specimens indicates a potential target for therapeutic intervention. In this study the authors investigated the potential role of the anti-EGFR antibody cetuximab in immunotherapy for chordoma. METHODS Since cetuximab is a monoclonal antibody of the IgG1 isotype, it has the potential to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) employing natural killer (NK) cells as effectors. Polymorphisms in the CD16 allele expressed on NK cells have been shown to influence the degree of ADCC of tumor cells, with the high-affinity valine (V)/V allele being responsible for more lysis than the V/phenylalanine (F) or FF allele. Unfortunately, however, only approximately 10% of the population expresses the VV allele on NK cells. An NK cell line, NK-92, has now been engineered to endogenously express IL-2 and the high-affinity CD16 allele. These irradiated high-affinity (ha)NK cells were analyzed for lysis of chordoma cells with and without cetuximab, and the levels of lysis observed in ADCC were compared with those of NK cells from donors expressing the VV, VF, and FF alleles. RESULTS Here the authors demonstrate for the first time 1) that cetuximab in combination with NK cells can mediate ADCC of chordoma cells; 2) the influence of the NK CD16 polymorphism in cetuximab-mediated ADCC for chordoma cell lysis; 3) that engineered haNK cells-that is, cells transduced to express the CD16 V158 FcγRIIIa receptor-bind cetuximab with similar affinity to normal NK cells expressing the high-affinity VV allele; and 4) that irradiated haNK cells induce ADCC with cetuximab in chordoma cells. CONCLUSIONS These studies provide rationale for the use of cetuximab in combination with irradiated haNK cells for therapy for

  16. NK Cell Subtypes as Regulators of Autoimmune Liver Disease

    Directory of Open Access Journals (Sweden)

    Guohui Jiao

    2016-01-01

    Full Text Available As major components of innate immunity, NK cells not only exert cell-mediated cytotoxicity to destroy tumors or infected cells, but also act to regulate the functions of other cells in the immune system by secreting cytokines and chemokines. Thus, NK cells provide surveillance in the early defense against viruses, intracellular bacteria, and cancer cells. However, the effecter function of NK cells must be exquisitely controlled to prevent inadvertent attack against normal “self” cells. In an organ such as the liver, where the distinction between immunotolerance and immune defense against routinely processed pathogens is critical, the plethora of NK cells has a unique role in the maintenance of homeostasis. Once self-tolerance is broken, autoimmune liver disease resulted. NK cells act as a “two-edged weapon” and even play opposite roles with both regulatory and inducer activities in the hepatic environment. That is, NK cells act not only to produce inflammatory cytokines and chemokines, but also to alter the proliferation and activation of associated lymphocytes. However, the precise regulatory mechanisms at work in autoimmune liver diseases remain to be identified. In this review, we focus on recent research with NK cells and their potential role in the development of autoimmune liver disease.

  17. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Directory of Open Access Journals (Sweden)

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  18. Antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni

    Science.gov (United States)

    Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all t...

  19. EBI3 regulates the NK cell response to mouse cytomegalovirus infection

    DEFF Research Database (Denmark)

    Jensen, Helle; Chen, Shih-Yu; Folkersen, Lasse Westergaard

    2017-01-01

    Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein-Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection. The induc......Natural killer (NK) cells are key mediators in the control of cytomegalovirus infection. Here, we show that Epstein-Barr virus-induced 3 (EBI3) is expressed by human NK cells after NKG2D or IL-12 plus IL-18 stimulation and by mouse NK cells during mouse cytomegalovirus (MCMV) infection....... The induction of EBI3 protein expression in mouse NK cells is a late activation event. Thus, early activation events of NK cells, such as IFNγ production and CD69 expression, were not affected in EBI3-deficient (Ebi3-/-) C57BL/6 (B6) mice during MCMV infection. Furthermore, comparable levels of early viral...... replication in spleen and liver were observed in MCMV-infected Ebi3-/- and wild-type (WT) B6 mice. Interestingly, the viral load in salivary glands and oral lavage was strongly decreased in the MCMV-infected Ebi3-/- B6 mice, suggesting that EBI3 plays a role in the establishment of MCMV latency. We detected...

  20. Ontogeny of human natural killer (NK) cells: fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon,delta proteins

    NARCIS (Netherlands)

    Phillips, J. H.; Hori, T.; Nagler, A.; Bhat, N.; Spits, H.; Lanier, L. L.

    1992-01-01

    Natural killer (NK) cells have been defined as CD3 epsilon-, CD16+ and/or CD56+ lymphocytes that mediate major histocompatibility complex (MHC)-unrestricted cytotoxicity against certain tumors and virus-infected cells. Unlike T lymphocytes, NK cells do not rearrange or productively express T cell

  1. Conservation of gene linkage in dispersed vertebrate NK homeobox clusters.

    Science.gov (United States)

    Wotton, Karl R; Weierud, Frida K; Juárez-Morales, José L; Alvares, Lúcia E; Dietrich, Susanne; Lewis, Katharine E

    2009-10-01

    Nk homeobox genes are important regulators of many different developmental processes including muscle, heart, central nervous system and sensory organ development. They are thought to have arisen as part of the ANTP megacluster, which also gave rise to Hox and ParaHox genes, and at least some NK genes remain tightly linked in all animals examined so far. The protostome-deuterostome ancestor probably contained a cluster of nine Nk genes: (Msx)-(Nk4/tinman)-(Nk3/bagpipe)-(Lbx/ladybird)-(Tlx/c15)-(Nk7)-(Nk6/hgtx)-(Nk1/slouch)-(Nk5/Hmx). Of these genes, only NKX2.6-NKX3.1, LBX1-TLX1 and LBX2-TLX2 remain tightly linked in humans. However, it is currently unclear whether this is unique to the human genome as we do not know which of these Nk genes are clustered in other vertebrates. This makes it difficult to assess whether the remaining linkages are due to selective pressures or because chance rearrangements have "missed" certain genes. In this paper, we identify all of the paralogs of these ancestrally clustered NK genes in several distinct vertebrates. We demonstrate that tight linkages of Lbx1-Tlx1, Lbx2-Tlx2 and Nkx3.1-Nkx2.6 have been widely maintained in both the ray-finned and lobe-finned fish lineages. Moreover, the recently duplicated Hmx2-Hmx3 genes are also tightly linked. Finally, we show that Lbx1-Tlx1 and Hmx2-Hmx3 are flanked by highly conserved noncoding elements, suggesting that shared regulatory regions may have resulted in evolutionary pressure to maintain these linkages. Consistent with this, these pairs of genes have overlapping expression domains. In contrast, Lbx2-Tlx2 and Nkx3.1-Nkx2.6, which do not seem to be coexpressed, are also not associated with conserved noncoding sequences, suggesting that an alternative mechanism may be responsible for the continued clustering of these genes.

  2. NKp46 clusters at the immune synapse and regulates NK cell polarization

    Directory of Open Access Journals (Sweden)

    Uzi eHadad

    2015-09-01

    Full Text Available Natural killer cells play an important role in first-line defense against tumor and virus-infected cells. The activity of NK cells is tightly regulated by a repertoire of cell-surface expressed inhibitory and activating receptors. NKp46 is a major NK cell activating receptor that is involved in the elimination of target cells. NK cells form different types of synapses that result in distinct functional outcomes: cytotoxic, inhibitory, and regulatory. Recent studies revealed that complex integration of NK receptor signaling controls cytoskeletal rearrangement and other immune synapse-related events. However the distinct nature by which NKp46 participates in NK immunological synapse formation and function remains unknown. In this study we determined that NKp46 forms microclusters structures at the immune synapse between NK cells and target cells. Over-expression of human NKp46 is correlated with increased accumulation of F-actin mesh at the immune synapse. Concordantly, knock-down of NKp46 in primary human NK cells decreased recruitment of F-actin to the synapse. Live cell imaging experiments showed a linear correlation between NKp46 expression and lytic granules polarization to the immune synapse. Taken together, our data suggest that NKp46 signaling directly regulates the NK lytic immune synapse from early formation to late function.

  3. Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells

    Science.gov (United States)

    Sojka, Dorothy K; Plougastel-Douglas, Beatrice; Yang, Liping; Pak-Wittel, Melissa A; Artyomov, Maxim N; Ivanova, Yulia; Zhong, Chao; Chase, Julie M; Rothman, Paul B; Yu, Jenny; Riley, Joan K; Zhu, Jinfang; Tian, Zhigang; Yokoyama, Wayne M

    2014-01-01

    Natural killer (NK) cells belong to the innate immune system; they can control virus infections and developing tumors by cytotoxicity and producing inflammatory cytokines. Most studies of mouse NK cells, however, have focused on conventional NK (cNK) cells in the spleen. Recently, we described two populations of liver NK cells, tissue-resident NK (trNK) cells and those resembling splenic cNK cells. However, their lineage relationship was unclear; trNK cells could be developing cNK cells, related to thymic NK cells, or a lineage distinct from both cNK and thymic NK cells. Herein we used detailed transcriptomic, flow cytometric, and functional analysis and transcription factor-deficient mice to determine that liver trNK cells form a distinct lineage from cNK and thymic NK cells. Taken together with analysis of trNK cells in other tissues, there are at least four distinct lineages of NK cells: cNK, thymic, liver (and skin) trNK, and uterine trNK cells. DOI: http://dx.doi.org/10.7554/eLife.01659.001 PMID:24714492

  4. Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections.

    Science.gov (United States)

    Cimini, Eleonora; Viola, Domenico; Cabeza-Cabrerizo, Mar; Romanelli, Antonella; Tumino, Nicola; Sacchi, Alessandra; Bordoni, Veronica; Casetti, Rita; Turchi, Federica; Martini, Federico; Bore, Joseph A; Koundouno, Fara Raymond; Duraffour, Sophie; Michel, Janine; Holm, Tobias; Zekeng, Elsa Gayle; Cowley, Lauren; Garcia Dorival, Isabel; Doerrbecker, Juliane; Hetzelt, Nicole; Baum, Jonathan H J; Portmann, Jasmine; Wölfel, Roman; Gabriel, Martin; Miranda, Osvaldo; Díaz, Graciliano; Díaz, José E; Fleites, Yoel A; Piñeiro, Carlos A; Castro, Carlos M; Koivogui, Lamine; Magassouba, N'Faly; Diallo, Boubacar; Ruibal, Paula; Oestereich, Lisa; Wozniak, David M; Lüdtke, Anja; Becker-Ziaja, Beate; Capobianchi, Maria R; Ippolito, Giuseppe; Carroll, Miles W; Günther, Stephan; Di Caro, Antonino; Muñoz-Fontela, César; Agrati, Chiara

    2017-05-01

    Human Ebola infection is characterized by a paralysis of the immune system. A signature of αβ T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014-2015 occurred in West Africa, and to assess their association with the clinical outcome. Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treatment Centre in Guinea. Patients were divided in two groups on the basis of the clinical outcome. The analysis was performed by using multiparametric flow cytometry established by the European Mobile Laboratory in the field. A low frequency of Vδ2 T-cells was observed during Ebola infection, independently from the clinical outcome. Moreover, Vδ2 T-cells from Ebola patients massively expressed CD95 apoptotic marker, suggesting the involvement of apoptotic mechanisms in Vδ2 T-cell loss. Interestingly, Vδ2 T-cells from survivors expressed an effector phenotype and presented a lower expression of the CTLA-4 exhaustion marker than fatalities, suggesting a role of effector Vδ2 T-cells in the protection. Furthermore, patients with fatal Ebola infection were characterized by a lower NK cell frequency than patients with non fatal infection. In particular, both CD56bright and CD56dim NK frequency were very low both in fatal and non fatal infections, while a higher frequency of CD56neg NK cells was associated to non-fatal infections. Finally, NK activation and expression of NKp46 and CD158a were independent from clinical outcome. Altogether, the data suggest that both effector Vδ2 T-cells and NK cells may play a role in the complex network of protective response to EBOV infection. Further studies are required to characterize the protective effector functions of Vδ2 and NK cells.

  5. Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections.

    Directory of Open Access Journals (Sweden)

    Eleonora Cimini

    2017-05-01

    Full Text Available Human Ebola infection is characterized by a paralysis of the immune system. A signature of αβ T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014-2015 occurred in West Africa, and to assess their association with the clinical outcome.Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treatment Centre in Guinea. Patients were divided in two groups on the basis of the clinical outcome. The analysis was performed by using multiparametric flow cytometry established by the European Mobile Laboratory in the field. A low frequency of Vδ2 T-cells was observed during Ebola infection, independently from the clinical outcome. Moreover, Vδ2 T-cells from Ebola patients massively expressed CD95 apoptotic marker, suggesting the involvement of apoptotic mechanisms in Vδ2 T-cell loss. Interestingly, Vδ2 T-cells from survivors expressed an effector phenotype and presented a lower expression of the CTLA-4 exhaustion marker than fatalities, suggesting a role of effector Vδ2 T-cells in the protection. Furthermore, patients with fatal Ebola infection were characterized by a lower NK cell frequency than patients with non fatal infection. In particular, both CD56bright and CD56dim NK frequency were very low both in fatal and non fatal infections, while a higher frequency of CD56neg NK cells was associated to non-fatal infections. Finally, NK activation and expression of NKp46 and CD158a were independent from clinical outcome.Altogether, the data suggest that both effector Vδ2 T-cells and NK cells may play a role in the complex network of protective response to EBOV infection. Further studies are required to characterize the protective effector functions of Vδ2 and NK cells.

  6. Expression of cytoplasmic CD3 epsilon proteins in activated human adult natural killer (NK) cells and CD3 gamma, delta, epsilon complexes in fetal NK cells. Implications for the relationship of NK and T lymphocytes

    NARCIS (Netherlands)

    Lanier, L. L.; Chang, C.; Spits, H.; Phillips, J. H.

    1992-01-01

    NK cells have been defined as CD3-, CD16+, and/or CD56+ lymphocytes that mediate MHC-unrestricted cytotoxicity against certain tumors and virus-infected cells. Although CD3 epsilon transcripts have been detected in some NK clones, it has generally been thought that NK cells do not express CD3

  7. KHYG-1 and NK-92 represent different subtypes of LFA-1-mediated NK cell adhesiveness.

    Science.gov (United States)

    Suck, Garnet; Tan, Suet-Mien; Chu, Sixian; Niam, Madelaine; Vararattanavech, Ardcharaporn; Lim, Tsyr Jong; Koh, Mickey B C

    2011-01-01

    Novel cancer cellular therapy approaches involving long-term ex vivo IL-2 stimulated highly cytotoxic natural killer (NK) cells are emerging. However, adhesion properties of such NK cells are not very well understood. Herein, we describe the novel observation of permanently activated alphaLbeta2 integrin leukocyte function-associated antigen (LFA)-1 adhesion receptor in long-term IL-2 activated NK cells and the permanent NK cell lines KHYG-1 and NK-92. We show that such cytokine activated NK effectors constitutively adhered to the LFA-1-ligand ICAM-1, whereas binding to the lower affinity ligand ICAM-3 required additional exogenous activating conditions. The results demonstrate an extended conformation and an intermediate affinity state for the LFA-1 population expressed by the NK cells. Interestingly, adhesion to ICAM-1 or K562 induced pronounced cell spreading in KHYG-1, but not in NK-92, and partially in long-term IL-2 stimulated primary NK cells. It is conceivable that such differential adhesion characteristics may impact motility potential of such NK effectors with relevance to clinical tumor targeting. KHYG-1 could be a useful model in planning future targeted therapeutic approaches involving NK effectors with augmented functions.

  8. The NK1R-/- mouse phenotype suggests that small body size, with a sex- and diet-dependent excess in body mass and fat, are physical biomarkers for a human endophenotype with vulnerability to attention deficit hyperactivity disorder.

    Science.gov (United States)

    Pillidge, Katharine; Heal, David J; Stanford, S Clare

    2016-09-01

    The abnormal behaviour of NK1R-/- mice (locomotor hyperactivity, inattentiveness and impulsivity in the 5-Choice Serial Reaction-Time Test) is arguably analogous to that of patients with attention deficit hyperactivity disorder (ADHD). Evidence suggests that small body size and increased body weight are risk factors for ADHD. Here, we compared the body size, body mass and body composition of male and female NK1R-/- mice and their wildtypes that had been fed either standard laboratory chow or a high-fat (45%: 'Western') diet. Male NK1R-/- mice from both cohorts were approximately 7% shorter than wildtypes. A similar trend was evident in females. Male NK1R-/- mice fed the normal diet weighed less than wildtypes but the 'body mass index' ('mBMI': weight (mg)/length (cm)(2)) of female NK1R-/- mice was higher than wildtypes. When given the high-fat diet, the mBMI of both male and female NK1R-/- mice was higher than wildtypes. There were no consistent genotype or sex differences in protein, ash or water content of mice from the two cohorts. However, the fat content of male NK1R-/- mice on the Western diet was considerably (35%) higher than wildtypes and resembled that of females from both genotypes. We conclude that a lack of functional NK1R is associated with small body size but increases vulnerability to an increase in mBMI and fat content, especially in males. This phenotype could also be evident in ADHD patients with polymorphism(s) of the TACR1 gene (the human equivalent of Nk1r). © The Author(s) 2016.

  9. Differential pulmonic NK and NKT cell responses in Schistosoma japonicum-infected mice.

    Science.gov (United States)

    Cha, Hefei; Qin, Wenjuan; Yang, Quan; Xie, Hongyan; Qu, Jiale; Wang, Mei; Chen, Daixiong; Wang, Fang; Dong, Nuo; Chen, Longhua; Huang, Jun

    2017-02-01

    Natural killer cells (NK cells) and natural killer T cells (NKT cells) play a role in anti-infection, anti-tumor, transplantation immunity, and autoimmune regulation. However, the role of NK and NKT cells during Schistosoma japonicum (S. japonicum) infection has not been widely reported, especially regarding lung infections. The aim of this study was to research the NK and NKT cell response to S. japonicum infection in the lungs of mice. Using immunofluorescent histological analysis, NK and NKT cells were found near pulmonary granulomas. Moreover, flow cytometry revealed that the percentage and number of pulmonic NK cells in S. japonicum-infected mice were significantly increased (P cell number of NKT cells were decreased compared to those of normal mice (P NKT cells was increased after infection (P NKT cells (P cells (P NKT cells significantly increased (P NKT cells (P NKT cell activation during S. japonicum infection.

  10. NK cell activite in C157BL/Ka mice during the development of radiation induced thymic lymphomas

    International Nuclear Information System (INIS)

    Noel, A.; Schaaf-Lafontaine, N.; Defresne, M.P.; Boniver, J.

    1985-01-01

    Treatment of C57BL/Ka mice with a split dose whole-body irradiation (four weekly irradiations of 1,75 Gy) induces the development of thymic lymphomas. NK activity of spleen cells has been determined at several internals after leukemogenic treatment. Two days after irradiations, NK activity is normal and decreases strongly after one week. This period of decline persists during about one month. Then, NK activity restores and reaches control values. Lymphomas appear in spite of NK activity restauration. The diminution of NK activity during the preleukemic period could favour preleukemic cells apparition [fr

  11. NKL homeobox gene MSX1 acts like a tumor suppressor in NK-cell leukemia.

    Science.gov (United States)

    Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; MacLeod, Roderick A F; Drexler, Hans G

    2017-09-15

    NKL homeobox gene MSX1 is physiologically expressed in lymphoid progenitors and subsequently downregulated in developing T- and B-cells. In contrast, elevated expression levels of MSX1 persist in mature natural killer (NK)-cells, indicating a functional role in this compartment. While T-cell acute lymphoblastic leukemia (T-ALL) subsets exhibit aberrant overexpression of MSX1, we show here that in malignant NK-cells the level of MSX1 transcripts is aberrantly downregulated. Chromosomal deletions at 4p16 hosting the MSX1 locus have been described in NK-cell leukemia patients. However, NK-cell lines analyzed here showed normal MSX1 gene configurations, indicating that this aberration might be uncommon. To identify alternative MSX1 regulatory mechanisms we compared expression profiling data of primary normal NK-cells and malignant NK-cell lines. This procedure revealed several deregulated genes including overexpressed IRF4, MIR155HG and MIR17HG and downregulated AUTS2, EP300, GATA3 and HHEX. As shown recently, chromatin-modulator AUTS2 is overexpressed in T-ALL subsets where it mediates aberrant transcriptional activation of MSX1. Here, our data demonstrate that in malignant NK-cell lines AUTS2 performed MSX1 activation as well, but in accordance with downregulated MSX1 transcription therein we detected reduced AUTS2 expression, a small genomic deletion at 7q11 removing exons 3 and 4, and truncating mutations in exon 1. Moreover, genomic profiling and chromosomal analyses of NK-cell lines demonstrated amplification of IRF4 at 6p25 and deletion of PRDM1 at 6q21, highlighting their potential oncogenic impact. Functional analyses performed via knockdown or forced expression of these genes revealed regulatory network disturbances effecting downregulation of MSX1 which may underlie malignant development in NK-cells.

  12. Human decidual macrophages and NK cells differentially express Toll-like receptors and display distinct cytokine profiles upon TLR stimulation.

    Directory of Open Access Journals (Sweden)

    Marion eDuriez

    2014-07-01

    Full Text Available Maternofetal pathogen transmission is partially controlled at the level of the maternal uterine mucosa at the fetal implantation site (the decidua basalis, where maternal and fetal cells are in close contact. Toll-like receptors (TLRs may play an important role in initiating rapid immune responses against pathogens in the decidua basalis, however the tolerant microenvironment should be preserved in order to allow fetal development. Here we investigated the expression and functionality of TLRs expressed by decidual macrophages (dMs and NK cells (dNKs, the major decidual immune cell populations.We report for the first time that both human dMs and dNK cells express mRNAs encoding TLRs 1-9, albeit with a higher expression level in dMs. TLR2, TLR3 and TLR4 protein expression checked by flow cytometry was positive for both dMs and dNK cells. In vitro treatment of primary dMs and dNK cells with specific TLR2, TLR3, TLR4, TLR7/8 and TLR9 agonists enhanced their secretion of pro- and anti-inflammatory cytokines, as well as cytokines and chemokines involved in immune cell crosstalk. Only dNK cells released IFN-γ, whereas only dMs released IL-1β, IL-10 and IL-12. TLR9 activation of dMs resulted in a distinct pattern of cytokine expression compared to the other TLRs. The cytokine profiles expressed by dMs and dNK cells upon TLR activation are compatible with maintenance of the fetotolerant immune environment during initiation of immune responses to pathogens at the maternofetal interface.

  13. Tachykinin NK2 receptor and functional mechanisms in human colon: changes with indomethacin and in diverticular disease and ulcerative colitis.

    Science.gov (United States)

    Burcher, Elizabeth; Shang, Fei; Warner, Fiona J; Du, Qin; Lubowski, David Z; King, Denis W; Liu, Lu

    2008-01-01

    Neurokinin A (NKA) is an important spasmogen in human colon. We examined inflammatory disease-related changes in the tachykinin NK(2) receptor system in human sigmoid colon circular muscle, using functional, radioligand binding, and quantitative reverse transcription-polymerase chain reaction methods. In circular muscle strips, indomethacin enhanced contractile responses to NKA (p diverticular disease (DD) specimens, indicating NK(2) receptor-mediated release of relaxant prostanoids. Contractile responses to both tachykinins were reduced in strips from DD (p disease patients, demonstrating that the change in responsiveness to tachykinins in disease is specifically mediated by the NK(2) receptor. In membranes from UC specimens, receptor affinity for (125)I-NKA (median K(D) 0.91 nM, n = 16) was lower (p disease-related changes in receptor number (B(max)) were found (mean, 2.0-2.5 fmol/mg of wet weight tissue), suggesting that the reduced contractile responses in disease are not due to a loss of receptor number. Different mechanisms may account for the reduced contractility in DD compared with UC. A gender-related difference in receptor density was seen in controls, with B(max) lower in females (1.77 fmol/mg, n = 15) than in males (2.60 fmol/mg, n = 25, p = 0.01). In contrast, no gender-related differences were seen in NK(2) receptor mRNA in control colonic muscle, indicating that the gender difference is a post-translational event.

  14. NK-cell activity in immunotoxicity drug evaluation

    International Nuclear Information System (INIS)

    Cederbrant, Karin; Marcusson-Staaahl, Maritha; Condevaux, Fabienne; Descotes, Jacques

    2003-01-01

    NK-cell activity as a tool for detection of immunotoxic effects of new human drugs has gained further attention when the recent European note for guidance CPMP/SWP/1042/99 was adopted. The inclusion of NK-cell activity plus distribution of lymphocyte subsets were suggested as an alternative to the primary antibody response to a T-cell dependent antigen. Either of the two test alternatives should be included as a routine parameter in at least one repeated dose-toxicity study, rats or mice being the species of choice. The standard procedure for measuring NK-cell activity is the 51 Cr-release assay. However, a new flow-cytometric assay, adapted for rat peripheral blood, does not require dedicated groups of animals, offers the possibility of repeated testing, and shows at least as sensitive as the conventional 51 Cr-release assay

  15. Exogenous activated NK cells enhance trafficking of endogenous NK cells to endometriotic lesions.

    Science.gov (United States)

    Montenegro, Mary Lourdes; Ferriani, Rui Alberto; Basse, Per H

    2015-08-29

    Endometriosis is defined as the presence of endometrial glands and stroma at ectopic locations. Although the prevalence of endometriosis is as high as 35%-50%, its pathogenesis remains controversial. An increasing number of studies suggest that changes in immune reactivity may be primarily involved in the development of endometriosis development. In this sense, it has been strongly suggested that a fundamental part of immunologic system, the natural killer cells (NK cells), are an important part of this process. NK cells, a component of the innate immune system, have been extensively studied for their ability to defend the organism against infections and malignancy. Recent studies have shown that IL-2-activated NK (A-NK) cells are able to attack and destroy tumors in lungs and livers of mice, demonstrating the therapeutic potential of these cells. Similarly to metastatic tumor cells, endometrial cells are able to adhere, infiltrate and proliferate at ectopic locations. Therefore, in this study, we evaluated the ability of adoptively transferred and endogenous NK cells to infiltrate endometriosis lesions. As NK cells donors were used C57BL/6 B6. PL- Thy 1.1 female mice. As uterine horns donors were used C57/BL6+GFP female mice and as endometriosis recipients C57BL/6 Thy1.2 female mice. Endometriosis induction was made by injection of endometrial tissue fragments. After 4 weeks, necessary for endometriosis lesions establishment the animals were divided in 3 experimental groups with 10 animals each. Group 1 received i.v doses of 5x106 A-NK in 200μl RPMI; Group 2 received i.p dose of 5x106 A-NK in 200μl RPMI and Group 3 received i.p dose of IL2 (0.5 mL RPMI containing 5.000U of IL2). Our data show that exogenous A-NK cells injected via ip combined with endogenous A-NK cells seems to be the most efficient way for activated NK cells track and infiltrate endometriosis. For the first time, it was shown that both endogenous as exogenous A-NK cells are able to track

  16. Simultaneous detection of decidual Th1/Th2 and NK1/NK2 immunophenotyping in unknown recurrent miscarriage using 8-color flow cytometry with FSC/Vt extended strategy.

    Science.gov (United States)

    Dong, Peng; Wen, Xi; Liu, Jia; Yan, Cui-Yan; Yuan, Jing; Luo, Lan-Rong; Hu, Qiao-Fei; Li, Jian

    2017-06-30

    Th1/Th2 imbalance is considered as a mechanism for recurrent miscarriage. The NK1/NK2 paradigm is hypothesised to play an important role in pregnancy. However, few results showed simultaneous changes of these subsets in vivo in decidual tissues. The present study aimed to detect the decidual mononuclear cells (dMo), and the Th1/Th2, and NK1/NK2 paradigm simultaneously using multiparametric flow cytometry (MFC) in unexplained recurrent miscarriages (URM). Mononuclear cells were isolated from the decidual tissues of URM cases and early pregnant women. The mononuclear cell percent was demonstrated by detecting the expression of CD3, CD4, CD8, CD56, and CD16 extracellular markers, interferon (IFN)-γ, and interleukin (IL)-4 intracellular markers in live cells using 8-color flow cytometry with forward scatter (FSC)/side scatter (SSC) and FSC/viability (Vt) initial gating strategies, and the ratios of Th1/Th2 and decidual NK1 (dNK1)/decidual NK2 (dNK2) cells were compared between the subject groups. Two initial gating strategies of the FSC/SSC or FSC/Vt, with central or extended gating scales, were adapted, and there was no main effect or interaction for the cell proportions, except for the type 1 and type 2 subsets in the FSC/Vt extended gating strategy. There was no significant difference of the proportions of the decidual T, dNK, NKT-like, Th, and Tc cells between the two groups. However, the Th1/Th2 and dNK1/dNK2 ratios in the URM patients were higher compared with the normal group when using the FSC/Vt extended gating strategy. The present study provides means to detect Th1/Th2 and dNK1/dNK2 simultaneously in URM patients for large sample investigations in the future. © 2017 The Author(s).

  17. Identification of an elaborate NK-specific system regulating HLA-C expression.

    Directory of Open Access Journals (Sweden)

    Hongchuan Li

    2018-01-01

    Full Text Available The HLA-C gene appears to have evolved in higher primates to serve as a dominant source of ligands for the KIR2D family of inhibitory MHC class I receptors. The expression of NK cell-intrinsic MHC class I has been shown to regulate the murine Ly49 family of MHC class I receptors due to the interaction of these receptors with NK cell MHC in cis. However, cis interactions have not been demonstrated for the human KIR and HLA proteins. We report the discovery of an elaborate NK cell-specific system regulating HLA-C expression, indicating an important role for HLA-C in the development and function of NK cells. A large array of alternative transcripts with differences in intron/exon content are generated from an upstream NK-specific HLA-C promoter, and exon content varies between HLA-C alleles due to SNPs in splice donor/acceptor sites. Skipping of the first coding exon of HLA-C generates a subset of untranslatable mRNAs, and the proportion of untranslatable HLA-C mRNA decreases as NK cells mature, correlating with increased protein expression by mature NK cells. Polymorphism in a key Ets-binding site of the NK promoter has generated HLA-C alleles that lack significant promoter activity, resulting in reduced HLA-C expression and increased functional activity. The NK-intrinsic regulation of HLA-C thus represents a novel mechanism controlling the lytic activity of NK cells during development.

  18. Microchip screening platform for single cell assessment of NK cell cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karolin eGuldevall

    2016-04-01

    Full Text Available Here we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK cells within larger populations. Human primary NK cells were distributed across a silicon-glass microchip containing 32 400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75% were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3 target cells within the 12 hours long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g. in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy.

  19. Microchip Screening Platform for Single Cell Assessment of NK Cell Cytotoxicity

    Science.gov (United States)

    Guldevall, Karolin; Brandt, Ludwig; Forslund, Elin; Olofsson, Karl; Frisk, Thomas W.; Olofsson, Per E.; Gustafsson, Karin; Manneberg, Otto; Vanherberghen, Bruno; Brismar, Hjalmar; Kärre, Klas; Uhlin, Michael; Önfelt, Björn

    2016-01-01

    Here, we report a screening platform for assessment of the cytotoxic potential of individual natural killer (NK) cells within larger populations. Human primary NK cells were distributed across a silicon–glass microchip containing 32,400 individual microwells loaded with target cells. Through fluorescence screening and automated image analysis, the numbers of NK and live or dead target cells in each well could be assessed at different time points after initial mixing. Cytotoxicity was also studied by time-lapse live-cell imaging in microwells quantifying the killing potential of individual NK cells. Although most resting NK cells (≈75%) were non-cytotoxic against the leukemia cell line K562, some NK cells were able to kill several (≥3) target cells within the 12-h long experiment. In addition, the screening approach was adapted to increase the chance to find and evaluate serial killing NK cells. Even if the cytotoxic potential varied between donors, it was evident that a small fraction of highly cytotoxic NK cells were responsible for a substantial portion of the killing. We demonstrate multiple assays where our platform can be used to enumerate and characterize cytotoxic cells, such as NK or T cells. This approach could find use in clinical applications, e.g., in the selection of donors for stem cell transplantation or generation of highly specific and cytotoxic cells for adoptive immunotherapy. PMID:27092139

  20. HUMAN NK CELLS: FROM SURFACE RECEPTORS TO THE THERAPY OF LEUKEMIAS AND SOLID TUMORS

    Directory of Open Access Journals (Sweden)

    LORENZO eMORETTA

    2014-03-01

    Full Text Available Natural Killer (NK cells are major effector cells of the innate immunity. The discovery, over two decades ago, of MHC-class I specific NK receptors and subsequently of activating receptors, recognizing ligands expressed by tumor or virus-infected cells, paved the way to our understanding of the mechanisms of selective recognition and killing of tumor cells. Although NK cells can efficiently kill tumor cells of different histotypes in vitro, their activity may be limited in vivo by their inefficient trafficking to tumor lesions and by the inhibition of their function induced by tumor cells themselves and by the tumor microenvironment. On the other hand, the important role of NK cells has been clearly demonstrated in the therapy of high risk leukemias in the haploidentical hematopoietic cell (HSC transplantation setting. NK cells derived from donor HSC kill leukemic cells residual after the conditioning regimen, thus preventing leukemia relapses. In addition, they also kill residual dendritic cells and T lymphocytes, thus preventing both GvHD and graft rejection.

  1. Lower numbers of circulating natural killer T (NK T) cells in individuals with human T lymphotropic virus type 1 (HTLV-1) associated neurological disease

    Science.gov (United States)

    Ndhlovu, L C; Snyder-Cappione, J E; Carvalho, K I; Leal, F E; Loo, C P; bruno, F R; Jha, A R; Devita, D; Hasenkrug, A M; Barbosa, H M R; Segurado, A C; Nixon, D F; Murphy, E L; Kallas, E G

    2009-01-01

    Human T lymphotropic virus type 1 (HTLV-1) infects 10–20 million people worldwide. The majority of infected individuals are asymptomatic; however, approximately 3% develop the debilitating neurological disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). There is also currently no cure, vaccine or effective therapy for HTLV-1 infection, and the mechanisms for progression to HAM/TSP remain unclear. NK T cells are an immunoregulatory T cell subset whose frequencies and effector functions are associated critically with immunity against infectious diseases. We hypothesized that NK T cells are associated with HAM/TSP progression. We measured NK T cell frequencies and absolute numbers in individuals with HAM/TSP infection from two cohorts on two continents: São Paulo, Brazil and San Francisco, CA, USA, and found significantly lower levels when compared with healthy subjects and/or asymptomatic carriers. Also, the circulating NK T cell compartment in HAM/TSP subjects is comprised of significantly more CD4+ and fewer CD8+ cells than healthy controls. These findings suggest that lower numbers of circulating NK T cells and enrichment of the CD4+ NK T subset are associated with HTLV-1 disease progression. PMID:19778295

  2. Characterization of species-related differences in the pharmacology of tachykinin NK receptors 1, 2 and 3

    OpenAIRE

    2009-01-01

    Abstract Tachykinin NK receptors (NKR) differ to a large degree among species with respect to their affinities for small molecule antagonists. The aims of the present study were to clone NKRs from gerbil (NK2R and NK3R) and dog (NK1R, NK2R, NK3R) in which the sequence was previously unknown and to investigate the potency of several NKR antagonists at all known human, dog, gerbil and rat NKRs. The NKR protein coding sequences were cloned and expressed in CHO cells. The in...

  3. Plasmodium falciparum-infected erythrocytes and IL-12/IL-18 induce diverse transcriptomes in human NK cells: IFN-α/β pathway versus TREM signaling.

    Directory of Open Access Journals (Sweden)

    Elisandra Grangeiro de Carvalho

    Full Text Available The protective immunity of natural killer (NK cells against malarial infections is thought to be due to early production of type II interferon (IFN and possibly direct NK cell cytotoxicity. To better understand this mechanism, a microarray analysis was conducted on NK cells from healthy donors PBMCs that were co-cultured with P. falciparum 3D7-infected erythrocytes. A very similar pattern of gene expression was observed among all donors for each treatment in three replicas. Parasites particularly modulated genes involved in IFN-α/β signaling as well as molecules involved in the activation of interferon regulatory factors, pathways known to play a role in the antimicrobial immune response. This pattern of transcription was entirely different from that shown by NK cells treated with IL-12 and IL-18, in which IFN-γ- and TREM-1-related genes were over-expressed. These results suggest that P. falciparum parasites and the cytokines IL-12 and IL-18 have diverse imprints on the transcriptome of human primary NK cells. IFN-α-related genes are the prominent molecules induced by parasites on NK cells and arise as candidate biomarkers that merit to be further investigated as potential new tools in malaria control.

  4. A Modified NK Cell Degranulation Assay Applicable for Routine Evaluation of NK Cell Function

    Directory of Open Access Journals (Sweden)

    Snehal Shabrish

    2016-01-01

    Full Text Available Natural killer (NK cells play important role in innate immunity against tumors and viral infections. Studies show that lysosome-associated membrane protein-1 (LAMP-1, CD107a is a marker for degranulation of NK and cytotoxic T cells and its expression is a sensitive marker for the cytotoxic activity determination. The conventional methods of determination of CD107a on NK cells involve use of peripheral blood mononuclear cells (PBMC or pure NK cells and K562 cells as stimulants. Thus, it requires large volume of blood sample which is usually difficult to obtain in pediatric patients and patients with cytopenia and also requires specialized laboratory for maintaining cell line. We have designed a flow cytometric assay to determine CD107a on NK cells using whole blood, eliminating the need for isolation of PBMC or isolate NK cells. This assay uses phorbol-12-myristate-13-acetate (PMA and calcium ionophore (Ca2+-ionophore instead of K562 cells for stimulation and thus does not require specialized cell culture laboratory. CD107a expression on NK cells using modified NK cell degranulation assay compared to the conventional assay was significantly elevated (p<0.0001. It was also validated by testing patients diagnosed with familial hemophagocytic lymphohistiocytosis (FHL with defect in exocytosis. This assay is rapid, cost effective, and reproducible and requires significantly less volume of blood which is important for clinical evaluation of NK cells.

  5. NK cell-like behavior of Valpha14i NK T cells during MCMV infection.

    Directory of Open Access Journals (Sweden)

    Johnna D Wesley

    2008-07-01

    Full Text Available Immunity to the murine cytomegalovirus (MCMV is critically dependent on the innate response for initial containment of viral replication, resolution of active infection, and proper induction of the adaptive phase of the anti-viral response. In contrast to NK cells, the Valpha14 invariant natural killer T cell response to MCMV has not been examined. We found that Valpha14i NK T cells become activated and produce significant levels of IFN-gamma, but do not proliferate or produce IL-4 following MCMV infection. In vivo treatment with an anti-CD1d mAb and adoptive transfer of Valpha14i NK T cells into MCMV-infected CD1d(-/- mice demonstrate that CD1d is dispensable for Valpha14i NK T cell activation. In contrast, both IFN-alpha/beta and IL-12 are required for optimal activation. Valpha14i NK T cell-derived IFN-gamma is partially dependent on IFN-alpha/beta but highly dependent on IL-12. Valpha14i NK T cells contribute to the immune response to MCMV and amplify NK cell-derived IFN-gamma. Importantly, mortality is increased in CD1d(-/- mice in response to high dose MCMV infection when compared to heterozygote littermate controls. Collectively, these findings illustrate the plasticity of Valpha14i NK T cells that act as effector T cells during bacterial infection, but have NK cell-like behavior during the innate immune response to MCMV infection.

  6. Dose intensification of TRAIL-inducing ONC201 inhibits metastasis and promotes intratumoral NK cell recruitment.

    Science.gov (United States)

    Wagner, Jessica; Kline, C Leah; Zhou, Lanlan; Campbell, Kerry S; MacFarlane, Alexander W; Olszanski, Anthony J; Cai, Kathy Q; Hensley, Harvey H; Ross, Eric A; Ralff, Marie D; Zloza, Andrew; Chesson, Charles B; Newman, Jenna H; Kaufman, Howard; Bertino, Joseph; Stein, Mark; El-Deiry, Wafik S

    2018-06-01

    ONC201 is a first-in-class, orally active antitumor agent that upregulates cytotoxic TRAIL pathway signaling in cancer cells. ONC201 has demonstrated safety and preliminary efficacy in a first-in-human trial in which patients were dosed every 3 weeks. We hypothesized that dose intensification of ONC201 may impact antitumor efficacy. We discovered that ONC201 exerts dose- and schedule-dependent effects on tumor progression and cell death signaling in vivo. With dose intensification, we note a potent anti-metastasis effect and inhibition of cancer cell migration and invasion. Our preclinical results prompted a change in ONC201 dosing in all open clinical trials. We observed accumulation of activated NK+ and CD3+ cells within ONC201-treated tumors and that NK cell depletion inhibits ONC201 efficacy in vivo, including against TRAIL/ONC201-resistant Bax-/- tumors. Immunocompetent NCR1-GFP mice, in which NK cells express GFP, demonstrated GFP+ NK cell infiltration of syngeneic MC38 colorectal tumors. Activation of primary human NK cells and increased degranulation occurred in response to ONC201. Coculture experiments identified a role for TRAIL in human NK-mediated antitumor cytotoxicity. Preclinical results indicate the potential utility for ONC201 plus anti-PD-1 therapy. We observed an increase in activated TRAIL-secreting NK cells in the peripheral blood of patients after ONC201 treatment. The results offer what we believe to be a unique pathway of immune stimulation for cancer therapy.

  7. Endometrial natural killer (NK) cells reveal a tissue-specific receptor repertoire.

    Science.gov (United States)

    Feyaerts, D; Kuret, T; van Cranenbroek, B; van der Zeeuw-Hingrez, S; van der Heijden, O W H; van der Meer, A; Joosten, I; van der Molen, R G

    2018-02-13

    subpopulation expansions in eNK and pbNK cells, respectively. In contrast to the pbNK cell population, the expansions present in the eNK cell population were independent of CMV status and HLA-C genotype. Moreover, the typical NKG2C imprint induced by CMV infection on pbNK cells was not observed on eNK cells from the same female, suggesting a rapid local turnover of eNK cells and/or a distinct licensing process. Based on our previous work and the parameters studied here, menstrual blood-derived eNK cells closely resemble biopsy-derived eNK cells. However, sampling is not done at the exact same time during the menstrual cycle, and therefore we cannot exclude some, as yet undetected, differences. Our data reveals that NK cells in the pre-implantation endometrium appear to have a dedicated tissue-specific phenotype, different from NK cells in peripheral blood. This may indicate that eNK cells are finely tuned to receive an allogeneic fetus. Studying the endometrial NKR repertoire of women with pregnancy related problems could provide clues to understand the pathogenesis of pregnancy complications. No external funding was obtained for the present study. None of the authors has any conflict of interest to declare. NA. © The Author(s) 2018. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  8. NK cell-derived IL-10 is critical for DC-NK cell dialogue at the maternal-fetal interface.

    Science.gov (United States)

    Blois, Sandra M; Freitag, Nancy; Tirado-González, Irene; Cheng, Shi-Bin; Heimesaat, Markus M; Bereswill, Stefan; Rose, Matthias; Conrad, Melanie L; Barrientos, Gabriela; Sharma, Surendra

    2017-05-19

    DC-NK cell interactions are thought to influence the development of maternal tolerance and de novo angiogenesis during early gestation. However, it is unclear which mechanism ensures the cooperative dialogue between DC and NK cells at the feto-maternal interface. In this article, we show that uterine NK cells are the key source of IL-10 that is required to regulate DC phenotype and pregnancy success. Upon in vivo expansion of DC during early gestation, NK cells expressed increased levels of IL-10. Exogenous administration of IL-10 was sufficient to overcome early pregnancy failure in dams treated to achieve simultaneous DC expansion and NK cell depletion. Remarkably, DC expansion in IL-10 -/- dams provoked pregnancy loss, which could be abrogated by the adoptive transfer of IL-10 +/+ NK cells and not by IL-10 -/- NK cells. Furthermore, the IL-10 expressing NK cells markedly enhanced angiogenic responses and placental development in DC expanded IL-10 -/- dams. Thus, the capacity of NK cells to secrete IL-10 plays a unique role facilitating the DC-NK cell dialogue during the establishment of a healthy gestation.

  9. Multi-cellular natural killer (NK) cell clusters enhance NK cell activation through localizing IL-2 within the cluster

    Science.gov (United States)

    Kim, Miju; Kim, Tae-Jin; Kim, Hye Mi; Doh, Junsang; Lee, Kyung-Mi

    2017-01-01

    Multi-cellular cluster formation of natural killer (NK) cells occurs during in vivo priming and potentiates their activation to IL-2. However, the precise mechanism underlying this synergy within NK cell clusters remains unclear. We employed lymphocyte-laden microwell technologies to modulate contact-mediated multi-cellular interactions among activating NK cells and to quantitatively assess the molecular events occurring in multi-cellular clusters of NK cells. NK cells in social microwells, which allow cell-to-cell contact, exhibited significantly higher levels of IL-2 receptor (IL-2R) signaling compared with those in lonesome microwells, which prevent intercellular contact. Further, CD25, an IL-2R α chain, and lytic granules of NK cells in social microwells were polarized toward MTOC. Live cell imaging of lytic granules revealed their dynamic and prolonged polarization toward neighboring NK cells without degranulation. These results suggest that IL-2 bound on CD25 of one NK cells triggered IL-2 signaling of neighboring NK cells. These results were further corroborated by findings that CD25-KO NK cells exhibited lower proliferation than WT NK cells, and when mixed with WT NK cells, underwent significantly higher level of proliferation. These data highlights the existence of IL-2 trans-presentation between NK cells in the local microenvironment where the availability of IL-2 is limited.

  10. KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules.

    Science.gov (United States)

    Miah, S M Shahjahan; Hughes, Tracey L; Campbell, Kerry S

    2008-03-01

    KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine.

  11. Vulnerability of cultured canine lung tumor cells to NK cell-mediated cytolysis

    International Nuclear Information System (INIS)

    Haley, P.J.; Kohr, J.M.; Kelly, G.; Muggenburg, B.A.; Guilmette, B.A.

    1988-01-01

    Five cell lines, designated as canine lung epithelial cell (CLEP), derived from radiation induced canine lung tumors and canine thyroid adeno-carcinoma (CTAC) cells were compared for their susceptibility to NK cell-mediated cytolysis using peripheral blood lymphocytes from normal, healthy Beagle dogs as effector cells. Effector cells and chromium 51 radiolabeled target cells were incubated for 16 h at ratios of 12.5:1, 25:1, 50:1, and 100:1. Increasing cytolysis was observed for all cell lines as the effector-to-target-cell ratios increased from 12.5:1 to 100:1. The percent cytotoxicity was significantly less for all lung tumor cell lines as compared to CTAC at the 100:1 ratio. One lung tumor cell line, CLEP-9, had 85% of the lytic vulnerability of the CTAC cell line and significantly greater susceptibility to NK cell-mediated lysis than all of the other lung tumor cell lines. Susceptibility to NK cell cytolysis did not correlate with in vivo malignant behavior of the original tumor. These data suggest that cultured canine lung tumor cells are susceptible to NK cell cytolytic activity in vitro and that at least one of these cell lines (CLEP-9) is a candidate for substitution of the standard canine NK cell target, CTAC, in NK cell assays. The use of lung tumor cells in NK cell assays may provide greater insight into the control of lung tumors by immune mechanisms. (author)

  12. Restricted processing of CD16a/Fc γ receptor IIIa N-glycans from primary human NK cells impacts structure and function.

    Science.gov (United States)

    Patel, Kashyap R; Roberts, Jacob T; Subedi, Ganesh P; Barb, Adam W

    2018-03-09

    CD16a/Fc γ receptor IIIa is the most abundant antibody Fc receptor expressed on human natural killer (NK) cells and activates a protective cytotoxic response following engagement with antibody clustered on the surface of a pathogen or diseased tissue. Therapeutic monoclonal antibodies (mAbs) with greater Fc-mediated affinity for CD16a show superior therapeutic outcome; however, one significant factor that promotes antibody-CD16a interactions, the asparagine-linked carbohydrates ( N -glycans), remains undefined. Here, we purified CD16a from the primary NK cells of three donors and identified a large proportion of hybrid (22%) and oligomannose N -glycans (23%). These proportions indicated restricted N -glycan processing and were unlike those of the recombinant CD16a forms, which have predominantly complex-type N -glycans (82%). Tethering recombinant CD16a to the membrane by including the transmembrane and intracellular domains and via coexpression with the Fc ϵ receptor γ-chain in HEK293F cells was expected to produce N -glycoforms similar to NK cell-derived CD16a but yielded N -glycoforms different from NK cell-derived CD16a and recombinant soluble CD16a. Of note, these differences in CD16a N -glycan composition affected antibody binding: CD16a with oligomannose N -glycans bound IgG1 Fc with 12-fold greater affinity than did CD16a having primarily complex-type and highly branched N -glycans. The changes in binding activity mirrored changes in NMR spectra of the two CD16a glycoforms, indicating that CD16a glycan composition also affects the glycoprotein's structure. These results indicated that CD16a from primary human NK cells is compositionally, and likely also functionally, distinct from commonly used recombinant forms. Furthermore, our study provides critical evidence that cell lineage determines CD16a N -glycan composition and antibody-binding affinity. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Distinct gut-derived lactic acid bacteria elicit divergent dendritic cell-mediated NK cell responses

    DEFF Research Database (Denmark)

    Fink, Lisbeth Nielsen; Zeuthen, Louise Hjerrild; Christensen, Hanne

    2007-01-01

    Lactic acid bacteria (LAB) are abundant in the gastrointestinal tract where they continuously regulate the immune system. NK cells are potently activated by dendritic cells (DCs) matured by inflammatory stimuli, and NK cells are present in the gut epithelium and in mesenteric lymph nodes......, but it is not known how NK-DC interactions are affected by the predominantly non-pathogenic LAB. We demonstrate that human DCs exposed to different strains of gut-derived LAB consistently induce proliferation, cytotoxicity and activation markers in autologous NK cells. On the contrary, strains of LAB differ greatly...... in their ability to induce DC-dependent IFN-gamma production by NK cells. This suggests that DCs stimulated by gut LAB may expand the pool of NK cells and increase their cytotoxic potential. Specific LAB, inducing high levels of IL-12 in DCs, may promote amplification of a type-1 response via potent stimulation...

  14. Normalization based K means Clustering Algorithm

    OpenAIRE

    Virmani, Deepali; Taneja, Shweta; Malhotra, Geetika

    2015-01-01

    K-means is an effective clustering technique used to separate similar data into groups based on initial centroids of clusters. In this paper, Normalization based K-means clustering algorithm(N-K means) is proposed. Proposed N-K means clustering algorithm applies normalization prior to clustering on the available data as well as the proposed approach calculates initial centroids based on weights. Experimental results prove the betterment of proposed N-K means clustering algorithm over existing...

  15. Sorafenib paradoxically activates the RAS/RAF/ERK pathway in polyclonal human NK cells during expansion and thereby enhances effector functions in a dose- and time-dependent manner.

    Science.gov (United States)

    Lohmeyer, J; Nerreter, T; Dotterweich, J; Einsele, H; Seggewiss-Bernhardt, R

    2018-03-24

    Natural killer (NK) cells play a major role in host immunity against leukaemia and lymphoma. However, clinical trials applying NK cells have not been as efficient as hoped for. Patients treated with rapidly accelerated fibrosarcoma (RAF) inhibitors exhibit increased tumour infiltration by immune cells, suggesting that a combination of RAF inhibitors with immunotherapy might be beneficial. As mitogen-activated protein kinases (MAPKs) such as raf-1 proto-oncogene, serine/threonine kinase (CRAF) regulate NK cell functions, we performed an in-vitro investigation on the potential of clinically relevant short-acting tyrosine kinase inhibitors (TKIs) as potential adjuvants for NK cell therapy: NK cells from healthy human blood donors were thus treated with sorafenib, sunitinib or the pan-RAF inhibitor ZM336372 during ex-vivo expansion. Functional outcomes assessed after washout of the drugs included cytokine production, degranulation, cytotoxicity, apoptosis induction and signal transduction with/without target cell contact. Paradoxically, sorafenib enhanced NK cell effector functions in a time- and dose-dependent manner by raising the steady-state activation level. Of note, this did not lead to NK cell exhaustion, but enhanced activity against target cells such as K562 or Daudis mediated via the RAS/RAF/extracellular-regulated kinase (ERK) pathway, but not via protein kinase B (AKT). Our data will pave the path to develop a rationale for the considered use of RAF inhibitors such as sorafenib for pre-activation in NK cell-based adoptive immune therapy. © 2018 British Society for Immunology.

  16. Changes in NK and NKT cells in mesenteric lymph nodes after a Schistosoma japonicum infection.

    Science.gov (United States)

    Luo, Xueping; Xie, Hongyan; Chen, Dianhui; Yu, Xiuxue; Wu, Fan; Li, Lu; Wu, Changyou; Huang, Jun

    2014-03-01

    The mesenteric lymph node (MLN) is the main draining lymph node in mouse enterocoelia, which contains many types of immune cells. Among these cells, natural killer (NK) and natural killer T (NKT) cells belong to innate lymphoid cells (ILCs), which have potent activities for controlling a variety of pathogenic infections. In this study, C57BL/6 mice were infected with Schistosoma japonicum for 5-7 weeks. Lymphocytes were isolated from the MLN to detect changes in the phenotype and function of NK and NKT cells using a fluorescence activating cell sorter (FACS). These results demonstrated that a S. japonicum infection could significantly increase the percentage of NK cells in the mouse MLN, (P cell number of both NK and NKT cells. In addition, we found that NK and NKT cells from infected mice expressed higher levels of CD69 compared to normal mice (P NKT cell activation. Moreover, we found that the expression of CD4 was increased in infected MLN NK cells (P NKT cells of infected mice after phorbol 12-myristate 13-acetate (PMA) and ionomycin stimulation (P NKT cells might play roles in modulating the classical T cell response. Finally, our results indicated that the expression of CD94 was decreased in NK cells, suggesting that the downregulation of CD94 expression might served as a mechanism in NK cell activation.

  17. Uterine NK cells are critical in shaping DC immunogenic functions compatible with pregnancy progression.

    Directory of Open Access Journals (Sweden)

    Irene Tirado-González

    Full Text Available Dendritic cell (DC and natural killer (NK cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression.

  18. Uterine NK cells are critical in shaping DC immunogenic functions compatible with pregnancy progression.

    Science.gov (United States)

    Tirado-González, Irene; González, Irene Tirado; Barrientos, Gabriela; Freitag, Nancy; Otto, Teresa; Thijssen, Victor L J L; Moschansky, Petra; von Kwiatkowski, Petra; Klapp, Burghard F; Winterhager, Elke; Bauersachs, Stefan; Blois, Sandra M

    2012-01-01

    Dendritic cell (DC) and natural killer (NK) cell interactions are important for the regulation of innate and adaptive immunity, but their relevance during early pregnancy remains elusive. Using two different strategies to manipulate the frequency of NK cells and DC during gestation, we investigated their relative impact on the decidualization process and on angiogenic responses that characterize murine implantation. Manipulation of the frequency of NK cells, DC or both lead to a defective decidual response characterized by decreased proliferation and differentiation of stromal cells. Whereas no detrimental effects were evident upon expansion of DC, NK cell ablation in such expanded DC mice severely compromised decidual development and led to early pregnancy loss. Pregnancy failure in these mice was associated with an unbalanced production of anti-angiogenic signals and most notably, with increased expression of genes related to inflammation and immunogenic activation of DC. Thus, NK cells appear to play an important role counteracting potential anomalies raised by DC expansion and overactivity in the decidua, becoming critical for normal pregnancy progression.

  19. Liver-resident NK cells and their potential functions.

    Science.gov (United States)

    Peng, Hui; Sun, Rui

    2017-09-18

    Natural killer (NK) cells represent a heterogeneous population of innate lymphocytes with phenotypically and functionally distinct subsets. In particular, recent studies have identified a unique subset of NK cells residing within the liver that are maintained as tissue-resident cells, confer antigen-specific memory responses and exhibit different phenotypical and developmental characteristics compared with conventional NK (cNK) cells. These findings have encouraged researchers to uncover tissue-resident NK cells at other sites, and detailed analyses have revealed that these tissue-resident NK cells share many similarities with liver-resident NK cells and tissue-resident memory T cells. Here, we present a brief historical perspective on the discovery of liver-resident NK cells and discuss their relationship to cNK cells and other emerging NK cell subsets and their potential functions.Cellular &Molecular Immunology advance online publication, 18 September 2017; doi:10.1038/cmi.2017.72.

  20. NK1 receptor fused to beta-arrestin displays a single-component, high-affinity molecular phenotype.

    Science.gov (United States)

    Martini, Lene; Hastrup, Hanne; Holst, Birgitte; Fraile-Ramos, Alberto; Marsh, Mark; Schwartz, Thue W

    2002-07-01

    Arrestins are cytosolic proteins that, upon stimulation of seven transmembrane (7TM) receptors, terminate signaling by binding to the receptor, displacing the G protein and targeting the receptor to clathrin-coated pits. Fusion of beta-arrestin1 to the C-terminal end of the neurokinin NK1 receptor resulted in a chimeric protein that was expressed to some extent on the cell surface but also accumulated in transferrin-labeled recycling endosomes independently of agonist stimulation. As expected, the fusion protein was almost totally silenced with respect to agonist-induced signaling through the normal Gq/G11 and Gs pathways. The NK1-beta-arrestin1 fusion construct bound nonpeptide antagonists with increased affinity but surprisingly also bound two types of agonists, substance P and neurokinin A, with high, normal affinity. In the wild-type NK1 receptor, neurokinin A (NKA) competes for binding against substance P and especially against antagonists with up to 1000-fold lower apparent affinity than determined in functional assays and in homologous binding assays. When the NK1 receptor was closely fused to G proteins, this phenomenon was eliminated among agonists, but the agonists still competed with low affinity against antagonists. In contrast, in the NK1-beta-arrestin1 fusion protein, all ligands bound with similar affinity independent of the choice of radioligand and with Hill coefficients near unity. We conclude that the NK1 receptor in complex with arrestin is in a high-affinity, stable, agonist-binding form probably best suited to structural analysis and that the receptor can display binding properties that are nearly theoretically ideal when it is forced to complex with only a single intracellular protein partner.

  1. A Novel System of Polymorphic and Diverse NK Cell Receptors in Primates

    Science.gov (United States)

    Rosner, Cornelia; Neff, Jennifer; Roos, Christian; Eberle, Manfred; Aujard, Fabienne; Münch, Claudia; Schempp, Werner; Carrington, Mary; Shiina, Takashi; Inoko, Hidetoshi; Knaust, Florian; Coggill, Penny; Sehra, Harminder; Beck, Stephan; Abi-Rached, Laurent; Reinhardt, Richard; Walter, Lutz

    2009-01-01

    There are two main classes of natural killer (NK) cell receptors in mammals, the killer cell immunoglobulin-like receptors (KIR) and the structurally unrelated killer cell lectin-like receptors (KLR). While KIR represent the most diverse group of NK receptors in all primates studied to date, including humans, apes, and Old and New World monkeys, KLR represent the functional equivalent in rodents. Here, we report a first digression from this rule in lemurs, where the KLR (CD94/NKG2) rather than KIR constitute the most diverse group of NK cell receptors. We demonstrate that natural selection contributed to such diversification in lemurs and particularly targeted KLR residues interacting with the peptide presented by MHC class I ligands. We further show that lemurs lack a strict ortholog or functional equivalent of MHC-E, the ligands of non-polymorphic KLR in “higher” primates. Our data support the existence of a hitherto unknown system of polymorphic and diverse NK cell receptors in primates and of combinatorial diversity as a novel mechanism to increase NK cell receptor repertoire. PMID:19834558

  2. TLR4 plays a crucial role in MSC-induced inhibition of NK cell function

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Ying [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Liu, Jin; Liu, Yang; Qin, Yaru [Beijing Institute of Radiation Medicine, Beijing (China); Luo, Qun [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Wang, Quanli, E-mail: 13691110351@163.com [No. 307 Hospital of the Chinese People' s Liberation Army, Beijing (China); Duan, Haifeng, E-mail: duanhf0720@163.com [Beijing Institute of Radiation Medicine, Beijing (China)

    2015-08-21

    Mesenchymal stem cells (MSC) are a kind of stromal cell within the tumor microenvironment. In our research, MSC derived from acute myeloid leukemia patients' bone marrow (AML-MSC) and lung cancer tissues (LC-MSC) as well as normal bone marrow-derived MSC (BM-MSC) cultured in conditioned medium of HeLa cells were found to have higher expressions of Toll-like receptor (TLR4) mRNA compared with BM-MSC. The sorted TLR4-positive MSC (TLR4+ MSC) differed in cytokine (interleukin-6, interleukin-8, and monocyte chemoattractant protein-1) secretion from those of unsorted MSC. MSC was reported to inhibit natural killer (NK) cell proliferation and function. In this research, we confirmed that TLR4+ MSC aggravate this suppression. Furthermore, when TLR4 in the sorted cells were stimulated by LPS or following blocked by antibody, the suppression on NK cell proliferation and cytotoxicity were more intensive or recovered respectively. Compared to unsorted MSC, NKG2D receptor expression on NK cells were also inhibited by TLR4+ MSC. These findings suggest that activation of TLR4 pathway is important for TLR4+ MSC and MSC to obstruct anti-tumor immunity by inhibiting NK cell function, which may provide a potential stroma-targeted tumor therapy. - Highlights: • TLR4+ MSC inhibit NK cell proliferation in vivo and in vitro. • TLR4+ MSC inhibit NKG2D expression on NK cells and NK cell cytotoxicity. • The distinguished cytokine expression of TLR4+ MSC may contribute to the inhibition on NK cell function.

  3. Synergistic Effects of Cabozantinib and EGFR-Specific CAR-NK-92 Cells in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2017-01-01

    Full Text Available The chimeric antigen receptor-modified immune effector cell (CAR-T and CAR-NK therapies are newly developed adoptive treatments of cancers. However, their therapeutic efficacy against solid tumors is limited. Combining CAR-T or CAR-NK cells with chemotherapeutic drugs to treat solid tumor may be a promising strategy. We developed an epidermal growth factor- (EGFR- specific third-generation CAR. NK-92 cells were modified with the CAR by lentivirus infection. The specific killing ability of the CAR-modified NK-92 cells (CAR-NK-92 against renal cell carcinoma (RCC cell lines was confirmed in vitro. The synergistic effects of cabozantinib and EGFR-specific CAR-NK-92 cells were investigated in vitro and in vivo. Our results showed that the CAR-NK-92 cells lyse RCC cells in an EGFR-specific manner. Treatment with cabozantinib could increase EGFR and decrease PD-L1 membrane surface expression in RCC cells and enhance the killing ability of CAR-NK-92 cells against the RCC cells in vitro. Furthermore, the CAR-NK-92 cells show synergistic therapeutic efficacy with cabozantinib against human RCC xenograft models. Our results provided the basis for combination with chemotherapy as a novel strategy for enhancing the therapeutic efficacy of CAR-modified immune effector cells for solid tumors.

  4. Serotonin Shapes the Migratory Potential of NK Cells - An in vitro Approach.

    Science.gov (United States)

    Zimmer, Philipp; Bloch, Wilhelm; Kieven, Markus; Lövenich, Lukas; Lehmann, Jonas; Holthaus, Michelle; Theurich, Sebastian; Schenk, Alexander

    2017-10-01

    Increased serotonin (5-HT) levels have been shown to influence natural killer cell (NK cell) function. Acute exercise mobilizes and activates NK cells and further increases serum 5-HT concentrations in a dose-dependent manner. The aim of this study was to investigate the impact of different serum 5-HT concentrations on NK cell migratory potential and cytotoxicity. The human NK cell line KHYG-1 was assigned to 4 conditions, including 3 physiological concentrations of 5-HT (100, 130 or 170 µg/l 5-HT) and one control condition. NK cells were analyzed regarding cytotoxicity, migratory potential and expression of adhesion molecules. No treatment effect on NK cell cytotoxicity and expression of integrin subunits was detected. Migratory potential was increased in a dose dependent manner, indicating the highest protease activity in cells that were incubated with 170 µg/l 5-HT (170 µg/l vs. control, p<0.001, 170 µg/l vs. 100 µg/l, p<0.001; 170 µg/l vs. 130 µg/l, p=0.003; 130 µg/l vs. control, p<0.001, 130 µg/l vs. 100 µg/l, p<0.001). These results suggest that elevated 5-HT serum levels play a mediating role in NK cell function. As exercise has been shown to be involved in NK cell mobilization and redistribution, the influence of 5-HT should be investigated in ex vivo and in vivo experiments. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Biological and Pharmacological Aspects of the NK1-Receptor

    Directory of Open Access Journals (Sweden)

    Susana Garcia-Recio

    2015-01-01

    Full Text Available The neurokinin 1 receptor (NK-1R is the main receptor for the tachykinin family of peptides. Substance P (SP is the major mammalian ligand and the one with the highest affinity. SP is associated with multiple processes: hematopoiesis, wound healing, microvasculature permeability, neurogenic inflammation, leukocyte trafficking, and cell survival. It is also considered a mitogen, and it has been associated with tumorigenesis and metastasis. Tachykinins and their receptors are widely expressed in various human systems such as the nervous, cardiovascular, genitourinary, and immune system. Particularly, NK-1R is found in the nervous system and in peripheral tissues and are involved in cellular responses such as pain transmission, endocrine and paracrine secretion, vasodilation, and modulation of cell proliferation. It also acts as a neuromodulator contributing to brain homeostasis and to sensory neuronal transmission associated with depression, stress, anxiety, and emesis. NK-1R and SP are present in brain regions involved in the vomiting reflex (the nucleus tractus solitarius and the area postrema. This anatomical localization has led to the successful clinical development of antagonists against NK-1R in the treatment of chemotherapy-induced nausea and vomiting (CINV. The first of these antagonists, aprepitant (oral administration and fosaprepitant (intravenous administration, are prescribed for high and moderate emesis.

  6. Different features of V?2 T and NK cells in fatal and non-fatal human Ebola infections

    OpenAIRE

    Cimini, Eleonora; Viola, Domenico; Cabeza-Cabrerizo, Mar; Romanelli, Antonella; Tumino, Nicola; Sacchi, Alessandra; Bordoni, Veronica; Casetti, Rita; Turchi, Federica; Martini, Federico; Bore, Joseph A.; Koundouno, Fara Raymond; Duraffour, Sophie; Michel, Janine; Holm, Tobias

    2017-01-01

    Background Human Ebola infection is characterized by a paralysis of the immune system. A signature of ?? T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze ?? T and NK cells in patients from the Ebola outbreak of 2014?2015 occurred in West Africa, and to assess their association with the clinical outcome. Methodology/Principal findings Nineteen ...

  7. NK Cell-Mediated Regulation of Protective Memory Responses against Intracellular Ehrlichial Pathogens.

    Directory of Open Access Journals (Sweden)

    Samar Habib

    Full Text Available Ehrlichiae are gram-negative obligate intracellular bacteria that cause potentially fatal human monocytic ehrlichiosis. We previously showed that natural killer (NK cells play a critical role in host defense against Ehrlichia during primary infection. However, the contribution of NK cells to the memory response against Ehrlichia remains elusive. Primary infection of C57BL/6 mice with Ehrlichia muris provides long-term protection against a second challenge with the highly virulent Ixodes ovatus Ehrlichia (IOE, which ordinarily causes fatal disease in naïve mice. Here, we show that the depletion of NK cells in E. muris-primed mice abrogates the protective memory response against IOE. Approximately, 80% of NK cell-depleted E. muris-primed mice succumbed to lethal IOE infection on days 8-10 after IOE infection, similar to naïve mice infected with the same dose of IOE. The lack of a recall response in NK cell-depleted mice correlated with an increased bacterial burden, extensive liver injury, decreased frequency of Ehrlichia-specific IFN-γ-producing memory CD4+ and CD8+ T-cells, and a low titer of Ehrlichia-specific antibodies. Intraperitoneal infection of mice with E. muris resulted in the production of IL-15, IL-12, and IFN-γ as well as an expansion of activated NKG2D+ NK cells. The adoptive transfer of purified E. muris-primed hepatic and splenic NK cells into Rag2-/-Il2rg-/- recipient mice provided protective immunity against challenge with E. muris. Together, these data suggest that E. muris-induced memory-like NK cells, which contribute to the protective, recall response against Ehrlichia.

  8. Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy

    Directory of Open Access Journals (Sweden)

    Caminade Anne-Marie

    2009-09-01

    Full Text Available Abstract Background Adoptive cell therapy with allogenic NK cells constitutes a promising approach for the treatment of certain malignancies. Such strategies are currently limited by the requirement of an efficient protocol for NK cell expansion. We have developed a method using synthetic nanosized phosphonate-capped dendrimers allowing such expansion. We are showing here that this is due to a specific inhibitory activity towards CD4+ T cell which could lead to further medical applications of this dendrimer. Methods Mononuclear cells from human peripheral blood were used to investigate the immunomodulatory effects of nanosized phosphonate-capped dendrimers on interleukin-2 driven CD4+T cell expansion. Proliferation status was investigated using flow cytometry analysis of CFSE dilution and PI incorporation experiments. Magnetic bead cell sorting was used to address activity towards individual or mixed cell sub-populations. We performed equilibrium binding assay to assess the interaction of fluorescent dendrimers with pure CD4+ T cells. Results Phosphonate-capped dendrimers are inhibiting the activation, and therefore the proliferation; of CD4+ T cells in IL-2 stimulated PBMCs, without affecting their viability. This allows a rapid enrichment of NK cells and further expansion. We found that dendrimer acts directly on T cells, as their regulatory property is maintained when stimulating purified CD4+ T cells with anti-CD3/CD28 microbeads. Performing equilibrium binding assays using a fluorescent analogue, we show that the phosphonate capped-dendrimers are specifically interacting with purified CD4+ T cells. Ultimately, we found that our protocol prevents the IL-2 related expansion of regulatory T cells that would be deleterious for the activity of infused NK cells. Conclusion High yield expansion of NK cells from human PBMCs by phosphonate-capped dendrimers and IL-2 occurs through the specific inhibition of the CD4+ lymphocyte compartment. Given the

  9. Natural killer (NK) cells inhibit systemic metastasis of glioblastoma cells and have therapeutic effects against glioblastomas in the brain.

    Science.gov (United States)

    Lee, Se Jeong; Kang, Won Young; Yoon, Yeup; Jin, Ju Youn; Song, Hye Jin; Her, Jung Hyun; Kang, Sang Mi; Hwang, Yu Kyeong; Kang, Kyeong Jin; Joo, Kyeung Min; Nam, Do-Hyun

    2015-12-24

    Glioblastoma multiforme (GBM) is characterized by extensive local invasion, which is in contrast with extremely rare systemic metastasis of GBM. Molecular mechanisms inhibiting systemic metastasis of GBM would be a novel therapeutic candidate for GBM in the brain. Patient-derived GBM cells were primarily cultured from surgical samples of GBM patients and were inoculated into the brains of immune deficient BALB/c-nude or NOD-SCID IL2Rgamma(null) (NSG) mice. Human NK cells were isolated from peripheral blood mononucleated cells and expanded in vitro. Patient-derived GBM cells in the brains of NSG mice unexpectedly induced spontaneous lung metastasis although no metastasis was detected in BALB/c-nude mice. Based on the difference of the innate immunity between two mouse strains, NK cell activities of orthotopic GBM xenograft models based on BALB/c-nude mice were inhibited. NK cell inactivation induced spontaneous lung metastasis of GBM cells, which indicated that NK cells inhibit the systemic metastasis. In vitro cytotoxic activities of human NK cells against GBM cells indicated that cytotoxic activity of NK cells against GBM cells prevents systemic metastasis of GBM and that NK cells could be effective cell therapeutics against GBM. Accordingly, NK cells transplanted into orthotopic GBM xenograft models intravenously or intratumorally induced apoptosis of GBM cells in the brain and showed significant therapeutic effects. Our results suggest that innate NK immunity is responsible for rare systemic metastasis of GBM and that sufficient supplementation of NK cells could be a promising immunotherapeutic strategy for GBM in the brain.

  10. Sphingosine kinase inhibitor suppresses IL-18-induced interferon-gamma production through inhibition of p38 MAPK activation in human NK cells

    International Nuclear Information System (INIS)

    Cheon, Soyoung; Song, Seok Bean; Jung, Minkyung; Park, Yoorim; Bang, Jung-Wook; Kim, Tae Sung; Park, Hyunjeong; Kim, Cherl-hyun; Yang, Yool-hee; Bang, Sa Ik; Cho, Daeho

    2008-01-01

    Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-γ inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-γ production, we measured IL-18-induced IFN-γ production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-γ expression was blocked by SKI pre-treatment in both mRNA and protein levels. In addition, the increased IFN-γ production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-γ production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-γ production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-γ production via p38 MAPK

  11. Detection of (Leu-7)-positive cells with NK activity in human gingival tissues from patients with periodontitis

    International Nuclear Information System (INIS)

    Komiyama, K.; Hirsch, H.Z.; Mestecky, J.; Moro, I.

