WorldWideScience

Sample records for normal hek cells

  1. Experiment study of tyrosinase gene's expression in HEK293 cell by MR

    International Nuclear Information System (INIS)

    Yuan Jianpeng; Liang Biling; Zhong Jinglian; Xie Bangkun; Zhang Weidong; Zhang Lin

    2004-01-01

    Objective: To transfect the tyrosinase gene into HEK293 cell as a reporter gene, and to evaluate the tyrosinase gene's expression by using MRI based on the gene's property of synthesizing large amount of melanin, and to search a way for evaluating the results of gene expression by MR in vitro. Methods: The plasmid of pcDNA3tyr which carried the full-length cDNA of tyrosinase gene was transfected into HEK293 cell by lipofectin, and MR signals of expressed melanin was observed by scanning the transfected cells with MR sequences of T 1 WI, T 1 WI/SPIR, and T 2 WI. Fontana stain and electric microscopy were used to search for melanin granules in transfected cells, and RT-PCR method was used to search for cDNA of tyrosinase gene. Results: (1) Plasmids of pcDNA3tyr could be transfected into HEK293 cells and could synthesize a large amount of melanin in them. The synthetic melanin in 10 6 cells, which had been transfected with 5 μg, 10 μg, and 20 μg plasmids of pcDNA3tyr separately, were all sufficient to be detected by MR and appeared as high signal on MR T 1 WI, T 1 WI/SPIR, and T 2 WI sequences. The more the amounts of transfected plasmids, the higher the signal intensities of MR imaging. On the other hand, 6.25 x 10 4 cells with 20 μg-plasmid of pcDNA3tyr transfection could also be detected by MR; (2) The melanin granules could be found in HEK293 cells in Fontana stain; (3) The melanin granules and their front bodies could be found in intracytoplasm of HEK293 cell by electric microscopy. (4) The cDNA fragment of tyrosinase gene could be detected in transfected HEK293 cells by RT-PCR. Conclusion: The fact that MR could detect the synthetic melanin in HEK293 cells controlled by expression of exogenous gene demonstrated that medical imaging combined with molecular biology technology could evaluate the result of gene expression in vitro, and it also indicated that medical imaging could play an important role in the evaluation of gene therapy following the development

  2. Riboflavin Depletion Promotes Tumorigenesis in HEK293T and NIH3T3 Cells by Sustaining Cell Proliferation and Regulating Cell Cycle-Related Gene Transcription.

    Science.gov (United States)

    Long, Lin; He, Jian-Zhong; Chen, Ye; Xu, Xiu-E; Liao, Lian-Di; Xie, Yang-Min; Li, En-Min; Xu, Li-Yan

    2018-05-07

    Riboflavin is an essential component of the human diet and its derivative cofactors play an established role in oxidative metabolism. Riboflavin deficiency has been linked with various human diseases. The objective of this study was to identify whether riboflavin depletion promotes tumorigenesis. HEK293T and NIH3T3 cells were cultured in riboflavin-deficient or riboflavin-sufficient medium and passaged every 48 h. Cells were collected every 5 generations and plate colony formation assays were performed to observe cell proliferation. Subcutaneous tumorigenicity assays in NU/NU mice were used to observe tumorigenicity of riboflavin-depleted HEK293T cells. Mechanistically, gene expression profiling and gene ontology analysis were used to identify abnormally expressed genes induced by riboflavin depletion. Western blot analyses, cell cycle analyses, and chromatin immunoprecipitation were used to validate the expression of cell cycle-related genes. Plate colony formation of NIH3T3 and HEK293T cell lines was enhanced >2-fold when cultured in riboflavin-deficient medium for 10-20 generations. Moreover, we observed enhanced subcutaneous tumorigenicity in NU/NU mice following injection of riboflavin-depleted compared with normal HEK293T cells (55.6% compared with 0.0% tumor formation, respectively). Gene expression profiling and gene ontology analysis revealed that riboflavin depletion induced the expression of cell cycle-related genes. Validation experiments also found that riboflavin depletion decreased p21 and p27 protein levels by ∼20%, and increased cell cycle-related and expression-elevated protein in tumor (CREPT) protein expression >2-fold, resulting in cyclin D1 and CDK4 levels being increased ∼1.5-fold, and cell cycle acceleration. We also observed that riboflavin depletion decreased intracellular riboflavin levels by 20% and upregulated expression of riboflavin transporter genes, particularly SLC52A3, and that the changes in CREPT and SLC52A3 correlated with

  3. Subcellular localization of human neutral ceramidase expressed in HEK293 cells

    International Nuclear Information System (INIS)

    Hwang, Young-ha; Tani, Motohiro; Nakagawa, Tetsuto; Okino, Nozomu; Ito, Makoto

    2005-01-01

    We previously reported that rat and mouse neutral ceramidases were mainly localized to plasma membranes as a type II integral membrane protein and partly detached from the cells via processing of the N-terminal/anchor sequence when expressed in HEK293 cells [M. Tani, H. Iida, M. Ito, O-glycosylation of mucin-like domain retains the neutral ceramidase on the plasma membranes as a type II integral membrane protein, J. Biol. Chem. 278 (2003) 10523-10530]. In contrast, the human homologue was exclusively detected in mitochondria when expressed in HEK293 and MCF7 cells as a fusion protein with green fluorescent protein at the N-terminal of the enzyme [S.E. Bawab, P. Roddy, T. Quian, A. Bielawska, J.J. Lemasters, Y.A. Hannun, Molecular cloning and characterization of a human mitochondrial ceramidase, J. Biol. Chem. 275 (2000) 21508-21513]. Given this discrepancy, we decided to clone the neutral ceramidase from human kidney cDNA and re-examine the intracellular localization of the enzyme when expressed in HEK293 cells. The putative amino acid sequence of the newly cloned enzyme was identical to that reported for human neutral ceramidase except at the N-terminal; the new protein was 19 amino acids longer at the N-terminal. We found that the putative full-length human neutral ceramidase was transported to plasma membranes, but not to mitochondria, possibly via a classical ER/Golgi pathway and localized mainly in plasma membranes when expressed in HEK293 cells. The N-terminal-truncated mutant, previously reported as a human mitochondrial ceramidase, was also weakly expressed in HEK293 cells but mainly released into the medium possibly due to the insufficient signal/anchor sequence

  4. The genome-wide expression profile of Curcuma longa-treated cisplatin-stimulated HEK293 cells

    Science.gov (United States)

    Sohn, Sung-Hwa; Ko, Eunjung; Chung, Hwan-Suck; Lee, Eun-Young; Kim, Sung-Hoon; Shin, Minkyu; Hong, Moochang; Bae, Hyunsu

    2010-01-01

    AIM The rhizome of turmeric, Curcuma longa (CL), is a herbal medicine used in many traditional prescriptions. It has previously been shown that CL treatment showed greater than 47% recovery from cisplatin-induced cell damage in human kidney HEK 293 cells. This study was conducted to evaluate the recovery mechanisms of CL that occur during cisplatin induced nephrotoxicity by examining the genome wide mRNA expression profiles of HEK 293 -cells. METHOD Recovery mechanisms of CL that occur during cisplatin-induced nephrotoxicity were determined by microarray, real-time PCR, immunofluorescent confocal microscopy and Western blot analysis. RESULTS The results of microarray analysis and real-time PCR revealed that NFκB pathway-related genes and apoptosis-related genes were down-regulated in CL-treated HEK 293 cells. In addition, immunofluorescent confocal microscopy and Western blot analysis revealed that NFκB p65 nuclear translocation was inhibited in CL-treated HEK 293 cells. Therefore, the mechanism responsible for the effects of CL on HEK 293 cells is closely associated with regulation of the NFκB pathway. CONCLUSION CL possesses novel therapeutic agents that can be used for the prevention or treatment of cisplatin-induced renal disorders. PMID:20840446

  5. Rapid bioreduction of trivalent aurum using banana stem powder and its cytotoxicity against MCF-7 and HEK-293 cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Arunkumar, Pichaimani [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India); Vedagiri, Hemamalini [Bharathidasan University, Department of Biotechnology (India); Premkumar, Kumpati, E-mail: pkumpati@hotmail.com [Bharathidasan University, Cancer Genetics and Nanomedicine Laboratory, Department of Biomedical Science, School of Basic Medical Sciences (India)

    2013-03-15

    Bioreduction of metal ions for the synthesis of nanoparticles of well-defined shape and size has been a great challenge in the field of nanotechnology. In this study, we explored the reduction potential of banana stem powder (BSP) for the synthesis of gold nanoparticles (GNP). The kinetics of GNP synthesis was monitored using UV-Vis spectroscopy. The synthesized GNP was characterized using dynamic light scattering (DLS), transmission electron microscopy, and fourier transform infrared spectroscopy. In addition, the cytotoxic potential of the synthesized GNP was investigated using human breast cancer (MCF-7) and normal human embryonic kidney (HEK-293) cell lines, as evaluated by changes in cell morphology, cell viability (MTT), and metabolic activity. BSP exhibited a strong reduction of Au(III) to Au (0) at room temperature within 5 min of reaction time. The synthesized GNP was found to be spherical with an average diameter of 30 nm by DLS analysis. The cytotoxicity analysis reveals a direct dose-response relationship, indicating that the cytotoxicity increases with increasing concentrations of the GNP. Significant cytotoxicity was observed in cancer cells (MCF-7) compared to normal cells (HEK-293). Also the cellular uptake of GNP was more pronounced in MCF-7 cells than HEK-293 cells as evidenced by zeta potential, implicating the possible reason for differential cytotoxicity. Thus the present study demonstrates the importance of these unique, less time-consuming, and stable BSP-mediated GNP as potential drug delivery vehicles in the application of anticancer therapy.

  6. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  7. Evaluation of anticancer peptide VEGF111b secretion in HEK293 human cells

    Directory of Open Access Journals (Sweden)

    Morteza Sadeghi

    2017-04-01

    Full Text Available Background: VEGF111b is a new isoform of vascular endothelial growth factor (VEGF recently considered as a new anticancer drug. The aim of this study was to evaluate the VEGF111b secretion from HEK293 cell wall in order to commercial production of this recombinant factor. Materials and Methods: After the design of VEGF111b sequence using OLIGO software and NCBI gene bank data, it was cloned into the pBUD.cE4.1 vector. The pBUD.VEGF111b recombinant vector was transfected into HEK293 cells using lipofectamine kit. Forty-eight hours after the transfection the production of VEGF111b was estimated by Western blotting and Human anti VEGF antibody. The VEGF111b secretion into cell culture and cell lysate extract was measured using ELISA. Results: The correct cloning of VEGF111b into pBUD.cE4.1vector was confirmed using enzymatic digestion and gel electrophoresis. The observed production of recombinant peptide in HEK293 was confirmed with 12KDa band in cell lysate extract of Western blotting. The ELISA results at 450 nanometer absorbance for cell culture media and cell lysate extract were 19.20±2.81 pg/ml and 32.87±7.42 pg/ml, respectively. However, no VEGF111b expression was observed in negative controls. Conclusion: The findings of this study indicate the powerful ability of transformation and secretion of VEGF111b from HEK293 cell wall to cell culture media with no breaking and proteolytic digestion. It seems that the commercial production and purification of this therapeutic peptide from HEK293 cell culture would be possible with high efficiency.

  8. Analysis of proteolytic processes and enzymatic activities in the generation of huntingtin n-terminal fragments in an HEK293 cell model.

    Directory of Open Access Journals (Sweden)

    Andrew T N Tebbenkamp

    Full Text Available N-terminal fragments of mutant huntingtin (htt that terminate between residues 90-115, termed cleavage product A or 1 (cp-A/1, form intracellular and intranuclear inclusion bodies in the brains of patients with Huntington's disease (HD. These fragments appear to be proteolytic products of the full-length protein. Here, we use an HEK293 cell culture model to investigate huntingtin proteolytic processing; previous studies of these cells have demonstrated cleavage of htt to cp-A/1 like htt fragments.Recombinant N-terminal htt fragments, terminating at residue 171 (also referred to as cp-B/2 like, were efficiently cleaved to produce cp-A/1 whereas fragments representing endogenous caspase, calpain, and metalloproteinase cleavage products, terminating between residues 400-600, were inefficiently cleaved. Using cysteine-labeling techniques and antibody binding mapping, we localized the C-terminus of the cp-A/1 fragments produced by HEK293 cells to sequences minimally limited by cysteine 105 and an antibody epitope composed of residues 115-124. A combination of genetic and pharmacologic approaches to inhibit potential proteases, including γ-secretase and calpain, proved ineffective in preventing production of cp-A/1.Our findings indicate that HEK293 cells express a protease that is capable of efficiently cleaving cp-B/2 like fragments of htt with normal or expanded glutamine repeats. For reasons that remain unclear, this protease cleaves longer htt fragments, with normal or expanded glutamine expansions, much less efficiently. The protease in HEK293 cells that is capable of generating a cp-A/1 like htt fragment may be a novel protease with a high preference for a cp-B/2-like htt fragment as substrate.

  9. Biochemical effects of veterinary antibiotics on proliferation and cell cycle arrest of human HEK293 cells.

    Science.gov (United States)

    Kim, Hyeon Young; Kim, Ki-Tae; Kim, Sang Don

    2012-08-01

    The purpose of this study was to examine the effects of veterinary antibiotics, including amoxicillin (AMX), chlortetracycline (CTC) and tylosin (TYL), on the biochemical mechanism of human embryonic kidney cells (HEK293). CTC and TYL inhibited HEK293 cell proliferation, in both time- and dose-dependent manners, and changed the cell morphology; whereas, AMX showed no cytotoxic effects. The cell cycle analysis of CTC and TYL revealed G1-arrest in HEK293 cells. Western blot analysis also showed that CTC and TYL affected the activation of DNA damage responsive proteins, as well as cell cycle regulatory proteins, such as p53, p21(Waf1/Cip1) and Rb protein, which are crucial in the G1-S transition. The activation of p21(Waf1/Cip1) was significantly up-regulated over time, but there was no change in the level of CDK2 expression. The results of this study suggest that veterinary antibiotics, even at low level concentrations on continuous exposure, can potentially risk the development of human cells.

  10. Cooperation of NAD(P)H:quinone oxidoreductase 1 and UDP-glucuronosyltransferases reduces menadione cytotoxicity in HEK293 cells.

    Science.gov (United States)

    Nishiyama, Takahito; Izawa, Tadashi; Usami, Mami; Ohnuma, Tomokazu; Ogura, Kenichiro; Hiratsuka, Akira

    2010-04-09

    Previous studies have shown that NAD(P)H:quinone oxidoreductase 1 (NQO1) plays an important role in the detoxification of menadione (2-methyl-1,4-naphthoquinone, also known as vitamin K3). However, menadiol (2-methyl-1,4-naphthalenediol) formed from menadione by NQO1-mediated reduction continues to be an unstable substance, which undergoes the reformation of menadione with concomitant formation of reactive oxygen species (ROS). Hence, we focused on the roles of phase II enzymes, with particular attention to UDP-glucuronosyltransferases (UGTs), in the detoxification process of menadione. In this study, we established an HEK293 cell line stably expressing NQO1 (HEK293/NQO1) and HEK293/NQO1 cell lines with doxycycline (DOX)-regulated expression of UGT1A6 (HEK293/NQO1/UGT1A6) and UGT1A10 (HEK293/NQO1/UGT1A10), and evaluated the role of NQO1 and UGTs against menadione-induced cytotoxicity. Our results differed from those of previous studies. HEK293/NQO1 was the most sensitive cell line to menadione cytotoxicity among cell lines established in this study. These phenomena were also observed in HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells in which the expression of UGT was suppressed by DOX treatment. On the contrary, HEK293/NQO1/UGT1A6 and HEK293/NQO1/UGT1A10 cells without DOX treatment were resistant to menadione-induced cytotoxicity. These results demonstrated that NQO1 is not a detoxification enzyme for menadione and that UGT-mediated glucuronidation of menadiol is the most important detoxification process. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Benfotiamine prevents increased β-amyloid production in HEK cells induced by high glucose.

    Science.gov (United States)

    Sun, Xiao-Jing; Zhao, Lei; Zhao, Na; Pan, Xiao-Li; Fei, Guo-Qiang; Jin, Li-Rong; Zhong, Chun-Jiu

    2012-10-01

    To determine whether high glucose enhances β-amyloid (Aβ) production in HEK293 Swedish mutant (APPsw) cells with Aβ precursor protein (APP) overexpression, and whether under this condition benfotiamine reduces the increased Aβ production. HEK293 APPsw cells were cultured with different concentrations of glucose for different times. The Aβ content in the supernatant was determined by ELISA. To investigate the mechanism by which benfotiamine reduced Aβ production, glycogen synthase kinase-3 (GSK-3) activity and expression were measured after the cells were cultured with 5.5 g/L glucose for 12 h. With 1.0, 3.0, 4.5, 5.5, 6.5, 7.5, 8.5, or 10.5 g/L glucose, Aβ production by HEK293 APPsw cells was highest in the presence of 5.5 g/L glucose for 6 and 12 h. The difference in Aβ content between 5.5 and 1.0 g/L was most marked after incubation for 12 h. Benfotiamine at 20 and 40 μg/mL significantly reduced Aβ production in cells incubated with 5.5 g/L glucose for 12 h. Moreover, 40 μg/mL benfotiamine significantly enhanced the ratio of phosphorylated GSK-3 to total GSK-3, together with consistent down-regulation of GSK-3 activity. High glucose increases Aβ production by HEK293 APPsw cells while benfotiamine prevents this increase. This is correlated with the modulation of GSK-3 activity.

  12. Photobiomodulation on KATP Channels of Kir6.2-Transfected HEK-293 Cells

    Directory of Open Access Journals (Sweden)

    Fu-qing Zhong

    2014-01-01

    Full Text Available Background and Objective. ATP-sensitive potassium (KATP channel couples cell metabolism to excitability. To explore role of KATP channels in cellular photobiomodulation, we designed experiment to study effect of low intensity 808 nm laser irradiation on the activity of membrane KATP channel. Study Design/Materials and Methods. Plasmids encoding Kir6.2 was constructed and heterologously expressed in cultured mammalian HEK-293 cells. The patch-clamp and data acquisition systems were used to record KATP channel current before and after irradiation. A laser beam of Ga-As 808 nm at 5 mW/cm2 was used in experiments. A one-way ANOVA test followed by a post hoc Student-Newman-Keuls test was used to assess the statistical differences between data groups. Results. Obvious openings of KATP channels of Kir6.2-transfected HEK-293 cells and excised patches were recorded during and after low intensity 808 nm laser irradiation. Compared with the channels that did not undergo irradiation, open probability, current amplitude, and dwell time of KATP channels after irradiation improved. Conclusions. Low intensity 808 nm laser irradiation may activate membrane KATP channels of Kir6.2-transfected HEK-293 cells and in excised patches.

  13. Oxygen/glucose deprivation increases the integration of recombinant P2X7 receptors into the plasma membrane of HEK293 cells

    International Nuclear Information System (INIS)

    Milius, Doreen; Groeger-Arndt, Helke; Stanchev, Doychin; Lange-Dohna, Christine; Rossner, Steffen; Sperlagh, Beata; Wirkner, Kerstin; Illes, Peter

    2007-01-01

    Recombinant human P2X 7 receptors, C-terminally labelled with enhanced green fluorescent protein (P2X 7 -EGFP), were transiently expressed in HEK293 cells. Activation of these receptors by their preferential agonist 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP) induced inward currents and propidium ion uptake indicating the opening of cationic channels and of large pores permeable for dye molecules, respectively. Two mutants of P2X 7 receptors (P2X 7 -EGFP-I568N, -E496A) representing polymorphisms in the P2X 7 gene known to interfere with normal receptor-trafficking and with optimal assembly of its subunits, responded with much lower current amplitudes to BzATP than their wild-type counterpart. Similarly, the normal propidium ion uptake induced by BzATP at the wild-type P2X 7 receptor was abolished by the two mutants. Confocal laser scanning microscopy indicated that in vitro ischemia of 12 h duration increased the integration of P2X 7 -EGFP, but not of its two mutants, into the plasma membrane of HEK293 cells. Further, this ischemic stimulus facilitated the current response to BzATP in HEK293 cells permanently transfected with P2X 7 receptors. Finally, the fluorescence intensity per cell measured by flow cytometry and P2X 7 antibodies directed against an extracellular, but not an intracellular epitope of the receptor, were also increased. In conclusion, P2X 7 receptors may alter their trafficking properties during ischemia and thereby contribute to the ATP-induced damage of various cell-types including neurons

  14. The Lcn2-engineered HEK-293 cells show senescence under stressful condition

    Directory of Open Access Journals (Sweden)

    Bahareh Bahmani

    2015-05-01

    Full Text Available Objective(s: Lipocalin2 (Lcn2 gene is highly expressed in response to various types of cellular stresses. The precise role of Lcn2 has not been fully understood yet. However, it plays a key role in controlling vital cellular processes such as proliferation, apoptosis and metabolism. Recently it was shown that Lcn2 decreases senescence and increases proliferation of mesenchymal stem cells (MSC with finite life span under either normal or oxidative stress conditions. However, Lcn2 effects on immortal cell line with infinite proliferation are not defined completely.  Materials and Material and Methods: HEK-293 cells were transfected with recombinant pcDNA3.1 containing Lcn2 fragment (pcDNA3.1-Lcn2. Expression of lipocalin2 in transfected cells was evaluated by RT-PCR, real time RT-PCR, and ELISA. Different cell groups were treated with H2O2 and WST-1 assay was performed to determine their proliferation rate. Senescence was studied by β-galactosidase and gimsa staining methods as well as evaluation of the expression of senescence-related genes by real time RT-PCR. Results: Lcn2 increased cell proliferation under normal culture condition, while the proliferation slightly decreased under oxidative stress.  This decrease was further found to be attributed to senescence. Conclusion: Our findings indicated that under harmful conditions, Lcn2 gene is responsible for the regulation of cell survival through senescence.

  15. Neurokinin 1 Receptor Mediates Membrane Blebbing and Sheer Stress-Induced Microparticle Formation in HEK293 Cells

    Science.gov (United States)

    Chen, Panpan; Douglas, Steven D.; Meshki, John; Tuluc, Florin

    2012-01-01

    Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R) is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP). We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2–10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing. PMID:23024816

  16. Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Panpan Chen

    Full Text Available Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP. We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2-10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing.

  17. Differences in N-glycosylation of recombinant human coagulation factor VII derived from BHK, CHO, and HEK293 cells.

    Science.gov (United States)

    Böhm, Ernst; Seyfried, Birgit K; Dockal, Michael; Graninger, Michael; Hasslacher, Meinhard; Neurath, Marianne; Konetschny, Christian; Matthiessen, Peter; Mitterer, Artur; Scheiflinger, Friedrich

    2015-09-18

    BACKGROUND & Recombinant factor VII (rFVII), the precursor molecule for recombinant activated FVII (rFVIIa), is, due to its need for complex post translational modifications, produced in mammalian cells. To evaluate the suitability of a human cell line in order to produce rFVII with post-translational modifications as close as possible to pdFVII, we compared the biochemical properties of rFVII synthesized in human embryonic kidney-derived (HEK)293 cells (HEK293rFVII) with those of rFVII expressed in Chinese hamster ovary (CHO, CHOrFVII) and baby hamster kidney (BHK, BHKrFVII) cells, and also with those of plasma derived FVII (pdFVII), using various analytical methods. rFVII was purified from selected production clones derived from BHK, CHO, and HEK293 cells after stable transfection, and rFVII isolates were analyzed for protein activity, impurities and post-translational modifications. RESULTS & The analytical results showed no apparent gross differences between the various FVII proteins, except in their N-linked glycosylation pattern. Most N-glycans found on rFVII produced in HEK293 cells were not detected on rFVII from CHO and BHK cells, or, somewhat unexpectedly, on pdFVII; all other protein features were similar. HEK293rFVII glycans were mainly characterized by a higher structural variety and a lower degree of terminal sialylation, and a high amount of terminal N-acetyl galactosamines (GalNAc). All HEK293rFVII oligosaccharides contained one or more fucoses (Fuc), as well as hybrid and high mannose (Man) structures. From all rFVII isolates investigated, CHOrFVII contained the highest degree of sialylation and no terminal GalNAc, and CHO cells were therefore assumed to be the best option for the production of rFVII.