    1986-01-01

    Natural killer (NK) cells have been identified in peripheral blood, lymphoid tissue and more recently in gut mucosa and may be involved in the regulation of immunoglobulin synthesis. They have assayed gingival tissues obtained from 25 periodontitis patients, for the presence and activity of NK cells. Routine histological techniques demonstrated an inflammatory infiltrate dominated by plasma cells and B lymphocytes. Indirect staining procedures with a biotin-labeled mouse anti-human, Leu-7 antibody revealed the presence of numerous positive cells accompanying the inflammatory cellular infiltrate in perivascular areas. Several specimens demonstrated positive-staining cells in the epithelium as well. Few cells were observed in histologically uninflammed areas. Single cell suspension obtained by collagenase digestion of 5 gingival samples were used in 51 Cr release cytotoxicity assay against K562 cells. Three of the five samples were positive in this assay. The finding of Leu-7-positive cells in areas of intense plasma cell foci but not in uninflammed areas, may support a role for these cells in the regulation of immunoglobulin synthesis in oral mucosal tissues

  12. Detection of (Leu-7)-positive cells with NK activity in human gingival tissues from patients with periodontitis

    Energy Technology Data Exchange (ETDEWEB)

    Komiyama, K.; Hirsch, H.Z.; Mestecky, J.; Moro, I.

    1986-03-05

    Natural killer (NK) cells have been identified in peripheral blood, lymphoid tissue and more recently in gut mucosa and may be involved in the regulation of immunoglobulin synthesis. They have assayed gingival tissues obtained from 25 periodontitis patients, for the presence and activity of NK cells. Routine histological techniques demonstrated an inflammatory infiltrate dominated by plasma cells and B lymphocytes. Indirect staining procedures with a biotin-labeled mouse anti-human, Leu-7 antibody revealed the presence of numerous positive cells accompanying the inflammatory cellular infiltrate in perivascular areas. Several specimens demonstrated positive-staining cells in the epithelium as well. Few cells were observed in histologically uninflammed areas. Single cell suspension obtained by collagenase digestion of 5 gingival samples were used in /sup 51/Cr release cytotoxicity assay against K562 cells. Three of the five samples were positive in this assay. The finding of Leu-7-positive cells in areas of intense plasma cell foci but not in uninflammed areas, may support a role for these cells in the regulation of immunoglobulin synthesis in oral mucosal tissues.

  13. Candida albicans induces Metabolic Reprogramming in human NK cells and responds to Perforin with a Zinc Depletion Response

    Directory of Open Access Journals (Sweden)

    Daniela eHellwig

    2016-05-01

    Full Text Available As part of the innate immune system, natural killer (NK cells are directly involved in the response to fungal infections. Perforin has been identified as the major effector molecule acting against many fungal pathogens. While several studies have shown that perforin mediated fungicidal effects can contribute to fungal clearance, neither the activation of NK cells by fungal pathogens nor the effects of perforin on fungal cells are well understood. In a dual approach, we have studied the global gene expression pattern of primary and cytokine activated NK cells after co-incubation with C. albicans and the transcriptomic adaptation of C. albicans to perforin exposure. NK cells responded to the fungal pathogen with an up-regulation of genes involved in immune signaling and release of cytokines. Furthermore, we observed a pronounced increase of genes involved in glycolysis and glycolysis inhibitor 2-deoxy-D-glucose impaired C. albicans induced NK cell activation. This strongly indicates that metabolic adaptation is a major part of the NK cell response to C. albicans infections. In the fungal pathogen, perforin induced a strong up-regulation of several fungal genes involved in the zinc depletion response, such as PRA1 and ZRT1. These data suggest that fungal zinc homeostasis is linked to the reaction to perforin secreted by NK cells. However, deletion mutants in PRA1 and ZRT1 did not show altered susceptibility to perforin.

  14. Different features of Vδ2 T and NK cells in fatal and non-fatal human Ebola infections

    OpenAIRE

    Cimini, Eleonora; Viola, Domenico; Cabeza-Cabrerizo, Mar; Romanelli, Antonella; Tumino, Nicola; Sacchi, Alessandra; Bordoni, Veronica; Casetti, Rita; Turchi, Federica; Martini, Federico; Bore, Joseph A.; Koundouno, Fara Raymond; Duraffour, Sophie; Michel, Janine; Holm, Tobias

    2017-01-01

    Background: Human Ebola infection is characterized by a paralysis of the immune system. A signature of αβ T cells in fatal Ebola infection has been recently proposed, while the involvement of innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014–2015 occurred in West Africa, and to assess their association with the clinical outcome. Methodology/Principal findings: ...

  15. NK cell autoreactivity and autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Alessandro ePoggi

    2014-02-01

    Full Text Available Increasing evidences have pointed out the relevance of Natural Killer (NK cells in organ specific and systemic autoimmune diseases. NK cells bear a plethora of activating and inhibiting receptors that can play a role in regulating reactivity with autologous cells. The activating receptors recognize natural ligands upregulated on virus-infected or stressed or neoplastic cells. Of note, several autoimmune diseases are thought to be linked to viral infections as one of the first event in inducing autoimmunity. Also, it is conceivable that autoimmunity can be triggered when a dysregulation of innate immunity occurs, activating T and B lymphocytes to react with self-components. This would imply that NK cells can play a regulatory role during adaptive immunity; indeed, innate lymphoid cells (ILC, comprising the classical CD56+ NK cells, have a role in maintaining or alterating tissue homeostasis secreting protective and/or proinflammatory cytokines. In addition, NK cells display activating receptors involved in natural cytotoxicity and the activating isoforms of receptors for HLA class I that can interact with healthy host cells and induce damage without any evidence of viral infection or neoplastic-induced alteration. In this context, the interrelationship among ILC, extracellular matrix components and mesenchymal stromal cells can be considered a key point for the control of homeostasis. Herein, we summarize evidences for a role of NK cells in autoimmune diseases and will give a point of view of the interplay between NK cells and self-cells in triggering autoimmunity.

  16. NK-1 receptor antagonists as anti-cancer drugs

    Indian Academy of Sciences (India)

    The substance P (SP)/neurokinin (NK)-1 receptor system plays an important role in cancer. SP promotes the proliferation of tumour cells, angiogenesis and the migration of tumour cells. We review the involvement of SP, the NK-1 receptor and NK-1 receptor antagonists in cancer. Tumour cells overexpress NK-1 receptors, ...

  17. Selective Inhibition of Tumor Growth by Clonal NK Cells Expressing an ErbB2/HER2-Specific Chimeric Antigen Receptor

    Science.gov (United States)

    Schönfeld, Kurt; Sahm, Christiane; Zhang, Congcong; Naundorf, Sonja; Brendel, Christian; Odendahl, Marcus; Nowakowska, Paulina; Bönig, Halvard; Köhl, Ulrike; Kloess, Stephan; Köhler, Sylvia; Holtgreve-Grez, Heidi; Jauch, Anna; Schmidt, Manfred; Schubert, Ralf; Kühlcke, Klaus; Seifried, Erhard; Klingemann, Hans G; Rieger, Michael A; Tonn, Torsten; Grez, Manuel; Wels, Winfried S

    2015-01-01

    Natural killer (NK) cells are an important effector cell type for adoptive cancer immunotherapy. Similar to T cells, NK cells can be modified to express chimeric antigen receptors (CARs) to enhance antitumor activity, but experience with CAR-engineered NK cells and their clinical development is still limited. Here, we redirected continuously expanding and clinically usable established human NK-92 cells to the tumor-associated ErbB2 (HER2) antigen. Following GMP-compliant procedures, we generated a stable clonal cell line expressing a humanized CAR based on ErbB2-specific antibody FRP5 harboring CD28 and CD3ζ signaling domains (CAR 5.28.z). These NK-92/5.28.z cells efficiently lysed ErbB2-expressing tumor cells in vitro and exhibited serial target cell killing. Specific recognition of tumor cells and antitumor activity were retained in vivo, resulting in selective enrichment of NK-92/5.28.z cells in orthotopic breast carcinoma xenografts, and reduction of pulmonary metastasis in a renal cell carcinoma model, respectively. γ-irradiation as a potential safety measure for clinical application prevented NK cell replication, while antitumor activity was preserved. Our data demonstrate that it is feasible to engineer CAR-expressing NK cells as a clonal, molecularly and functionally well-defined and continuously expandable cell therapeutic agent, and suggest NK-92/5.28.z cells as a promising candidate for use in adoptive cancer immunotherapy. PMID:25373520

  18. NK cells and T cells: mirror images?

    NARCIS (Netherlands)

    Versteeg, R.

    1992-01-01

    The expression of MHC class I molecules protects cells against lysis by natural killer (NK) cells. It is possible that NK cells are 'educated' to recognize self MHC class I molecules and that the combination of self peptide and MHC class I molecule blocks NK-mediated lysis. Here, Rogier Versteeg

  19. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules.

    Science.gov (United States)

    Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G; Mandelboim, Ofer

    2017-11-15

    NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus

  20. Differential inhibitory and activating NK cell receptor levels and NK/NKT-like cell functionality in chronic and recovered stages of chikungunya.

    Science.gov (United States)

    Thanapati, Subrat; Ganu, Mohini A; Tripathy, Anuradha S

    2017-01-01

    The role of natural killer (NK; CD3-CD56+)/NKT (CD3+CD56+)-like cells in chikungunya virus (CHIKV) disease progression/recovery remains unclear. Here, we investigated the expression profiles and function of NK and NKT-like cells from 35 chronic chikungunya patients, 30 recovered individuals, and 69 controls. Percentage of NKT-like cells was low in chronic chikungunya patients. NKp30+, CD244+, DNAM-1+, and NKG2D+ NK cell percentages were also lower (MFI and/or percentage), while those of CD94+ and NKG2A+ NKT-like cells were higher (MFI and/or percentage) in chronic patients than in recovered subjects. IFN-γ and TNF-α expression on NKT-like cells was high in the chronic patients, while only IFN-γ expression on NK cells was high in the recovered individuals. Furthermore, percentage of perforin+NK cells was low in the chronic patients. Lower cytotoxic activity was observed in the chronic patients than in the controls. CD107a expression on NK and NKT-like cells post anti-CD94/anti-NKG2A blocking was comparable among the patients and controls. Upregulated inhibitory and downregulated activating NK receptor expressions on NK/NKT-like cells, lower perforin+ and CD107a+NK cells are likely responsible for inhibiting the NK and NKT-like cell function in the chronic stage of chikungunya. Therefore, deregulation of NKR expression might underlie CHIKV-induced chronicity.

  1. Generation of a novel regulatory NK cell subset from peripheral blood CD34+ progenitors promoted by membrane-bound IL-15.

    Directory of Open Access Journals (Sweden)

    Massimo Giuliani

    Full Text Available BACKGROUND: NK cells have been long time considered as cytotoxic lymphocytes competent in killing virus-infected cells and tumors. However, NK cells may also play essential immuno-regulatory functions. In this context, the real existence of a defined NK subset with negative regulatory properties has been hypothesized but never clearly demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we show the in vitro generation from human peripheral blood haematopoietic progenitors (PB-HP, of a novel subset of non-cytolytic NK cells displaying a mature phenotype and remarkable immuno-regulatory functions (NK-ireg. The main functional hallmark of these NK-ireg cells is represented by the surface expression/release of HLA-G, a major immunosuppressive molecule. In addition, NK-ireg cells secrete two powerful immuno-regulatory factors: IL-10 and IL-21. Through these factors, NK-ireg cells act as effectors of the down-regulation of the immune response: reconverting mature myeloid DC (mDC into immature/tolerogenic DC, blocking cytolytic functions on conventional NK cells and inducing HLA-G membrane expression on PB-derived monocytes. The generation of "NK-ireg" cells is obtained, by default, in culture conditions favouring cell-to-cell contacts, and it is strictly dependent on reciprocal trans-presentation of membrane-bound IL-15 forms constitutively and selectively expressed by human CD34(+ PB-HP. Finally, a small subset of NKp46(+ HLA-G(+ IL-10(+ is detected within freshly isolated decidual NK cells, suggesting that these cells could represent an in vivo counterpart of the NK-ireg cells. CONCLUSIONS/SIGNIFICANCE: In conclusion, NK-ireg cells represent a novel truly differentiated non-cytolytic NK subset with a self-sustainable phenotype (CD56(+ CD16(+ NKp30(+ NKp44(+ NKp46(+ CD94(+ CD69(+ CCR7(+ generated from specific pSTAT6(+ GATA3(+ precursors. NK-ireg cells could be employed to develop new immuno-suppressive strategies in autoimmune diseases, transplant

  2. Macrophage and NK-mediated killing of precursor-B acute lymphoblastic leukemia cells targeted with a-fucosylated anti-CD19 humanized antibodies.

    Science.gov (United States)

    Matlawska-Wasowska, K; Ward, E; Stevens, S; Wang, Y; Herbst, R; Winter, S S; Wilson, B S

    2013-06-01

    This work reports the tumoricidal effects of a novel investigational humanized anti-CD19 monoclonal antibody (Medi-551). An a-fucosylated antibody with increased affinity for human FcγRIIIA, Medi-551 is shown to mediate both antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). Medi-551/CD19 complexes internalize slowly (>5 h) and thus remain accessible to effector cells for prolonged periods. We evaluated in vitro ADCC and ADCP activities of primary human natural killer (NK) cells and macrophages against precursor-B (pre-B) acute lymphoblastic leukemia (ALL) cell lines and pediatric patient blasts. Fluorescent imaging studies document immunological synapses formed between anti-CD19-bound target leukemia cells and effector cells and capture the kinetics of both NK-mediated killing and macrophage phagocytosis. Genetic polymorphisms in FcγRIIIA-158F/V modulate in vitro activities of effector cells, with FcγRIIIA-158V homozygotes or heterozygotes showing the strongest activity. Medi-551 treatment of severe combined immunodeficiency (SCID) mice engrafted with human pre-B cells led to prolonged animal survival and markedly reduced disease burden in blood, liver and bone marrow. These data show that anti-CD19 antibodies effectively recruit immune cells to pre-B ALL cells and support a move forward to early phase trials in this disease.

  3. Salivary gland NK cells are phenotypically and functionally unique.

    Directory of Open Access Journals (Sweden)

    Marlowe S Tessmer

    2011-01-01

    Full Text Available Natural killer (NK cells and CD8(+ T cells play vital roles in containing and eliminating systemic cytomegalovirus (CMV. However, CMV has a tropism for the salivary gland acinar epithelial cells and persists in this organ for several weeks after primary infection. Here we characterize a distinct NK cell population that resides in the salivary gland, uncommon to any described to date, expressing both mature and immature NK cell markers. Using RORγt reporter mice and nude mice, we also show that the salivary gland NK cells are not lymphoid tissue inducer NK-like cells and are not thymic derived. During the course of murine cytomegalovirus (MCMV infection, we found that salivary gland NK cells detect the infection and acquire activation markers, but have limited capacity to produce IFN-γ and degranulate. Salivary gland NK cell effector functions are not regulated by iNKT or T(reg cells, which are mostly absent in the salivary gland. Additionally, we demonstrate that peripheral NK cells are not recruited to this organ even after the systemic infection has been controlled. Altogether, these results indicate that viral persistence and latency in the salivary glands may be due in part to the presence of unfit NK cells and the lack of recruitment of peripheral NK cells.

  4. Natural killer activity and suppressor cells in irradiated mice repopulated with a mixture of cells from normal and 89Sr-treated donors

    International Nuclear Information System (INIS)

    Levy, E.M.; Kumar, V.; Bennett, M.

    1981-01-01

    Mice that have been injected with 89 Sr have fairly normal B and T cell function, but are abnormal in that they lack natural killer (NK) activity and other functions that require an intact bone marrow. These mice also have an increased potential for suppressor cell activity. We had previously shown that spleen cells from 89 Sr-treated mice could transfer low NK activity and increased suppressor cell function to lethally irradiated syngeneic recipients. To investigate the mechanisms involved in perpetuating these defects, groups of normal spleen or bone marrow cells. Recipients were assayed for their NK activity and suppressor cell function 5 to 14 wk later. it was found that the addition of normal cells in the donor inoculum resulted in normal NK activity. This indicates that low NK activity in 89 Sr-treated mice was not due to the presence of a suppressor cell that prevented NK cell generation. It was additionally found that low NK activity in recipient mice could be boosted by interferon inducers. This would indicate that NK activity in the recipients was not due to a lack of interferon-sensitive pre-NK cells. Suppressor cell function in recipient mice depended on the type and number of normal cells in the donor inoculum. Bone marrow cells were very efficient in overcoming the tendency to produce suppressor cells. It took approximately 20 times more normal spleen cells to produce the same results. The implications of these findings are discussed

  5. The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT).

    Science.gov (United States)

    Foley, Bree; Felices, Martin; Cichocki, Frank; Cooley, Sarah; Verneris, Michael R; Miller, Jeffrey S

    2014-03-01

    Natural killer (NK) cells were first identified for their capacity to reject bone marrow allografts in lethally irradiated mice without prior sensitization. Subsequently, human NK cells were detected and defined by their non-major histocompatibility complex (MHC)-restricted cytotoxicity toward transformed or virally infected target cells. Karre et al. later proposed 'the missing self hypothesis' to explain the mechanism by which self-tolerant cells could kill targets that had lost self MHC class I. Subsequently, the receptors that recognize MHC class I to mediate tolerance in the host were identified on NK cells. These class I-recognizing receptors contribute to the acquisition of function by a dynamic process known as NK cell education or licensing. In the past, NK cells were assumed to be short lived, but more recently NK cells have been shown to mediate immunologic memory to secondary exposures to cytomegalovirus infection. Because of their ability to lyse tumors with aberrant MHC class I expression and to produce cytokines and chemokines upon activation, NK cells may be primed by many stimuli, including viruses and inflammation, to contribute to a graft-versus-tumor effect. In addition, interactions with other immune cells support the therapeutic potential of NK cells to eradicate tumor and to enhance outcomes after hematopoietic cell transplantation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Mesenchymal Stromal Cells Prevent Allostimulation In Vivo and Control Checkpoints of Th1 Priming: Migration of Human DC to Lymph Nodes and NK Cell Activation.

    Science.gov (United States)

    Consentius, C; Akyüz, L; Schmidt-Lucke, J A; Tschöpe, C; Pinzur, L; Ofir, R; Reinke, P; Volk, H-D; Juelke, K

    2015-10-01

    Although the immunomodulatory potency of mesenchymal stromal cells (MSC) is well established, the mechanisms behind are still not clear. The crosstalk between myeloid dendritic cells (mDC) and natural killer (NK) cells and especially NK cell-derived interferon-gamma (IFN-γ) play a pivotal role in the development of type 1 helper (Th1) cell immune responses. While many studies explored the isolated impact of MSC on either in vitro generated DC, NK, or T cells, there are only few data available on the complex interplay between these cells. Here, we investigated the impact of MSC on the functionality of human mDC and the consequences for NK cell and Th1 priming in vitro and in vivo. In critical limb ischemia patients, who have been treated with allogeneic placenta-derived mesenchymal-like stromal cells (PLX-PAD), no in vivo priming of Th1 responses toward the major histocompatibility complex (MHC) mismatches could be detected. Further in vitro studies revealed that mDC reprogramming could play a central role for these effects. Following crosstalk with MSC, activated mDC acquired a tolerogenic phenotype characterized by reduced migration toward CCR7 ligand and impaired ability to stimulate NK cell-derived IFN-γ production. These effects, which were strongly related to an altered interleukin (IL)-12/IL-10 production by mDC, were accompanied by an effective prevention of Th1 priming in vivo. Our findings provide novel evidence for the regulation of Th1 priming by MSC via modulation of mDC and NK cell crosstalk and show that off-the-shelf produced MHC-mismatched PLX-PAD can be used in patients without any sign of immunogenicity. © 2015 AlphaMed Press.

  7. Bystander cells enhance NK cytotoxic efficiency by reducing search time.

    Science.gov (United States)

    Zhou, Xiao; Zhao, Renping; Schwarz, Karsten; Mangeat, Matthieu; Schwarz, Eva C; Hamed, Mohamed; Bogeski, Ivan; Helms, Volkhard; Rieger, Heiko; Qu, Bin

    2017-03-13

    Natural killer (NK) cells play a central role during innate immune responses by eliminating pathogen-infected or tumorigenic cells. In the microenvironment, NK cells encounter not only target cells but also other cell types including non-target bystander cells. The impact of bystander cells on NK killing efficiency is, however, still elusive. In this study we show that the presence of bystander cells, such as P815, monocytes or HUVEC, enhances NK killing efficiency. With bystander cells present, the velocity and persistence of NK cells were increased, whereas the degranulation of lytic granules remained unchanged. Bystander cell-derived H 2 O 2 was found to mediate the acceleration of NK cell migration. Using mathematical diffusion models, we confirm that local acceleration of NK cells in the vicinity of bystander cells reduces their search time to locate target cells. In addition, we found that integrin β chains (β1, β2 and β7) on NK cells are required for bystander-enhanced NK migration persistence. In conclusion, we show that acceleration of NK cell migration in the vicinity of H 2 O 2 -producing bystander cells reduces target cell search time and enhances NK killing efficiency.

  8. Septide and neurokinin A are high-affinity ligands on the NK-1 receptor: evidence from homologous versus heterologous binding analysis.

    Science.gov (United States)

    Hastrup, H; Schwartz, T W

    1996-12-16

    The three main tachykinins, substance P, neurokinin A (NKA), and neurokinin B, are believed to be selective ligands for respectively the NK-1, NK-2 and NK-3 receptors. However, NKA also has actions which cannot be mediated through its normal NK-2 receptor and the synthetic peptide [pGlu6,Pro9]-Substance P9-11--called septide--is known to have tachykinin-like actions despite its apparent lack of binding to any known tachykinin receptor. In the cloned NK-1 receptor expressed in COS-7 cells NKA and septide as expected were poor competitors for radiolabeled substance P. However, by using radiolabeled NKA and septide directly, it was found that both peptides in homologous binding assays as well as in competition against each other in fact bound to the NK-1 receptor with high affinity: Kd values of 0.51 +/- 0.15 nM (NKA) and 0.55 +/- 0.03 nM (septide). It is concluded that NKA and septide are high-affinity ligands for the NK-1 receptor but that they are poor competitors for substance P, which in contrast competes very well for binding with both NKA and septide.

  9. Exercise-Dependent Regulation of NK Cells in Cancer Protection

    DEFF Research Database (Denmark)

    Idorn, Manja; Hojman, Pernille

    2016-01-01

    Natural killer (NK) cells are the most responsive immune cells to exercise, displaying an acute mobilization to the circulation during physical exertion. Recently, exercise-dependent mobilization of NK cells was found to play a central role in exercise-mediated protection against cancer. Here, we...... a mechanistic explanation for the protective effect of exercise on cancer, and we propose that exercise represents a potential strategy as adjuvant therapy in cancer, by improving NK cell recruitment and infiltration in solid tumors....... review the link between exercise and NK cell function, focusing on circulating exercise factors and additional effects, including vascularization, hypoxia, and body temperature in mediating the effects on NK cell functionality. Exercise-dependent mobilization and activation of NK cells provides...

  10. [Change of CD4(+) CD25(+) regulatory T cells and NK Cells in peripheral blood of children with acute leukemia and its possible significance in tumor immunity].

    Science.gov (United States)

    Wu, Ze-Lin; Hu, Guan-Yu; Chen, Fu-Xiong; Lu, Hui-Min; Wu, Zi-Liang; Li, Hua-Mei; Wei, Feng-Gui; Guan, Jing-Ming; Wu, Li-Ping

    2010-06-01

    This study was purposed to investigate the changes of CD4(+) CD25(+) regulatory T cells and NK cells in peripheral blood of acute leukemia children at different stages, the function of immune system and the possible roles of the CD4(+) CD25(+) regulatory T cells as well as NK cells in leukemia immunity. The number and proportion of CD4(+) CD25(+) regulatory T cells and NK cells were detected by flow cytometry in the peripheral blood of 53 acute leukemia children, including 25 patients in new diagnosis and 28 patients in continuous complete remission (CCR), and were compared with that of 20 normal children. The results indicated that the mean proportion of CD4(+) CD25(+) CD127(+) in CD4(+) T cells of peripheral blood in newly diagnosed patients, patients with CCR and normal children were (9.55 +/- 2.41)%, (8.54 +/- 2.51)% and (6.25 +/- 0.85)% respectively, the mean proportions of CD4(+)CD25(+)CD127(+) in newly diagnosed patients and patients with CCR were higher than that in normal children, the mean proportion of CD4(+)CD25(+)CD127(+) in newly diagnosed patients were higher than that in patients with CCR (p cell count in patients with acute leukaemia decreased as compared with normal control, while after achieving CCR, the NK cell count in patients were also less than that in normal control (4.11 +/- 3.87% and 10.41 +/- 7.20% vs 14.06 +/- 5.95%, p regulatory T cells is a simple, reproductive and accurate method, and the CD4(+) CD25(+) CD127(+) T cells can better reflect the proportion of CD4(+)CD25(+) regulatory T cells. The increase of regulatory T cells and decrease of NK cells in pediatric patients with acute leukemia indicate that the function of NK cells may be depressed. Treg T cells play a role in occurrence and development of leukemia, and are involved in down-regulating NK cell function.

  11. Human NK cells selective targeting of colon cancer-initiating cells: A role for natural cytotoxicity receptors and MHC class i molecules

    KAUST Repository

    Tallerico, Rossana

    2013-01-23

    Tumor cell populations have been recently proposed to be composed of two compartments: tumor-initiating cells characterized by a slow and asymmetrical growth, and the "differentiated" cancer cells with a fast and symmetrical growth. Cancer stem cells or cancer-initiating cells (CICs) play a crucial role in tumor recurrence. The resistance of CICs to drugs and irradiation often allows them to survive traditional therapy. NK cells are potent cytotoxic lymphocytes that can recognize tumor cells. In this study, we have analyzed the NK cell recognition of tumor target cells derived from the two cancer cell compartments of colon adenocarcinoma lesions. Our data demonstrate that freshly purified allogeneic NK cells can recognize and kill colorectal carcinoma- derived CICs whereas the non-CIC counterpart of the tumors (differentiated tumor cells), either autologous or allogeneic, is less susceptible to NK cells. This difference in the NK cell susceptibility correlates with higher expression on CICs of ligands for NKp30 and NKp44 in the natural cytotoxicity receptor (NCR) group of activating NK receptors. In contrast, CICs express lower levels of MHC class I, known to inhibit NK recognition, on their surface than do the "differentiated" tumor cells. These data have been validated by confocal microscopy where NCR ligands and MHC class I molecule membrane distribution have been analyzed. Moreover, NK cell receptor blockade in cytotoxicity assays demonstrates that NCRs play a major role in the recognition of CIC targets. This study strengthens the idea that biology-based therapy harnessing NK cells could be an attractive opportunity in solid tumors. Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved.

  12. Human NK cells selective targeting of colon cancer-initiating cells: A role for natural cytotoxicity receptors and MHC class i molecules

    KAUST Repository

    Tallerico, Rossana; Todaro, Matilde; Di Franco, Simone; MacCalli, Cristina; Garofalo, Cinzia; Sottile, Rosa; Palmieri, Camillo; Tirinato, Luca; Pangigadde, Pradeepa N.; La Rocca, Rosanna; Mandelboim, Ofer; Stassi, Giorgio; Di Fabrizio, Enzo M.; Parmiani, Giorgio; Moretta, Alessandro; Dieli, Francesco; Kã rre, Klas; Carbone, Ennio

    2013-01-01

    Tumor cell populations have been recently proposed to be composed of two compartments: tumor-initiating cells characterized by a slow and asymmetrical growth, and the "differentiated" cancer cells with a fast and symmetrical growth. Cancer stem cells or cancer-initiating cells (CICs) play a crucial role in tumor recurrence. The resistance of CICs to drugs and irradiation often allows them to survive traditional therapy. NK cells are potent cytotoxic lymphocytes that can recognize tumor cells. In this study, we have analyzed the NK cell recognition of tumor target cells derived from the two cancer cell compartments of colon adenocarcinoma lesions. Our data demonstrate that freshly purified allogeneic NK cells can recognize and kill colorectal carcinoma- derived CICs whereas the non-CIC counterpart of the tumors (differentiated tumor cells), either autologous or allogeneic, is less susceptible to NK cells. This difference in the NK cell susceptibility correlates with higher expression on CICs of ligands for NKp30 and NKp44 in the natural cytotoxicity receptor (NCR) group of activating NK receptors. In contrast, CICs express lower levels of MHC class I, known to inhibit NK recognition, on their surface than do the "differentiated" tumor cells. These data have been validated by confocal microscopy where NCR ligands and MHC class I molecule membrane distribution have been analyzed. Moreover, NK cell receptor blockade in cytotoxicity assays demonstrates that NCRs play a major role in the recognition of CIC targets. This study strengthens the idea that biology-based therapy harnessing NK cells could be an attractive opportunity in solid tumors. Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved.

  13. Study on the Immunomodulation Effect of Isodon japonicus Extract via Splenocyte Function and NK Anti-Tumor Activity

    Directory of Open Access Journals (Sweden)

    Kyung-A Hwang

    2012-04-01

    Full Text Available Here we investigated the potential immune-enhancing activity of Isodon japonicus on murine splenocyte and natural-killer (NK cells in vitro. The ethanol extract of I. japonicus significantly enhanced the proliferation of splenocyte and induced the significant enhancement of NK cells’ activity against tumor cells (YAC-1. In addition, I. japonicus increased the production of interferon (IFN-γ and tumor necrosis factor (TNF-α, suggesting that the increase in NK cell cytotoxicity could be due to the enhancement of the NK cell production of both cytokines. Taken together, I. japonicus extract inhibited the growth of human leukemia cells (K562 by 74%. Our observation indicated that the anti-tumor effects of I. japonicus may be attributed to its ability to serve as a stimulant of NK anti-tumor activity. In addition, our results support the development of functional food studies on I. japonicus.

  14. The role of NK cells in HIV-1 protection: autologous, allogeneic or both?

    Science.gov (United States)

    Hens, Jef; Jennes, Wim; Kestens, Luc

    2016-01-01

    Natural killer (NK) cells specialize in killing virally infected- or tumor cells and are part of the innate immune system. The activational state of NK cells is determined by the balance of incoming activating and inhibitory signals mediated by receptor-ligand binding with the target cell. These receptor-ligand bonds mainly consist of the killer immunoglobulin-like receptors (KIR), which are expressed at the cell surface of NK cells, and their ligands: the highly variable human leukocyte antigen -class I molecules (HLA). Absence of an inhibitory receptor-ligand bond lowers the NK cell activation threshold, whereas an activating receptor-ligand bond stimulates the cell, potentially overcoming this threshold and triggering NK cell activation. NK cells influence the course of infection as well as the acquisition of HIV-1. Several lines of evidence relate the activating NK cell receptor KIR3DS1, in the presence or absence of its putative ligand HLA-Bw4, with slower disease progression as well as resistance to HIV-1 infection. Overall, resistance to HIV-1 infection predominantly correlates with activating KIR/HLA profiles, consisting of e.g. activating KIRs, group B haplotypes, or inhibitory KIRs in absence of their ligands. Such a conclusion is less evident for studies of HIV-1 disease progression, with studies reporting beneficial as well as detrimental effects of activating KIR/HLA genotypes. It is likely that KIR/HLA association studies are complicated by the complexity of the KIR and HLA loci and their mutual interactions, as well as by additional factors like route of HIV exposure, immune activation, presence of co-infections, and the effect of anti-HIV-1 antibodies. One newly discovered NK cell activation pathway associated with resistance to HIV-1 infection involves the presence of an iKIR/HLA mismatch between partners. The absence of such an iKIR/HLA bond renders donor-derived allogeneic HIV-1 infected cells vulnerable to NK cell responses during HIV-1

  15. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.

    Science.gov (United States)

    Bakker, A B; Wu, J; Phillips, J H; Lanier, L L

    2000-01-01

    A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.

  16. Reduction of the CD16(-CD56bright NK cell subset precedes NK cell dysfunction in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Kyo Chul Koo

    Full Text Available BACKGROUND: Natural cytotoxicity, mediated by natural killer (NK cells plays an important role in the inhibition and elimination of malignant tumor cells. To investigate the immunoregulatory role of NK cells and their potential as diagnostic markers, NK cell activity (NKA was analyzed in prostate cancer (PCa patients with particular focus on NK cell subset distribution. METHODS: Prospective data of NKA and NK cell subset distribution patterns were measured from 51 patients initially diagnosed with PCa and 54 healthy controls. NKA was represented by IFN-γ levels after stimulation of the peripheral blood with Promoca®. To determine the distribution of NK cell subsets, PBMCs were stained with fluorochrome-conjugated monoclonal antibodies. Then, CD16(+CD56(dim and CD16(-CD56(bright cells gated on CD56(+CD3(- cells were analyzed using a flow-cytometer. RESULTS: NKA and the proportion of CD56(bright cells were significantly lower in PCa patients compared to controls (430.9 pg/ml vs. 975.2 pg/ml and 2.3% vs. 3.8%, respectively; p<0.001. Both tended to gradually decrease according to cancer stage progression (p for trend = 0.001. A significantly higher CD56(dim-to-CD56(bright cell ratio was observed in PCa patients (41.8 vs. 30.3; p<0.001 along with a gradual increase according to cancer stage progression (p for trend = 0.001, implying a significant reduction of CD56(bright cells in relation to the alteration of CD56(dim cells. The sensitivity and the specificity of NKA regarding PCa detection were 72% and 74%, respectively (best cut-off value at 530.9 pg/ml, AUC = 0.786. CONCLUSIONS: Reduction of CD56(bright cells may precede NK cell dysfunction, leading to impaired cytotoxicity against PCa cells. These observations may explain one of the mechanisms behind NK cell dysfunction observed in PCa microenvironment and lend support to the development of future cancer immunotherapeutic strategies.

  17. Optimization of Human NK Cell Manufacturing: Fully Automated Separation, Improved Ex Vivo Expansion Using IL-21 with Autologous Feeder Cells, and Generation of Anti-CD123-CAR-Expressing Effector Cells.

    Science.gov (United States)

    Klöß, Stephan; Oberschmidt, Olaf; Morgan, Michael; Dahlke, Julia; Arseniev, Lubomir; Huppert, Volker; Granzin, Markus; Gardlowski, Tanja; Matthies, Nadine; Soltenborn, Stephanie; Schambach, Axel; Koehl, Ulrike

    2017-10-01

    The administration of ex vivo expanded natural killer (NK) cells as potential antitumor effector cells appears to be suitable for effector cell-based immunotherapies in high-risk cancer patients. However, good manufacturing practice (GMP)-compliant manufacturing of clinical-grade NK cells at sufficiently high numbers represents a great challenge. Therefore, previous expansion protocols for those effector cells were improved and optimized by using newly developed culture medium, interleukin (IL)-21, and autologous feeder cells (FCs). Separation of primary human NK cells (CD56 + CD3 - ) was carried out with the CliniMACS Prodigy ® in a single process, starting with approximately 1.2 × 10 9 leukocytes collected by small-scale lymphapheresis or from buffy coats. Enriched NK cells were adjusted to starting cell concentrations within approximately 1 × 10 6 effector cells/mL and cultured in comparative expansion experiments for 14 days with IL-2 (1,000 IU/mL) in different GMP-compliant media (X-VIVO ™ 10, CellGro ® , TexMACS ™ , and NK MACS ® ). After medium optimization, beneficial effects for functionality and phenotype were investigated at the beginning of cell expansion with irradiated (25 Gy) autologous FCs at a ratio of 20:1 (feeder: NK) in the presence or absence of IL-21 (100 ng/mL). Additionally, expanded NK cells were gene modified to express chimeric antigen receptors (CARs) against CD123, a common marker for acute myeloid leukemia (AML). Cytotoxicity, degranulation, and cytokine release of transduced NK cells were determined against KG1a cells in flow cytometric analysis and fluorescent imaging. The Prodigy manufacturing process revealed high target cell viabilities (median 95.4%), adequate NK cell recovery (median 60.4%), and purity of 95.4% in regard to CD56 + CD3 - target cells. The process in its early phase of development led to a median T-cell depletion of log 3.5 after CD3 depletion and log 3.6 after the whole process, including CD3

  18. Persistence of Activated and Adaptive-Like NK Cells in HIV+ Individuals despite 2 Years of Suppressive Combination Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Anna C. Hearps

    2017-06-01

    Full Text Available Innate immune dysfunction persists in HIV+ individuals despite effective combination antiretroviral therapy (cART. We recently demonstrated that an adaptive-like CD56dim NK cell population lacking the signal transducing protein FcRγ is expanded in HIV+ individuals. Here, we analyzed a cohort of HIV+ men who have sex with men (MSM, n = 20 at baseline and following 6, 12, and 24 months of cART and compared them with uninfected MSM (n = 15 to investigate the impact of cART on NK cell dysfunction. Proportions of NK cells expressing markers of early (CD69+ and late (HLA-DR+/CD38+ activation were elevated in cART-naïve HIV+ MSM (p = 0.004 and 0.015, respectively, as were FcRγ− NK cells (p = 0.003. Using latent growth curve modeling, we show that cART did not reduce levels of FcRγ− NK cells (p = 0.115 or activated HLA-DR+/CD38+ NK cells (p = 0.129 but did reduce T cell and monocyte activation (p < 0.001 for all. Proportions of FcRγ− NK cells were not associated with NK cell, T cell, or monocyte activation, suggesting different factors drive CD56dim FcRγ− NK cell expansion and immune activation in HIV+ individuals. While proportions of activated CD69+ NK cells declined significantly on cART (p = 0.003, the rate was significantly slower than the decline of T cell and monocyte activation, indicating a reduced potency of cART against NK cell activation. Our findings indicate that 2 years of suppressive cART have no impact on CD56dim FcRγ− NK cell expansion and that NK cell activation persists after normalization of other immune parameters. This may have implications for the development of malignancies and co-morbidities in HIV+ individuals on cART.

  19. NK cell-based cancer immunotherapy: from basic biology to clinical application.

    Science.gov (United States)

    Li, Yang; Yin, Jie; Li, Ting; Huang, Shan; Yan, Han; Leavenworth, JianMei; Wang, Xi

    2015-12-01

    Natural killer (NK) cells, which recognize and kill target cells independent of antigen specificity and major histocompatibility complex (MHC) matching, play pivotal roles in immune defence against tumors. However, tumor cells often acquire the ability to escape NK cell-mediated immune surveillance. Thus, understanding mechanisms underlying regulation of NK cell phenotype and function within the tumor environment is instrumental for designing new approaches to improve the current cell-based immunotherapy. In this review, we elaborate the main biological features and molecular mechanisms of NK cells that pertain to regulation of NK cell-mediated anti-tumor activity. We further overview current clinical approaches regarding NK cell-based cancer therapy, including cytokine infusion, adoptive transfer of autologous or allogeneic NK cells, applications of chimeric antigen receptor (CAR)-expressing NK cells and adoptive transfer of memory-like NK cells. With these promising clinical outcomes and fuller understanding the basic questions raised in this review, we foresee that NK cell-based approaches may hold great potential for future cancer immunotherapy.

  20. TGF-β1 Downregulates the Expression of CX3CR1 by Inducing miR-27a-5p in Primary Human NK Cells.

    Science.gov (United States)

    Regis, Stefano; Caliendo, Fabio; Dondero, Alessandra; Casu, Beatrice; Romano, Filomena; Loiacono, Fabrizio; Moretta, Alessandro; Bottino, Cristina; Castriconi, Roberta

    2017-01-01

    Activity of human natural killer (NK) cells against cancer cells is deeply suppressed by TGF-β1, an immunomodulatory cytokine that is released and activated in the tumor microenvironment. Moreover, our previous data showed that TGF-β1 modifies the chemokine receptor repertoire of NK cells. In particular, it decreases the expression of CX 3 CR1 that drives these effectors toward peripheral tissues, including tumor sites. To identify possible mechanisms mediating chemokine receptors modulation, we analyzed the microRNA profile of TGF-β1-treated primary NK cells. The analysis pointed out miR-27a-5p as a possible modulator of CX 3 CR1. We demonstrated the functional interaction of miR-27a-5p with the 3' untranslated region (3'UTR) of CX 3 CR1 mRNA by two different experimental approaches: by the use of a luciferase assay based on a reporter construct containing the CX 3 CR1 3'UTR and by transfection of primary NK cells with a miR-27a-5p inhibitor. We also showed that the TGF-β1-mediated increase of miR-27a-5p expression is a consequence of miR-23a-27a-24-2 cluster induction. Moreover, we demonstrated that miR-27a-5p downregulates the surface expression of CX 3 CR1. Finally, we showed that neuroblastoma cells induced in resting NK cells a downregulation of the CX 3 CR1 expression that was paralleled by a significant increase of miR-27a-5p expression. Therefore, the present study highlights miR-27a-5p as a pivotal TGF-β1-induced regulator of CX 3 CR1 expression.

  1. T cells but not NK cells are associated with a favourable outcome for resected colorectal liver metastases

    International Nuclear Information System (INIS)

    Pugh, Siân A; Harrison, Rebecca J; Primrose, John N; Khakoo, Salim I

    2014-01-01

    The adaptive immune response to colorectal cancer is important for survival. Less is understood about the role of innate lymphocytes, such as Natural Killer (NK) cells, which are abundant in human liver. Samples of fresh liver (n = 21) and tumour (n = 11) tissue were obtained from patients undergoing surgical resection of colorectal liver metastases. Flow cytometry was used to analyse the presence and phenotype of NK cells, as compared to T cells, in the tumour and liver tissue. Results were correlated with survival. NK cells were poorly recruited to the tumours (distant liver tissue 38.3%, peritumoural liver 34.2%, tumour 12.9%, p = 0.0068). Intrahepatic and intratumoural NK cells were KIR (killer immunoglobulin-like receptor) lo NKG2A hi whereas circulating NK cells were KIR hi NKG2A lo . By contrast T cells represented 65.7% of the tumour infiltrating lymphocytes. Overall survival was 43% at 5 years, with the 5-year survival for individuals with a T cell rich infiltrate being 60% (95% CI 17-93%) and for those with a low T cell infiltrate being 0% (95% CI 0-48%). Conversely individuals with higher levels of NK cells in the tumour had an inferior outcome, although there were insufficient numbers to reach significance (median survivals: NK Hi 1.63 years vs NK Lo 3.92 years). T cells, but not NK cells, are preferentially recruited to colorectal liver metastases. NK cells within colorectal metastases have an intrahepatic and potentially tolerogenic, rather than a peripheral, phenotype. Similar to primary tumours, the magnitude of the T cell infiltrate in colorectal metastases is positively associated with survival

  2. Models to Study NK Cell Biology and Possible Clinical Application.

    Science.gov (United States)

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-08-03

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc. Copyright © 2015 John Wiley & Sons, Inc.

  3. Treatment of Aggressive NK-Cell Leukemia

    DEFF Research Database (Denmark)

    Boysen, Anders Kindberg; Jensen, Paw; Johansen, Preben

    2011-01-01

    Aggressive NK-cell leukemia is a rare malignancy with neoplastic proliferation of natural killer cells. It often presents with constitutional symptoms, a rapid declining clinical course, and a poor prognosis with a median survival of a few months. The disease is usually resistant to cytotoxic...... literature concerning treatment of aggressive NK-cell leukemia....

  4. Increased Numbers of NK Cells, NKT-Like Cells, and NK Inhibitory Receptors in Peripheral Blood of Patients with Chronic Obstructive Pulmonary Disease

    Directory of Open Access Journals (Sweden)

    Ying Tang

    2013-01-01

    Full Text Available T cells and B cells participate in the pathogenesis of COPD. Currently, NK cells and NKT cells have gained increasing attention. In the present study, 19 COPD patients and 12 healthy nonsmokers (HNS were recruited, and their pulmonary function was assessed. The frequencies of CD3+ T, CD4+ T, CD8+ T, B, NK, and NKT-like cells were determined using flow cytometry. The frequencies of spontaneous and inducible IFN-γ+ or CD107a+ NK and NKT-like cells as well as activating or inhibitory receptors were also detected. The potential association of lymphocyte subsets with disease severity was further analyzed. Significantly decreased numbers of CD3+ and CD4+ T cells, and the CD4+/CD8+ ratio, but increased numbers of CD3−CD56+ NK and CD3+CD56+ NKT-like cells were observed in COPD patients compared to HNS. The frequencies of inducible IFN-γ-secreting NK and NKT-like cells were less in COPD patients. The frequencies of CD158a and CD158b on NK cells and CD158b on NKT-like cells were greater. The frequency of CD158b+ NK cells was negatively correlated with FEV1% prediction and FEV1/FVC. Our data indicate that COPD patients have immune dysfunction, and higher frequencies of inhibitory NK cells and NKT-like cells may participate in the pathogenesis of COPD.

  5. DNAM-1 Expression Marks an Alternative Program of NK Cell Maturation

    Directory of Open Access Journals (Sweden)

    Ludovic Martinet

    2015-04-01

    Full Text Available Natural killer (NK cells comprise a heterogeneous population of cells important for pathogen defense and cancer surveillance. However, the functional significance of this diversity is not fully understood. Here, we demonstrate through transcriptional profiling and functional studies that the activating receptor DNAM-1 (CD226 identifies two distinct NK cell functional subsets: DNAM-1+ and DNAM-1− NK cells. DNAM-1+ NK cells produce high levels of inflammatory cytokines, have enhanced interleukin 15 signaling, and proliferate vigorously. By contrast, DNAM-1− NK cells that differentiate from DNAM-1+ NK cells have greater expression of NK-cell-receptor-related genes and are higher producers of MIP1 chemokines. Collectively, our data reveal the existence of a functional program of NK cell maturation marked by DNAM-1 expression.

  6. A relevância das células natural killer (NK e killer immunoglobulin-like receptors (KIR no transplante de células-tronco hematopoéticas (TCTH The relevance of natural killer (NK cells and killer immunoglobulin-like receptors (KIR in hematopoietic stem cell transplantation (HSCT

    Directory of Open Access Journals (Sweden)

    Aline Almeida-Oliveira

    2008-08-01

    Full Text Available As células natural killer (NK foram identificadas há mais de 30 anos por sua capacidade de matar células tumorais e infectadas por vírus sem precisar de sensibilização prévia. No entanto, a forma como as células NK matam seus alvos ficou desconhecida por muito tempo. Na década de 90, a partir de várias observações, foi proposto que as células NK matariam células com a expressão diminuída de antígeno leucocitário humano (HLA, protegendo as células autólogas normais, o que ficou conhecido como hipótese do missing-self. Esta teoria foi confirmada através da descoberta de vários receptores, principalmente os da família killer immunoglobulin-like receptors (KIR, que reconhecem moléculas de HLA de classe I. Estes novos conceitos levaram à busca da importância dos receptores KIR no transplante de células-tronco hematopoéticas (TCTH. Foi sugerido que as disparidades de HLA entre o doador e o paciente poderiam ser reconhecidas por células NK levando à aloreatividade, o que ajudaria no efeito enxerto contra leucemia. No entanto, apesar de alguns resultados promissores, até hoje, os diferentes estudos sobre o assunto não chegaram a um consenso. Nesta revisão, será abordada a relevância das células NK e dos receptores KIR nos diferentes tipos de TCTH.Natural killer (NK cells were identified over 30 years ago by their ability to kill cancer and virally infected cells without prior sensitization. For years the recognition mechanisms of target cells were unknown, until the 1990s when the "missing-self" hypothesis was proposed. According to this theory, although tolerant to normal autologous cells, NK cells can recognize and attack cells that have down-regulated human leukocyte antigen (HLA class I molecules. The discovery of killer immunoglobulin-like receptors (KIR that specifically recognize HLA class I molecules corroborated this hypothesis. These new concepts point to the importance of studying KIR in hematopoietic stem

  7. Changes in the Ratio of Tc1/Tc2 and Th1/Th2 Cells but Not in Subtypes of NK-Cells in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Yayi Hou

    2007-06-01

    Full Text Available It has been suggested that natural killer (NK cell activity and Th1 immunitymay be involved in the pathogenesis of preeclampsia. This study aimed to investigate theimmunophenotypes of NK cells and type 1/type 2 immunity in both decidua and maternalperipheral blood between normal (n=11 and preeclamptic pregnant women (n=20 by flowcytometry. The results showed that no significant difference was observed between patientsand controls by detecting CD56+ CD69+ and CD56+ CD94+ NK cells in both peripheralblood and decidua. Moreover, in preeclamptic patients, decreased percentages of Tc2 andTh2 cells and the increased ratios of Tc1/Tc2 were determined in both decidua andmaternal peripheral blood. In addition, the ratio of Th1/Th2 in peripheral blood alsoincreased. There was no significant difference of immunophenotypes of uNK cells betweenpreeclampsia and normal pregnancy. Local decidua and systematic immunity did notcorrelate with each other. These results suggest that the type 1/type 2 immunity shifted totype 1 immunity including Th1 and Tc1 cells may contribute to the patho-genesis ofpreeclampsia.

  8. UV-C irradiation of HSV-1 infected fibroblasts (HSV-FS) enhances human natural killer (NK) cell activity against these targets

    International Nuclear Information System (INIS)

    Pettera, L.; Fitzgerald-Bocarsly, P.

    1991-01-01

    Expression of Herpes Simplex Virus Type 1 (HSV-1) immediate early gene products has been bound to be sufficient for NK cell mediated lysis of HSV-1 infected FS. To block the targets at various stages in the infectious cycle, HSV-FS were irradiated with UV light for 1 min at 2, 6, and 20 hr post-infection. NK mediated lysis of 2 hr and 5 hr UV treated HSV-FS was 2-fold higher than non-UV treated HSV-FS despite a >99% inhibition in virus yield. In contrast, 20 hr infected targets were lysed less well than 2 and 6 hr targets despite strong glycoprotein expression and induction of high levels of interferon-alpha (IFN-α) production by effector PBMC's; this lysis was not enhanced by UV treatment. Since NK lysis of HSV-FS has been found to be dependent on an HLA-DR + accessory cell (AC), lysis of irradiated HSV-FS by PBMC's depleted of AC was measured. Such depletion eradicated NK lysis of the UV treated HSV-FS indicating that irradiation does not overcome the AC requirement for NK lysis. UV irradiation of another HLA-DR + dependent target, Vesicular Stomatitis Virus (VSV) infected FS led to a dramatic reduction in both NK lysis and IFN-α induction. HSV-1 is a DNA virus whose genes are expressed in a cascade fashion whereas VSV is an RNA virus. The authors hypothesize that the enhancement in AC dependent NK activity observed for UV irradiated HSV-FS, but not VSV-FS, targets is due to overproduction of either a cellular or viral gene product which specifically occurs early in the HSV-1 infectious cycle and is downregulated by 20 hr post-infection

  9. Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts

    Directory of Open Access Journals (Sweden)

    Zhu Y

    2014-12-01

    Full Text Available Yin Zhu,1,* Ming Cheng,2,* Zhen Yang,3 Chun-Yan Zeng,3 Jiang Chen,3 Yong Xie,3 Shi-Wen Luo,3 Kun-He Zhang,3 Shu-Feng Zhou,4 Nong-Hua Lu1,31Department of Gastroenterology, 2Department of Orthopedics, 3Institute of Digestive Disease, The First Affiliated Hospital of Nanchang University, Jiangxi, People’s Republic of China; 4Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA*These authors contributed equally to this workAbstract: Mesenchymal stem cells (MSCs have been recognized as promising delivery vehicles for gene therapy of tumors. Gastric cancer is the third leading cause of worldwide cancer mortality, and novel treatment modalities are urgently needed. NK4 is an antagonist of hepatocyte growth factor receptors (Met which are often aberrantly activated in gastric cancer and thus represent a useful candidate for targeted therapies. This study investigated MSC-delivered NK4 gene therapy in nude mice bearing gastric cancer xenografts. MSCs were transduced with lentiviral vectors carrying NK4 complementary DNA or enhanced green fluorescent protein (GFP. Such transduction did not change the phenotype of MSCs. Gastric cancer xenografts were established in BALB/C nude mice, and the mice were treated with phosphate-buffered saline (PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4. The tropism of MSCs toward gastric cancer cells was determined by an in vitro migration assay using MKN45 cells, GES-1 cells and human fibroblasts and their presence in tumor xenografts. Tumor growth, tumor cell apoptosis and intratumoral microvessel density of tumor tissue were measured in nude mice bearing gastric cancer xenografts treated with PBS, MSCs-GFP, Lenti-NK4, or MSCs-NK4 via tail vein injection. The results showed that MSCs migrated preferably to gastric cancer cells in vitro. Systemic MSCs-NK4 injection significantly suppressed the growth of gastric cancer xenografts. MSCs-NK4 migrated and accumulated in tumor

  10. Células NK: generalidades y papel durante la infección por el virus de la inmunodeficiencia humana tipo 1 (VIH-1 NK cells: characteristics and role during the infection by type-1 human immunodeficiency virus (HIV-1

    Directory of Open Access Journals (Sweden)

    María Teresa Rugeles López

    2007-03-01

    Full Text Available Las células NK exhiben actividad espontánea contra células tumorales o células infectadas, particularmente por virus. Ellas se caracterizan por la expresión de las moléculas CD16 y CD56, y se subdividen en dos poblaciones, CD16Low/CD56Hi y CD16Hi/CD56Low, que difieren en las citoquinas que producen y en la capacidad citotóxica. La activación de las células NK está regulada por la expresión de receptores inhibidores y activadores que interactúan con diferentes ligandos de las células blanco. La actividad efectora de estas células incluye la lisis de las células blanco por diferentes mecanismos y la producción de citoquinas; las células NK participan por medio de estos factores solubles en diversos procesos fisiológicos, como la hematopoyesis y la regulación de otras células del sistema inmune. Durante la infección por el VIH-1, las células NK ayudan al control de la replicación viral tanto por mecanismos citotóxicos como por la producción de citoquinas, particularmente -quimoquinas. Sin embargo, el VIH- 1 ha desarrollado mecanismos para evadir la respuesta antiviral mediada por las células NK. Adicionalmente, esta infección induce anormalidades cuantitativas y funcionales en estas células que pueden presentarse muy temprano en la evolución de la enfermedad y que hacen parte de la inmunosupresión severa característica del SIDA. NK cells exhibit spontaneous activity against tumor and infected cells, particularly with virus. They are characterized by the expression of the CD16 and CD56 molecules. Two NK cell subpopulations have been described: CD16Low/CD56Hi and CD16Hi/ CD56Low that differ in the cytokines produced and their cytotoxic ability. NK cell activation is regulated by the expression of inhibition and activation receptors, which interact with different ligands on the target cells. The effector activity of these cells includes lysis of target cells by different mechanisms and the production of cytokines

  11. Intratumoral delivery of CpG-conjugated anti-MUC1 antibody enhances NK cell anti-tumor activity.

    Science.gov (United States)

    Schettini, Jorge; Kidiyoor, Amritha; Besmer, Dahlia M; Tinder, Teresa L; Roy, Lopamudra Das; Lustgarten, Joseph; Gendler, Sandra J; Mukherjee, Pinku

    2012-11-01

    Monoclonal antibodies (mAbs) against tumor-associated antigens are useful anticancer agents. Antibody-dependent cellular cytotoxicity (ADCC) is one of the major mechanisms responsible for initiating natural killer cell (NK)-mediated killing of tumors. However, the regulation of ADCC via NK cells is poorly understood. We have investigated the cytolytic activity of NK cells against pancreatic cancer cells that were coated with an antibody directed against the human tumor antigen, Mucin-1 designated HMFG-2, either alone or conjugated to CpG oligodeoxynucleotide (CpG ODN). Conjugated antibodies were tested for their ability to elicit ADCC in vitro and in vivo against pancreatic cancer cells. NK cells cultured in the presence of immobilized CpG ODN, HMFG-2 Ab, or CpG ODN-conjugated HMFG-2 Ab were able to up-regulate perforin similarly. Interestingly, a significant higher ADCC was observed when CpG ODN-conjugated HMFG-2-coated tumor cells were co-cultured with NK cells compared to unconjugated HMFG-2 Ab or CpG ODN alone. Moreover, MyD88-deficient NK cells can perform ADCC in vitro. Furthermore, intratumoral injections of CpG ODN-conjugated HMFG-2 induced a significant reduction in tumor burden in vivo in an established model of pancreatic tumor in nude mice compared to CpG ODN or the HMFG-2 alone. Depletion of macrophages or NK cells before treatment confirmed that both cells were required for the anti-tumor response in vivo. Results also suggest that CpG ODN and HMFG-2 Ab could be sensed by NK cells on the mAb-coated tumor cells triggering enhanced ADCC in vitro and in vivo.

  12. Stem cell factor and interleukin-2/15 combine to enhance MAPK-mediated proliferation of human natural killer cells

    Science.gov (United States)

    Benson, Don M.; Yu, Jianhua; Becknell, Brian; Wei, Min; Freud, Aharon G.; Ferketich, Amy K.; Trotta, Rossana; Perrotti, Danilo; Briesewitz, Roger

    2009-01-01

    Stem cell factor (SCF) promotes synergistic cellular proliferation in combination with several growth factors, and appears important for normal natural killer (NK)–cell development. CD34+ hematopoietic precursor cells (HPCs) require interleukin-15 (IL-15) for differentiation into human NK cells, and this effect can be mimicked by IL-2. Culture of CD34+ HPCs or some primary human NK cells in IL-2/15 and SCF results in enhanced growth compared with either cytokine alone. The molecular mechanisms responsible for this are unknown and were investigated in the present work. Activation of NK cells by IL-2/15 increases expression of c-kit whose kinase activity is required for synergy with IL-2/15 signaling. Mitogen-activated protein kinase (MAPK) signaling intermediaries that are activated both by SCF and IL-2/15 are enhanced in combination to facilitate earlier cell-cycle entry. The effect results at least in part via enhanced MAPK-mediated modulation of p27 and CDK4. Collectively the data reveal a novel mechanism by which SCF enhances cellular proliferation in combination with IL-2/15 in primary human NK cells. PMID:19060242

  13. SENYAWA BIOAKTIF RIMPANG JAHE (Zingiber officinale Roscue MENINGKATKAN RESPON SITOLITIK SEL NK TERHADAP SEL KANKER DARAH K-562 IN VITRO [Ginger Root Bioactive Compounds Increased Cytolitic Response of Natural Killer (NK Cells Against Leucemic Cell Line K-562 In Vitro

    Directory of Open Access Journals (Sweden)

    Fransiska Rungkat Zakaria 2

    2006-08-01

    Full Text Available Natural killer (NK cell, a kind of lymphocyte cells, plays an important role in attacking infectious, immature, and cancer cell. Its function could be modulated by food bioactive compounds. This experiment was conducted to investigate the effects of ginger root bioactive compounds such as oleoresin, gingerol, and shogaol on cytolitic response of NK cell in vitro. Lymphocyte cells were isolated by centrifugation on ficoll-hypaque density (1,77 ?0,001 g/ml method. Leukemic cells line K-562 as target cells(TC labelled by [3H]-timidin, together with lymphocyte as effector cell (EC were cultured in two ratio levels of EC : TC equal to 1:50 and 1:100, and two culture conditions, for 4 hours, respectively. Paraquate dichloride (1,1-dimethyl-4,4-bipyridilium dichloride 3 mM was used to induce stress oxidative circumstance. Cytolytic capacity of NK cells was determined by percentage of TC lysed by NK cells, in normal and oxidative stress conditions. Statistical analysis showed that the effects of ginger bioactive compounds on cytolytic response of NK cell depended on the culture conditions, as shown by cultures in the presence of oleoresin, and gingerol, but not shogaol. In the lymphocyte culture without stress oxidative, oleoresin, gingerol and shogaol compounds increased significantly cytolytic response of NK cells cultured at a ratio of TC : EC equal to 1:50, with the highest increament of 65 % at oleoresin concentration of 50 ?g/ml. However, in culture at a ratio of TC : EC equals to 1:100, only oleoresin at a concentration of 50 ?g/ml increased significantly cytolytic response of NK cells with the highest increament of 8 %. Shogaol did not affect significantly NK cells cytolytic response. Under stress oxidative conditions, shogaol increased significantly cytolytic response of NK cells cultured at a ratio of TC:EC equal to 1:50, but the highest increament of 56 % , was by oleoresin at concentration of 50 ?g/ml. Meanwhile, oleoresin and gingerol did

  14. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad

    Science.gov (United States)

    Iwabuchi, Chikako; Iwabuchi, Kazuya; Nakagawa, Ken-ichi; Takayanagi, Toshiaki; Nishihori, Hiroki; Tone, Saori; Ogasawara, Kazumasa; Good, Robert A.; Onoé, Kazunori

    1998-01-01

    Generation and negative selection of NK1.1+α/β T cell receptor (TCR)+ thymocytes were analyzed using TCR-transgenic (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice and Rag-1−/−/DO10 mice, which had been established by breeding and backcrossing between Rag-1−/− and DO10 mice. Almost all T cells from these mice were shown to bear Vα13/Vβ8.2 that is specific for chicken ovalbumin (cOVA) and restricted to I-Ad. A normal proportion of the NK1.1+ Vα13/Vβ8.2+ thymocytes was generated in these mice. However, the actual cell number of both NK1.1+ and NK1.1− thymocytes in I-Ad/d mice (positive selecting background) was larger than that in I-Ab/d mice (negative selecting background). Markedly low but significant proportions of NK1.1+ Vα13/Vβ8.2+ cells were detected in the spleens from I-Ad/d and I-Ab/d mice. It was shown that the splenic NK1.1+ T cells of the I-Ab/d mice were anergized against stimulation through TCR. When (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice were given cOVA, extensive or intermediate elimination of NK1.1+α/βTCR+ thymocytes was induced in I-Ad/d or I-Ab/d mice, respectively. However, the clonal elimination was not as complete as that seen in the major NK1.1− thymocyte population. The present findings indicate that normal generation of NK1.1+α/βTCR+ thymocytes occurs in the absence of Vα14-Jα281 and that substantial negative selection operates on the NK1.1+α/βTCR+ cells. PMID:9653164

  15. Genetic deletion of Cxcl14 in mice alters uterine NK cells

    International Nuclear Information System (INIS)

    Cao, Qichen; Chen, Hua; Deng, Zhili; Yue, Jingwen; Chen, Qi; Cao, Yujing; Ning, Lina; Lei, Xiaohua; Duan, Enkui

    2013-01-01

    Highlights: •We first examined the expression of Cxcl14 in MLAp and DB of uterus. •We found the uNK cells in MLAp and decidua express Cxcl14. •In Cxcl14 −/− placenta, we found significantly decreased uNK cells. •We first performed microarray to compare the gene expression in MLAp and DB. -- Abstract: The uterine natural killer cells (uNK cells) are the major immune cells in pregnant uterus and the number of uNK cells is dramatically increased during placentation and embryo development. The uNK cells are necessary for the immune tolerance, cytokine secretion and angiogenesis of placenta. Former studies indicated that the population expansion of uNK cells was accomplished through recruitment of NK cell precursors from the spleen and bone marrow, but not proliferation of NK cells. However, the necessary molecules within this process were little understood. Here in our study, we found the co-localized expression of Cxcl14 protein with uNK cells in E13.5 pregnant uterus. Moreover, we used Cxcl14 knockout mice to examine uNK cells in mesometrial lymphoid aggregate of pregnancy (MLAp) and decidua basalis (DB) of E13.5 pregnant uterus and found significantly decreased uNK cells in Cxcl14 −/− pregnant uteri compared with Cxcl14 +/− pregnant uteri. To further explorer the molecular change in MLAp and DB after Cxcl14 knockout, we isolated the MLAp and DB from Cxcl14 +/+ and Cxcl14 −/− pregnant uteri and performed microarray analysis. We found many genes were up and down regulated after Cxcl14 knockout. In conclusion, our results suggested the important function of Cxcl14 in uNK cells and the proper level of Cxcl14 protein were required to recruit NK cells to pregnant uterus

  16. Genetic deletion of Cxcl14 in mice alters uterine NK cells

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qichen [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049 (China); Chen, Hua [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Deng, Zhili [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Graduate School of the Chinese Academy of Sciences, 19 Yuquan Road, Shijingshan, Beijing 100049 (China); Yue, Jingwen; Chen, Qi; Cao, Yujing; Ning, Lina; Lei, Xiaohua [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China); Duan, Enkui, E-mail: duane@ioz.ac.cn [State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang, Beijing 100101 (China)

    2013-06-14

    Highlights: •We first examined the expression of Cxcl14 in MLAp and DB of uterus. •We found the uNK cells in MLAp and decidua express Cxcl14. •In Cxcl14{sup −/−} placenta, we found significantly decreased uNK cells. •We first performed microarray to compare the gene expression in MLAp and DB. -- Abstract: The uterine natural killer cells (uNK cells) are the major immune cells in pregnant uterus and the number of uNK cells is dramatically increased during placentation and embryo development. The uNK cells are necessary for the immune tolerance, cytokine secretion and angiogenesis of placenta. Former studies indicated that the population expansion of uNK cells was accomplished through recruitment of NK cell precursors from the spleen and bone marrow, but not proliferation of NK cells. However, the necessary molecules within this process were little understood. Here in our study, we found the co-localized expression of Cxcl14 protein with uNK cells in E13.5 pregnant uterus. Moreover, we used Cxcl14 knockout mice to examine uNK cells in mesometrial lymphoid aggregate of pregnancy (MLAp) and decidua basalis (DB) of E13.5 pregnant uterus and found significantly decreased uNK cells in Cxcl14{sup −/−} pregnant uteri compared with Cxcl14{sup +/−} pregnant uteri. To further explorer the molecular change in MLAp and DB after Cxcl14 knockout, we isolated the MLAp and DB from Cxcl14{sup +/+} and Cxcl14{sup −/−} pregnant uteri and performed microarray analysis. We found many genes were up and down regulated after Cxcl14 knockout. In conclusion, our results suggested the important function of Cxcl14 in uNK cells and the proper level of Cxcl14 protein were required to recruit NK cells to pregnant uterus.

  17. The substance P/NK-1 receptor system

    Indian Academy of Sciences (India)

    2015-04-27

    Apr 27, 2015 ... NK-1 receptor may be a promising target in the treatment of cancer; NK-1 ... the contribution of chemotherapy for adult malignancies .... nisms that regulate cellular excitability and function. ..... positive expression of Ki-67 in dysplastic epithelium ..... emotional behaviour (behaviour traits, such as depression),.

  18. NK cell cytotoxicity mediated by 2B4 and NTB-A is dependent on SAP acting downstream of receptor phosphorylation

    Directory of Open Access Journals (Sweden)

    Stephan eMeinke

    2013-01-01

    Full Text Available 2B4 (CD244 and NK-T-B-antigen (NTB-A, CD352 are activating receptors on human NK cells and belong to the family of SLAM-related receptors. Engagement of these receptors leads to phosphorylation of their cytoplasmic tails and recruitment of the adapter proteins SAP and EAT-2. X-linked lymphoproliferative syndrome (XLP is a severe immunodeficiency that results from mutations in the SAP gene. 2B4 and NTB-A-mediated cytotoxicity are abrogated in XLP NK cells. To elucidate the molecular basis for this defect we analyzed early signaling events in SAP knockdown cells. Similar to XLP NK cells, knockdown of SAP in primary human NK cells leads to a reduction of 2B4 and NTB-A-mediated cytotoxicity. We found that early signaling events such as raft recruitment and receptor phosphorylation are not affected by the absence of SAP, indicating the defect in the absence of SAP is downstream of these events. In addition, knockdown of EAT-2 does not impair 2B4 or NTB-A-mediated cytotoxicity. Surprisingly, EAT-2 recruitment to both receptors is abrogated in the absence of SAP, revealing a novel cooperativity between these adapters.

  19. Natural killer cell dysfunction in hepatocellular carcinoma and NK cell-based immunotherapy

    Science.gov (United States)

    Sun, Cheng; Sun, Hao-yu; Xiao, Wei-hua; Zhang, Cai; Tian, Zhi-gang

    2015-01-01

    The mechanisms linking hepatitis B virus (HBV) and hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) remain largely unknown. Natural killer (NK) cells account for 25%–50% of the total number of liver lymphocytes, suggesting that NK cells play an important role in liver immunity. The number of NK cells in the blood and tumor tissues of HCC patients is positively correlated with their survival and prognosis. Furthermore, a group of NK cell-associated genes in HCC tissues is positively associated with the prolonged survival. These facts suggest that NK cells and HCC progression are strongly associated. In this review, we describe the abnormal NK cells and their functional impairment in patients with chronic HBV and HCV infection, which contribute to the progression of HCC. Then, we summarize the association of NK cells with HCC based on the abnormalities in the numbers and phenotypes of blood and liver NK cells in HCC patients. In particular, the exhaustion of NK cells that represents lower cytotoxicity and impaired cytokine production may serve as a predictor for the occurrence of HCC. Finally, we present the current achievements in NK cell immunotherapy conducted in mouse models of liver cancer and in clinical trials, highlighting how chemoimmunotherapy, NK cell transfer, gene therapy, cytokine therapy and mAb therapy improve NK cell function in HCC treatment. It is conceivable that NK cell-based anti-HCC therapeutic strategies alone or in combination with other therapies will be great promise for HCC treatment. PMID:26073325

  20. The application of natural killer (NK cell immunotherapy for the treatment of cancer

    Directory of Open Access Journals (Sweden)

    Rayne H Rouce

    2015-11-01

    Full Text Available Natural killer (NK cells are essential components of the innate immune system and play a critical role in host immunity against cancer. Recent progress in our understanding of NK cell immunobiology has paved the way for novel NK cell-based therapeutic strategies for the treatment of cancer. In this review, we will focus on recent advances in the field of NK cell immunotherapy, including augmentation of antibody-dependent cellular cytotoxicity, manipulation of receptor-mediated activation, and adoptive immunotherapy with ex vivo expanded, chimeric antigen receptor (CAR engineered or engager-modified NK cells. In contrast to T lymphocytes, donor NK cells do not attack non-hematopoietic tissues, suggesting that an NK-mediated anti-tumor effect can be achieved in the absence of graft-versus-host disease. Despite reports of clinical efficacy, a number of factors limit the application of NK cell immunotherapy for the treatment of cancer such as the failure of infused NK cells to expand and persist in vivo. Therefore efforts to enhance the therapeutic benefit of NK cell-based immunotherapy by developing strategies to manipulate the NK cell product, host factors and tumor targets are the subject of intense research. In the preclinical setting, genetic engineering of NK cells to express CARs to redirect their antitumor specificity has shown significant promise. Given the short lifespan and potent cytolytic function of mature NK cells, they are attractive candidate effector cells to express CARs for adoptive immunotherapies. Another innovative approach to redirect NK cytotoxicity towards tumor cells is to create either bispecific or trispecific antibodies, thus augmenting cytotoxicity against tumor-associated antigens. These are exciting times for the study of NK cells; with recent advances in the field of NK cell biology and translational research, it is likely that NK cell immunotherapy will move to the forefront of cancer immunotherapy over the next

  1. Activation of p44/42 MAPK plays a role in the TBT-induced loss of human natural killer (NK) cell function.

    Science.gov (United States)

    Dudimah, Fred D; Griffey, Denisha; Wang, Xiaofei; Whalen, Margaret M

    2010-10-01

    Natural killer (NK) cells destroy (lyse) tumor cells, virally infected cells, and antibody-coated cells. Previous studies indicated that exposure to the environmental contaminant tributyltin (TBT) decreases the lytic function of NK cells and activates mitogen-activated protein kinases (MAPK), including p44/42 (Aluoch and Whalen Toxicology 209:263-277, 2005). If activation of p44/42 is required for TBT-induced decreases of lytic function, then activation of p44/42 to similar extents by pharmacological agents such as phorbol 12-myristate 13-acetate (PMA) should mimic to some extent changes induced in NK cells with TBT exposures. NK cells were exposed to PMA concentrations between 0.25 and 10 nM for 10 min, 1 h, and 6 h before determining the lytic function ((51)Cr release assay) and phosphorylation state of MAPKs (Western blot). A 1-h exposure of NK cells to 5 nM PMA resulted in a loss of lytic function of 47%. Western blot analysis showed that a 1-h exposure to 5 nM PMA caused a sixfold increase in phospho-p44/42 levels. Previous studies showed a fivefold increase in phospho-p44/42 in response to a 1-h exposure to 300 nM TBT. Exposure to 300 nM TBT caused about a 40% decrease in lytic function. This study supports the hypothesis that p44/42 activation (as seen with TBT exposures) can cause a loss of NK-cell lytic function.

  2. Activation of p44/42 MAPK Plays a Role in the TBT-induced Loss of Human Natural Killer (NK) Cell Function

    Science.gov (United States)

    Dudimah, Fred D.; Griffey, Denisha; Wang, Xiaofei; Whalen, Margaret M.