  18. Knocking out Ornithine Decarboxylase Antizyme 1 (OAZ1 Improves Recombinant Protein Expression in the HEK293 Cell Line

    Directory of Open Access Journals (Sweden)

    Laura Abaandou

    2018-06-01

    Full Text Available Creating efficient cell lines is a priority for the biopharmaceutical industry, which produces biologicals for various uses. A recent approach to achieving this goal is the use of non-coding RNAs, microRNA (miRNA and small interfering RNA (siRNA, to identify key genes that can potentially improve production or growth. The ornithine decarboxylase antizyme 1 (OAZ1 gene, a negative regulator of polyamine biosynthesis, was identified in a genome-wide siRNA screen as a potential engineering target, because its knock down by siRNA increased recombinant protein expression from human embryonic kidney 293 (HEK293 cells by two-fold. To investigate this further, the OAZ1 gene in HEK293 cells was knocked out using CRISPR genome editing. The OAZ1 knockout cell lines displayed up to four-fold higher expression of both stably and transiently expressed proteins, with comparable growth and metabolic activity to the parental cell line; and an approximately three-fold increase in intracellular polyamine content. The results indicate that genetic inactivation of OAZ1 in HEK293 cells is an effective strategy to improve recombinant protein expression in HEK293 cells.

  19. Cytotoxic effect of microbial biosurfactants against human embryonic kidney cancerous cell: HEK-293 and their possible role in apoptosis.

    Science.gov (United States)

    Pradhan, Arun Kumar; Pradhan, Nilotpala; Mohapatra, Purusottam; Kundu, Chanakya Nath; Panda, Prasanna Kumar; Mishra, Barada Kanta

    2014-11-01

    Two different microbial biosurfactants S9BS and CHBS were isolated from Lysinibacillus fusiformis S9 and Bacillus tequilensis CH. Cytotoxicity effect of these biosurfactants on human embryonic kidney cancerous cell (HEK-293) were studied with the help of 3-(4,5-dimethylthiazol-2yl-)-2, 5-diphenyl tetrazolium bromide (MTT) assay and morphological changes were observed under inverted microscope. The biosurfactants exhibited positive cytotoxic effect on HEK-293 cell line. It was found that LC50 of S9BS and CHBS were 75 and 100 μg ml(-1), respectively. Further cell cycle and apoptosis analysis of biosurfactant-treated HEK-293 cell line were done by FACS. In this study, cytotoxic effect of glycolipid biosurfactant against HEK-293 cell lines is reported for the first time. Mechanism towards increased membrane permeability of biosurfactant-treated cancer cell may be the incorporation of its lipid moiety into the plasma membrane leading to formation of pores and membrane disruption. Hence, these microbial biosurfactants can prove to be significant biomolecule for cancer treatment.

  20. Preparation, characterization and toxicological investigation of copper loaded chitosan nanoparticles in human embryonic kidney HEK-293 cells

    Energy Technology Data Exchange (ETDEWEB)

    Arora, Divya [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Dhanwal, Vandna [Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Nayak, Debasis [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Saneja, Ankit [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Amin, Hina [Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Rasool, Reyaz ur [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Gupta, Prem Narayan [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Formulation and Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India); Goswami, Anindya, E-mail: agoswami@iiim.ac.in [Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Jammu (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu (India)

    2016-04-01

    Metallic nanoparticles often attribute severe adverse effects to the various organs or tissues at the molecular level despite of their applications in medical, laboratory and industrial sectors. The present study highlights the preparation of copper adsorbed chitosan nanoparticles (CuCSNPs), its characterization and validation of cytotoxicity in human embryonic kidney HEK-293 cells. Particle size of the CuCSNPs was determined by using Zetasizer and the copper loading was quantified with the help of ICP/MS. Further characterization of CuCSNPs was carried out by FT-IR analysis to determine the formation of nanoparticles and SEM was conducted for the morphological analysis of the CuCSNPs. The CuCSNPs exhibited pronounced cytotoxic effects towards HEK-293 cells as analyzed by MTT assay. Moreover, the CuCSNPs inhibited the colony formation and induced nuclear damage at the dose of 100 μg/mL, much more effectively than the in built control copper sulfate (CuSO{sub 4}). At the molecular level, the CuCSNPs were found to be triggering reactive oxygen species (ROS), activating effector caspases and subsequent PARP cleavage to induce cell death in HEK-293 cells. - Highlights: • Subtoxic levels of CuCSNPs induce apoptosis in HEK-293 cells. • CuCSNPs mediate toxicity via nuclear cleavage and ROS generation. • CuCSNPs favor caspase activation and PARP cleavage to induce cell death.

  1. Effect of PTTG on endogenous gene expression in HEK 293 cells

    Directory of Open Access Journals (Sweden)

    Panguluri Siva K

    2009-12-01

    Full Text Available Abstract Background Pituitary tumor transforming gene (PTTG, also known as securin, is highly expressed in various tumors including pituitary, thyroid, colon, ovary, testis, lung, and breast. An overexpression of PTTG enhances cell proliferation, induces cellular transformation in vitro, and promotes tumor development in nude mice. PTTG also inhibits separation of sister chromatids leading to aneuploidy and genetic instability. A great amount of work has been undertaken to understand the biology of PTTG and its expression in various tumors. However, mechanisms by which PTTG mediates its tumorigenic function are not fully understood. To utilize this gene for cancer therapy, identification of the downstream signaling genes regulated by PTTG in mediation of its tumorigenic function is necessary. For this purpose, we expressed PTTG in human embryonic kidney (HEK293 cells that do not express PTTG and analyzed the downstream genes using microarray analysis. Results A total of 22,277 genes printed on an Affymetrix HG-U133A 2.0 GeneChip™ array were screened with labeled cRNA prepared from HEK293 cells infected with adenovirus vector expressing PTTG cDNA (AdPTTG cDNA and compared with labeled cRNA prepared from HEK293 cells infected with control adenovirus (control Ad or adenovirus vector expressing GFP (AdGFP. Out of 22,277 genes, 71 genes were down-regulated and 35 genes were up-regulated with an FDR corrected p-value of ≤ 0.05 and a fold change of ≥2. Most of the altered genes identified are involved in the cell cycle and cell apoptosis; a few are involved in mRNA processing and nitrogen metabolism. Most of the up-regulated genes belong to the histone protein family. Conclusion PTTG is a well-studied oncogene for its role in tumorigenesis. In addition to its importance in regulation of the cell cycle, this gene has also been recently shown to play a role in the induction of cell apoptosis. The microarray analysis in the present study

  2. HAb18G/CD147 cell-cell contacts confer resistance of a HEK293 subpopulation to anoikis in an E-cadherin-dependent manner

    Directory of Open Access Journals (Sweden)

    Zhu Ping

    2010-04-01

    Full Text Available Abstract Background Acquisition of resistance to "anoikis" facilitates the survival of cells under independent matrix-deficient conditions, such as cells in tumor progression and the production of suspension culture cells for biomedical engineering. There is evidence suggesting that CD147, an adhesion molecule associated with survival of cells in tumor metastasis and cell-cell contacts, plays an important role in resistance to anoikis. However, information regarding the functions of CD147 in mediating cell-cell contacts and anoikis-resistance remains limited and even self-contradictory. Results An anoikis-resistant clone (HEK293ar, derived from anoikis-sensitive parental Human Embryonic Kidney 293 cells, survived anoikis by the formation of cell-cell contacts. The expression of HAb18G/CD147 (a member of the CD147 family was upregulated and the protein was located at cell-cell junctions. Upregulation of HAb18G/CD147 in suspended HEK293ar cells suppressed anoikis by mediating the formation of cell-cell adhesions. Anoikis resistance in HEK293ar cells also required E-cadherin-mediated cell-cell contacts. Knock-down of HAb18G/CD147 and E-cadherin inhibited cell-cell contacts formation and increased anoikis sensitivity respectively. When HAb18G/CD147 was downregulated, E-cadherin expression in HEK293ar cells was significantly suppressed; however, knockdown of E-cadherin by E-cadherin siRNA or blocking of E-cadherin binding activity with a specific antibody and EDTA had no significant effect on HAb18G/CD147 expression. Finally, pretreatment with LY294002, a phosphoinositide 3-kinase (PI3K/AKT inhibitor, disrupted cell-cell contacts and decreased cell number, but this was not the case in cells treated with the extracellular signal-regulated kinase (ERK inhibitor PD98059. Conclusions Our results provide new evidence that HAb18G/CD147-mediated cell-cell contact confers anoikis resistance in an E-cadherin-dependent manner; and cell-cell contact mediated

  3. Evaluation of Iranian Snake ‘Macrovipera lebetina’ Venom Cytotoxicity in Kidney Cell Line HEK-293

    Directory of Open Access Journals (Sweden)

    Hourieh Esmaeili Jahromi

    2016-03-01

    Full Text Available Background:Envenomation by Macrovipera lebetina (M. lebetina is characterized by prominent local tissue damage, hemorrhage, abnormalities in the blood coagulation system, necrosis, and edema. However, the main cause of death after a bite by M. lebetina has been attributed to acute renal failure (ARF. It is unclear whether the venom components have a direct or indirect action in causing ARF. To investigate this point, we looked at the in vitro effect of M. lebetina crude venom, using cultured human embryonic kidney (HEK-293 mono layers as a model. Methods: The effect of M. lebetina snake venom on HEK-293 growth inhibition was determined by the MTT assay and the neutral red uptake assay. The integrity of the cell membrane through LDH release was measured with the Cytotoxicity Detection Kit. Morphological changes in HEK-293 cells were also evaluated using an inverted microscope. Results: In the MTT assay, crude venom showed a significant cytotoxic effect on HEK-293 cells at 24 hours of exposure and was confirmed by the neutral red assay. Also, at 24 hours exposure, crude venom caused a non-significant increase in LDH activity of the culture medium at concentrations above 20 μg/ml. Various morphological abnormalities were observed in cells exposed to the venom and showed loss of their common polygonal shape, appearing as several roughly rounded cells of variable size. The M. lebetina crude venom induced detachment of cells from the plate. Conclusion: Based on the results obtained in this study, it can be concluded that the Iranian snake M. lebetina venom causes a cytotoxic effect on kidney tissue not by necrotic mechanism but rather by secondary effects, including hypotension, hemolysis, hemoglobinuria, rhabdomyolysis, myoglobinuria and disseminated intravascular coagulation (DIC, which may lead to ARF.

  4. RON kinase isoforms demonstrate variable cell motility in normal cells.

    Science.gov (United States)

    Greenbaum, Alissa; Rajput, Ashwani; Wan, Guanghua

    2016-09-01

    Aberrant RON (Recepteur d'Origine Nantais) tyrosine kinase activation causes the epithelial cell to evade normal growth pathways, resulting in unregulated cell proliferation, increased cell motility and decreased apoptosis. Wildtype (wt) RON has been shown to play a role in metastasis of epithelial malignancies. It presents an important potential therapeutic target for colorectal, breast, gastric and pancreatic cancer. Little is known about functional differences amongst RON isoforms RON155, RON160 and RON165. The purpose of this study was to determine the effect of various RON kinase isoforms on cell motility. Cell lines with stable expression of wtRON were generated by inserting the coding region of RON in pTagRFP (tagged red fluorescence protein plasmid). The expression constructs of RON variants (RON155, RON160 and RON165) were generated by creating a mutagenesis-based wtRON-pTag RFP plasmid and stably transfected into HEK 293 cells. The wound closure scratch assay was used to investigate the effect on cell migratory capacity of wild type RON and its variants. RON transfected cells demonstrated increased cell motility compared to HEK293 control cells. RON165 cell motility was significantly increased compared to RON160 (mean percentage of wound covered 37.37% vs. 32.40%; p = 0.03). RON tyrosine kinase isoforms have variable cell motility. This may reflect a difference in the behavior of malignant epithelial cells and their capacity for metastasis.

  5. [Effects of allitridum on rapidly delayed rectifier potassium current in HEK293 cell line].

    Science.gov (United States)

    Zhang, Jiancheng; Lin, Kun; Wei, Zhixiong; Chen, Qian; Liu, Li; Zhao, Xiaojing; Zhao, Ying; Xu, Bin; Chen, Xi; Li, Yang

    2015-08-01

    To study the effect of allitridum on rapidly delayed rectifier potassium current (IKr) in HEK293 cell line. HEK293 cells were transiently transfected with HERG channel cDNA plasmid pcDNA3.1 via Lipofectamine. Allitridum was added to the extracellular solution by partial perfusion after giga seal at the final concentration of 30 µmol/L. Whole-cell patch clamp technique was used to record the HERG currents and gating kinetics before and after allitridum exposure at room temperature. The amplitude and density of IHERG were both suppressed by allitridum in a voltage-dependent manner. In the presence of allitridum, the peak current of IHERG was reduced from 73.5∓4.3 pA/pF to 42.1∓3.6 pA/pF at the test potential of +50 mV (P<0.01). Allitridum also concentration-dependently decreased the density of the IHERG. The IC50 of allitridum was 34.74 µmol/L with a Hill coefficient of 1.01. Allitridum at 30 µmol/L caused a significant positive shift of the steady-state activation curve of IHERG and a markedly negative shift of the steady-state inactivation of IHERG, and significantly shortened the slow time constants of IHERG deactivation. Allitridum can potently block IHERG in HEK293 cells, which might be the electrophysiological basis for its anti-arrhythmic action.

  6. Purification and characterization of a bioactive alpha-fetoprotein produced by HEK-293 cells.

    Science.gov (United States)

    Lin, Bo; Peng, Guoqing; Feng, Haipeng; Li, Wei; Dong, Xu; Chen, Yi; Lu, Yan; Wang, Qiaoyun; Xie, Xieju; Zhu, Mingyue; Li, Mengsen

    2017-08-01

    Alpha-fetoprotein (AFP) is a biomarker that is used to diagnose hepatocellular carcinoma (HCC) and can promote malignancy in HCC. AFP is an important target in the treatment of liver cancer. To obtain enough AFP to screen for AFP inhibitors, we expressed and purified AFP in HEK-293 cells. In the present study, we produced AFP in the cells and harvested highly pure rAFP (or recombinant expression AFP in HEK-293 cells). We also analysed the bioactivity of rAFP and found that rAFP promoted growth of the human HCC cells, antagonize paclitaxel inhibition of HCC cell proliferation, suppress expression of active caspase-3, and promote expression of Ras and survivin. This study provides a method to produce significant amounts of AFP for use in biochemical assays and functional studies and to screen AFP inhibitors for use in HCC therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. HEK293T cell lines defective for O-linked glycosylation.

    Directory of Open Access Journals (Sweden)

    James M Termini

    Full Text Available Here we describe derivatives of the HEK293T cell line that are defective in their ability to generate mucin-type O-linked glycosylation. Using CRISPR/Cas9 and a single-cell GFP-sorting procedure, the UDP-galactose-4-epimerase (GALE, galactokinase 1 (GALK1, and galactokinase 2 (GALK2 genes were knocked out individually and in combinations with greater than 90% of recovered clones having the desired mutations. Although HEK293T cells are tetraploid, we found this approach to be an efficient method to target and disrupt all 4 copies of the target gene. Deficient glycosylation in the GALE knockout cell line could be rescued by the addition of galactose and N-acetylgalactosamine (GalNAc to the cell culture media. However, when key enzymes of the galactose/GalNAc salvage pathways were disrupted in tandem (GALE+GALK1 or GALE+GALK2, O-glycosylation was eliminated and could not be rescued by the addition of either galactose plus GalNAc or UDP-galactose plus UDP-GalNAc. GALK1 and GALK2 are key enzymes of the galactose/GalNAc salvage pathways. Mass spectrometry was performed on whole cell lysate of the knockout cell lines to verify the glycosylation phenotype. As expected, the GALE knockout was almost completely devoid of all O-glycosylation, with minimal glycosylation as a result of functional salvage pathways. However, the GALE+GALK1 and GALE+GALK2 knockout lines were devoid of all O-glycans. Mass spectrometry analysis revealed that the disruption of GALE, GALK1, and GALE+GALK2 had little effect on the N-glycome. But when GALE was knocked out in tandem with GALK1, N-glycans were exclusively of the high mannose type. Due to the well-characterized nature of these five knockout cell lines, they will likely prove useful for a wide variety of applications.

  8. Low-dose dose-response for reduced cell viability after exposure of human keratinocyte (HEK001 cells to arsenite

    Directory of Open Access Journals (Sweden)

    Kenneth T. Bogen

    Full Text Available The in vitro arsenite (AsIII cytotoxicity dose-response (DR of human keratinocytes (HEK001 was examined at greater statistical resolution than ever previously reported using the MTT assay to determine cell viability. Fifty-four 96-well plates were treated with AsIII concentrations of 0.25, 0.5, 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, or 30 μM. Because of unexpected variation in viability response patterns, a two-stage DR analysis was used in which data on plate-specific viability (%, estimated as 100% times the ratio of measured viability in exposed to unexposed cells, were fit initially to a generalized lognormal response function positing that HEK001 cells studied consisted of: a proportion P of relatively highly sensitive (HS cells, a proportion Po of relatively resistant cells, and a remaining (1–P–Po fraction of typical-sensitivity (TS cells exhibiting the intermediate level of AsIII sensitivity characteristic of most cells in each assay. The estimated fractions P and Po were used to adjust data from all 54 plates (and from the 28 plates yielding the best fits to reflect the condition that P = Po = 0 to provide detailed DR analysis specifically for TS cells. Four DR models fit to the combined adjusted data were each very predictive (R2 > 0.97 overall but were inconsistent with at least one of the data set examined (p  0.30 and exceeded 100% significance (p ≤ 10−6. A low-dose hormetic model provided the best fit to the combined adjusted data for TS cells (R2 = 0.995. Marked variability in estimates of P (the proportion of apparent HS cells was unexpected, not readily explained, and warrants further study using additional cell lines and assay methods, and in vivo. Keywords: Arsenic, Arsenate, Cell culture, Cell death, Cytotoxicity, HEK001 cells

  9. Characterisation of a human acid-sensing ion channel (hASIC1a) endogenously expressed in HEK293 cells.

    Science.gov (United States)

    Gunthorpe, M J; Smith, G D; Davis, J B; Randall, A D

    2001-08-01

    Acid-sensing ion channels (ASICs) are a new and expanding family of proton-gated cation (Na+/Ca2+) channels that are widely expressed in sensory neurons and the central nervous system. Their distribution suggests that they may play a critical role in the sensation of the pain that accompanies tissue acidosis and may also be important in detecting the subtle pH variations that occur during neuronal signalling. Here, using whole-cell patch-clamp electrophysiology and reverse transcriptase-polymerase chain reaction (RT-PCR), we show that HEK293 cells, a commonly used cell line for the expression and characterisation of many ion channels, functionally express an endogenous proton-gated conductance attributable to the activity of human ASIC1a. These data therefore represent the first functional characterisation of hASIC1 and have many important implications for the use of HEK293 cells as a host cell system for the study of ASICs, vanilloid receptor-1 and any other proton-gated channel. With this latter point in mind we have devised a simple desensitisation strategy to selectively remove the contribution of hASIC1a from proton-gated currents recorded from HEK293 cells expressing vanilloid receptor-1.

  10. Investigation of free fatty acid associated recombinant membrane receptor protein expression in HEK293 cells using Raman spectroscopy, calcium imaging, and atomic force microscopy.

    Science.gov (United States)

    Lin, Juqiang; Xu, Han; Wu, Yangzhe; Tang, Mingjie; McEwen, Gerald D; Liu, Pin; Hansen, Dane R; Gilbertson, Timothy A; Zhou, Anhong

    2013-02-05

    G-protein-coupled receptor 120 (GPR120) is a previously orphaned G-protein-coupled receptor that apparently functions as a sensor for dietary fat in the gustatory and digestive systems. In this study, a cDNA sequence encoding a doxycycline (Dox)-inducible mature peptide of GPR120 was inserted into an expression vector and transfected in HEK293 cells. We measured Raman spectra of single HEK293 cells as well as GPR120-expressing HEK293-GPR120 cells at a 48 h period following the additions of Dox at several concentrations. We found that the spectral intensity of HEK293-GPR120 cells is dependent upon the dose of Dox, which correlates with the accumulation of GPR120 protein in the cells. However, the amount of the fatty acid activated changes in intracellular calcium (Ca(2+)) as measured by ratiometric calcium imaging was not correlated with Dox concentration. Principal components analysis (PCA) of Raman spectra reveals that the spectra from different treatments of HEK293-GPR120 cells form distinct, completely separated clusters with the receiver operating characteristic (ROC) area of 1, while those spectra for the HEK293 cells form small overlap clusters with the ROC area of 0.836. It was also found that expression of GPR120 altered the physiochemical and biomechanical properties of the parental cell membrane surface, which was quantitated by atomic force microscopy (AFM). These findings demonstrate that the combination of Raman spectroscopy, calcium imaging, and AFM may provide new tools in noninvasive and quantitative monitoring of membrane receptor expression induced alterations in the biophysical and signaling properties of single living cells.

  11. HEK293 cell culture media study towards bioprocess optimization: Animal derived component free and animal derived component containing platforms.

    Science.gov (United States)

    Liste-Calleja, Leticia; Lecina, Martí; Cairó, Jordi Joan

    2014-04-01

    The increasing demand for biopharmaceuticals produced in mammalian cells has lead industries to enhance bioprocess volumetric productivity through different strategies. Among those strategies, cell culture media development is of major interest. In the present work, several commercially available culture media for Human Embryonic Kidney cells (HEK293) were evaluated in terms of maximal specific growth rate and maximal viable cell concentration supported. The main objective was to provide different cell culture platforms which are suitable for a wide range of applications depending on the type and the final use of the product obtained. Performing simple media supplementations with and without animal derived components, an enhancement of cell concentration from 2 × 10(6) cell/mL to 17 × 10(6) cell/mL was achieved in batch mode operation. Additionally, the media were evaluated for adenovirus production as a specific application case of HEK293 cells. None of the supplements interfered significantly with the adenovirus infection although some differences were encountered in viral productivity. To the best of our knowledge, the high cell density achieved in the work presented has never been reported before in HEK293 batch cell cultures and thus, our results are greatly promising to further study cell culture strategies in bioreactor towards bioprocess optimization. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  12. P2X7 receptor-mediated calcium dynamics in HEK293 cells: experimental characterization and modelling approach

    International Nuclear Information System (INIS)

    Di Garbo, A; Alloisio, S; Nobile, M

    2012-01-01

    The P2X7 receptor (P2X7R) induces ionotropic Ca 2+  signalling in different cell types. It plays an important role in the immune response and in the nervous system. Here, the mechanisms underlying intracellular Ca 2+  variations evoked by 3′-O-(4-benzoyl)benzoyl-ATP (BzATP), a potent agonist of the P2X7R, in transfected HEK293 cells, are investigated both experimentally and theoretically. We propose a minimal model of P2X7R that is capable of reproducing, qualitatively and quantitatively, the experimental data. This approach was also adopted for the P2X7R variant, which lacks the entire C-terminus tail (trP2X7R). Then we introduce a biophysical model describing the Ca 2+  dynamics in HEK293. Our model gives an account of the ionotropic Ca 2+  influx evoked by BzATP on the basis of the kinetics model of P2X7R. To explain the complex Ca 2+  responses evoked by BzATP, the model predicted that an impairment in Ca 2+  extrusion flux through the plasma membrane is a key factor for Ca 2+ homeostasis in HEK293 cells. (paper)

  13. P2X7 receptor-mediated calcium dynamics in HEK293 cells: experimental characterization and modelling approach

    Science.gov (United States)

    Di Garbo, A.; Alloisio, S.; Nobile, M.

    2012-04-01

    The P2X7 receptor (P2X7R) induces ionotropic Ca2 + signalling in different cell types. It plays an important role in the immune response and in the nervous system. Here, the mechanisms underlying intracellular Ca2 + variations evoked by 3‧-O-(4-benzoyl)benzoyl-ATP (BzATP), a potent agonist of the P2X7R, in transfected HEK293 cells, are investigated both experimentally and theoretically. We propose a minimal model of P2X7R that is capable of reproducing, qualitatively and quantitatively, the experimental data. This approach was also adopted for the P2X7R variant, which lacks the entire C-terminus tail (trP2X7R). Then we introduce a biophysical model describing the Ca2 + dynamics in HEK293. Our model gives an account of the ionotropic Ca2 + influx evoked by BzATP on the basis of the kinetics model of P2X7R. To explain the complex Ca2 + responses evoked by BzATP, the model predicted that an impairment in Ca2 + extrusion flux through the plasma membrane is a key factor for Ca2 + homeostasis in HEK293 cells.