    2009-01-01

    Natural Killer (NK) cells destroy (lyse) tumor cells, virally infected cells and antibody-coated cells. Previous studies indicated that exposure to the environmental contaminant tributyltin (TBT) decreases the lytic function of NK cells and activates mitogen activated protein kinases (MAPK), including p44/42 (Aluoch and Whalen, 2005). If activation of p44/42 is required for TBT-induced decreases of lytic function, then activation of p44/42 to similar extents by pharmacological agents such as Phorbol 12-myristate 13-acetate (PMA) should mimic to some extent changes induced in NK cells with TBT exposures. NK cells were exposed to PMA concentrations between 0.25 and 10 nM for 10 min, 1 h, and 6 h before determining the lytic function (51Cr release assay) and phosphorylation state of MAPKs (Western blot). A 1 h exposure of NK cells to 5 nM PMA resulted in a loss of lytic function of 47%. Western blot analysis showed that a 1 h exposure to 5 nM PMA caused a 6 fold increase in phospho-p44/42 levels. Previous studies showed a 5 fold increase in phospho-p44/42 in response to a 1 h exposure to 300 nM TBT. Exposure to 300 nM TBT caused about a 40% decrease in lytic function. This study supports the hypothesis that p44/42 activation (as seen with TBT exposures) can cause a loss of NK-cell lytic function. PMID:20213532

  3. NKG2D is a key receptor for recognition of bladder cancer cells by IL-2-activated NK cells and BCG promotes NK cell activation

    Directory of Open Access Journals (Sweden)

    Eva María García-Cuesta

    2015-06-01

    Full Text Available Intravesical instillation of Bacillus Calmette-Guérin (BCG is used to treat superficial bladder cancer, either papillary tumors (after trans-urethral resection or high-grade flat carcinomas (carcinoma in situ, reducing recurrence in about 70% of patients. Initially, BCG was proposed to work through an inflammatory response, mediated by phagocytic uptake of mycobacterial antigens and cytokine release. More recently, other immune effectors such as monocytes, Natural Killer (NK and NKT cells have been suggested to play a role in this immune response. Here, we provide a comprehensive study of multiple bladder cancer cell lines as putative targets for immune cells and evaluated their recognition by NK cells in the presence and absence of BCG. We describe that different bladder cancer cells can express multiple activating and inhibitory ligands for NK cells. Recognition of bladder cancer cells depended mainly on NKG2D, with a contribution from NKp46. Surprisingly, exposure to BCG did not affect the immune phenotype of bladder cells nor increased NK cell recognition of purified IL-2-activated cell lines. However, NK cells were activated efficiently when BCG was included in mixed lymphocyte cultures, suggesting that NK activation after mycobacteria treatment requires the collaboration of various immune cells. We also analyzed the percentage of NK cells in peripheral blood of a cohort of bladder cancer patients treated with BCG. The total numbers of NK cells did not vary during treatment, indicating that a more detailed study of NK cell activation in the tumor site will be required to evaluate the response in each patient.

  4. Influence of relative NK-DC abundance on placentation and its relation to epigenetic programming in the offspring

    NARCIS (Netherlands)

    Freitag, N.; Zwier, M. V.; Barrientos, G.; Tirado-Gonzalez, I.; Conrad, M. L.; Rose, M.; Scherjon, S. A.; Plosch, T.; Blois, S. M.

    2014-01-01

    Normal placentation relies on an efficient maternal adaptation to pregnancy. Within the decidua, natural killer (NK) cells and dendritic cells (DC) have a critical role in modulating angiogenesis and decidualization associated with pregnancy. However, the contribution of these immune cells to the

  5. Lentiviral Vector-Mediated GFP/fluc gene introduction into primary mouse NK cells

    International Nuclear Information System (INIS)

    L, Thi Thanh Hoa; Tae, Seong Ho; Min, Jung Joon

    2007-01-01

    NK cell is a type of lymphocyte that has ability in defense against virus infection and some kinds of cancer diseases. Recently, using genetic engineering, studies about the roles and functions of NK cells have been developing. In this study, we used lentivirus-based vector encoding GFP/Fluc gene to transfer into primary mouse NK cells. This model is a tool in studying characteristics of NK cells. The lentivirus used in this study was a commercial one, named LentiM1.3-Fluc, encoding GFP and Flue reporter genes under the control of the murine cytomegalovirus (MCMV) promoter. LentiM1.3-Fluc was infected into freshly isolated mouse NK cells at 2 20 MOl by incubating or using spin infection. In the spin infection, we gently suspended NK cells in viral fluid, then centrifuged at 2000 rpm, 20 minutes at room temperature and incubated for 1 day. After 1 day, virus was discarded and NK cells were cultured in IL-2 with or without IL-12 supplemented media. Infected NK cells were monitored by using fluorescent microscope for GFP and IVIS machine for Fire-fly luciferase expression. The results showed that using spin infection had much effect on introducing lentiviral vector-mediated reporter gene into NK cells than the way without spin. Also, NK cells which were cultured in IL-2 and IL-12 added media expressed higher fluorescent and luminescent signals than those cultured in only IL-2 supplemented media. When these NK cells were injected subcutaneously in Balb/C mice, the imaging signal was observed transiently. Our study demonstrates that by using a simple method, mouse NK cells can be transfected by lentivirus. And this will be useful in studying biology and therapeutic potential of NK cells. However, we require developing alternative lentiviral vectors with different promoter for in vivo application

  6. The anti-lung cancer activity of SEP is mediated by the activation and cytotoxicity of NK cells via TLR2/4 in vivo.

    Science.gov (United States)

    Ke, Mengyun; Wang, Hui; Zhang, Min; Tian, Yuwei; Wang, Yizhou; Li, Bing; Yu, Jie; Dou, Jie; Xi, Tao; Zhou, Changlin

    2014-05-01

    Strongylocentrotus nudus egg polysaccharide (SEP) has been reported to display antitumor activity. However, the effects of SEP and its underlying mechanism in the treatment of lung cancer remain unclear, particularly with an immunodeficient mouse model of human non-small cell lung cancer (NSCLC). In the present study, we investigated the anti-lung cancer effects of SEP and its underlying mechanism of action in both Lewis lung cancer (LLC)-bearing C57/BL6J mice and human NSCLC H460-bearing nude mice. Although SEP showed no inhibitory effects on tumor cells in vitro, it markedly stimulated the percentage of CD3-NK1.1(+) cells and natural killer (NK) cell cytotoxicity in the spleens of nude mice and C57/BL6J mice. In LLC-bearing mice, SEP not only inhibited tumor growth but also promoted NK-mediated cytotoxicity, the NK1.1(+) cell population, and IL-2 and IFN-γ secretion. SEP significantly suppressed H460 growth in nude mice, which was abrogated by the selective depletion of NK cells via the intraperitoneal injection of anti-asialo GM-1 antibodies. Furthermore, anti-TLR2/4 antibodies blocked both SEP and NK cell binding and SEP-induced perforin secretion. SEP-induced proliferation and IFN-γ secretion by NK cells in wild type mice were partially impaired in TLR2 or TLR4 knockout mice. These results suggest that SEP-promoted NK cytotoxicity, which was partially mediated via TLR2 and TLR4, was the main contributing factor to lung cancer inhibition in vivo and that SEP may be a potential immunotherapy candidate for the treatment of lung cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Intrinsic Contribution of Perforin to NK-Cell Homeostasis during Mouse Cytomegalovirus Infection

    Directory of Open Access Journals (Sweden)

    Maja eArapovic

    2016-04-01

    Full Text Available In addition to their role as effector cells in virus control, natural killer (NK cells have an immunoregulatory function in shaping the antiviral T-cell response. This function is further pronounced in perforin-deficient mice that show the enhanced NK-cell proliferation and cytokine secretion upon mouse cytomegalovirus (MCMV infection. Here we confirmed that stronger activation and maturation of NK cells in perforin-deficient mice correlates with higher MCMV load. To further characterize the immunoregulatory potential of perforin, we compared the response of NK cells that express or do not express perforin using bone-marrow chimeras. Our results demonstrated that the enhanced proliferation and maturation of NK cells in MCMV-infected bone-marrow chimeras is an intrinsic property of perforin-deficient NK cells. Thus, in addition to confirming that NK-cell proliferation is virus load dependent, our data extend this notion demonstrating that perforin plays an intrinsic role as a feedback mechanism in regulation of NK-cell proliferation during viral infections.

  8. Therapeutic effects of a novel tylophorine analog, NK-007, on collagen-induced arthritis through suppressing tumor necrosis factor α production and Th17 cell differentiation.

    Science.gov (United States)

    Wen, Ti; Li, Yangguang; Wu, Meng; Sun, Xiaolin; Bao, Xiucong; Lin, Yuquan; Hao, Jianlei; Han, Lin; Cao, Guangchao; Wang, Ziwen; Liu, Yuxiu; Wu, Zhenzhou; Hong, Zhangyong; Wang, Puyue; Zhao, Liqing; Li, Zhanguo; Wang, Qingmin; Yin, Zhinan

    2012-09-01

    To analyze the effects of a novel compound, NK-007, on the prevention and treatment of collagen-induced arthritis (CIA) and the underlying mechanisms. We determined the effect of NK-007 on lipopolysaccharide (LPS)-triggered tumor necrosis factor α (TNFα) production by murine splenocytes and a macrophage cell line (RAW 264.7) by enzyme-linked immunosorbent assay, intracellular cytokine staining, and Western blotting. The LPS-boosted CIA model was adopted, and NK-007 or vehicle was administered at different time points after immunization. Mice were monitored for clinical severity of arthritis, and joint tissues were used for histologic examination, cytokine detection, and immunohistochemical staining. Finally, stability of TNFα production and Th17 cell differentiation were studied using quantitative polymerase chain reaction and flow cytometry. NK-007 significantly suppressed LPS-induced TNFα production in vitro. Administration of NK-007 completely blocked CIA development and delayed its progression. Furthermore, treatment with NK-007 at the onset of arthritis significantly inhibited the progress of joint inflammation. Administration of NK-007 also suppressed production of TNFα, interleukin-6 (IL-6), and IL-17A in the joint and reduced percentages of IL-17+ cells among CD4+ and γ/δ T cells in draining lymph nodes. We further demonstrated that NK-007 acted on the stability of TNFα messenger RNA and reduced Th17 cell differentiation. In addition, it significantly inhibited levels of IL-6 and IL-17A in human coculture assay. For its effects on the development and progression of CIA and for its therapeutic effect on CIA, NK-007 has great potential to be a therapeutic agent for human rheumatoid arthritis. Copyright © 2012 by the American College of Rheumatology.

  9. IL-21 augments NK effector functions in chronically HIV-infected individuals

    Science.gov (United States)

    Strbo, Natasa; de Armas, Lesley; Liu, Huanliang; Kolber, Michael A.; Lichtenheld, Mathias; Pahwa, Savita

    2009-01-01

    Objective This study addresses the interleukin (IL)-21 effects on resting peripheral blood NK cells in chronically HIV-infected individuals. Design The effects of IL-21 on perforin expression, proliferation, degranulation, IFN-γ production, cytotoxicity and induction of STAT phosphorylation in NK cells were determined in vitro. Methods Peripheral blood mononuclear cells from HIV-infected and healthy individuals were incubated in vitro for 6h, 24h or 5 days with IL-21 or IL-15. Percentages of perforin, IFN-γ, CD107a, NKG2D and STAT3-5 positive cells were determined within NK cell populations. K562 cells were used as target cells in NK cytotoxicity assay. Results Frequency of CD56dim cells in chronically HIV-infected individuals was diminished. Perforin expression in CD56dim and CD56bright was comparable in healthy and HIV-infected individuals. IL-15 up-regulated perforin expression primarily in CD56bright NK cells while IL-21 up-regulated perforin in both NK subsets. IL-21 and IL- 15 up-regulated CD107a and IFN-γ as well as NK cytotoxicity. IL-15 predominantly activated STAT5, while IL-21 activated STAT5 and STAT3. IL-15, but not IL-21 increased NK cell proliferation in uninfected and HIV-infected individuals. Conclusion IL-21 augments NK effector functions in chronically HIV-infected individuals and due to its perforin enhancing properties it has potential for immunotherapy or as a vaccine adjuvant. PMID:18670213

  10. NK-cell-dependent killing of colon carcinoma cells is mediated by natural cytotoxicity receptors (NCRs) and stimulated by parvovirus infection of target cells

    International Nuclear Information System (INIS)

    Bhat, Rauf; Rommelaere, Jean

    2013-01-01

    Investigating how the immune system functions during malignancies is crucial to developing novel therapeutic strategies. Natural killer (NK) cells, an important component of the innate immune system, play a vital role in immune defense against tumors and virus-infected cells. The poor survival rate in colon cancer makes it particularly important to develop novel therapeutic strategies. Oncolytic viruses, in addition to lysing tumor cells, may have the potential to augment antitumor immune responses. In the present study, we investigate the role of NK cells and how parvovirus H-1PV can modulate NK-cell mediated immune responses against colon carcinoma. Human NK cells were isolated from the blood of healthy donors. The cytotoxicity and antibody-mediated inhibition of NK cells were measured in chromium release assays. Phenotypic assessment of colon cancer and dendritic cells was done by FACS. The statistical significance of the results was calculated with Student’s t test (*p <0.05; **, p < 0.01; ***, p < 0.001). We show that IL-2-activated human NK cells can effectively kill colon carcinoma cells. Killing of colon carcinoma cells by NK cells was further enhanced upon infection of the former cells with parvovirus H-1PV. H-1PV has potent oncolytic activity against various tumors, yet its direct killing effect on colon carcinoma cells is limited. The cytotoxicity of NK cells towards colon carcinoma cells, both mock- and H-1PV-infected, was found to be mostly mediated by a combination of natural cytotoxicity receptors (NCRs), namely NKp30, 44, and 46. Colon carcinoma cells displayed low to moderate expression of NK cell ligands, and this expression was modulated upon H-1PV infection. Lysates of H-1PV-infected colon carcinoma cells were found to increase MHC class II expression on dendritic cells. Altogether, these data suggest that IL-2-activated NK cells actively kill colon carcinoma cells and that this killing is mediated by several natural cytotoxicity receptors

  11. Synergy between Common γ Chain Family Cytokines and IL-18 Potentiates Innate and Adaptive Pathways of NK Cell Activation.

    Science.gov (United States)

    Nielsen, Carolyn M; Wolf, Asia-Sophia; Goodier, Martin R; Riley, Eleanor M

    2016-01-01

    Studies to develop cell-based therapies for cancer and other diseases have consistently shown that purified human natural killer (NK) cells secrete cytokines and kill target cells after in vitro culture with high concentrations of cytokines. However, these assays poorly reflect the conditions that are likely to prevail in vivo in the early stages of an infection and have been carried out in a wide variety of experimental systems, which has led to contradictions within the literature. We have conducted a detailed kinetic and dose-response analysis of human NK cell responses to low concentrations of IL-12, IL-15, IL-18, IL-21, and IFN-α, alone and in combination, and their potential to synergize with IL-2. We find that very low concentrations of both innate and adaptive common γ chain cytokines synergize with equally low concentrations of IL-18 to drive rapid and potent NK cell CD25 and IFN-γ expression; IL-18 and IL-2 reciprocally sustain CD25 and IL-18Rα expression in a positive feedback loop; and IL-18 synergizes with FcγRIII (CD16) signaling to augment antibody-dependent cellular cytotoxicity. These data indicate that NK cells can be rapidly activated by very low doses of innate cytokines and that the common γ chain cytokines have overlapping but distinct functions in combination with IL-18. Importantly, synergy between multiple signaling pathways leading to rapid NK cell activation at very low cytokine concentrations has been overlooked in prior studies focusing on single cytokines or simple combinations. Moreover, although the precise common γ chain cytokines available during primary and secondary infections may differ, their synergy with both IL-18 and antigen-antibody immune complexes underscores their contribution to NK cell activation during innate and adaptive responses. IL-18 signaling potentiates NK cell effector function during innate and adaptive immune responses by synergy with IL-2, IL-15, and IL-21 and immune complexes.

  12. CD70 reverse signaling enhances NK cell function and immunosurveillance in CD27-expressing B-cell malignancies.

    Science.gov (United States)

    Al Sayed, Mohamad F; Ruckstuhl, Carla A; Hilmenyuk, Tamara; Claus, Christina; Bourquin, Jean-Pierre; Bornhauser, Beat C; Radpour, Ramin; Riether, Carsten; Ochsenbein, Adrian F

    2017-07-20

    The interaction of the tumor necrosis factor receptor (TNFR) CD27 with its ligand CD70 is an emerging target to treat cancer. CD27 signaling provides costimulatory signals to cytotoxic T cells but also increases the frequency of regulatory T cells. Similar to other TNFR ligands, CD70 has been shown to initiate intracellular signaling pathways (CD70 reverse signaling). CD27 is expressed on a majority of B-cell non-Hodgkin lymphoma, but its role in the immune control of lymphoma and leukemia is unknown. We therefore generated a cytoplasmic deletion mutant of CD27 (CD27-trunc) to study the role of CD70 reverse signaling in the immunosurveillance of B-cell malignancies in vivo. Expression of CD27-trunc on malignant cells increased the number of tumor-infiltrating interferon γ-producing natural killer (NK) cells. In contrast, the antitumoral T-cell response remained largely unchanged. CD70 reverse signaling in NK cells was mediated via the AKT signaling pathway and increased NK cell survival and effector function. The improved immune control by activated NK cells prolonged survival of CD27-trunc-expressing lymphoma-bearing mice. Finally, CD70 reverse signaling enhanced survival and effector function of human NK cells in a B-cell acute lymphoblastic leukemia xenotransplants model. Therefore, CD70 reverse signaling in NK cells contributes to the immune control of CD27-expressing B-cell lymphoma and leukemia. © 2017 by The American Society of Hematology.

  13. TLR-Stimulated Eosinophils Mediate Recruitment and Activation of NK Cells In Vivo.

    Science.gov (United States)

    O'Flaherty, S M; Sutummaporn, K; Häggtoft, W L; Worrall, A P; Rizzo, M; Braniste, V; Höglund, P; Kadri, N; Chambers, B J

    2017-06-01

    Eosinophils like many myeloid innate immune cells can provide cytokines and chemokines for the activation of other immune cells upon TLR stimulation. When TLR-stimulated eosinophils were inoculated i.p. into wild-type mice, and NK cells were rapidly recruited and exhibited antitumour cytotoxicity. However, when mice depleted of CD11c + cells were used, a marked decrease in the number of recruited NK cells was observed. We postulated that CpG or LPS from the injected eosinophils could be transferred to host cells, which in turn could recruit NK cells. However, by inoculating mice deficient in TLR4 or TLR9 with LPS or CpG-stimulated eosinophils respectively, NK cell recruitment was still observed alongside cytotoxicity and IFNγ production. CpG stimulation of eosinophils produced the pro-inflammatory cytokine IL-12 and the chemokine CXCL10, which are important for NK cell activation and recruitment in vivo. To demonstrate the importance of CXCL10 in NK cell recruitment, we found that CpG-stimulated eosinophils pretreated with the gut microbial metabolite butyrate had reduced expression and production of CXCL10 and IL-12 and concomitantly were poor at recruitment of NK cells and inducing IFNγ in NK cells. Therefore, eosinophils like other innate immune cells of myeloid origin can conceivably stimulate NK cell activity. In addition, products of the gut microbiota can be potential inhibitors of NK cell. © 2017 The Foundation for the Scandinavian Journal of Immunology.

  14. CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets.

    Science.gov (United States)

    Gleason, Michelle K; Ross, Julie A; Warlick, Erica D; Lund, Troy C; Verneris, Michael R; Wiernik, Andres; Spellman, Stephen; Haagenson, Michael D; Lenvik, Alexander J; Litzow, Mark R; Epling-Burnette, Pearlie K; Blazar, Bruce R; Weiner, Louis M; Weisdorf, Daniel J; Vallera, Daniel A; Miller, Jeffrey S

    2014-05-08

    Myelodysplastic syndromes (MDS) are stem cell disorders that can progress to acute myeloid leukemia. Although hematopoietic cell transplantation can be curative, additional therapies are needed for a disease that disproportionally afflicts the elderly. We tested the ability of a CD16xCD33 BiKE to induce natural killer (NK) cell function in 67 MDS patients. Compared with age-matched normal controls, CD7(+) lymphocytes, NK cells, and CD16 expression were markedly decreased in MDS patients. Despite this, reverse antibody-dependent cell-mediated cytotoxicity assays showed potent degranulation and cytokine production when resting MDS-NK cells were triggered with an agonistic CD16 monoclonal antibody. Blood and marrow MDS-NK cells treated with bispecific killer cell engager (BiKE) significantly enhanced degranulation and tumor necrosis factor-α and interferon-γ production against HL-60 and endogenous CD33(+) MDS targets. MDS patients had a significantly increased proportion of immunosuppressive CD33(+) myeloid-derived suppressor cells (MDSCs) that negatively correlated with MDS lymphocyte populations and CD16 loss on NK cells. Treatment with the CD16xCD33 BiKE successfully reversed MDSC immunosuppression of NK cells and induced MDSC target cell lysis. Lastly, the BiKE induced optimal MDS-NK cell function irrespective of disease stage. Our data suggest that the CD16xCD33 BiKE functions against both CD33(+) MDS and MDSC targets and may be therapeutically beneficial for MDS patients.

  15. Distinct requirements for activation of NKT and NK cells during viral infection.

    Science.gov (United States)

    Tyznik, Aaron J; Verma, Shilpi; Wang, Qiao; Kronenberg, Mitchell; Benedict, Chris A

    2014-04-15

    NK cells are key regulators of innate defense against mouse CMV (MCMV). Like NK cells, NKT cells also produce high levels of IFN-γ rapidly after MCMV infection. However, whether similar mechanisms govern activation of these two cell types, as well as the significance of NKT cells for host resistance, remain unknown. In this article, we show that, although both NKT and NK cells are activated via cytokines, their particular cytokine requirements differ significantly in vitro and in vivo. IL-12 is required for NKT cell activation in vitro but is not sufficient, whereas NK cells have the capacity to be activated more promiscuously in response to individual cytokines from innate cells. In line with these results, GM-CSF-derived dendritic cells activated only NK cells upon MCMV infection, consistent with their virtual lack of IL-12 production, whereas Flt3 ligand-derived dendritic cells produced IL-12 and activated both NK and NKT cells. In vivo, NKT cell activation was abolished in IL-12(-/-) mice infected with MCMV, whereas NK cells were still activated. In turn, splenic NK cell activation was more IL-18 dependent. The differential requirements for IL-12 and IL-18 correlated with the levels of cytokine receptor expression by NK and NKT cells. Finally, mice lacking NKT cells showed reduced control of MCMV, and depleting NK cells further enhanced viral replication. Taken together, our results show that NKT and NK cells have differing requirements for cytokine-mediated activation, and both can contribute nonredundantly to MCMV defense, revealing that these two innate lymphocyte subsets function together to fine-tune antiviral responses.

  16. Monosodium Urate Crystals Induce Upregulation of NK1.1-Dependent Killing by Macrophages and Support Tumor-Resident NK1.1+ Monocyte/Macrophage Populations in Antitumor Therapy.

    Science.gov (United States)

    Steiger, Stefanie; Kuhn, Sabine; Ronchese, Franca; Harper, Jacquie L

    2015-12-01

    Macrophages display phenotypic and functional heterogeneity dependent on the changing inflammatory microenvironment. Under some conditions, macrophages can acquire effector functions commonly associated with NK cells. In the current study, we investigated how the endogenous danger signal monosodium urate (MSU) crystals can alter macrophage functions. We report that naive, primary peritoneal macrophages rapidly upregulate the expression of the NK cell-surface marker NK1.1 in response to MSU crystals but not in response to LPS or other urate crystals. NK1.1 upregulation by macrophages was associated with mechanisms including phagocytosis of crystals, NLRP3 inflammasome activation, and autocrine proinflammatory cytokine signaling. Further analysis demonstrated that MSU crystal-activated macrophages exhibited NK cell-like cytotoxic activity against target cells in a perforin/granzyme B-dependent manner. Furthermore, analysis of tumor hemopoietic cell populations showed that effective, MSU-mediated antitumor activity required coadministration with Mycobacterium smegmatis to induce IL-1β production and significant accumulation of monocytes and macrophages (but not granulocytes or dendritic cells) expressing elevated levels of NK1.1. Our findings provide evidence that MSU crystal-activated macrophages have the potential to develop tumoricidal NK cell-like functions that may be exploited to boost antitumor activity in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  17. Antimicrobial activity of bovine NK-lysin-derived peptides on Mycoplasma bovis

    Science.gov (United States)

    Antimicrobial peptides (AMPs) are a diverse group of molecules which play an important role in the innate immune response. Bovine NK-lysins, a type of AMP, have been predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Bovine NK-lysin-derived peptides demonstrate antimicrobia...

  18. Effect of radiotherapy on the natural killer (NK)-cell activity of cancer patients

    International Nuclear Information System (INIS)

    McGinnes, K.; Florence, J.; Penny, R.

    1987-01-01

    The aim of this study was to determine the effect of radiotherapy on peripheral blood natural killer (NK)-cell number and activity in 15 patients with cancer, prior to the commencement and at the completion of radiotherapy. The following observations were made. Prior to radiotherapy NK activity could not be correlated with the stage of malignancy. In all patients with advanced disease and with subnormal baseline NK activity, the outcome of radiotherapy was unfavorable. Following radiotherapy to sites including the mediastinum, patients had decreased NK activity compared with those receiving treatment to other sites. This decrease was not related to the dose of radiotherapy or stage of malignancy. The tumor response was favorable in most patients whose NK activity decreased as a result of radiotherapy. The decrease in NK activity may be associated with a decrease in the percentage of NK (N901) cells in the peripheral blood. The reduction in NK activity in those patients receiving mediastinal irradiation may be due to the large volume of blood which transits the field, so that the NK cells, or their more radiosensitive precursors, may be damaged and/or differentiation inhibited. Thus, these new observations show that radiotherapy does indeed affect the NK activity in cancer patients predominantly when the irradiation site includes the mediastinum

  19. Inhibition of enterovirus 71 replication by an α-hydroxy-nitrile derivative NK-1.9k.

    Science.gov (United States)

    Wang, Yaxin; Cao, Lin; Zhai, Yangyang; Ma, Jiaming; Nie, Quandeng; Li, Ting; Yin, Zheng; Sun, Yuna; Shang, Luqing

    2017-05-01

    Enterovirus 71 (EV71) is one of the major etiological agents of human hand-foot-and-mouth disease (HFMD) worldwide. EV71 infection in young children and people with immunodeficiency causes severe symptoms with a high fatality rates. However, there is still no approved drugs to treat such infections. Based on our previous report of a peptide-aldehyde anti-EV71 protease, we present here a highly specific α-hydroxy-nitrile derivative NK-1.9k, which inhibited the proliferation of multiple EV71 strains and coxsackievirus A16 (CVA16) in various cells with EC 50 of 37.0 nM with low cytotoxicity (CC 50  > 200 μM). The hydroxy-nitrile covalent warhead conferred NK-1.9k high potency and selectivity to interact with the cysteine residue of the active site of the viral protease. We also documented the resistance to NK-1.9k with a N69S mutation in EV71 3C pro . The combination of NK-1.9k and EV71 polymerase or entry inhibitors produced strong synergistic antiviral effects. Collectively, our findings suggest our compounds can potentially be developed as drugs for the treatment of HFMD. Copyright © 2017. Published by Elsevier B.V.

  20. Ganoderma lucidum stimulates NK cell cytotoxicity by inducing NKG2D/NCR activation and secretion of perforin and granulysin.

    Science.gov (United States)

    Chang, Chih-Jung; Chen, Yi-Yuan M; Lu, Chia-Chen; Lin, Chuan-Sheng; Martel, Jan; Tsai, Sheng-Hui; Ko, Yun-Fei; Huang, Tsung-Teng; Ojcius, David M; Young, John D; Lai, Hsin-Chih

    2014-04-01

    Ganoderma lucidum (G. lucidum) is a medicinal mushroom long used in Asia as a folk remedy to promote health and longevity. Recent studies indicate that G. lucidum activates NK cells, but the molecular mechanism underlying this effect has not been studied so far. To address this question, we prepared a water extract of G. lucidum and examined its effect on NK cells. We observed that G. lucidum treatment increases NK cell cytotoxicity by stimulating secretion of perforin and granulysin. The mechanism of activation involves an increased expression of NKG2D and natural cytotoxicity receptors (NCRs), as well as increased phosphorylation of intracellular MAPKs. Our results indicate that G. lucidum induces NK cell cytotoxicity against various cancer cell lines by activating NKG2D/NCR receptors and MAPK signaling pathways, which together culminate in exocytosis of perforin and granulysin. These observations provide a cellular and molecular mechanism to account for the reported anticancer effects of G. lucidum extracts in humans.

  1. Differential action on cancer and normal tissue by adrenochrome monoaminoguanidine methanesulfonate and cytochrome C combined with radiotherapy

    International Nuclear Information System (INIS)

    Nakatsugawa, S.; Sugahara, T.

    1994-01-01

    The possibility that radioprotective effects on potent natural killer (NK) cells by adrenochrome monoaminoguanidine methanesulfonate (AMM) + cytochrome C during radiotherapy (RT) for lung cancer might result in the radiosensitization of human lung cancer cells in vivo is examined. Human lung cancer xenografts in the right hind legs of KSN mice (10 weeks old) were locally irradiated with 20 Gy of X ray. AMM (10 mg/kg/day) and/or cytochrome C (CCC) (5 mg/kg/day) were given intraperitoneally immediately before or after RT, followed by daily administration for 4 days. Natural killer activities of host splenocytes were also tested with the standard 51 Cr releasing assay with YAC-1 cells as target cells. In a clinical study, 65 patients with lung cancer were treated with more than 50 Gy of RT with or without combination with AMM + CCC, OK-432 or AMM + CCC + OK-432. Before and after RT, lymphocyte subsets in the peripheral blood were examined with dichromatic analysis using an Ortho Spectrum IIIFCM system and fluorescent MABs. In this study, the change in the absolute number of each subset was investigated. AMM + cytochrome C augumented NK activity in KSN nude mice, protected potent NK cells in patients with lung cancer against RT and sensitized the human lung cancer xenografts to RT. AMM + cytochrome C may have potential as a differential modulator of radiosensitivity of normal tissues and of tumors. 8 refs., 2 figs., 1 tab

  2. Novel method for the study of receptor Ca2+ signalling exemplified by the NK1 receptor

    DEFF Research Database (Denmark)

    Heding, A; Elling, C E; Schwartz, T W

    2002-01-01

    We have used a novel technology (NovoStar from BMG Labtechnologies) for the study of the Ca2+ signalling of the human tackykinin NK1 (hNK-I receptor). The NovoStar is a microplate reader based on fluorescence and luminescence. The instrument implements a robotic pipettor arm and two microplate...... carriers, typically one for samples and one for cells. The robotic pipettor arm can transfer sample (agonist or antagonist) from the sample plate or other liquid containers to the cell plate, facilitating the study of Ca2+ signalling to such a degree that the instrument can be used for Medium Throughput...

  3. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications.

    Science.gov (United States)

    Carlsten, Mattias; Childs, Richard W

    2015-01-01

    Given their rapid and efficient capacity to recognize and kill tumor cells, natural killer (NK) cells represent a unique immune cell to genetically reprogram in an effort to improve the outcome of cell-based cancer immunotherapy. However, technical and biological challenges associated with gene delivery into NK cells have significantly tempered this approach. Recent advances in viral transduction and electroporation have now allowed detailed characterization of genetically modified NK cells and provided a better understanding for how these cells can be utilized in the clinic to optimize their capacity to induce tumor regression in vivo. Improving NK cell persistence in vivo via autocrine IL-2 and IL-15 stimulation, enhancing tumor targeting by silencing inhibitory NK cell receptors such as NKG2A, and redirecting tumor killing via chimeric antigen receptors, all represent approaches that hold promise in preclinical studies. This review focuses on available methods for genetic reprograming of NK cells and the advantages and challenges associated with each method. It also gives an overview of strategies for genetic reprograming of NK cells that have been evaluated to date and an outlook on how these strategies may be best utilized in clinical protocols. With the recent advances in our understanding of the complex biological networks that regulate the ability of NK cells to target and kill tumors in vivo, we foresee genetic engineering as an obligatory pathway required to exploit the full potential of NK-cell based immunotherapy in the clinic.

  4. Transcription Factor Foxo1 Is a Negative Regulator of NK Cell Maturation and Function

    Science.gov (United States)

    Deng, Youcai; Kerdiles, Yann; Chu, Jianhong; Yuan, Shunzong; Wang, Youwei; Chen, Xilin; Mao, Hsiaoyin; Zhang, Lingling; Zhang, Jianying; Hughes, Tiffany; Deng, Yafei; Zhang, Qi; Wang, Fangjie; Zou, Xianghong; Liu, Chang-Gong; Freud, Aharon G.; Li, Xiaohui; Caligiuri, Michael A; Vivier, Eric; Yu, Jianhua

    2015-01-01

    SUMMARY Little is known about the role of negative regulators in controlling natural killer (NK) cell development and effector functions. Foxo1 is a multifunctional transcription factor of the forkhead family. Using a mouse model of conditional deletion in NK cells, we found that Foxo1 negatively controlled NK cell differentiation and function. Immature NK cells expressed abundant Foxo1 and little Tbx21 relative to mature NK cells, but these two transcription factors reversed their expression as NK cells proceeded through development. Foxo1 promoted NK cell homing to lymph nodes through upregulating CD62L expression, and impaired late-stage maturation and effector functions by repressing Tbx21 expression. Loss of Foxo1 rescued the defect in late-stage NK cell maturation in heterozygous Tbx21+/− mice. Collectively, our data reveal a regulatory pathway by which the negative regulator Foxo1 and the positive regulator Tbx21 play opposing roles in controlling NK cell development and effector functions. PMID:25769609

  5. The Secretion of IL-22 from Mucosal NKp44+ NK Cells Is Associated with Microbial Translocation and Virus Infection in SIV/SHIV-Infected Chinese Macaques

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Microbial translocation (MT causes systemic immune activation in chronic human immunodeficiency virus (HIV infection. The role of a novel subtype of innate lymphoid cells, the NKp44+ NK cells, in HIV/simian immunodeficiency virus- (SIV- induced MT remains unknown. In this study, 12 simian-human immunodeficiency virus- (SHIV- infected macaques were chosen and split into two groups based on the MT level. Blood and Peripheral lymphoid tissue were sampled for flow cytometric analysis, viral load detection, and interleukin testing. Then, six naive Chinese macaques were used to determine the dynamics of cytokine secretion from mucosal NKp44+ NK cells in different phases of SIV infection. As a result, the degranulation capacity and IL-22 production of mucosal NKp44+ NK cells were associated with the MT level in the SHIV-infected macaques. And the number of mucosal NKp44+ NK cells and IL-22 secretion by these cells were lower in the chronic phase than in the early acute phase of SIV infection. The number of mucosal NKp44+ NK cells and interleukin-22 (IL-22 secretion by these cells increased before MT occurred. Therefore, we conclude that a decline in IL-22 production from mucosal NKp44+ NK cells induced by virus infection may be one of the causes of microbial translocation in HIV/SIV infection.

  6. Advances in clinical NK cell studies: Donor selection, manufacturing and quality control

    OpenAIRE

    Koehl, U.; Kalberer, C.; Spanholtz, J.; Lee, D. A.; Miller, J. S.; Cooley, S.; Lowdell, M.; Uharek, L.; Klingemann, H.; Curti, A.; Leung, W.; Alici, E.

    2015-01-01

    ABSTRACT Natural killer (NK) cells are increasingly used in clinical studies in order to treat patients with various malignancies. The following review summarizes platform lectures and 2013?2015 consortium meetings on manufacturing and clinical use of NK cells in Europe and United States. A broad overview of recent pre-clinical and clinical results in NK cell therapies is provided based on unstimulated, cytokine-activated, as well as genetically engineered NK cells using chimeric antigen rece...

  7. Exosomes mediate hepatitis B virus (HBV) transmission and NK-cell dysfunction

    Science.gov (United States)

    Yang, Yinli; Han, Qiuju; Hou, Zhaohua; Zhang, Cai; Tian, Zhigang; Zhang, Jian

    2017-01-01

    Evidence suggests that exosomes can transfer genetic material between cells. However, their roles in hepatitis B virus (HBV) infection remain unclear. Here, we report that exosomes present in the sera of chronic hepatitis B (CHB) patients contained both HBV nucleic acids and HBV proteins, and transferred HBV to hepatocytes in an active manner. Notably, HBV nucleic acids were detected in natural killer (NK) cells from both CHB patients and healthy donors after exposure to HBV-positive exosomes. Through real-time fluorescence microscopy and flow cytometry, 1,1'-dioctadecyl-3,3,3',3',-tetramethylindodicarbocyanine, 4-chlorobenzenesulfnate salt (DiD)-labeled exosomes were observed to interact with NK cells and to be taken up by NK cells, which was enhanced by transforming growth factor-β treatment. Furthermore, HBV-positive exosomes impaired NK-cell functions, including interferon (IFN)-γ production, cytolytic activity, NK-cell proliferation and survival, as well as the responsiveness of the cells to poly (I:C) stimulation. HBV infection suppressed the expression of pattern-recognition receptors, especially retinoic acid inducible gene I (RIG-I), on NK cells, resulting in the dampening of the nuclear factor κB(NF-κB) and p38 mitogen-activated protein kinase pathways. Our results highlight a previously unappreciated role of exosomes in HBV transmission and NK-cell dysfunction during CHB infection. PMID:27238466

  8. Deciphering the role of Epstein-Barr virus in the pathogenesis of T and NK cell lymphoproliferations

    Science.gov (United States)

    2011-01-01

    Epstein-Barr virus (EBV) is a highly successful herpesvirus, colonizing more than 90% of the adult human population worldwide, although it is also associated with various malignant diseases. Primary infection is usually clinically silent, and subsequent establishment of latency in the memory B lymphocyte compartment allows persistence of the virus in the infected host for life. EBV is so markedly B-lymphotropic when exposed to human lymphocytes in vitro that the association of EBV with rare but distinct types of T and NK cell lymphoproliferations was quite unexpected. Whilst relatively rare, these EBV-associated T and NK lymphoproliferations can be therapeutically challenging and prognosis for the majority of patients is dismal. In this review, we summarize the current knowledge on the role of EBV in the pathogenesis of these tumours, and the implications for treatment. PMID:21899744

  9. HIV-1 adaptation to NK cell-mediated immune pressure

    DEFF Research Database (Denmark)

    Elemans, Marjet; Boelen, Lies; Rasmussen, Michael

    2017-01-01

    The observation, by Alter et al., of the enrichment of NK cell “escape” variants in individuals carrying certain Killer-cell Immunoglobulin-like Receptor (KIR) genes is compelling evidence that natural killer (NK) cells exert selection pressure on HIV-1. Alter et al hypothesise that variant pepti...

  10. Tonsillar CD56brightNKG2A+ NK cells restrict primary Epstein-Barr virus infection in B cells via IFN-γ.

    Science.gov (United States)

    Jud, Aurelia; Kotur, Monika; Berger, Christoph; Gysin, Claudine; Nadal, David; Lünemann, Anna

    2017-01-24

    Natural killer (NK) cells constitute the first line of defense against viruses and cancers cells. Epstein-Barr virus (EBV) was the first human virus to be directly implicated in carcinogenesis, and EBV infection is associated with a broad spectrum of B cell lymphomas. How NK cells restrict EBV-associated oncogenesis is not understood. Here, we investigated the efficacies and mechanisms of distinct NK cell subsets from tonsils, the portal of entry of EBV, in limiting EBV infection in naïve, germinal center-associated and memory B cells. We found that CD56bright and NKG2A expression sufficiently characterizes the potent anti-EBV capacity of tonsillar NK cells. We observed restriction of EBV infection in B cells as early as 18 hours after infection. The restriction was most efficient in naïve B cells and germinal center-associated B cells, the B cell subsets that exhibited highest susceptibility to EBV infection in vitro. IFN-γ release by and partially NKp44 engagement of CD56bright and NKG2A positive NK cells mediated the restriction that eventually inhibited B-cell transformation. Thus, harnessing CD56brightNKG2A+ NK cell function might be promising to improve treatment strategies that target EBV-associated B cell lymphomas.

  11. Dynamic contrast enhanced MRI detects early response to adoptive NK cellular immunotherapy targeting the NG2 proteoglycan in a rat model of glioblastoma.

    Directory of Open Access Journals (Sweden)

    Cecilie Brekke Rygh

    Full Text Available There are currently no established radiological parameters that predict response to immunotherapy. We hypothesised that multiparametric, longitudinal magnetic resonance imaging (MRI of physiological parameters and pharmacokinetic models might detect early biological responses to immunotherapy for glioblastoma targeting NG2/CSPG4 with mAb9.2.27 combined with natural killer (NK cells. Contrast enhanced conventional T1-weighted MRI at 7±1 and 17±2 days post-treatment failed to detect differences in tumour size between the treatment groups, whereas, follow-up scans at 3 months demonstrated diminished signal intensity and tumour volume in the surviving NK+mAb9.2.27 treated animals. Notably, interstitial volume fraction (ve, was significantly increased in the NK+mAb9.2.27 combination therapy group compared mAb9.2.27 and NK cell monotherapy groups (p = 0.002 and p = 0.017 respectively in cohort 1 animals treated with 1 million NK cells. ve was reproducibly increased in the combination NK+mAb9.2.27 compared to NK cell monotherapy in cohort 2 treated with increased dose of 2 million NK cells (p<0.0001, indicating greater cell death induced by NK+mAb9.2.27 treatment. The interstitial volume fraction in the NK monotherapy group was significantly reduced compared to mAb9.2.27 monotherapy (p<0.0001 and untreated controls (p = 0.014 in the cohort 2 animals. NK cells in monotherapy were unable to kill the U87MG cells that highly expressed class I human leucocyte antigens, and diminished stress ligands for activating receptors. A significant association between apparent diffusion coefficient (ADC of water and ve in combination NK+mAb9.2.27 and NK monotherapy treated tumours was evident, where increased ADC corresponded to reduced ve in both cases. Collectively, these data support histological measures at end-stage demonstrating diminished tumour cell proliferation and pronounced apoptosis in the NK+mAb9.2.27 treated tumours compared to the other

  12. In vitro effects of PCDDs/Fs on NK-like cell activity of Eisenia andrei earthworms

    Directory of Open Access Journals (Sweden)

    Hayet Belmeskine

    2012-02-01

    Full Text Available In this study, we assessed in vitro the effects of PCDD/Fs on the NK-like cell activity in Eisenia andrei earthworms using flow cytometry for analysis. NK-like coelomocytes isolated from E. andrei and used as effectors were exposed to various concentrations of PCDDs/Fs mixture, C1 (6.25x10-3 ng 2378- TCDD/mL, C2 (12.5x10-3 ng 2378-TCDD/mL and C3 (25x10-3 ng 2378-TCDD/mL, before adding them to human tumoral cells (K562 used as targets. We evaluated the percentage of targets lysed by Nk-like cells. The results showed a significant stimulation of the NKlike activity at C3 when PCDD/Fs were not removed from effectors before contact with targets, while no effects were noted when the effectors were washed (PCDD/Fs removed or fixed. Assessment of the viability of the targets (K562, exposed alone and separately from effectors, to the three concentrations of PCDD/Fs, C1, C2 and C3, showed that all these concentrations were cytotoxic for K562. Results suggest that PCDD/Fs concentrations tested in this assay may be considered too low to induce suppressive effects on the immune function such as the NK-like activity in E. andrei earthworms.

  13. Activation of human natural killer cells by the soluble form of cellular prion protein

    International Nuclear Information System (INIS)

    Seong, Yeon-Jae; Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon; Park, Bum-Chan; Park, Su-Hyung; Park, Young Woo; Shin, Eui-Cheol

    2015-01-01

    Cellular prion protein (PrP C ) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP C in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP C protein on human natural killer (NK) cells. Recombinant soluble PrP C protein was generated by fusion of human PrP C with the Fc portion of human IgG 1 (PrP C -Fc). PrP C -Fc binds to the surface of human NK cells, particularly to CD56 dim NK cells. PrP C -Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP C -Fc facilitated the IL-15-induced proliferation of NK cells. PrP C -Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP C -Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP C -Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP C (PrP C -Fc) was generated by fusion of human PrP C with IgG1 Fc portion. • PrP C -Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP C -Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP C -Fc protein activates human NK cells via the ERK and JNK signaling pathways

  14. Estudo-piloto: células NK nas gestantes com LES NK cells in pregnant patients with SLE: a preliminary study

    Directory of Open Access Journals (Sweden)

    Alessandra Cardoso Pereira

    2009-08-01

    Full Text Available O sistema imune inato desempenha papel central na reprodução, tendo as células NK participação marcante. Durante a gravidez, seu comportamento pode esclarecer pontos cruciais na patogênese das complicações que podem ocorrer em gestantes com LES. OBJETIVO: Quantificar as células NK circulantes e sua viabilidade em gestantes com LES. MATERIAL E MÉTODOS: Avaliaram-se amostras de sangue de quatro grupos de dez pacientes cada: 1 GLES: Gestantes com LES; 2 PLES: Pacientes com LES não gestantes; 3 Gcontroles: Gestantes controles; 4 Controles: Mulheres não gestantes saudáveis. Em todas as pacientes, a quantidade e a viabilidade das células NK foram medidas por citometria de fluxo, assim como por apoptose total por coloração para anexina V e iodeto de propidium. RESULTADOS: Devido à variabilidade dos resultados, a mediana de cada grupo foi utilizada para avaliar: porcentagem CD56+ [GLES (0,10, PLES (0,12, Gcontroles (0,15, Controles (0,08]; apoptose total [GLES (0,06, PLES (0,04, Gcontroles (0,11, Controles (0,11]. Os resultados da contagem de células vivas tiveram baixa variabilidade, por isso média e desvio-padrão foram utilizados para comparação: [GLES (0,91 ± 0,06, PLES (0,95 ± 0,03, Gcontroles (0,86 ± 0,11, Controles (0,88 ± 0,08. CONCLUSÃO: Apesar de não terem alcançado valor de significância estatística, o percentual de apoptose total nos grupos com LES foi menor que o dos controles, e a porcentagem de células vivas foi maior. Isso sugere que, em pacientes com LES, grávidas ou não, as células NK têm vida útil prolongada (ou tem turnover menor/diferente, o que indica um maior estímulo imune, fazendo com que as células NK levem mais tempo para ativar o processo de apoptose.The innate immune system plays an important role in reproduction, with marked involvement of NK cells. These cells behavior during pregnancy may clarify crucial points in the pathogenesis of complications that may occur in pregnant women with

  15. Primary NK/T cell lymphoma nasal type of the colon

    Directory of Open Access Journals (Sweden)

    Ana María Chirife

    2013-02-01

    Full Text Available Since nasal NK/T-cell lymphoma and NK/T-cell lymphoma nasal type are rare diseases, colonic involvement has seldom been seen. We report a case of a patient with a primary NK/T-cell lymphoma nasal type of the colon. The patient had no history of malignant diseases and was diagnosed after exhaustive study in the context of fever of unknown origin. The first therapeutic approach followed the DAEPOCH-protocol: etoposide, prednisone, doxor-rubicin, vincristine and cyclophosphamide. The persistence of constitutional symptoms after the first treatment course motivated the switch to a second line following the SMILE-protocol: dexamethasone, metotrexate, ifosfamide, E.coli L-asparaginase, and etoposide. Despite intensive chemotherapy, the patient died 2 months after the diagnose of an extranodal NK/T-cell lymphoma of the colon and 4 months after the first symptomatic appearance of disease.

  16. Role of type I interferon receptor signaling on NK cell development and functions.

    Directory of Open Access Journals (Sweden)

    Jean Guan

    Full Text Available Type I interferons (IFN are unique cytokines transcribed from intronless genes. They have been extensively studied because of their anti-viral functions. The anti-viral effects of type I IFN are mediated in part by natural killer (NK cells. However, the exact contribution of type I IFN on NK cell development, maturation and activation has been somewhat difficult to assess. In this study, we used a variety of approaches to define the consequences of the lack of type I interferon receptor (IFNAR signaling on NK cells. Using IFNAR deficient mice, we found that type I IFN affect NK cell development at the pre-pro NK stage. We also found that systemic absence of IFNAR signaling impacts NK cell maturation with a significant increase in the CD27+CD11b+ double positive (DP compartment in all organs. However, there is tissue specificity, and only in liver and bone marrow is the maturation defect strictly dependent on cell intrinsic IFNAR signaling. Finally, using adoptive transfer and mixed bone marrow approaches, we also show that cell intrinsic IFNAR signaling is not required for NK cell IFN-γ production in the context of MCMV infection. Taken together, our studies provide novel insights on how type I IFN receptor signaling regulates NK cell development and functions.

  17. Lymphocytes Negatively Regulate NK Cell Activity via Qa-1b following Viral Infection

    Directory of Open Access Journals (Sweden)

    Haifeng C. Xu

    2017-11-01

    Full Text Available NK cells can reduce anti-viral T cell immunity during chronic viral infections, including infection with the lymphocytic choriomeningitis virus (LCMV. However, regulating factors that maintain the equilibrium between productive T cell and NK cell immunity are poorly understood. Here, we show that a large viral load resulted in inhibition of NK cell activation, which correlated with increased expression of Qa-1b, a ligand for inhibitory NK cell receptors. Qa-1b was predominantly upregulated on B cells following LCMV infection, and this upregulation was dependent on type I interferons. Absence of Qa-1b resulted in increased NK cell-mediated regulation of anti-viral T cells following viral infection. Consequently, anti-viral T cell immunity was reduced in Qa-1b- and NKG2A-deficient mice, resulting in increased viral replication and immunopathology. NK cell depletion restored anti-viral immunity and virus control in the absence of Qa-1b. Taken together, our findings indicate that lymphocytes limit NK cell activity during viral infection in order to promote anti-viral T cell immunity.

  18. Complementary striped expression patterns of NK homeobox genes during segment formation in the annelid Platynereis.

    Science.gov (United States)

    Saudemont, Alexandra; Dray, Nicolas; Hudry, Bruno; Le Gouar, Martine; Vervoort, Michel; Balavoine, Guillaume

    2008-05-15

    NK genes are related pan-metazoan homeobox genes. In the fruitfly, NK genes are clustered and involved in patterning various mesodermal derivatives during embryogenesis. It was therefore suggested that the NK cluster emerged in evolution as an ancestral mesodermal patterning cluster. To test this hypothesis, we cloned and analysed the expression patterns of the homologues of NK cluster genes Msx, NK4, NK3, Lbx, Tlx, NK1 and NK5 in the marine annelid Platynereis dumerilii, a representative of trochozoans, the third great branch of bilaterian animals alongside deuterostomes and ecdysozoans. We found that most of these genes are involved, as they are in the fly, in the specification of distinct mesodermal derivatives, notably subsets of muscle precursors. The expression of the homologue of NK4/tinman in the pulsatile dorsal vessel of Platynereis strongly supports the hypothesis that the vertebrate heart derived from a dorsal vessel relocated to a ventral position by D/V axis inversion in a chordate ancestor. Additionally and more surprisingly, NK4, Lbx, Msx, Tlx and NK1 orthologues are expressed in complementary sets of stripes in the ectoderm and/or mesoderm of forming segments, suggesting an involvement in the segment formation process. A potentially ancient role of the NK cluster genes in segment formation, unsuspected from vertebrate and fruitfly studies so far, now deserves to be investigated in other bilaterian species, especially non-insect arthropods and onychophorans.

  19. NYPA/TH!NK Clean Commute Program Report – Inception Through May 2004

    Energy Technology Data Exchange (ETDEWEB)

    Don Karner; James Francfort; Randall Solomon

    2004-11-01

    The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric vehicles for transportation in urban applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations, where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK city vehicles is located at the commuters’ private residences as well as seven train stations. Ford leased 97 TH!NK city electric vehicles to commuters from Westchester, Putnam, Rockland, Queens, Nassau, and Suffolk counties for $199 per month per vehicle. The first Clean Commute Program vehicle deliveries occurred late in 2001, with data collection commencing in February 2002. Through May 2004, 24 of the lessees have returned their vehicles to Ford and no longer participate in the Clean Commute Program. Reasons given for returning the vehicles include relocation out of the Program area, change in employment status, change in commuting status, and, in a few cases, dissatisfaction with the vehicle. Additionally, 13 vehicles have been returned to Ford as their leases have completed. In August 2002, Ford announced that it was ceasing production of the TH!NK city and would not extend any TH!NK city leases. Through May 2004, participants in the Clean Commute Program have driven their vehicles over 370,000 miles, avoiding the use of over 17,000 gallons of gasoline. The TH!NK city vehicles are driven an average of between 180 and 230 miles per month, and over 95% of all trips taken with the TH!NK city vehicles replace trips previously taken in gasoline vehicles. This report covers the period from Program inception through May 2004.

  20. Targeting NK cells for anti-cancer immunotherapy: clinical and pre-clinical approaches

    Directory of Open Access Journals (Sweden)

    Sebastian eCarotta

    2016-04-01

    Full Text Available The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. While the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune-surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer cells are the body’s first line of defense against infected or transformed cells as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer-immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell based anti-cancer therapies, which has lead to a steady increase of NK cell based clinical and pre-clinical trials. Here, the role of NK cells in cancer immunesurveillance is summarized and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed.

  1. Clinical grade purification and expansion of NK cell products for an optimized manufacturing protocol

    Directory of Open Access Journals (Sweden)

    Ulrike eKoehl

    2013-05-01

    Full Text Available Allogeneic Natural Killer (NK cells are used for adoptive immunotherapy after stem cell transplantation. In order to overcome technical limitations in NK cell purification and activation, the following study investigates the impact of different variables on NK cell recovery, cytotoxicity and T cell depletion during GMP-grade NK cell selection. 40 NK cell products were derived from 54 unstimulated donor leukaphereses using immunomagnetic CD3 T-cell depletion, followed by a CD56 cell enrichment step. For T cell depletion, either the depletion 2.1 program in single or double procedure (D2.1 1depl, n=18; D2.1 2depl, n=13 or the faster depletion 3.1 (D3.1, n=9 was used on the CliniMACS instrument. 17 purified NK cell products were activated in vitro by IL-2 for 12 days. The whole process resulted in a median number of 7.59x10e8 CD56+CD3- cells with both purity and viability of 94%, respectively. The T-cell depletion was significantly better using D2.1 1depl/2depl compared to D3.1 (log 4.6/log 4.9 vs. log 3.7; p<0.01 and double procedure in two stages led always to residual T cells below 0.1%. In contrast D3.1 was superior to D2.1 1depl/2depl with regard to recovery of CD56+CD3- NK cells (68% vs 41%/38%. Concomitant monocytes and especially IL-2 activation led to increased NK cell activity against malignant target cells compared to unstimulated NK cells, which correlated with both up-regulation of natural cytotoxicity receptors and intracellular signaling. Overall, wide variations in the NK cell expansion rate and the distribution of NK cell subpopulations were found. In conclusion, our results indicate that GMP-grade purification of NK cells might be improved by a sequential processing of T cell depletion program D2.1 and D3.1. In addition NK cell expansion protocols need to be further optimized.

  2. Effect of fractalkine, IP-10 and different signal pathway inhibitors on NK cells in the tumor microenvironment

    Directory of Open Access Journals (Sweden)

    Zhao-zhen WU

    2015-07-01

    Full Text Available Objective To investigate the inducing effects of chemokines [fractalkine (FKN, IP-10] and different signal pathway inhibitors on NK cells in the tumor microenvironment (TME. Methods Immunohistochemistry was performed using antibodies for CD56 and DAP10 respectively on human breast carcinoma. Murine macrophages (RAW 264.7 and breast cancer cells (4T1 were co-cultivated at a 1:4 ratio to imitate the TME with NK cells (KY-1 set as the object. RT-PCR was used to determine the mRNA expressions of CD16, NKG2D and NK1.1, and the content of CD107a in the supernatants was determined by ELISA. 10ng/ml FKN and 10ng/ml IP-10 were added into the TME, NK1.1+CD16+KY-1 cells were counted with flow cytometry, migration and adhesion assays were used to assess the related function of KY-1 cells. 4T1 cells were incubated in 10nmol/L of rapamycin, 30μmol/L of LY294002, 500ng/μl of andrographolide and 2mmol/L of wortmannin, the 4T1 tumor supernatants (TSNs were harvested separately and used to incubate RAW 264.7 for 48h, then the expressions of Rae1α and H60a mRNA in 4T1, RAW 264.7 and their mixture were determined by RT-PCR. Results The related indicators of KY-1 cells such as NK1.1+ number, chemotaxis rate, and adhesion function decreased obviously in TME, and the above indices increased after the addition of FKN and IP-10, and some signal pathway inhibitors indirectly promoted NK cells' function in TME, and among them rapamycin was the most efficient one (P<0.05. Conclusion FKN and IP-10 may up-regulate the number and function of NK cells in TME, and rapamycin can promote NK cells' killing function by inducing high expression of NKG2DLs (Rae1, H60a on tumor cells. DOI: 10.11855/j.issn.0577-7402.2015.07.07

  3. Activation of human natural killer cells by the soluble form of cellular prion protein

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Yeon-Jae [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Hafis Clinic, Seoul (Korea, Republic of); Sung, Pil Soo; Jang, Young-Soon; Choi, Young Joon [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Park, Bum-Chan [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Park, Su-Hyung [Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of); Park, Young Woo [Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon (Korea, Republic of); Shin, Eui-Cheol, E-mail: ecshin@kaist.ac.kr [Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon (Korea, Republic of)

    2015-08-21

    Cellular prion protein (PrP{sup C}) is widely expressed in various cell types, including cells of the immune system. However, the specific roles of PrP{sup C} in the immune system have not been clearly elucidated. In the present study, we investigated the effects of a soluble form of recombinant PrP{sup C} protein on human natural killer (NK) cells. Recombinant soluble PrP{sup C} protein was generated by fusion of human PrP{sup C} with the Fc portion of human IgG{sub 1} (PrP{sup C}-Fc). PrP{sup C}-Fc binds to the surface of human NK cells, particularly to CD56{sup dim} NK cells. PrP{sup C}-Fc induced the production of cytokines and chemokines and the degranulation of granzyme B from NK cells. In addition, PrP{sup C}-Fc facilitated the IL-15-induced proliferation of NK cells. PrP{sup C}-Fc induced phosphorylation of ERK-1/2 and JNK in NK cells, and inhibitors of the ERK or the JNK pathways abrogated PrP{sup C}-Fc-induced cytokine production in NK cells. In conclusion, the soluble form of recombinant PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways. - Highlights: • Recombinant soluble PrP{sup C} (PrP{sup C}-Fc) was generated by fusion of human PrP{sup C} with IgG1 Fc portion. • PrP{sup C}-Fc protein induces the production of cytokines and degranulation from human NK cells. • PrP{sup C}-Fc protein enhances the IL-15-induced proliferation of human NK cells. • PrP{sup C}-Fc protein activates human NK cells via the ERK and JNK signaling pathways.

  4. Turnover rates of B cells, T cells, and NK cells in simian immunodeficiency virus-infected and uninfected rhesus macaques

    NARCIS (Netherlands)

    Boer, R.J. de; Mohri, H.; Ho, D.D.; Perelson, A.S.

    2003-01-01

    We determined average cellular turnover rates by fitting mathematical models to 5-bromo-2'-deoxyuridine measurements in SIV-infected and uninfected rhesus macaques. The daily turnover rates of CD4(+) T cells, CD4(-) T cells, CD20(+) B cells, and CD16(+) NK cells in normal uninfected rhesus macaques

  5. Expression and function of human hemokinin-1 in human and guinea pig airways.

    Science.gov (United States)

    Grassin-Delyle, Stanislas; Naline, Emmanuel; Buenestado, Amparo; Risse, Paul-André; Sage, Edouard; Advenier, Charles; Devillier, Philippe

    2010-10-07

    Human hemokinin-1 (hHK-1) and endokinins are peptides of the tachykinin family encoded by the TAC4 gene. TAC4 and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study. RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages. In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK1-and NK2-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK2-receptors, which blockade unmasked a NK1-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK1-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages. We demonstrate endogenous expression of TAC4 in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.

  6. Expression and function of human hemokinin-1 in human and guinea pig airways

    Directory of Open Access Journals (Sweden)

    Sage Edouard

    2010-10-01

    Full Text Available Abstract Background Human hemokinin-1 (hHK-1 and endokinins are peptides of the tachykinin family encoded by the TAC4 gene. TAC4 and hHK-1 expression as well as effects of hHK-1 in the lung and airways remain however unknown and were explored in this study. Methods RT-PCR analysis was performed on human bronchi to assess expression of tachykinin and tachykinin receptors genes. Enzyme immunoassay was used to quantify hHK-1, and effects of hHK-1 and endokinins on contraction of human and guinea pig airways were then evaluated, as well as the role of hHK-1 on cytokines production by human lung parenchyma or bronchi explants and by lung macrophages. Results In human bronchi, expression of the genes that encode for hHK-1, tachykinin NK1-and NK2-receptors was demonstrated. hHK-1 protein was found in supernatants from explants of human bronchi, lung parenchyma and lung macrophages. Exogenous hHK-1 caused a contractile response in human bronchi mainly through the activation of NK2-receptors, which blockade unmasked a NK1-receptor involvement, subject to a rapid desensitization. In the guinea pig trachea, hHK-1 caused a concentration-dependant contraction mainly mediated through the activation of NK1-receptors. Endokinin A/B exerted similar effects to hHK-1 on both human bronchi and guinea pig trachea, whereas endokinins C and D were inactive. hHK-1 had no impact on the production of cytokines by explants of human bronchi or lung parenchyma, or by human lung macrophages. Conclusions We demonstrate endogenous expression of TAC4 in human bronchi, the encoded peptide hHK-1 being expressed and involved in contraction of human and guinea pig airways.

  7. Preventing surgery-induced NK cell dysfunction and cancer metastases with influenza vaccination

    Science.gov (United States)

    Tai, Lee-Hwa; Zhang, Jiqing; Auer, Rebecca C

    2013-01-01

    Surgical resection is the mainstay of treatment for solid tumors, but the postoperative period is uniquely inclined to the formation of metastases, largely due to the suppression of natural killer (NK) cells. We found that preoperative influenza vaccination prevents postoperative NK-cell dysfunction, attenuating tumor dissemination in murine models and promoting the activation of NK cells in cancer patients. PMID:24404430

  8. Human natural killer cell maturation defect supports in vivo CD56(bright to CD56(dim lineage development.

    Directory of Open Access Journals (Sweden)

    Carolina Inés Domaica

    Full Text Available Two populations of human natural killer (NK cells can be identified in peripheral blood. The majority are CD3(-CD56(dim cells while the minority exhibits a CD3(-CD56(bright phenotype. In vitro evidence indicates that CD56(bright cells are precursors of CD56(dim cells, but in vivo evidence is lacking. Here, we studied NK cells from a patient that suffered from a melanoma and opportunistic fungal infection during childhood. The patient exhibited a stable phenotype characterized by a reduction in the frequency of peripheral blood CD3(-CD56(dim NK cells, accompanied by an overt increase in the frequency and absolute number of CD3(-CD56(bright cells. These NK cells exhibited similar expression of perforin, CD57 and CD158, the major activating receptors CD16, NKp46, NKG2D, DNAM-1, and 2B4, as well as the inhibitory receptor CD94/NKG2A, on both CD56(bright and CD56(dim NK cells as healthy controls. Also, both NK cell subpopulations produced IFN-γ upon stimulation with cytokines, and CD3(-CD56(dim NK cells degranulated in response to cytokines or K562 cells. However, upon stimulation with cytokines, a substantial fraction of CD56(dim cells failed to up-regulate CD57 and CD158, showed a reduction in the percentage of CD16(+ cells, and CD56(bright cells did not down-regulate CD62L, suggesting that CD56(dim cells could not acquire a terminally differentiated phenotype and that CD56(bright cells exhibit a maturation defect that might result in a potential altered migration pattern. These observations, support the notion that NK cells of this patient display a maturation/activation defect that precludes the generation of mature NK cells at a normal rate accompanied by CD56(dim NK cells that cannot completely acquire a terminally differentiated phenotype. Thus, our results provide evidence that support the concept that in vivo CD56(bright NK cells differentiate into CD56(dim NK cells, and contribute to further understand human NK cell ontogeny.

  9. NK cell recruitment and exercise: Potential immunotherapeutic role of shear stress and endothelial health.

    Science.gov (United States)

    Evans, William

    2017-11-01

    Positive cancer patient outcomes, including increased time to recurrent events, have been associated with increased counts and function of natural killer (NK) cells. NK cell counts and function are elevated following acute exercise, and the generally accepted mechanism of increased recruitment suggests that binding of epinephrine releases NK cells from endothelial tissue via decreases in adhesion molecules following. I propose that blood flow-induced shear stress may also play a role in NK cell recruitment from the endothelium. Additionally, shear stress may play a role in improving NK cell function by decreasing oxidative stress. The relationship between shear stress and NK cell count and function can be tested by utilizing exercise and local heating with cuff inflation. If shear stress does play an important role, NK cell count and function will be improved in the non-cuffed exercise group, but not the cuffed limb. This paper will explore the mechanisms potentially explaining exercise-induced improvements in NK cell count and function, and propose a model for investigating these mechanisms. This mechanistic insight could aid in providing a novel, safe, relatively inexpensive, and non-invasive target for immunotherapy in cancer patients. Copyright © 2017. Published by Elsevier Ltd.

  10. Activated Allogeneic NK Cells Preferentially Kill Poor Prognosis B-Cell Chronic Lymphocytic Leukemia Cells.

    Science.gov (United States)

    Sánchez-Martínez, Diego; Lanuza, Pilar M; Gómez, Natalia; Muntasell, Aura; Cisneros, Elisa; Moraru, Manuela; Azaceta, Gemma; Anel, Alberto; Martínez-Lostao, Luis; Villalba, Martin; Palomera, Luis; Vilches, Carlos; García Marco, José A; Pardo, Julián

    2016-01-01

    Mutational status of TP53 together with expression of wild-type (wt) IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL) patients. Adoptive cell therapy using allogeneic HLA-mismatched Natural killer (NK) cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs) the most effective stimulus to activate NK cells. Here, we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell-activating receptors (NKG2D and NCRs) and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV ) are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells, and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.

  11. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk.

    Science.gov (United States)

    Gabrielli, Sara; Ortolani, Claudio; Del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Buccella, Flavia; Artico, Marco; Papa, Stefano; Zamai, Loris

    2016-01-01

    Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  12. NYPA/TH!NK Clean Commute Program Final Report - Inception through December 2004

    Energy Technology Data Exchange (ETDEWEB)

    James Francfort; Don Karner

    2005-11-01

    The Clean Commute Program uses TH!NK city electric vehicles from Ford Motor Company’s electric vehicle group, TH!NK Mobility, to demonstrate the feasibility of using electric transportation in urban applications. Suburban New York City railroad commuters use the TH!NK city vehicles to commute from their private residences to railroad stations, where they catch commuter trains into New York City. Electric vehicle charging infrastructure for the TH!NK city vehicles is located at the commuters’ private residences as well as seven train stations. Ford leased at total of 97 TH!NK city electric vehicles to commuters from Westchester, Putnam, Rockland, Queens, Nassau, and Suffolk counties for $199 per month. First Clean Commute Program vehicle deliveries occurred late in 2001, with data collection commencing in February 2002. Through May, 2004, 24 of the lessees have returned their vehicles to Ford and no longer participate in the Clean Commute Program. Reasons given for leaving the Program include relocation out of the Program area, change in employment status, change in commuting status, and, in a few cases, dissatisfaction with the vehicle. Additionally, 13 vehicles were returned to Ford when the lease was completed. In August 2002, Ford announced that it was ceasing production of the TH!NK city and would not extend any TH!NK city leases. Mileage accumulation dropped in the last quarter of the program as vehicle leases were returned to Ford. The impact of the program overall was significant as participants in the Clean Commute Program drove their vehicles over 406,074 miles, avoiding the use of over 18,887 gallons of gasoline. During the active portion of the program, the TH!NK city vehicles were driven an average of between 180 and 230 miles per month. Over 95% of all trips taken with the TH!NK city vehicles replaced trips previously taken in gasoline vehicles. This report covers the period from Program inception through December 2004.

  13. Activated allogeneic NK cells preferentially kill poor prognosis B-cell chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Diego Sanchez-Martinez

    2016-10-01

    Full Text Available Mutational status of TP53 together with expression of wild type (wt IGHV represents the most widely accepted biomarkers, establishing a very poor prognosis in B-cell chronic lymphocytic leukemia (B-CLL patients. Adoptive cell therapy using allogeneic HLA mismatched Natural Killer (NK cells has emerged as an effective and safe alternative in the treatment of acute myeloid and lymphoid leukemias that do not respond to traditional therapies. We have described that allogeneic activated NK cells eliminate hematological cancer cell lines with multidrug resistance acquired by mutations in the apoptotic machinery. This effect depends on the activation protocol, being B-lymphoblastoid cell lines (LCLs the most effective stimulus to activate NK cells. Here we have further analyzed the molecular determinants involved in allogeneic NK cell recognition and elimination of B-CLL cells, including the expression of ligands of the main NK cell activating receptors (NKG2D and NCRs and HLA mismatch. We present preliminary data suggesting that B-CLL susceptibility significantly correlates with HLA mismatch between NK cell donor and B-CLL patient. Moreover, we show that the sensitivity of B-CLL cells to NK cells depends on the prognosis based on TP53 and IGHV mutational status. Cells from patients with worse prognosis (mutated TP53 and wt IGHV are the most susceptible to activated NK cells. Hence, B-CLL prognosis may predict the efficacy of allogenic activated NK cells and, thus, NK cell transfer represents a good alternative to treat poor prognosis B-CLL patients who present a very short life expectancy due to lack of effective treatments.□

  14. Clinical Cancer Therapy by NK Cells via Antibody-Dependent Cell-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Kory L. Alderson

    2011-01-01

    Full Text Available Natural killer (NK cells are powerful effector cells that can be directed to eliminate tumor cells through tumor-targeted monoclonal antibodies (mAbs. Some tumor-targeted mAbs have been successfully applied in the clinic and are included in the standard of care for certain malignancies. Strategies to augment the antitumor response by NK cells have led to an increased understanding of how to improve their effector responses. Next-generation reagents, such as molecularly modified mAbs and mAb-cytokine fusion proteins (immunocytokines, ICs designed to augment NK-mediated killing, are showing promise in preclinical and some clinical settings. Continued research into the antitumor effects induced by NK cells and tumor-targeted mAbs suggests that additional intrinsic and extrinsic factors may influence the antitumor response. Therefore more research is needed that focuses on evaluating which NK cell and tumor criteria are best predictive of a clinical response and which combination immunotherapy regimens to pursue for distinct clinical settings.

  15. The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk

    Directory of Open Access Journals (Sweden)

    Sara Gabrielli

    2016-01-01

    Full Text Available Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.

  16. Amelioration of NK cell function driven by Vα24+ invariant NKT cell activation in multiple myeloma.

    Science.gov (United States)

    Iyoda, Tomonori; Yamasaki, Satoru; Hidaka, Michihiro; Kawano, Fumio; Abe, Yu; Suzuki, Kenshi; Kadowaki, Norimitsu; Shimizu, Kanako; Fujii, Shin-Ichiro

    2018-02-01

    NK cells represent a first line of immune defense, but are progressively dysregulated in multiple myeloma (MM) patients. To restore and facilitate their antitumor effect, NK cells are required in sufficient quantities and must be stimulated. We initially assessed the proportions of NKT and NK cells in 34 MM patients. The frequencies of both in PBMC populations correlated with those in BMMNCs irrespective of low BMMNC numbers. We then assessed the adjunctive effect of stimulating NKT cells with CD1d and α-GalCer complexes on the NK cells. The expression of NKG2D on CD56 dim CD16 + NK cells and DNAM-1 on CD56 bright CD16 - NK cells increased after NKT cell activation. Apparently, NK cell-mediated anti-tumor effects were dependent on NKG2D and DNAM-1 ligands on myeloma cells. Thus, NK cell function in patients could be ameliorated, beyond the effect of immunosuppression, by NKT cell activation. This NKT-driven NK cell therapy could represent a potential new treatment modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. NK cell imaging by in vitro and in vivo labelling approaches

    International Nuclear Information System (INIS)

    Galli, F.; Histed, S. N.; Aras, O.

    2014-01-01

    Natural killer (NK) cells are a particular lymphocyte subset with a documented cytotoxic activity against cancer cells. Evidence of NK antitumoral effect led researchers to focus on the development of immunotherapies aimed at augmenting NK recruitment and infiltration into tumor and their anti-cancer functions. Studies in animal models proved that the right combination of drugs, cytokines, chemokines and other factors might be used to enhance or suppress tumor targeting by NK cells. Therefore, it would be necessary to have a tool to non-invasively monitor the efficacy of such novel therapies. Available imaging techniques comprise magnetic resonance, optical and nuclear medicine imaging with a pool of compounds that ranges from radiolabelled nanoparticles and radiopharmaceuticals to fluorescent probes. Each tracer and technique has its own pros and cons, but till now, no one emerged as superior among the others.

  18. Mechanisms by Which Interleukin-12 Corrects Defective NK Cell Anticryptococcal Activity in HIV-Infected Patients

    Directory of Open Access Journals (Sweden)

    Stephen K. Kyei

    2016-08-01

    Full Text Available Cryptococcus neoformans is a pathogenic yeast and a leading cause of life-threatening meningitis in AIDS patients. Natural killer (NK cells are important immune effector cells that directly recognize and kill C. neoformans via a perforin-dependent cytotoxic mechanism. We previously showed that NK cells from HIV-infected patients have aberrant anticryptococcal killing and that interleukin-12 (IL-12 restores the activity at least partially through restoration of NKp30. However, the mechanisms causing this defect or how IL-12 restores the function was unknown. By examining the sequential steps in NK cell killing of Cryptococcus, we found that NK cells from HIV-infected patients had defective binding of NK cells to C. neoformans. Moreover, those NK cells that bound to C. neoformans failed to polarize perforin-containing granules to the microbial synapse compared to healthy controls, suggesting that binding was insufficient to restore a defect in perforin polarization. We also identified lower expression of intracellular perforin and defective perforin release from NK cells of HIV-infected patients in response to C. neoformans. Importantly, treatment of NK cells from HIV-infected patients with IL-12 reversed the multiple defects in binding, granule polarization, perforin content, and perforin release and restored anticryptococcal activity. Thus, there are multiple defects in the cytolytic machinery of NK cells from HIV-infected patients, which cumulatively result in defective NK cell anticryptococcal activity, and each of these defects can be reversed with IL-12.