  14. Reduction of adenovirus E1A mRNA by RNAi results in enhanced recombinant protein expression in transiently transfected HEK293 cells.

    Science.gov (United States)

    Hacker, David L; Bertschinger, Martin; Baldi, Lucia; Wurm, Florian M

    2004-10-27

    Human embryonic kidney 293 (HEK293) cells, a widely used host for large-scale transient expression of recombinant proteins, are transformed with the adenovirus E1A and E1B genes. Because the E1A proteins function as transcriptional activators or repressors, they may have a positive or negative effect on transient transgene expression in this cell line. Suspension cultures of HEK293 EBNA (HEK293E) cells were co-transfected with a reporter plasmid expressing the GFP gene and a plasmid expressing a short hairpin RNA (shRNA) targeting the E1A mRNAs for degradation by RNA interference (RNAi). The presence of the shRNA in HEK293E cells reduced the steady state level of E1A mRNA up to 75% and increased transient GFP expression from either the elongation factor-1alpha (EF-1alpha) promoter or the human cytomegalovirus (HCMV) immediate early promoter up to twofold. E1A mRNA depletion also resulted in a twofold increase in transient expression of a recombinant IgG in both small- and large-scale suspension cultures when the IgG light and heavy chain genes were controlled by the EF-1alpha promoter. Finally, transient IgG expression was enhanced 2.5-fold when the anti-E1A shRNA was expressed from the same vector as the IgG light chain gene. These results demonstrated that E1A has a negative effect on transient gene expression in HEK293E cells, and they established that RNAi can be used to enhance recombinant protein expression in mammalian cells.

  15. SET overexpression in HEK293 cells regulates mitochondrial uncoupling proteins levels within a mitochondrial fission/reduced autophagic flux scenario

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Luciana O.; Goto, Renata N. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Neto, Marinaldo P.C. [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Sousa, Lucas O. [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Curti, Carlos [Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil); Leopoldino, Andréia M., E-mail: andreiaml@usp.br [Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP (Brazil)

    2015-03-06

    We hypothesized that SET, a protein accumulated in some cancer types and Alzheimer disease, is involved in cell death through mitochondrial mechanisms. We addressed the mRNA and protein levels of the mitochondrial uncoupling proteins UCP1, UCP2 and UCP3 (S and L isoforms) by quantitative real-time PCR and immunofluorescence as well as other mitochondrial involvements, in HEK293 cells overexpressing the SET protein (HEK293/SET), either in the presence or absence of oxidative stress induced by the pro-oxidant t-butyl hydroperoxide (t-BHP). SET overexpression in HEK293 cells decreased UCP1 and increased UCP2 and UCP3 (S/L) mRNA and protein levels, whilst also preventing lipid peroxidation and decreasing the content of cellular ATP. SET overexpression also (i) decreased the area of mitochondria and increased the number of organelles and lysosomes, (ii) increased mitochondrial fission, as demonstrated by increased FIS1 mRNA and FIS-1 protein levels, an apparent accumulation of DRP-1 protein, and an increase in the VDAC protein level, and (iii) reduced autophagic flux, as demonstrated by a decrease in LC3B lipidation (LC3B-II) in the presence of chloroquine. Therefore, SET overexpression in HEK293 cells promotes mitochondrial fission and reduces autophagic flux in apparent association with up-regulation of UCP2 and UCP3; this implies a potential involvement in cellular processes that are deregulated such as in Alzheimer's disease and cancer. - Highlights: • SET, UCPs and autophagy prevention are correlated. • SET action has mitochondrial involvement. • UCP2/3 may reduce ROS and prevent autophagy. • SET protects cell from ROS via UCP2/3.

  16. A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization

    KAUST Repository

    Ooi, Amanda Siok Lee

    2016-07-19

    The human embryonic kidney 293 (HEK-293) cells are commonly used as host for the heterologous expression of membrane proteins not least because they have a high transfection efficiency and faithfully translate and process proteins. In addition, their cell size, morphology and division rate, and low expression of native channels are traits that are particularly attractive for current-voltage measurements. Nevertheless, the heterologous expression of complex membrane proteins such as receptors and ion channels for biological characterization and in particular for single-cell applications such as electrophysiology remains a challenge. Expression of functional proteins depends largely on careful step-by-step optimization that includes the design of expression vectors with suitable identification tags, as well as the selection of transfection methods and detection parameters appropriate for the application. Here, we use the heterologous expression of a plant potassium channel, the Arabidopsis thaliana guard cell outward-rectifying K+ channel, AtGORK (At5G37500) in HEK-293 cells as an example, to evaluate commonly used transfection reagents and fluorescent detection methods, and provide a detailed methodology for optimized transient transfection and expression of membrane proteins for in vivo studies in general and for single-cell applications in particular. This optimized protocol will facilitate the physiological and cellular characterization of complex membrane proteins.

  17. A Guide to Transient Expression of Membrane Proteins in HEK-293 Cells for Functional Characterization

    KAUST Repository

    Ooi, Amanda Siok Lee; Wong, Aloysius Tze; Esau, Luke; Lemtiri-Chlieh, Fouad; Gehring, Christoph A

    2016-01-01

    The human embryonic kidney 293 (HEK-293) cells are commonly used as host for the heterologous expression of membrane proteins not least because they have a high transfection efficiency and faithfully translate and process proteins. In addition, their cell size, morphology and division rate, and low expression of native channels are traits that are particularly attractive for current-voltage measurements. Nevertheless, the heterologous expression of complex membrane proteins such as receptors and ion channels for biological characterization and in particular for single-cell applications such as electrophysiology remains a challenge. Expression of functional proteins depends largely on careful step-by-step optimization that includes the design of expression vectors with suitable identification tags, as well as the selection of transfection methods and detection parameters appropriate for the application. Here, we use the heterologous expression of a plant potassium channel, the Arabidopsis thaliana guard cell outward-rectifying K+ channel, AtGORK (At5G37500) in HEK-293 cells as an example, to evaluate commonly used transfection reagents and fluorescent detection methods, and provide a detailed methodology for optimized transient transfection and expression of membrane proteins for in vivo studies in general and for single-cell applications in particular. This optimized protocol will facilitate the physiological and cellular characterization of complex membrane proteins.

  18. Overexpression of the heterochromatinization factor BAHD1 in HEK293 cells differentially reshapes the DNA methylome on autosomes and X chromosome.

    Directory of Open Access Journals (Sweden)

    Emanuele eLibertini

    2015-12-01

    Full Text Available BAH domain-containing protein 1 (BAHD1 is involved in heterochromatin formation and gene repression in human cells. BAHD1 also localizes to the inactive X chromosome (Xi, but the functional significance of this targeting is unknown. So far, research on this protein has been hampered by its low endogenous abundance and its role in epigenetic regulation remains poorly explored. In this work, we used whole-genome bisulfite sequencing (BS-seq to compare the DNA methylation profile of HEK293 cells expressing low levels of BAHD1 (HEK-CT to that of isogenic cells stably overexpressing BAHD1 (HEK-BAHD1. We show that increasing BAHD1 levels induces de novo DNA methylation on autosomes and a marked hypomethylation on the X chromosome (chrX. We identified 91,358 regions that have different methylation patterns in HEK-BAHD1 compared to HEK-CT cells (termed BAHD1-DMRs, of which 83,850 mapped on autosomes and 7,508 on the X chromosome (chrX. Autosomal BAHD1-DMRs were predominantly hypermethylated and located to satellites, interspersed repeats and intergenic regions. In contrast, BAHD1-DMRs on chrX were mainly hypomethylated and located to gene bodies and enhancers. We further found that BAHD1-DMRs display a higher-order organization by being clustered within large chromosomal domains. Half of these BAHD1-Associated differentially methylated Domains (BADs overlapped with lamina-associated domains (LADs. Based on these results, we propose that BAHD1-mediated heterochromatin formation is linked to DNA methylation and may play a role in the spatial architecture of the genome.

  19. High level over-expression of different NCX isoforms in HEK293 cell lines and primary neuronal cultures is protective following oxygen glucose deprivation.

    Science.gov (United States)

    Cross, Jane L; Boulos, Sherif; Shepherd, Kate L; Craig, Amanda J; Lee, Sharon; Bakker, Anthony J; Knuckey, Neville W; Meloni, Bruno P

    2012-07-01

    In this study we have assessed sodium-calcium exchanger (NCX) protein over-expression on cell viability in primary rat cortical neuronal and HEK293 cell cultures when subjected to oxygen-glucose deprivation (OGD). In cortical neuronal cultures, NCX2 and NCX3 over-expression was achieved using adenoviral vectors, and following OGD increased neuronal survival from ≈20% for control vector treated cultures to ≈80% for both NCX isoforms. In addition, we demonstrated that NCX2 and NCX3 over-expression in cortical neuronal cultures enables neurons to maintain intracellular calcium at significantly lower levels than control vector treated cultures when exposed to high (9mM) extracellular calcium challenge. Further assessment of NCX activity during OGD was performed using HEK293 cell lines generated to over-express NCX1, NCX2 or NCX3 isoforms. While it was shown that NCX isoform expression differed considerably in the different HEK293 cell lines, high levels of NCX over-expression was associated with increased resistance to OGD. Taken together, our findings show that high levels of NCX over-expression increases neuronal and HEK293 cell survival following OGD, improves calcium management in neuronal cultures and provides additional support for NCX as a therapeutic target to reduce ischemic brain injury. Copyright © 2012 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  20. Overexpression of mitochondrial sirtuins alters glycolysis and mitochondrial function in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Michelle Barbi de Moura

    Full Text Available SIRT3, SIRT4, and SIRT5 are mitochondrial deacylases that impact multiple facets of energy metabolism and mitochondrial function. SIRT3 activates several mitochondrial enzymes, SIRT4 represses its targets, and SIRT5 has been shown to both activate and repress mitochondrial enzymes. To gain insight into the relative effects of the mitochondrial sirtuins in governing mitochondrial energy metabolism, SIRT3, SIRT4, and SIRT5 overexpressing HEK293 cells were directly compared. When grown under standard cell culture conditions (25 mM glucose all three sirtuins induced increases in mitochondrial respiration, glycolysis, and glucose oxidation, but with no change in growth rate or in steady-state ATP concentration. Increased proton leak, as evidenced by oxygen consumption in the presence of oligomycin, appeared to explain much of the increase in basal oxygen utilization. Growth in 5 mM glucose normalized the elevations in basal oxygen consumption, proton leak, and glycolysis in all sirtuin over-expressing cells. While the above effects were common to all three mitochondrial sirtuins, some differences between the SIRT3, SIRT4, and SIRT5 expressing cells were noted. Only SIRT3 overexpression affected fatty acid metabolism, and only SIRT4 overexpression altered superoxide levels and mitochondrial membrane potential. We conclude that all three mitochondrial sirtuins can promote increased mitochondrial respiration and cellular metabolism. SIRT3, SIRT4, and SIRT5 appear to respond to excess glucose by inducing a coordinated increase of glycolysis and respiration, with the excess energy dissipated via proton leak.

  1. Opposite temperature effect on transport activity of KCC2/KCC4 and N(K)CCs in HEK-293 cells.

    Science.gov (United States)

    Hartmann, Anna-Maria; Nothwang, Hans Gerd

    2011-12-09

    Cation chloride cotransporters play essential roles in many physiological processes such as volume regulation, transepithelial salt transport and setting the intracellular chloride concentration in neurons. They consist mainly of the inward transporters NCC, NKCC1, and NKCC2, and the outward transporters KCC1 to KCC4. To gain insight into regulatory and structure-function relationships, precise determination of their activity is required. Frequently, these analyses are performed in HEK-293 cells. Recently the activity of the inward transporters NKCC1 and NCC was shown to increase with temperature in these cells. However, the temperature effect on KCCs remains largely unknown. Here, we determined the temperature effect on KCC2 and KCC4 transport activity in HEK-293 cells. Both transporters demonstrated significantly higher transport activity (2.5 fold for KCC2 and 3.3 fold for KCC4) after pre-incubation at room temperature compared to 37°C. These data identify a reciprocal temperature dependence of cation chloride inward and outward cotransporters in HEK-293 cells. Thus, lower temperature should be used for functional characterization of KCC2 and KCC4 and higher temperatures for N(K)CCs in heterologous mammalian expression systems. Furthermore, if this reciprocal effect also applies to neurons, the action of inhibitory neurotransmitters might be more affected by changes in temperature than previously thought.

  2. Overexpression of amyloid precursor protein increases copper content in HEK293 cells

    International Nuclear Information System (INIS)

    Suazo, Miriam; Hodar, Christian; Morgan, Carlos; Cerpa, Waldo; Cambiazo, Veronica; Inestrosa, Nibaldo C.; Gonzalez, Mauricio

    2009-01-01

    Amyloid precursor protein (APP) is a transmembrane glycoprotein widely expressed in mammalian tissues and plays a central role in Alzheimer's disease. However, its physiological function remains elusive. Cu 2+ binding and reduction activities have been described in the extracellular APP135-156 region, which might be relevant for cellular copper uptake and homeostasis. Here, we assessed Cu 2+ reduction and 64 Cu uptake in two human HEK293 cell lines overexpressing APP. Our results indicate that Cu 2+ reduction increased and cells accumulated larger levels of copper, maintaining cell viability at supra-physiological levels of Cu 2+ ions. Moreover, wild-type cells exposed to both Cu 2+ ions and APP135-155 synthetic peptides increased copper reduction and uptake. Complementation of function studies in human APP751 transformed Fre1 defective Saccharomyces cerevisiae cells rescued low Cu 2+ reductase activity and increased 64 Cu uptake. We conclude that Cu 2+ reduction activity of APP facilitates copper uptake and may represent an early step in cellular copper homeostasis.

  3. The Light-Induced FOS Response in Melanopsin Expressing HEK-293 Cells is Correlated with Melanopsin Quantity and Dependent on Light Duration and Irradiance

    DEFF Research Database (Denmark)

    Georg, Birgitte; Rask, Lene; Hannibal, Jens

    2014-01-01

    We established a cell line (HEK-hMel) expressing melanopsin in a tetracycline dependent manner to elucidate new aspects of melanopsin's light response. Different light stimuli were evaluated using FOS expression as response parameter. Immunoblotting was used to evaluate expression of melanopsin......) s(-1) resulted in equally high FOS expression. The HEK-hMel cells were used to characterize facets of melanopsin's light-induced FOS response not approachable in vivo. Novel information such as dependency of the FOS response on both melanopsin amount and light intensity in addition to a detailed...

  4. Cytoprotective effect of glutaraldehyde erythropoietin on HEK293 kidney cells after silver nanoparticle exposure

    Directory of Open Access Journals (Sweden)

    Sooklert K

    2016-02-01

    Full Text Available Kanidta Sooklert,1,2 Supreecha Chattong,3 Krissanapong Manotham,3 Chawikan Boonwong,1 I-yanut Klaharn,1 Depicha Jindatip,4 Amornpun Sereemaspun1,4 1Nanobiomedicine Laboratory, Department of Anatomy, Faculty of Medicine, 2Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, 3Renal Unit, Department of Medicine, Lerdsin General Hospital, 4Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandAbstract: The toxic effects from exposure to silver nanoparticles (AgNPs, which are broadly present in many consumer products, have long raised concerns. Many studies have focused on the mechanisms of nanosilver, which cause toxicity in human cells, but little is known about prevention of this type of injury. This study investigated the in vitro effects of glutaraldehyde erythropoietin (GEPO, a cytoprotective compound derived from erythropoietin, in terms of cell protection against AgNP-induced injury. HEK293 cells were pretreated with or without GEPO before administration of AgNPs. The protective effects of GEPO in this cell line were assessed by the percentage of viable cells, alterations of cell morphology, and the proliferative capability of the cells. In addition, we assessed the role of GEPO in lowering cellular oxidative stress and regulating expression of the anti-apoptotic protein Bcl2. The results showed rescue effects on the percentage of viable and proliferative cells among GEPO pretreated cells. Pretreatment with GEPO maintained the normal cell shape and ultrastructural morphology. Moreover, GEPO reduced the generation of reactive oxygen species in cells and activated expression of Bcl2, which are the major mechanisms in protection against cellular toxicity induced by AgNPs. In conclusion, our study showed that the cytotoxic effects from exposure to AgNPs can be prevented by GEPO. Keywords: glutaraldehyde erythropoietin, silver nanoparticles, cytoprotection

  5. Metabolic and Kinetic analyses of influenza production in perfusion HEK293 cell culture

    Directory of Open Access Journals (Sweden)

    Lohr Verena

    2011-09-01

    Full Text Available Abstract Background Cell culture-based production of influenza vaccine remains an attractive alternative to egg-based production. Short response time and high production yields are the key success factors for the broader adoption of cell culture technology for industrial manufacturing of pandemic and seasonal influenza vaccines. Recently, HEK293SF cells have been successfully used to produce influenza viruses, achieving hemagglutinin (HA and infectious viral particle (IVP titers in the highest ranges reported to date. In the same study, it was suggested that beyond 4 × 106 cells/mL, viral production was limited by a lack of nutrients or an accumulation of toxic products. Results To further improve viral titers at high cell densities, perfusion culture mode was evaluated. Productivities of both perfusion and batch culture modes were compared at an infection cell density of 6 × 106 cells/mL. The metabolism, including glycolysis, glutaminolysis and amino acids utilization as well as physiological indicators such as viability and apoptosis were extensively documented for the two modes of culture before and after viral infection to identify potential metabolic limitations. A 3 L bioreactor with a perfusion rate of 0.5 vol/day allowed us to reach maximal titers of 3.3 × 1011 IVP/mL and 4.0 logHA units/mL, corresponding to a total production of 1.0 × 1015 IVP and 7.8 logHA units after 3 days post-infection. Overall, perfusion mode titers were higher by almost one order of magnitude over the batch culture mode of production. This improvement was associated with an activation of the cell metabolism as seen by a 1.5-fold and 4-fold higher consumption rates of glucose and glutamine respectively. A shift in the viral production kinetics was also observed leading to an accumulation of more viable cells with a higher specific production and causing an increase in the total volumetric production of infectious influenza particles. Conclusions These results

  6. Urocortin2 prolongs action potential duration and modulates potassium currents in guinea pig myocytes and HEK293 cells.

    Science.gov (United States)

    Yang, Li-Zhen; Zhu, Yi-Chun

    2015-07-05

    We previously reported that activation of corticotropin releasing factor receptor type 2 by urocortin2 up-regulates both L-type Ca(2+) channels and intracellular Ca(2+) concentration in ventricular myocytes and plays an important role in cardiac contractility and arrhythmogenesis. This study goal was to further test the hypothesis that urocortin2 may modulate action potentials as well as rapidly and slowly activating delayed rectifier potassium currents. With whole cell patch-clamp techniques, action potentials and slowly activating delayed rectifier potassium currents were recorded in isolated guinea pig ventricular myocytes, respectively. And rapidly activating delayed rectifier potassium currents were tested in hERG-HEK293 cells. Urocortin2 produced a time- and concentration-dependent prolongation of action potential duration. The EC50 values of action potential duration and action potential duration at 90% of repolarization were 14.73 and 24.3nM respectively. The prolongation of action potential duration of urocortin2 was almost completely or partly abolished by H-89 (protein kinase A inhibitor) or KB-R7943 (Na(+)/Ca(2+) exchange inhibitor) pretreatment respectively. And urocortin2 caused reduction of rapidly activating delayed rectifier potassium currents in hERG-HEK293 cells. In addition, urocortin2 slowed the rate of slowly activating delayed rectifier potassium channel activation, and rightward shifted the threshold of slowly activating delayed rectifier potassium currents to more positive potentials. Urocortin2 prolonged action potential duration via activation of protein kinase A and Na(+)/ Ca(2+) exchange in isolated guinea pig ventricular myocytes in a time- and concentration- dependent manner. In hERG-HEK293 cells, urocortin2 reduced rapidly activating delayed rectifier potassium current density which may contribute to action potential duration prolongation. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Lack of effect of the alpha2C-adrenoceptor Del322-325 polymorphism on inhibition of cyclic AMP production in HEK293 cells.

    Science.gov (United States)

    Montgomery, M D; Bylund, D B

    2010-02-01

    The alpha(2C)-adrenoceptor has multiple functions, including inhibiting release of noradrenaline from presynaptic nerve terminals. A human alpha(2C) polymorphism, Del322-325, a potential risk factor for heart failure, has been reported to exhibit reduced signalling in CHO cells. To further understand the role of the Del322-325 polymorphism on receptor signalling, we attempted to replicate and further study the reduced signalling in HEK293 cells. Human alpha(2C) wild-type (WT) and Del322-325 adrenoceptors were stably transfected into HEK293 cells. Radioligand binding was performed to determine affinities for both receptors. In intact cells, inhibition of forskolin-stimulated cyclic AMP production by WT and Del322-325 clones with a range of receptor densities (200-2320 fmol.mg(-1) protein) was measured following agonist treatment. Noradrenaline, brimonidine and clonidine exhibited similar binding affinities for WT and Del322-325. Brimonidine and clonidine also had similar efficacies and potencies for both receptors for the inhibition of cyclic AMP production at all receptor densities tested. A linear regression analysis comparing efficacy and potency with receptor expression levels showed no differences in slopes between WT and Del322-325. The alpha(2C) WT and Del322-325 adrenoceptors exhibited similar binding properties. Additionally, inhibition of cyclic AMP production by Del322-325 was similar to that of WT over a range of receptor densities. Therefore, in intact HEK293 cells, the alpha(2C)-Del322-325 polymorphism does not exhibit reduced signalling to adenylyl cyclase and may not represent a clinically important phenotype.

  8. When less becomes more : Optimization of protein expression in HEK293-EBNA1 cells using plasmid titration - A case study for NLRs

    NARCIS (Netherlands)

    Halff, Els F.; Versteeg, Marian; Brondijk, T. Harma C; Huizinga, Eric G.

    2014-01-01

    Transient transfection of the human HEK293-EBNA1 cell line using polyethyleneimine is widely adopted for recombinant protein production. Whereas high expression of many targets is achieved, purification yields of some highly expressed proteins remain low due to aggregation. We hypothesized that for

  9. Differential proteome analysis of human embryonic kidney cell line (HEK-293 following mycophenolic acid treatment

    Directory of Open Access Journals (Sweden)

    Rahman Hazir

    2011-09-01

    Full Text Available Abstract Background Mycophenolic acid (MPA is widely used as a post transplantation medicine to prevent acute organ rejection. In the present study we used proteomics approach to identify proteome alterations in human embryonic kidney cells (HEK-293 after treatment with therapeutic dose of MPA. Following 72 hours MPA treatment, total protein lysates were prepared, resolved by two dimensional gel electrophoresis and differentially expressed proteins were identified by QTOF-MS/MS analysis. Expressional regulations of selected proteins were further validated by real time PCR and Western blotting. Results The proliferation assay demonstrated that therapeutic MPA concentration causes a dose dependent inhibition of HEK-293 cell proliferation. A significant apoptosis was observed after MPA treatment, as revealed by caspase 3 activity. Proteome analysis showed a total of 12 protein spots exhibiting differential expression after incubation with MPA, of which 7 proteins (complement component 1 Q subcomponent-binding protein, electron transfer flavoprotein subunit beta, cytochrome b-c1 complex subunit, peroxiredoxin 1, thioredoxin domain-containing protein 12, myosin regulatory light chain 2, and profilin 1 showed significant increase in their expression. The expression of 5 proteins (protein SET, stathmin, 40S ribosomal protein S12, histone H2B type 1 A, and histone H2B type 1-C/E/F/G/I were down-regulated. MPA mainly altered the proteins associated with the cytoskeleton (26%, chromatin structure/dynamics (17% and energy production/conversion (17%. Both real time PCR and Western blotting confirmed the regulation of myosin regulatory light chain 2 and peroxiredoxin 1 by MPA treatment. Furthermore, HT-29 cells treated with MPA and total kidney cell lysate from MMF treated rats showed similar increased expression of myosin regulatory light chain 2. Conclusion The emerging use of MPA in diverse pathophysiological conditions demands in-depth studies to

  10. Effects of the β1 auxiliary subunit on modification of Rat Na{sub v}1.6 sodium channels expressed in HEK293 cells by the pyrethroid insecticides tefluthrin and deltamethrin