  19. Slp-76 is a critical determinant of NK cell-mediated recognition of missing-self targets

    Science.gov (United States)

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-01-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying “missing-self” recognition, including the involvement of activating receptors, remain poorly understood. Using ENU mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell-mediated recognition and elimination of “missing-self” targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation [Thr428Ile] in the SH2 domain of Slp-76—a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele—while no major defects were observed in conventional T cell development/function, a marked defect in NK cell-mediated elimination of β2-Microglobulin (β2M)-deficient target cells was observed. Further studies revealed Slp-76 to control NK cell receptor expression and maturation, however, activation of Slp-76ace/ace NK cells through ITAM-containing NK cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M−/− target cell synapse, revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76ace/ace NK cells. Overall these studies establish Slp-76 as a critical determinant of NK cell development and NK cell-mediated elimination of missing-self target cells. PMID:25929249

  20. Slp-76 is a critical determinant of NK-cell mediated recognition of missing-self targets.

    Science.gov (United States)

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-07-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying "missing-self" recognition, including the involvement of activating receptors, remain poorly understood. Using ethyl-N-nitrosourea mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell mediated recognition and elimination of "missing-self" targets. The causative mutation was linked to chromosome 11 and identified as a missense mutation (Thr428Ile) in the SH2 domain of Slp-76-a critical adapter molecule downstream of ITAM-containing surface receptors. The Slp-76 Ace mutation behaved as a hypomorphic allele-while no major defects were observed in conventional T-cell development/function, a marked defect in NK cell mediated elimination of β2-microglobulin (β2M) deficient target cells was observed. Further studies revealed Slp-76 to control NK-cell receptor expression and maturation; however, activation of Slp-76(ace/ace) NK cells through ITAM-containing NK-cell receptors or allogeneic/tumor target cells appeared largely unaffected. Imagestream analysis of the NK-β2M(-/-) target cell synapse revealed a specific defect in actin recruitment to the conjugate synapse in Slp-76(ace/ace) NK cells. Overall these studies establish Slp-76 as a critical determinant of NK-cell development and NK cell mediated elimination of missing-self target cells in mice. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The peripheral NK cell repertoire after kidney transplantation is modulated by different immunosuppressive drugs

    Directory of Open Access Journals (Sweden)

    Christine eNeudoerfl

    2013-02-01

    Full Text Available In the context of kidney transplantation, little is known about the involvement of NK cells in the immune reaction leading to either rejection or immunological tolerance under immunosuppression. Therefore, the peripheral NK cell repertoire of patients after kidney transplantation was investigated in order to identify NK cell subsets that may be associated with the individual immune status at the time of their protocol biopsies for histopathological evaluation of the graft. Alterations in the peripheral NK cell repertoire could be correlated to the type of immunosuppression, i.e. calcineurin-inhibitors like CyclosporinA vs. Tacrolimus with or without addition of mTOR inhibitors. Here, we could demonstrate that the NK cell repertoire in peripheral blood of kidney transplant patients differs significantly from healthy individuals. The presence of donor-specific antibodies was associated with reduced numbers of CD56dim NK cells. Moreover, in patients, down-modulation of CD16 and CD6 on CD56dim NK cells was observed with significant differences between CyclosporinA- and Tac-treated patients. Tac-treatment was associated with decreased CD69, HLA-DR and increased CD94/NKG2A expression in CD56dim NK cells indicating that the quality of the immunosuppressive treatment impinges on the peripheral NK cell repertoire. In vitro studies with PBMC of healthy donors showed that this modulation of CD16, CD6, CD69, and HLA-DR could also be induced experimentally. The presence of calcineurin or mTOR inhibitors had also functional consequences regarding degranulation and IFN--production against K562 target cells, respectively. In summary, we postulate that the NK cell composition in peripheral blood of kidney transplanted patients represents an important hallmark of the efficacy of immunosuppression and may be even informative for the immune status after transplantation in terms of rejection vs. drug-induced allograft tolerance. Thus,NK cells can serve as sensors

  2. Identification of genuine primary pulmonary NK cell lymphoma via clinicopathologic observation and clonality assay.

    Science.gov (United States)

    Gong, Li; Wei, Long-Xiao; Huang, Gao-Sheng; Zhang, Wen-Dong; Wang, Lu; Zhu, Shao-Jun; Han, Xiu-Juan; Yao, Li; Lan, Miao; Li, Yan-Hong; Zhang, Wei

    2013-08-19

    Extranodal natural killer (NK)/T-cell lymphoma, nasal type, is an uncommon lymphoma associated with the Epstein-Barr virus (EBV). It most commonly involves the nasal cavity and upper respiratory tract. Primary pulmonary NK/T cell lymphoma is extremely rare. If a patient with a NK or T-cell tumor has an unusual reaction to treatment or an unusual prognosis, it is wise to differentiate NK from T-cell tumors. The clinicopathologic characteristics, immunophenotype, EBV in situ hybridization, and T cell receptor (TCR) gene rearrangement of primary pulmonary NK cell lymphoma from a 73-year-old Chinese woman were investigated and the clonal status was determined using female X-chromosomal inactivation mosaicism and polymorphisms at the phosphoglycerate kinase (PGK) gene. The lesion showed the typical histopathologic characteristics and immunohistochemical features of NK/T cell lymphoma. However, the sample was negative for TCR gene rearrangement. A clonality assay demonstrated that the lesion was monoclonal. It is concluded that this is the first recorded case of genuine primary pulmonary NK cell lymphoma. The purpose of the present work is to recommend that pathologists carefully investigate the whole lesion to reduce the likelihood that primary pulmonary NK cell lymphoma will be misdiagnosed as an infectious lesion. In addition, TCR gene rearrangement and clonal analysis, which is based on female X-chromosomal inactivation mosaicism and polymorphisms at PGK and androgen receptor (AR) loci, were found to play important roles in differentiating NK cell lymphoma from T cell lymphoma. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/5205300349457729.

  3. Modeling Human Natural Killer Cell Development in the Era of Innate Lymphoid Cells.

    Science.gov (United States)

    Scoville, Steven D; Freud, Aharon G; Caligiuri, Michael A

    2017-01-01

    Decades after the discovery of natural killer (NK) cells, their developmental pathways in mice and humans have not yet been completely deciphered. Accumulating evidence indicates that NK cells can develop in multiple tissues throughout the body. Moreover, detailed and comprehensive models of NK cell development were proposed soon after the turn of the century. However, with the recent identification and characterization of other subtypes of innate lymphoid cells (ILCs), which show some overlapping functional and phenotypic features with NK cell developmental intermediates, the distinct stages through which human NK cells develop from early hematopoietic progenitor cells remain unclear. Thus, there is a need to reassess and refine older models of NK cell development in the context of new data and in the era of ILCs. Our group has focused on elucidating the developmental pathway of human NK cells in secondary lymphoid tissues (SLTs), including tonsils and lymph nodes. Here, we provide an update of recent progress that has been made with regard to human NK cell development in SLTs, and we discuss these new findings in the context of contemporary models of ILC development.

  4. Two photon microscopy intravital study of DC-mediated anti-tumor response of NK cells

    Science.gov (United States)

    Caccia, Michele; Gorletta, Tatiana; Sironi, Laura; Zanoni, Ivan; Salvetti, Cristina; Collini, Maddalena; Granucci, Francesca; Chirico, Giuseppe

    2010-02-01

    Recent studies have demonstrated that dendritic cells (DCs) play a crucial role in the activation of Natural Killer cells (NKs) that are responsible for anti-tumor innate immune responses. The focus of this report is on the role of pathogen associated molecular pattern (PAMP) activated-DCs in inducing NK cell-mediated anti-tumor responses. Mice transplanted sub-cute (s.c.) with AK7 cells, a mesothelioma cell line sensitive to NK cell responses, are injected with fluorescent NK cells and DC activation is then induced by s.c. injection of Lipopolysaccharide (LPS). Using 4 dimensional tracking we follow the kinetic behavior of NK cells at the Draining Lymph-Node (DLN). As control, noninflammatory conditions are also evaluated. Our data suggest that NK cells are recruited to the DLN where they can interact with activated-DCs with a peculiar kinetic behavior: short lived interactions interleaved by rarer longer ones. We also found that the changes in the NK dynamic behavior in inflammatory conditions clearly affect relevant motility parameters such as the instantaneous and average velocity and the effective diffusion coefficient. This observation suggests that NK cells and activated-DCs might efficiently interact in the DLN, where cells could be activated. Therefore the interaction between activated-DCs and NK cells in DLN is not only a reality but it may be also crucial for the start of the immune response of the NKs.

  5. Natural killer cell biology illuminated by primary immunodeficiency syndromes in humans.

    Science.gov (United States)

    Voss, Matthias; Bryceson, Yenan T

    2017-04-01

    Natural killer (NK) cells are innate immune cytotoxic effector cells well known for their role in antiviral immunity and tumor immunosurveillance. In parts, this knowledge stems from rare inherited immunodeficiency disorders in humans that abrogate NK cell function leading to immune impairments, most notably associated with a high susceptibility to viral infections. Phenotypically, these disorders range from deficiencies selectively affecting NK cells to complex general immune defects that affect NK cells but also other immune cell subsets. Moreover, deficiencies may be associated with reduced NK cell numbers or rather impair specific NK cell effector functions. In recent years, genetic defects underlying the various NK cell deficiencies have been uncovered and have triggered investigative efforts to decipher the molecular mechanisms underlying these disorders. Here we review the associations between inherited human diseases and NK cell development as well as function, with a particular focus on defects in NK cell exocytosis and cytotoxicity. Furthermore we outline how reports of diverse genetic defects have shaped our understanding of NK cell biology. Copyright © 2015. Published by Elsevier Inc.

  6. Chemotherapy changes cytotoxic activity of NK-cells in cancer patients

    Science.gov (United States)

    Stakheyeva, M.; Yunusova, N.; Patysheva, M.; Mitrofanova, I. V.; Faltin, V.; Tuzikov, S.; Slonimskaya, E.

    2017-09-01

    In recent years, it has been shown that under certain conditions cytostatic agents (chemotherapy and radiotherapy) can restore the functioning of the immune system impaired by malignancy burden. The modifications of biological properties by cytostatics acting make cancer cells visible for the immune system recognition and elimination. Eighteen patients diagnosed with primary local breast (8) and gastric (10) cancer between 2014 and 2016 were enrolled in the investigation. The phenotypic features of NK were assessed by flow cytometry using mAb (BD Pharmingen) against CD45 (common leukocyte antigen) and CD56 (NK-marker) for surface staining, CD107a (LAMP-1), Perforin (PF) and Gransime B (GB) for intracellular staining. We examined NK populations in the peripheral blood of cancer patients before treatment and in 5 days after second course of NACT. We found that NK populations produced PF in cancer patents, which were absent before treatment, increased after NACT. Their emergence can be associated with the immunoactivating effects of chemotherapy, realized by the modification of tumor cells or elimination of immunosuppressive cells.

  7. Natural killer cells for immunotherapy – Advantages of cell lines over blood NK cells

    Directory of Open Access Journals (Sweden)

    Hans eKlingemann

    2016-03-01

    Full Text Available Natural killer cells are potent cytotoxic effector cells for cancer therapy and potentially for severe viral infections. However, there are technical challenges to obtain sufficient numbers of functionally active NK cells form a patient’s blood since they represent only 10% of the lymphocytes. Especially, cancer patients are known to have dysfunctional NK cells. The alternative is to obtain cells from a healthy donor, which requires depletion of the allogeneic T-cells. Establishing cell lines from donor blood NK cells have not been successful, in contrast to blood NK cells obtained from patients with a clonal NK cell lymphoma. Those cells can be expanded in culture in the presence of IL-2. However, except for the NK-92 cell line none of the other six known cell lines has consistent and reproducibly high anti-tumor cytotoxicity, nor can they be easily genetically manipulated to recognize specific tumor antigens or to augment monoclonal antibody activity through ADCC. NK-92 is also the only cell line product that has been widely given to patients with advanced cancer with demonstrated efficiency and minimal side effects.

  8. Immunolocalization of transforming growth factor alpha in normal human tissues

    DEFF Research Database (Denmark)

    Christensen, M E; Poulsen, Steen Seier

    1996-01-01

    anchorage-independent growth of normal cells and was, therefore, considered as an "oncogenic" growth factor. Later, its immunohistochemical presence in normal human cells as well as its biological effects in normal human tissues have been demonstrated. The aim of the present investigation was to elucidate...... the distribution of the growth factor in a broad spectrum of normal human tissues. Indirect immunoenzymatic staining methods were used. The polypeptide was detected with a polyclonal as well as a monoclonal antibody. The polyclonal and monoclonal antibodies demonstrated almost identical immunoreactivity. TGF......-alpha was found to be widely distributed in cells of normal human tissues derived from all three germ layers, most often in differentiated cells. In epithelial cells, three different kinds of staining patterns were observed, either diffuse cytoplasmic, cytoplasmic in the basal parts of the cells, or distinctly...

  9. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK cells

    Directory of Open Access Journals (Sweden)

    Maria A Johansson

    2016-07-01

    Full Text Available Lactobacilli are probiotic commensal bacteria and potent modulators of immunity. When present in the gut or supplemented as probiotics, they beneficially modulate ex vivo immune responsiveness. Further, factors derived from several lactobacilli strains act immune regulato-ry in vitro. In contrast, Staphylococcus aureus (S. aureus is known to induce excessive T cell activation. In this study we aimed to investigate S. aureus-induced activation of human muco-sal associated invariant T cells (MAIT cells, γδ T cells, NK cells, as well as of conventional CD4+ and CD8+ T cells in vitro. Further, we investigated if lactobacilli-derived factors could modulate their activation.PBMC were cultured with S. aureus 161:2 cell free supernatant (CFS, staphylococcal en-terotoxin A or CD3/CD28-beads alone or in combination with Lactobacillus rhamnosus (L. rhamnosus GG-CFS or Lactobacillus reuteri (L. reuteri DSM 17938-CFS, and activation of T and NK cells was evaluated. S. aureus-CFS induced IFN-γ and CD107a expression as well as proliferation. Co-stimulation with lactobacilli-CFS dampened lymphocyte activation in all cell types analysed. Pre-incubation with lactobacilli-CFS was enough to reduce subsequent activation and the ab-sence of APC or APC-derived IL-10 did not prevent lactobacilli-mediated dampening. Final-ly, lactate selectively dampened activation of unconventional T cells and NK cells. In summary, we show that molecules present in the lactobacilli-CFS are able to directly dampen in vitro activation of conventional and unconventional T cells and of NK cells. This study provides novel insights on the immune modulatory nature of probiotic lactobacilli and suggests a role for lactobacilli in modulation of induced T and NK cell activation.

  10. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells.

    Science.gov (United States)

    Gornalusse, Germán G; Hirata, Roli K; Funk, Sarah E; Riolobos, Laura; Lopes, Vanda S; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G; Hanafi, Laïla-Aïcha; Clegg, Dennis O; Turtle, Cameron; Russell, David W

    2017-08-01

    Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this 'missing-self' response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8 + T cells, do not bind anti-HLA antibodies and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression.

  11. HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells

    Science.gov (United States)

    Gornalusse, Germán G.; Hirata, Roli K.; Funk, Sarah; Riolobos, Laura; Lopes, Vanda S.; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G.; Hanafi, Laïla-Aïcha; Clegg, Dennis O.; Turtle, Cameron; Russell, David W.

    2017-01-01

    Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this ‘missing self’ response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8+ T cells, do not bind anti-HLA antibodies, and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression. PMID:28504668

  12. Uterine Natural Killer Cells: Functional Distinctions and Influence on Pregnancy in Humans and Mice

    Directory of Open Access Journals (Sweden)

    Francesco Colucci

    2017-04-01

    Full Text Available Our understanding of development and function of natural killer (NK cells has progressed significantly in recent years. However, exactly how uterine NK (uNK cells develop and function is still unclear. To help investigators that are beginning to study tissue NK cells, we summarize in this review our current knowledge of the development and function of uNK cells, and what is yet to be elucidated. We compare and contrast the biology of human and mouse uNK cells in the broader context of the biology of innate lymphoid cells and with reference to peripheral NK cells. We also review how uNK cells may regulate trophoblast invasion and uterine spiral arterial remodeling in human and murine pregnancy.

  13. Interferon-alpha subtype 11 activates NK cells and enables control of retroviral infection.

    Directory of Open Access Journals (Sweden)

    Kathrin Gibbert

    Full Text Available The innate immune response mediated by cells such as natural killer (NK cells is critical for the rapid containment of virus replication and spread during acute infection. Here, we show that subtype 11 of the type I interferon (IFN family greatly potentiates the antiviral activity of NK cells during retroviral infection. Treatment of mice with IFN-α11 during Friend retrovirus infection (FV significantly reduced viral loads and resulted in long-term protection from virus-induced leukemia. The effect of IFN-α11 on NK cells was direct and signaled through the type I IFN receptor. Furthermore, IFN-α11-mediated activation of NK cells enabled cytolytic killing of FV-infected target cells via the exocytosis pathway. Depletion and adoptive transfer experiments illustrated that NK cells played a major role in successful IFN-α11 therapy. Additional experiments with Mouse Cytomegalovirus infections demonstrated that the therapeutic effect of IFN-α11 is not restricted to retroviruses. The type I IFN subtypes 2 and 5, which bind the same receptor as IFN-α11, did not elicit similar antiviral effects. These results demonstrate a unique and subtype-specific activation of NK cells by IFN-α11.

  14. DNA amplification is rare in normal human cells

    International Nuclear Information System (INIS)

    Wright, J.A.; Watt, F.M.; Hudson, D.L.; Stark, G.R.; Smith, H.S.; Hancock, M.C.

    1990-01-01

    Three types of normal human cells were selected in tissue culture with three drugs without observing a single amplification event from a total of 5 x 10 8 cells. No drug-resistant colonies were observed when normal foreskin keratinocytes were selected with N-(phosphonacetyl)-L-aspartate or with hydroxyurea or when normal mammary epithelial cells were selected with methotrexate. Some slightly resistant colonies with limited potential for growth were obtained when normal diploid fibroblast cells derived from fetal lung were selected with methotrexate or hydroxyurea but careful copy-number analysis of the dihydrofolate reductase and ribonucleotide reductase genes revealed no evidence of amplification. The rarity of DNA amplification in normal human cells contrasts strongly with the situation in tumors and in established cell lines, where amplification of onogenes and of genes mediating drug resistance is frequent. The results suggest that tumors and cell lines have acquired the abnormal ability to amplify DNA with high frequency

  15. Incidence and significance of FLT3-ITD and NPM1 mutations in patients with normal karyotype acute myeloid leukaemia.

    LENUS (Irish Health Repository)

    Haslam, K

    2012-02-01

    BACKGROUND: Acute myeloid leukaemia (AML) is a heterogeneous clonal disorder of haematopoietic progenitor cells. Approximately half of all adult AML patients have a normal karyotype (NK-AML) and an intermediate risk prognosis. AIMS: To determine the incidence and prognostic significance of NPM1 and FLT3-ITD mutations in a population of patients with NK-AML. METHODS: FLT3-ITD and NPM1 mutation status was retrospectively sought in presentation samples from 44 NK-AML patients. RESULTS: FLT3-ITD and NPM1 mutations were detected in 45.5 and 54.5% of patients, respectively, allowing stratification according to genotype. CONCLUSIONS: FLT3-ITD and NPM1 mutation status can be defined in NK-AML. Prospective screening for these mutations is advocated in all NK-AML patients, as the genotype is of clinical importance when considering treatment options including stem cell transplantation.

  16. Human natural killer cell development in secondary lymphoid tissues

    Science.gov (United States)

    Freud, Aharon G.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    For nearly a decade it has been appreciated that critical steps in human natural killer (NK) cell development likely occur outside of the bone marrow and potentially necessitate distinct microenvironments within extramedullary tissues. The latter include the liver and gravid uterus as well as secondary lymphoid tissues such as tonsils and lymph nodes. For as yet unknown reasons these tissues are naturally enriched with NK cell developmental intermediates (NKDI) that span a maturation continuum starting from an oligopotent CD34+CD45RA+ hematopoietic precursor cell to a cytolytic mature NK cell. Indeed despite the detection of NKDI within the aforementioned tissues, relatively little is known about how, why, and when these tissues may be most suited to support NK cell maturation and how this process fits in with other components of the human immune system. With the discovery of other innate lymphoid subsets whose immunophenotypes overlap with those of NKDI, there is also need to revisit and potentially re-characterize the basic immunophenotypes of the stages of the human NK cell developmental pathway in vivo. In this review, we provide an overview of human NK cell development in secondary lymphoid tissues and discuss the many questions that remain to be answered in this exciting field. PMID:24661538

  17. NKp46 defines ovine cells that have characteristics corresponding to NK cells

    Directory of Open Access Journals (Sweden)

    Connelley Timothy

    2011-02-01

    Full Text Available Abstract Natural killer (NK cells are well recognized as playing a key role in innate immune defence through cytokine production and cytotoxic activity; additionally recent studies have identified several novel NK cell functions. The ability to study NK cells in the sheep has been restricted due to a lack of specific reagents. We report the generation of a monoclonal antibody specific for ovine NKp46, a receptor which in a number of mammals is expressed exclusively in NK cells. Ovine NKp46+ cells represent a population that is distinct from CD4+ and γδ+ T-cells, B-cells and cells of the monocytic lineage. The NKp46+ cells are heterogenous with respect to expression of CD2 and CD8 and most, but not all, express CD16 - characteristics consistent with NK cell populations in other species. We demonstrate that in addition to populations in peripheral blood and secondary lymphoid organs, ovine NKp46+ populations are also situated at the mucosal surfaces of the lung, gastro-intestinal tract and non-gravid uterus. Furthermore, we show that purified ovine NKp46+ populations cultured in IL-2 and IL-15 have cytotoxic activity that could be enhanced by ligation of NKp46 in re-directed lysis assays. Therefore we conclude that ovine NKp46+ cells represent a population that by phenotype, tissue distribution and function correspond to NK cells and that NKp46 is an activating receptor in sheep as in other species.

  18. [Phenotypic and functional features of NK and NKT cells in chronic hepatitis B].

    Science.gov (United States)

    Wu, Shaofei; Li, Man; Sun, Xuehua; Zhou, Zhenhua; Zhu, Xiaojun; Zhang, Xin; Gao, Yueqiu

    2015-06-01

    To detect the ratio of natural killer (NK)/natural killer T (NKT) cells in peripheral blood, the levels of NKG2D/NKG2A, interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) in patients with chronic hepatitis B (CHB). Peripheral blood mononuclear cells (PBMCs) were harvested from CHB patients. The ratio of NK/NKT cells in PBMCs and the levels of NKG2D and NKG2A were detected by flow cytometry. The expressions of intracellular IFN-γ and TNF-α were analyzed by flow cytometry after the treatment with phorbol 12-myristate 13-acetate (PMA), brefeldin A (BFA) or ionomycin in vitro. The comparison between two groups was performed by independent sample t-test. The relationship of each index to hepatitis B virus load and serum alanine aminotransferase was analyzed by Pearson correlation analysis. Compared with healthy controls, CHB patients presented with significantly decreased peripheral blood NK/NKT cell ratio and significantly elevated proportions of NKG2A+ NK and NKG2A+NKT cells, and after the treatment with PMA/BFA/ionomycin, IFN-γ+ NK and IFN-γ+ NKT cells were significantly reduced in CHB patients. NK and NKT cells showed a reduced ratio, disordered receptor expressions and decreased cytokine secretion capacity in CHB patients.

  19. Regulatory NK cells mediated between immunosuppressive monocytes and dysfunctional T cells in chronic HBV infection.

    Science.gov (United States)

    Li, Haijun; Zhai, Naicui; Wang, Zhongfeng; Song, Hongxiao; Yang, Yang; Cui, An; Li, Tianyang; Wang, Guangyi; Niu, Junqi; Crispe, Ian Nicholas; Su, Lishan; Tu, Zhengkun

    2017-09-12

    HBV infection represents a major health problem worldwide, but the immunological mechanisms by which HBV causes chronic persistent infection remain only partly understood. Recently, cell subsets with suppressive features have been recognised among monocytes and natural killer (NK) cells. Here we examine the effects of HBV on monocytes and NK cells. Monocytes and NK cells derived from chronic HBV-infected patients and healthy controls were purified and characterised for phenotype, gene expression and cytokines secretion by flow cytometry, quantitative real-time (qRT)-PCR, ELISA and western blotting. Culture and coculture of monocytes and NK cells were used to determine NK cell activation, using intracellular cytokines staining. In chronic HBV infection, monocytes express higher levels of PD-L1, HLA-E, interleukin (IL)-10 and TGF-β, and NK cells express higher levels of PD-1, CD94 and IL-10, compared with healthy individuals. HBV employs hepatitis B surface antigen (HBsAg) to induce suppressive monocytes with HLA-E, PD-L1, IL-10 and TGF-β expression via the MyD88/NFκB signalling pathway. HBV-treated monocytes induce NK cells to produce IL-10, via PD-L1 and HLA-E signals. Such NK cells inhibit autologous T cell activation. Our findings reveal an immunosuppressive cascade, in which HBV generates suppressive monocytes, which initiate regulatory NK cells differentiation resulting in T cell inhibition. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Destructive impact of t-lymphocytes, NK and mast cells on basal cell layers: implications for tumor invasion

    International Nuclear Information System (INIS)

    Yuan, Hongyan; Hsiao, Yi-Hsuan; Zhang, Yiyu; Wang, Jinlian; Yin, Chao; Shen, Rong; Su, Yiping

    2013-01-01

    Our previous studies have suggested that the primary impact of immune cell infiltration into the normal or pre-invasive tissue component is associated with the physical destruction of epithelial capsules, which may promote tumor progression and invasion. Our current study attempted to further verify our previous observations and determine the primary type(s) of infiltrating immune cells and the possible mechanism associated with physical destructions of the epithelial capsules. In total, the study was conducted with 250 primary breast and prostate tumors, the primary immune cell of cytotoxic T-lymphocytes (CTL), Natural killer cells (NK) and Mast cells were analyzed by immunohistochemistry, fluorescent labeling and apoptosis assay. qRT-PCR was used for gene expression analysis. Our current study assessed the physical disruption of these immune cells and potential impact on the epithelial capsule of human breast and prostate tumors. Our study yield several clinically-relevant findings that have not been studied before. (1) A vast majority of these infiltrating immune cells are distributed in the normal-appearing or pre-invasive tissue components rather than in invasive cancer tissues. (2) These cells often form rings or semilunar structures that either surround focally-disrupted basal cell layers or physically attach to the basal cells. (3) Basal cells physically associated with these immune cells generally displayed distinct signs of degeneration, including substantially elevated apoptosis, necrosis, and reduced tumor suppressor p63 expression. In contrast, luminal cells overlying focally disrupted basal cell layers had a substantially increased proliferation rate and elevated expression of stem cell markers compared to their adjacent morphologically similar counterparts that overlie a non-disrupted capsule. Our findings suggest that at the early stage of tumor invasion, CTL, NK and Mast cells are the main types of tumor infiltrating immune cells involved in focal

  1. Genotype, Phenotype and Outcomes of Nine Patients with T-B+NK+ SCID

    OpenAIRE

    Yu, Grace P; Nadeau, Kari C; Berk, David R; de Saint Basile, Geneviève; Lambert, Nathalie; Knapnougel, Perrine; Roberts, Joseph; Kavanau, Kristina; Dunn, Elizabeth; Stiehm, E. Richard; Lewis, David B; Umetsu, Dale T; Puck, Jennifer M; Cowan, Morton J

    2011-01-01

    There are few reports of clinical presentation, genotype, and hematopoietic cell transplant (HCT) outcomes for T-B+NK+ SCID patients. Between 1981 and 2007, 8 of 84 SCID patients who received and/or were followed after HCT at UCSF had the T-B+NK+ phenotype. One additional T-B+NK+ SCID patient was identified as the sibling of a patient treated at UCSF. Chart reviews were performed. Molecular analyses of IL7R, IL2RG, JAK3 and the genes encoding the CD3 T-cell receptor components δ (CD3D), ε (CD...

  2. Activin receptor subunits in normal and dysfunctional adult human testis

    DEFF Research Database (Denmark)

    Dias, V; Meachem, S; Rajpert-De Meyts, E

    2008-01-01

    The cellular sites of activin action and its regulation in the normal and dysfunctional adult human testis are unknown.......The cellular sites of activin action and its regulation in the normal and dysfunctional adult human testis are unknown....

  3. HIV-1 Control by NK Cells via Reduced Interaction between KIR2DL2 and HLA-C∗12:02/C∗14:03.

    Science.gov (United States)

    Lin, Zhansong; Kuroki, Kimiko; Kuse, Nozomi; Sun, Xiaoming; Akahoshi, Tomohiro; Qi, Ying; Chikata, Takayuki; Naruto, Takuya; Koyanagi, Madoka; Murakoshi, Hayato; Gatanaga, Hiroyuki; Oka, Shinichi; Carrington, Mary; Maenaka, Katsumi; Takiguchi, Masafumi

    2016-11-22

    Natural killer (NK) cells control viral infection in part through the interaction between killer cell immunoglobulin-like receptors (KIRs) and their human leukocyte antigen (HLA) ligands. We investigated 504 anti-retroviral (ART)-free Japanese patients chronically infected with HIV-1 and identified two KIR/HLA combinations, KIR2DL2/HLA-C ∗ 12:02 and KIR2DL2/HLA-C ∗ 14:03, that impact suppression of HIV-1 replication. KIR2DL2 + NK cells suppressed viral replication in HLA-C ∗ 14:03 + or HLA-C ∗ 12:02 + cells to a significantly greater extent than did KIR2DL2 - NK cells in vitro. Functional analysis showed that the binding between HIV-1-derived peptide and HLA-C ∗ 14:03 or HLA-C ∗ 12:02 influenced KIR2DL2 + NK cell activity through reduced expression of the peptide-HLA (pHLA) complex on the cell surface (i.e., reduced KIR2DL2 ligand expression), rather than through reduced binding affinity of KIR2DL2 to the respective pHLA complexes. Thus, KIR2DL2/HLA-C ∗ 12:02 and KIR2DL2/HLA-C ∗ 14:03 compound genotypes have protective effects on control of HIV-1 through a mechanism involving KIR2DL2-mediated NK cell recognition of virus-infected cells, providing additional understanding of NK cells in HIV-1 infection. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  4. B7H6-derived peptides trigger TNF-α-dependent immunostimulatory activity of lymphocytic NK92-MI cells.

    Science.gov (United States)

    Phillips, Mariana; Romeo, Francesca; Bitsaktsis, Constantine; Sabatino, David

    2016-09-01

    The rise of biologics that can stimulate immune responses towards the eradication of tumors has led to the evolution of cancer-based immunotherapy. Representatively, B7H6 has been recently identified as a protein ligand on tumor cells that binds specifically to the NKp30 receptor and triggers NK cell-derived cytokine production, which ultimately leads to tumor cell lysis and death. In an effort to develop effective immunotherapy approaches, the rational design of a novel class of immunostimulatory peptides (IPs) derived from the binding interface of B7H6:NKp30 is described in this study. The IPs comprised the B7H6 active site sequence for NKp30 binding and immunostimulatory activity. An aminohexanoic acid linker was also introduced at the N-terminus of the peptides for FITC-labeling by Fmoc-solid phase peptide synthesis. The peptides were characterized by LCMS to confirm identities and purities >95%. The secondary structures of the peptides were examined by CD spectroscopy in H2 O, PBS and a H2 O:TFE mixture which demonstrated versatile peptide structures which transitioned from random coil (H2 O) to α-helical (PBS) and turn-type (H2 O:TFE) conformations. Their biological properties were then evaluated by flow cytometry, enzyme-linked immunosorbent assays (ELISAs), and cell death assays. The occupancy of the synthetic peptides to a human NK cell line demonstrated comparable binding relative to the natural NKp30 ligand, B7H6, and the human anti-NKp30 monoclonal antibody (mAb), in a concentration dependent manner. A competitive binding assay between the human anti-NKp30 mAb or B7H6, and the synthetic peptides, demonstrated partial displacement of the ligands upon anti-NKp30 mAb treatment, suggesting NKp30 receptor specificities by the synthetic peptides. Moreover, the immunostimulatory activity of B7H6 was demonstrated by the secretion of the pro-inflammatory cytokines tumor necrosis factor-alfa (TNF-α) and interferon gamma (IFN-γ) by the human NK cell line. The

  5. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells.

    Directory of Open Access Journals (Sweden)

    Deborah Frenkel

    2016-07-01

    Full Text Available After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/- retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK cell-mediated cytotoxicity: i B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/- and FcγRIIIa deficient (CD16-/- C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii administration of NK1.1 specific IgG2a (mAb PK136 but not irrelevant IgG2a (myeloma M9144 prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei

  6. Suppression of tumor growth, invasion and angiogenesis of human gastric cancer by adenovirus-mediated expression of NK4

    NARCIS (Netherlands)

    Heideman, Daniëlle A. M.; van Beusechem, Victor W.; Bloemena, Elisabeth; Snijders, Peter J. F.; Craanen, Mikael E.; Offerhaus, G. Johan A.; Derksen, Patrick W. B.; de Bruin, Michiel; Witlox, M. Adhiambo; Molenaar, Bonnie; Meijer, Chris J. L. M.; Gerritsen, Winald R.

    2004-01-01

    Background To improve the prognosis of patients with gastric cancer it is important to develop novel treatment modalities targeting the malignant behavior of tumor cells. Concerning this, NK4, which acts as HGF-antagonist and angiogenesis inhibitor, might be a potential therapeutic agent for gastric

  7. Effect of low dose radiation (LDR) on biological activity of NK cell

    International Nuclear Information System (INIS)

    Yang Liyun; Lin Meixiong; Luo Min; Ran Min; Liang Xuefei

    2006-01-01

    Objective: To study the in vitro and in vivo effect of LDR on the proliferation and killing activity of mouse NK cells with exploitation of the related mechanism of signal transduction. The effect of infused NK cells on inhibiton of oncogenesis and tumor burden regression was also studied. Methods: Mononuclear cells extracted from mouse spleen were treated with immunomagnetic bead for the isolation of CD3 - /CD16 + , CD56 + cells. After verified with flowcytometry, these NK cells were cultured with mice splenic cells (irradiated with 20Gy 60 Co gamma ray) as feeder cells and rhIL-2 as induction factor for 3 rounds (5 days each round). Specimens of cultured NK cells were treated with different doses of radiation (25mGy, 75mGy, 200mGy, 500mGy), the proliferation index (PI) with tumoreidal activity on K562 cells (with 3 H-TdR) incorporation was examined at 4h, 24h, 48h, 72h after irradiation respectively. The role of P38MAPK signal pathway in the LDR effect was examined with adding either inhibitor (SB203580) or activator (P79350) of P38MAPK into the culture and measuring the PI, Killing activity (as expression of the related factors IFN-gamma, FasL, perforin) of NK cells thereafter. The in vivo test involved exposing mice to whole body 25mGy irradiation, harvesting splenic NK cells at 4h, 24h, 48h, 72h later respectively and performing the above-described in vitro procedures. Inhibition of oncogenesis was examined in vivo with infusion of cultured NK cells (LDR treated vs LDR non-treated) 10 days after infusion of K562 cells into mice and examination of hepatic/splenic CD 13+ , S-stage cells and peripheral blood tumor cells in the sacrificed animal another 10 days later. Also, K562 cells were innoculated subcutaneously into mice. After tumor nodule formation (2.0 x 2.0 mm), NK cells (LDR treated vs non-treated) were infused and regression of the tumor nodule with the weight of hepatic tumor mass was noticed in sacrificed animals on d 8 and the survival rate on d 40

  8. NK and NKT-Like Cells in Patients with Recurrent Furunculosis.

    Science.gov (United States)

    Nowicka, Danuta; Grywalska, Ewelina; Fitas, Elżbieta; Mielnik, Michał; Roliński, Jacek

    2017-12-13

    To analyze changes in the number and percentage of NK and NKT-like cells in relation to other immune cells as well as to examine associations between increased susceptibility to infections and NK and NKT-like status in patients with recurrent furunculosis (RF) and healthy controls. Thirty patients with RF and 20 healthy age- and sex-matched volunteers were recruited. Blood samples were examined. Lymphocyte count and cytometric analyses were conducted. For statistical analysis, the Student's t test, F test, and Brown-Forsythe test were used for comparison between groups of variables. Associations were assessed with Pearson coefficient. Patients with RF had lower lymphocyte count than controls. Additionally, they presented with the following changes in the blood picture: a significant increase in the number of NK cells with a CD3 + CD16 + CD56 + phenotype; a proportional increase in the number and percentage of NKT-like cells with a CD3 + CD16 + CD56 + phenotype; a significant decrease in the number and percentage of T CD3 + cells. The number of NK cells was strongly positively correlated with the number of CD3 cells (r = 0.6162). The number of NKT cells was strongly positively correlated with CD3 cells (r = 0.6885) and CD3CD8 cells (r = 0.5465). Periodic exacerbations in RF are associated with the development of furuncles, which are a result of many already discovered as well as just being examined mechanisms. One of them is a significant increase in the number and most likely activation of NK and NKT-like cells during the formation of the inflammatory process and furuncles.

  9. Universality Classes of Interaction Structures for NK Fitness Landscapes

    Science.gov (United States)

    Hwang, Sungmin; Schmiegelt, Benjamin; Ferretti, Luca; Krug, Joachim

    2018-02-01

    Kauffman's NK-model is a paradigmatic example of a class of stochastic models of genotypic fitness landscapes that aim to capture generic features of epistatic interactions in multilocus systems. Genotypes are represented as sequences of L binary loci. The fitness assigned to a genotype is a sum of contributions, each of which is a random function defined on a subset of k ≤ L loci. These subsets or neighborhoods determine the genetic interactions of the model. Whereas earlier work on the NK model suggested that most of its properties are robust with regard to the choice of neighborhoods, recent work has revealed an important and sometimes counter-intuitive influence of the interaction structure on the properties of NK fitness landscapes. Here we review these developments and present new results concerning the number of local fitness maxima and the statistics of selectively accessible (that is, fitness-monotonic) mutational pathways. In particular, we develop a unified framework for computing the exponential growth rate of the expected number of local fitness maxima as a function of L, and identify two different universality classes of interaction structures that display different asymptotics of this quantity for large k. Moreover, we show that the probability that the fitness landscape can be traversed along an accessible path decreases exponentially in L for a large class of interaction structures that we characterize as locally bounded. Finally, we discuss the impact of the NK interaction structures on the dynamics of evolution using adaptive walk models.

  10. A high-throughput assay of NK cell activity in whole blood and its clinical application

    International Nuclear Information System (INIS)

    Lee, Saet-byul; Cha, Junhoe; Kim, Im-kyung; Yoon, Joo Chun; Lee, Hyo Joon; Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan; Lee, Jae Myun; Lee, Kang Young; Kim, Jongsun

    2014-01-01

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as 51 Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer

  11. A high-throughput assay of NK cell activity in whole blood and its clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Saet-byul [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cha, Junhoe [ATGen Co. Ltd., Sungnam (Korea, Republic of); Kim, Im-kyung [Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Yoon, Joo Chun [Department of Microbiology, Ewha Womans University School of Medicine, Seoul (Korea, Republic of); Lee, Hyo Joon [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan [ATGen Co. Ltd., Sungnam (Korea, Republic of); Lee, Jae Myun [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Kang Young, E-mail: kylee117@yuhs.ac [Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Jongsun, E-mail: jkim63@yuhs.ac [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-03-14

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.

  12. Synthesis, radiosynthesis and biological evaluation of quinoline carboxamide analogues of Talnetant (SB 223412) to study by PET or SPECT imaging the NK-3 receptor

    International Nuclear Information System (INIS)

    Bennacef, Idriss

    2003-01-01

    With the aim of visualizing NK-3 receptors in vivo by medical imaging techniques (positron emission tomography and single photon emission computed tomography), the synthesis of novel 2-phenylquinoline-4-carboxamides, derived from SB 223412 or SB 222 200, two non peptide potent (hNK-3-CHO: K i = 1.0 nM; K i = 4.4 nM respectively) and selective (NK-3/NK-1 ≥10 5 ) human NK-3 receptor antagonists, has been studied. The compounds obtained are characterized by the presence, on the quinoline moiety, of an atom of carbon, fluorine or iodine that can be substituted by their β + emitter (carbon-11, t(1/2) = 20 min; fluorine-18, t(1/2) = 110 min) or γ emitter (iodine-123, t(1/2) = 13 h) radio-isotopes. Monohalogenated (fluorinated or iodinated) quinolines were prepared using an efficient synthesis based on the Pfitzinger reaction. Di-halogenated analogues, bearing both an iodine and a fluorine atom, were obtained via a regioselective ortho-metalation reaction. Biological evaluation of these compounds led to the determination of potent and selective structures towards the NK-3 receptor, for which labeling will be envisaged. Functionalization in position 3 of quinoline-4-carboxamides, using a directed metalation reaction, allowed the introduction of various (hetero)elements (chlorine, bromine, iodine, trialkystannyle or silyle moiety). This research allowed to perform the radiosynthesis of [ 11 C]SB 222200 using a Stille coupling with [ 11 C]iodomethane. (author) [fr

  13. Bacteriostatic enterochelin-specific immunoglobulin from normal human serum

    Energy Technology Data Exchange (ETDEWEB)

    Moore, D.G.; Yancey, R.J.; Lankford, C.E.; Earhart, C.F.

    1980-02-01

    Heat-inactivated normal human serum produces iron-reversible bacteriostasis of a number of microorganisms. This inhibitory effect was abolished by adsorption of serum with ultraviolet-killed cells of species that produce the siderophore enterochelin. Bacteriostasis also was alleviated by asorption of serum with 2,3-dihydroxy-N-benzoyl-L-serine, a degradation product of enterochelin, bound to the insoluble matrix AH-Sepharose 4B. Our results indicate that enterochelin-specific immunoglobulins exist in normal human serum. These immunoglobulins may act synergistically with transferrin to effect bacteriostasis of enterochelin-producing pathogens.

  14. The effect of lysate of spleen cells after low dose radiation (LDR) on NK activity

    International Nuclear Information System (INIS)

    Lu Duicai; Su Liaoyuan

    2003-01-01

    To find effect of lysate of spleen cells after LDR on NK activity of CD 57 cells or non-CD 57 cells, lysate of spleen cells after LDR were extracted. McAb (anti CD 57 cells) was used to separate CD 57 cells from human peripheral blood by Panning direct method. The CD 57 cells and non-CD 57 cells were used as effective cells. K 562 cells labelled by 3 H-TdR were used as target cells. The ratio of effect cells to target cells was 10:1. NK activity of CD 57 cells or non-CD 5 -7 cells with the lysate of spleen cells after LDR was reflected by the efficiency of anti tumor cells. The 3 H-TdR incorporation in K 562 cells cultured with non-CD 57 cells was significantly lower than that with CD 57 cells. After use of the lysate of spleen cells after LDR, NK activities of CD 57 cells and non-CD 57 cells were 1.24 and 1.58 respectively. They were both increased obviously compared with control groups. The effect of anti K 562 cells of non-CD 57 cells is even greater than that of CD 57 cells. The lysate of spleen cells after LDR can enhance the effect of both non-CD 57 cells and CD 57 cells

  15. In vivo IFN-γ secretion by NK cells in response to Salmonella typhimurium requires NLRC4 inflammasomes.

    Directory of Open Access Journals (Sweden)

    Andreas Kupz

    Full Text Available Natural killer (NK cells are a critical part of the innate immune defense against viral infections and for the control of tumors. Much less is known about how NK cells contribute to anti-bacterial immunity. NK cell-produced interferon gamma (IFN-γ contributes to the control of early exponential replication of bacterial pathogens, however the regulation of these events remains poorly resolved. Using a mouse model of invasive Salmonellosis, here we report that the activation of the intracellular danger sensor NLRC4 by Salmonella-derived flagellin within CD11c+ cells regulates early IFN-γ secretion by NK cells through the provision of interleukin 18 (IL-18, independently of Toll-like receptor (TLR-signaling. Although IL18-signalling deficient NK cells improved host protection during S. Typhimurium infection, this increased resistance was inferior to that provided by wild-type NK cells. These findings suggest that although NLRC4 inflammasome-driven secretion of IL18 serves as a potent activator of NK cell mediated IFN-γ secretion, IL18-independent NK cell-mediated mechanisms of IFN-γ secretion contribute to in vivo control of Salmonella replication.

  16. Correlation between NK function and response to trastuzumab in metastatic breast cancer patients

    Directory of Open Access Journals (Sweden)

    Spadi Rosella

    2008-05-01

    Full Text Available Abstract Background Trastuzumab is a monoclonal antibody selectively directed against Her2 and approved for the treatment of Her2 overexpressing breast cancer patients. Its proposed mechanisms of action include mediation of antibody-dependent cellular cytotoxicity (ADCC by triggering FcγRIII on natural killer (NK cells. This study addresses the correlation between overall NK function and trastuzumab's clinical activity. Subjects and methods Clinical and immunological responses were assessed in 26 patients receiving trastuzumab monotherapy as maintenance management after chemotherapy (8 mg/kg load and then standard doses of 6 mg/kg every 3 weeks. Cytotoxic activity against the MHC class I-negative standard NK target K562 cell line and HER2-specific ADCC against a trastuzumab-coated Her2-positive SKBR3 cell line were assessed in peripheral blood mononuclear cells (PBMC harvested after the first standard dose. After six months, seventeen patients were scored as responders and nine as non-responders according to the RECIST criteria, while Progression-Free Survival (PFS was calculated during a 12 months follow-up. Results The responders had significantly higher levels of both NK and ADCC activities (p Conclusion One of the mechanisms of action of trastuzumab is NK cell-mediated ADCC lysis of the Her2-positve target cell. We show here that its potency is correlated with the short-term response to treatment, whereas longer protection against tumor expansion seems to be mediated by pure NK activity.

  17. NK1.1+ cells promote sustained tissue injury and inflammation after trauma with hemorrhagic shock.

    Science.gov (United States)

    Chen, Shuhua; Hoffman, Rosemary A; Scott, Melanie; Manson, Joanna; Loughran, Patricia; Ramadan, Mostafa; Demetris, Anthony J; Billiar, Timothy R

    2017-07-01

    Various cell populations expressing NK1.1 contribute to innate host defense and systemic inflammatory responses, but their role in hemorrhagic shock and trauma remains uncertain. NK1.1 + cells were depleted by i.p. administration of anti-NK1.1 (or isotype control) on two consecutive days, followed by hemorrhagic shock with resuscitation and peripheral tissue trauma (HS/T). The plasma levels of IL-6, MCP-1, alanine transaminase (ALT), and aspartate aminotransferase (AST) were measured at 6 and 24 h. Histology in liver and gut were examined at 6 and 24 h. The number of NK cells, NKT cells, neutrophils, and macrophages in liver, as well as intracellular staining for TNF-α, IFN-γ, and MCP-1 in liver cell populations were determined by flow cytometry. Control mice subjected to HS/T exhibited end organ damage manifested by marked increases in circulating ALT, AST, and MCP-1 levels, as well as histologic evidence of hepatic necrosis and gut injury. Although NK1.1 + cell-depleted mice exhibited a similar degree of organ damage as nondepleted animals at 6 h, NK1.1 + cell depletion resulted in marked suppression of both liver and gut injury by 24 h after HS/T. These findings indicate that NK1.1 + cells contribute to the persistence of inflammation leading to end organ damage in the liver and gut. © Society for Leukocyte Biology.

  18. IL-15 inhibits pre-B cell proliferation by selectively expanding Mac-1+B220+ NK cells

    International Nuclear Information System (INIS)

    Nakajima, Shinsuke; Hida, Shigeaki; Taki, Shinsuke

    2008-01-01

    Natural killer (NK) cells are the cells critical for inhibition of repopulation of allogenic bone marrow cells. However, it is not well known if NK cells affect autologous lymphopoiesis. Here, we observed that NK cells could inhibit pre-B cell proliferation in vitro driven by interleukin (IL)-7 in a manner dependent on IL-15. Interestingly, the great majority of expanding NK cells were Mac-1 + B220 + , a recently identified potent interferon (IFN)-γ producer. Indeed, IFN-γ was produced in those cultures, and pre-B cells lacking IFN-γ receptors, but not those lacking type I IFN receptors, were resistant to such an inhibition. Furthermore, even NK cells from mice lacking β2-microglobulin, which were known to be functionally dampened, inhibited pre-B cell proliferation as well. Thus, activated NK cells, which were expanded selectively by IL-15, could potentially regulate B lymphopoiesis through IFN-γ beyond the selection imposed upon self-recognition

  19. Altered ganglioside GD3 in HeLa cells might influence the cytotoxic abilities of NK cells

    OpenAIRE

    Lee, Wen-Chi; Lee, Wen-Ling; Shyong, Wen-Yuann; Yang, Lin-Wei; Ko, Min-Chun; Yeh, Chang-Ching; Edmond Hsieh, Shie-Liang; Wang, Peng-Hui

    2012-01-01

    Objective: Previously, we found that altered sialidases in HeLa cells in a natural killer-HeLa (NK-HeLa) coculture system contributed to the decreased cytotoxic ability of NK cells. However, changes that occur in the glycosylation of the HeLa cells in the NK-HeLa coculture system remain unknown. Materials and Methods: An NK-HeLa coculture system was used to examine the changes that occur in the gangliosides of HeLa cells. Results: GD3 expression in HeLa cells was significantly increased...

  20. Characterization of the myeloid-derived suppressor cell subset regulated by NK cells in malignant lymphoma.

    Science.gov (United States)

    Sato, Yusuke; Shimizu, Kanako; Shinga, Jun; Hidaka, Michihiro; Kawano, Fumio; Kakimi, Kazuhiro; Yamasaki, Satoru; Asakura, Miki; Fujii, Shin-Ichiro

    2015-03-01

    Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with the ability to suppress immune responses and are currently classified into three distinct MDSC subsets: monocytic, granulocytic and non-monocytic, and non-granulocytic MDSCs. Although NK cells provide an important first-line defense against newly transformed cancer cells, it is unknown whether NK cells can regulate MDSC populations in the context of cancer. In this study, we initially found that the frequency of MDSCs in non-Hodgkin lymphoma (NHL) patients was increased and inversely correlated with that of NK cells, but not that of T cells. To investigate the regulation of MDSC subsets by NK cells, we used an EL4 murine lymphoma model and found the non-monocytic and non-granulocytic MDSC subset, i.e., Gr1 + CD11b + Ly6G med Ly6C med MDSC, is increased after NK cell depletion. The MDSC population that expresses MHC class II, CD80, CD124, and CCR2 is regulated mainly by CD27 + CD11b + NK cells. In addition, this MDSC subset produces some immunosuppressive cytokines, including IL-10 but not nitric oxide (NO) or arginase. We also examined two subsets of MDSCs (CD14 + HLA-DR - and CD14 - HLA-DR - MDSC) in NHL patients and found that higher IL-10-producing CD14 + HLA-DR - MDSC subset can be seen in lymphoma patients with reduced NK cell frequency in peripheral blood. Our analyses of MDSCs in this study may enable a better understanding of how MDSCs manipulate the tumor microenvironment and are regulated by NK cells in patients with lymphoma.

  1. Differential lung NK cell responses in avian influenza virus infected chickens correlate with pathogenicity

    OpenAIRE

    Jansen, C.A.; de Geus, E.D.; van Haarlem, D.A.; van de Haar, P.M.; Löndt, B.Z; Graham, S.P.; Göbel, T.W.; van Eden, W.; Brookes, S.M.; Vervelde, L.

    2013-01-01

    Infection of chickens with low pathogenicity avian influenza (LPAI) virus results in mild clinical signs while infection with highly pathogenic avian influenza (HPAI) viruses causes death of the birds within 36–48 hours. Since natural killer (NK) cells have been shown to play an important role in influenza-specific immunity, we hypothesise that NK cells are involved in this difference in pathogenicity. To investigate this, the role of chicken NK-cells in LPAI virus infection was studied. Next...

  2. The Effects of Age and Latent Cytomegalovirus Infection on NK-Cell Phenotype and Exercise Responsiveness in Man

    Directory of Open Access Journals (Sweden)

    Austin B. Bigley

    2015-01-01

    Full Text Available The redeployment of NK-cells in response to an acute bout of exercise is thought to be an integral component of the “fight-or-flight” response, preparing the body for potential injury or infection. We showed previously that CMV seropositivity impairs the redeployment of NK-cells with exercise in the young. In the current study, we examined the effect of aging on the redeployment of NK-cells with exercise in the context of CMV. We show here that CMV blunts the exercise-induced redeployment of NK-cells in both younger (23–39 yrs and older (50–64 yrs subjects with older CMVneg subjects showing the largest postexercise mobilization and 1 h postexercise egress of NK-cells. The blunted exercise response in CMVpos individuals was associated with a decreased relative redeployment of the CD158a+ and CD57+ NK-cell subsets in younger and older individuals. In addition, we show that aging is associated with a CMV-independent increase in the proportion of NK-cells expressing the terminal differentiation marker CD57, while CMV is associated with an age-dependent decrease in the proportion of NK-cells expressing the inhibitory receptors KLRG1 (in the younger group and CD158a (in the older group. Collectively, these data suggest that CMV may decrease NK-cell mediated immunosurveillance after exercise in both younger and older individuals.

  3. Activation of NK Cells in Mixed Cultures of Wharton's Jelly Mesenchymal Stromal Cells and Peripheral Blood Lymphocytes.

    Science.gov (United States)

    Svirshchevskaya, E V; Poltavtsev, A M; Os'mak, G Zh; Poltavtseva, R A

    2018-01-01

    Mesenchymal stromal cells possess immunosuppressive properties that might be used for the therapy of inflammatory diseases of various geneses. The effects of mesenchymal stromal cells depend on their lifetime in the recipient tissues. During heterologous transplantation, mesenchymal stromal cells are eliminated by NK cells. We studied NK cell formation in mixed cultures of Wharton's jelly mesenchymal stromal cells and peripheral blood lymphocytes from an autologous donor. Lymphocytes were activated by a mitogen or IL-2. The lifetime of mesenchymal stromal cells was estimated by MTT test. Cytotoxic activity and phenotype of NK cells were evaluated by flow cytometry. It was found that activation of NK cells depended on IL-2 and was registered on day 2 of incubation with IL-2. In cultures with mitogen-activated lymphocytes, cytotoxicity was observed after 5-6 days. Cytotoxicity of NK correlated with significant decrease in CD16+ and increase in CD56+ NK and with reduction of mesenchymal stromal cell viability. Thus, the main mechanism of elimination of mesenchymal stromal cells is cytotoxicity of NK cells that depended on IL-2 production.

  4. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    International Nuclear Information System (INIS)

    Muñoz, Miguel; Coveñas, Rafael

    2015-01-01

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC

  5. Targeting NK-1 Receptors to Prevent and Treat Pancreatic Cancer: A New Therapeutic Approach

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz, Miguel, E-mail: mmunoz@cica.es [Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Sevilla (Spain); Coveñas, Rafael [Laboratory of Neuroanatomy of the Peptidergic System (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37008 Salamanca (Spain)

    2015-07-06

    Pancreatic cancer (PC) is the fourth leading cause of cancer related-deaths in both men and women, and the 1- and 5-year relative survival rates are 25% and 6%, respectively. It is known that smoking, alcoholism and psychological stress are risk factors that can promote PC and increase PC progression. To date, the prevention of PC is crucial because there is no curative treatment. After binding to the neurokinin-1 (NK-1) receptor (a receptor coupled to the stimulatory G-protein Gαs that activates adenylate cyclase), the peptide substance P (SP)—at high concentrations—is involved in many pathophysiological functions, such as depression, smoking, alcoholism, chronic inflammation and cancer. It is known that PC cells and samples express NK-1 receptors; that the NK-1 receptor is overexpressed in PC cells in comparison with non-tumor cells, and that nanomolar concentrations of SP induce PC cell proliferation. By contrast, NK-1 receptor antagonists exert antidepressive, anxiolytic and anti-inflammatory effects and anti-alcohol addiction. These antagonists also exert an antitumor action since in vitro they inhibit PC cell proliferation (PC cells death by apoptosis), and in a xenograft PC mouse model they exert both antitumor and anti-angiogenic actions. NK-1 receptor antagonists could be used for the treatment of PC and hence the NK-1 receptor could be a new promising therapeutic target in PC.

  6. Involvement of Activating NK Cell Receptors and Their Modulation in Pathogen Immunity

    Directory of Open Access Journals (Sweden)

    Francesco Marras

    2011-01-01

    Full Text Available Natural Killer (NK cells are endowed with cell-structure-sensing receptors providing inhibitory protection from self-destruction (inhibitory NK receptors, iNKRs, including killer inhibitory receptors and other molecules and rapid triggering potential leading to functional cell activation by Toll-like receptors (TLRs, cytokine receptors, and activating NK cell receptors including natural cytotoxicity receptors (NCRs, i.e., NKp46, NKp46, and NKp44. NCR and NKG2D recognize ligands on infected cells which may be endogenous or may directly bind to some structures derived from invading pathogens. In this paper, we address the known direct or indirect interactions between activating receptors and pathogens and their expression during chronic HIV and HCV infections.

  7. Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes.

    Science.gov (United States)

    Fortunato, Sofia A V; Adamski, Marcin; Ramos, Olivia Mendivil; Leininger, Sven; Liu, Jing; Ferrier, David E K; Adamska, Maja

    2014-10-30

    Sponges are simple animals with few cell types, but their genomes paradoxically contain a wide variety of developmental transcription factors, including homeobox genes belonging to the Antennapedia (ANTP) class, which in bilaterians encompass Hox, ParaHox and NK genes. In the genome of the demosponge Amphimedon queenslandica, no Hox or ParaHox genes are present, but NK genes are linked in a tight cluster similar to the NK clusters of bilaterians. It has been proposed that Hox and ParaHox genes originated from NK cluster genes after divergence of sponges from the lineage leading to cnidarians and bilaterians. On the other hand, synteny analysis lends support to the notion that the absence of Hox and ParaHox genes in Amphimedon is a result of secondary loss (the ghost locus hypothesis). Here we analysed complete suites of ANTP-class homeoboxes in two calcareous sponges, Sycon ciliatum and Leucosolenia complicata. Our phylogenetic analyses demonstrate that these calcisponges possess orthologues of bilaterian NK genes (Hex, Hmx and Msx), a varying number of additional NK genes and one ParaHox gene, Cdx. Despite the generation of scaffolds spanning multiple genes, we find no evidence of clustering of Sycon NK genes. All Sycon ANTP-class genes are developmentally expressed, with patterns suggesting their involvement in cell type specification in embryos and adults, metamorphosis and body plan patterning. These results demonstrate that ParaHox genes predate the origin of sponges, thus confirming the ghost locus hypothesis, and highlight the need to analyse the genomes of multiple sponge lineages to obtain a complete picture of the ancestral composition of the first animal genome.

  8. In vitro atrazine-exposure inhibits human natural killer cell lytic granule release

    International Nuclear Information System (INIS)

    Rowe, Alexander M.; Brundage, Kathleen M.; Barnett, John B.

    2007-01-01

    The herbicide atrazine is a known immunotoxicant and an inhibitor of human natural killer (NK) cell lytic function. The precise changes in NK cell lytic function following atrazine exposure have not been fully elucidated. The current study identifies the point at which atrazine exerts its affect on the stepwise process of human NK cell-mediated lyses of the K562 target cell line. Using intracellular staining of human peripheral blood lymphocytes, it was determined that a 24-h in vitro exposure to atrazine did not decrease the level of NK cell lytic proteins granzyme A, granzyme B or perforin. Thus, it was hypothesized that atrazine exposure was inhibiting the ability of the NK cells to bind to the target cell and subsequently inhibit the release of lytic protein from the NK cell. To test this hypothesis, flow cytometry and fluorescent microscopy were employed to analyze NK cell-target cell co-cultures following atrazine exposure. These assays demonstrated no significant decrease in the level of target cell binding. However, the levels of NK intracellular lytic protein retained and the amount of lytic protein released were assessed following a 4-h incubation with K562 target cells. The relative level of intracellular lytic protein was 25-50% higher, and the amount of lytic protein released was 55-65% less in atrazine-treated cells than vehicle-treated cells following incubation with the target cells. These results indicate that ATR exposure inhibits the ability of NK cells to lyse target cells by blocking lytic granule release without affecting the ability of the NK cell to form stable conjugates with target cells

  9. Parietal podocytes in normal human glomeruli.

    Science.gov (United States)

    Bariety, Jean; Mandet, Chantal; Hill, Gary S; Bruneval, Patrick

    2006-10-01

    Although parietal podocytes along the Bowman's capsule have been described by electron microscopy in the normal human kidney, their molecular composition remains unknown. Ten human normal kidneys that were removed for cancer were assessed for the presence and the extent of parietal podocytes along the Bowman's capsule. The expression of podocyte-specific proteins (podocalyxin, glomerular epithelial protein-1, podocin, nephrin, synaptopodin, and alpha-actinin-4), podocyte synthesized proteins (vascular endothelial growth factor and novH), transcription factors (WT1 and PAX2), cyclin-dependent kinase inhibitor p57, and intermediate filaments (cytokeratins and vimentin) was tested. In addition, six normal fetal kidneys were studied to track the ontogeny of parietal podocytes. The podocyte protein labeling detected parietal podocytes in all of the kidneys, was found in 76.6% on average of Bowman's capsule sections, and was prominent at the vascular pole. WT1 and p57 were expressed in some parietal cells, whereas PAX2 was present in all or most of them, so some parietal cells coexpressed WT1 and PAX2. Furthermore, parietal podocytes coexpressed WT1 and podocyte proteins. Cytokeratin-positive cells covered a variable part of the capsule and did not express podocyte proteins. Tuft-capsular podocyte bridges were present in 15.5 +/- 3.7% of the glomerular sections. Parietal podocytes often covered the juxtaglomerular arterioles and were present within the extraglomerular mesangium. Parietal podocytes were present in fetal kidneys. Parietal podocytes that express the same epitopes as visceral podocytes do exist along Bowman's capsule in the normal adult kidney. They are a constitutive cell type of the Bowman's capsule. Therefore, their role in physiology and pathology should be investigated.

  10. Novel microchip-based tools facilitating live cell imaging and assessment of functional heterogeneity within NK cell populations

    Directory of Open Access Journals (Sweden)

    Elin eForslund

    2012-10-01

    Full Text Available Each individual has a heterogeneous pool of NK cells consisting of cells that may be specialized towards specific functional responses such as secretion of cytokines or killing of tumor cells. Many conventional methods are not fit to characterize heterogeneous populations as they measure the average response of all cells. Thus, there is a need for experimental platforms that provide single cell resolution. In addition, there are also transient and stochastic variations in functional responses at the single cell level, calling for methods that allow studies of many events over extended times. This paper presents a versatile microchip platform enabling long-term microscopic studies of individual NK cells interacting with target cells. Each microchip contains an array of microwells, optimized for medium or high-resolution time-lapse imaging of single or multiple NK and target cells, or for screening of thousands of isolated NK-target cell interactions. Individual NK cells confined with target cells in small microwells is a suitable setup for high-content screening and rapid assessment of heterogeneity within populations, while microwells of larger dimensions are appropriate for studies of NK cell migration and sequential interactions with multiple target cells. By combining the chip technology with ultrasonic manipulation, NK and target cells can be forced to interact and positioned with high spatial accuracy within individual microwells. This setup effectively and synchronously creates NK-target conjugates at hundreds of parallel positions in the microchip. Thus, this facilitates assessment of temporal aspects of NK-target cell interactions, e.g. conjugation, immune synapse formation and cytotoxic events. The microchip platform presented here can be used to effectively address questions related to fundamental functions of NK cells that can lead to better understanding of how the behavior of individual cells add up to give a functional response at

  11. Substance P and substance K receptor binding sites in the human gastrointestinal tract: localization by autoradiography

    International Nuclear Information System (INIS)

    Gates, T.S.; Zimmerman, R.P.; Mantyh, C.R.; Vigna, S.R.; Maggio, J.E.; Welton, M.L.; Passaro, E.P. Jr.; Mantyh, P.W.

    1988-01-01

    Quantitative receptor autoradiography was used to localize and quantify the distribution of binding sites for 125 I-radiolabeled substance P (SP), substance K (SK) and neuromedin K (NK) in the human GI tract using histologically normal tissue obtained from uninvolved margins of resections for carcinoma. The distribution of SP and SK binding sites is different for each gastrointestinal (GI) segment examined. Specific SP binding sites are expressed by arterioles and venules, myenteric plexus, external circular muscle, external longitudinal muscle, muscularis mucosa, epithelial cells of the mucosa, and the germinal centers of lymph nodules. SK binding sites are distributed in a pattern distinct from SP binding sites and are localized to the external circular muscle, external longitudinal muscle, and the muscularis mucosa. Binding sites for NK were not detected in any part of the human GI tract. These results demonstrate that: (1) surgical specimens from the human GI tract can be effectively processed for quantitative receptor autoradiography; (2) of the three mammalian tachykinins tested, SP and SK, but not NK binding sites are expressed in detectable levels in the human GI tract; (3) whereas SK receptor binding sites are expressed almost exclusively by smooth muscle, SP binding sites are expressed by smooth muscle cells, arterioles, venules, epithelial cells of the mucosa and cells associated with lymph nodules; and (4) both SP and SK binding sites expressed by smooth muscle are more stable than SP binding sites expressed by blood vessels, lymph nodules, and mucosal cells

  12. Somatic mutations of isocitrate dehydrogenases 1 and 2 are prognostic and follow-up markers in patients with acute myeloid leukaemia with normal karyotype

    Directory of Open Access Journals (Sweden)

    Virijevic Marijana

    2016-12-01

    Full Text Available Mutations in the isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2 genes are frequent molecular lesions in acute myeloid leukaemia with normal karyotype (AML-NK. The effects of IDH mutations on clinical features and treatment outcome in AML-NK have been widely investigated, but only a few studies monitored these mutations during follow-up.

  13. NK Cells and Other Innate Lymphoid Cells in Hematopoietic Stem Cell Transplantation.

    Science.gov (United States)

    Vacca, Paola; Montaldo, Elisa; Croxatto, Daniele; Moretta, Francesca; Bertaina, Alice; Vitale, Chiara; Locatelli, Franco; Mingari, Maria Cristina; Moretta, Lorenzo

    2016-01-01

    Natural killer (NK) cells play a major role in the T-cell depleted haploidentical hematopoietic stem cell transplantation (haplo-HSCT) to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILCs). At variance with NK cells, the other ILC populations (ILC1/2/3) are non-cytolytic, while they secrete different patterns of cytokines. ILCs provide host defenses against viruses, bacteria, and parasites, drive lymphoid organogenesis, and contribute to tissue remodeling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD) but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defenses that are reconstituted more rapidly than the adaptive ones. In this context, ILCs may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodeling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILCs. Of note, CD34(+) cells isolated from different sources of HSC may differentiate in vitro toward various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g., IL-1β) may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  14. NK cells and other innate lymphoid cells in haematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Paola eVacca

    2016-05-01

    Full Text Available Natural Killer (NK cells play a major role in the T-cell depleted haploidentical haematopoietic stem cell transplantation (haplo-HSCT to cure high-risk leukemias. NK cells belong to the expanding family of innate lymphoid cells (ILC. At variance with NK cells, the other ILC populations (ILC1/2/3 are non-cytolytic, while they secrete different patterns of cytokines. ILC provide host defences against viruses, bacteria and parasites, drive lymphoid organogenesis, and contribute to tissue remodelling. In haplo-HSCT patients, the extensive T-cell depletion is required to prevent graft-versus-host disease (GvHD but increases risks of developing a wide range of life-threatening infections. However, these patients may rely on innate defences that are reconstituted more rapidly than the adaptive ones. In this context, ILC may represent important players in the early phases following transplantation. They may contribute to tissue homeostasis/remodelling and lymphoid tissue reconstitution. While the reconstitution of NK cell repertoire and its role in haplo-HSCT have been largely investigated, little information is available on ILC. Of note, CD34+ cells isolated from different sources of HSC, may differentiate in vitro towards various ILC subsets. Moreover, cytokines released from leukemia blasts (e.g. IL-1β may alter the proportions of NK cells and ILC3, suggesting the possibility that leukemia may skew the ILC repertoire. Further studies are required to define the timing of ILC development and their potential protective role after HSCT.

  15. The diagnosis and management of NK/T-cell lymphomas

    Directory of Open Access Journals (Sweden)

    Eric Tse

    2017-04-01

    Full Text Available Abstract Extranodal natural killer (NK/T-cell lymphoma is an aggressive malignancy of putative NK-cell origin, with a minority deriving from the T-cell lineage. Pathologically, the malignancy occurs in two forms, extranodal NK/T-cell lymphoma, nasal type; and aggressive NK-cell leukaemia. Lymphoma occur most commonly (80% in the nose and upper aerodigestive tract, less commonly (20% in non-nasal areas (skin, gastrointestinal tract, testis, salivary gland, and rarely as disseminated disease with a leukemic phase. Genetic analysis showed mutations of genes involved in the JAK/STAT pathway, RNA assembly, epigenetic regulation, and tumor suppression. In initial clinical evaluation, positron emission tomography computed tomography, and quantification of plasma EBV DNA are mandatory as they are useful for response monitoring and prognostication. In stage I/II diseases, combined chemotherapy and radiotherapy (sequentially or concurrently is the best approach. Conventional anthracycline-containing regimens are ineffective and should be replaced by non-anthracycline-containing regimens, preferably including L-asparaginase. Radiotherapy alone is associated with high systemic relapse rates and should be avoided. In stage III/IV diseases, non-anthracycline-regimens-containing L-asparaginase are the standard. In relapsed/refractory cases, blockade of the programmed death protein 1 has recently shown promising results with high response rates. In the era of effective non-anthracycline-containing regimens, autologous haematopoietic stem cell transplantation (HSCT has not been shown to be beneficial. However, allogeneic HSCT may be considered for high-risk or advanced-stage patients in remission or relapsed/refractory patients responding to salvage therapy. Prognostic models taking into account presentation, interim, and end-of-treatment parameters are useful in triaging patients to different treatment strategies.

  16. Sub-apoptotic dosages of pro-oxidant vitamin cocktails sensitize human melanoma cells to NK cell lysis.

    Science.gov (United States)

    Tremante, Elisa; Santarelli, Lory; Lo Monaco, Elisa; Sampaoli, Camilla; Ingegnere, Tiziano; Guerrieri, Roberto; Tomasetti, Marco; Giacomini, Patrizio

    2015-10-13

    Alpha-tocopheryl succinate (αTOS), vitamin K3 (VK3) and vitamin C (ascorbic acid, AA) were previously shown to synergistically promote different death pathways in carcinoma cells, depending on their concentrations and combinations. Similar effects were observed herein in melanoma cells, although αTOS behaved as an antagonist. Interestingly, suboptimal cell death-inducing concentrations (1.5 μM αTOS/20 μM AA/0.2 μM VK3) effectively up-regulated activating Natural Killer (NK) cell ligands, including MICA (the stress-signaling ligand of the NKG2D receptor), and/or the ligands of at least one of the natural cytotoxicity receptors (NKp30, NKp44 and NKp46) in 5/6 melanoma cell lines. Only an isolated MICA down-regulation was seen. HLA class I, HLA class II, ULBP1, ULBP2, ULBP3, Nectin-2, and PVR displayed little, if any, change in expression. Ligand up-regulation resulted in improved lysis by polyclonal NK cells armed with the corresponding activating receptors. These results provide the first evidence for concerted induction of cell death by cell-autonomous and extrinsic (immune) mechanisms. Alarming the immune system much below the cell damage threshold may have evolved as a sensitive readout of neoplastic transformation and oxidative stress. Cocktails of vitamin analogues at slightly supra-physiological dosages may find application as mild complements of melanoma treatment, and in chemoprevention.

  17. Early NK Cell Reconstitution Predicts Overall Survival in T-Cell Replete Allogeneic Hematopoietic Stem Cell Transplantation

    DEFF Research Database (Denmark)

    Minculescu, Lia; Marquart, Hanne Vibeke; Friis, Lone Smidstrups

    2016-01-01

    Early immune reconstitution plays a critical role in clinical outcome after allogeneic hematopoietic stem cell transplantation (HSCT). Natural killer (NK) cells are the first lymphocytes to recover after transplantation and are considered powerful effector cells in HSCT. We aimed to evaluate...... the clinical impact of early NK cell recovery in T-cell replete transplant recipients. Immune reconstitution was studied in 298 adult patients undergoing HSCT for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL) and myelodysplastic syndrome (MDS) from 2005 to 2013. In multivariate analysis NK...... cell numbers day 30 (NK30) >150cells/µL were independently associated with superior overall survival (hazard ratio 0.79, 95% confidence interval 0.66-0.95, p=0.01). Cumulative incidence analyses showed that patients with NK30 >150cells/µL had significantly less transplant related mortality (TRM), p=0...

  18. Orbital involvement by non-Hodgkin lymphoma NK T cells.

    Science.gov (United States)

    Hervás-Ontiveros, A; España-Gregori, E; Hernández-Martínez, P; Vera-Sempere, F J; Díaz-Llopis, M

    2014-11-01

    The case is presented of 37 year-old male with a history of nasal obstruction with right rhinorrhea, headache, hearing loss and right exophthalmos of 4 months progression. The MRI revealed that the ethmoidal and maxillary sinuses contained inflammatory tissue extending into the orbital region. The biopsy confirmed a non-Hodgkin lymphoma of natural killer (NK) T cells. Non-Hodgkin's T NK lymphoma is a rare tumor in the orbital area that requires an early detection and multi-disciplinary care to ensure appropriate monitoring and treatment. Copyright © 2012 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  19. HMB-45, S-100, NK1/C3, and MART-1 in metastatic melanoma.