    Energy Technology Data Exchange (ETDEWEB)

    He, Bingjun [College of Life Sciences, Nankai University, Tianjin 300071 (China); Soderlund, David M., E-mail: dms6@cornell.edu [Department of Entomology, Cornell University, Geneva, NY 14456 (United States)

    2016-01-15

    We expressed rat Na{sub v}1.6 sodium channels with or without the rat β1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Na{sub v}1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~ 18 mV for tefluthrin and ~ 24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~ 10–14 mV in the voltage dependence of steady-state inactivation and increased in the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Na{sub v}1.6 with the β1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the β1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons. - Highlights: • We expressed Na{sub v}1.6 sodium channels with or without β1 subunits in HEK293 cells. • Tefluthrin and deltamethrin

  11. FLIM studies of 22- and 25-NBD-cholesterol in living HEK293 cells: Plasma membrane change induced by cholesterol depletion

    Czech Academy of Sciences Publication Activity Database

    Ostašov, Pavel; Sýkora, Jan; Brejchová, Jana; Olžyńska, Agnieszka; Hof, Martin; Svoboda, Petr

    167-168, FEB-MAR (2013), s. 62-69 ISSN 0009-3084 R&D Projects: GA ČR(CZ) GAP207/12/0919 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 ; RVO:61388955 Keywords : cholesterol depletion * beta-Cyclodextrin * 22-NBD-cholesterol * 25-NBD-cholesterol * FLIM studies * intact HEK293 cells Subject RIV: CE - Biochemistry; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 2.593, year: 2013

  12. Mechanisms of IhERG/IKr Modulation by α1-Adrenoceptors in HEK293 Cells and Cardiac Myocytes

    Directory of Open Access Journals (Sweden)

    Janire Urrutia

    2016-12-01

    Full Text Available Background: The rapid delayed rectifier K+ current (IKr, carried by the hERG protein, is one of the main repolarising currents in the human heart and a reduction of this current increases the risk of ventricular fibrillation. α1-adrenoceptors (α1-AR activation reduces IKr but, despite the clear relationship between an increase in the sympathetic tone and arrhythmias, the mechanisms underlying the α1-AR regulation of the hERG channel are controversial. Thus, we aimed to investigate the mechanisms by which α1-AR stimulation regulates IKr. Methods: α1-adrenoceptors, hERG channels, auxiliary subunits minK and MIRP1, the non PIP2-interacting mutant D-hERG (with a deletion of the 883-894 amino acids in the C-terminal and the non PKC-phosphorylable mutant N-terminal truncated-hERG (NTK-hERG were transfected in HEK293 cells. Cell membranes were extracted by centrifugation and the different proteins were visualized by Western blot. Potassium currents were recorded by the patch-clamp technique. IKr was recorded in isolated feline cardiac myocytes. Results: Activation of the α1-AR reduces the amplitude of IhERG and IKr through a positive shift in the activation half voltage, which reduces the channel availability at physiological membrane potentials. The intracellular pathway connecting the α1-AR to the hERG channel in HEK293 cells includes activation of the Gαq protein, PLC activation and PIP2 hydrolysis, activation of PKC and direct phosphorylation of the hERG channel N-terminal. The PKC-mediated IKr channel phosphorylation and subsequent IKr reduction after α1-AR stimulation was corroborated in feline cardiac myocytes. Conclusions: These findings clarify the link between sympathetic nervous system hyperactivity and IKr reduction, one of the best characterized causes of torsades de pointes and ventricular fibrillation.

  13. Differential state-dependent modification of rat Na{sub v}1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin

    Energy Technology Data Exchange (ETDEWEB)

    He, Bingjun [College of Life Sciences, Nankai University, Tianjin 300071 (China); Soderlund, David M., E-mail: dms6@cornell.edu [Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456 (United States)

    2011-12-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}1 and {beta}2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na{sub v}1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent 'late' currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltage dependence of the pyrethroid-induced late and tail currents, were {approx} 25 mV for tefluthrin and {approx} 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of {approx} 5-10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na{sub v}1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by {approx} 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na{sub v}1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na{sub v}1.6 channels

  14. Viability of HEK 293 cells on poly-β-hydroxybutyrate (PHB) biosynthesized from a mutant Azotobacter vinelandii strain. Cast film and electrospun scaffolds.

    Science.gov (United States)

    Romo-Uribe, Angel; Meneses-Acosta, Angelica; Domínguez-Díaz, Maraolina

    2017-12-01

    Sterilization, cytotoxicity and cell viability are essential properties defining a material for medical applications and these characteristics were investigated for poly(β-hydroxybutyrate) (PHB) of 230kDa obtained by bacterial synthesis from a mutant strain of Azotobacter vinelandii. Cell viability was investigated for two types of PHB scaffolds, solution cast films and non-woven electrospun fibrous membranes, and the efficiency was compared against a culture dish. The biosynthesized PHB was sterilized by ultraviolet radiation and autoclave, it was found that the thermal properties and intrinsic viscosity remained unchanged indicating that the sterilization methods did not degrade the polymer. Sterilized scaffolds were then seeded with human embryonic kidney 293 (HEK 293) cells to evaluate the cytotoxic response. The cell viability of these cells was evaluated for up to six days, and the results showed that the cell morphology was normal, with no cytotoxic effects. The films and electrospun membranes exhibited over 95% cell viability whereas the viability in culture dishes reached only ca. 90%. The electrospun membrane, however, exhibited significantly higher cell density than the cast film suggesting that the fibrous morphology enables better nutrients transfer. The results indicate that the biosynthesized PHB stands UV and autoclave sterilization methods, it is biocompatible and non-toxic for cell growth of human cell lines. Furthermore, cell culture for up to 18 days showed that 62% and 90% of mass was lost for the film and fibrous electrospun scaffold, respectively. This is a favorable outcome for use in tissue engineering where material degradation, as tissue regenerates, is desirable. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effect of therapeutic concentration of lithium on live HEK293 cells; increase of Na+/K+-ATPase, change of overall protein composition and alteration of surface layer of plasma membrane.

    Science.gov (United States)

    Vosahlikova, Miroslava; Ujcikova, Hana; Chernyavskiy, Oleksandr; Brejchova, Jana; Roubalova, Lenka; Alda, Martin; Svoboda, Petr

    2017-05-01

    The effect of long-term exposure of live cells to lithium cations (Li) was studied in HEK293 cells cultivated in the presence of 1mM LiCl for 7 or 21days. The alteration of Na + /K + -ATPase level, protein composition and biophysical state of plasma membrane was determined with the aim to characterize the physiological state of Li-treated cells. Na + /K + -ATPase level was determined by [ 3 H]ouabain binding and immunoblot assays. Overall protein composition was determined by 2D electrophoresis followed by proteomic analysis by MALDI-TOF MS/MS and LFQ. Li interaction with plasma membrane was characterized by fluorescent probes DPH, TMA-DPH and Laurdan. Na + /K + -ATPase was increased in plasma membranes isolated from cells exposed to Li. Identification of Li-altered proteins by 2D electrophoresis, MALDI-TOF MS/MS and LFQ suggests a change of energy metabolism in mitochondria and cytosol and alteration of cell homeostasis of calcium. Measurement of Laurdan generalized polarization indicated a significant alteration of surface layer of isolated plasma membranes prepared from both types of Li-treated cells. Prolonged exposure of HEK293 cells to 1mM LiCl results in up-regulation of Na + /K + -ATPase expression, reorganization of overall cellular metabolism and alteration of the surface layer/polar head-group region of isolated plasma membranes. Our findings demonstrate adaptation of live HEK293 cell metabolism to prolonged exposure to therapeutic concentration of Li manifested as up-regulation of Na + /K + -ATPase expression, alteration of protein composition and change of the surface layer of plasma membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biophysical and Pharmacological Characterization of Nav1.9 Voltage Dependent Sodium Channels Stably Expressed in HEK-293 Cells.

    Directory of Open Access Journals (Sweden)

    Zhixin Lin

    Full Text Available The voltage dependent sodium channel Nav1.9, is expressed preferentially in peripheral sensory neurons and has been linked to human genetic pain disorders, which makes it target of interest for the development of new pain therapeutics. However, characterization of Nav1.9 pharmacology has been limited due in part to the historical difficulty of functionally expressing recombinant channels. Here we report the successful generation and characterization of human, mouse and rat Nav1.9 stably expressed in human HEK-293 cells. These cells exhibit slowly activating and inactivating inward sodium channel currents that have characteristics of native Nav1.9. Optimal functional expression was achieved by coexpression of Nav1.9 with β1/β2 subunits. While recombinantly expressed Nav1.9 was found to be sensitive to sodium channel inhibitors TC-N 1752 and tetracaine, potency was up to 100-fold less than reported for other Nav channel subtypes despite evidence to support an interaction with the canonical local anesthetic (LA binding region on Domain 4 S6. Nav1.9 Domain 2 S6 pore domain contains a unique lysine residue (K799 which is predicted to be spatially near the local anesthetic interaction site. Mutation of this residue to the consensus asparagine (K799N resulted in an increase in potency for tetracaine, but a decrease for TC-N 1752, suggesting that this residue can influence interaction of inhibitors with the Nav1.9 pore. In summary, we have shown that stable functional expression of Nav1.9 in the widely used HEK-293 cells is possible, which opens up opportunities to better understand channel properties and may potentially aid identification of novel Nav1.9 based pharmacotherapies.

  17. Heterodimerization with the β1 subunit directs the α2 subunit of nitric oxide-sensitive guanylyl cyclase to calcium-insensitive cell-cell contacts in HEK293 cells: Interaction with Lin7a.

    Science.gov (United States)

    Hochheiser, Julia; Haase, Tobias; Busker, Mareike; Sömmer, Anne; Kreienkamp, Hans-Jürgen; Behrends, Sönke

    2016-12-15

    Nitric oxide-sensitive guanylyl cyclase is a heterodimeric enzyme consisting of an α and a β subunit. Two different α subunits (α 1 and α 2 ) give rise to two heterodimeric enzymes α 1 /β 1 and α 2 /β 1 . Both coexist in a wide range of tissues including blood vessels and the lung, but expression of the α 2 /β 1 form is generally much lower and approaches levels similar to the α 1 /β 1 form in the brain only. In the present paper, we show that the α 2 /β 1 form interacts with Lin7a in mouse brain synaptosomes based on co-precipitation analysis. In HEK293 cells, we found that the overexpressed α 2 /β 1 form, but not the α 1 /β 1 form is directed to calcium-insensitive cell-cell contacts. The isolated PDZ binding motif of an amino-terminally truncated α 2 subunit was sufficient for cell-cell contact localization. For the full length α 2 subunit with the PDZ binding motif this was only the case in the heterodimer configuration with the β 1 subunit, but not as isolated α 2 subunit. We conclude that the PDZ binding motif of the α 2 subunit is only accessible in the heterodimer conformation of the mature nitric oxide-sensitive enzyme. Interaction with Lin7a, a small scaffold protein important for synaptic function and cell polarity, can direct this complex to nectin based cell-cell contacts via MPP3 in HEK293 cells. We conclude that heterodimerization is a prerequisite for further protein-protein interactions that direct the α 2 /β 1 form to strategic sites of the cell membrane with adjacent neighbouring cells. Drugs increasing the nitric oxide-sensitivity of this specific form may be particularly effective. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Recombinant protein expression for structural biology in HEK 293F suspension cells: a novel and accessible approach.

    Science.gov (United States)

    Portolano, Nicola; Watson, Peter J; Fairall, Louise; Millard, Christopher J; Milano, Charles P; Song, Yun; Cowley, Shaun M; Schwabe, John W R

    2014-10-16

    The expression and purification of large amounts of recombinant protein complexes is an essential requirement for structural biology studies. For over two decades, prokaryotic expression systems such as E. coli have dominated the scientific literature over costly and less efficient eukaryotic cell lines. Despite the clear advantage in terms of yields and costs of expressing recombinant proteins in bacteria, the absence of specific co-factors, chaperones and post-translational modifications may cause loss of function, mis-folding and can disrupt protein-protein interactions of certain eukaryotic multi-subunit complexes, surface receptors and secreted proteins. The use of mammalian cell expression systems can address these drawbacks since they provide a eukaryotic expression environment. However, low protein yields and high costs of such methods have until recently limited their use for structural biology. Here we describe a simple and accessible method for expressing and purifying milligram quantities of protein by performing transient transfections of suspension grown HEK (Human Embryonic Kidney) 293 F cells.