    Science.gov (United States)

    Zubovits, Judit; Buzney, Elizabeth; Yu, Lawrence; Duncan, Lyn M

    2004-02-01

    The diagnosis of melanoma metastatic to lymph node remains a difficult problem given its histological diversity. We examined the staining patterns of S-100, NK1/C3, HMB-45, and MART-1 (DC10) in melanoma metastases to lymph nodes. Immunohistochemical stains were performed on tissue sections of 126 formalin-fixed lymph nodes from 126 patients with an established diagnosis of metastatic melanoma. A total of 98% of cases (123 of 126) stained positive for S-100, 93% (117 of 125) stained positive for NK1/C3, 82% (103 of 126) stained positive for MART-1, and 76% (95 of 125) stained positive for HMB-45. The distribution and intensity of staining varied among these markers. A diffuse staining pattern, defined as >50% of tumor cells stained, was observed in 83% of MART-1-positive cases but in only 56% of S-100-positive cases, 48% of NK1/C3-positive cases, and 34% of HMB-45-positive cases. A maximally intense signal was almost always observed for MART-1 (83% of positive cases) but was rarely observed for NK1/C3 (20%). S-100 and HMB-45 showed maximally intense staining in 50% and 54% of cases, respectively. S-100 and NK1/C3 stained both histiocytes and melanocytes, whereas MART-1 and HMB-45 stained only melanocytes. Seventy-eight cases (63%) stained positive for all 4 markers, 17 cases (14%) stained for all markers except HMB-45, 13 cases (10%) stained for all markers except MART-1, 6 cases (5%) stained only with S-100 and NK1/C3, 4 cases (3%) stained only with S-100 and HMB-45, and 2 cases stained for all markers except S-100. One case each stained for the following: only S-100, only S-100 and HMB-45, and all markers except NK1/C3. One case exhibited absence of staining for any of these markers. We demonstrate that lymph node metastases of melanoma are heterogeneous with regard to tumor marker expression. S-100 and NK1/C3 were the most sensitive stains for detecting metastatic melanoma; however, they both also stain other nontumor cells in lymph nodes. MART-1 did not stain

  20. Decidualization and angiogenesis in early pregnancy: unravelling the functions of DC and NK cells.

    Science.gov (United States)

    Blois, Sandra M; Klapp, Burghard F; Barrientos, Gabriela

    2011-03-01

    Differentiation of endometrial stromal cells and formation of new maternal blood vessels at the time of embryo implantation are critical for the establishment and maintenance of gestation. The regulatory functions of decidual leukocytes during early pregnancy, particularly dendritic cells (DC) and NK cells, may be important not only for the generation of maternal immunological tolerance but also in the regulation of stromal cell differentiation and the vascular responses associated with the implantation process. However, the specific contributions of DC and NK cells during implantation are still difficult to dissect mainly due to reciprocal regulatory interactions established between them within the decidualizing microenvironment. The present review article discusses current evidence on the regulatory pathways driving decidualization in mice, suggesting that NK cells promote uterine vascular modifications that assist decidual growth but DC directly control stromal cell proliferation, angiogenesis and the homing and maturation of NK cell precursors in the pregnant uterus. Thus, successful implantation appears to result from an interplay between cellular components of the decidualizing endometrium involving immunoregulatory and pro-angiogenic functions of DC and NK cells. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. A Developed NK-92MI Cell Line with Siglec-7neg Phenotype Exhibits High and Sustainable Cytotoxicity against Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Chin-Han Huang

    2018-04-01

    Full Text Available Altered sialic acid processing that leads to upregulation of cell surface sialylation is recognized as a key change in malignant tissue glycosylation. This cancer-associated hypersialylation directly impacts the signaling interactions between tumor cells and their surrounding microenvironment, especially the interactions mediated by immune cell surface sialic acid-binding immunoglobulin-like lectins (Siglecs to relay inhibitory signals for cytotoxicity. First, we obtained a Siglec-7neg NK-92MI cell line, NK-92MI-S7N, by separating a group of Siglec-7neg cell population from an eight-month-long-term NK-92MI in vitro culture by fluorescence-activated cell sorting (FACS. The effect of Siglec-7 loss on NK-92MI-S7N cells was characterized by the cell morphology, proliferation, and cytotoxic activity via FACS, MTS assay, cytotoxic assay, and natural killer (NK degranulation assay. We found the expression levels of Siglec-7 in NK-92MI were negatively correlated with NK cytotoxicity against leukemia cells. This NK-92MI-S7N cell not only shared very similar phenotypes with its parental cells but also possessed a high and sustainable killing activity. Furthermore, this Siglec-7neg NK line was unexpectedly capable of eliminating a NK-92MI-resistant leukemia cell, THP-1, through enhancing the effector-target interaction. In this study, a NK cell line with high and sustainable cytotoxicity was established and this cell may provide a potential application in NK-based treatment for leukemia patients.

  2. [Detection of NK and NKT cells in peripheral blood of patients with cGVHD and its significance].

    Science.gov (United States)

    Zhou, Mao-Hua; Wang, Chun-Miao; Gong, Cai-Ping; Luo, Yin; Zhang, Min

    2012-10-01

    The aim of this study was to investigate the correlation of NK and NKT cells in peripheral blood of patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT) with chronic graft-versus-host disease (cGVHD). 64 patients undergoing allo-HSCT in Guangdong Provincial People Hospital were studied retrospectively. Among 64 cases, 21 cases were did not develop with cGVHD, 43 cases (mild 15, moderate 18, severe 10) were recorded with cGVHD. The frequency of NK and NKT cells in peripheral blood of patients were measured by flow cytometry. The counts of NK and NKT cells were measured by automatic five sort hematology cyto-analyser (LH-750). The frequency and counts of NK and NKT cells between patients with non-cGVHD and patients with different status of cGVHD were analysed. The results indicated that as compared with the non-cGVHD patients, the frequency and counts of NK cells in patients with cGVHD obviously reduced (P NKT cells were did not changed significantly. The frequency and counts of NK cells gradually decreased within the different status of cGVHD, the frequency and counts of NK cells in severe-cGVHD were significantly lower than that in mild-cGVHD. It is concluded that NK cells may play an important role in the incidence and development of cGVHD. The detection of frequency and counts of NK cells should be helpful to early diagnose cGVHD and provide valuable clues for assessing the severity of illnesses. NKT cells may have little effect on the incidence and development of cGVHD.

  3. Interleukin-2-induced survival of natural killer (NK) cells involving phosphatidylinositol-3 kinase-dependent reduction of ceramide through acid sphingomyelinase, sphingomyelin synthase, and glucosylceramide synthase.

    Science.gov (United States)

    Taguchi, Yoshimitsu; Kondo, Tadakazu; Watanabe, Mitsumasa; Miyaji, Michihiko; Umehara, Hisanori; Kozutsumi, Yasunori; Okazaki, Toshiro

    2004-11-15

    Interleukin 2 (IL-2) rescued human natural killer (NK) KHYG-1 cells from apoptosis along with a reduction of ceramide. Conversely, an increase of ceramide inhibited IL-2-rescued survival. IL-2 deprivation-induced activation of acid sphingomyelinase (SMase) and inhibition of glucosylceramide synthase (GCS) and sphingomyelin synthase (SMS) were normalized by IL-2 supplementation. A phosphatidyl inositol-3 (PI-3) kinase inhibitor, LY294002, inhibited IL-2-rescued survival, but a mitogen-activated protein kinase inhibitor, PD98059, and an inhibitor of Janus tyrosine kinase/signal transducer and activator of transcription pathway, AG490, did not. LY294002 inhibited IL-2-induced reduction of ceramide through activation of acid SMase and inhibition of GCS and SMS, suggesting the positive involvement of PI-3 kinase in ceramide reduction through enzymatic regulation. Indeed, a constitutively active PI-3 kinase enhanced growth rate and ceramide reduction through inhibition of acid SMase and activation of GCS and SMS. Further, LY294002 inhibited IL-2-induced changes of transcriptional level as well as mRNA and protein levels in acid SMase and GCS but did not affect the stability of the mRNAs. These results suggest that PI-3 kinase-dependent reduction of ceramide through regulation of acid SMase, GCS, and SMS plays a role in IL-2-rescued survival of NK cells.

  4. NCR1 Expression Identifies Canine Natural Killer Cell Subsets with Phenotypic Similarity to Human Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Jennifer Ann Foltz

    2016-11-01

    Full Text Available Canines spontaneously develop many cancers similar to humans - including osteosarcoma, leukemia, and lymphoma - offering the opportunity to study immune therapies in a genetically heterogeneous and immunocompetent environment. However, a lack of antibodies recognizing canine NK cell markers has resulted in suboptimal characterization and unknown purity of NK cell products, hindering the development of canine models of NK cell adoptive immunotherapy. To this end, we generated a novel antibody to canine NCR1 (NKp46, the putative species-wide marker of NK cells, enabling purification of NK cells for further characterization. We demonstrate that CD3-/NKp46+ cells in healthy and osteosarcoma-bearing canines have phenotypic similarity to human CD3-/NKp46+ NK cells, expressing mRNA for CD16 and the natural cytotoxicity receptors NKp30, NKp44, and NKp80. Functionally, we demonstrate with the calcein release assay that canine CD3-/NKp46+ cells kill canine tumor cell lines without prior sensitization and secrete IFN-γ, TNF-α, IL-8, IL-10, and GM-CSF as measured by Luminex. Like human NK cells, CD3-/NKp46+ cells expand rapidly on feeder cells expressing 4-1BBL and membrane-bound IL-21 (median= 20,283-fold in 21 days. Further, we identify a minor Null population (CD3-/CD21-/CD14-/NKp46- with reduced cytotoxicity against osteosarcoma cells, but similar cytokine secretion as CD3-/NKp46+ cells. Null cells in canines and humans have reduced expression of NKG2D, NKp44, and CD16 compared to NKp46+ NK cells, and can be induced to express NKp46 with further expansion on feeder cells. In conclusion, we have identified and characterized canine NK cells, including an NKp46- subset of canine and human NK cells, using a novel anti-canine NKp46 antibody, and report robust ex vivo expansion of canine NK cells sufficient for adoptive immunotherapy.

  5. Phenotypic and functional analyses of NK and NKT-like populations during the early stages of chikungunya infection.

    Science.gov (United States)

    Thanapati, Subrat; Das, Rumki; Tripathy, Anuradha S

    2015-01-01

    The aim of this study was to characterize NK (CD56(+)CD3(-)) and NKT-like cell (CD56(+)CD3(+)) responses early after chikungunya infection. Expression profiling and functional analysis of T/NK/NKT-like cells were performed on samples from 56 acute and 31 convalescent chikungunya patients and 56 control individuals. The percentages of NK cells were high in both patient groups, whereas NKT-like cell percentages were high only in the convalescent group. The percentages of NKp30(+)CD3(-)CD56(+), NKp30(+)CD3(+)CD56(+), CD244(+)CD3(-)CD56(+), and CD244(+)CD3(+)CD56(+)cells were high, whereas the percentages of NKG2D(+)CD3(-)CD56(+) and NKG2D(+)CD3(+)CD56(+)cells were low in both patient groups. The percentages of NKp44(+)CD3(-)CD56(+) cells were high in both patient groups, whereas the percentages of NKp44(+)CD3(+)CD56(+) cells were higher in the acute group than in convalescent and control groups. The percentages of NKp46(+)CD3(-)CD56(+) cells were high in both patient groups. Higher percentages of perforin(+)CD3(-)CD56(+) and perforin(+)CD3(+)CD56(+) cells were observed in acute and convalescent patients, respectively. Higher cytotoxic activity was observed in acute patients than in controls. IFN-γ expression on NK cells of convalescent patients and on NKT-like cells of both patient groups was indicative of the regulatory role of NK and NKT-like cells. Collectively, these data showed that higher expression of activating receptors on NK/NKT-like cells and perforin(+) NK cells in acute patients could be responsible for increased cytotoxicity. The observed expression of perforin(+) NK cells in the acute phase and IFN-γ(+) NKT-like cells in the subsequent convalescent stage showed that NK/NKT-like cells mount an early and efficient response to chikungunya virus. Further study of the molecular mechanisms that limit viral dissemination/establishment of chronic disease will aid in understanding how NK/NKT-like cells control chikungunya infection.

  6. Role of NKG2D-Expressing NK Cells and sMICA in Immune Surveillance of Advanced Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jing LIANG

    2009-01-01

    Full Text Available Background and objective NKG2D-expressing NK cells and soluble major histocompatibility complex class Ⅰ-related chain A (sMICA is one of aroused general interests in tumor research area recently. The aimof the study is to investigate the levels of NKG2D-expressing NK cells and sMICA in peripheral blood of advanced lung cancer which are remarkably related to clinical significance and analyse the role of NKG2D-expressing NK cells and sMICA in immune surveillance. Methods Flow cytometry was used to determine the percentage of NKG2D-expressing NK cells, T cell subsets, NK cells, and ELISA was used to mesure the levels of sMICA in peripheral blood of 115 advanced lung cancer patients and 50 healthy controls. Results Compared with control group, the levels of sMICA、CD8+T cells, NK cells increased, while the levels of NKG2D-expressing NK cells, CD3+ T cells, CD4+ T cells, CD4+ T/CD8+ T in experimental group decreased. NKG2D-expressing NK cells had a perfect negative correlation with sMICA (r =-0.319, P <0.05. NKG2D-expressing NK cells had positive correlation with CD4+ T cells, CD4+ T/CD8+ T and negative correlationwith CD8+ T cells (P <0.05, sMICA had negative correlation with CD4+ T cells, CD4+ T/CD8+ T and positive correlation with CD8+ T cells (P <0.05, they had no significant correlation with CD3+ T cells, NK cells respectively (P <0.05. Conclusion Accumulation of sMICA in serum may lead to the down-modulation of NKG2D-expressing NK which has been proposed to be a novel mechanism used by cancer cells to evade the tumor immunosurveillance. They may be potential indicators investigating immune functions and helpful in the evaluation of their happening and proceeding.

  7. Suppression of NK cells and regulatory T lymphocytes in cats naturally infected with feline infectious peritonitis virus.

    Science.gov (United States)

    Vermeulen, Ben L; Devriendt, Bert; Olyslaegers, Dominique A; Dedeurwaerder, Annelike; Desmarets, Lowiese M; Favoreel, Herman W; Dewerchin, Hannah L; Nauwynck, Hans J

    2013-05-31

    A strong cell-mediated immunity (CMI) is thought to be indispensable for protection against infection with feline infectious peritonitis virus (FIPV) in cats. In this study, the role of natural killer (NK) cells and regulatory T cells (Tregs), central players in the innate and adaptive CMI respectively, was examined during natural FIPV infection. When quantified, both NK cells and Tregs were drastically depleted from the peripheral blood, mesenteric lymph node (LN) and spleen in FIP cats. In contrast, mesentery and kidney from FIP cats did not show any difference when compared to healthy non-infected control animals. In addition, other regulatory lymphocytes (CD4+CD25-Foxp3+ and CD3+CD8+Foxp3+) were found to be depleted from blood and LN as well. Phenotypic analysis of blood-derived NK cells in FIP cats revealed an upregulation of activation markers (CD16 and CD25) and migration markers (CD11b and CD62L) while LN-derived NK cells showed upregulation of only CD16 and CD62L. LN-derived NK cells from FIPV-infected cats were also significantly less cytotoxic when compared with healthy cats. This study reveals for the first time that FIPV infection is associated with severe suppression of NK cells and Tregs, which is reflected by cell depletion and lowered cell functionality (only NK cells). This will un-doubtfully lead to a reduced capacity of the innate immune system (NK cells) to battle FIPV infection and a decreased capacity (Tregs) to suppress the immunopathology typical for FIP. However, these results will also open possibilities for new therapies targeting specifically NK cells and Tregs to enhance their numbers and/or functionality during FIPV infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Glycoprotein biosynthesis by human normal platelets

    International Nuclear Information System (INIS)

    Rodriguez, P.; Bello, O.; Apitz-Castro, R.

    1987-01-01

    Incorporation of radioactive Man, Gal, Fuc, Glc-N, and NANA into washed human normal platelets and endogenous glycoproteins has been found. Both parameters were time dependent. Analysis of hydrolyzed labeled glycoproteins by paper chromatography revealed that the radioactive monosaccharide incubated with the platelets had not been converted into other sugars. Acid hydrolysis demonstrates the presence of a glycosidic linkage. All the effort directed to the demonstration of the existence of a lipid-sugar intermediate in intact human platelets yielded negative results for Man and Glc-N used as precursors. The incorporation of these sugars into glycoproteins is insensitive to bacitracin, suggesting no involvement of lipid-linked saccharides in the synthesis of glycoproteins in human blood platelets. The absence of inhibition of the glycosylation process in the presence of cycloheximide suggests that the sugars are added to proteins present in the intact platelets. These results support the contention that glycoprotein biosynthesis in human blood platelets observed under our experimental conditions is effected through direct sugar nucleotide glycosylation

  9. Development and function of human innate immune cells in a humanized mouse model.

    Science.gov (United States)

    Rongvaux, Anthony; Willinger, Tim; Martinek, Jan; Strowig, Till; Gearty, Sofia V; Teichmann, Lino L; Saito, Yasuyuki; Marches, Florentina; Halene, Stephanie; Palucka, A Karolina; Manz, Markus G; Flavell, Richard A

    2014-04-01

    Mice repopulated with human hematopoietic cells are a powerful tool for the study of human hematopoiesis and immune function in vivo. However, existing humanized mouse models cannot support development of human innate immune cells, including myeloid cells and natural killer (NK) cells. Here we describe two mouse strains called MITRG and MISTRG, in which human versions of four genes encoding cytokines important for innate immune cell development are knocked into their respective mouse loci. The human cytokines support the development and function of monocytes, macrophages and NK cells derived from human fetal liver or adult CD34(+) progenitor cells injected into the mice. Human macrophages infiltrated a human tumor xenograft in MITRG and MISTRG mice in a manner resembling that observed in tumors obtained from human patients. This humanized mouse model may be used to model the human immune system in scenarios of health and pathology, and may enable evaluation of therapeutic candidates in an in vivo setting relevant to human physiology.

  10. Evolving role of 2B4/CD244 in T and NK cell responses during virus infection

    Directory of Open Access Journals (Sweden)

    Stephen Noel Waggoner

    2012-12-01

    Full Text Available The signaling lymphocyte activation molecule (SLAM family receptor, 2B4/CD244, was first implicated in anti-viral immunity by the discovery that mutations of the SLAM-associated protein, SAP/SH2D1A, impaired 2B4-dependent stimulation of T and natural killer (NK cell anti-viral functions in X-linked lymphoproliferative (XLP syndrome patients with uncontrolled Epstein-Barr virus (EBV infections. Engagement of 2B4 has been variably shown to either activate or inhibit lymphocytes which express this receptor. While SAP expression is required for stimulatory functions of 2B4 on lymphocytes, it remains unclear whether inhibitory signals derived from 2B4 can predominate even in the presence of SAP. Regardless, mounting evidence suggests that 2B4 expression by NK and CD8 T cells is altered by virus infection in mice as well as in humans, and 2B4-mediated signaling may be an important determinant of effective immune control of chronic virus infections. In this review, recent findings regarding the expression and function of 2B4 as well as SAP on T and NK cells during virus infection is discussed, with a focus on the role of 2B4-CD48 interactions in crosstalk between innate and adaptive immunity.

  11. Mapping of NKp46+ cells in healthy human lymphoid and non-lymphoid tissues

    Directory of Open Access Journals (Sweden)

    Elena eTomasello

    2012-11-01

    Full Text Available Understanding Natural Killer (NK cell anatomical distribution is key to dissect the role of these unconventional lymphocytes in physiological and disease conditions. In mouse, NK cells have been detected in various lymphoid and non-lymphoid organs, while in humans the current knowledge of NK cell distribution at steady state is mainly restricted to lymphoid tissues. The translation to humans of findings obtained in mice is facilitated by the identification of NK cell markers conserved between these two species. The Natural Cytotoxicity Receptor (NCR NKp46 is a marker of the NK cell lineage evolutionary conserved in mammals. In mice, NKp46 is also present on rare T cell subsets and on a subset of gut Innate Lymphoid Cells (ILCs expressing the retinoic acid receptor-related orphan receptor t (RORt transcription factor. Here, we documented the distribution and the phenotype of human NKp46+ cells in lymphoid and non-lymphoid tissues isolated from healthy donors. Human NKp46+ cells were found in splenic red pulp, in lymph nodes, in lungs and gut lamina propria, thus mirroring mouse NKp46+ cell distribution. We also identified a novel cell subset of CD56dimNKp46low cells that includes RORt+ILCs with a lineage-CD94-CD117brightCD127bright phenotype. The use of NKp46 thus contributes to establish the basis for analyzing quantitative and qualitative changes of NK cell and ILC subsets in human diseases.

  12. Mapping of NKp46+ Cells in Healthy Human Lymphoid and Non-Lymphoid Tissues

    Science.gov (United States)

    Tomasello, Elena; Yessaad, Nadia; Gregoire, Emilie; Hudspeth, Kelly; Luci, Carmelo; Mavilio, Domenico; Hardwigsen, Jean; Vivier, Eric

    2012-01-01

    Understanding Natural Killer (NK) cell anatomical distribution is key to dissect the role of these unconventional lymphocytes in physiological and disease conditions. In mouse, NK cells have been detected in various lymphoid and non-lymphoid organs, while in humans the current knowledge of NK cell distribution at steady state is mainly restricted to lymphoid tissues. The translation to humans of findings obtained in mice is facilitated by the identification of NK cell markers conserved between these two species. The Natural Cytotoxicity Receptor (NCR) NKp46 is a marker of the NK cell lineage evolutionary conserved in mammals. In mice, NKp46 is also present on rare T cell subsets and on a subset of gut Innate Lymphoid Cells (ILCs) expressing the retinoic acid receptor-related orphan receptor γt (RORγt) transcription factor. Here, we documented the distribution and the phenotype of human NKp46+ cells in lymphoid and non-lymphoid tissues isolated from healthy donors. Human NKp46+ cells were found in splenic red pulp, in lymph nodes, in lungs, and gut lamina propria, thus mirroring mouse NKp46+ cell distribution. We also identified a novel cell subset of CD56dimNKp46low cells that includes RORγt+ ILCs with a lineage−CD94−CD117brightCD127bright phenotype. The use of NKp46 thus contributes to establish the basis for analyzing quantitative and qualitative changes of NK cell and ILC subsets in human diseases. PMID:23181063

  13. Object Detection and Tracking-Based Camera Calibration for Normalized Human Height Estimation

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2016-01-01

    Full Text Available This paper presents a normalized human height estimation algorithm using an uncalibrated camera. To estimate the normalized human height, the proposed algorithm detects a moving object and performs tracking-based automatic camera calibration. The proposed method consists of three steps: (i moving human detection and tracking, (ii automatic camera calibration, and (iii human height estimation and error correction. The proposed method automatically calibrates camera by detecting moving humans and estimates the human height using error correction. The proposed method can be applied to object-based video surveillance systems and digital forensic.

  14. Anti-metastatic effects of viral and non-viral mediated Nk4 delivery to tumours.

    Science.gov (United States)

    Buhles, Alexandra; Collins, Sara A; van Pijkeren, Jan P; Rajendran, Simon; Miles, Michelle; O'Sullivan, Gerald C; O'Hanlon, Deirdre M; Tangney, Mark

    2009-03-09

    The most common cause of death of cancer sufferers is through the occurrence of metastases. The metastatic behaviour of tumour cells is regulated by extracellular growth factors such as hepatocyte growth factor (HGF), a ligand for the c-Met receptor tyrosine kinase, and aberrant expression/activation of the c-Met receptor is closely associated with metastatic progression. Nk4 (also known as Interleukin (IL)32b) is a competitive antagonist of the HGF c-Met system and inhibits c-Met signalling and tumour metastasis. Nk4 has an additional anti-angiogenic activity independent of its HGF-antagonist function. Angiogenesis-inhibitory as well as cancer-specific apoptosis inducing effects make the Nk4 sequence an attractive candidate for gene therapy of cancer. This study investigates the inhibition of tumour metastasis by gene therapy mediated production of Nk4 by the primary tumour. Optimal delivery of anti-cancer genes is vital in order to achieve the highest therapeutic responses. Non-viral plasmid delivery methods have the advantage of safety and ease of production, providing immediate transgene expression, albeit short-lived in most tumours. Sustained presence of anti-angiogenic molecules is preferable with anti-angiogenic therapies, and the long-term expression mediated by Adeno-associated Virus (AAV) might represent a more appropriate delivery in this respect. However, the incubation time required by AAV vectors to reach appropriate gene expression levels hampers efficacy in many fast-growing murine tumour models. Here, we describe murine trials assessing the effects of Nk4 on the spontaneously metastatic Lewis Lung Carcinoma (LLC) model when delivered to primary tumour via plasmid lipofection or AAV2 vector. Intratumoural AAV-Nk4 administration produced the highest therapeutic response with significant reduction in both primary tumour growth and incidence of lung metastases. Plasmid-mediated therapy also significantly reduced metastatic growth, but with moderate

  15. AHR prevents human IL-1R1hi ILC3 differentiation to natural killer cells

    Science.gov (United States)

    Hughes, Tiffany; Briercheck, Edward L.; Freud, Aharon G.; Trotta, Rossana; McClory, Susan; Scoville, Steven D.; Keller, Karen; Deng, Youcai; Cole, Jordan; Harrison, Nicholas; Mao, Charlene; Zhang, Jianying; Benson, Don M.; Yu, Jianhua; Caligiuri, Michael A.

    2014-01-01

    SUMMARY Accumulating evidence indicates that human natural killer (NK) cells develop in secondary lymphoid tissue (SLT) through a so-called “stage 3” developmental intermediate minimally characterized by a CD34-CD117+CD94- immunophenotype that lacks mature NK cell function. This stage 3 population is heterogeneous, potentially composed of functionally distinct innate lymphoid cell (ILC) types that includes interleukin-1 receptor (IL-1R1) positive, IL-22-producing ILC3s. Whether human ILC3s are developmentally related to NK cells is a subject of ongoing investigation. Here we show that antagonism of the aryl hydrocarbon receptor (AHR) or silencing of AHR gene expression promotes differentiation of tonsillar IL-22-producing IL-1R1hi human ILC3s to CD56brightCD94+ IFN-gamma-producing cytolytic mature NK cells expressing eomesodermin (EOMES) and T-Box Protein 21 (TBX21 or TBET). Hence, AHR is a transcription factor that prevents human IL-1R1hi ILC3s from differentiating into NK cells. PMID:24953655

  16. IL-15 Superagonist–Mediated Immunotoxicity: Role of NK Cells and IFN-γ

    Science.gov (United States)

    Guo, Yin; Luan, Liming; Rabacal, Whitney; Bohannon, Julia K.; Fensterheim, Benjamin A.; Hernandez, Antonio

    2015-01-01

    IL-15 is currently undergoing clinical trials to assess its efficacy for treatment of advanced cancers. The combination of IL-15 with soluble IL-15Rα generates a complex termed IL-15 superagonist (IL-15 SA) that possesses greater biological activity than IL-15 alone. IL-15 SA is considered an attractive antitumor and antiviral agent because of its ability to selectively expand NK and memory CD8+ T (mCD8+ T) lymphocytes. However, the adverse consequences of IL-15 SA treatment have not been defined. In this study, the effect of IL-15 SA on physiologic and immunologic functions of mice was evaluated. IL-15 SA caused dose- and time-dependent hypothermia, weight loss, liver injury, and mortality. NK (especially the proinflammatory NK subset), NKT, and mCD8+ T cells were preferentially expanded in spleen and liver upon IL-15 SA treatment. IL-15 SA caused NK cell activation as indicated by increased CD69 expression and IFN-γ, perforin, and granzyme B production, whereas NKT and mCD8+ T cells showed minimal, if any, activation. Cell depletion and adoptive transfer studies showed that the systemic toxicity of IL-15 SA was mediated by hyperproliferation of activated NK cells. Production of the proinflammatory cytokine IFN-γ, but not TNF-α or perforin, was essential to IL-15 SA–induced immunotoxicity. The toxicity and immunological alterations shown in this study are comparable to those reported in recent clinical trials of IL-15 in patients with refractory cancers and advance current knowledge by providing mechanistic insights into IL-15 SA–mediated immunotoxicity. PMID:26216888

  17. Loss of Brain Aerobic Glycolysis in Normal Human Aging.

    Science.gov (United States)

    Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E

    2017-08-01

    The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Prognostic Impact of NK/NKT Cell Density in Periampullary Adenocarcinoma Differs by Morphological Type and Adjuvant Treatment.

    Science.gov (United States)

    Lundgren, Sebastian; Warfvinge, Carl Fredrik; Elebro, Jacob; Heby, Margareta; Nodin, Björn; Krzyzanowska, Agnieszka; Bjartell, Anders; Leandersson, Karin; Eberhard, Jakob; Jirström, Karin

    2016-01-01

    Natural killer (NK) cells and NK T cells (NKT) are vital parts of tumour immunosurveillance. However, their impact on prognosis and chemotherapy response in periampullary adenocarcinoma, including pancreatic cancer, has not yet been described. Immune cell-specific expression of CD56, CD3, CD68 and CD1a was analysed by immunohistochemistry on tissue microarrays with tumours from 175 consecutive cases of periampullary adenocarcinoma, 110 of pancreatobiliary type (PB-type) and 65 of intestinal type (I-type) morphology. Kaplan-Meier and Cox regression analysis were applied to determine the impact of CD56+ NK/NKT cells on 5-year overall survival (OS). High density of CD56+ NK/NKT cells correlated with low N-stage and lack of perineural, lymphatic vessel and peripancreatic fat invasion. High density of CD56+ NK/NKT cells was associated with prolonged OS in Kaplan-Meier analysis (p = 0.003), and in adjusted Cox regression analysis (HR = 0.49; 95% CI 0.29-0.86). The prognostic effect of high CD56+ NK/NKT cell infiltration was only evident in cases not receiving adjuvant chemotherapy in PB-type tumours (p for interaction = 0.014). This study demonstrates that abundant infiltration of CD56+ NK/NKT cells is associated with a prolonged survival in periampullary adenocarcinoma. However, the negative interaction with adjuvant treatment is noteworthy. NK cell enhancing strategies may prove to be successful in the management of these cancers.

  19. NK cells of the oldest seniors represent constant and resistant to stimulation high expression of cellular protective proteins SIRT1 and HSP70.

    Science.gov (United States)

    Kaszubowska, Lucyna; Foerster, Jerzy; Kaczor, Jan Jacek; Schetz, Daria; Ślebioda, Tomasz Jerzy; Kmieć, Zbigniew

    2018-01-01

    Natural killer cells (NK cells) are cytotoxic lymphocytes of innate immunity that reveal some immunoregulatory properties, however, their role in the process of ageing is not completely understood. The study aimed to analyze the expression of proteins involved in cellular stress response: sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in human NK cells with reference to the process of ageing. Non-stimulated and stimulated with IL-2, LPS or PMA with ionomycin cells originated from peripheral blood samples of: seniors aged over 85 ('the oldest'; n  = 25; 88.5 ± 0.5 years, mean ± SEM), seniors aged under 85 ('the old'; n  = 30; 75.6 ± 0.9 years) and the young ( n  = 31; 20.9 ± 0.3 years). The relationships between the levels of expression of cellular protective proteins in the studied population were also analyzed. The concentrations of carbonyl groups and 8-isoprostanes, markers of oxidative stress, in both stimulated and non-stimulated cultured NK cells were measured to assess the level of the oxidative stress in the cells. The oldest seniors varied from the other age groups by significantly higher expression of SIRT1 and HSP70 both in non-stimulated and stimulated NK cells. These cells also appeared to be resistant to further stimulations with IL-2, LPS or PMA with ionomycin. Highly positive correlations between SIRT1 and intracellular HSP70 in both stimulated and non-stimulated NK cells were observed. SOD2 presented low expression in non-stimulated cells, whereas its sensitivity to stimulation increased with age of donors. High positive correlations between SOD2 and surface HSP70 were observed. We found that the markers of oxidative stress in NK cells did not change with ageing. The oldest seniors revealed well developed adaptive stress response in NK cells with increased, constant levels of SIRT1 and intracellular HSP70. They presented also very high positive correlations between

  20. ProNormz--an integrated approach for human proteins and protein kinases normalization.

    Science.gov (United States)

    Subramani, Suresh; Raja, Kalpana; Natarajan, Jeyakumar

    2014-02-01

    The task of recognizing and normalizing protein name mentions in biomedical literature is a challenging task and important for text mining applications such as protein-protein interactions, pathway reconstruction and many more. In this paper, we present ProNormz, an integrated approach for human proteins (HPs) tagging and normalization. In Homo sapiens, a greater number of biological processes are regulated by a large human gene family called protein kinases by post translational phosphorylation. Recognition and normalization of human protein kinases (HPKs) is considered to be important for the extraction of the underlying information on its regulatory mechanism from biomedical literature. ProNormz distinguishes HPKs from other HPs besides tagging and normalization. To our knowledge, ProNormz is the first normalization system available to distinguish HPKs from other HPs in addition to gene normalization task. ProNormz incorporates a specialized synonyms dictionary for human proteins and protein kinases, a set of 15 string matching rules and a disambiguation module to achieve the normalization. Experimental results on benchmark BioCreative II training and test datasets show that our integrated approach achieve a fairly good performance and outperforms more sophisticated semantic similarity and disambiguation systems presented in BioCreative II GN task. As a freely available web tool, ProNormz is useful to developers as extensible gene normalization implementation, to researchers as a standard for comparing their innovative techniques, and to biologists for normalization and categorization of HPs and HPKs mentions in biomedical literature. URL: http://www.biominingbu.org/pronormz. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Ultrastructural characterization of effector-target interactions for human neonatal and adult NK cells reveals reduced intercellular surface contacts of neonatal cells

    NARCIS (Netherlands)

    Ribeiro-do-Couto, Laura M.; Poelen, Martien; Hooibrink, Berend; Dormans, Jan A. M. A.; Roholl, Paul J. M.; Boog, Claire J. P.

    2003-01-01

    Limitations in neonatal natural killer (NK) cell responses may be associated with the less efficient newborn capacity to solve viral infections. Although these limitations have been extensively reported they are poorly characterized. Making use of the major histocompatibility complex (MHC) class I

  2. Establishing the proteome of normal human cerebrospinal fluid.

    Directory of Open Access Journals (Sweden)

    Steven E Schutzer

    2010-06-01

    Full Text Available Knowledge of the entire protein content, the proteome, of normal human cerebrospinal fluid (CSF would enable insights into neurologic and psychiatric disorders. Until now technologic hurdles and access to true normal samples hindered attaining this goal.We applied immunoaffinity separation and high sensitivity and resolution liquid chromatography-mass spectrometry to examine CSF from healthy normal individuals. 2630 proteins in CSF from normal subjects were identified, of which 56% were CSF-specific, not found in the much larger set of 3654 proteins we have identified in plasma. We also examined CSF from groups of subjects previously examined by others as surrogates for normals where neurologic symptoms warranted a lumbar puncture but where clinical laboratory were reported as normal. We found statistically significant differences between their CSF proteins and our non-neurological normals. We also examined CSF from 10 volunteer subjects who had lumbar punctures at least 4 weeks apart and found that there was little variability in CSF proteins in an individual as compared to subject to subject.Our results represent the most comprehensive characterization of true normal CSF to date. This normal CSF proteome establishes a comparative standard and basis for investigations into a variety of diseases with neurological and psychiatric features.

  3. Intrathymic selection of NK1.1+α/β T cell antigen receptor (TCR)+ cells in transgenic mice bearing TCR specific for chicken ovalbumin and restricted to I-Ad

    OpenAIRE

    Iwabuchi, Chikako; Iwabuchi, Kazuya; Nakagawa, Ken-ichi; Takayanagi, Toshiaki; Nishihori, Hiroki; Tone, Saori; Ogasawara, Kazumasa; Good, Robert A.; Onoé, Kazunori

    1998-01-01

    Generation and negative selection of NK1.1+α/β T cell receptor (TCR)+ thymocytes were analyzed using TCR-transgenic (B10.D2 × DO10)F1 and (C57BL/6 × DO10)F1 mice and Rag-1−/−/DO10 mice, which had been established by breeding and backcrossing between Rag-1−/− and DO10 mice. Almost all T cells from these mice were shown to bear Vα13/Vβ8.2 that is specific for chicken ovalbumin (cOVA) and restricted to I-Ad. A normal proportion of the NK1.1+ Vα13/Vβ8.2+ thymocytes was generated in these mice. Ho...

  4. Absorption of orally administered 65Zn by normal human subjects

    International Nuclear Information System (INIS)

    Aamodt, R.L.; Rumble, W.F.; Johnston, G.S.; Markley, E.J.; Henkin, R.I.

    1981-01-01

    Despite studies by several investigators of human gastrointestinal 65Zn absorption, implications of these data for evaluation of functional zinc status are unclear because limited numbers of normal subjects have been studied. To evaluated zinc absorption in normal humans, 75 subjects (31 women, 44 men, ages 18 to 84 yr) were given 10 micro Ci carrier-free 65Zn orally after an overnight fast. Absorption calculated from total body retention measured 7, 14, and 21 days after administration of tracer was 65 +/- 11% (mean +/- 1 SD), range from 40 to 86%. Comparison of these results with those for patients with a variety of diseases indicate that patients exhibit a wider range of absorption and, in four of six studies patients exhibit decreased mean zinc absorption. These results of gastrointestinal zinc absorption in a large number of normal humans offer a basis for a clearer comparison with data from patients who exhibit abnormalities of zinc absorption

  5. Whole blood assay for NK activity in splenectomized and non-splenectomized hairy cell leukemia patients during IFN-alpha-2b treatment

    DEFF Research Database (Denmark)

    Nielsen, B; Hokland, P; Ellegaard, J

    1989-01-01

    Natural killer cell (NK) activity in peripheral blood (PB) was followed longitudinally for up to 2 yr after initiation of low-dose IFN-alpha-2b therapy in nine hairy cell leukemia (HCL) patients. A whole blood NK (WB-NK) assay was employed in order to measure the NK activity per unit blood. The p...

  6. Survival of human osteosarcoma cells and normal human fibroblasts following alpha particle irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.

    1981-01-01

    Cell survival of human osteosarcoma cells in culture following alpha particle irradiation is reported here for the first time. The osteosarcoma cell line (TE-85) is found to be less sensitive to inactivation by 5.6 MeV alpha particles (LET 86 keV/μm) than normal diploid human fibroblasts (NFS). Values for the mean lethal doses were estimated to be 103 rads for the TE-85 cells compared with 68 rads for the NFS cultures irradiated under identical conditions. It is postulated that the aneuploidy of the tumor cells with increased DNA chromosomal material may confer a selective advantage for the survival of tumor cells relative to normal cells with diploid chromosomes

  7. Anaplasma phagocytophilum-Related Defects in CD8, NKT, and NK Lymphocyte Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Diana G. Scorpio

    2018-04-01

    Full Text Available Human granulocytic anaplasmosis, caused by the tick-transmitted Anaplasma phagocytophilum, is not controlled by innate immunity, and induces a proinflammatory disease state with innate immune cell activation. In A. phagocytophilum murine infection models, hepatic injury occurs with production of IFNγ thought to be derived from NK, NKT cells, and CD8 T lymphocytes. Specific A. phagocytophilum ligands that drive inflammation and disease are not known, but suggest a clinical and pathophysiologic basis strikingly like macrophage activation syndrome (MAS and hemophagocytic syndrome (HPS. We studied in vivo responses of NK, NKT, and CD8 T lymphocytes from infected animals for correlates of lymphocyte-mediated cytotoxicity and examined in vitro interactions with A. phagocytophilum-loaded antigen-presenting cells (APCs. Murine splenocytes were examined and found deficient in cytotoxicity as determined by CD107a expression in vitro for specific CTL effector subsets as determined by flow cytometry. Moreover, A. phagocytophilum-loaded APCs did not lead to IFNγ production among CTLs in vitro. These findings support the concept of impaired cytotoxicity with A. phagocytophilum presentation by APCs that express MHC class I and that interact with innate and adaptive immune cells with or after infection. The findings strengthen the concept of an enhanced proinflammatory phenotype, such as MAS and HPS disease states as the basis of disease and severity with A. phagocytophilum infection, and perhaps by other obligate intracellular bacteria.

  8. Cytotoxic potential of decidual NK cells and CD8+ T cells awakened by infections.

    Science.gov (United States)

    Crespo, Ângela C; van der Zwan, Anita; Ramalho-Santos, João; Strominger, Jack L; Tilburgs, Tamara

    2017-02-01

    To establish a healthy pregnancy the maternal immune system must tolerate fetal allo-antigens, yet remain competent to respond to infections. The ability of decidual NK cells (dNK) to promote migration of fetal extravillous trophoblasts (EVT) and placental growth as well as the capacity of EVT to promote immune tolerance are topics of high interest and extensive research. However, the problem of how dNK and decidual CD8+ T cells (CD8+ dT) provide immunity to infections of the placenta and the mechanisms that regulate their cytolytic function has thus far largely been ignored. Fetal EVT are the most invasive cells of the placenta and directly interact with maternal decidual immune cells at this maternal-fetal interface. Besides the expression of non-polymorphic HLA-E and HLA-G molecules that are associated with immune tolerance, EVT also express highly polymorphic HLA-C molecules that can serve as targets for maternal dNK and CD8+ dT responses. HLA-C expression by EVT has a dual role as the main molecule to which immune tolerance needs to be established and as the only molecule that can present pathogen-derived peptides and provide protective immunity when EVT are infected. The focus of this review is to address the regulation of cytotoxicity of dNK and CD8+ dT, which is essential for maternal-fetal immune tolerance as well as recent evidence that both cell types can provide immunity to infections at the maternal-fetal interface. A particular emphasis is given to the role of HLA-C expressed by EVT and its capacity to elicit dNK and CD8+ dT responses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. NK sensitivity of neuroblastoma cells determined by a highly sensitive coupled luminescent method

    International Nuclear Information System (INIS)

    Ogbomo, Henry; Hahn, Anke; Geiler, Janina; Michaelis, Martin; Doerr, Hans Wilhelm; Cinatl, Jindrich

    2006-01-01

    The measurement of natural killer (NK) cells toxicity against tumor or virus-infected cells especially in cases with small blood samples requires highly sensitive methods. Here, a coupled luminescent method (CLM) based on glyceraldehyde-3-phosphate dehydrogenase release from injured target cells was used to evaluate the cytotoxicity of interleukin-2 activated NK cells against neuroblastoma cell lines. In contrast to most other methods, CLM does not require the pretreatment of target cells with labeling substances which could be toxic or radioactive. The effective killing of tumor cells was achieved by low effector/target ratios ranging from 0.5:1 to 4:1. CLM provides highly sensitive, safe, and fast procedure for measurement of NK cell activity with small blood samples such as those obtained from pediatric patients

  10. Chicken C-type lectin-like receptor B-NK, expressed on NK and T cell subsets, binds to a ligand on activated splenocytes

    Czech Academy of Sciences Publication Activity Database

    Viertiboeck, B.C.; Wortmann, A.; Schmitt, R.; Plachý, Jiří; Gobel, T.W.

    2008-01-01

    Roč. 45, č. 5 (2008), s. 1398-1404 ISSN 0161-5890 Institutional research plan: CEZ:AV0Z50520514 Keywords : Chicken NK cell receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.555, year: 2008

  11. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    Science.gov (United States)

    Quoc Trung, Ly; Espinoza, J Luis; Takami, Akiyoshi; Nakao, Shinji

    2013-01-01

    Natural killer (NK) cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  12. Resveratrol induces cell cycle arrest and apoptosis in malignant NK cells via JAK2/STAT3 pathway inhibition.

    Directory of Open Access Journals (Sweden)

    Ly Quoc Trung

    Full Text Available Natural killer (NK cell malignancies, particularly aggressive NK cell leukaemias and lymphomas, have poor prognoses. Although recent regimens with L-asparaginase substantially improved outcomes, novel therapeutic approaches are still needed to enhance clinical response. Resveratrol, a naturally occurring polyphenol, has been extensively studied for its anti-inflammatory, cardioprotective and anti-cancer activities. In this study, we investigated the potential anti-tumour activities of resveratrol against the NK cell lines KHYG-1, NKL, NK-92 and NK-YS. Resveratrol induced robust G0/G1 cell cycle arrest, significantly suppressed cell proliferation and induced apoptosis in a dose- and time-dependent manner for all four cell lines. In addition, resveratrol suppressed constitutively active STAT3 in all the cell lines and inhibited JAK2 phosphorylation but had no effect on other upstream mediators of STAT3 activation, such as PTEN, TYK2, and JAK1. Resveratrol also induced downregulation of the anti-apoptotic proteins MCL1 and survivin, two downstream effectors of the STAT3 pathway. Finally, resveratrol induced synergistic effect on the apoptotic and antiproliferative activities of L-asparaginase against KHYG-1, NKL and NK-92 cells. These results suggest that resveratrol may have therapeutic potential against NK cell malignancies. Furthermore, our finding that resveratrol is a bonafide JAK2 inhibitor extends its potential benefits to other diseases with dysregulated JAK2 signaling.

  13. Human natural killer cell committed thymocytes and their relation to the T cell lineage

    NARCIS (Netherlands)

    Sánchez, M. J.; Spits, H.; Lanier, L. L.; Phillips, J. H.

    1993-01-01

    Recent studies have demonstrated that mature natural killer (NK) cells can be grown from human triple negative (TN; CD3-, CD4-, CD8-) thymocytes, suggesting that a common NK/T cell precursor exists within the thymus that can give rise to both NK cells and T cells under appropriate conditions. In the

  14. The role of the transcription factor Tcf-1 for the development and the function of NK cells

    OpenAIRE

    Gehrig, J.

    2014-01-01

    Natural Killer (NK) cells are innate immune cells that can eliminate malignant and foreign cells and that play an important role for the early control of viral and fungal infections. Further, they are important regulators of the adaptive and innate immune responses. During their development in the bone marrow (BM) NK cells undergo several maturation steps that directly establish an effector program. The transcriptional network that controls NK cell development and maturation is still incomple...

  15. NK and NKT Cell Depletion Alters the Outcome of Experimental Pneumococcal Pneumonia: Relationship with Regulation of Interferon-γ Production

    Directory of Open Access Journals (Sweden)

    Eirini Christaki

    2015-01-01

    Full Text Available Background. Natural killer (NK and natural killer T (NKT cells contribute to the innate host defense but their role in bacterial sepsis remains controversial. Methods. C57BL/6 mice were infected intratracheally with 5 × 105 cfu of Streptococcus pneumoniae. Animals were divided into sham group (Sham; pretreated with isotype control antibody (CON group; pretreated with anti-asialo GM1 antibody (NKd group; and pretreated with anti-CD1d monoclonal antibody (NKTd group before bacterial challenge. Serum and tissue samples were analyzed for bacterial load, cytokine levels, splenocyte apoptosis rates, and cell characteristics by flow cytometry. Splenocyte miRNA expression was also analyzed and survival was assessed. Results. NK cell depletion prolonged survival. Upon inhibition of NKT cell activation, spleen NK (CD3−/NK1.1+ cells increased compared to all other groups. Inhibition of NKT cell activation led to higher bacterial loads and increased levels of serum and splenocyte IFN-γ. Splenocyte miRNA analysis showed that miR-200c and miR-29a were downregulated, while miR-125a-5p was upregulated, in anti-CD1d treated animals. These changes were moderate after NK cell depletion. Conclusions. NK cells appear to contribute to mortality in pneumococcal pneumonia. Inhibition of NKT cell activation resulted in an increase in spleen NK (CD3−/NK1.1+ cells and a higher IFN-γ production, while altering splenocyte miRNA expression.

  16. Comparison of radiosensitivities of human autologous normal and neoplastic thyroid epithelial cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Kopecky, K.J.; Hiraoka, T.; Ezaki, H.; Clifton, K.H.

    1986-01-01

    Studies were conducted to examine differences between the radiosensitivities of normal and neoplastic epithelial cells of the human thyroid. Freshly excised thyroid tissues from the tumours of eight patients with papillary carcinoma (PC) and five with follicular adenoma (FA) were cultured in vitro separately from normal thyroid tissue obtained from the surgical margins of the same patients. Plating efficiency of unirradiated control tissue was lower, on average for tumour tissue compared with normal tissue. Radiosensitivity, measured by the 37% inactivation dose D 0 , was greater for carcinoma tissue than for normal tissue in seven out of eight PC cases. Adenomatous tissue was less radiosensitive than normal tissue in four out of five FA cases. This is the first report comparing the radiosensitivity of autologous normal and abnormal epithelial tissue from the human thyroid. (author)

  17. Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas.

    Science.gov (United States)

    Nielsen, Michael Friberg Bruun; Mortensen, Michael Bau; Detlefsen, Sönke

    2017-10-01

    Pancreatic stellate cells (PSCs) play a central role as source of fibrogenic cells in pancreatic cancer and chronic pancreatitis. In contrast to quiescent hepatic stellate cells (qHSCs), a specific marker for quiescent PSCs (qPSCs) that can be used in formalin-fixed and paraffin embedded (FFPE) normal human pancreatic tissue has not been identified. The aim of this study was to identify a marker enabling the identification of qPSCs in normal human FFPE pancreatic tissue. Immunohistochemical (IHC), double-IHC, immunofluorescence (IF) and double-IF analyses were carried out using a tissue microarray consisting of cores with normal human pancreatic tissue. Cores with normal human liver served as control. Antibodies directed against adipophilin, α-SMA, CD146, CRBP-1, cytoglobin, desmin, GFAP, nestin, S100A4 and vinculin were examined, with special emphasis on their expression in periacinar cells in the normal human pancreas and perisinusoidal cells in the normal human liver. The immunolabelling capacity was evaluated according to a semiquantitative scoring system. Double-IF of the markers of interest together with markers for other periacinar cells was performed. Moreover, the utility of histochemical stains for the identification of human qPSCs was examined, and their ultrastructure was revisited by electron microscopy. Adipophilin, CRBP-1, cytoglobin and vinculin were expressed in qHSCs in the liver, whereas cytoglobin and adipophilin were expressed in qPSCs in the pancreas. Adipophilin immunohistochemistry was highly dependent on the preanalytical time interval (PATI) from removal of the tissue to formalin fixation. Cytoglobin, S100A4 and vinculin were expressed in periacinar fibroblasts (FBs). The other examined markers were negative in human qPSCs. Our data indicate that cytoglobin and adipophilin are markers of qPSCs in the normal human pancreas. However, the use of adipophilin as a qPSC marker may be limited due to its high dependence on optimal PATI

  18. Prenatal nicotinic exposure upregulates pulmonary C-fiber NK1R expression to prolong pulmonary C-fiber-mediated apneic response

    International Nuclear Information System (INIS)

    Zhao, Lei; Zhuang, Jianguo; Zang, Na; Lin, Yong; Lee, Lu-Yuan; Xu, Fadi

    2016-01-01

    Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA 1 receptor, ADA 1 R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA 1 R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to change BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChR or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin. - Highlights: • PNE upregulated NK1R and TRPV1 gene and protein expression in the N/J ganglia. • PNE only elevated NK1R mRNA in vagal pulmonary C-neurons. • Blockage of peripheral NK1R reduced the PNE-induced PCF sensitization. • PNE induced gene and protein changes in

  19. DX5+NKT cells display phenotypical and functional differences between spleen and liver as well as NK1.1-Balb/c and NK1.1+ C57Bl/6 mice.

    Science.gov (United States)

    Werner, Jens M; Busl, Elisabeth; Farkas, Stefan A; Schlitt, Hans J; Geissler, Edward K; Hornung, Matthias

    2011-04-29

    Natural killer T cells represent a linkage between innate and adaptive immunity. They are a heterogeneous population of specialized T lymphocytes composed of different subsets. DX5+NKT cells are characterized by expression of the NK cell marker DX5 in the context of CD3. However, little is known about the phenotype and functional capacity of this unique cell population. Therefore, we investigated the expression of several T cell and NK cell markers, as well as functional parameters in spleen and liver subsets of DX5+NKT cells in NK1.1- Balb/c mice and compared our findings to NK1.1+ C57Bl/6 mice. In the spleen 34% of DX5+NKT cells expressed CD62L and they up-regulated the functional receptors CD154 as well as CD178 upon activation. In contrast, only a few liver DX5+NKT cells expressed CD62L, and they did not up-regulate CD154 upon activation. A further difference between spleen and liver subsets was observed in cytokine production. Spleen DX5+NKT cells produced more Th1 cytokines including IL-2, IFN-γ and TNF-α, while liver DX5+NKT cells secreted more Th2 cytokines (e.g. IL-4) and even the Th17 cytokine, IL-17a. Furthermore, we found inter-strain differences. In NK1.1+ C57Bl/6 mice DX5+NKT cells represented a distinct T cell population expressing less CD4 and more CD8. Accordingly, these cells showed a CD178 and Th2-type functional capacity upon activation. These results show that DX5+NKT cells are a heterogeneous population, depending on the dedicated organ and mouse strain, that has diverse functional capacity.

  20. Growth and apoptosis of human natural killer cell neoplasms: role of interleukin-2/15 signaling.

    Science.gov (United States)

    Yamasaki, Satoshi; Maeda, Motoi; Ohshima, Koichi; Kikuchi, Masahiro; Otsuka, Teruhisa; Harada, Mine

    2004-10-01

    Interleukin (IL)-15 plays an important role in the survival of human natural killer (NK) cells. We investigated IL-2/15 signaling in NK cell neoplasms from five patients and in five cell lines (NK-92, KHYG-1, SNK-6, HANK1 and MOTN-1) compared to mature peripheral NK cells from 10 healthy subjects. Apoptosis of NK cell lines was prevented by addition of IL-15 in vitro. Blocking IL-2/15Rbeta on IL-2-stimulated NK-92 cells resulted in reduced expression of Bcl-X(L) and phosphorylated Stat5, which paralleled early apoptosis without altering Bcl-2 expression. These data add IL-2/15Rbeta to the list of factors important for the survival of NK cell neoplasms.

  1. Gene expression signatures affected by ethanol and/or nicotine in normal human normal oral keratinocytes (NHOKs

    Directory of Open Access Journals (Sweden)

    Jeffrey J. Kim

    2014-12-01

    Full Text Available It has been reported that nicotine/alcohol alters epigenetic control and leads to abrogated DNA methylation and histone modifications, which could subsequently perturb transcriptional regulation critically important in cellular transformation. The aim of this study is to determine the molecular mechanisms of nicotine/alcohol-induced epigenetic alterations and their mechanistic roles in transcriptional regulation in human adult stem cells. We hypothesized that nicotine/alcohol induces deregulation of epigenetic machinery and leads to epigenetic alterations, which subsequently affect transcriptional regulation in oral epithelial stem cells. As an initiating step we have profiled transcriptomic alterations induced by the combinatory administration of EtOH and nicotine in primary normal human oral keratinocytes. Here we provide detailed experimental methods, analysis and information associated with our data deposited into Gene Expression Omnibus (GEO under GSE57634. Our data provide comprehensive transcriptomic map describing molecular changes induced by EtOH and nicotine on normal human oral keratinocytes.

  2. Phosphoinositide-3-Kinase Signaling in Human Natural Killer Cells: New Insights from Primary Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Emily M. Mace

    2018-03-01

    Full Text Available Human natural killer (NK cells play a critical role in the control of viral infections and malignancy. Their importance in human health and disease is illustrated by severe viral infections in patients with primary immunodeficiencies that affect NK cell function and/or development. The recent identification of patients with phosphoinositide-3-kinase (PI3K-signaling pathway mutations that can cause primary immunodeficiency provides valuable insight into the role that PI3K signaling plays in human NK cell maturation and lytic function. There is a rich literature that demonstrates a requirement for PI3K in multiple key aspects of NK cell biology, including development/maturation, homing, priming, and function. Here, I briefly review these previous studies and place them in context with recent findings from the study of primary immunodeficiency patients, particularly those with hyperactivating mutations in PI3Kδ signaling.

  3. Large-Scale Culture and Genetic Modification of Human Natural Killer Cells for Cellular Therapy.

    Science.gov (United States)

    Lapteva, Natalia; Parihar, Robin; Rollins, Lisa A; Gee, Adrian P; Rooney, Cliona M

    2016-01-01

    Recent advances in methods for the ex vivo expansion of human natural killer (NK) cells have facilitated the use of these powerful immune cells in clinical protocols. Further, the ability to genetically modify primary human NK cells following rapid expansion allows targeting and enhancement of their immune function. We have successfully adapted an expansion method for primary NK cells from peripheral blood mononuclear cells or from apheresis products in gas permeable rapid expansion devices (G-Rexes). Here, we describe an optimized protocol for rapid and robust NK cell expansion as well as a method for highly efficient retroviral transduction of these ex vivo expanded cells. These methodologies are good manufacturing practice (GMP) compliant and could be used for clinical-grade product manufacturing.

  4. Peningkatan Ekspresi Gen NKG2D Sel-sel NK oleh Brokoli untuk Mencegah Kanker

    Directory of Open Access Journals (Sweden)

    Diana Krisanti Jasaputra

    2017-08-01

    Cancer is the non-communicable diseases (NCD and the biggest cause of death in the world. One of the factors that affect cancer development is NKG2D receptors (natural-killer group 2, member D is a receptor complex that activates NK cells and is important in cancer immunosurveilance. Broccoli, Cruciferae vegetable, contains glucosinolate and isothiocyanate. Glucosinolate will be hydrolysed by the mirosinase (thioglucodase β and form the isothiocyanate compound. Isothiocyanate compounds essential to prevent cancer are sulforafan compounds. The objective of the study was to assess the effect of broccoli in enhancing NKG2D receptor expression in order to improve NK cell activity to prevent cancer. This experimental study is a comparative true experimental laboratory, conducted in the Aretha Medika Utama in February to July 2016. Broccoli was freeze dryer and made two concentrations of flour, 50 μg/mL and 25 μg/mL. The study begins with multiplication of NK cells (cell line, then continued with treatment for 24 hours and assessment of NKG2D gene expression using qPCR. NKG2D gene expression research data was calculated by Livak formula and analyzed using one-way ANOVA test and Tukey's advanced test (SPSS 16. The administration of broccoli concentrations of 50 μg/mL and 25 μg/mL increased the level of NKG2D gene expression, indicating an increase in NK cell activity. The conclusion of this study is the provision of broccoli increases the activity of NK cells in preventing and fighting cancer cells.

  5. Prenatal nicotinic exposure upregulates pulmonary C-fiber NK1R expression to prolong pulmonary C-fiber-mediated apneic response

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Lei; Zhuang, Jianguo; Zang, Na; Lin, Yong [Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM (United States); Lee, Lu-Yuan [Department of Physiology, University of Kentucky, Lexington, KY (United States); Xu, Fadi, E-mail: fxu@lrri.org [Pathophysiology Program, Lovelace Respiratory Research Institute, Albuquerque, NM (United States); Department of Physiology, University of Kentucky, Lexington, KY (United States)

    2016-01-01

    Prenatal nicotinic exposure (PNE) prolongs bronchopulmonary C-fiber (PCF)-mediated apneic response to intra-atrial bolus injection of capsaicin in rat pups. The relevant mechanisms remain unclear. Pulmonary substance P and adenosine and their receptors (neurokinin-A receptor, NK1R and ADA{sub 1} receptor, ADA{sub 1}R) and transient receptor potential cation channel subfamily V member 1 (TRPV1) expressed on PCFs are critical for PCF sensitization and/or activation. Here, we compared substance P and adenosine in BALF and NK1R, ADA{sub 1}R, and TRPV1 expression in the nodose/jugular (N/J) ganglia (vagal pulmonary C-neurons retrogradely labeled) between Ctrl and PNE pups. We found that PNE failed to change BALF substance P and adenosine content, but significantly upregulated both mRNA and protein TRPV1 and NK1R in the N/J ganglia and only NK1R mRNA in pulmonary C-neurons. To define the role of NK1R in the PNE-induced PCF sensitization, the apneic response to capsaicin (i.v.) without or with pretreatment of SR140333 (a peripheral and selective NK1R antagonist) was compared and the prolonged apnea by PNE significantly shortened by SR140333. To clarify if the PNE-evoked responses depended on action of nicotinic acetylcholine receptors (nAChRs), particularly α7nAChR, mecamylamine or methyllycaconitine (a general nAChR or a selective α7nAChR antagonist) was administrated via another mini-pump over the PNE period. Mecamylamine or methyllycaconitine eliminated the PNE-evoked mRNA and protein responses. Our data suggest that PNE is able to elevate PCF NK1R expression via activation of nAChRs, especially α7nAChR, which likely contributes to sensitize PCFs and prolong the PCF-mediated apneic response to capsaicin. - Highlights: • PNE upregulated NK1R and TRPV1 gene and protein expression in the N/J ganglia. • PNE only elevated NK1R mRNA in vagal pulmonary C-neurons. • Blockage of peripheral NK1R reduced the PNE-induced PCF sensitization. • PNE induced gene and protein

  6. Primary NK/T cell lymphoma nasal type of the stomach with skin involvement: a case report

    Directory of Open Access Journals (Sweden)

    Sebastian Kobold

    2009-12-01

    Full Text Available Since nasal NK/T cell lymphoma and NK/T cell lymphoma nasal type are rare diseases, gastric involvement has seldom been seen. We report a unique case of a patient with a primary NK/T cell lymphoma nasal type of the stomach with skin involvement. The patient had no history of malignant diseases and was diagnosed with hematemesis and intense bleeding from his gastric primary site. Shortly after this event, exanthemic skin lesions appeared with concordant histology to the primary site. Despite chemotherapy, the patient died one month after the first symptomatic appearance of disease.

  7. Distinct migration and contact dynamics of resting and IL-2-activated human natural killer cells

    Directory of Open Access Journals (Sweden)

    Per Erik Olofsson

    2014-03-01

    Full Text Available Natural killer (NK cells serve as one of the first lines of defense against viral infections and transformed cells. NK cell cytotoxicity is not dependent on antigen presentation by target cells, but is dependent on integration of activating and inhibitory signals triggered by receptor–ligand interactions formed at a tight intercellular contact between the NK and target cell, i.e. the immune synapse. We have studied the single-cell migration behavior and target-cell contact dynamics of resting and IL-2-activated human peripheral blood NK cells. Small populations of NK cells and target cells were confined in microwells and imaged by fluorescence microscopy for >8 h. Only the IL-2-activated population of NK cells showed efficient cytotoxicity against the human embryonic kidney (HEK 293T target cells. We found that although the average migration speeds were comparable, activated NK cells showed significantly more dynamic migration behavior, with more frequent transitions between periods of low and high motility. Resting NK cells formed fewer and weaker contacts with target cells, which manifested as shorter conjugation times and in many cases a complete lack of post-conjugation attachment to target cells. Activated NK cells were approximately twice as big as the resting cells, displayed a more migratory phenotype, and were more likely to employ motile scanning of the target cell surface during conjugation. Taken together, our experiments quantify, at the single-cell level, how activation by IL-2 leads to altered NK cell cytotoxicity, migration behavior and contact dynamics.

  8. Response of cultured normal human mammary epithelial cells to X rays

    International Nuclear Information System (INIS)

    Yang, T.C.; Stampfer, M.R.; Smith, H.S.

    1983-01-01

    The effect of X rays on the reproductive death of cultured normal human mammary epithelial cells was examined. Techniques were developed for isolating and culturing normal human mammary epithelial cells which provide sufficient cells at second passage for radiation studies, and an efficient clonogenic assay suitable for measuring radiation survival curves. It was found that the survival curves for epithelial cells from normal breast tissue were exponential and had D 0 values of about 109-148 rad for 225 kVp X rays. No consistent change in cell radiosensitivity with the age of donor was observed, and no sublethal damage repair in these cells could be detected with the split-dose technique

  9. LYMPHOME T/NK PRIMITIF DU LARYNx : LOCALISATION ...

    African Journals Online (AJOL)

    CONCLUSION. En conclusion le lymphome T/Nk du larynx est une entité rare et extrêmement agressive associée à une forte mor- talité. Malgré que le protocole SMiLE ou d'autres régimes contenant la L-asparaginase sont prometteurs dans ce type de lymphome incurable, d'autres essais thérapeu- tiques sont nécessaires ...

  10. An in vivo mechanism for the reduced peripheral neurotoxicity of NK105: a paclitaxel-incorporating polymeric micellar nanoparticle formulation

    Directory of Open Access Journals (Sweden)

    Nakamura I

    2017-02-01

    Full Text Available Iwao Nakamura, Eiji Ichimura, Rika Goda, Hitomi Hayashi, Hiroko Mashiba, Daichi Nagai, Hirofumi Yokoyama, Takeshi Onda, Akira Masuda Nanomedicine Group, Pharmaceutical Research Laboratories, Nippon Kayaku Co., Ltd., Tokyo, Japan Abstract: In our previous rodent studies, the paclitaxel (PTX-incorporating polymeric micellar nanoparticle formulation NK105 had showed significantly stronger antitumor effects and reduced peripheral neurotoxicity than PTX dissolved in Cremophor® EL and ethanol (PTX/CRE. Thus, to elucidate the mechanisms underlying reduced peripheral neurotoxicity due to NK105, we performed pharmacokinetic analyses of NK105 and PTX/CRE in rats. Among neural tissues, the highest PTX concentrations were found in the dorsal root ganglion (DRG. Moreover, exposure of DRG to PTX (Cmax_PTX and AUC0-inf._PTX in the NK105 group was almost half that in the PTX/CRE group, whereas exposure of sciatic and sural nerves was greater in the NK105 group than in the PTX/CRE group. In histopathological analyses, damage to DRG and both peripheral nerves was less in the NK105 group than in the PTX/CRE group. The consistency of these pharmacokinetic and histopathological data suggests that high levels of PTX in the DRG play an important role in the induction of peripheral neurotoxicity, and reduced distribution of PTX to the DRG of NK105-treated rats limits the ensuing peripheral neurotoxicity. In further analyses of PTX distribution to the DRG, Evans blue (Eb was injected with BODIPY®-labeled NK105 into rats, and Eb fluorescence was observed only in the DRG. Following injection, most Eb dye bound to albumin particles of ~8 nm and had penetrated the DRG. In contrast, BODIPY®–NK105 particles of ~90 nm were not found in the DRG, suggesting differential penetration based on particle size. Because PTX also circulates as PTX–albumin particles of ~8 nm following injection of PTX/CRE, reduced peripheral neurotoxicity of NK105 may reflect exclusion from the

  11. Kinome analysis of receptor-induced phosphorylation in human natural killer cells.

    Directory of Open Access Journals (Sweden)

    Sebastian König

    Full Text Available BACKGROUND: Natural killer (NK cells contribute to the defense against infected and transformed cells through the engagement of multiple germline-encoded activation receptors. Stimulation of the Fc receptor CD16 alone is sufficient for NK cell activation, whereas other receptors, such as 2B4 (CD244 and DNAM-1 (CD226, act synergistically. After receptor engagement, protein kinases play a major role in signaling networks controlling NK cell effector functions. However, it has not been characterized systematically which of all kinases encoded by the human genome (kinome are involved in NK cell activation. RESULTS: A kinase-selective phosphoproteome approach enabled the determination of 188 kinases expressed in human NK cells. Crosslinking of CD16 as well as 2B4 and DNAM-1 revealed a total of 313 distinct kinase phosphorylation sites on 109 different kinases. Phosphorylation sites on 21 kinases were similarly regulated after engagement of either CD16 or co-engagement of 2B4 and DNAM-1. Among those, increased phosphorylation of FYN, KCC2G (CAMK2, FES, and AAK1, as well as the reduced phosphorylation of MARK2, were reproducibly observed both after engagement of CD16 and co-engagement of 2B4 and DNAM-1. Notably, only one phosphorylation on PAK4 was differentally regulated. CONCLUSIONS: The present study has identified a significant portion of the NK cell kinome and defined novel phosphorylation sites in primary lymphocytes. Regulated phosphorylations observed in the early phase of NK cell activation imply these kinases are involved in NK cell signaling. Taken together, this study suggests a largely shared signaling pathway downstream of distinct activation receptors and constitutes a valuable resource for further elucidating the regulation of NK cell effector responses.

  12. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    Science.gov (United States)

    Messlinger, Helena; Sebald, Heidi; Heger, Lukas; Dudziak, Diana; Bogdan, Christian; Schleicher, Ulrike

    2018-01-01

    Activated natural killer (NK) cells release interferon (IFN)-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani). When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis) were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL)-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs) of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells reduced the

  13. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    Directory of Open Access Journals (Sweden)

    Helena Messlinger

    2018-01-01

    Full Text Available Activated natural killer (NK cells release interferon (IFN-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani. When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells

  14. Chimeric Antigen Receptor-Engineered NK-92 Cells: An Off-the-Shelf Cellular Therapeutic for Targeted Elimination of Cancer Cells and Induction of Protective Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Congcong Zhang

    2017-05-01

    Full Text Available Significant progress has been made in recent years toward realizing the potential of natural killer (NK cells for cancer immunotherapy. NK cells can respond rapidly to transformed and stressed cells and have the intrinsic potential to extravasate and reach their targets in almost all body tissues. In addition to donor-derived primary NK cells, also the established NK cell line NK-92 is being developed for adoptive immunotherapy, and general safety of infusion of irradiated NK-92 cells has been established in phase I clinical trials with clinical responses observed in some of the cancer patients treated. To enhance their therapeutic utility, NK-92 cells have been modified to express chimeric antigen receptors (CARs composed of a tumor-specific single chain fragment variable antibody fragment fused via hinge and transmembrane regions to intracellular signaling moieties such as CD3ζ or composite signaling domains containing a costimulatory protein together with CD3ζ. CAR-mediated activation of NK cells then bypasses inhibitory signals and overcomes NK resistance of tumor cells. In contrast to primary NK cells, CAR-engineered NK-92 cell lines suitable for clinical development can be established from molecularly and functionally well-characterized single cell clones following good manufacturing practice-compliant procedures. In preclinical in vitro and in vivo models, potent antitumor activity of NK-92 variants targeted to differentiation antigens expressed by hematologic malignancies, and overexpressed or mutated self-antigens associated with solid tumors has been found, encouraging further development of CAR-engineered NK-92 cells. Importantly, in syngeneic mouse tumor models, induction of endogenous antitumor immunity after treatment with CAR-expressing NK-92 cells has been demonstrated, resulting in cures and long-lasting immunological memory protecting against tumor rechallenge at distant sites. Here, we summarize the current status and future

  15. Normal human bone marrow and its variations in MRI

    International Nuclear Information System (INIS)

    Vahlensieck, M.; Schmidt, H.M.

    2000-01-01

    Physiology and age dependant changes of human bone marrow are described. The resulting normal distribution patterns of active and inactive bone marrow including the various contrasts on different MR-sequences are discussed. (orig.) [de

  16. Novel Immunotherapy Options for Extranodal NK/T-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Boyu Hu

    2018-04-01

    Full Text Available Extranodal NK/T-cell lymphoma (ENKTCL is a highly aggressive mature NK/T-cell neoplasm marked by NK-cell phenotypic expression of CD3ε and CD56. While the disease is reported worldwide, there is a significant geographic variation with its highest incidence in East Asian countries possibly related to the frequent early childhood exposure of Epstein–Barr virus (EBV and specific ethnic–genetical background, which contributes to the tumorigenesis. Historically, anthracycline-based chemotherapy such as CHOP (cyclophosphamide, adriamycin, vincristine, and prednisone was used, but resulted in poor outcomes. This is due in part to intrinsic ENKTCL resistance to anthracycline caused by high expression levels of P-glycoprotein. The recent application of combined modality therapy with concurrent or sequential radiation therapy for early stage disease, along with non-anthracycline-based chemotherapy regimens consisting of drugs independent of P-glycoprotein have significantly improved clinical outcomes. Particularly, this neoplasm shows high sensitivity to l-asparaginase as NK-cells lack asparagine synthase activity. Even still, outcomes of patients with advanced stage disease or those with relapsed/recurrent disease are dismal with overall survival of generally a few months. Thus, novel therapies are needed for this population. Clinical activity of targeted antibodies along with antibody–drug conjugates, such as daratumumab (naked anti-CD38 antibody and brentuximab vedotin (anti-CD30 antibody conjugated with auristatin E, have been reported. Further promising data have been shown with checkpoint inhibitors as high levels of programmed death-ligand 1 expression are observed in ENKTCL due to EBV-driven overexpression of the latent membrane proteins [latent membrane protein 1 (LMP1 and LMP2] with activation of the NF-κB/MAPK pathways. Initial case series with programmed death 1 inhibitors showed an overall response rate of 100% in seven relapsed

  17. A novel generalized normal distribution for human longevity and other negatively skewed data.

    Science.gov (United States)

    Robertson, Henry T; Allison, David B

    2012-01-01

    Negatively skewed data arise occasionally in statistical practice; perhaps the most familiar example is the distribution of human longevity. Although other generalizations of the normal distribution exist, we demonstrate a new alternative that apparently fits human longevity data better. We propose an alternative approach of a normal distribution whose scale parameter is conditioned on attained age. This approach is consistent with previous findings that longevity conditioned on survival to the modal age behaves like a normal distribution. We derive such a distribution and demonstrate its accuracy in modeling human longevity data from life tables. The new distribution is characterized by 1. An intuitively straightforward genesis; 2. Closed forms for the pdf, cdf, mode, quantile, and hazard functions; and 3. Accessibility to non-statisticians, based on its close relationship to the normal distribution.

  18. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells.

    Directory of Open Access Journals (Sweden)

    Honami Takada

    Full Text Available Epstein-Barr virus (EBV has been detected in several T- and NK-cell neoplasms such as extranodal NK/T-cell lymphoma nasal type, aggressive NK-cell leukemia, EBV-positive peripheral T-cell lymphoma, systemic EBV-positive T-cell lymphoma of childhood, and chronic active EBV infection (CAEBV. However, how this virus contributes to lymphomagenesis in T or NK cells remains largely unknown. Here, we examined NF-κB activation in EBV-positive T or NK cell lines, SNT8, SNT15, SNT16, SNK6, and primary EBV-positive and clonally proliferating T/NK cells obtained from the peripheral blood of patients with CAEBV. Western blotting, electrophoretic mobility shift assays, and immunofluorescent staining revealed persistent NF-κB activation in EBV-infected cell lines and primary cells from patients. Furthermore, we investigated the role of EBV in infected T cells. We performed an in vitro infection assay using MOLT4 cells infected with EBV. The infection directly induced NF-κB activation, promoted survival, and inhibited etoposide-induced apoptosis in MOLT4 cells. The luciferase assay suggested that LMP1 mediated NF-κB activation in MOLT4 cells. IMD-0354, a specific inhibitor of NF-κB that suppresses NF-κB activation in cell lines, inhibited cell survival and induced apoptosis. These results indicate that EBV induces NF-κB-mediated survival signals in T and NK cells, and therefore, may contribute to the lymphomagenesis of these cells.

  19. Rapamycin Synergizes with Cisplatin in Antiendometrial Cancer Activation by Improving IL-27–Stimulated Cytotoxicity of NK Cells

    Directory of Open Access Journals (Sweden)

    Wen-Jie Zhou

    2018-01-01

    Full Text Available Natural killer (NK cell function is critical for controlling initial tumor growth and determining chemosensitivity of the tumor. A synergistic relationship between rapamycin and cisplatin in uterine endometrial cancer (UEC in vitro has been reported, but the mechanism and the combined therapeutic strategy for endometrial cancer (EC are still unknown. We found a positive correlation between the level of IL-27 and the differentiated stage of UEC. The increase of IL-27 in uterine endometrial cancer cell (UECC lines (Ishikawa, RL95-2 and KLE led to a high cytotoxic activity of NK cells to UECC in the co-culture system. Exposure with rapamycin enhanced the cytotoxicity of NK cells by upregulating the expression of IL-27 in UECC and IL-27 receptors (IL-27Rs: WSX-1 and gp130 on NK cells and further restricted the growth of UEC in Ishikawa-xenografted nude mice. In addition, treatment with rapamycin resulted in an increased autophagy level of UECC, and IL-27 enhanced this ability of rapamycin. Cisplatin-mediated NK cells' cytotoxic activity and anti-UEC activation were independent of IL-27; however, the combination of rapamycin and cisplatin led to a higher cytotoxic activity of NK cells, smaller UEC volume and longer survival rate in vivo. These results suggest that rapamycin and cisplatin synergistically activate the cytotoxicity of NK cells and inhibit the progression of UEC in both an IL-27–dependent and –independent manner. This provides a scientific basis for potential rapamycin-cisplatin combined therapeutic strategies targeted to UEC, especially for the patients with low differentiated stage or abnormally low level of IL-27.

  20. ADCC-Mediated CD56DIM NK Cell Responses Are Associated with Early HBsAg Clearance in Acute HBV Infection.

    Science.gov (United States)

    Yu, Wen-Han; Cosgrove, Cormac; Berger, Christoph T; Cheney, Patrick C; Krykbaeva, Marina; Kim, Arthur Y; Lewis-Ximenez, Lia; Lauer, Georg M; Alter, Galit

    2018-01-01

    Hepatitis B virus (HBV) affects up to 400 million people worldwide and accounts for approximately one million deaths per year from liver pathologies. Current treatment regimens are effective in suppressing viremia but usually have to be taken indefinitely, warranting research into new therapeutic approaches. Acute HBV infection in adults almost universally results in resolution of viremia, with the exception of immunocompromised persons, suggesting that the immune response can functionally cure or even eradicate HBV infection. Because immunophenotypic and functional studies have implicated a role for Natural Killer (NK) cells in HBV clearance during acute infection, we hypothesized that a distinct NK-cell profile exists in acute HBV infection that could provide information for the mechanism of HBV clearance. Using multivariate flow cytometry, we evaluated the expression of key activating and inhibitory receptors on NK cells, and their ability to respond to classic target cell lines. Multivariate analysis revealed selective perturbation of the CD56 dim NK-cell subset during acute infection, displaying low levels of NKp46+, NKp30+, CD160+ and CD161+ cells. Intriguingly, the CD56 dim NK-cell profile predicted time to HBV surface antigen (HBsAg) clearance from the blood, and distinct NK-cell profiles predicted early (NKp30, CD94, CD161) and late clearance (KIR3DL1, CD158a, perforin, NKp46). Finally, functional analysis demonstrated that early and late clearance tracked with elevated degranulation (CD107a) or IFNγ production, respectively, in response to ADCC-mediated activation. The cytolytic CD56 dim NK-cell subset is selectively activated in acute HBV infection and displays distinct phenotypic and functional profiles associated with efficient and early control of HBV, implicating antibody-mediated cytolytic NK-cell responses in the early control and functional cure of HBV infection.

  1. The expression of Egfl7 in human normal tissues and epithelial tumors.

    Science.gov (United States)

    Fan, Chun; Yang, Lian-Yue; Wu, Fan; Tao, Yi-Ming; Liu, Lin-Sen; Zhang, Jin-Fan; He, Ya-Ning; Tang, Li-Li; Chen, Guo-Dong; Guo, Lei

    2013-04-23

    To investigate the expression of Egfl7 in normal adult human tissues and human epithelial tumors.
 RT-PCR and Western blot were employed to detect Egfl7 expression in normal adult human tissues and 10 human epithelial tumors including hepatocellular carcinoma (HCC), lung cancer, breast cancer, prostate cancer, colorectal cancer, gastric cancer, esophageal cancer, malignant glioma, ovarian cancer and renal cancer. Immunohistochemistry and cytoimmunofluorescence were subsequently used to determine the localization of Egfl7 in human epithelial tumor tissues and cell lines. ELISA was also carried out to examine the serum Egfl7 levels in cancer patients. In addition, correlations between Egfl7 expression and clinicopathological features as well as prognosis of HCC and breast cancer were also analyzed on the basis of immunohistochemistry results.
 Egfl7 was differentially expressed in 19 adult human normal tissues and was overexpressed in all 10 human epithelial tumor tissues. The serum Egfl7 level was also significantly elevated in cancer patients. The increased Egfl7 expression in HCC correlated with vein invasion, absence of capsule formation, multiple tumor nodes and poor prognosis. Similarly, upregulation of Egfl7 in breast cancer correlated strongly with TNM stage, lymphatic metastasis, estrogen receptor positivity, Her2 positivity and poor prognosis. 
 Egfl7 is significantly upregulated in human epithelial tumor tissues, suggesting Egfl7 to be a potential biomarker for human epithelial tumors, especially HCC and breast cancer.

  2. Chronic In Vivo Interaction of Dendritic Cells Expressing the Ligand Rae-1ε with NK Cells Impacts NKG2D Expression and Function.

    Science.gov (United States)

    Morvan, Maelig G; Champsaur, Marine; Reizis, Boris; Lanier, Lewis L

    2017-05-01

    To investigate how dendritic cells (DCs) interact with NK cells in vivo, we developed a novel mouse model in which Rae-1ε, a ligand of the NKG2D receptor, is expressed in cells with high levels of CD11c. In these CD11c-Rae1 mice, expression of Rae-1 was confirmed on all subsets of DCs and a small subset of B and T cells, but not on NK cells. DC numbers and activation status were unchanged, and NK cells in these CD11c-Rae1 mice presented the same Ly49 repertoire and maturation levels as their littermate wildtype controls. Early NK cell activation after mouse CMV infection was slightly lower than in wildtype mice, but NK cell expansion and viral control were comparable. Notably, we demonstrate that chronic interaction of NK cells with NKG2D ligand-expressing DCs leads to a reversible NKG2D down-modulation, as well as impaired NKG2D-dependent NK cell functions, including tumor rejection. In addition to generating a useful mouse model, our studies reveal in vivo the functional importance of the NK cell and DC cross-talk.

  3. Normalized Metadata Generation for Human Retrieval Using Multiple Video Surveillance Cameras

    Directory of Open Access Journals (Sweden)

    Jaehoon Jung

    2016-06-01

    Full Text Available Since it is impossible for surveillance personnel to keep monitoring videos from a multiple camera-based surveillance system, an efficient technique is needed to help recognize important situations by retrieving the metadata of an object-of-interest. In a multiple camera-based surveillance system, an object detected in a camera has a different shape in another camera, which is a critical issue of wide-range, real-time surveillance systems. In order to address the problem, this paper presents an object retrieval method by extracting the normalized metadata of an object-of-interest from multiple, heterogeneous cameras. The proposed metadata generation algorithm consists of three steps: (i generation of a three-dimensional (3D human model; (ii human object-based automatic scene calibration; and (iii metadata generation. More specifically, an appropriately-generated 3D human model provides the foot-to-head direction information that is used as the input of the automatic calibration of each camera. The normalized object information is used to retrieve an object-of-interest in a wide-range, multiple-camera surveillance system in the form of metadata. Experimental results show that the 3D human model matches the ground truth, and automatic calibration-based normalization of metadata enables a successful retrieval and tracking of a human object in the multiple-camera video surveillance system.

  4. Treatment with the NK1 antagonist emend reduces blood brain barrier dysfunction and edema formation in an experimental model of brain tumors.

    Directory of Open Access Journals (Sweden)

    Elizabeth Harford-Wright

    Full Text Available The neuropeptide substance P (SP has been implicated in the disruption of the blood-brain barrier (BBB and development of cerebral edema in acute brain injury. Cerebral edema accumulates rapidly around brain tumors and has been linked to several tumor-associated deficits. Currently, the standard treatment for peritumoral edema is the corticosteroid dexamethasone, prolonged use of which is associated with a number of deleterious side effects. As SP is reported to increase in many cancer types, this study examined whether SP plays a role in the genesis of brain peritumoral edema. A-375 human melanoma cells were injected into the right striatum of male Balb/c nude mice to induce brain tumor growth, with culture medium injected in animals serving as controls. At 2, 3 or 4 weeks following tumor cell inoculation, non-treated animals were perfusion fixed for immunohistochemical detection of Albumin, SP and NK1 receptor. A further subgroup of animals was treated with a daily injection of the NK1 antagonist Emend (3 mg/kg, dexamethasone (8 mg/kg or saline vehicle at 3 weeks post-inoculation. Animals were sacrificed a week later to determine BBB permeability using Evan's Blue and brain water content. Non-treated animals demonstrated a significant increase in albumin, SP and NK1 receptor immunoreactivity in the peritumoral area as well as increased perivascular staining in the surrounding brain tissue. Brain water content and BBB permeability was significantly increased in tumor-inoculated animals when compared to controls (p<0.05. Treatment with Emend and dexamethasone reduced BBB permeability and brain water content when compared to vehicle-treated tumor-inoculated mice. The increase in peritumoral staining for both SP and the NK1 receptor, coupled with the reduction in brain water content and BBB permeability seen following treatment with the NK1 antagonist Emend, suggests that SP plays a role in the genesis of peritumoral edema, and thus warrants

  5. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    Directory of Open Access Journals (Sweden)

    Irene Veneziani

    2018-01-01

    Full Text Available Neuroblastoma (NB, the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR, triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted.

  6. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    Science.gov (United States)

    Veneziani, Irene; Brandetti, Elisa; Ognibene, Marzia; Pezzolo, Annalisa; Pistoia, Vito

    2018-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR), triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS) in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted. PMID:29805983

  7. HMGB1-dependent triggering of HIV-1 replication and persistence in dendritic cells as a consequence of NK-DC cross-talk.

    Directory of Open Access Journals (Sweden)

    Héla Saïdi

    Full Text Available HIV-1 has evolved ways to exploit DCs, thereby facilitating viral dissemination and allowing evasion of antiviral immunity. Recently, the fate of DCs has been found to be extremely dependent on the interaction with autologous NK cells, but the mechanisms by which NK-DC interaction controls viral infections remain unclear. Here, we investigate the impact of NK-DC cross-talk on maturation and functions of HIV-infected immature DCs.Immature DCs were derived from primary monocytes, cultured in the presence of IL-4 and GM-CSF. In some experiments, DCs were infected with R5-HIV-1(BaL or X4-HIV-1(NDK, and viral replication, proviral HIV-DNA and the frequency of infected DCs were measured. Autologous NK cells were sorted and either kept unstimulated in the presence of suboptimal concentration of IL-2, or activated by a combination of PHA and IL-2. The impact of 24 h NK-DC cross-talk on the fate of HIV-1-infected DCs was analyzed. We report that activated NK cells were required for the induction of maturation of DCs, whether uninfected or HIV-1-infected, and this process involved HMGB1. However, the cross-talk between HIV-1-infected DCs and activated NK cells was functionally defective, as demonstrated by the strong impairment of DCs to induce Th1 polarization of naïve CD4 T cells. This was associated with the defective production of IL-12 and IL-18 by infected DCs. Moreover, the crosstalk between activated NK cells and HIV-infected DCs resulted in a dramatic increase in viral replication and proviral DNA expression in DCs. HMGB1, produced both by NK cells and DCs, was found to play a pivotal role in this process, and inhibition of HMGB1 activity by glycyrrhizin, known to bind specifically to HMGB1, or blocking anti-HMGB1 antibodies, abrogated NK-dependent HIV-1 replication in DCs.These observations provide evidence for the crucial role of NK-DC cross-talk in promoting viral dissemination, and challenge the question of the in vivo involvement of HMGB1

  8. Insulin binding properties of normal and transformed human epidermal cultured keratinocytes

    International Nuclear Information System (INIS)

    Verrando, P.; Ortonne, J.P.

    1985-01-01

    Insulin binding to its receptors was studied in cultured normal and transformed (A431 line) human epidermal keratinocytes. The specific binding was a temperature-dependent, saturable process. Normal keratinocytes possess a mean value of about 80,000 receptors per cell. Fifteen hours exposure of the cells to insulin lowered their receptor number (about 65% loss in available sites); these reappeared when the hormone was removed from the culture medium. In the A431 epidermoid carcinoma cell line, there is a net decrease in insulin binding (84% of the initial bound/free hormone ratio in comparison with normal cells) essentially related to a loss in receptor affinity for insulin. Thus, cultured human keratinocytes which express insulin receptors may be a useful tool in understanding skin pathology related to insulin disorders

  9. Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas

    DEFF Research Database (Denmark)

    Nielsen, Michael Friberg Bruun; Mortensen, Michael Bau; Detlefsen, Sönke

    2017-01-01

    cells in the normal human pancreas and perisinusoidal cells in the normal human liver. The immunolabelling capacity was evaluated according to a semiquantitative scoring system. Double-IF of the markers of interest together with markers for other periacinar cells was performed. Moreover, the utility...... of histochemical stains for the identification of human qPSCs was examined, and their ultrastructure was revisited by electron microscopy. Adipophilin, CRBP-1, cytoglobin and vinculin were expressed in qHSCs in the liver, whereas cytoglobin and adipophilin were expressed in qPSCs in the pancreas. Adipophilin...... are markers of qPSCs in the normal human pancreas. However, the use of adipophilin as a qPSC marker may be limited due to its high dependence on optimal PATI. Cytoglobin, on the other hand, is a sensitive marker for qPSCs but is expressed in FBs as well....

  10. DNA damage response and evasion from immunosurveillance in CLL: New options for NK cell-based immunotherpies.

    Directory of Open Access Journals (Sweden)

    Olga M. Shatnyeva

    2015-02-01

    Full Text Available Chronic lymphocytic leukemia (CLL is the most prominent B cell malignancy among adults in the Western world and characterized by a clonal expansion of B cells. The patients suffer from severe immune defects resulting in increased susceptibility to infections and failure to generate an antitumor immune response. Defects in both, DNA damage response (DDR pathway and crosstalk with the tissue microenvironment have been reported to play a crucial role for the survival of CLL cells, therapy resistance and impaired immune response. To this end, major advances over the past years have highlighted several T cell immune evasion mechanisms in CLL. Here, we discuss the consequences of an impaired DDR pathway for detection and elimination of CLL cells by Natural killer (NK cells. NK cells are considered to be a major component of the immunosurveillance in leukemia but NK cell activity is impaired in CLL. Restoration of NK cell activity using immunoligands and immunoconstructs in combination with the conventional chemotherapy may provide a future perspective for CLL treatment.

  11. Characterization of NK cells in mouse models of systemic lupus erythematosus and of the role of the p85β pi3k subunit in NKG2D signaling in NK cells

    OpenAIRE

    Spada, Roberto

    2013-01-01

    Tesis Doctoral inédita leída en la Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 22-11-2013 Natural killer (NK) cells are large granular lymphocytes that play an important part as a link between the innate and adaptive immune systems. Various autoimmune diseases are correlated with alterations in the activity of NK cells; nonetheless, their role in the pathogenesis of systemic lupus erythematosus (SLE), a complex multi-factorial...

  12. Characterization of NCR1+ cells residing in lymphoid tissues in the gut of lambs indicates that the majority are NK cells.

    Science.gov (United States)

    Olsen, Line; Boysen, Preben; Åkesson, Caroline Piercey; Gunnes, Gjermund; Connelley, Timothy; Storset, Anne K; Espenes, Arild

    2013-11-13

    Natural killer (NK) cells are important for immune protection of the gut mucosa. Previous studies have shown that under pathologic conditions NK cells, T cells and dendritic cells are found co-localised in secondary lymphoid organs where their interaction coordinates immune responses. However, in the gut-associated lymphoid tissues (GALTs), there are few detailed reports on the distribution of NK cells. Sheep harbour several types of organised lymphoid tissues in the gut that have different functions. The ileal Peyer's patch (IPP) functions as a primary lymphoid tissue for B cell generation, while the jejunal Peyer's patches (JPPs) and colon patches (CPs) are considered secondary lymphoid tissues. In the present study, we analysed tissues from healthy lambs by flow cytometry and in situ multicolour immunofluorescence, using recently described NCR1 antibodies to identify ovine NK cells. Most NCR1+ cells isolated from all tissues were negative for the pan T cell marker CD3, and thus comply with the general definition of NK cells. The majority of NCR1+ cells in blood as well as secondary lymphoid organs expressed CD16, but in the GALT around half of the NCR1+ cells were negative for CD16. A semi-quantitative morphometric study on tissue sections was used to compare the density of NK cells in four compartments of the IPPs, JPP and CPs. NCR1+ cells were found in all gut segments. Statistical analysis revealed significant differences between compartments of the primary lymphoid organ IPP and the secondary lymphoid organs of the JPPs and CP. NK cells co-localised and made close contact with T cells, dendritic cells and other NK cells, but did not show signs of proliferation. We conclude that NK cells are present in all investigated segments of the sheep gut, but that presence of other innate lymphoid cells expressing NCR1 cannot be excluded.

  13. Simultaneous development of antibody-dependent cellular cytotoxicity (ADCC) and natural killer (NK) activity in irradiated mice reconstituted with bone marrow cells

    International Nuclear Information System (INIS)

    Sihvola, M.; Hurme, M.

    1987-01-01

    Spleen cells from irradiated, bone marrow-reconstituted mice were tested for their ability to mediate antibody-dependent cellular cytotoxicity against P815 target (ADCC-P815), ADCC against sheep red blood cells (ADCC-SRBC), and natural killer (NK) activity judged as YAC-1 lysis at different times after bone marrow reconstitution. Donor-derived ADCC-P815 effectors were found to appear in the spleens 10-12 days after bone marrow reconstitution simultaneously with the appearance of donor-derived NK cells. NK cells recently derived from bone marrow are known to express the Thy-1 antigen; the phenotype of the ''early'' ADCC-P815 effectors was found to be the same as that of NK cells, i.e., Thy-1+, asialo-GM1+. These data suggest that ADCC-P815 effector cells belong to the NK cell population. ADCC-SRBC, in contrast to ADCC-P815 and NK activity, was already high on Day 7 after bone marrow reconstitution. However, it was mediated partly by recipient-derived effectors. ADCC-SRBC effectors were characterized to be different from ADCC-P815 effectors

  14. Radiosensitivity of normal human epidermal cells in culture

    International Nuclear Information System (INIS)

    Dover, R.; Potten, C.S.

    1983-01-01

    Using an in vitro culture system the authors have derived #betta#-radiation survival curves over a dose range 0-8 Gy for the clonogenic cells of normal human epidermis. The culture system used allows the epidermal cells to stratify and form a multi-layered sheet of keratinizing cells. The cultures appear to be a very good model for epidermis in vivo. The survival curves show a population which is apparently more sensitive than murine epidermis in vivo. It remains unclear whether this is an intrinsic difference between the species or is a consequence of the in vitro cultivation of the human cells. (author)

  15. Beyond NK cells: the expanding universe of innate lymphoid cells.

    Science.gov (United States)

    Cella, Marina; Miller, Hannah; Song, Christina

    2014-01-01

    For a long time, natural killer (NK) cells were thought to be the only innate immune lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different innate lymphoid cell (ILC) populations found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. These ILC populations closely mirror the phenotype of adaptive T helper subsets in their repertoire of secreted soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response that is appropriate for the incoming insult. Here, we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  16. Beyond NK cells: the expanding universe of Innate Lymphoid Cells.

    Directory of Open Access Journals (Sweden)

    Marina eCella

    2014-06-01

    Full Text Available For a long time NK cells were thought to be the only immune innate lymphoid population capable of responding to invading pathogens under the influence of changing environmental cues. In the last few years, an increasing amount of evidence has shown that a number of different Innate Lymphoid Cells found at mucosal sites rapidly respond to locally produced cytokines in order to establish or maintain homeostasis. ILC populations closely mirror the phenotype of adaptive Thelper subsets in their ability to secrete soluble factors. Early in the immune response, ILCs are responsible for setting the stage to mount an adaptive T cell response appropriate to the incoming insult. Here we review the diversity of ILC subsets and discuss similarities and differences between ILCs and NK cells in function and key transcriptional factors required for their development.

  17. The variability problem of normal human walking

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Alkjær, Tine

    2012-01-01

    Previous investigations have suggested considerable inter-individual variability in the time course pattern of net joint moments during normal human walking, although the limited sample sizes precluded statistical analyses. The purpose of the present study was to obtain joint moment patterns from...... a group of normal subjects and to test whether or not the expected differences would prove to be statistically significant. Fifteen healthy male subjects were recorded on video while they walked across two force platforms. Ten kinematic and kinetic parameters were selected and input to a statistical...... cluster analysis to determine whether or not the 15 subjects could be divided into different 'families' (clusters) of walking strategy. The net joint moments showed a variability corroborating earlier reports. The cluster analysis showed that the 15 subjects could be grouped into two clusters of 5 and 10...

  18. Antibody Fc engineering improves frequency and promotes kinetic boosting of serial killing mediated by NK cells

    Science.gov (United States)

    Romain, Gabrielle; Senyukov, Vladimir; Rey-Villamizar, Nicolas; Merouane, Amine; Kelton, William; Liadi, Ivan; Mahendra, Ankit; Charab, Wissam; Georgiou, George; Roysam, Badrinath; Lee, Dean A.

    2014-01-01

    The efficacy of most therapeutic monoclonal antibodies (mAbs) targeting tumor antigens results primarily from their ability to elicit potent cytotoxicity through effector-mediated functions. We have engineered the fragment crystallizable (Fc) region of the immunoglobulin G (IgG) mAb, HuM195, targeting the leukemic antigen CD33, by introducing the triple mutation Ser293Asp/Ala330Leu/Ile332Glu (DLE), and developed Time-lapse Imaging Microscopy in Nanowell Grids to analyze antibody-dependent cell-mediated cytotoxicity kinetics of thousands of individual natural killer (NK) cells and mAb-coated target cells. We demonstrate that the DLE-HuM195 antibody increases both the quality and the quantity of NK cell-mediated antibody-dependent cytotoxicity by endowing more NK cells to participate in cytotoxicity via accrued CD16-mediated signaling and by increasing serial killing of target cells. NK cells encountering targets coated with DLE-HuM195 induce rapid target cell apoptosis by promoting simultaneous conjugates to multiple target cells and induce apoptosis in twice the number of target cells within the same period as the wild-type mAb. Enhanced target killing was also associated with increased frequency of NK cells undergoing apoptosis, but this effect was donor-dependent. Antibody-based therapies targeting tumor antigens will benefit from a better understanding of cell-mediated tumor elimination, and our work opens further opportunities for the therapeutic targeting of CD33 in the treatment of acute myeloid leukemia. PMID:25232058

  19. INTESTINAL VIROME AND NORMAL MICROFLORA OF HUMAN: FEATURES OF INTERACTION

    Directory of Open Access Journals (Sweden)

    Bobyr V.V.

    2015-05-01

    Full Text Available Summary: Intestinal bacteria defend the host organism and narrow pathogenic bacterial colonization. However, the microbiome effect to enteric viruses is unexplored largely as well as role of microbiota in the pathogenesis of viral infections in general. This review focuses on precisely these issues. Keywords: microbiome, virome, normal microflora, enteric viruses, contagiousness. In this review article, facts about viral persistence in the human gut are summarized. It is described the role of viral populations during health and diseases. After analyzing of the literary facts it was concluded that the gastrointestinal tract is an environment for one from the most complex microbial ecosystems, which requires of more deeper study of its composition, role in physiological processes, as well as the dynamics of changes under influence of the environment. Normal microflora performs a different important functions providing the physiological homeostasis of the human body, including, in particular, an important role in the human metabolic processes, supporting of homeostasis, limiting of colonization by infectious bacteria. The multifactorial significance of the normal gastrointestinal microflora can be divided into immunological, structural and metabolic functions. At the same time, interaction between intestinal microflora and enteric viruses has not been studied largely. In recent years, much attention is paid to study of viruses-bacteria associations, and it is possible, obtained results should change our understanding of microbiota role in the systematic pathogenesis of the diseases with viral etiology. In contrast to the well-known benefits of normal microflora to the host, the viruses can use intestinal microflora as a trigger for replication at the optimal region. Recent studies give a reason for assumption that depletion of normal microflora with antibiotics can determining the antiviral effect. Thus, the role of commensal bacteria in viral

  20. Selective, autoantibody-immune complex mediated proportional and functional changes of specific NK-cell subsets in early seropositive but not seronegative rheumatoid arthritis

    NARCIS (Netherlands)

    Chalan, P.; Brouwer, Liesbeth; Bijzet, J.; Kroesen, B.-J.; Boots, Annemieke

    2015-01-01

    Background: Despite substantial data demonstrating NK-cell impairment in rheumatoid arthritis (RA), the exact role of NK-cells in RA immunopathogenesis remains unclear. Objectives: We studied the involvement of CD56dim and CD56bright NK-cells in the early stages of RA development to elucidate their

  1. A Case Report of NK-Cell Lymphoproliferative Disease With a Wide Involvement of Digestive Tract Develop Into Epstein-Barr Virus Associated NK/T Cell Lymphoma in an Immunocompetent Patient.

    Science.gov (United States)

    Chen, Haotian; Zhang, Yu; Jiang, Zhinong; Zhou, Wei; Cao, Qian

    2016-03-01

    Epstein-Barr virus (EBV) plays an important role in various diseases. EBV-associated lymphoproliferative disease (LPD) is a rare disease with a canceration tendency. It is difficult to differentiate LPD with involvement of digestive tract from Crohn disease due to similar clinical and endoscopic manifestations. We present a case report of multiple ulcers with esophagus, small bowel and the entire colon involved, proved to be NK-Cell LPD, developed into EBV-associated NK/T Cell lymphoma, in an immunocompetent man who was initially misdiagnosed as Crohn disease.This report underscores that intestinal ulcers should be cautiously diagnosed, for it sometimes could be a precancerous lesion.

  2. A high frequency of peripheral blood NKG2D+NK and NKT cells in euthyroid patients with new onset hashimoto's thyroiditis--a pilot study.

    Science.gov (United States)

    Guo, Hui; Xu, Bingchuan; Yang, Xige; Wang, Ye; Liu, Xiaobo; Cui, Chengri; Jiang, Yanfang

    2014-01-01

    Hashimoto's thyroiditis (HT) is a T cell-mediated autoimmune disease. However, little is known about the role of different subsets of natural killer (NK) and natural killer T (NKT) cells at the early stage of the HT process. A total of 45 euthyroid patients with new onset HT and 40 age/gender-matched healthy controls (HC) were examined for the frequency of different subsets of NK and NKT cells and their function by flow cytometry. In comparison with that in HC, significantly higher percentages of peripheral blood CD3-CD56+ NK, NKG2D+, NKp30+ NK and NKT cells, but significantly lower percentages of NKG2A+, KIR2DL3+ inhibitory NK and NKT cells were detected in the HT patients. Furthermore, the percentages of NKG2D+ NK cells were correlated positively with the concentrations of serum anti-thyroid peroxidase antibody (TPOAb) in the HT patients. Moreover, the percentages of inducible IFN-γ and CD107a+ NK cells in the HT patients were significantly higher than those in HC. Our data suggest that activated NK cells may participate in the early pathogenic process of HT.

  3. Humanized medium (h7H) allows long-term primary follicular thyroid cultures from human normal thyroid, benign neoplasm, and cancer.

    Science.gov (United States)

    Bravo, Susana B; Garcia-Rendueles, Maria E R; Garcia-Rendueles, Angela R; Rodrigues, Joana S; Perez-Romero, Sihara; Garcia-Lavandeira, Montserrat; Suarez-Fariña, Maria; Barreiro, Francisco; Czarnocka, Barbara; Senra, Ana; Lareu, Maria V; Rodriguez-Garcia, Javier; Cameselle-Teijeiro, Jose; Alvarez, Clara V

    2013-06-01

    Mechanisms of thyroid physiology and cancer are principally studied in follicular cell lines. However, human thyroid cancer lines were found to be heavily contaminated by other sources, and only one supposedly normal-thyroid cell line, immortalized with SV40 antigen, is available. In primary culture, human follicular cultures lose their phenotype after passage. We hypothesized that the loss of the thyroid phenotype could be related to culture conditions in which human cells are grown in medium optimized for rodent culture, including hormones with marked differences in its affinity for the relevant rodent/human receptor. The objective of the study was to define conditions that allow the proliferation of primary human follicular thyrocytes for many passages without losing phenotype. Concentrations of hormones, transferrin, iodine, oligoelements, antioxidants, metabolites, and ethanol were adjusted within normal homeostatic human serum ranges. Single cultures were identified by short tandem repeats. Human-rodent interspecies contamination was assessed. We defined an humanized 7 homeostatic additives medium enabling growth of human thyroid cultures for more than 20 passages maintaining thyrocyte phenotype. Thyrocytes proliferated and were grouped as follicle-like structures; expressed Na+/I- symporter, pendrin, cytokeratins, thyroglobulin, and thyroperoxidase showed iodine-uptake and secreted thyroglobulin and free T3. Using these conditions, we generated a bank of thyroid tumors in culture from normal thyroids, Grave's hyperplasias, benign neoplasms (goiter, adenomas), and carcinomas. Using appropriate culture conditions is essential for phenotype maintenance in human thyrocytes. The bank of thyroid tumors in culture generated under humanized humanized 7 homeostatic additives culture conditions will provide a much-needed tool to compare similarly growing cells from normal vs pathological origins and thus to elucidate the molecular basis of thyroid disease.

  4. Constitutively polarized granules prime KHYG-1 NK cells.

    Science.gov (United States)

    Suck, Garnet; Branch, Donald R; Aravena, Paola; Mathieson, Mark; Helke, Simone; Keating, Armand

    2006-09-01

    The major mechanism for NK cell lysis of tumor cells is granule-mediated cytotoxicity. Polarization of granules is a prelude to the release of their cytotoxic contents in response to target-cell binding. We describe the novel observation of constitutive granule polarization in the cytotoxic NK cell line, KHYG-1. Continuous degranulation of KHYG-1 cells, however, does not occur and still requires target-cell contact. Disruption of microtubules with colcemid is sufficient to disperse the granules in KHYG-1 and significantly decreases cytotoxicity. A similar effect is not obtained by inhibiting extracellular signal-related kinase 2 (ERK2), the most distal kinase investigated in the cytolytic pathway. Disruption of microtubules significantly down-regulates activation receptors, NKp44 and NKG2D, implicating them as potential microtubule-trafficking receptors. Such changes in upstream receptor expression may have caused deactivation of ERK2, since NKG2D cross-linking also leads to receptor down-regulation and diminished ERK phosphorylation. Thus, a functional role for NKG2D in KHYG-1 cytotoxicity is demonstrated. Moreover, the novel primed state may contribute to the high cytotoxicity exhibited by KHYG-1.

  5. Antibody-dependent NK cell activation is associated with late kidney allograft dysfunction and the complement-independent alloreactive potential of donor-specific antibodies

    Directory of Open Access Journals (Sweden)

    Tristan Legris

    2016-08-01

    Full Text Available Although kidney transplantation remains the best treatment for end-stage renal failure, it is limited by chronic humoral aggression of the graft vasculature by donor-specific antibodies (DSAs. The complement-independent mechanisms that lead to the antibody-mediated rejection (ABMR of kidney allografts remain poorly understood. Increasing lines of evidence have revealed the relevance of natural killer (NK cells as innate immune effectors of antibody-dependent cellular cytotoxicity, but few studies have investigated their alloreactive potential in the context of solid organ transplantation. Our study aimed to investigate the potential contribution of the antibody-dependent alloreactive function of NK cells to kidney graft dysfunction. We first conducted an observational study to investigate whether the cytotoxic function of NK cells is associated with chronic allograft dysfunction. The NK-Cellular Humoral Activation Test (NK-CHAT was designed to evaluate the recipient and antibody-dependent reactivity of NK cells against allogeneic target cells. The release of CD107a/Lamp1+ cytotoxic granules, resulting from the recognition of rituximab-coated B cells by NK cells, was analyzed in 148 kidney transplant recipients (KTRs, mean graft duration: 6.2 years. Enhanced ADCC responsiveness was associated with reduced graft function and identified as an independent risk factor predicting a decline in the estimated glomerular filtration rate (eGFR over a 1-year period (hazard ratio: 2.83. In a second approach, we used the NK-CHAT to reveal the cytotoxic potential of circulating alloantibodies in vitro. The level of CD16 engagement resulting from the in vitro recognition of serum-coated allogeneic B cells or splenic cells was further identified as a specific marker of DSA-induced ADCC. The NK-CHAT scoring of sera obtained from 40 patients at the time of transplant biopsy was associated with ABMR diagnosis. Our findings indicate that despite the administration

  6. Mouse NK cell-mediated rejection of bone marrow allografts exhibits patterns consistent with Ly49 subset licensing.

    Science.gov (United States)

    Sun, Kai; Alvarez, Maite; Ames, Erik; Barao, Isabel; Chen, Mingyi; Longo, Dan L; Redelman, Doug; Murphy, William J

    2012-02-09

    Natural killer (NK) cells can mediate the rejection of bone marrow allografts and exist as subsets based on expression of inhibitory/activating receptors that can bind MHC. In vitro data have shown that NK subsets bearing Ly49 receptors for self-MHC class I have intrinsically higher effector function, supporting the hypothesis that NK cells undergo a host MHC-dependent functional education. These subsets also play a role in bone marrow cell (BMC) allograft rejection. Thus far, little in vivo evidence for this preferential licensing across mouse strains with different MHC haplotypes has been shown. We assessed the intrinsic response potential of the different Ly49(+) subsets in BMC rejection by using β2-microglobulin deficient (β2m(-/-)) mice as donors. Using congenic and allogeneic mice as recipients and depleting the different Ly49 subsets, we found that NK subsets bearing Ly49s, which bind "self-MHC" were found to be the dominant subset responsible for β2m(-/-) BMC rejection. This provides in vivo evidence for host MHC class I-dependent functional education. Interestingly, all H2(d) strain mice regardless of background were able to resist significantly greater amounts of β2m(-/-), but not wild-type BMC than H2(b) mice, providing evidence that the rheostat hypothesis regarding Ly49 affinities for MHC and NK-cell function impacts BMC rejection capability.

  7. Regulation of NKG2D-Dependent NK Cell Functions: The Yin and the Yang of Receptor Endocytosis

    Directory of Open Access Journals (Sweden)

    Rosa Molfetta

    2017-08-01

    Full Text Available Natural-killer receptor group 2, member D (NKG2D is a well characterized natural killer (NK cell activating receptor that recognizes several ligands poorly expressed on healthy cells but up-regulated upon stressing stimuli in the context of cancer or viral infection. Although NKG2D ligands represent danger signals that render target cells more susceptible to NK cell lysis, accumulating evidence demonstrates that persistent exposure to ligand-expressing cells causes the decrease of NKG2D surface expression leading to a functional impairment of NKG2D-dependent NK cell functions. Upon ligand binding, NKG2D is internalized from the plasma membrane and sorted to lysosomes for degradation. However, receptor endocytosis is not only a mechanism of receptor clearance from the cell surface, but is also required for the proper activation of signalling events leading to the functional program of NK cells. This review is aimed at providing a summary of current literature relevant to the molecular mechanisms leading to NKG2D down-modulation with particular emphasis given to the role of NKG2D endocytosis in both receptor degradation and signal propagation. Examples of chronic ligand-induced down-regulation of NK cell activating receptors other than NKG2D, including natural cytotoxicity receptors (NCRs, DNAX accessory molecule-1 (DNAM1 and CD16, will be also discussed.

  8. Super Normal Vector for Human Activity Recognition with Depth Cameras.

    Science.gov (United States)

    Yang, Xiaodong; Tian, YingLi

    2017-05-01

    The advent of cost-effectiveness and easy-operation depth cameras has facilitated a variety of visual recognition tasks including human activity recognition. This paper presents a novel framework for recognizing human activities from video sequences captured by depth cameras. We extend the surface normal to polynormal by assembling local neighboring hypersurface normals from a depth sequence to jointly characterize local motion and shape information. We then propose a general scheme of super normal vector (SNV) to aggregate the low-level polynormals into a discriminative representation, which can be viewed as a simplified version of the Fisher kernel representation. In order to globally capture the spatial layout and temporal order, an adaptive spatio-temporal pyramid is introduced to subdivide a depth video into a set of space-time cells. In the extensive experiments, the proposed approach achieves superior performance to the state-of-the-art methods on the four public benchmark datasets, i.e., MSRAction3D, MSRDailyActivity3D, MSRGesture3D, and MSRActionPairs3D.

  9. Research on Normal Human Plantar Pressure Test

    Directory of Open Access Journals (Sweden)

    Liu Xi Yang

    2016-01-01

    Full Text Available FSR400 pressure sensor, nRF905 wireless transceiver and MSP40 SCM are used to design the insole pressure collection system, LabVIEW is used to make HMI of data acquisition, collecting a certain amount of normal human foot pressure data, statistical analysis of pressure distribution relations about five stages of swing phase during walking, using the grid closeness degree to identify plantar pressure distribution pattern recognition, and the algorithm simulation, experimental results demonstrated this method feasible.

  10. Iron overload may promote alteration of NK cells and hematopoietic stem/progenitor cells by JNK and P38 pathway in myelodysplastic syndromes.

    Science.gov (United States)

    Hua, Yanni; Wang, Chaomeng; Jiang, Huijuan; Wang, Yihao; Liu, Chunyan; Li, Lijuan; Liu, Hui; Shao, Zonghong; Fu, Rong

    2017-08-01

    The objective of the study was to examine levels of intracellular iron, reactive oxygen species (ROS) and the expression of JNK and p38MAPK in NK cells and hematopoietic stem/progenitor cells (HSPCs) in MDS patients, and explore potential mechanisms by which iron overload (IOL) promotes MDS progression. Thirty-four cases of MDS and six cases of AML transformed from MDS (MDS/AML) were included. HSPCs and NK cells were isolated by magnetic absorption cell sorting. We used flow cytometry to detect the levels of ROS and intracellular JNK and P38 in NK cells and HSPCs. Total RNA and protein were extracted from NK cells and CD34 + cells to examine the expression of JNK and p38MAPK using RT-PCR and Western blotting. Intracellular iron concentration was detected. Data were analyzed by SPSS 21 statistical software. Intracellular iron concentration and ROS were increased in both NK cells and HSPCs in MDS patients with iron overload (P overload had higher JNK expression and lower p38 expression in NK cells, and higher p38 expression in HSPCs compared with non-iron overload group. IOL may cause alterations in NK cells and HSPCs through the JNK and p38 pathways, and play a role in the transformation to AML from MDS.

  11. From hundreds to thousands: Widening the normal human Urinome

    Directory of Open Access Journals (Sweden)

    Laura Santucci

    2014-12-01

    The data are related to Santucci et al. (in press [1] and available both here and at ChorusProject.org under project name “From hundreds to thousands: widening the normal human Urinome”. The material supplied to Chorus Progect.org includes technical MS spectra data only.

  12. Elusive Role of the CD94/NKG2C NK Cell Receptor in the Response to Cytomegalovirus: Novel Experimental Observations in a Reporter Cell System

    Directory of Open Access Journals (Sweden)

    Aldi Pupuleku

    2017-10-01

    Full Text Available Human cytomegalovirus (HCMV infection promotes the differentiation and persistent expansion of a mature NK cell subset, which displays high surface levels of the activating CD94/NKG2C NK cell receptor, together with additional distinctive phenotypic and functional features. The mechanisms underlying the development of adaptive NK cells remain uncertain but some observations support the involvement of a cognate interaction of CD94/NKG2C with ligand(s displayed by HCMV-infected cells. To approach this issue, the heterodimer and its adaptor (DAP12 were expressed in the human Jurkat leukemia T cell line; signaling was detected by transfection of a reporter plasmid encoding for Luciferase (Luc under NFAT/AP1-dependent control. Engagement of the receptor by solid-phase bound CD94- or NKG2C-specific monoclonal antibodies (mAbs triggered Luc expression. Moreover, reporter activation was detectable upon interaction with HLA-E+ 721.221 (.221-AEH cells, as well as with 721.221 cells incubated with synthetic peptides, which stabilized surface expression of endogenous HLA-E; the response was specifically antagonized by soluble NKG2C- and HLA-E-specific mAbs. By contrast, activation of Jurkat-NKG2C+ was undetectable upon interaction with Human Fetal Foreskin Fibroblasts (HFFF infected with HCMV laboratory strains (i.e., AD169, Towne, regardless of their differential ability to preserve surface HLA-E expression. On the other hand, infection with two clinical isolates or with the endotheliotropic TB40/E strain triggered Jurkat-NKG2C+ activation; yet, this response was not inhibited by blocking mAbs and was independent of CD94/NKG2C expression. The results are discussed in the framework of previous observations supporting the hypothetical existence of specific ligand(s for CD94/NKG2C in HCMV-infected cells.

  13. Do stress responses promote leukemia progression? An animal study suggesting a role for epinephrine and prostaglandin-E2 through reduced NK activity.

    Directory of Open Access Journals (Sweden)

    Shelly Inbar

    2011-04-01

    Full Text Available In leukemia patients, stress and anxiety were suggested to predict poorer prognosis. Oncological patients experience ample physiological and psychological stress, potentially leading to increased secretion of stress factors, including epinephrine, corticosteroids, and prostaglandins. Here we tested whether environmental stress and these stress factors impact survival of leukemia-challenged rats, and studied mediating mechanisms. F344 rats were administered with a miniscule dose of 60 CRNK-16 leukemia cells, and were subjected to intermittent forced swim stress or to administration of physiologically relevant doses of epinephrine, prostaglandin-E(2 or corticosterone. Stress and each stress factor, and/or their combinations, doubled mortality rates when acutely applied simultaneously with, or two or six days after tumor challenge. Acute administration of the β-adrenergic blocker nadolol diminished the effects of environmental stress, without affecting baseline survival rates. Prolonged β-adrenergic blockade or COX inhibition (using etodolac also increased baseline survival rates, possibly by blocking tumor-related or normal levels of catecholamines and prostaglandins. Searching for mediating mechanisms, we found that each of the stress factors transiently suppressed NK activity against CRNK-16 and YAC-1 lines on a per NK basis. In contrast, the direct effects of stress factors on CRNK-16 proliferation, vitality, and VEGF secretion could not explain or even contradicted the in vivo survival findings. Overall, it seems that environmental stress, epinephrine, and prostaglandins promote leukemia progression in rats, potentially through suppressing cell mediated immunity. Thus, patients with hematological malignancies, which often exhibit diminished NK activity, may benefit from extended β-blockade and COX inhibition.

  14. Quantifying Demyelination in NK venom treated nerve using its electric circuit model.

    Science.gov (United States)

    Das, H K; Das, D; Doley, R; Sahu, P P

    2016-03-02

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  15. Quantifying Demyelination in NK venom treated nerve using its electric circuit model

    Science.gov (United States)

    Das, H. K.; Das, D.; Doley, R.; Sahu, P. P.

    2016-03-01

    Reduction of myelin in peripheral nerve causes critical demyelinating diseases such as chronic inflammatory demyelinating polyneuropathy, Guillain-Barre syndrome, etc. Clinical monitoring of these diseases requires rapid and non-invasive quantification of demyelination. Here we have developed formulation of nerve conduction velocity (NCV) in terms of demyelination considering electric circuit model of a nerve having bundle of axons for its quantification from NCV measurements. This approach has been validated and demonstrated with toad nerve model treated with crude Naja kaouthia (NK) venom and also shows the effect of Phospholipase A2 and three finger neurotoxin from NK-venom on peripheral nerve. This opens future scope for non-invasive clinical measurement of demyelination.

  16. The anti-canine distemper virus activities of ex vivo-expanded canine natural killer cells.

    Science.gov (United States)

    Park, Ji-Yun; Shin, Dong-Jun; Lee, Soo-Hyeon; Lee, Je-Jung; Suh, Guk-Hyun; Cho, Duck; Kim, Sang-Ki

    2015-04-17

    Natural killer (NK) cells play critical roles in induction of antiviral effects against various viruses of humans and animals. However, few data on NK cell activities during canine distemper virus (CDV) infections are available. Recently, we established a culture system allowing activation and expansion of canine non-B, non-T, large granular NK lymphocytes from PBMCs of normal dogs. In the present study, we explored the ability of such expanded NK cells to inhibit CDV infection in vitro. Cultured CD3-CD5-CD21- NK cells produced large amounts of IFN-γ, exhibited highly upregulated expression of mRNAs encoding NK-cell-associated receptors, and demonstrated strong natural killing activity against canine tumor cells. Although the expanded NK cells were dose-dependently cytotoxic to both normal and CDV-infected Vero cells, CDV infection rendered Vero cells more susceptible to NK cells. Pretreatment with anti-CDV serum from hyperimmunized dogs enhanced the antibody-dependent cellular cytotoxicity (ADCC) of NK cells against CDV-infected Vero cells. The culture supernatants of NK cells, added before or after infection, dose-dependently inhibited both CDV replication and development of CDV-induced cytopathic effects (CPEs) in Vero cells. Anti-IFN-γ antibody neutralized the inhibitory effects of NK cell culture supernatants on CDV replication and CPE induction in Vero cells. Such results emphasize the potential significance of NK cells in controlling CDV infection, and indicate that NK cells may play roles both during CDV infection and in combating such infections, under certain conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. CCR6 and NK1.1 distinguish between IL-17A and IFN-gamma-producing gammadelta effector T cells.

    Science.gov (United States)

    Haas, Jan D; González, Frano H Malinarich; Schmitz, Susanne; Chennupati, Vijaykumar; Föhse, Lisa; Kremmer, Elisabeth; Förster, Reinhold; Prinz, Immo

    2009-12-01

    Gammadelta T cells are a potent source of innate IL-17A and IFN-gamma, and they acquire the capacity to produce these cytokines within the thymus. However, the precise stages and required signals that guide this differentiation are unclear. Here we show that the CD24(low) CD44(high) effector gammadelta T cells of the adult thymus are segregated into two lineages by the mutually exclusive expression of CCR6 and NK1.1. Only CCR6+ gammadelta T cells produced IL-17A, while NK1.1+ gammadelta T cells were efficient producers of IFN-gamma but not of IL-17A. Their effector phenotype correlated with loss of CCR9 expression, particularly among the NK1.1+ gammadelta T cells. Accordingly, both gammadelta T-cell subsets were rare in gut-associated lymphoid tissues, but abundant in peripheral lymphoid tissues. There, they provided IL-17A and IFN-gamma in response to TCR-specific and TCR-independent stimuli. IL-12 and IL-18 induced IFN-gamma and IL-23 induced IL-17A production by NK1.1+ or CCR6+ gammadelta T cells, respectively. Importantly, we show that CCR6+ gammadelta T cells are more responsive to TCR stimulation than their NK1.1+ counterparts. In conclusion, our findings support the hypothesis that CCR6+ IL-17A-producing gammadelta T cells derive from less TCR-dependent selection events than IFN-gamma-producing NK1.1+ gammadelta T cells.

  18. Targeting CD147 for T to NK Lineage Reprogramming and Tumor Therapy.

    Science.gov (United States)

    Geng, Jie-Jie; Tang, Juan; Yang, Xiang-Min; Chen, Ruo; Zhang, Yang; Zhang, Kui; Miao, Jin-Lin; Chen, Zhi-Nan; Zhu, Ping

    2017-06-01

    CD147 is highly expressed on the surface of numerous tumor cells to promote invasion and metastasis. Targeting these cells with CD147-specific antibodies has been validated as an effective approach for lung and liver cancer therapy. In the immune system, CD147 is recognized as a co-stimulatory receptor and impacts the outcome of thymic selection. Using T cell-specific deletion, we showed here that in thymus CD147 is indispensable for the stable αβ T cell lineage commitment: loss of CD147 biases both multipotent DN (double negative) and fully committed DP (double positive) cells into innate NK-like lineages. Mechanistically, CD147 deficiency results in impaired Wnt signaling and expression of BCL11b, a master transcription factor in determining T cell identity. In addition, functional blocking of CD147 by antibody phenocopies genetic deletion to enrich NK-like cells in the periphery. Furthermore, using a melanoma model and orthotopic liver cancer transplants, we showed that the augmentation of NK-like cells strongly associates with resistance against tumor growth upon CD147 suppression. Therefore, besides its original function in tumorigenesis, CD147 is also an effective surface target for immune modulation in tumor therapy. Copyright © 2017. Published by Elsevier B.V.

  19. Targeting CD147 for T to NK Lineage Reprogramming and Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Jie-Jie Geng

    2017-06-01

    Full Text Available CD147 is highly expressed on the surface of numerous tumor cells to promote invasion and metastasis. Targeting these cells with CD147-specific antibodies has been validated as an effective approach for lung and liver cancer therapy. In the immune system, CD147 is recognized as a co-stimulatory receptor and impacts the outcome of thymic selection. Using T cell-specific deletion, we showed here that in thymus CD147 is indispensable for the stable αβ T cell lineage commitment: loss of CD147 biases both multipotent DN (double negative and fully committed DP (double positive cells into innate NK-like lineages. Mechanistically, CD147 deficiency results in impaired Wnt signaling and expression of BCL11b, a master transcription factor in determining T cell identity. In addition, functional blocking of CD147 by antibody phenocopies genetic deletion to enrich NK-like cells in the periphery. Furthermore, using a melanoma model and orthotopic liver cancer transplants, we showed that the augmentation of NK-like cells strongly associates with resistance against tumor growth upon CD147 suppression. Therefore, besides its original function in tumorigenesis, CD147 is also an effective surface target for immune modulation in tumor therapy.

  20. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells

    Directory of Open Access Journals (Sweden)

    Migneault Martine

    2010-01-01

    Full Text Available Abstract Background Cancer cells utilize a variety of mechanisms to evade immune detection and attack. Effective immune detection largely relies on the formation of an immune synapse which requires close contact between immune cells and their targets. Here, we show that MUC16, a heavily glycosylated 3-5 million Da mucin expressed on the surface of ovarian tumor cells, inhibits the formation of immune synapses between NK cells and ovarian tumor targets. Our results indicate that MUC16-mediated inhibition of immune synapse formation is an effective mechanism employed by ovarian tumors to evade immune recognition. Results Expression of low levels of MUC16 strongly correlated with an increased number of conjugates and activating immune synapses between ovarian tumor cells and primary naïve NK cells. MUC16-knockdown ovarian tumor cells were more susceptible to lysis by primary NK cells than MUC16 expressing controls. This increased lysis was not due to differences in the expression levels of the ligands for the activating receptors DNAM-1 and NKG2D. The NK cell leukemia cell line (NKL, which does not express KIRs but are positive for DNAM-1 and NKG2D, also conjugated and lysed MUC16-knockdown cells more efficiently than MUC16 expressing controls. Tumor cells that survived the NKL challenge expressed higher levels of MUC16 indicating selective lysis of MUC16low targets. The higher csMUC16 levels on the NKL resistant tumor cells correlated with more protection from lysis as compared to target cells that were never exposed to the effectors. Conclusion MUC16, a carrier of the tumor marker CA125, has previously been shown to facilitate ovarian tumor metastasis and inhibits NK cell mediated lysis of tumor targets. Our data now demonstrates that MUC16 expressing ovarian cancer cells are protected from recognition by NK cells. The immune protection provided by MUC16 may lead to selective survival of ovarian cancer cells that are more efficient in

  1. Radioimmunoassay of erythropoietin: circulating levels in normal and polycythemic human beings

    International Nuclear Information System (INIS)

    Garcia, J.F.; Ebbe, S.N.; Hollander, L.; Cutting, H.O.; Miller, M.E.; Cronkite, E.P.

    1982-01-01

    Techniques are described in detail for the RIA of human Ep in unextracted plasma or serum. With 100 μl of sample, the assay is sensitive at an Ep concentration of approximately 4 mU/ml, and when required, the sensitivity can be increased to 0.4 mU/ml, a range considerably less than the concentration observed in normal human beings. This is approximately 100 times more sensitive than existing in vivo bioassays for this hormone. Studies concerned with the validation of the Ep RIA show a high degree of correlation with the polycythemic mouse bioassay. Dilutions of a variety of human serum samples show a parallel relationship with the standard reference preparation for Ep. Validation of the RIA is further confirmed by observations of appropriate increases or decreases of circulating Ep levels in physiological and clinical conditions known to be associated with stimulation or suppression of Ep secretion. Significantly different mean serum concentrations of 17.2 mU/ml for normal male subjects and 18.8 mU/ml for normal female subjects were observed. Mean plasma Ep concentrations in patients with polycythemia vera are significantly decreased, and those of patients with secondary polycythemia are significantly increased as compared to plasma levels in normal subjects. These results demonstrate an initial practical value of the Ep RA in the hematology clinic, which will most certainly be expanded with its more extensive use

  2. Slp-76 is a critical determinant of NK cell-mediated recognition of missing-self targets

    OpenAIRE

    Lampe, Kristin; Endale, Mehari; Cashman, Siobhan; Fang, Hao; Mattner, Jochen; Hildeman, David; Hoebe, Kasper

    2015-01-01

    Absence of MHC class I expression is an important mechanism by which NK cells recognize a variety of target cells, yet the pathways underlying “missing-self” recognition, including the involvement of activating receptors, remain poorly understood. Using ENU mutagenesis in mice, we identified a germline mutant, designated Ace, with a marked defect in NK cell-mediated recognition and elimination of “missing-self” targets. The causative mutation was linked to chromosome 11 and identified as a mi...

  3. PGE2 suppresses NK activity in vivo directly and through adrenal hormones: Effects that cannot be reflected by ex-vivo assessment of NK cytotoxicity

    Science.gov (United States)

    Meron, G.; Tishler, Y.; Shaashua, L.; Rosenne, E.; Levi, B.; Melamed, R.; Gotlieb, N.; Matzner, P.; Sorski, L.; Ben-Eliyahu, S.

    2013-01-01

    Surgery can suppress in vivo levels of NK cell cytotoxicity (NKCC) through various mechanisms, including catecholamine-, glucocorticoid (CORT)-, and prostaglandin (PG)-mediated responses. However, PGs are synthesized locally following tissue damage, driving proinflammatory and CORT responses, while their systemic levels are often unaffected. Thus, we herein studied the role of adrenal factors in mediating in vivo effects of PGs on NKCC, using adrenalectomized and sham-operated F344 rats subjected to surgery or PGE2 administration. In vivo and ex-vivo approaches were employed, based on intravenous administration of the NK-sensitive MADB106 tumor line, and based on ex-vivo assessment of YAC-1 and MADB106 target-line lysis. Additionally, in vitro studies assessed the kinetics of the impact of epinephrine, CORT, and PGE2 on NKCC. The results indicated that suppression of NKCC by epinephrine and PGE2 are short lasting, and cannot be evident when these compounds are removed from the in vitro assay milieu, or in the context of ex-vivo assessment of NKCC. In contrast, the effects of CORT are long-lasting and are reflected in both conditions even after its removal. Marginating-pulmonary NKCC was less susceptible to suppression than circulating NKCC, when tested against the xenogeneic YAC-1 target line, but not against the syngeneic MADB106 line, which seems to involve different cytotoxicity mechanisms. Overall, these findings indicate that elevated systemic PG levels can directly suppress NKCC in vivo, but following laparotomy adrenal hormones mediate most of the effects of endogenously-released PGs. Additionally, the ex-vivo approach seems limited in reflecting the short-lasting NK-suppressive effects of catecholamines and PGs. PMID:23153554

  4. PGE2 suppresses NK activity in vivo directly and through adrenal hormones: effects that cannot be reflected by ex vivo assessment of NK cytotoxicity.

    Science.gov (United States)

    Meron, G; Tishler, Y; Shaashua, L; Rosenne, E; Levi, B; Melamed, R; Gotlieb, N; Matzner, P; Sorski, L; Ben-Eliyahu, S

    2013-02-01

    Surgery can suppress in vivo levels of NK cell cytotoxicity (NKCC) through various mechanisms, including catecholamine-, glucocorticoid (CORT)-, and prostaglandin (PG)-mediated responses. However, PGs are synthesized locally following tissue damage, driving proinflammatory and CORT responses, while their systemic levels are often unaffected. Thus, we herein studied the role of adrenal factors in mediating in vivo effects of PGs on NKCC, using adrenalectomized and sham-operated F344 rats subjected to surgery or PGE(2) administration. In vivo and ex vivo approaches were employed, based on intravenous administration of the NK-sensitive MADB106 tumor line, and based on ex vivo assessment of YAC-1 and MADB106 target-line lysis. Additionally, in vitro studies assessed the kinetics of the impact of epinephrine, CORT, and PGE(2) on NKCC. The results indicated that suppression of NKCC by epinephrine and PGE(2) are short lasting, and cannot be evident when these compounds are removed from the in vitro assay milieu, or in the context of ex vivo assessment of NKCC. In contrast, the effects of CORT are long-lasting and are reflected in both conditions even after its removal. Marginating-pulmonary NKCC was less susceptible to suppression than circulating NKCC, when tested against the xenogeneic YAC-1 target line, but not against the syngeneic MADB106 line, which seems to involve different cytotoxicity mechanisms. Overall, these findings indicate that elevated systemic PG levels can directly suppress NKCC in vivo, but following laparotomy adrenal hormones mediate most of the effects of endogenously-released PGs. Additionally, the ex vivo approach seems limited in reflecting the short-lasting NK-suppressive effects of catecholamines and PGs. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis

    Science.gov (United States)

    Putz, Eva M.; Guillerey, Camille; Kos, Kevin; Stannard, Kimberley; Miles, Kim; Delconte, Rebecca B.; Nicholson, Sandra E.; Huntington, Nicholas D.; Smyth, Mark J.

    2017-01-01

    ABSTRACT The cytokine-induced SH2-containing protein CIS belongs to the suppressor of cytokine signaling (SOCS) protein family. Here, we show the critical role of CIS in suppressing natural killer (NK) cell control of tumor initiation and metastasis. Cish-deficient mice were highly resistant to methylcholanthrene-induced sarcoma formation and protected from lung metastasis of B16F10 melanoma and RM-1 prostate carcinoma cells. In contrast, the growth of primary subcutaneous tumors, including those expressing the foreign antigen OVA, was unchanged in Cish-deficient mice. The combination of Cish deficiency and relevant targeted and immuno-therapies such as combined BRAF and MEK inhibitors, immune checkpoint blockade antibodies, IL-2 and type I interferon revealed further improved control of metastasis. The data clearly indicate that targeting CIS promotes NK cell antitumor functions and CIS holds great promise as a novel target in NK cell immunotherapy. PMID:28344878

  6. Muscle protein analysis. II. Two-dimensional electrophoresis of normal and diseased human skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Giometti, C.S. (Argonne National Lab., IL); Barany, M.; Danon, M.J.; Anderson, N.G.

    1980-07-01

    High-resolution two-dimensional electrophoresis was used to analyze the major proteins of normal and pathological human-muscle samples. The normal human-muscle pattern contains four myosin light chains: three that co-migrate with the myosin light chains from rabbit fast muscle (extensor digitorum longus), and one that co-migrates with the light chain 2 from rabbit slow muscle (soleus). Of seven Duchenne muscular dystrophy samples, four yielded patterns with decreased amounts of actin and myosin relative to normal muscle, while three samples gave patterns comparable to that for normal muscle. Six samples from patients with myotonic dystrophy also gave normal patterns. In nemaline rod myopathy, in contrast, the pattern was deficient in two of the fast-type myosin light chains.

  7. The skin immune system (SIS): distribution and immunophenotype of lymphocyte subpopulations in normal human skin

    NARCIS (Netherlands)

    Bos, J. D.; Zonneveld, I.; Das, P. K.; Krieg, S. R.; van der Loos, C. M.; Kapsenberg, M. L.

    1987-01-01

    The complexity of immune response-associated cells present in normal human skin was recently redefined as the skin immune system (SIS). In the present study, the exact immunophenotypes of lymphocyte subpopulations with their localizations in normal human skin were determined quantitatively. B cells

  8. Endometrial immune markers are potential predictors of normal fertility and pregnancy after in vitro fertilization.

    Science.gov (United States)

    Kofod, Louise; Lindhard, Anette; Bzorek, Michael; Eriksen, Jens Ole; Larsen, Lise Grupe; Hviid, Thomas Vauvert F

    2017-09-01

    Elucidating immune mechanisms in the endometrium, which lead to the success of implantation and pregnancy, is important in reproductive medicine. Studies of immune cell abundance have shown conflicting results, and the expression and importance of HLA class Ib proteins in pre-implantation endometrium have not yet been investigated. The study population consisted of four subgroups: a hydrosalpinx, a salpingectomy, an unexplained infertility, and a fertile control group. Endometrial samples were collected during the implantation window. Immune markers (CD56 + and CD16 + cells, FoxP3 + Tregs, HLA-G, HLA-F) were quantified in the samples. The outcome of the subsequent IVF treatment was recorded. Increased CD56 + uNK cells and high HLA-G expression served as predictor for successful pregnancy outcome. HLA-F expression was positively correlated with uNK cells, being indirectly predictive for achieving pregnancy. Endometrial uNK cell abundance in the pre-implantation endometrium seems to be important for normal fertility and pregnancy success, and they may be used as clinical markers to predict implantation success in IVF. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Skeletal muscle phosphatidylcholine fatty acids and insulin sensitivity in normal humans.

    Science.gov (United States)

    Clore, J N; Li, J; Gill, R; Gupta, S; Spencer, R; Azzam, A; Zuelzer, W; Rizzo, W B; Blackard, W G

    1998-10-01

    The fatty acid composition of skeletal muscle membrane phospholipids (PL) is known to influence insulin responsiveness in humans. However, the contribution of the major PL of the outer (phosphatidylcholine, PC) and inner (phosphatidylethanolamine, PE) layers of the sarcolemma to insulin sensitivity is not known. Fatty acid composition of PC and PE from biopsies of vastus lateralis from 27 normal men and women were correlated with insulin sensitivity determined by the hyperinsulinemic euglycemic clamp technique at insulin infusion rates of 0.4, 1.0, and 10.0 mU . kg-1 . min-1. Significant variation in the half-maximal insulin concentration (ED50) was observed in the normal volunteers (range 24.0-146.0 microU/ml), which correlated directly with fasting plasma insulin (r = 0.75, P insulin sensitivity was observed in PE (NS). These studies suggest that the fatty acid composition of PC may be of particular importance in the relationship between fatty acids and insulin sensitivity in normal humans.

  10. Cdx2 modulates proliferation in normal human intestinal epithelial crypt cells

    International Nuclear Information System (INIS)

    Escaffit, Fabrice; Pare, Frederic; Gauthier, Remy; Rivard, Nathalie; Boudreau, Francois; Beaulieu, Jean-Francois

    2006-01-01

    The homeobox gene Cdx2 is involved in the regulation of the expression of intestine specific markers such as sucrase-isomaltase and lactase-phlorizin hydrolase. Previous studies performed with immortalized or transformed intestinal cell lines have provided evidence that Cdx2 can promote morphological and functional differentiation in these experimental models. However, no data exist concerning the implication of this factor in normal human intestinal cell physiology. In the present work, we have investigated the role of Cdx2 in normal human intestinal epithelial crypt (HIEC) cells that lack this transcription factor. The establishment of HIEC cells expressing Cdx2 in an inducible manner shows that forced expression of Cdx2 significantly alters the proliferation of intestinal crypt cells and stimulates dipeptidylpeptidase IV expression but is not sufficient to trigger intestinal terminal differentiation. These observations suggest that Cdx2 requires additional factors to activate the enterocyte differentiation program in normal undifferentiated cells

  11. General anesthesia suppresses normal heart rate variability in humans

    Science.gov (United States)

    Matchett, Gerald; Wood, Philip

    2014-06-01

    The human heart normally exhibits robust beat-to-beat heart rate variability (HRV). The loss of this variability is associated with pathology, including disease states such as congestive heart failure (CHF). The effect of general anesthesia on intrinsic HRV is unknown. In this prospective, observational study we enrolled 100 human subjects having elective major surgical procedures under general anesthesia. We recorded continuous heart rate data via continuous electrocardiogram before, during, and after anesthesia, and we assessed HRV of the R-R intervals. We assessed HRV using several common metrics including Detrended Fluctuation Analysis (DFA), Multifractal Analysis, and Multiscale Entropy Analysis. Each of these analyses was done in each of the four clinical phases for each study subject over the course of 24 h: Before anesthesia, during anesthesia, early recovery, and late recovery. On average, we observed a loss of variability on the aforementioned metrics that appeared to correspond to the state of general anesthesia. Following the conclusion of anesthesia, most study subjects appeared to regain their normal HRV, although this did not occur immediately. The resumption of normal HRV was especially delayed on DFA. Qualitatively, the reduction in HRV under anesthesia appears similar to the reduction in HRV observed in CHF. These observations will need to be validated in future studies, and the broader clinical implications of these observations, if any, are unknown.

  12. Complement-Opsonized HIV-1 Alters Cross Talk Between Dendritic Cells and Natural Killer (NK Cells to Inhibit NK Killing and to Upregulate PD-1, CXCR3, and CCR4 on T Cells

    Directory of Open Access Journals (Sweden)

    Rada Ellegård

    2018-04-01

    Full Text Available Dendritic cells (DCs, natural killer (NK cells, and T cells play critical roles during primary HIV-1 exposure at the mucosa, where the viral particles become coated with complement fragments and mucosa-associated antibodies. The microenvironment together with subsequent interactions between these cells and HIV at the mucosal site of infection will determine the quality of immune response that ensues adaptive activation. Here, we investigated how complement and immunoglobulin opsonization influences the responses triggered in DCs and NK cells, how this affects their cross talk, and what T cell phenotypes are induced to expand following the interaction. Our results showed that DCs exposed to complement-opsonized HIV (C-HIV were less mature and had a poor ability to trigger IFN-driven NK cell activation. In addition, when the DCs were exposed to C-HIV, the cytotolytic potentials of both NK cells and CD8 T cells were markedly suppressed. The expression of PD-1 as well as co-expression of negative immune checkpoints TIM-3 and LAG-3 on PD-1 positive cells were increased on both CD4 as well as CD8 T cells upon interaction with and priming by NK–DC cross talk cultures exposed to C-HIV. In addition, stimulation by NK–DC cross talk cultures exposed to C-HIV led to the upregulation of CD38, CXCR3, and CCR4 on T cells. Together, the immune modulation induced during the presence of complement on viral surfaces is likely to favor HIV establishment, dissemination, and viral pathogenesis.

  13. Regulatory role of NKG2D+ NK cells in intestinal lamina propria by secreting double-edged Th1 cytokines in ulcerative colitis.

    Science.gov (United States)

    Wang, Fan; Peng, Pai-Lan; Lin, Xue; Chang, Ying; Liu, Jing; Zhou, Rui; Nie, Jia-Yan; Dong, Wei-Guo; Zhao, Qiu; Li, Jin

    2017-11-17

    The role of intestinal lamina propria (LP) NKG2D+ NK cells is unclear in regulating Th1/Th2 balance in ulcerative colitis (UC). In this study, we investigated the frequency of LP NKG2D+ NK cells in DSS-induced colitis model and intestinal mucosal samples of UC patients, as well as the secretion of Th1/Th2/Th17 cytokines in NK cell lines after MICA stimulation. The role of Th1 cytokines in UC was validated by bioinformatics analysis. We found that DSS-induced colitis in mice was characterized by a Th2-mediated process. In acute phrase, the frequency of LP NKG2D+ lymphocytes increased significantly and decreased in remission, while the frequency of LP NKG2D+ NK cells decreased significantly in acute phase and increased in remission. No obvious change was found in the frequency of total LP NK cells. Similarly, severe UC patients had a higher expression of mucosal NKG2D and a lower number of NKG2D+ NK cells than mild to moderate UC. In NK cell lines, the MICA stimulation could induce a predominant secretion of Th1 cytokines (TNF, IFN-γ). Furthermore, in bioinformatics analysis, mucosal Th1 cytokine of TNF, showed a double-edged role in UC when compared to the Th1-mediated disease of Crohn's colitis. In conclusion, LP NKG2D+ NK cells partially played a regulatory role in UC through secreting Th1 cytokines to regulate the Th2-predominant Th1/Th2 imbalance, despite of the concomitant pro-inflammatory effects of Th1 cytokines.

  14. The Genetic Deletion of 6q21 and PRDM1 and Clinical Implications in Extranodal NK/T Cell Lymphoma, Nasal Type

    Directory of Open Access Journals (Sweden)

    Li Liang

    2015-01-01

    Full Text Available 6q21 genetic deletion has been frequently detected in extranodal NK/T cell lymphoma, nasal type (EN-NK/T-NT, and PRDM1 is considered as candidate gene. However, direct detection of PRDM1 deletion has not been well documented. We investigated genetic alterations of 6q21 and PRDM1 in 43 cases of EN-NK/T-NT and cell lines by FISH. PRDM1 expression was evaluated by immunohistochemistry and Western blot. The correlation between genetic alteration and PRDM1 expression and the significance in clinic-pathologic were analyzed. Heterozygous deletion of 6q21 and/or PRDM1 was observed in 24 of 43 cases (55.81% of EN-NK/T-NT including 16 cases (37.21% for 6q21 deletion and 19 cases (44.19% for PRDM1 deletion. Similarly, heterozygous codeletion of 6q21 and PRDM1 was identified in NK92 and NKL cells. The heterozygous deletion of 6q21 and/or PRDM1 was correlated with PRDM1 expression. However, genetic deletion of 6q21 and/or PRDM1 was not correlated with clinicopathological features of EN-NK/T-NT, while PRDM1 expression showed positive effect on the outcome of patients as those as disease site, B symptom, and clinical stage. Thus, heterozygous deletion of 6q21 and/or PRDM1 was frequently detected in EN-NK/T-NT and correlated with downregulation of PRDM1. But the prognostic role of genetic deletion needs to be further evaluated in larger cohort.

  15. NK Cell Receptor/H2-Dk–Dependent Host Resistance to Viral Infection Is Quantitatively Modulated by H2 q Inhibitory Signals

    Science.gov (United States)

    Fodil-Cornu, Nassima; Loredo-Osti, J. Concepción; Vidal, Silvia M.

    2011-01-01

    The cytomegalovirus resistance locus Cmv3 has been linked to an epistatic interaction between two loci: a Natural Killer (NK) cell receptor gene and the major histocompatibility complex class I (MHC-I) locus. To demonstrate the interaction between Cmv3 and H2k, we generated double congenic mice between MA/My and BALB.K mice and an F2 cross between FVB/N (H-2q) and BALB.K (H2k) mice, two strains susceptible to mouse cytomegalovirus (MCMV). Only mice expressing H2k in conjunction with Cmv3MA/My or Cmv3FVB were resistant to MCMV infection. Subsequently, an F3 cross was carried out between transgenic FVB/H2-Dk and MHC-I deficient mice in which only the progeny expressing Cmv3FVB and a single H2-Dk class-I molecule completely controlled MCMV viral loads. This phenotype was shown to be NK cell–dependent and associated with subsequent NK cell proliferation. Finally, we demonstrated that a number of H2q alleles influence the expression level of H2q molecules, but not intrinsic functional properties of NK cells; viral loads, however, were quantitatively proportional to the number of H2q alleles. Our results support a model in which H-2q molecules convey Ly49-dependent inhibitory signals that interfere with the action of H2-Dk on NK cell activation against MCMV infection. Thus, the integration of activating and inhibitory signals emanating from various MHC-I/NK cell receptor interactions regulates NK cell–mediated control of viral load. PMID:21533075

  16. Normalization of Deviation: Quotation Error in Human Factors.

    Science.gov (United States)

    Lock, Jordan; Bearman, Chris

    2018-05-01

    Objective The objective of this paper is to examine quotation error in human factors. Background Science progresses through building on the work of previous research. This requires accurate quotation. Quotation error has a number of adverse consequences: loss of credibility, loss of confidence in the journal, and a flawed basis for academic debate and scientific progress. Quotation error has been observed in a number of domains, including marine biology and medicine, but there has been little or no previous study of this form of error in human factors, a domain that specializes in the causes and management of error. Methods A study was conducted examining quotation accuracy of 187 extracts from 118 published articles that cited a control article (Vaughan's 1996 book: The Challenger Launch Decision: Risky Technology, Culture, and Deviance at NASA). Results Of extracts studied, 12.8% ( n = 24) were classed as inaccurate, with 87.2% ( n = 163) being classed as accurate. A second dimension of agreement was examined with 96.3% ( n = 180) agreeing with the control article and only 3.7% ( n = 7) disagreeing. The categories of accuracy and agreement form a two by two matrix. Conclusion Rather than simply blaming individuals for quotation error, systemic factors should also be considered. Vaughan's theory, normalization of deviance, is one systemic theory that can account for quotation error. Application Quotation error is occurring in human factors and should receive more attention. According to Vaughan's theory, the normal everyday systems that promote scholarship may also allow mistakes, mishaps, and quotation error to occur.

  17. The distribution of YKL-40 in osteoarthritic and normal human articular cartilage

    DEFF Research Database (Denmark)

    Volck, B; Ostergaard, K; Johansen, J S

    1999-01-01

    YKL-40, also called human cartilage glycoprotein-39, is a major secretory protein of human chondrocytes in cell culture. YKL-40 mRNA is expressed by cartilage from patients with rheumatoid arthritis, but is not detectable in normal human cartilage. The aim was to investigate the distribution of YKL......-40 in osteoarthritic (n=9) and macroscopically normal (n=5) human articular cartilage, collected from 12 pre-selected areas of the femoral head, to discover a potential role for YKL-40 in cartilage remodelling in osteoarthritis. Immunohistochemical analysis showed that YKL-40 staining was found...... in chondrocytes of osteoarthritic cartilage mainly in the superficial and middle zone of the cartilage rather than the deep zone. There was a tendency for high number of YKL-40 positive chondrocytes in areas of the femoral head with a considerable biomechanical load. The number of chondrocytes with a positive...

  18. Interleukin-16-producing NK cells and T-cells in the blood of tobacco smokers with and without COPD

    Directory of Open Access Journals (Sweden)

    Andersson A

    2016-09-01

    Full Text Available Anders Andersson,1,* Carina Malmhäll,2,* Birgitta Houltz,1 Sara Tengvall,1 Margareta Sjöstrand,2 Ingemar Qvarfordt,1 Anders Lindén,3 Apostolos Bossios2 1Respiratory Medicine and Allergology, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; 2Krefting Research Center, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; 3Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden *These authors contributed equally to this work Background: Long-term exposure to tobacco smoke causes local inflammation in the airways that involves not only innate immune cells, including NK cells, but also adaptive immune cells such as cytotoxic (CD8+ and helper (CD4+ T-cells. We have previously demonstrated that long-term tobacco smoking increases extracellular concentration of the CD4+-recruiting cytokine interleukin (IL-16 locally in the airways. Here, we hypothesized that tobacco smoking alters IL-16 biology at the systemic level and that this effect involves oxygen free radicals (OFR.Methods: We quantified extracellular IL-16 protein (ELISA and intracellular IL-16 in NK cells, T-cells, B-cells, and monocytes (flow cytometry in blood samples from long-term tobacco smokers with and without chronic obstructive pulmonary disease (COPD and in never-smokers. NK cells from healthy blood donors were stimulated with water-soluble tobacco smoke components (cigarette smoke extract with or without an OFR scavenger (glutathione in vitro and followed by quantification of IL-16 protein.Results: The extracellular concentrations of IL-16 protein in blood did not display any substantial differences between groups. Notably, intracellular IL-16 protein was detected in all types of blood leukocytes. All long-term smokers displayed

  19. A microscale synthesis of a promising radiolabelled antitumor drug: cis-1,1-cyclobutanedicarboxylato (2R)-2-methyl-1,4-butanediamine platinum(II), NK121

    International Nuclear Information System (INIS)

    Suwa, Masato; Kogawa, Osamu; Hashimoto, Yutaka

    1992-01-01

    A promising antitumor drug, cis-1,1-cyclobutane-dicarboxylato (2R)-2-methyl-1,4-butanediamine platinum (II), NK121, was synthesized from radionuclides of platinum such as 193m Pt, 195m Pt and 191 Pt which were produced by neutron irradiation of enriched 192 Pt. The overall yield was 38.6% in a synthesis time of 10 hours. The radioactivities present in 8.39 mg of NK121 were 115.3 μCi as 193m Pt, 29.9 μCi as 197 Pt, 22.0 μCi as 195m Pt, and 4.8 μCi as 191 Pt at the end of synthesis. The specific activity of the NK121 was 13.7 μCi ( 193m Pt)/mg NK121 at the end of synthesis. The radiochemical purity of NK121 was typically 99%. HPLC analyses confirmed that NK121 was in an adequate chemical purity and suitable for animal experimentation. (author)

  20. A microscale synthesis of a promising radiolabelled antitumor drug: cis-1,1-cyclobutanedicarboxylato (2R)-2-methyl-1,4-butanediamine platinum(II), NK121

    Energy Technology Data Exchange (ETDEWEB)

    Suwa, Masato; Kogawa, Osamu; Hashimoto, Yutaka (Nippon Kayaku Co. Ltd., Tokyo (Japan). Research Labs. of Pharmaceuticals Group); Nowatari, Hiroyoshi (Nippon Kayaku Co. Ltd., Takasaki, Gumma (Japan). Takasaki Research Labs.); Murase, Yuko; Homma, Yoshio (Kyoritsu Coll. of Pharmacy, Tokyo (Japan))

    1992-05-01

    A promising antitumor drug, cis-1,1-cyclobutane-dicarboxylato (2R)-2-methyl-1,4-butanediamine platinum (II), NK121, was synthesized from radionuclides of platinum such as {sup 193m}Pt, {sup 195m}Pt and {sup 191}Pt which were produced by neutron irradiation of enriched {sup 192}Pt. The overall yield was 38.6% in a synthesis time of 10 hours. The radioactivities present in 8.39 mg of NK121 were 115.3 {mu}Ci as {sup 193m}Pt, 29.9 {mu}Ci as {sup 197}Pt, 22.0 {mu}Ci as {sup 195m}Pt, and 4.8 {mu}Ci as {sup 191}Pt at the end of synthesis. The specific activity of the NK121 was 13.7 {mu}Ci ({sup 193m}Pt)/mg NK121 at the end of synthesis. The radiochemical purity of NK121 was typically 99%. HPLC analyses confirmed that NK121 was in an adequate chemical purity and suitable for animal experimentation. (author).

  1. The Murine Natural Cytotoxic Receptor NKp46/NCR1 Controls TRAIL Protein Expression in NK Cells and ILC1s

    Directory of Open Access Journals (Sweden)

    Sam Sheppard

    2018-03-01

    Full Text Available Summary: TRAIL is an apoptosis-inducing ligand constitutively expressed on liver-resident type 1 innate lymphoid cells (ILC1s and a subset of natural killer (NK cells, where it contributes to NK cell anti-tumor, anti-viral, and immunoregulatory functions. However, the intrinsic pathways involved in TRAIL expression in ILCs remain unclear. Here, we demonstrate that the murine natural cytotoxic receptor mNKp46/NCR1, expressed on ILC1s and NK cells, controls TRAIL protein expression. Using NKp46-deficient mice, we show that ILC1s lack constitutive expression of TRAIL protein and that NK cells activated in vitro and in vivo fail to upregulate cell surface TRAIL in the absence of NKp46. We show that NKp46 regulates TRAIL expression in a dose-dependent manner and that the reintroduction of NKp46 in mature NK cells deficient for NKp46 is sufficient to restore TRAIL surface expression. These studies uncover a link between NKp46 and TRAIL expression in ILCs with potential implications in pathologies involving NKp46-expressing cells. : Sheppard et al. find that mice deficient in the activating receptor NCR1/NKp46 (Ncr1−/− fail to express the apoptosis-inducing ligand TRAIL at the surface of group 1 innate lymphoid cells (ILC1s. Keywords: NK cell, natural killer cell, NKp46, ILC1, TRAIL, IL-15, IL-2

  2. Human renin biosynthesis and secretion in normal and ischemic kidneys

    International Nuclear Information System (INIS)

    Pratt, R.E.; Carleton, J.E.; Richie, J.P.; Heusser, C.; Dzau, V.J.

    1987-01-01

    The pathway of renin biosynthesis and secretion in normal and ischemic human kidneys has been investigated by pulse-labeling experiments. The results indicate that in normal human kidney, preprorenin is rapidly processed to 47-kDa prorenin. Microradiosequencing showed that this molecule was generated by cleavage between Gly-23 and Leu-24, yielding a 43-amino acid proregion. Analysis of prorenin secreted by the kidney tissue yielded an identical sequence, indicating that prorenin is secreted without any further proteolysis. An examination of the kinetics of processing and secretion suggested that a majority of the newly synthesized prorenin is quickly secreted, while only a small fraction is processed intracellularly to the mature renin. The differences in secretion kinetics between prorenin and mature renin and the selective inhibition of prorenin secretion by monensin suggest that they are secreted independently via two pathways: a constitutive pathway probably from the Golgi or protogranules that rapidly release prorenin and a regulated pathway that secretes mature renin from the mature granules. A comparison of the kinetics of processing between normal and ischemic tissues suggests that renal ischemia leads to an overall increase in the rate of processing or prorenin to mature renin. In addition, prolonged biosynthetic labeling of renin in the ischemic kidney yielded two smaller molecular weight immunoreactive forms suggestive of renin fragments that may be degradative products. These fragments were not detected in normal kidney tissue labeled for similar lengths of time

  3. Gamma-ray excision repair in normal and diseased human cells

    International Nuclear Information System (INIS)

    Cerutti, P.A.; Remsen, J.F.

    1976-01-01

    Radiation products of the 5,6-dihydroxy-dihydrothymine type (t') are efficiently removed from the DNA during postirradiation incubation of bacterial and mammalian cells. In this chapter we describe the t'-excision system contained in normal human cells, in human carcinoma HeLa S-3 cells, and in skin fibroblasts from xeroderma pigmentosum (XP) and Fanconi's anemia (FA) patients. The latter diseases are characterized among other symptoms by a genetically increased susceptibility for the development of cancer

  4. The measurement of intrinsic cellular radiosensitivity in human tumours and normal tissues

    International Nuclear Information System (INIS)

    Lawton, P.A.

    1995-01-01

    Human tumour and normal cell radiosensitivity are thought to be important factors determining the response of tumour and normal tissues to radiotherapy, respectively. Clonogenic assays are the standard method for measuring radiosensitivity but they are of limited applicability for clinical use with fresh human tumours. The main aim of this work was to evaluate the Adhesive Tumour Cell Culture System (ATCCS), as a method for measuring the radiosensitivity of human tumours. A soft agar clonogenic assay, the modified Courtenay-Mills assay, was used as a standard to compare with the ATCCS. The demonstration that fibroblast contamination could occur with both assay methods led to the investigation of a new technique for removing unwanted fibroblasts from tumour cell suspensions and to the use of a multiwell assay for measuring fibroblast radiosensitivity. (author)

  5. The measurement of intrinsic cellular radiosensitivity in human tumours and normal tissues

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, P.A.

    1995-12-31

    Human tumour and normal cell radiosensitivity are thought to be important factors determining the response of tumour and normal tissues to radiotherapy, respectively. Clonogenic assays are the standard method for measuring radiosensitivity but they are of limited applicability for clinical use with fresh human tumours. The main aim of this work was to evaluate the Adhesive Tumour Cell Culture System (ATCCS), as a method for measuring the radiosensitivity of human tumours. A soft agar clonogenic assay, the modified Courtenay-Mills assay, was used as a standard to compare with the ATCCS. The demonstration that fibroblast contamination could occur with both assay methods led to the investigation of a new technique for removing unwanted fibroblasts from tumour cell suspensions and to the use of a multiwell assay for measuring fibroblast radiosensitivity. (author).

  6. NK-, NKT- and CD8-Derived IFNγ Drives Myeloid Cell Activation and Erythrophagocytosis, Resulting in Trypanosomosis-Associated Acute Anemia.

    Directory of Open Access Journals (Sweden)

    Jennifer Cnops

    2015-06-01

    Full Text Available African trypanosomes are the causative agents of Human African Trypanosomosis (HAT/Sleeping Sickness and Animal African Trypanosomosis (AAT/Nagana. A common hallmark of African trypanosome infections is inflammation. In murine trypanosomosis, the onset of inflammation occurs rapidly after infection and is manifested by an influx of myeloid cells in both liver and spleen, accompanied by a burst of serum pro-inflammatory cytokines. Within 48 hours after reaching peak parasitemia, acute anemia develops and the percentage of red blood cells drops by 50%. Using a newly developed in vivo erythrophagocytosis assay, we recently demonstrated that activated cells of the myeloid phagocytic system display enhanced erythrophagocytosis causing acute anemia. Here, we aimed to elucidate the mechanism and immune pathway behind this phenomenon in a murine model for trypanosomosis. Results indicate that IFNγ plays a crucial role in the recruitment and activation of erythrophagocytic myeloid cells, as mice lacking the IFNγ receptor were partially protected against trypanosomosis-associated inflammation and acute anemia. NK and NKT cells were the earliest source of IFNγ during T. b. brucei infection. Later in infection, CD8+ and to a lesser extent CD4+ T cells become the main IFNγ producers. Cell depletion and transfer experiments indicated that during infection the absence of NK, NKT and CD8+ T cells, but not CD4+ T cells, resulted in a reduced anemic phenotype similar to trypanosome infected IFNγR-/- mice. Collectively, this study shows that NK, NKT and CD8+ T cell-derived IFNγ is a critical mediator in trypanosomosis-associated pathology, driving enhanced erythrophagocytosis by myeloid phagocytic cells and the induction of acute inflammation-associated anemia.

  7. NK cell receptor/H2-Dk-dependent host resistance to viral infection is quantitatively modulated by H2q inhibitory signals.

    Science.gov (United States)

    Fodil-Cornu, Nassima; Loredo-Osti, J Concepción; Vidal, Silvia M

    2011-04-01

    The cytomegalovirus resistance locus Cmv3 has been linked to an epistatic interaction between two loci: a Natural Killer (NK) cell receptor gene and the major histocompatibility complex class I (MHC-I) locus. To demonstrate the interaction between Cmv3 and H2(k), we generated double congenic mice between MA/My and BALB.K mice and an F(2) cross between FVB/N (H-2(q)) and BALB.K (H2(k)) mice, two strains susceptible to mouse cytomegalovirus (MCMV). Only mice expressing H2(k) in conjunction with Cmv3(MA/My) or Cmv3(FVB) were resistant to MCMV infection. Subsequently, an F(3) cross was carried out between transgenic FVB/H2-D(k) and MHC-I deficient mice in which only the progeny expressing Cmv3(FVB) and a single H2-D(k) class-I molecule completely controlled MCMV viral loads. This phenotype was shown to be NK cell-dependent and associated with subsequent NK cell proliferation. Finally, we demonstrated that a number of H2(q) alleles influence the expression level of H2(q) molecules, but not intrinsic functional properties of NK cells; viral loads, however, were quantitatively proportional to the number of H2(q) alleles. Our results support a model in which H-2(q) molecules convey Ly49-dependent inhibitory signals that interfere with the action of H2-D(k) on NK cell activation against MCMV infection. Thus, the integration of activating and inhibitory signals emanating from various MHC-I/NK cell receptor interactions regulates NK cell-mediated control of viral load.

  8. Splenocytes cultured in low concentrations of IL-2 generate NK cell specificities toward syngenic and allogenic targets

    DEFF Research Database (Denmark)

    Nissen, Mogens Holst; Jeppesen, M; Claesson, M H

    2000-01-01

    Splenocytes cultured in the presence of 30-60 units/ml IL-2 for 5 days develop natural killer activity toward syngeneic and allogeneic tumor cell targets. The IL-2 activated splenocytes, themselves, are partially resistant, whereas concanavalin A-activated T blast cells are completely resistant...... to killing. Surprisingly, major histocompatibility complex (MHC)-I-negative target cells are also resistant to natural killer (NK)-cell-mediated killing. Cells resistant to killing were unable to block NK-cell-mediated killing of sensitive targets as judged from cold target cell inhibition experiments......, and one type of target cells sensitive to killing did generally not cross-block killing of other killing-sensitive target cell types. Alloantigen exposure of splenocytes, i.e., one-way mixed lymphocyte cultures, partially prevents the development of NK-cell activity. Our data suggest that target...

  9. Re-evaluation of the involvement of NK cells and C-type lectin-like NK receptors in modulation of immune responses by multivalent GlcNAc-terminated oligosaccharides

    Czech Academy of Sciences Publication Activity Database

    Grobárová, Valeria; Benson, Veronika; Rozbeský, Daniel; Novák, Petr; Černý, O.

    2013-01-01

    Roč. 156, 1-2 (2013), s. 110-117 ISSN 0165-2478 R&D Projects: GA MŠk ED1.1.00/02.0109 Institutional support: RVO:61388971 Keywords : Anti-tumor immunity * Carbohydrate dendrimer * NK cells Subject RIV: EC - Immunology Impact factor: 2.367, year: 2013

  10. NKT cells act through third party bone marrow-derived cells to suppress NK cell activity in the liver and exacerbate hepatic melanoma metastases.

    Science.gov (United States)

    Sadegh, Leila; Chen, Peter W; Brown, Joseph R; Han, Zhiqiang; Niederkorn, Jerry Y

    2015-09-01

    Uveal melanoma (UM) is the most common intraocular tumor in adults and liver metastasis is the leading cause of death in UM patients. We have previously shown that NKT cell-deficient mice develop significantly fewer liver metastases from intraocular melanomas than do wild-type (WT) mice. Here, we examine the interplay between liver NKT cells and NK cells in resistance to liver metastases from intraocular melanomas. NKT cell-deficient CD1d(-/-) mice and WT C57BL/6 mice treated with anti-CD1d antibody developed significantly fewer liver metastases than WT mice following either intraocular or intrasplenic injection of B16LS9 melanoma cells. The increased number of metastases in WT mice was associated with reduced liver NK cytotoxicity and decreased production of IFN-γ. However, liver NK cell-mediated cytotoxic activity was identical in non-tumor bearing NKT cell-deficient mice and WT mice, indicating that liver metastases were crucial for the suppression of liver NK cells. Depressed liver NK cytotoxicity in WT mice was associated with production of IL-10 by bone marrow-derived liver cells that were neither Kupffer cells nor myeloid-derived suppressor cells and by increased IL-10 receptor expression on liver NK cells. IL-10(-/-) mice had significantly fewer liver metastases than WT mice, but were not significantly different from NKT cell-deficient mice. Thus, development of melanoma liver metastases is associated with upregulation of IL-10 in the liver and an elevated expression of IL-10 receptor on liver NK cells. This impairment of liver NK activity is NKT cell-dependent and only occurs in hosts with melanoma liver metastases. © 2015 UICC.

  11. Immortalization of normal human fibroblasts by treatment with 4-nitroquinoline 1-oxide.

    Science.gov (United States)

    Bai, L; Mihara, K; Kondo, Y; Honma, M; Namba, M

    1993-02-01

    Normal human fibroblasts (the OUMS-24 strain), derived from a 6-week-old human embryo, were transformed (into the OUMS-24F line) and immortalized by repeated treatments (59 times) with 4-nitroquinoline 1-oxide (4NQO). Treatment began during primary culture and ended at the 51st population doubling level (PDL). At the 57th PDL (146 days after the last treatment), morphologically altered, epithelial-type cells appeared, began to grow and became immortal (now past the 100th PDL). However, the control fibroblasts, which were not treated with 4NQO, senesced at the 62nd PDL. The finding that extensive, repeated treatments with 4NQO are required for the immortalization of normal human cells, indicates that multiple mutational events are involved in the immortalization of human cells in general. In other words, immortalization itself seems to be a multi-step process. Karyotypic analysis showed that many cells were hypodiploid before immortalization, but that afterwards chromosomes were distributed broadly in the diploid to tetraploid regions. The immortalized cells showed amplification and enhanced expression of c-myc. Two-dimensional electrophoretic analysis showed that the number of disappearing cellular proteins was greater than the number of the newly appearing ones after the cells became immortalized. Since the immortalized cells showed neither anchorage-independent growth nor tumorigenicity, they are useful for studying factors that can contribute to multi-step carcinogenesis in human cells. In addition, genetically matched normal (OUMS-24) and immortalized (OUMS-24F) cells will be useful for analyzing the genes related to cellular mortality and immortalization.

  12. Hepatitis C Virus Sensing by Human Trophoblasts Induces Innate Immune Responses and Recruitment of Maternal NK Cells: Potential Implications for Limiting Vertical Transmission.

    Science.gov (United States)

    Giugliano, Silvia; Petroff, Margaret G; Warren, Bryce D; Jasti, Susmita; Linscheid, Caitlin; Ward, Ashley; Kramer, Anita; Dobrinskikh, Evgenia; Sheiko, Melissa A; Gale, Michael; Golden-Mason, Lucy; Winn, Virginia D; Rosen, Hugo R

    2015-10-15

    Hepatitis C virus (HCV) is the world's most common blood-borne viral infection for which there is no vaccine. The rates of vertical transmission range between 3 and 6% with odds 90% higher in the presence of HIV coinfection. Prevention of vertical transmission is not possible because of lack of an approved therapy for use in pregnancy or an effective vaccine. Recently, HCV has been identified as an independent risk factor for preterm delivery, perinatal mortality, and other complications. In this study, we characterized the immune responses that contribute to the control of viral infection at the maternal-fetal interface (MFI) in the early gestational stages. In this study, we show that primary human trophoblast cells and an extravillous trophoblast cell line (HTR8), from first and second trimester of pregnancy, express receptors relevant for HCV binding/entry and are permissive for HCV uptake. We found that HCV-RNA sensing by human trophoblast cells induces robust upregulation of type I/III IFNs and secretion of multiple chemokines that elicit recruitment and activation of decidual NK cells. Furthermore, we observed that HCV-RNA transfection induces a proapoptotic response within HTR8 that could affect the morphology of the placenta. To our knowledge, for the first time, we demonstrate that HCV-RNA sensing by human trophoblast cells elicits a strong antiviral response that alters the recruitment and activation of innate immune cells at the MFI. This work provides a paradigm shift in our understanding of HCV-specific immunity at the MFI as well as novel insights into mechanisms that limit vertical transmission but may paradoxically lead to virus-related pregnancy complications. Copyright © 2015 by The American Association of Immunologists, Inc.

  13. Duchenne Muscular Dystrophy Gene Expression in Normal and Diseased Human Muscle

    Science.gov (United States)

    Oronzi Scott, M.; Sylvester, J. E.; Heiman-Patterson, T.; Shi, Y.-J.; Fieles, W.; Stedman, H.; Burghes, A.; Ray, P.; Worton, R.; Fischbeck, K. H.

    1988-03-01

    A probe for the 5' end of the Duchenne muscular dystrophy (DMD) gene was used to study expression of the gene in normal human muscle, myogenic cell cultures, and muscle from patients with DMD. Expression was found in RNA from normal fetal muscle, adult cardiac and skeletal muscle, and cultured muscle after myoblast fusion. In DMD muscle, expression of this portion of the gene was also revealed by in situ RNA hybridization, particularly in regenerating muscle fibers.

  14. Distinct p53 genomic binding patterns in normal and cancer-derived human cells

    Energy Technology Data Exchange (ETDEWEB)

    Botcheva K.; McCorkle S. R.; McCombie W. R.; Dunn J. J.; Anderson C. W.

    2011-12-15

    We report here genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands, in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIPseq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells.

  15. The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation.

    Science.gov (United States)

    Ha, V L; Luong, A; Li, F; Casero, D; Malvar, J; Kim, Y M; Bhatia, R; Crooks, G M; Parekh, C

    2017-11-01

    The initial stages of T-cell differentiation are characterized by a progressive commitment to the T-cell lineage, a process that involves the loss of alternative (myelo-erythroid, NK, B) lineage potentials. Aberrant differentiation during these stages can result in T-cell acute lymphoblastic leukemia (T-ALL). However, the mechanisms regulating the initial stages of human T-cell differentiation are obscure. Through loss of function studies, we showed BCL11B, a transcription factor recurrently mutated T-ALL, is essential for T-lineage commitment, particularly the repression of NK and myeloid potentials, and the induction of T-lineage genes, during the initial stages of human T-cell differentiation. In gain of function studies, BCL11B inhibited growth of and induced a T-lineage transcriptional program in T-ALL cells. We found previously unknown differentiation stage-specific DNA binding of BCL11B at multiple T-lineage genes; target genes showed BCL11B-dependent expression, suggesting a transcriptional activator role for BCL11B at these genes. Transcriptional analyses revealed differences in the regulatory actions of BCL11B between human and murine thymopoiesis. Our studies show BCL11B is a key regulator of the initial stages of human T-cell differentiation and delineate the BCL11B transcriptional program, enabling the dissection of the underpinnings of normal T-cell differentiation and providing a resource for understanding dysregulations in T-ALL.

  16. Human-Machine interface for off normal and emergency situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Many nuclear power plants (NPPs) have reported that a high percentage of all major failures in the plants are caused by human errors. Therefore, there has been much focus on elimination of human errors, enhancement of human performance, and general improvement of human machine interface (HMI). Both the utility management and the regulators are demanding improvement in this area. The International Atomic Energy Agency (IAEA) Specialists' Meeting on 'Human-Machine Interface for Off Normal and Emergency Situations in Nuclear Power Plants' was co-organized by the Korea Atomic Energy Research Institute (KAERI) and the Korea Power Engineering Company, INC (KOPEC), and took place in Taejeon, Republic of Korea, 1999 October 26-28. Fifty eight participants, representing nine member countries reviewed recent developments and discussed directions for future efforts in the Human-Machine Interface for Off Normal and Emergency Situations in NPPs. Twenty papers were presented, covering a wide spectrum of technical and scientific subjects including recent experience and benefits from Operational Experience with HMI, Development of HMI System, Licensing Issues for HMI and Future Development and Trends. (Author)

  17. Human-Machine interface for off normal and emergency situations in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Kee Choon [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    Many nuclear power plants (NPPs) have reported that a high percentage of all major failures in the plants are caused by human errors. Therefore, there has been much focus on elimination of human errors, enhancement of human performance, and general improvement of human machine interface (HMI). Both the utility management and the regulators are demanding improvement in this area. The International Atomic Energy Agency (IAEA) Specialists' Meeting on 'Human-Machine Interface for Off Normal and Emergency Situations in Nuclear Power Plants' was co-organized by the Korea Atomic Energy Research Institute (KAERI) and the Korea Power Engineering Company, INC (KOPEC), and took place in Taejeon, Republic of Korea, 1999 October 26-28. Fifty eight participants, representing nine member countries reviewed recent developments and discussed directions for future efforts in the Human-Machine Interface for Off Normal and Emergency Situations in NPPs. Twenty papers were presented, covering a wide spectrum of technical and scientific subjects including recent experience and benefits from Operational Experience with HMI, Development of HMI System, Licensing Issues for HMI and Future Development and Trends. (Author)

  18. NK3 Receptors mediate an increase in firing rate of midbrain dopamine neurons of the rat and the guinea pig

    NARCIS (Netherlands)

    Werkman, T.R.; McCreary, A.C.; Kruse, C.G.; Wadman, W.J.

    2011-01-01

    This in vitro study investigates and compares the effects of NK3 receptor ligands on the firing rate of rat and guinea pig midbrain dopamine neurons. The findings are discussed in the light of choosing suitable animal models for investigating pharmacological properties of NK3 receptor antagonists,

  19. Downregulation of miR-15a due to LMP1 promotes cell proliferation and predicts poor prognosis in nasal NK/T-cell lymphoma.

    Science.gov (United States)

    Komabayashi, Yuki; Kishibe, Kan; Nagato, Toshihiro; Ueda, Seigo; Takahara, Miki; Harabuchi, Yasuaki

    2014-01-01

    Nasal NK/T-cell lymphoma (NNKTL) is an Epstein-Barr virus (EBV)-associated malignancy and has distinct clinical and histological features. However, its genetic features are hitherto unclear. MicroRNAs (miRNAs) play a crucial role in the pathogenesis of several malignancies via regulating gene expression. In this study, we investigated whether the specific microRNAs were related to the tumor behaviors in NNKTL. MiRNA array and Quantitative RT-PCR analyses revealed that miR-15a was expressed at a much lower level in NNKTL cells (SNK-1, SNK-6, and SNT-8) than in normal peripheral NK cells and EBV-negative NK cell line KHYG-1. Quantitative PCR and western blot analyses showed that the expression of MYB and cyclin D1, which are validated targets of miR-15a, was higher in NNKTL cells. Transfection of NNKTL cells (SNK-6 and SNT-8) with a miR-15a precursor decreased MYB and cyclin D1 levels, thereby blocking G1/S transition and cell proliferation. Knockdown of EBV-encoded latent membrane protein 1 (LMP1) significantly increased miR-15a expression in SNK-6 cells. In NNKTL tissues, we found that reduced miR-15a expression, which correlated with MYB and cyclin D1 expression, was associated with poor prognosis of NNKTL patients. These data suggest that downregulation of miR-15a, possibly due to LMP1, implicates in the pathogenesis of NNKTL by inducing cell proliferation via MYB and cyclin D1. Thus, miR-15a could be a potential target for antitumor therapy and a prognostic predictor for NNKTL. Copyright © 2013 Wiley Periodicals, Inc.

  20. Genomic analysis of CD8+ NK/T cell line, ‘SRIK-NKL’, with array-based CGH (aCGH), SKY/FISH and molecular mapping

    Science.gov (United States)

    Rossi, Michael; LaDuca, Jeff; Cowell, John; Srivastava, Bejai I.S.; Matsui, Sei-ichi

    2010-01-01

    We performed aCGH, SKY /FISH, molecular mapping and expression analyses on a permanent CD8+ NK/T cell line, ‘SRIK-NKL’ established from a lymphoma (ALL) patient, in attempt to define the fundamental genetic profile of its unique NK phenotypes. aCGH revealed hemizygous deletion of 6p containing genes responsible for hematopoietic functions. The SKY demonstrated that a constitutive reciprocal translocation, rcpt(5;14)(p13.2;q11) is a stable marker. Using somatic hybrids containing der(5) derived from SRIK-NKL, we found that the breakpoint in one homologue of no. 5 is located upstream of IL7R and also that the breakpoint in no. 14 is located within TRA@. The FISH analysis using BAC which contains TRA@ and its flanking region further revealed a ~231 kb deletion within 14q11 in the der(5) but not in the normal homologue of no. 14. The RT-PCR analysis detected mRNA for TRA@ transcripts which were extending across, but not including, the deleted region. IL7R was detected at least at mRNA levels. These findings were consistent with the immunological findings that TRA@ and IL7R are both expressed at mRNA levels and TRA@ at cytoplasmic protein levels in SRIK-NKL cells. In addition to rept(5;14), aCGH identified novel copy number abnormalities suggesting that the unique phenotype of the SRIK-NKL cell line is not solely due to the TRA@ rearrangement. These findings provide supportive evidence for the notion that SRIK-NKL cells may be useful for studying not only the function of NK cells but also genetic deregulations associated with leukemiogenesis. PMID:17640729

  1. Heterogeneity of uroplakin localization in human normal urothelium, papilloma and papillary carcinoma

    International Nuclear Information System (INIS)

    Zupancic, Dasa; Romih, Rok

    2013-01-01

    Uroplakins are differentiation-related membrane proteins of urothelium. We compared uroplakin expression and ultrastructural localization in human normal urothelium, papilloma and papillary carcinoma. Because of high recurrence rate of these tumours, treated by transurethral resection, we investigated urothelial tumour, resection border and uninvolved urothelium. Urinary bladder samples were obtained from tumour free control subjects and patients with papilloma and papillary carcinoma. Immunohistochemical and immunoelectron labelling of uroplakins were performed. In normal human urothelium with continuous uroplakin-positive superficial cell layer uroplakins were localized to flattened mature fusiform vesicles and apical plasma membrane of umbrella cells. Diverse uroplakin expression was found in papilloma and papillary carcinoma. Three aberrant differentiation stages of urothelial cells, not found in normal urothelium, were recognized in tumours. Diverse uroplakin expression and aberrant differentiation were occasionally found in resection border and in uninvolved urothelium. We demonstrated here that uroplakin expression and localization in urothelial tumours is altered when compared to normal urothelium. In patients with papilloma and papillary carcinoma immunolabelling of uroplakins at ultrastructural level shows aberrant urothelial differentiation. It is possible that aberrant differentiation stages of urothelial cells in resection border and in uninvolved urothelium contribute to high recurrence rate

  2. Stage 3 immature human natural killer cells found in secondary lymphoid tissue constitutively and selectively express the TH17 cytokine interleukin-22

    Science.gov (United States)

    Hughes, Tiffany; Becknell, Brian; McClory, Susan; Briercheck, Edward; Freud, Aharon G.; Zhang, Xiaoli; Mao, Hsiaoyin; Nuovo, Gerard; Yu, Jianhua

    2009-01-01

    Considerable functional heterogeneity within human natural killer (NK) cells has been revealed through the characterization of distinct NK-cell subsets. Accordingly, a small subset of CD56+NKp44+NK cells, termed NK-22 cells, was recently described within secondary lymphoid tissue (SLT) as IL-22− when resting, with a minor fraction of this population becoming IL-22+ when activated. Here we discover that the vast majority of stage 3 immature NK (iNK) cells in SLT constitutively and selectively express IL-22, a TH17 cytokine important for mucosal immunity, whereas earlier and later stages of NK developmental intermediates do not express IL-22. These iNK cells have a surface phenotype of CD34−CD117+CD161+CD94−, largely lack expression of NKp44 and CD56, and do not produce IFN-γ or possess cytolytic activity. In summary, stage 3 iNK cells are highly enriched for IL-22 and IL-26 messenger RNA, and IL-22 protein production, but do not express IL-17A or IL-17F. PMID:19244159

  3. Stable radioresistance in ataxia-telangiectasia cells containing DNA from normal human cells

    International Nuclear Information System (INIS)

    Kapp, L.N.; Painter, R.B.

    1989-01-01

    SV40-transformed ataxia-telangiectasia (AT) cells were transfected with a cosmid containing a normal human DNA library and selectable marker, the neo gene, which endows successfully transformed mammalian cells with resistance to the antibiotic G418. Cells from this line were irradiated with 50 Gy of X-rays and fused with non-transfected AT cells. Among the G418-resistant colonies recovered was one stably resistant to radiation. Resistance to ionizing radiation of both primary transfectant line and its fusion derivative was intermediate between that of AT cells and normal cells, as assayed by colony-forming ability and measurement of radiation-induced G 2 chromatic aberrations; both cell lines retained AT-like radioresistant DNA synthesis. Results suggest that, because radioresistance in transfected cells was not as great as in normal human cells, two hallmarks of AT, radiosensitivity and radioresistant DNA synthesis, may still be the result of a single defective AT gene. (author)

  4. Effects of Butyltins (BTs) on Mitogen-Activated-Protein Kinase Kinase Kinase (MAP3K) and Ras Activity in Human Natural Killer Cells

    Science.gov (United States)

    Celada, Lindsay J.; Whalen, Margaret M.

    2013-01-01

    Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT), diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally-infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to the activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 minutes of TBT exposure and the MAP3K, ASK1, after one hour exposures to TBT. In addition, our results suggest that both TBT and DBT are impacting the regulation of c-Raf. PMID:24038145

  5. Aggressive NK-cell leukemia: A rare entity with diagnostic and therapeutic challenge

    Directory of Open Access Journals (Sweden)

    Alia Nazarullah

    2016-06-01

    Full Text Available Aggressive natural killer cell leukemia (ANKL is a rare neoplasm of mature natural killer cells, with an extremely poor overall survival, which is almost always EBV related, with majority of cases reported in East Asia. Here we report the case of an ANKL presenting in a young Hispanic male with secondary hemophagocytosis. Aggressive clinical course, high EBV DNA levels and leukemic presentation, often with associated hemophagocytosis, should raise suspicion of an NK/T-cell neoplasm like ANKL. Due to significant diagnostic overlap with extranodal NK/T-cell lymphoma, nasal type (ENKL, accurate diagnostic classification is crucial due to differing treatment and prognosis. L-asparaginase including chemotherapy followed by allogeneic stem cell transplantation appears to slightly prolong overall survival, but relapse is almost inevitable. Clinical monitoring of EBV DNA levels shows good correlation with disease activity.

  6. Magnetic measurements on human erythrocytes: Normal, beta thalassemia major, and sickle

    Science.gov (United States)

    Sakhnini, Lama

    2003-05-01

    In this article magnetic measurements were made on human erythrocytes at different hemoglobin states (normal and reduced hemoglobin). Different blood samples: normal, beta thalassemia major, and sickle were studied. Beta thalassemia major and sickle samples were taken from patients receiving lifelong blood transfusion treatment. All samples examined exhibited diamagnetic behavior. Beta thalassemia major and sickle samples showed higher diamagnetic susceptibilities than that for the normal, which was attributed to the increase of membrane to hemoglobin volume ratio of the abnormal cells. Magnetic measurements showed that the erythrocytes in the reduced state showed less diamagnetic response in comparison with erythrocytes in the normal state. Analysis of the paramagnetic component of magnetization curves gave an effective magnetic moment of μeff=7.6 μB per reduced hemoglobin molecule. The same procedure was applied to sickle and beta thalassemia major samples and values for μeff were found to be comparable to that of the normal erythrocytes.

  7. Voluntary Running Suppresses Tumor Growth through Epinephrine- and IL-6-Dependent NK Cell Mobilization and Redistribution

    DEFF Research Database (Denmark)

    Pedersen, Line; Idorn, Manja; Olofsson, Gitte H.

    2016-01-01

    Regular exercise reduces the risk of cancer and disease recurrence. Yet the mechanisms behind this protection remain to be elucidated. In this study, tumor-bearing mice randomized to voluntary wheel running showed over 60% reduction in tumor incidence and growth across five different tumor models....... Microarray analysis revealed training-induced upregulation of pathways associated with immune function. NK cell infiltration was significantly increased in tumors from running mice, whereas depletion of NK cells enhanced tumor growth and blunted the beneficial effects of exercise. Mechanistic analyses showed...

  8. Expression of cDNAs in human Natural Killer cell lines by retroviral transduction.

    Science.gov (United States)

    Miah, S M Shahjahan; Campbell, Kerry S

    2010-01-01

    Human NK-like cell lines are difficult to transfect using standard mammalian expression vectors and conventional transfection protocols, but they are susceptible to retroviral transduction as a means to introduce cDNAs. Our laboratory has exploited this technique to study a number of receptors in human NK cell lines. The method utilizes a bicistronic retroviral vector that co-expresses either drug resistance or enhanced green fluorescent protein (EGFP) in parallel with the gene of interest. After a single infection with recombinant retrovirus, transduced NK cells can be sorted for expression of EGFP or the transduced cell surface marker. Alternatively, cells expressing the transduced cDNAs can be selected for by treatment with neomycin, puromycin, or hygromycin. Using this method, the sorted/selected cells uniformly express the gene of interest and the expression is stable for many weeks of culture.

  9. Simple mucin-type carbohydrates in normal and malignant human endometrium

    DEFF Research Database (Denmark)

    Ravn, V; Mandel, U; Svenstrup, B

    1995-01-01

    The simple mucin-type carbohydrate antigens, Tn, sialosyl-Tn, and T, are tumor-associated antigens of adenocarcinomas. We evaluated by immunohistochemistry the expression of Tn, sialosyl-Tn (s-Tn), T, and sialosyl-T (s-T) antigens in normal nonsecretory, early gestational, and malignant human...... and malignant endometrium, and the expression of s-T antigen was positively correlated with E2 levels in serum. Our findings suggest a hormonal influence on expression of simple mucin-type carbohydrates in human endometrium. However, the accumulation of Tn and s-Tn antigens in malignant endometrial cells seem...

  10. Multiparametric analysis of host response to murine cytomegalovirus in MHC class I-disparate mice reveals primacy of Dk-licensed Ly49G2+ NK cells in viral control.

    Science.gov (United States)

    Prince, Jessica; Lundgren, Alyssa; Stadnisky, Michael D; Nash, William T; Beeber, Amira; Turner, Stephen D; Brown, Michael G

    2013-11-01

    MHC class I D(k) and Ly49G2 (G2) inhibitory receptor-expressing NK cells are essential to murine CMV (MCMV) resistance in MA/My mice. Without D(k), G2(+) NK cells in C57L mice fail to protect against MCMV infection. As a cognate ligand of G2, D(k) licenses G2(+) NK cells for effector activity. These data suggested that D(k)-licensed G2(+) NK cells might recognize and control MCMV infection. However, a role for licensed NK cells in viral immunity is uncertain. We combined classical genetics with flow cytometry to visualize the host response to MCMV. Immune cells collected from individuals of a diverse cohort of MA/My × C57L offspring segregating D(k) were examined before infection and postinfection, including Ly49(+) NK subsets, receptor expression features, and other phenotypic traits. To identify critical NK cell features, automated analysis of 110 traits was performed in R using the Pearson correlation, followed with a Bonferroni correction for multiple tests. Hierarchical clustering of trait associations and principal component analyses were used to discern shared immune response and genetic relationships. The results demonstrate that G2 expression on naive blood NK cells was predictive of MCMV resistance. However, rapid G2(+) NK cell expansion following viral exposure occurred selectively in D(k) offspring; this response was more highly correlated with MCMV control than all other immune cell features. We infer that D(k)-licensed G2(+) NK cells efficiently detected missing-self MHC cues on viral targets, which elicited cellular expansion and target cell killing. Therefore, MHC polymorphism regulates licensing and detection of viral targets by distinct subsets of NK cells required in innate viral control.

  11. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions

    International Nuclear Information System (INIS)

    Garcia-Iglesias, Trinidad; Daneri-Navarro, Adrian; Toro-Arreola, Alicia del; Albarran-Somoza, Benibelks; Toro-Arreola, Susana del; Sanchez-Hernandez, Pedro E; Ramirez-Dueñas, Maria Guadalupe; Balderas-Peña, Luz Ma. Adriana; Bravo-Cuellar, Alejandro; Ortiz-Lazareno, Pablo C

    2009-01-01

    Persistent high risk HPV infection can lead to cervical cancer, the second most common malignant tumor in women worldwide. NK cells play a crucial role against tumors and virus-infected cells through a fine balance between activating and inhibitory receptors. Expression of triggering receptors NKp30, NKp44, NKp46 and NKG2D on NK cells correlates with cytolytic activity against tumor cells, but these receptors have not been studied in cervical cancer and precursor lesions. The aim of the present work was to study NKp30, NKp46, NKG2D, NKp80 and 2B4 expression in NK cells from patients with cervical cancer and precursor lesions, in the context of HPV infection. NKp30, NKp46, NKG2D, NKp80 and 2B4 expression was analyzed by flow cytometry on NK cells from 59 patients with cervical cancer and squamous intraepithelial lesions. NK cell cytotoxicity was evaluated in a 4 hour CFSE/7-AAD flow cytometry assay. HPV types were identified by PCR assays. We report here for the first time that NK cell-activating receptors NKp30 and NKp46 are significantly down-regulated in cervical cancer and high grade squamous intraepithelial lesion (HGSIL) patients. NCRs down-regulation correlated with low cytolytic activity, HPV-16 infection and clinical stage. NKG2D was also down-regulated in cervical cancer patients. Our results suggest that NKp30, NKp46 and NKG2D down-regulation represent an evasion mechanism associated to low NK cell activity, HPV-16 infection and cervical cancer progression

  12. Requirement for Innate Immunity and CD90+ NK1.1− Lymphocytes to Treat Established Melanoma with Chemo-Immunotherapy

    Science.gov (United States)

    Moskalenko, Marina; Pan, Michael; Fu, Yichun; de Moll, Ellen H.; Hashimoto, Daigo; Mortha, Arthur; Leboeuf, Marylene; Jayaraman, Padmini; Bernardo, Sebastian; Sikora, Andrew G.; Wolchok, Jedd; Bhardwaj, Nina; Merad, Miriam; Saenger, Yvonne

    2015-01-01

    We sought to define cellular immune mechanisms of synergy between tumor-antigen–targeted monoclonal antibodies and chemotherapy. Established B16 melanoma in mice was treated with cytotoxic doses of cyclophosphamide in combination with an antibody targeting tyrosinase-related protein 1 (αTRP1), a native melanoma differentiation antigen. We find that Fcγ receptors are required for efficacy, showing that antitumor activity of combination therapy is immune mediated. Rag1−/− mice deficient in adaptive immunity are able to clear tumors, and thus innate immunity is sufficient for efficacy. Furthermore, previously treated wild-type mice are not significantly protected against tumor reinduction, as compared with mice inoculated with irradiated B16 alone, consistent with a primarily innate immune mechanism of action of chemo-immunotherapy. In contrast, mice deficient in both classical natural killer (NK) lymphocytes and nonclassical innate lymphocytes (ILC) due to deletion of the IL2 receptor common gamma chain IL2γc−/−) are refractory to chemo-immunotherapy. Classical NK lymphocytes are not critical for treatment, as depletion of NK1.1+ cells does not impair antitumor effect. Depletion of CD90+NK1.1− lymphocytes, however, both diminishes therapeutic benefit and decreases accumulation of macrophages within the tumor. Tumor clearance during combination chemo-immunotherapy with monoclonal antibodies against native antigen is mediated by the innate immune system. We highlight a novel potential role for CD90+NK1.1− ILCs in chemo-immunotherapy. PMID:25600438

  13. Developmental changes in intraepithelial T lymphocytes and NK cells in the small intestine of neonatal rats.

    Science.gov (United States)

    Pérez-Cano, Francisco J; Castellote, Cristina; González-Castro, Ana M; Pelegrí, Carme; Castell, Margarida; Franch, Angels

    2005-11-01

    The main objective of this study was to characterize developmental changes in small intestinal intraepithelial lymphocyte (IEL) subpopulations during the suckling period, thus contributing to the understanding of the development of diffuse gut-associated lymphoid tissue (GALT) and to the identification of early mechanisms that protect the neonate from the first contact with diet and gut microbial antigens. The study was performed by double labeling and flow cytometry in IEL isolated from the proximal and distal small intestine of 1- to 21-d-old Lewis rats. During the suckling period, intraepithelial natural killer (NK) cells changed from a typical systemic phenotype, CD8+, to a specific intestinal phenotype, CD8-. Analysis of CD8+ IEL revealed a progressive increase in the relative number of CD8+ IEL co-expressing TCRalphabeta, cells associated with acquired immunity, whereas the percentage of CD8+ cells expressing the NK receptor, i.e. cells committed to innate immunity, decreased. At weaning, IEL maturity was still not achieved, as revealed by a phenotypic pattern that differed from that of adult rats. Thus, late after weaning, the regulatory CD8+CD4+ T IEL population appeared and the NK population declined. In summary, the intestinal intraepithelial compartment undergoes changes in its lymphocyte composition associated with the first ingestion of food. These changes are focused on a relatively high proportion of NK cells during the suckling period, and after weaning, an expansion of the regulatory CD8+CD4+ T cells.

  14. MHC class I Dk locus and Ly49G2+ NK cells confer H-2k resistance to murine cytomegalovirus.

    Science.gov (United States)

    Xie, Xuefang; Stadnisky, Michael D; Brown, Michael G

    2009-06-01

    Essential NK cell-mediated murine CMV (MCMV) resistance is under histocompatibility-2(k) (H-2(k)) control in MA/My mice. We generated a panel of intra-H2(k) recombinant strains from congenic C57L.M-H2(k/b) (MCMV resistant) mice for precise genetic mapping of the critical interval. Recombination breakpoint sites were precisely mapped and MCMV resistance/susceptibility traits were determined for each of the new lines to identify the MHC locus. Strains C57L.M-H2(k)(R7) (MCMV resistant) and C57L.M-H2(k)(R2) (MCMV susceptible) are especially informative; we found that allelic variation in a 0.3-megabase interval in the class I D locus confers substantial difference in MCMV control phenotypes. When NK cell subsets responding to MCMV were examined, we found that Ly49G2(+) NK cells rapidly expand and selectively acquire an enhanced capacity for cytolytic functions only in C57L.M-H2(k)(R7). We further show that depletion of Ly49G2(+) NK cells before infection abrogated MCMV resistance in C57L.M-H2(k)(R7). We conclude that the MHC class I D locus prompts expansion and activation of Ly49G2(+) NK cells that are needed in H-2(k) MCMV resistance.

  15. Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues

    Directory of Open Access Journals (Sweden)

    Emara Marwan

    2010-09-01

    Full Text Available Abstract Background Cytoglobin (Cygb and neuroglobin (Ngb are recently identified globin molecules that are expressed in vertebrate tissues. Upregulation of Cygb and Ngb under hypoxic and/or ischemic conditions in vitro and in vivo increases cell survival, suggesting possible protective roles through prevention of oxidative damage. We have previously shown that Ngb is expressed in human glioblastoma multiforme (GBM cell lines, and that expression of its transcript and protein can be significantly increased after exposure to physiologically relevant levels of hypoxia. In this study, we extended this work to determine whether Cygb is also expressed in GBM cells, and whether its expression is enhanced under hypoxic conditions. We also compared Cygb and Ngb expression in human primary tumor specimens, including brain tumors, as well as in human normal tissues. Immunoreactivity of carbonic anhydrase IX (CA IX, a hypoxia-inducible metalloenzyme that catalyzes the hydration of CO2 to bicarbonate, was used as an endogenous marker of hypoxia. Results Cygb transcript and protein were expressed in human GBM cells, and this expression was significantly increased in most cells following 48 h incubation under hypoxia. We also showed that Cygb and Ngb are expressed in both normal tissues and human primary cancers, including GBM. Among normal tissues, Cygb and Ngb expression was restricted to distinct cell types and was especially prominent in ductal cells. Additionally, certain normal organs (e.g. stomach fundus, small bowel showed distinct regional co-localization of Ngb, Cygb and CA IX. In most tumors, Ngb immunoreactivity was significantly greater than that of Cygb. In keeping with previous in vitro results, tumor regions that were positively stained for CA IX were also positive for Ngb and Cygb, suggesting that hypoxic upregulation of Ngb and Cygb also occurs in vivo. Conclusions Our finding of hypoxic up-regulation of Cygb/Ngb in GBM cell lines and human

  16. Validation of endogenous normalizing genes for expression analyses in adult human testis and germ cell neoplasms

    DEFF Research Database (Denmark)

    Svingen, T; Jørgensen, Anne; Rajpert-De Meyts, E

    2014-01-01

    to define suitable normalizing genes for specific cells and tissues. Here, we report on the performance of a panel of nine commonly employed normalizing genes in adult human testis and testicular pathologies. Our analyses revealed significant variability in transcript abundance for commonly used normalizers......, highlighting the importance of selecting appropriate normalizing genes as comparative measurements can yield variable results when different normalizing genes are employed. Based on our results, we recommend using RPS20, RPS29 or SRSF4 when analysing relative gene expression levels in human testis...... and associated testicular pathologies. OCT4 and SALL4 can be used with caution as second-tier normalizers when determining changes in gene expression in germ cells and germ cell tumour components, but the relative transcript abundance appears variable between different germ cell tumour types. We further...

  17. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.

    Directory of Open Access Journals (Sweden)

    Héla Saïdi

    2016-02-01

    Full Text Available Plasmacytoid dendritic cells (pDCs are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7 and 9 (TLR9 ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN

  18. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.

    Science.gov (United States)

    Saïdi, Héla; Bras, Marlène; Formaglio, Pauline; Melki, Marie-Thérèse; Charbit, Bruno; Herbeuval, Jean-Philippe; Gougeon, Marie-Lise

    2016-02-01

    Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β) in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN

  19. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    International Nuclear Information System (INIS)

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-01-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes

  20. Cyclooxygenase-2 expression in the normal human eye and its expression pattern in selected eye tumours

    DEFF Research Database (Denmark)

    Wang, Jinmei; Wu, Yazhen; Heegaard, Steffen

    2011-01-01

    Purpose: Cyclooxygenase-2 (COX-2) is an enzyme involved in neoplastic processes. The purpose of the present study is to investigate COX-2 expression in the normal human eye and the expression pattern in selected eye tumours involving COX-2 expressing cells. Methods: Immunohistochemical staining...... using antibodies against COX-2 was performed on paraffin sections of normal human eyes and selected eye tumours arising from cells expressing COX-2. Results: Cyclooxygenase-2 expression was found in various structures of the normal eye. Abundant expression was seen in the cornea, iris, ciliary body...... and retina. The COX-2 expression was less in tumours deriving from the ciliary epithelium and also in retinoblastoma. Conclusion: Cyclooxygenase-2 is constitutively expressed in normal human eyes. The expression of COX-2 is much lower in selected eye tumours involving COX-2 expressing cells....

  1. Primary pulmonary choriocarcinoma after human chorionic gonadotropin normalization following hydatidiform mole

    DEFF Research Database (Denmark)

    Maestá, Izildinha; Leite, Fábio Vicente; Michelin, Odair Carlito

    2010-01-01

    BACKGROUND: Primary pulmonary choriocarcinoma (PPC) is rare and frequently leads to death. CASES: Two young patients presented with previous molar pregnancy and spontaneous serum human chorionic gonadotropin (hCG) normalization. Patient 1 was referred to our center after partial response to chemo...

  2. Linfócitos CD4, CD8 e células NK no estroma da cérvice uterina de mulheres infectadas pelo papilomavírus humano CD4 and CD8 T lymphocytes and NK cells in the stroma of the uterine cervix of women infected with human papillomavirus

    Directory of Open Access Journals (Sweden)

    Daniella Borges Alves

    2010-08-01

    Full Text Available INTRODUÇÃO: A resposta imune pode ser um elemento chave para a progressão ou remissão da infecção pelo papilomavírus humano (HPV no estroma da cérvice uterina. Este estudo objetivou quantificar no estroma cervical a presença de linfócitos T CD4, CD8 e células NK, por imunohistoquímica, em lesões de alto e baixo grau em pacientes infectadas por HPV MÉTODOS: Utilizou-se 56 amostras de biópsia da estroma cervical, sendo 43 amostras positivas para DNA de HPV de alto risco oncogênico e com diagnóstico histopatológico de neoplasia intraepitelial cervical (NIC de alto e baixo grau, ou negativa para lesão intraepitelial e malignidade (NILM, e 13 amostras de pacientes negativas para DNA de HPV com diagnóstico histopatológico NILM RESULTADOS: Maior quantidade de linfócitos T CD4 foi observada em amostras NIC II/III, carcinoma e NILM (p=0,04 e naquelas cuja carga viral esteve entre 10 e 1,000 RLU/PCB. O predomínio de linfócitos T CD8 ocorreu em maior proporção nas amostras NIC II/III (p=0,02 e em amostras com carga viral entre 100 e 1.000 RLU/PCB. As células NK prevaleceram nas amostras com lesões de baixo grau e com baixa carga viral CONCLUSÕES: Este estudo comprovou que nas fases iniciais da infecção, onde não há ainda alterações celulares de alto grau, não temos a presença de células que possam desencadear a fase efetora da resposta imune.INTRODUCTION: Immune response might be a key element regarding the progression or regression of human papillomavirus (HPV infection in the stroma of the uterine cervix. This study aimed to quantify the presence of CD4 and CD8 T lymphocytes and NK cells in the cervical stroma, by means of immunohistochemistry, in high and low grade lesions in patients infected by HPV METHODS: Fifty-six biopsy samples from the uterine cervix were used. Forty-three samples were positive for oncogenic high-risk HPV DNA and had a histopathological diagnosis of high and low-grade cervical intraepithelial

  3. A radioimmunoassay for erythropoietin: serum levels in normal human subjects and patients with hemopoietic disorders

    International Nuclear Information System (INIS)

    Rege, A.B.; Brookins, J.; Fisher, J.W.

    1982-01-01

    An RIA for Ep has been developed that is highly sensitive and specific. A homogeneous Ep preparation was labeled with 125 I by the chloramine-T method to a specific activity of 90 to 136 micro Ci/microgram and immunoreactivity of 80%. Ep antiserum, which was produced to a human urinary Ep preparation (80 U/mg of protein), was adsorbed with normal human urinary and serum proteins without any loss in sensitivity of the RIA to increase the specificity of the assay. A good correlation was seen between the RIA and the exhypoxic polycythemic mouse assay (corr. coef. 0.967; slope 1.05 and y intercept 0.75). Ep titers in sera from 175 hematologically normal human subjects exhibited a normal frequency distribution and ranged between 5.8 and 36.6 mU/ml with a mean of 14.9 +/- 4.7 (S.D.) and median of 14.3 Serum Ep titers were markedly elevated in seven patients with aplastic anemia and one patient with pure red cell aplasia (1350 to 20,640 mU/ml) and were lower than normal in two patients with polycythemia vera (8.1 and 9.4 mU/ml). The serum Ep titers in a prenephrectomy patient with chronic glomerulonephritis (32.1 mU/ml) decreased to below normal levels (9.04 mU/ml) after nephrectomy. The cord serum erythropoietin titers in 10 IDM [90.82 +/- 134.1 (S.D.) mu/ml] returned to values within the normal range (13.86 +/- 5.55) on day 3 after birth, suggesting the utility of the RIA in elucidating the role of hypoxia and/or insulin in increased erythropoiesis in IDM. The serum Ep titers in patients with anemias and polycythemias were compared to those of normal human subjects and agreed well with pathophysiologic mechanisms of these hemopoietic disorders, confirming the validity of the RIA

  4. A radioimmunoassay for erythropoietin: serum levels in normal human subjects and patients with hemopoietic disorders

    International Nuclear Information System (INIS)

    Rege, A.B.; Brookins, J.; Fisher, J.W.

    1982-01-01

    An RIA for Ep has been developed that is highly sensitive and specific. A homogeneous Ep preparation was labeled with 125 I by the chloramine-T method to a specific activity of 90 to 136 μCi/μg and immunoreactivity of 80%. Ep antiserum, which was produced to a human urinary Ep preparation (80 U/mg of protein), was adsorbed with normal human urinary and serum proteins without any loss in sensitivity of the RIA to increase the specificity of the assay. A good correlation was seen between the RIA and the exhypoxic polycythemic mouse assay (corr. coef. 0.967; slope 1.05 and ''y'' intercept 0.75). Ep titers in sera from 175 hematologically normal human subjects exhibited a normal frequency distribution and ranged between 5.8 and 36.6 mU/ml with a mean of 14.9 +/- 4.7 (S.D.) and median of 14.3. Serum Ep titers were markedly elevated in seven patients with aplastic anemia and one patient with pure red cell aplasia (1350 to 20,640 mU/ml) and were lower than normal in two patients with polycythemia vera (8.1 and 9.4 mU/ml). The serum Ep titers in a prenephrectomy patient with chronic glomerulonephritis (31.1 mU/ml) decreased to below normal levels (9.04 mU/ml) after nephrectomy. The cord serum erythropoietin titers in 10 IDM [90.82 +/- 134.1 (S.D.) mu/ml] returned to values within the normal range (13.86 +/- 5.55) on day 3 after birth, suggesting the utility of the RIA in elucidating the role of hypoxia and/or insulin in increased erythropoiesis in IDM. The serum Ep titers in patients with anemias and polycythemias were compared to those of normal human subjects and agreed well with pathophysiologic mechanisms of these hemopoietic disorders, confirming the validity of the RIA

  5. Alpha-amidated peptides derived from pro-opiomelanocortin in normal human pituitary

    DEFF Research Database (Denmark)

    Fenger, M; Johnsen, A H

    1988-01-01

    Normal human pituitaries were extracted in boiling water and acetic acid, and the alpha-amidated peptide products of pro-opiomelanocortin (POMC), alpha-melanocyte-stimulating hormone (alpha MSH), gamma-melanocyte-stimulating hormone (gamma 1MSH), and amidated hinge peptide (HP-N), as well...... (ACTH)-(1-39), ACTH-(1-14) and alpha MSH immunoreactivity]. alpha MSH and ACTH-(1-14) were only present in non- or mono-acetylated forms. Only large forms of gamma 1MSH and gamma 2MSH were present in partly glycosylated states. The hinge peptides were amidated to an extent two to three orders...... amidated POMC-related peptides are present in normal human pituitary. It also shows that cleavage in vivo at all dibasic amino acids but one, takes place at the N-terminal POMC region; the exception is at the POMC-(49-50) N-terminal of the gamma MSH sequence. The pattern of peptides produced suggests...

  6. Simulation and verification studies of reactivity initiated accident by comparative approach of NK/TH coupling codes and RELAP5 code

    Energy Technology Data Exchange (ETDEWEB)

    Ud-Din Khan, Salah [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics; King Saud Univ., Riyadh (Saudi Arabia). Sustainable Energy Technologies Center; Peng, Minjun [Harbin Engineering Univ. (China). College of Nuclear Science and Technology; Yuntao, Song; Ud-Din Khan, Shahab [Chinese Academy of Sciences, Hefei (China). Inst. of Plasma Physics; Haider, Sajjad [King Saud Univ., Riyadh (Saudi Arabia). Sustainable Energy Technologies Center

    2017-02-15

    The objective is to analyze the safety of small modular nuclear reactors of 220 MWe power. Reactivity initiated accidents (RIA) were investigated by neutron kinetic/thermal hydraulic (NK/TH) coupling approach and thermal hydraulic code i.e., RELAP5. The results obtained by these approaches were compared for validation and accuracy of simulation. In the NK/TH coupling technique, three codes (HELIOS, REMARK, THEATRe) were used. These codes calculate different parameters of the reactor core (fission power, reactivity, fuel temperature and inlet/outlet temperatures). The data exchanges between the codes were assessed by running the codes simultaneously. The results obtained from both (NK/TH coupling) and RELAP5 code analyses complement each other, hence confirming the accuracy of simulation.

  7. Analysis on the change of T lymphocyte subsets and NK cells in patients with systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Yao Yanhua; Chen Zhiwei; Deng Yingsu; Gu Guohao; Gao Chun; Yu Yunxia

    2006-01-01

    Objective: To investigate the relationship between the peripheral blood lymphocyte subsets, disease activity and renal impairment in patients with systemic lupus erythematosus (SLE). Methods: T lymphocyte subsets and NK cells from the peripheral blood of 78 patients who suffered SLE were measured, and then the relationship between disease activity, renal symptoms and the states of cellular immunology were analysed. Results: CD 8 + and CD 3 + cells were significantly decreased in the peripheral blood from those patients with active stage of SLE compared to remission phase, while the CD 4 + cells and CD 4 + /CD 8 + ratio did not. And NK cells, but not CD 3 + , CD 8 + cells or CD 4 + /CD 8 + and CD 8 + cells may correlate the the disease activity of SLE patients, but CD 4 + and ratio CD 4 + CD 8 + can not reflect disease activity. While the reduction of NK cells may have relationship with renal suffering. (authors)

  8. Culture of human cell lines by a pathogen-inactivated human platelet lysate.

    Science.gov (United States)

    Fazzina, R; Iudicone, P; Mariotti, A; Fioravanti, D; Procoli, A; Cicchetti, E; Scambia, G; Bonanno, G; Pierelli, L

    2016-08-01

    Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety.

  9. Casopitant: a novel NK1-receptor antagonist in the prevention of chemotherapy-induced nausea and vomiting

    Directory of Open Access Journals (Sweden)

    Christina Ruhlmann

    2009-05-01

    Full Text Available Christina Ruhlmann, Jørn HerrstedtOdense University Hospital, Department of Oncology, Odense, DenmarkAbstract: Chemotherapy-induced nausea and vomiting (CINV are among the most feared and distressing symptoms experienced by patients with cancer. The knowledge of the pathogenesis and neuropharmacology of CINV has expanded enormously over the last decades, the most significant discoveries being the role of 5-hydroxytryptamine (5-HT3- and neurokinin (NK1 receptors in the emetic reflex arch. This has led to the development of two new classes of antiemetics acting as highly selective antagonists at one of these receptors. These drugs have had a huge impact in the protection from chemotherapy-induced vomiting, whereas the effect on nausea seems to be limited. The first NK1 receptor antagonist, aprepitant, became clinically available in 2003, and casopitant, the second in this class of antiemetics, has now completed phase III trials. This review delineates the properties and clinical use of casopitant in the prevention of CINV.Keywords: casopitant, GW679769, NK1 receptor antagonist, chemotherapy, emesis

  10. Increased CD56(bright) NK cells in HIV-HCV co-infection and HCV mono-infection are associated with distinctive alterations of their phenotype.

    Science.gov (United States)

    Bhardwaj, Suvercha; Ahmad, Fareed; Wedemeyer, Heiner; Cornberg, Marcus; Schulze Zur Wiesch, Julian; van Lunzen, Jan; Sarin, Shiv K; Schmidt, Reinhold E; Meyer-Olson, Dirk

    2016-04-18

    HIV-HCV co-infection is associated with accelerated progression to hepatic fibrosis, cirrhosis and hepatocellular carcinoma than HCV mono-infection. The contribution of innate immunity during HIV-HCV co-infection has been a relatively under-investigated area. Natural killer (NK) cells are pivotal sentinels of innate immunity against viruses and tumour cells. In this study we evaluated the effect of HIV-HCV co-infection on peripheral blood NK cell subsets with emphasis on the phenotype of CD56(bright) NK cells. Sixty patients were included in the study; HIV mono-infected (n = 12), HCV mono-infected (n = 15), HCV-HIV co-infected (n = 21) and healthy controls (n = 16). PBMCs were isolated and immunophenotyping of NK cells was performed by flowcytometry. We observed an expansion of CD56(bright) NK cell subset in HIV-HCV co-infection as compared to healthy controls and HIV mono-infected group. All the infected groups had an upregulated expression of the activating receptor NKG2D on CD56(bright) NK cells in comparison to healthy controls while not differing amongst themselves. The expression of NKp46 in HIV-HCV co-infected group was significantly upregulated as compared to both HIV as well as HCV mono-infections while NKp30 expression in the HIV-HCV co-infected group significantly differed as compared to HIV mono-infection. The CD56(bright) NK cell subset was activated in HIV-HCV co-infection as assessed by the expression of CD69 as compared to healthy controls but was significantly downregulated in comparison to HIV mono-infection. CD95 expression on CD56(bright) NK cells followed the same pattern where there was an increased expression of CD95 in HIV mono-infection and HIV-HCV co-infection as compared to healthy controls. In contrast to CD69 expression, CD95 expression in HCV mono-infection was decreased when compared to HIV mono-infection and HIV-HCV co-infection. Finally, expression of CXCR3 on CD56(bright) NK cells was increased in HIV-HCV co-infection in comparison

  11. CD56 Is a Pathogen Recognition Receptor on Human Natural Killer Cells.

    Science.gov (United States)

    Ziegler, Sabrina; Weiss, Esther; Schmitt, Anna-Lena; Schlegel, Jan; Burgert, Anne; Terpitz, Ulrich; Sauer, Markus; Moretta, Lorenzo; Sivori, Simona; Leonhardt, Ines; Kurzai, Oliver; Einsele, Hermann; Loeffler, Juergen

    2017-07-21

    Aspergillus (A.) fumigatus is an opportunistic fungal mold inducing invasive aspergillosis (IA) in immunocompromised patients. Although antifungal activity of human natural killer (NK) cells was shown in previous studies, the underlying cellular mechanisms and pathogen recognition receptors (PRRs) are still unknown. Using flow cytometry we were able to show that the fluorescence positivity of the surface receptor CD56 significantly decreased upon fungal contact. To visualize the interaction site of NK cells and A. fumigatus we used SEM, CLSM and dSTORM techniques, which clearly demonstrated that NK cells directly interact with A. fumigatus via CD56 and that CD56 is re-organized and accumulated at this interaction site time-dependently. The inhibition of the cytoskeleton showed that the receptor re-organization was an active process dependent on actin re-arrangements. Furthermore, we could show that CD56 plays a role in the fungus mediated NK cell activation, since blocking of CD56 surface receptor reduced fungal mediated NK cell activation and reduced cytokine secretion. These results confirmed the direct interaction of NK cells and A. fumigatus, leading to the conclusion that CD56 is a pathogen recognition receptor. These findings give new insights into the functional role of CD56 in the pathogen recognition during the innate immune response.

  12. Effects of a prolonged standardized diet on normalizing the human metabolome123

    OpenAIRE

    Winnike, Jason H; Busby, Marjorie G; Watkins, Paul B; O'Connell, Thomas M

    2009-01-01

    Background: Although the effects of acute dietary interventions on the human metabolome have been studied, the extent to which the metabolome can be normalized by extended dietary standardization has not yet been examined.

  13. Generation of hiPSTZ16 (ISMMSi003-A cell line from normal human foreskin fibroblasts

    Directory of Open Access Journals (Sweden)

    Marion Dejosez

    2018-01-01

    Full Text Available Human foreskin fibroblasts from a commercial source were reprogrammed into induced pluripotent stem cells to establish a clonal stem cell line, hiPSTZ16 (ISMMSi003-A. These cells show a normal karyotype and full differentiation potential in teratoma assays. The described cells provide a useful resource in combination with other iPS cell lines generated from normal human foreskin fibroblasts to study source- and reprogramming method-independent effects in downstream applications.

  14. An individual urinary proteome analysis in normal human beings to define the minimal sample number to represent the normal urinary proteome

    Directory of Open Access Journals (Sweden)

    Liu Xuejiao

    2012-11-01

    Full Text Available Abstract Background The urinary proteome has been widely used for biomarker discovery. A urinary proteome database from normal humans can provide a background for discovery proteomics and candidate proteins/peptides for targeted proteomics. Therefore, it is necessary to define the minimum number of individuals required for sampling to represent the normal urinary proteome. Methods In this study, inter-individual and inter-gender variations of urinary proteome were taken into consideration to achieve a representative database. An individual analysis was performed on overnight urine samples from 20 normal volunteers (10 males and 10 females by 1DLC/MS/MS. To obtain a representative result of each sample, a replicate 1DLCMS/MS analysis was performed. The minimal sample number was estimated by statistical analysis. Results For qualitative analysis, less than 5% of new proteins/peptides were identified in a male/female normal group by adding a new sample when the sample number exceeded nine. In addition, in a normal group, the percentage of newly identified proteins/peptides was less than 5% upon adding a new sample when the sample number reached 10. Furthermore, a statistical analysis indicated that urinary proteomes from normal males and females showed different patterns. For quantitative analysis, the variation of protein abundance was defined by spectrum count and western blotting methods. And then the minimal sample number for quantitative proteomic analysis was identified. Conclusions For qualitative analysis, when considering the inter-individual and inter-gender variations, the minimum sample number is 10 and requires a balanced number of males and females in order to obtain a representative normal human urinary proteome. For quantitative analysis, the minimal sample number is much greater than that for qualitative analysis and depends on the experimental methods used for quantification.

  15. Increased expressions of NKp44, NKp46 on NK/NKT-like cells are associated with impaired cytolytic function in self-limiting hepatitis E infection.

    Science.gov (United States)

    Das, Rumki; Tripathy, Anuradha

    2014-10-01

    We have characterized the NK/NKT-like cells in patients with self-limiting hepatitis E infection. The distribution of peripheral NK/NKT-like cells, expressions of activation receptors, cytotoxic potential and effector function of NK/NKT-like cells from fresh peripheral blood mononuclear cells of 86 acute patients, 101 recovered and 54 control individuals were assessed. Activated NKT-like (CD16(+) CD56(+) CD3(+)) cells were high in the patient groups. On CD56(+) CD3(-) cells, NKp44 and NKp46 expressions were high in the acute patients, whereas NKp30, NKp44, NKp46 and NKG2D were high in the recovered individuals. On CD56(+) CD3(+) cells, NKp44, NKp46 and NKG2D expressions were high in the recovered but NKp30 was low in both the patient groups. Collectively, the current study elucidates the role of NK/NKT-like cells demonstrating phenotypic alterations of activated NKT-like cells and activation receptors, lack of CD107a expression and functional impairment of peripheral NK/NKT-like cells in self-limiting hepatitis E infection.

  16. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity.

    Science.gov (United States)

    Liu, E; Tong, Y; Dotti, G; Shaim, H; Savoldo, B; Mukherjee, M; Orange, J; Wan, X; Lu, X; Reynolds, A; Gagea, M; Banerjee, P; Cai, R; Bdaiwi, M H; Basar, R; Muftuoglu, M; Li, L; Marin, D; Wierda, W; Keating, M; Champlin, R; Shpall, E; Rezvani, K

    2018-02-01

    Chimeric antigen receptors (CARs) have been used to redirect the specificity of autologous T cells against leukemia and lymphoma with promising clinical results. Extending this approach to allogeneic T cells is problematic as they carry a significant risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are highly cytotoxic effectors, killing their targets in a non-antigen-specific manner without causing GVHD. Cord blood (CB) offers an attractive, allogeneic, off-the-self source of NK cells for immunotherapy. We transduced CB-derived NK cells with a retroviral vector incorporating the genes for CAR-CD19, IL-15 and inducible caspase-9-based suicide gene (iC9), and demonstrated efficient killing of CD19-expressing cell lines and primary leukemia cells in vitro, with marked prolongation of survival in a xenograft Raji lymphoma murine model. Interleukin-15 (IL-15) production by the transduced CB-NK cells critically improved their function. Moreover, iC9/CAR.19/IL-15 CB-NK cells were readily eliminated upon pharmacologic activation of the iC9 suicide gene. In conclusion, we have developed a novel approach to immunotherapy using engineered CB-derived NK cells, which are easy to produce, exhibit striking efficacy and incorporate safety measures to limit toxicity. This approach should greatly improve the logistics of delivering this therapy to large numbers of patients, a major limitation to current CAR-T-cell therapies.

  17. Immunohistochemical analysis of Sonic hedgehog signalling in normal human urinary tract development

    OpenAIRE

    Jenkins, Dagan; Winyard, Paul J D; Woolf, Adrian S.

    2007-01-01

    Studies of mouse mutants have demonstrated that Sonic hedgehog (SHH) signalling has a functional role in morphogenesis and differentiation at multiple sites within the forming urinary tract, and urinary tract malformations have been reported in humans with mutations that disrupt SHH signalling. However, there is only strikingly sparse and fragmentary information about the expression of SHH and associated signalling genes in normal human urinary tract development. We used immunohistochemistry ...

  18. A new type of radiosensitive T–B–NK+ severe combined immunodeficiency caused by a LIG4 mutation

    OpenAIRE

    van der Burg, Mirjam; van Veelen, Lieneke R.; Verkaik, Nicole S.; Wiegant, Wouter W.; Hartwig, Nico G.; Barendregt, Barbara H.; Brugmans, Linda; Raams, Anja; Jaspers, Nicolaas G.J.; Zdzienicka, Malgorzata Z.; van Dongen, Jacques J.M.; van Gent, Dik C.

    2005-01-01

    textabstractV(D)J recombination of Ig and TCR loci is a stepwise process during which site-specific DNA double-strand breaks (DSBs) are made by RAG1/RAG2, followed by DSB repair by nonhomologous end joining. Defects in V(D)J recombination result in SCID characterized by absence of mature B and T cells. A subset of T-B-NK+ SCID patients is sensitive to ionizing radiation, and the majority of these patients have mutations in Artemis. We present a patient with a new type of radiosensitive T-B-NK...

  19. Higher Leptin but Not Human Milk Macronutrient Concentration Distinguishes Normal-Weight from Obese Mothers at 1-Month Postpartum.

    Science.gov (United States)

    De Luca, Arnaud; Frasquet-Darrieux, Marine; Gaud, Marie-Agnès; Christin, Patricia; Boquien, Clair-Yves; Millet, Christine; Herviou, Manon; Darmaun, Dominique; Robins, Richard J; Ingrand, Pierre; Hankard, Régis

    2016-01-01

    Exclusively breastfed infants born to obese mothers have previously been shown to gain less weight by 1-month postpartum than infants of normal-weight mothers. Our hypothesis is that human milk composition and volume may differ between obese and normal-weight mothers. To compare human milk leptin, macronutrient concentration, and volume in obese and normal-weight mothers. Mother and infant characteristics were studied as secondary aims. This cross-sectional observational study compared 50 obese mothers matched for age, parity, ethnic origin, and educational level with 50 normal-weight mothers. Leptin, macronutrient human milk concentration, and milk volume were determined at 1 month in exclusively breastfed infants. Mother characteristics and infant growth were recorded. Human milk leptin concentration was higher in obese mothers than normal-weight mothers (4.8±2.7 vs. 2.5±1.5 ng.mL-1, pobese and normal-weight mothers in protein, lipid, carbohydrate content, and volume, nor in infant weight gain. Leptin concentration was higher in the milk of obese mothers than that of normal-weight mothers, but macronutrient concentration was not. It remains to be established whether the higher leptin content impacts on infant growth beyond the 1-month of the study period.

  20. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-01-01

    Highlights: → Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. → The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. → Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  1. Production of glycosylated physiologically normal human α1-antitrypsin by mouse fibroblasts modified by insertion of a human α1-antitrypsin cDNA using a retroviral vector

    International Nuclear Information System (INIS)

    Garver, R.I. Jr.; Chytil, A.; Karlsson, S.

    1987-01-01

    α 2 -Antitrypsin (α 1 AT) deficiency is a hereditary disorder characterized by reduced serum levels of α 1 AT, resulting in destruction of the lower respiratory tract by neutrophil elastase. As an approach to augment α 1 AT levels in this disorder with physiologically normal human α 1 AT, the authors have integrated a full-length normal human α 1 AT cDNA into the genome of mouse fibroblasts. To accomplish this, the retroviral vector N2 was modified by inserting the simian virus 40 early promoter followed by the α 1 AT cDNA. Southern analysis demonstrated that the intact cDNA was present in the genome of selected clones of the transfected murine fibroblasts psi2 and infected NIH 3T3. The clones produced three mRNA transcripts containing human α 1 AT sequences, secreted an α 1 AT molecule recognized by an anti-human α 1 AT antibody, with the same molecular mass as normal human α 1 AT and that complexed with and inhibited human neutrophil elastase. The psi2 produced α 1 AT was glycosylated, and when infused intravenously into mice, it had a serum half-life similar to normal α 1 AT purified from human plasma and markedly longer than that of nonglycosylated human α 1 AT cDNA-directed yeast-produced α 1 AT. These studies demonstrate the feasibility of using a retroviral vector to insert the normal human α 1 AT cDNA into non-α 1 AT-producing cells, resulting in the synthesis and secretion of physiologically normal α 1 AT

  2. Effects of DDT and Triclosan on Tumor-cell Binding Capacity and Cell-Surface Protein Expression of Human Natural Killer Cells

    Science.gov (United States)

    Hurd-Brown, Tasia; Udoji, Felicia; Martin, Tamara; Whalen, Margaret M.

    2012-01-01

    1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) and triclosan (TCS) are organochlorine (OC) compounds that contaminate the environment, are found in human blood, and have been shown to decrease the tumor-cell killing (lytic) function of human natural killer (NK) cells. NK cells defend against tumor cells and virally infected cells. They bind to these targets, utilizing a variety of cell surface proteins. This study examined concentrations of DDT and TCS that decrease lytic function for alteration of NK binding to tumor targets. Levels of either compound that caused loss of binding function were then examined for effects on expression of cell-surface proteins needed for binding. NK cells exposed to 2.5 μM DDT for 24 h (which caused a greater than 55% loss of lytic function) showed a decrease in NK binding function of about 22%, and a decrease in CD16 cell-surface protein of 20%. NK cells exposed to 5 μM TCS for 24 h showed a decrease in ability to bind tumor cells of 37% and a decrease in expression of CD56 of about 34%. This same treatment caused a decrease in lytic function of greater than 87%. These results indicated that only a portion of the loss of NK lytic function seen with exposures to these compounds could be accounted for by loss of binding function. They also showed that loss of binding function is accompanied by a loss cell-surface proteins important in binding function. PMID:22729613

  3. Enhancer of the rudimentary gene homologue (ERH expression pattern in sporadic human breast cancer and normal breast tissue

    Directory of Open Access Journals (Sweden)

    Knüchel Ruth

    2008-05-01

    Full Text Available Abstract Background The human gene ERH (Enhancer of the Rudimentary gene Homologue has previously been identified by in silico analysis of four million ESTs as a gene differentially expressed in breast cancer. The biological function of ERH protein has not been fully elucidated, however functions in cell cycle progression, pyrimidine metabolism a possible interaction with p21(Cip1/Waf1 via the Ciz1 zinc finger protein have been suggested. The aim of the present study was a systematic characterization of ERH expression in human breast cancer in order to evaluate possible clinical applications of this molecule. Methods The expression pattern of ERH was analyzed using multiple tissue northern blots (MTN on a panel of 16 normal human tissues and two sets of malignant/normal breast and ovarian tissue samples. ERH expression was further analyzed in breast cancer and normal breast tissues and in tumorigenic as well as non-tumorigenic breast cancer cell lines, using quantitative RT-PCR and non-radioisotopic in situ hybridization (ISH. Results Among normal human tissues, ERH expression was most abundant in testis, heart, ovary, prostate, and liver. In the two MTN sets of malignant/normal breast and ovarian tissue,ERH was clearly more abundantly expressed in all tumours than in normal tissue samples. Quantitative RT-PCR analyses showed that ERH expression was significantly more abundant in tumorigenic than in non-tumorigenic breast cancer cell lines (4.5-fold; p = 0.05, two-tailed Mann-Whitney U-test; the same trend was noted in a set of 25 primary invasive breast cancers and 16 normal breast tissue samples (2.5-fold; p = 0.1. These findings were further confirmed by non-radioisotopic ISH in human breast cancer and normal breast tissue. Conclusion ERH expression is clearly up-regulated in malignant as compared with benign breast cells both in primary human breast cancer and in cell models of breast cancer. Since similar results were obtained for ovarian

  4. Validation of endogenous normalizing genes for expression analyses in adult human testis and germ cell neoplasms.

    Science.gov (United States)

    Svingen, T; Jørgensen, A; Rajpert-De Meyts, E

    2014-08-01

    The measurement of gene expression levels in cells and tissues typically depends on a suitable point of reference for inferring biological relevance. For quantitative (or real-time) RT-PCR assays, the method of choice is often to normalize gene expression data to an endogenous gene that is stably expressed across the samples analysed: a so-called normalizing or housekeeping gene. Although this is a valid strategy, the identification of stable normalizing genes has proved challenging and a gene showing stable expression across all cells or tissues is unlikely to exist. Therefore, it is necessary to define suitable normalizing genes for specific cells and tissues. Here, we report on the performance of a panel of nine commonly employed normalizing genes in adult human testis and testicular pathologies. Our analyses revealed significant variability in transcript abundance for commonly used normalizers, highlighting the importance of selecting appropriate normalizing genes as comparative measurements can yield variable results when different normalizing genes are employed. Based on our results, we recommend using RPS20, RPS29 or SRSF4 when analysing relative gene expression levels in human testis and associated testicular pathologies. OCT4 and SALL4 can be used with caution as second-tier normalizers when determining changes in gene expression in germ cells and germ cell tumour components, but the relative transcript abundance appears variable between different germ cell tumour types. We further recommend that such studies should be accompanied by additional assessment of histology and cellularity of each sample. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. DMPD: CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multipleligand specificities and functions. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available ) (.html) (.csml) Show CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multipleligand specificities and function...d NK cell membrane receptor with multipleligand specificities and functions. Authors Ross GD, Vetvicka V. Pu...igand specificities and functions. Ross GD, Vetvicka V. Clin Exp Immunol. 1993 May;92(2):181-4. (.png) (.svg...8485905 CR3 (CD11b, CD18): a phagocyte and NK cell membrane receptor with multiplel

  6. Detection of genomic instability in normal human bronchial epithelial cells exposed to 238Pu

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Fukushima, N.H.; Neft, R.E.; Lechner, J.F.

    1994-01-01

    Alpha particle-emitting radon daughters constitute a risk for development of lung cancer in humans. The development of this disease involves multiple genetic alterations. These changes and the time course they follow are not yet defined despite numerous in vitro endeavors to transform human lung cells with various physical or chemical agents. However, genomic instability, characterized both by structural and numerical chromosomal aberrations and by elevated rates of point mutations, is a common feature of tumor cells. Further, both types of genomic instability have been reported in the noncancerous progeny of normal murine hemopoietic cells exposed in vitro to α-particles. The purpose of this investigation was to determine if genomic instability is also a prominent feature of normal human bronchial epithelial cells exposed to α-particle irradiation from the decay of inhaled radon daughters

  7. Activation of Protein Kinase C and Protein Kinase D in Human Natural Killer Cells: Effects of Tributyltin, Dibutyltin, and Tetrabromobisphenol A

    Science.gov (United States)

    Rana, Krupa; Whalen, Margaret M.

    2015-01-01

    Up to now, the ability of target cells to activate protein kinase C (PKC) and protein kinase D (PKD) (which is often a downstream target of PKC) has not been examined in natural killer (NK) lymphocytes. Here we examined whether exposure of human NK cells to lysis sensitive tumor cells activated PKC and PKD. The results of these studies show for the first time that activation of PKC and PKD occurs in response to target cell binding to NK cells. Exposure of NK cells to K562 tumor cells for 10 and 30 minutes increased phosphorylation/activation of both PKC and PKD by roughly 2 fold. Butyltins (tributyltin (TBT); dibutyltin (DBT)) and brominated compounds (tetrabromobisphenol A (TBBPA)) are environmental contaminants that are found in human blood. Exposures of NK cells to TBT, DBT or TBBPA decrease NK cell lytic function in part by activating the mitogen activated protein kinases (MAPKs) that are part of the NK lytic pathway. We established that PKC and PKD are part of the lytic pathway upstream of MAPKs and thus we investigated whether DBT, TBT, and TBBPA exposures activated PKC and PKD. TBT activated PKC by 2–3 fold at 10 min at concentrations ranging from 50–300 nM while DBT caused a 1.3 fold activation at 2.5 μM at 10 min. Both TBT and DBT caused an approximately 2 fold increase in phosphorylation/activation of PKC. Exposures to TBBPA caused no statistically significant changes in either PKC or PKD activation. PMID:26228090

  8. Human Natural Killer Cells Prevent Infectious Mononucleosis Features by Targeting Lytic Epstein-Barr Virus Infection

    Directory of Open Access Journals (Sweden)

    Obinna Chijioke

    2013-12-01

    Full Text Available Primary infection with the human oncogenic Epstein-Barr virus (EBV can result in infectious mononucleosis (IM, a self-limiting disease caused by massive lymphocyte expansion that predisposes for the development of distinct EBV-associated lymphomas. Why some individuals experience this symptomatic primary EBV infection, whereas the majority acquires the virus asymptomatically, remains unclear. Using a mouse model with reconstituted human immune system components, we show that depletion of human natural killer (NK cells enhances IM symptoms and promotes EBV-associated tumorigenesis mainly because of a loss of immune control over lytic EBV infection. These data suggest that failure of innate immune control by human NK cells augments symptomatic lytic EBV infection, which drives lymphocyte expansion and predisposes for EBV-associated malignancies.

  9. Normality and naturalness: a comparison of the meanings of concepts used within veterinary medicine and human medicine.

    Science.gov (United States)

    Lerner, Henrik; Hofmann, Bjørn

    2011-12-01

    This article analyses the different connotations of "normality" and "being natural," bringing together the theoretical discussion from both human medicine and veterinary medicine. We show how the interpretations of the concepts in the different areas could be mutually fruitful. It appears that the conceptions of "natural" are more elaborate in veterinary medicine, and can be of value to human medicine. In particular they can nuance and correct conceptions of nature in human medicine that may be too idealistic. Correspondingly, the wide ranging conceptions of "normal" in human medicine may enrich conceptions in veterinary medicine, where the discussions seem to be sparse. We do not argue that conceptions from veterinary medicine should be used in human medicine and vice versa, but only that it could be done and that it may well be fruitful. Moreover, there are overlaps between some notions of normal and natural, and further conceptual analysis on this overlap is needed.

  10. Heat shock protein 70 and tumor-infiltrating NK cells as prognostic indicators for patients with squamous cell carcinoma of the head and neck after radiochemotherapy: A multicentre retrospective study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG).

    Science.gov (United States)

    Stangl, Stefan; Tontcheva, Nikoletta; Sievert, Wolfgang; Shevtsov, Maxim; Niu, Minli; Schmid, Thomas E; Pigorsch, Steffi; Combs, Stephanie E; Haller, Bernhard; Balermpas, Panagiotis; Rödel, Franz; Rödel, Claus; Fokas, Emmanouil; Krause, Mechthild; Linge, Annett; Lohaus, Fabian; Baumann, Michael; Tinhofer, Inge; Budach, Volker; Stuschke, Martin; Grosu, Anca-Ligia; Abdollahi, Amir; Debus, Jürgen; Belka, Claus; Maihöfer, Cornelius; Mönnich, David; Zips, Daniel; Multhoff, Gabriele

    2018-05-01

    Tumor cells frequently overexpress heat shock protein 70 (Hsp70) and present it on their cell surface, where it can be recognized by pre-activated NK cells. In our retrospective study the expression of Hsp70 was determined in relation to tumor-infiltrating CD56 + NK cells in formalin-fixed paraffin embedded (FFPE) tumor specimens of patients with SCCHN (N = 145) as potential indicators for survival and disease recurrence. All patients received radical surgery and postoperative cisplatin-based radiochemotherapy (RCT). In general, Hsp70 expression was stronger, but with variable intensities, in tumor compared to normal tissues. Patients with high Hsp70 expressing tumors (scores 3-4) showed significantly decreased overall survival (OS; p = 0.008), local progression-free survival (LPFS; p = 0.034) and distant metastases-free survival (DMFS; p = 0.044), compared to those with low Hsp70 expression (scores 0-2), which remained significant after adjustment for relevant prognostic variables. The adverse prognostic value of a high Hsp70 expression for OS was also observed in patient cohorts with p16- (p = 0.001), p53- (p = 0.0003) and HPV16 DNA-negative (p = 0.001) tumors. The absence or low numbers of tumor-infiltrating CD56 + NK cells also correlated with significantly decreased OS (p = 0.0001), LPFS (p = 0.0009) and DMFS (p = 0.0001). A high Hsp70 expression and low numbers of tumor-infiltrating NK cells have the highest negative predictive value (p = 0.00004). In summary, a strong Hsp70 expression and low numbers of tumor-infiltrating NK cells correlate with unfavorable outcome following surgery and RCT in patients with SCCHN, and thus serve as negative prognostic markers. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  11. Quantification of Crypt and Stem Cell Evolution in the Normal and Neoplastic Human Colon

    Directory of Open Access Journals (Sweden)

    Ann-Marie Baker

    2014-08-01

    Full Text Available Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls of colonic crypts, we show that human intestinal stem cells conform to one-dimensional neutral drift dynamics with a “functional” stem cell number of five to six in both normal patients and individuals with familial adenomatous polyposis (germline APC−/+. Furthermore, we show that, in adenomatous crypts (APC−/−, there is a proportionate increase in both functional stem cell number and the loss/replacement rate. Finally, by analyzing fields of mtDNA mutant crypts, we show that a normal colon crypt divides around once every 30–40 years, and the division rate is increased in adenomas by at least an order of magnitude. These data provide in vivo quantification of human intestinal stem cell and crypt dynamics.

  12. Two active molecular phenotypes of the tachykinin NK1 receptor revealed by G-protein fusions and mutagenesis.

    Science.gov (United States)

    Holst, B; Hastrup, H; Raffetseder, U; Martini, L; Schwartz, T W

    2001-06-08

    The NK1 neurokinin receptor presents two non-ideal binding phenomena, two-component binding curves for all agonists and significant differences between agonist affinity determined by homologous versus heterologous competition binding. Whole cell binding with fusion proteins constructed between either Galpha(s) or Galpha(q) and the NK1 receptor with a truncated tail, which secured non-promiscuous G-protein interaction, demonstrated monocomponent agonist binding closely corresponding to either of the two affinity states found in the wild-type receptor. High affinity binding of both substance P and neurokinin A was observed in the tail-truncated Galpha(s) fusion construct, whereas the lower affinity component was displayed by the tail-truncated Galpha(q) fusion. The elusive difference between the affinity determined in heterologous versus homologous binding assays for substance P and especially for neurokinin A was eliminated in the G-protein fusions. An NK1 receptor mutant with a single substitution at the extracellular end of TM-III-(F111S), which totally uncoupled the receptor from Galpha(s) signaling, showed binding properties that were monocomponent and otherwise very similar to those observed in the tail-truncated Galpha(q) fusion construct. Thus, the heterogenous pharmacological phenotype displayed by the NK1 receptor is a reflection of the occurrence of two active conformations or molecular phenotypes representing complexes with the Galpha(s) and Galpha(q) species, respectively. We propose that these molecular forms do not interchange readily, conceivably because of the occurrence of microdomains or "signal-transductosomes" within the cell membrane.

  13. The distribution of YKL-40 in osteoarthritic and normal human articular cartilage

    DEFF Research Database (Denmark)

    Volck, B; Ostergaard, K; Johansen, J S

    1999-01-01

    YKL-40, also called human cartilage glycoprotein-39, is a major secretory protein of human chondrocytes in cell culture. YKL-40 mRNA is expressed by cartilage from patients with rheumatoid arthritis, but is not detectable in normal human cartilage. The aim was to investigate the distribution of YKL...... in chondrocytes of osteoarthritic cartilage mainly in the superficial and middle zone of the cartilage rather than the deep zone. There was a tendency for high number of YKL-40 positive chondrocytes in areas of the femoral head with a considerable biomechanical load. The number of chondrocytes with a positive...

  14. Genome Sequence of the Thermophilic Cyanobacterium Thermosynechococcus sp. Strain NK55a.

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, Sergey; Liu, Zhenfeng; Thiel, Vera; Tomsho, Lynn P.; Pinel, Nicolas; Nelson, William C.; Lindemann, Stephen R.; Romine, Margaret F.; Haruta, Shin; Schuster, Stephan C.; Bryant, Donald A.; Fredrickson, Jim K.

    2014-01-02

    The genome of the unicellular cyanobacterium, Thermosynechococcus sp. strain NK55a, isolated from Nakabusa hot spring, comprises a single, circular, 2.5-Mb chromosome. The genome is predicted to encode 2358 protein coding genes, including genes for all typical cyanobacterial photosynthetic and metabolic functions. No genes encoding hydrogenases or nitrogenase were identified.

  15. Biological responses of progestogen metabolites in normal and cancerous human breast.

    Science.gov (United States)

    Pasqualini, Jorge R; Chetrite, Gérard S

    2010-12-01

    At present, more than 200 progestogen molecules are available, but their biological response is a function of various factors: affinity to progesterone or other receptors, their structure, the target tissues considered, biological response, experimental conditions, dose, method of administration and metabolic transformations. Metabolic transformation is of huge importance because in various biological processes the metabolic product(s) not only control the activity of the maternal hormone but also have an important activity of its own. In this regard, it was observed that the 20-dihydro derivative of the progestogen dydrogesterone (Duphaston®) is significantly more active than the parent compound in inhibiting sulfatase and 17β-hydroxysteroid dehydrogenase in human breast cancer cells. Estrone sulfatase activity is also inhibited by norelgestromin, a norgestimate metabolite. Interesting information was obtained with a similar progestogen, tibolone, which is rapidly metabolized into the active 3α/3β-hydroxy and 4-ene metabolites. All these metabolites can inhibit sulfatase and 17β-hydroxysteroid dehydrogenase and stimulate sulfotransferase in human breast cancer cells. Another attractive aspect is the metabolic transformation of progesterone itself in human breast tissues. In the normal breast progesterone is mainly converted to 4-ene derivatives, whereas in the tumor tissue it is converted mostly to 5α-pregnane derivatives. 20α-Dihydroprogesterone is found mainly in normal breast tissue and possesses antiproliferative properties as well as the ability to act as an anti-aromatase agent. Consequently, this progesterone metabolite could be involved in the control of estradiol production in the normal breast and therefore implicated in one of the multifactorial mechanisms of the breast carcinogenesis process. In conclusion, a better understanding of both natural and synthetic hormone metabolic transformations and their control could potentially provide

  16. Estimation of polyclonal IgG4 hybrids in normal human serum.

    Science.gov (United States)

    Young, Elizabeth; Lock, Emma; Ward, Douglas G; Cook, Alexander; Harding, Stephen; Wallis, Gregg L F

    2014-07-01

    The in vivo or in vitro formation of IgG4 hybrid molecules, wherein the immunoglobulins have exchanged half molecules, has previously been reported under experimental conditions. Here we estimate the incidence of polyclonal IgG4 hybrids in normal human serum and comment on the existence of IgG4 molecules with different immunoglobulin light chains. Polyclonal IgG4 was purified from pooled or individual donor human sera and sequentially fractionated using light-chain affinity and size exclusion chromatography. Fractions were analysed by SDS-PAGE, immunoblotting, ELISA, immunodiffusion and matrix-assisted laser-desorption mass spectrometry. Polyclonal IgG4 purified from normal serum contained IgG4κ, IgG4λ and IgG4κ/λ molecules. Size exclusion chromatography showed that IgG4 was principally present in monomeric form (150 000 MW). SDS-PAGE, immunoblotting and ELISA showed the purity of the three IgG4 samples. Immunodiffusion, light-chain sandwich ELISA and mass spectrometry demonstrated that both κ and λ light chains were present on only the IgG4κ/λ molecules. The amounts of IgG4κ/λ hybrid molecules ranged from 21 to 33% from the five sera analysed. Based on the molecular weight these molecules were formed of two IgG4 heavy chains plus one κ and one λ light chain. Polyclonal IgG (IgG4-depleted) was similarly fractionated according to light-chain specificity. No evidence of hybrid IgG κ/λ antibodies was observed. These results indicate that hybrid IgG4κ/λ antibodies compose a substantial portion of IgG4 from normal human serum. © 2014 John Wiley & Sons Ltd.

  17. NK cells and missing self recognition : genetic control, mhc class i dependent education and potential use in cancer therapy

    OpenAIRE

    Wickström, Stina L

    2015-01-01

    NK cells belong to the innate immune system and are important in the defense against virus infections and malignant cells. They mediate their effector functions via release of cytotoxic granules and by cytokine production which can influence the status of other (immune) cells. NK cells are regulated by germline encoded receptors, both activating and inhibitory, recognizing molecules that are induced upon infection or cellular stress and self ligands respectively. Ly49 receptors (Ly49r) make u...

  18. Evaluation of the ex vivo antimalarial activity of organotin (IV) ethylphenyldithiocarbamate on erythrocytes infected with Plasmodium berghei NK 65.

    Science.gov (United States)

    Awang, Normah; Jumat, Hafizah; Ishak, Shafariatul Akmar; Kamaludin, Nurul Farahana

    2014-06-01

    Malaria is the most destructive and dangerous parasitic disease. The commonness of this disease is getting worse mainly due to the increasing resistance of Plasmodium falciparum against antimalarial drugs. Therefore, the search for new antimalarial drug is urgently needed. This study was carried out to evaluate the effects of dibutyltin (IV) ethylphenyldithiocarbamate (DBEP), diphenyltin (IV) ethylphenyldithiocarbamate (DPEP) and triphenyltin (IV) ethylphenyldithiocarbamate (TPEP) compounds as antimalarial agents. These compounds were evaluated against erythrocytes infected with Plasmodium berghei NK65 via ex vivo. Organotin (IV) ethylphenyldithiocarbamate, [R(n)Sn(C9H10NS2)(4-n)] with R = C4H9 and C6H5 for n = 2; R = C6H5 for n = 3 is chemically synthesised for its potential activities. pLDH assay was employed for determination of the concentration that inhibited 50% of the Plasmodium's activity (IC50) after 24 h treatment at concentration range of 10-0.0000001 mg mL(-1). Plasmodium berghei NK65 was cultured in vitro to determine the different morphology of trophozoite and schizont. Only DPEP and TPEP compounds have antimalarial activity towards P. berghei NK65 at IC50 0.094±0.011 and 0.892±0.088 mg mL(-1), respectively. The IC50 of DPEP and TPEP were lowest at 30% parasitemia with IC50 0.001±0.00009 and 0.0009±0.0001 mg mL(-1), respectively. In vitro culture showed that TPEP was effective towards P. berghei NK65 in trophozoite and schizont morphology with IC50 0.0001±0.00005 and 0.00009±0.00003 μg mL(-1), respectively. In conclusion, DPEP and TPEP have antimalarial effect on erythrocytes infected with P. berghei NK65 and have potential as antimalarial and schizonticidal agents.

  19. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland.

    Science.gov (United States)

    Pivonello, Rosario; Waaijers, Marlijn; Kros, Johan M; Pivonello, Claudia; de Angelis, Cristina; Cozzolino, Alessia; Colao, Annamaria; Lamberts, Steven W J; Hofland, Leo J

    2017-08-01

    The dopamine D 2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D 2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D 2 receptor. D 2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D 2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D 2 receptors. D 2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.

  20. Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis.

    Science.gov (United States)

    Pan, Fan; Yang, Wende; Li, Wei; Yang, Xiao-Yan; Liu, Shuhao; Li, Xin; Zhao, Xiaoxu; Ding, Hui; Qin, Li; Pan, Yunlong

    2017-07-01

    Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize

  1. Serial analysis of gene expression (SAGE) in normal human trabecular meshwork.

    Science.gov (United States)

    Liu, Yutao; Munro, Drew; Layfield, David; Dellinger, Andrew; Walter, Jeffrey; Peterson, Katherine; Rickman, Catherine Bowes; Allingham, R Rand; Hauser, Michael A

    2011-04-08

    To identify the genes expressed in normal human trabecular meshwork tissue, a tissue critical to the pathogenesis of glaucoma. Total RNA was extracted from human trabecular meshwork (HTM) harvested from 3 different donors. Extracted RNA was used to synthesize individual SAGE (serial analysis of gene expression) libraries using the I-SAGE Long kit from Invitrogen. Libraries were analyzed using SAGE 2000 software to extract the 17 base pair sequence tags. The extracted sequence tags were mapped to the genome using SAGE Genie map. A total of 298,834 SAGE tags were identified from all HTM libraries (96,842, 88,126, and 113,866 tags, respectively). Collectively, there were 107,325 unique tags. There were 10,329 unique tags with a minimum of 2 counts from a single library. These tags were mapped to known unique Unigene clusters. Approximately 29% of the tags (orphan tags) did not map to a known Unigene cluster. Thirteen percent of the tags mapped to at least 2 Unigene clusters. Sequence tags from many glaucoma-related genes, including myocilin, optineurin, and WD repeat domain 36, were identified. This is the first time SAGE analysis has been used to characterize the gene expression profile in normal HTM. SAGE analysis provides an unbiased sampling of gene expression of the target tissue. These data will provide new and valuable information to improve understanding of the biology of human aqueous outflow.

  2. Adiponectin deficiency suppresses lymphoma growth in mice by modulating NK cells, CD8 T cells, and myeloid-derived suppressor cells.

    Science.gov (United States)

    Han, Sora; Jeong, Ae Lee; Lee, Sunyi; Park, Jeong Su; Kim, Kwang Dong; Choi, Inpyo; Yoon, Suk Ran; Lee, Myung Sok; Lim, Jong-Seok; Han, Seung Hyun; Yoon, Do Young; Yang, Young

    2013-05-01

    Previously, we found that adiponectin (APN) suppresses IL-2-induced NK cell activation by downregulating the expression of the IFN-γ-inducible TNF-related apoptosis-inducing ligand and Fas ligand. Although the antitumor function of APN has been reported in several types of solid tumors, with few controversial results, no lymphoma studies have been conducted. In this study, we assessed the role of APN in immune cell function, including NK cells, CTLs, and myeloid-derived suppressor cells, in EL4 and B16F10 tumor-bearing APN knockout (KO) mice. We observed attenuated EL4 growth in the APNKO mice. Increased numbers of splenic NK cells and splenic CTLs were identified under naive conditions and EL4-challenged conditions, respectively. In APNKO mice, splenic NK cells showed enhanced cytotoxicity with and without IL-2 stimulation. Additionally, there were decreased levels of myeloid-derived suppressor cell accumulation in the EL4-bearing APNKO mice. Enforced MHC class I expression on B16F10 cells led to attenuated growth of these tumors in APNKO mice. Thus, our results suggest that EL4 regression in APNKO mice is not only due to an enhanced antitumor immune response but also to a high level of MHC class I expression.

  3. Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function.

    Science.gov (United States)

    Parrish-Novak, J; Dillon, S R; Nelson, A; Hammond, A; Sprecher, C; Gross, J A; Johnston, J; Madden, K; Xu, W; West, J; Schrader, S; Burkhead, S; Heipel, M; Brandt, C; Kuijper, J L; Kramer, J; Conklin, D; Presnell, S R; Berry, J; Shiota, F; Bort, S; Hambly, K; Mudri, S; Clegg, C; Moore, M; Grant, F J; Lofton-Day, C; Gilbert, T; Rayond, F; Ching, A; Yao, L; Smith, D; Webster, P; Whitmore, T; Maurer, M; Kaushansky, K; Holly, R D; Foster, D

    2000-11-02

    Cytokines are important in the regulation of haematopoiesis and immune responses, and can influence lymphocyte development. Here we have identified a class I cytokine receptor that is selectively expressed in lymphoid tissues and is capable of signal transduction. The full-length receptor was expressed in BaF3 cells, which created a functional assay for ligand detection and cloning. Conditioned media from activated human CD3+ T cells supported proliferation of the assay cell line. We constructed a complementary DNA expression library from activated human CD3+ T cells, and identified a cytokine with a four-helix-bundle structure using functional cloning. This cytokine is most closely related to IL2 and IL15, and has been designated IL21 with the receptor designated IL21 R. In vitro assays suggest that IL21 has a role in the proliferation and maturation of natural killer (NK) cell populations from bone marrow, in the proliferation of mature B-cell populations co-stimulated with anti-CD40, and in the proliferation of T cells co-stimulated with anti-CD3.

  4. In situ delivery of allogeneic natural killer cell (NK) combined with Cetuximab in liver metastases of gastrointestinal carcinoma: A phase I clinical trial.

    Science.gov (United States)

    Adotevi, O; Godet, Y; Galaine, J; Lakkis, Z; Idirene, I; Certoux, J M; Jary, M; Loyon, R; Laheurte, C; Kim, S; Dormoy, A; Pouthier, F; Barisien, C; Fein, F; Tiberghien, P; Pivot, X; Valmary-Degano, S; Ferrand, C; Morel, P; Delabrousse, E; Borg, C

    2018-01-01

    Despite successful introduction of NK-based cellular therapy in the treatment of myeloid leukemia, the potential use of NK alloreactivity in solid malignancies is still elusive. We performed a phase I clinical trial to assess the safety and efficacy of in situ delivery of allogeneic NK cells combined with cetuximab in liver metastasis of gastrointestinal origin. The conditioning chemotherapy was administrated before the allogeneic NK cells injection via hepatic artery. Three escalating doses were tested (3.10 6 , 8.10 6 and 12.10 6 NK cells/kg) following by a high-dose interleukin-2 (IL-2). Cetuximab was administered intravenously every week for 7 weeks. Nine patients with liver metastases of colorectal or pancreatic cancers were included, three per dose level. Hepatic artery injection was successfully performed in all patients with no report of dose-limiting toxicity. Two patients had febrile aplasia requiring a short-term antibiotherapy. Grade 3/4 anemia and thrombopenia were also observed related to the chemotherapy. Objective clinical responses were documented in 3 patients and among them 2 occurred in patients injected with cell products harboring two KIR ligand mismatches and one in a patient with one KIR ligand mismatch. Immune monitoring revealed that most patients presented an increase but transient of IL-15 and IL-7 cytokines levels one week after chemotherapy. Furthermore, a high expansion of FoxP3 + regulatory T cells and PD-1 + T cells was observed in all patients, related to IL-2 administration. Our results demonstrated that combining allogeneic NK cells transfer via intra-hepatic artery, cetuximab and a high-dose IL-2 is feasible, well tolerated and may result in clinical responses.

  5. Determination of Elements in Normal and Leukemic Human Whole Blood by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Frykberg, B; Samsahl, K; Wester, P O

    1961-11-15

    By means of gamma-spectrometry the following elements were simultaneously determined in normal and leukemic human whole blood: Cu, Mn, Zn, Sr, Na, P, Ca, Rb, Cd, Sb, Au, Cs and Fe. Chemical separations were performed according to a group separation method using ion-exchange technique. No significant difference between the concentrations of the elements in normal- and leukemic blood was observed.

  6. Determination of Elements in Normal and Leukemic Human Whole Blood by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Brune, D.; Frykberg, B.; Samsahl, K.; Wester, P.O.

    1961-11-01

    By means of gamma-spectrometry the following elements were simultaneously determined in normal and leukemic human whole blood: Cu, Mn, Zn, Sr, Na, P, Ca, Rb, Cd, Sb, Au, Cs and Fe. Chemical separations were performed according to a group separation method using ion-exchange technique. No significant difference between the concentrations of the elements in normal- and leukemic blood was observed

  7. Enhanced normal short-term human myelopoiesis in mice engineered to express human-specific myeloid growth factors.

    Science.gov (United States)

    Miller, Paul H; Cheung, Alice M S; Beer, Philip A; Knapp, David J H F; Dhillon, Kiran; Rabu, Gabrielle; Rostamirad, Shabnam; Humphries, R Keith; Eaves, Connie J

    2013-01-31

    Better methods to characterize normal human hematopoietic cells with short-term repopulating activity cells (STRCs) are needed to facilitate improving recovery rates in transplanted patients.We now show that 5-fold more human myeloid cells are produced in sublethally irradiated NOD/SCID-IL-2Receptor-γchain-null (NSG) mice engineered to constitutively produce human interleukin-3, granulocyte-macrophage colony-stimulating factor and Steel factor (NSG-3GS mice) than in regular NSG mice 3 weeks after an intravenous injection of CD34 human cord blood cells. Importantly, the NSG-3GS mice also show a concomitant and matched increase in circulating mature human neutrophils. Imaging NSG-3GS recipients of lenti-luciferase-transduced cells showed that human cells being produced 3 weeks posttransplant were heterogeneously distributed, validating the blood as a more representative measure of transplanted STRC activity. Limiting dilution transplants further demonstrated that the early increase in human granulopoiesis in NSG-3GS mice reflects an expanded output of differentiated cells per STRC rather than an increase in STRC detection. NSG-3GS mice support enhanced clonal outputs from human short-term repopulating cells (STRCs) without affecting their engrafting efficiency. Increased human STRC clone sizes enable their more precise and efficient measurement by peripheral blood monitoring.

  8. Human osteoarthritic cartilage is synthetically more active but in culture less vital than normal cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; van Roy, H.; Wilbrink, B.; Huber-Bruning, O.; Bijlsma, J. W.

    1992-01-01

    The proteoglycan turnover of human osteoarthritic (OA) cartilage was compared to that of normal (N) cartilage. The cartilage was obtained postmortem from human femoral knee condyles. Short term cultures were compared to longterm cultures, and proteoglycan synthesis rate, content and release

  9. Role of protein kinase C in TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells.

    Science.gov (United States)

    Abraha, Abraham B; Rana, Krupa; Whalen, Margaret M

    2010-11-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposure of NK cells to tributyltin (TBT) greatly diminishes their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C(PKC) as well as MAPK activity. TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposure. TBT caused a 2–3-fold activation of PKC at concentrations ranging from 50 to 300 nM (16–98 ng/ml),indicating that activation of PKC occurs in response to TBT exposure. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells, validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that, in NK cells where PKC activation was blocked, there was no activation of the MAPK, p44/42 in response to TBT.However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including activation of p44/42 by TBT in NK cells.

  10. The Poly-γ-D-Glutamic Acid Capsule of Bacillus licheniformis, a Surrogate of Bacillus anthracis Capsule Induces Interferon-Gamma Production in NK Cells through Interactions with Macrophages.

    Science.gov (United States)

    Lee, Hae-Ri; Jeon, Jun Ho; Rhie, Gi-Eun

    2017-05-28

    The poly-γ- D -glutamic acid (PGA) capsule, a major virulence factor of Bacillus anthracis , provides protection of the bacterium from phagocytosis and allows its unimpeded growth in the host. We investigated crosstalk between murine natural killer (NK) cells and macrophages stimulated with the PGA capsule of Bacillus licheniformis , a surrogate of the B. anthracis capsule. PGA induced interferon-gamma production from NK cells cultured with macrophages. This effect was dependent on macrophage-derived IL-12 and cell-cell contact interaction with macrophages through NK cell receptor NKG2D and its ligand RAE-1. The results showed that PGA could enhance NK cell activation by inducing IL-12 production in macrophages and a contact-dependent crosstalk with macrophages.

  11. Late Development of FcεRγneg Adaptive Natural Killer Cells Upon Human Cytomegalovirus Reactivation in Umbilical Cord Blood Transplantation Recipients

    Directory of Open Access Journals (Sweden)

    Letizia Muccio

    2018-05-01

    Full Text Available In human natural killer (NK cells, human cytomegalovirus (HCMV has been shown to be a driving force capable of inducing the expansion of a highly differentiated NKG2C+CD57+ subset, persisting over time in both HCMV+ healthy subjects and umbilical cord blood transplantation (UCBT recipients experiencing HCMV viral reactivation. In HCMV+ healthy subjects, such expanded NK-cells are characterized by epigenetic modifications that modulate their phenotypic and functional characteristics. In particular, an enhanced ADCC activity is detectable in NK cells lacking the signaling protein FcεRγ. Timing and mechanisms involved in the acquisition of HCMV-induced, adaptive-like features by NK cells are currently unknown. In this study, we investigated the de novo acquisition of several adaptive features in NK cells developing after UCBT by monitoring NK-cell differentiation for at least 2 years after transplant. In UCBT recipients experiencing HCMV reactivation, a rapid phenotypic reconfiguration occurred resulting in the expected expansion of CD56dim NKG2C+CD57+ NK cells. However, while certain HCMV-driven adaptive hallmarks, including high KIR, LILRB1, CD2 and low/negative NKG2A, Siglec-7, and CD161 expression, were acquired early after UCBT (namely by month 6, downregulation of the signaling protein FcεRγ was detected at a later time interval (i.e., by month 12. This feature characterized only a minor fraction of the HCMV-imprinted NKG2C+CD57+ CD56dim NK cell subset, while it was detectable in higher proportions of CD57+ NK cells lacking NKG2C. Interestingly, in patients developing a hyporesponsive CD56−CD16bright NK-cell subset, FcεRγ downregulation occurred in these cells earlier than in CD56dim NK cells. Our data suggest that the acquisition of a fully “adaptive” profile requires signals that may lack in UCBT recipients and/or longer time is needed to obtain a stable epigenetic reprogramming. On the other hand, we found that both HCMV

  12. Human natural killer cells prevent infectious mononucleosis features by targeting lytic Epstein-Barr virus infection.

    Science.gov (United States)

    Chijioke, Obinna; Müller, Anne; Feederle, Regina; Barros, Mario Henrique M; Krieg, Carsten; Emmel, Vanessa; Marcenaro, Emanuela; Leung, Carol S; Antsiferova, Olga; Landtwing, Vanessa; Bossart, Walter; Moretta, Alessandro; Hassan, Rocio; Boyman, Onur; Niedobitek, Gerald; Delecluse, Henri-Jacques; Capaul, Riccarda; Münz, Christian

    2013-12-26

    Primary infection with the human oncogenic Epstein-Barr virus (EBV) can result in infectious mononucleosis (IM), a self-limiting disease caused by massive lymphocyte expansion that predisposes for the development of distinct EBV-associated lymphomas. Why some individuals experience this symptomatic primary EBV infection, whereas the majority acquires the virus asymptomatically, remains unclear. Using a mouse model with reconstituted human immune system components, we show that depletion of human natural killer (NK) cells enhances IM symptoms and promotes EBV-associated tumorigenesis mainly because of a loss of immune control over lytic EBV infection. These data suggest that failure of innate immune control by human NK cells augments symptomatic lytic EBV infection, which drives lymphocyte expansion and predisposes for EBV-associated malignancies. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Normal development and growth of the human neurocranium and cranial base.

    Science.gov (United States)

    Friede, H

    1981-01-01

    The literature on normal development and growth of certain areas of the human head is reviewed, starting with the early induction of the desmal neurocranium. the development of the brain capsule with its dural reinforcement bands and their connection with the basicranium is discussed, as is the primordial chondrocranium, including its bone replacement. Growth of the calvaria and the three cranial fossae is also analysed. Special interest is focused on the anterior fossa, as knowledge of the growth in this area is very important for an understanding of pathogenesis and possibilities of treating premature craniosynostosis. Finally it is stressed that close observation of the effects of treatment on this pathology may increase our knowledge of normal growth.

  14. Biomechanics of normal and pathological gait: implications for understanding human locomotor control.

    Science.gov (United States)

    Winter, D A

    1989-12-01

    The biomechanical (kinetic) analysis of human gait reveals the integrated and detailed motor patterns that are essential in pinpointing the abnormal patterns in pathological gait. In a similar manner, these motor patterns (moments, powers, and EMGs) can be used to identify synergies and to validate theories of CNS control. Based on kinetic and EMG patterns for a wide range of normal subjects and cadences, evidence is presented that both supports and negates the central pattern generator theory of locomotion. Adaptive motor patterns that are evident in peripheral gait pathologies reinforce a strong peripheral rather than a central control. Finally, a three-component subtask theory of human gait is presented and is supported by reference to the motor patterns seen in a normal gait. The identified subtasks are (a) support (against collapse during stance); (b) dynamic balance of the upper body, also during stance; and (c) feedforward control of the foot trajectory to achieve safe ground clearance and a gentle heel contact.

  15. Development and labeling of EP-00652218 analogues, NK1 receptors antagonist, for PET and SPECT imaging

    International Nuclear Information System (INIS)

    Bagot-Gueret, C.

    2001-12-01

    The aim of this work was the synthesis and radiosynthesis of compounds labelled either with a positron emitter (fluorine-18, t 1/2 = 109 minutes) or with a gamma emitter (iodine-123, t 1/2 = 16.2 hours), for Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) studies. EP-00652218 is a novel potent antagonist, with a sub-nano-molar affinity towards the NK 1 receptors. In order to develop ligands that could be used either in PET or SPECT, we undertook the synthesis of poly-halogenated analogues of EP-00652218. Compound 17 was synthesized through two different synthetic pathways. A series of original compounds has been obtained from compound 17 by halogen exchanges on the naphthyridone or the benzene ring. These molecules were tested to determine their in vitro affinity towards NK 1 receptors. Compound 21 was labelled with fluorine-18 in 135 minutes and with a 20% radiochemical yield. Compound 26 was radioiodinated following reaction with Na 125 I (t 1/2 = 60.14 days) in a 18% radiochemical yield. Despite expectation, these analogues of EP-00652218 exhibited an insufficient affinity for NK 1 receptors (IC 50 = 10 -7 M) and thus unlikely usable for in vivo studies with PET and SPECT. (author)

  16. Induction of potent NK cell-dependent anti-myeloma cytotoxic T cells in response to combined mapatumumab and bortezomib.

    Science.gov (United States)

    Neeson, Paul J; Hsu, Andy K; Chen, Yin R; Halse, Heloise M; Loh, Joanna; Cordy, Reece; Fielding, Kate; Davis, Joanne; Noske, Josh; Davenport, Alex J; Lindqvist-Gigg, Camilla A; Humphreys, Robin; Tai, Tsin; Prince, H Miles; Trapani, Joseph A; Smyth, Mark J; Ritchie, David S

    2015-09-01

    There is increasing evidence that some cancer therapies can promote tumor immunogenicity to boost the endogenous antitumor immune response. In this study, we used the novel combination of agonistic anti-TRAIL-R1 antibody (mapatumumab, Mapa) with low dose bortezomib (LDB) for this purpose. The combination induced profound myeloma cell apoptosis, greatly enhanced the uptake of myeloma cell apoptotic bodies by dendritic cell (DC) and induced anti-myeloma cytotoxicity by both CD8 + T cells and NK cells. Cytotoxic lymphocyte expansion was detected within 24 h of commencing therapy and was maximized when myeloma-pulsed DC were co-treated with low dose bortezomib and mapatumumab (LDB+Mapa) in the presence of NK cells. This study shows that Mapa has two distinct but connected modes of action against multiple myeloma (MM). First, when combined with LDB, Mapa produced powerful myeloma cell apoptosis; secondly, it promoted DC priming and an NK cell-mediated expansion of anti-myeloma cytotoxic lymphocyte (CTL). Overall, this study indicates that Mapa can be used to drive potent anti-MM immune responses.

  17. In vivo H MR spectroscopy of human brain in six normal volunteers

    International Nuclear Information System (INIS)

    Choe, Bo Young; Suh, Tae Suk; Bahk, Yong Whee; Shinn, Kyung Sub

    1993-01-01

    In vivo H MR spectroscopic studies were performed on the human brain in six normal volunteers. Some distinct proton metabolites, such as N-acetylaspartate (NAA), creatine/phosphocreatine (Cr), choline/phosphocholine (Cho), myo-inositol (Ins) and lipid (fat) were clearly identified in normal brain tissue. The signal intensity of NAA resonance is strongest. The standard ratios of metabolites from the normal brain tissue in specific regions were obtained for the references of further in vivo H MR spectroscopic studies. Our initial resulting suggest the in vivo H MR spectroscopy may provide more precise diagnosis on the basis of the metabolic information on brain tissues. The unique ability of In vivo H MR spectroscopy to offer noninvasive information about tissue biochemistry in patients will stimulate its impact on clinical research and disease diagnosis

  18. Natural Killer (NK- and T-Cell Engaging Antibody-Derived Therapeutics

    Directory of Open Access Journals (Sweden)

    Christoph Stein

    2012-06-01

    Full Text Available Unmodified antibodies (abs have been successful in the treatment of hematologic malignancies, but less so for the treatment of solid tumors. They trigger anti-tumor effects through their Fc-domains, and one way to improve their efficacy is to optimize their interaction with the effectors through Fc-engineering. Another way to empower abs is the design of bispecific abs and related fusion proteins allowing a narrower choice of effector cells. Here we review frequently chosen classes of effector cells, as well as common trigger molecules. Natural Killer (NK- and T-cells are the most investigated populations in therapeutical approaches with bispecific agents until now. Catumaxomab, the first bispecific ab to receive drug approval, targets the tumor antigen Epithelial Cell Adhesion Molecule (EpCAM and recruits T-cells via a binding site for the cell surface protein CD3. The next generation of recombinant ab-derivatives replaces the broadly reactive Fc-domain by a binding domain for a single selected trigger. Blinatumomab is the first clinically successful member of this class, targeting cancer cells via CD19 and engaging T-cells by CD3. Other investigators have developed related recombinant fusion proteins to recruit effectors, such as NK-cells and macrophages. The first such agents currently in preclinical and clinical development will be discussed.

  19. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.

    Science.gov (United States)

    Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah

    2017-12-01

    The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34 +  cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in

  20. Phase analysis of NK-bar scattering and Λ-hyperon magnetic moment

    International Nuclear Information System (INIS)

    Nikitiu, F.

    1987-01-01

    The NK-bar-scattering S matrix is suggested to have the P 01 -channel pole which corresponds to Λ-hyperon. The Λ-hyperon magnetic moment is calculated. Its value ''arises'' only due to nucleon magnetic moments and N and K-bar nontrivial relativistic coupling in the P 01 -channel. This is one more method to the quark model methods. The calculations are in agreement with the experimental value of μΛ

  1. Role of protein kinase C in the TBT-induced inhibition of lytic function and MAPK activation in human natural killer cells

    Science.gov (United States)

    Abraha, Abraham B.; Rana, Krupa; Whalen, Margaret M.

    2010-01-01

    Human natural killer (NK) cells are lymphocytes that destroy tumor and virally infected cells. Previous studies have shown that exposures of NK cells to tributyltin (TBT) greatly diminish their ability to destroy tumor cells (lytic function) while activating mitogen-activated protein kinases (MAPK) (p44/42, p38, and JNK) in the NK cells. The signaling pathway that regulates NK lytic function appears to include activation of protein kinase C (PKC) as well as MAPK activity. The TBT-induced activation of MAPKs would trigger a portion of the NK lytic signaling pathway, which would then leave the NK cell unable to trigger this pathway in response to a subsequent encounter with a target cell. In the present study we evaluated the involvement of PKC in the inhibition of NK lysis of tumor cells and activation of MAPKs caused by TBT exposures. TBT caused a 2–3 fold activation of PKC at concentrations ranging from 50–300 nM (16–98 ng/mL), indicating that activation of PKC occurs in response to TBT exposures. This would then leave the NK cell unable to respond to targets. Treatment with the PKC inhibitor, bisindolylmaleimide I, caused an 85% decrease in the ability of NK cells to lyse tumor cells validating the involvement of PKC in the lytic signaling pathway. The role of PKC in the activation of MAPKs by TBT was also investigated using bisindolylmaleimide I. The results indicated that in NK cells where PKC activation was blocked there was no activation of the MAPK, p44/42 in response to TBT. However, TBT-induced activation of the MAPKs, p38 and JNK did not require PKC activation. These results indicate the pivotal role of PKC in the TBT-induced loss of NK lytic function including the activation of p44/42 by TBT in NK cells. PMID:20390410

  2. Peptidyl aldehyde NK-1.8k suppresses enterovirus 71 and enterovirus 68 infection by targeting protease 3C.

    Science.gov (United States)

    Wang, Yaxin; Yang, Ben; Zhai, Yangyang; Yin, Zheng; Sun, Yuna; Rao, Zihe

    2015-05-01

    Enterovirus (EV) is one of the major causative agents of hand, foot, and mouth disease in the Pacific-Asia region. In particular, EV71 causes severe central nervous system infections, and the fatality rates from EV71 infection are high. Moreover, an outbreak of respiratory illnesses caused by an emerging EV, EV68, recently occurred among over 1,000 young children in the United States and was also associated with neurological infections. Although enterovirus has emerged as a considerable global public health threat, no antiviral drug for clinical use is available. In the present work, we screened our compound library for agents targeting viral protease and identified a peptidyl aldehyde, NK-1.8k, that inhibits the proliferation of different EV71 strains and one EV68 strain and that had a 50% effective concentration of 90 nM. Low cytotoxicity (50% cytotoxic concentration, >200 μM) indicated a high selective index of over 2,000. We further characterized a single amino acid substitution inside protease 3C (3C(pro)), N69S, which conferred EV71 resistance to NK-1.8k, possibly by increasing the flexibility of the substrate binding pocket of 3C(pro). The combination of NK-1.8k and an EV71 RNA-dependent RNA polymerase inhibitor or entry inhibitor exhibited a strong synergistic anti-EV71 effect. Our findings suggest that NK-1.8k could potentially be developed for anti-EV therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells

    Science.gov (United States)

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach. PMID:25949869

  4. MHC-I modulation due to changes in tumor cell metabolism regulates tumor sensitivity to CTL and NK cells.

    Science.gov (United States)

    Catalán, Elena; Charni, Seyma; Jaime, Paula; Aguiló, Juan Ignacio; Enríquez, José Antonio; Naval, Javier; Pardo, Julián; Villalba, Martín; Anel, Alberto

    2015-01-01

    Tumor cells have a tendency to use glucose fermentation to obtain energy instead of mitochondrial oxidative phosphorylation (OXPHOS). We demonstrated that this phenotype correlated with loss of ERK5 expression and with reduced MHC class I expression. Consequently, tumor cells could evade cytotoxic T lymphocyte (CTL)-mediated immune surveillance, but also increase their sensitivity to natural killer (NK) cells. These outcomes were evaluated using two cellular models: leukemic EL4 cells and L929 transformed fibroblasts and their derived ρ° cell lines, which lack mitochondrial DNA. We have also used a L929 cell sub-line that spontaneously lost matrix attachment (L929dt), reminiscent of metastasis generation, that also downregulated MHC-I and ERK5 expression. MHC-I expression is lower in ρ° cells than in the parental cell lines, but they were equally sensitive to CTL. On the contrary, ρ° cells were more sensitive to activated NK cells than parental cells. On the other hand, L929dt cells were resistant to CTL and NK cells, showed reduced viability when forced to perform OXPHOS, and surviving cells increased MHC-I expression and became sensitive to CTL. The present results suggest that when the reduction in MHC-I levels in tumor cells due to glycolytic metabolism is partial, the increase in sensitivity to NK cells seems to predominate. However, when tumor cells completely lose MHC-I expression, the combination of treatments that increase OXPHOS with CTL-mediated immunotherapy could be a promising therapeutic approach.

  5. Complexity and diversity of the NKR-P1:Clr (Klrb1:Clec2 recognition systems

    Directory of Open Access Journals (Sweden)

    Christina L Kirkham

    2014-06-01

    Full Text Available The NKR-P1 receptors were identified as prototypical natural killer (NK cell surface antigens and later shown to be conserved from rodents to humans on NK cells and subsets of T cells. C-type lectin-like in nature, they were originally shown to be capable of activating NK cell function and to recognize ligands on tumour cells. However, certain family members have subsequently been shown to be capable of inhibiting NK cell activity, and to recognize proteins encoded by a family of genetically linked C-type lectin-related (Clr ligands. Some of these ligands are expressed by normal, healthy cells, and modulated during transformation, infection, and cellular stress, while other ligands are upregulated during the immune response and during pathological circumstances. Here, we discuss historical and recent developments in NKR-P1 biology that demonstrate this NK receptor-ligand system to be far more complex and diverse than originally anticipated.

  6. Articular cartilage explant culture; an appropriate in vitro system to compare osteoarthritic and normal human cartilage

    NARCIS (Netherlands)

    Lafeber, F. P.; Vander Kraan, P. M.; van Roy, J. L.; Huber-Bruning, O.; Bijlsma, J. W.

    1993-01-01

    Proteoglycan metabolism of normal and histologically mild to moderate osteoarthritic cartilage explants were studied. Explants were obtained from the human knee of donors aged over 40 years. Proteoglycan content, synthesis and release were very similar in normal cartilage obtained from donors with

  7. Chronic psychosocial stress in tree shrews : effect of the substance P (NK1 receptor) antagonist L-760735 and clomipramine on endocrine and behavioral parameters

    NARCIS (Netherlands)

    van der Hart, MGC; de Biurrun, G; Czeh, B; Rupniak, NMJ; den Boer, JA; Fuchs, E

    Rationale: Substance P and its preferred receptor, the neurokinin 1 receptor (NK1R), have been proposed as possible targets for new antidepressant therapies, although results of a recently completed phase III trial failed to demonstrate that the NK1R antagonist MK-869 is more effective than placebo

  8. Normal karyotype mosaicism in adult AML patients with adverse-risk and undefined karyotype: preliminary report of treatment outcomes after hematopoietic stem cell transplantation.

    Science.gov (United States)

    Yoon, Jae-Ho; Kim, Hee-Je; Shin, Seung-Hwan; Yahng, Seung-Ah; Cho, Byung-Sik; Eom, Ki-Seong; Kim, Yoo-Jin; Lee, Seok; Min, Chang-Ki; Cho, Seok-Goo; Kim, Dong-Wook; Lee, Jong-Wook; Min, Woo-Sung; Park, Chong-Won

    2013-06-01

    Karyotype analysis in acute myeloid leukemia (AML) is one of the powerful prognostic factors for complete remission (CR), relapse, and overall survival (OS). Cytogenetic mosaicism is considered to be one of the important characteristics in expression of phenotypic manifestations. However, it has not come into focus due to emerging molecular biological approaches and the results of a number of mutation studies. Clinical correlates and prognostic relevance of mosaicism were evaluated in 163 AML patients [adverse-risk karyotypes (n = 72) and undefined karyotypes (n = 91)]. All patients were treated by induction and consolidation chemotherapies and finally went on hematopoietic stem cell transplantations (HSCT). Patients were divided into two subgroups, either with or without normal karyotype (NK) mosaicism. Seventy patients exhibited NK mosaicism and 93 did not. There were no significant differences in age, gender, chemotherapy cycles to achieve CR, HSCT donor type, source or intensity properties between the two subgroups. We found that NK mosaicism remaining in adverse-risk and undefined karyotype at diagnosis significantly correlates with better OS (p = 0.001) and lower CIR (p = 0.021) rate after HSCT. Our data show that the poor prognostic properties of unfavorable risk karyotype can be overcome to a great extent by allogeneic HSCT and chronic GVHD, especially in the subgroup with NK mosaicism. Cytogenetic mosaicism at initial diagnosis can be an influential factor for survival outcomes, even after HSCT.

  9. The sinusoidal lining cells in "normal" human liver. A scanning electron microscopic investigation

    DEFF Research Database (Denmark)

    Horn, T; Henriksen, Jens Henrik Sahl; Christoffersen, P

    1986-01-01

    The scanning electron microscopic was used to study the fenestrations of human liver sinusoids. Thirteen biopsies, where light microscopy and transmission electron microscopy revealed normal sinusoidal architecture, were investigated. The number of fenestrae was calculated in acinar zone 3...

  10. Antigen Presenting Cells and Stromal Cells Trigger Human Natural Killer Lymphocytes to Autoreactivity: Evidence for the Involvement of Natural Cytotoxicity Receptors (NCR and NKG2D

    Directory of Open Access Journals (Sweden)

    Alessandro Poggi

    2006-01-01

    Full Text Available Human natural killer (NK lymphocytes should not damage autologous cells due to the engagement of inhibitory receptor superfamily (IRS members by HLA-I. Nevertheless, NK cells kill self cells expressing low levels or lacking HLA-I, as it may occur during viral infections (missing-self hypothesis. Herein, we show that human NK cells can be activated upon binding with self antigen presenting cells or stromal cells despite the expression of HLA-I. Indeed, NK cells can kill and produce pro-inflammatory and regulating cytokines as IFN-γ, TNF-α and IL10 during interaction with autologous dendritic cells or bone marrow stromal cells or skin fibroblasts. The killing of antigen presenting and stromal cells is dependent on LFA1/ICAM1 interaction. Further, the natural cytotoxicity receptors (NCR NKp30 and NKp46 are responsible for the delivery of lethal hit to DC, whereas NKG2D activating receptor, the ligand of the MHC-related molecule MIC-A and the UL16 binding protein, is involved in stromal cell killing. These findings indicate that different activating receptors are involved in cell to self cell interaction. Finally, NK cells can revert the veto effect of stromal cells on mixed lymphocyte reaction further supporting the idea that NK cells may alter the interaction between T lymphocytes and microenvironment leading to autoreactivity.

  11. Brominated flame retardants, tetrabromobisphenol A and hexabromocyclododecane, activate mitogen-activated protein kinases (MAPKs) in human natural killer cells.

    Science.gov (United States)

    Cato, Anita; Celada, Lindsay; Kibakaya, Esther Caroline; Simmons, Nadia; Whalen, Margaret M

    2014-12-01

    Natural killer (NK) cells provide a vital surveillance against virally infected cells, tumor cells, and antibody-coated cells through the release of cytolytic mediators and gamma interferon (IFN-γ). Hexabromocyclododecane (HBCD) is a brominated flame retardant used primarily in expanded (EPS) and extruded (XPS) polystyrene foams for thermal insulation in the building and construction industry. Tetrabromobisphenol A (TBBPA) is used both as a reactive and an additive flame retardant in a variety of materials. HBCD and TBBPA contaminate the environment and are found in human blood samples. In previous studies, we have shown that other environmental contaminants, such as the dibutyltin (DBT) and tributyltin (TBT), decrease NK lytic function by activating mitogen-activated protein kinases (MAPKs) in the NK cells. HBCD and TBBPA also interfere with NK cell(s) lytic function. The current study evaluates whether HBCD and/or TBBPA have the capacity to activate MAPKs and MAPK kinases (MAP2Ks). The effects of concentrations of HBCD and TBBPA that inhibited lytic function on the phosphorylation state and total levels of the MAPKs (p44/42, p38, and JNK) and the phosphorylation and total levels of the MAP2Ks (MEK1/2 and MKK3/6) were examined. Results indicate that exposure of human NK cells to 10-0.5 μM HBCD or TBBPA activate MAPKs and MAP2Ks. This HBCD and TBBPA-induced activation of MAPKs may leave them unavailable for activation by virally infected or tumor target cells and thus contributes to the observed decreases in lytic function seen in NK cells exposed to HBCD and TBBPA.

  12. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    Science.gov (United States)

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  13. Distribution of intrahepatic T, NK and CD3(+)CD56(+)NKT cells alters after liver transplantation: Shift from innate to adaptive immunity?

    Science.gov (United States)

    Werner, Jens M; Lang, Corinna; Scherer, Marcus N; Farkas, Stefan A; Geissler, Edward K; Schlitt, Hans J; Hornung, Matthias

    2011-07-01

    The liver is an immunological organ containing a large number of T, NK and NKT cells, but little is known about intrahepatic immunity after LTx. Here, we investigated whether the distribution of T, NK and CD3(+)CD56(+)NKT cells is altered in transplanted livers under different circumstances. Core biopsies of transplanted livers were stained with antibodies against CD3 and CD56. Several cell populations including T (CD3(+)CD56(-)), NK (CD3(-)CD56(+)) and NKT cells (CD3(+)CD56(+)) were studied by fluorescence microscopy. Cell numbers were analyzed in relation to the time interval after LTx, immunosuppressive therapy and stage of acute graft rejection (measured with the rejection activity index: RAI) compared to tumor free liver tissue from patients after liver resection due to metastatic disease as control. Recruitment of CD3(+)CD56(+)NKT cells revealed a significant decrease during high RAI scores in comparison to low and middle RAI scores (RAI 7-9: 0.03±0.01/HPF vs. RAI 4-6: 0.1±0.005/HPF). CD3(+)CD56(+)NKT cells were also lower during immunosuppressive therapy with tacrolimus (0.03±0.01/HPF) than with cyclosporine (0.1±0.003/HPF), cyclosporine/MMF (0.1±0.003/HPF) or sirolimus (0.1±0.01/HPF) treatment. Intrahepatic T cell numbers increased significantly 50days after LTx compared to control liver tissue (4.5±0.2/HPF vs. 1.9±0.1/HPF). In contrast, NK cells (0.3±0.004/HPF) were significantly fewer in all biopsies after LTx compared to the control (0.7±0.04/HPF). These data indicate significant alterations in the hepatic recruitment of T, NK and CD3(+)CD56(+)NKT cells after LTx. The increase in T cells and the decrease in NK and CD3(+)CD56(+)NKT cells suggest a shift from innate to adaptive hepatic immunity in the liver graft. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Identification and Characterization of Plasma Cells in Normal Human Bone Marrow by High-Resolution Flow Cytometry

    NARCIS (Netherlands)

    Terstappen, Leonardus Wendelinus Mathias Marie; Johnsen, Steen; Segers-Nolten, Gezina M.J.; Loken, Michael R.

    1990-01-01

    The low frequency of plasma cells and the lack of specific cell surface markers has been a major obstacle for a detailed characterization of plasma cells in normal human bone marrow. Multiparameter flow cytometry enabled the identification of plasma cells in normal bone marrow aspirates. The plasma

  15. Multistep process of neoplastic transformation of normal human fibroblasts by 60Co gamma rays and Harvey sarcoma viruses

    Energy Technology Data Exchange (ETDEWEB)

    Namba, M.; Nishitani, K.; Fukushima, F.; Kimoto, T.; Nose, K.

    1986-03-15

    As reported previously (Namba et al., 1985), normal human fibroblasts were transformed by 60Co gamma-ray irradiation into immortal cells with abnormal karyotypes. These transformed cells (KMST-6), however, showed a low cloning efficiency in soft agar and no transplantability. However, upon treatment with Harvey murine sarcoma virus (Ha-MSV), the cells acquired elevated clonability in soft agar and transplantability in nude mice. Ha-MSV alone, however, did not convert normal human fibroblasts into either immortal or tumorigenic cells. The Ha-MSV-transformed KMST-6 cells showed an enhanced expression of the ras oncogene, but normal and 60Co gamma-ray-transformed cells did not. Our current data suggest that gamma rays worked against normal human cells as an initiator, giving rise to chromosome aberrations and immortality, and that Ha-MSV, probably through its ras oncogene, played a role in the progression of the malignant cell population to a more malignant one showing enhanced colony formation in soft agar and tumorigenicity in nude mice.

  16. Human cytomegalovirus-induced NKG2C(hi) CD57(hi) natural killer cells are effectors dependent on humoral antiviral immunity.

    Science.gov (United States)

    Wu, Zeguang; Sinzger, Christian; Frascaroli, Giada; Reichel, Johanna; Bayer, Carina; Wang, Li; Schirmbeck, Reinhold; Mertens, Thomas

    2013-07-01

    Recent studies indicate that expansion of NKG2C-positive natural killer (NK) cells is associated with human cytomegalovirus (HCMV); however, their activity in response to HCMV-infected cells remains unclear. We show that NKG2C(hi) CD57(hi) NK cells gated on CD3(neg) CD56(dim) cells can be phenotypically identified as HCMV-induced NK cells that can be activated by HCMV-infected cells. Using HCMV-infected autologous macrophages as targets, we were able to show that these NKG2C(hi) CD57(hi) NK cells are highly responsive to HCMV-infected macrophages only in the presence of HCMV-specific antibodies, whereas they are functionally poor effectors of natural cytotoxicity. We further demonstrate that NKG2C(hi) CD57(hi) NK cells are intrinsically responsive to signaling through CD16 cross-linking. Our findings show that the activity of pathogen-induced innate immune cells can be enhanced by adaptive humoral immunity. Understanding the activity of NKG2C(hi) CD57(hi) NK cells against HCMV-infected cells will be of relevance for the further development of adoptive immunotherapy.

  17. Up-and-down immunity of pregnancy in humans [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Philippe Le Bouteiller

    2017-07-01

    Full Text Available One part of the human placenta in early pregnancy is particularly important for local immunity: the decidua basalis, which is transformed endometrium located at the site of embryo implantation. This placental bed tissue contains both maternal uterine immune cells, including decidual natural killer (NK cells, the dominant leukocyte population exhibiting a unique phenotype, and fetal extravillous trophoblast which comes into direct contact with maternal decidual cells. To establish a successful placental development and healthy pregnancy outcome, the maternal immune system must tolerate paternal antigens expressed by trophoblast cells yet remain efficient for clearing any local pathogen infection. This review deals mainly with decidual NK cells. A key element, among others, to achieve such dual functions is the direct interaction between activating and inhibitory receptors expressed by decidual NK cells and their specific ligands presented by trophoblast or other decidual cells. Depending whether maternal decidual cells and trophoblast are infected by viruses, the balance between activating and inhibitory receptor signals mediated by decidual NK cell–trophoblast cross-talk results in tolerance (healthy pregnancy or specific killing (pathogen-infected cells.

  18. Polymethoxylated flavones potentiate the cytolytic activity of NK leukemia cell line KHYG-1 via enhanced expression of granzyme B.

    Science.gov (United States)

    Saito, Takeshi; Abe, Daigo; Nogata, Yoichi

    2015-01-16

    Polymethoxylated flavones (PMFs) are found in the peel tissues of some citrus species. Here, we report that PMFs, such as nobiletin, potentiate the cytolytic activity of KHYG-1 natural killer (NK) leukemia cells. Nobiletin markedly enhanced the expression of granzyme B, a serine protease that plays critical roles in the cytolytic activity of NK cells. The potentiated cytolytic activity induced by nobiletin was canceled by the granzyme B inhibitor Z-AAD-CMK. Nobiletin also increased the levels of phosphorylated CREB, ERK1/2, and p38 MAPK in KHYG-1 cells, which are known to participate in NK cell function. Inhibition of an upstream kinase of ERK1/2 failed to reduce the granzyme B expression and KHYG-1 cytolytic activity. Meanwhile, inhibition of p38 MAPK attenuated both granzyme B expression and KHYG-1 cytolytic activity. These results suggest that the primary role of nobiletin in KHYG-1 cytolytic activity lies in upregulation of granzyme B expression, at least in part, mediated through p38 MAPK function. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Co-culture with NK-92MI cells enhanced the anti-cancer effect of bee venom on NSCLC cells by inactivation of NF-κB.

    Science.gov (United States)

    Kollipara, Pushpa Saranya; Kim, Jung Hyun; Won, Dohee; Lee, Sang Min; Sung, Ha Chang; Chang, Hyun Sok; Lee, Kang Tae; Lee, Kang Sik; Park, Mi Hee; Song, Min Jong; Song, Ho Sueb; Hong, Jin Tae

    2014-03-01

    In the present study we experimented on a multimodal therapeutic approach, such as combining chemotherapy agent (Bee venom) with cellular (NK-92MI) immunotherapy. Previously bee venom has been found to show anti-cancer effect in various cancer cell lines. In lung cancer cells bee venom showed an IC(50) value of 3 μg/ml in both cell lines. The co-culture of NK-92MI cell lines with lung cancer cells also show a decrease in viability upto 50 % at 48 h time point. Hence we used bee venom treated NK-92MI cells to co-culture with NSCLC cells and found that there is a further decrease in cell viability upto 70 and 75 % in A549 and NCI-H460 cell lines respectively. We further investigated the expression of various apoptotic and anti-apoptotic proteins and found that Bax, cleaved caspase-3 and -8 were increasing where as Bcl-2 and cIAP-2 was decreasing. The expression of various death receptor proteins like DR3, DR6 and Fas was also increasing. Concomitantly the expression of various death receptor ligands (TNFalpha, Apo3L and FasL) was also increasing of NK-92MI cells after co-culture. Further the DNA binding activity and luciferase activity of NF-κB was also inhibited after co-culture with bee venom treated NK-92MI cell lines. The knock down of death receptors with si-RNA has reversed the decrease in cell viability and NF-κB activity after co-culture with bee venom treated NK-92MI cells. Thus this new approach can enhance the anti-cancer effect of bee venom at a much lower concentration.

  20. Sex differences in the neurokinin B system in the human infundibular nucleus

    NARCIS (Netherlands)

    Taziaux, Melanie; Swaab, Dick F.; Bakker, Julie

    2012-01-01

    The recent report that loss-of-function mutations in either the gene encoding neurokinin B (NKB) or its receptor (NK3R) produce gonadotropin deficiencies in humans strongly points to NKB as a key regulator of GnRH release. We used NKB immunohistochemistry on postmortem human brain tissue to