  19. Combinatorial treatment with lithium chloride enhances recombinant antibody production in transiently transfected CHO and HEK293E cells

    DEFF Research Database (Denmark)

    Kim, Che Lin; Kwang Ha, Tae; Min Lee, Gyun

    2016-01-01

    Lithium chloride (LiCl), which induces cell cycle arrest at G2/M phase, is known as a specific production rate (qp)-enhancing additive in recombinant Chinese hamster ovary (CHO) cell culture. To determine the potential of LiCl as a chemical additive that enhances transient gene expression (TGE), Li......Cl was added to the CHO-NK and human embryonic kidney 293E (HEK293E) cell cultures before and/or after transfection with polyethylenimine as a transfection reagent. The effect of this addition on transfection efficiency (pre-treatment) and qp enhancement during TGE (post-treatment) was examined. For the TGE...... of monoclonal antibody (mAb) in CHO-NK cells, pretreatment alone with 10 mM LiCl and post-treatment alone with 5 mM LiCl resulted in 1.2- and 3.4-fold increase of maximum mAb concentration (MMC), respectively, compared with the TGE without LiCl treatment. Furthermore, combinatorial treatment with LiCl (10 m...

  20. Biophysical characterisation of electrofused giant HEK293-cells as a novel electrophysiological expression system

    International Nuclear Information System (INIS)

    Zimmermann, D.; Terpitz, U.; Zhou, A.; Reuss, R.; Mueller, K.; Sukhorukov, V.L.; Gessner, P.; Nagel, G.; Zimmermann, U.; Bamberg, E.

    2006-01-01

    Giant HEK293 cells of 30-65 μm in diameter were produced by three-dimensional multi-cell electrofusion in 75 mOsm sorbitol media. These strong hypotonic conditions facilitated fusion because of the spherical shape and smooth membrane surface of the swollen cells. A regulatory volume decrease (RVD), as observed at higher osmolalities, did not occur at 75 mOsm. In contrast to field-treated, but unfused cells, the increase in volume induced by hypotonic shock was only partly reversible in the case of fused giant cells after their transfer into isotonic medium. The large size of the electrofused cells allowed the study of their electrophysiological properties by application of both whole-cell and giant excised patch-clamp techniques. Recordings on giant cells yielded a value of 1.1 ± 0.1 μF/cm 2 for the area-specific membrane capacitance. This value was consistent with that of the parental cells. The area-specific conductivity of giant cells (diameter > 50 μm) was found to be between 12.8 and 16.1 μS/cm 2 , which is in the range of that of the parental cells. Measurements with patch-pipettes containing fluorescein showed uniform dye uptake in the whole-cell configuration, but not in the cell-attached configuration. The diffusion-controlled uniform uptake of the dye into the cell interior excludes internal compartmentalisation. The finding of a homogeneous fusion was also supported by expression of the yellow fluorescent protein YFP (as part of the fusion-protein ChR2-YFP) in giant cells since no plasma-membrane bound YFP-mediated fluorescence was detected in the interior of the electrofused cells. Functional expression and the electrophysiological characterisation of the light-activated cation channel Channelrhodopsin 2 (ChR2) yielded similar results as for parental cells. Most importantly, the giant cells exhibited a comparable expression density of the channel protein in the plasma membrane as observed in parental cells. This demonstrates that electrofused cells

  1. The endocytic pathways of a secretory granule membrane protein in HEK293 cells: PAM and EGF traverse a dynamic multivesicular body network together.

    Science.gov (United States)

    Bäck, Nils; Kanerva, Kristiina; Kurutihalli, Vishwanatha; Yanik, Andrew; Ikonen, Elina; Mains, Richard E; Eipper, Betty A

    2017-08-01

    Peptidylglycine α-amidating monooxygenase (PAM) is highly expressed in neurons and endocrine cells, where it catalyzes one of the final steps in the biosynthesis of bioactive peptides. PAM is also expressed in unicellular organisms such as Chlamydomonas reinhardtii, which do not store peptides in secretory granules. As for other granule membrane proteins, PAM is retrieved from the cell surface and returned to the trans-Golgi network. This pathway involves regulated entry of PAM into multivesicular body intralumenal vesicles (ILVs). The aim of this study was defining the endocytic pathways utilized by PAM in cells that do not store secretory products in granules. Using stably transfected HEK293 cells, endocytic trafficking of PAM was compared to that of the mannose 6-phosphate (MPR) and EGF (EGFR) receptors, established markers for the endosome to trans-Golgi network and degradative pathways, respectively. As in neuroendocrine cells, PAM internalized by HEK293 cells accumulated in the trans-Golgi network. Based on surface biotinylation, >70% of the PAM on the cell surface was recovered intact after a 4h chase and soluble, bifunctional PAM was produced. Endosomes containing PAM generally contained both EGFR and MPR and ultrastructural analysis confirmed that all three cargos accumulated in ILVs. PAM containing multivesicular bodies made frequent dynamic tubular contacts with younger and older multivesicular bodies. Frequent dynamic contacts were observed between lysosomes and PAM containing early endosomes and multivesicular bodies. The ancient ability of PAM to localize to ciliary membranes, which release bioactive ectosomes, may be related to its ability to accumulate in ILVs and exosomes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. Expression and purification of soluble and stable ectodomain of natural killer cell receptor LLT1 through high-density transfection of suspension adapted HEK293S GnTI(-) cells

    Czech Academy of Sciences Publication Activity Database

    Bláha, J.; Pachl, Petr; Novák, Petr; Vaněk, O.

    2015-01-01

    Roč. 109, May (2015), s. 7-13 ISSN 1046-5928 R&D Projects: GA MŠk(CZ) EE2.3.30.0003; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPK(CZ) CZ.2.16/3.1.00/24023 Institutional support: RVO:61388963 ; RVO:61388971 Keywords : LLT1 * HEK293S GnTI(-) * C-type lectin-like * NK cell * glycosylation * transfection Subject RIV: CE - Biochemistry Impact factor: 1.407, year: 2015

  3. Fluorescence Microspectroscopy for Testing the Dimerization Hypothesis of BACE1 Protein in Cultured HEK293 Cells

    Science.gov (United States)

    Gardeen, Spencer; Johnson, Joseph L.; Heikal, Ahmed A.

    2016-06-01

    Alzheimer's Disease (AD) is a neurodegenerative disorder that results from the formation of beta-amyloid plaques in the brain that trigger the known symptoms of memory loss in AD patients. The beta-amyloid plaques are formed by the proteolytic cleavage of the amyloid precursor protein (APP) by the proteases BACE1 and gamma-secretase. These enzyme-facilitated cleavages lead to the production of beta-amyloid fragments that aggregate to form plaques, which ultimately lead to neuronal cell death. Recent detergent protein extraction studies suggest that BACE1 protein forms a dimer that has significantly higher catalytic activity than its monomeric counterpart. In this contribution, we examine the dimerization hypothesis of BACE1 in cultured HEK293 cells using complementary fluorescence spectroscopy and microscopy methods. Cells were transfected with a BACE1-EGFP fusion protein construct and imaged using confocal, and differential interference contrast to monitor the localization and distribution of intracellular BACE1. Complementary fluorescence lifetime and anisotropy measurements enabled us to examine the conformational and environmental changes of BACE1 as a function of substrate binding. Using fluorescence correlation spectroscopy, we also quantified the diffusion coefficient of BACE1-EGFP on the plasma membrane as a means to test the dimerization hypothesis as a fucntion of substrate-analog inhibitition. Our results represent an important first towards examining the substrate-mediated dimerization hypothesis of BACE1 in live cells.

  4. Interaction between amiodarone and hepatitis-C virus nucleotide inhibitors in human induced pluripotent stem cell-derived cardiomyocytes and HEK-293 Cav1.2 over-expressing cells.

    Science.gov (United States)

    Lagrutta, Armando; Zeng, Haoyu; Imredy, John; Balasubramanian, Bharathi; Dech, Spencer; Lis, Edward; Wang, Jixin; Zhai, Jin; DeGeorge, Joseph; Sannajust, Frederick

    2016-10-01

    Several clinical cases of severe bradyarrhythmias have been reported upon co-administration of the Hepatitis-C NS5B Nucleotide Polymerase Inhibitor (HCV-NI) direct-acting antiviral agent, sofosbuvir (SOF), and the Class-III anti-arrhythmic amiodarone (AMIO). We model the cardiac drug-drug interaction (DDI) between AMIO and SOF, and between AMIO and a closely-related SOF analog, MNI-1 (Merck Nucleotide Inhibitor #1), in functional assays of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), to provide mechanistic insights into recently reported clinical cases. AMIO co-applied with SOF or MNI-1 increased beating rate or field potential (FP) rate and decreased impedance (IMP) and Ca(2+) transient amplitudes in hiPSC-CM syncytia. This action resembled that of Ca(2+) channel blockers (CCBs) in the model, but CCBs did not substitute for AMIO in the DDI. AMIO analog dronedarone (DRON) did not substitute for, but competed with AMIO in the DDI. Ryanodine and thapsigargin, decreasing intracellular Ca(2+) stores, and SEA-0400, a Na(+)/Ca(2+) exchanger-1 (NCX1) inhibitor, partially antagonized or suppressed DDI effects. Other agents affecting FP rate only exerted additive or subtractive effects, commensurate with their individual effects. We also describe an interaction between AMIO and MNI-1 on Cav1.2 ion channels in an over-expressing HEK-293 cell line. MNI-1 enhanced Cav1.2 channel inhibition by AMIO, but did not affect inhibition of Cav1.2 by DRON, verapamil, nifedipine, or diltiazem. Our data in hiPSC-CMs indicate that HCV-NI agents such as SOF and MNI-1 interact with key intracellular Ca(2+)-handling mechanisms. Additional study in a Cav1.2 HEK-293 cell-line suggests that HCV-NIs potentiate the inhibitory action of AMIO on L-type Ca(2+) channels. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK)

    International Nuclear Information System (INIS)

    Florea, Ana-Maria; Splettstoesser, Frank; Buesselberg, Dietrich

    2007-01-01

    Arsenic trioxide (As 2 O 3 ) has anticancer properties; however, its use also leads to neuro-, hepato- or nephro-toxicity, and therefore, it is important to understand the mechanism of As 2 O 3 toxicity. We studied As 2 O 3 influence on intracellular calcium ([Ca 2+ ] i ) homeostasis of human neuroblastoma SY-5Y and embryonic kidney cells (HEK 293).We also relate the As 2 O 3 induced [Ca 2+ ] i modifications with cytotoxicity. We used Ca 2+ sensitive dyes (fluo-4 and rhod-2) combined with laser scanning microscopy or fluorescence activated cell sorting to measure Ca 2+ changes during the application of As 2 O 3 and we approach evaluation of cytotoxicity. As 2 O 3 (1 μM) increased [Ca 2+ ] i in SY-5Y and HEK 293 cells. Three forms of [Ca 2+ ] i -elevations were found: (1) steady-state increases (2) transient [Ca 2+ ] i -elevations and (3) Ca 2+ -spikes. [Ca 2+ ] i modifications were independent from extracellular Ca 2+ but dependent on internal calcium stores. The effect was not reversible. Inositol triphosphate (IP 3 ) and ryanodine (Ry) receptors are involved in regulation of signals induced by As 2 O 3 . 2-APB and dantrolene significantly reduced the [Ca 2+ ] i -rise (p 2+ ] i -elevation or spiking. This indicates that other Ca 2+ regulating mechanisms are involved. In cytotoxicity tests As 2 O 3 significantly reduced cell viability in both cell types. Staining with Hoechst 33342 showed occurrence of apoptosis and DNA damage. Our data suggest that [Ca 2+ ] i is an important messenger in As 2 O 3 induced cell death

  6. Transient transfection of serum-free suspension HEK 293 cell culture for efficient production of human rFVIII

    Science.gov (United States)

    2011-01-01

    Background Hemophilia A is a bleeding disorder caused by deficiency in coagulation factor VIII. Recombinant factor VIII (rFVIII) is an alternative to plasma-derived FVIII for the treatment of hemophilia A. However, commercial manufacturing of rFVIII products is inefficient and costly and is associated to high prices and product shortage, even in economically privileged countries. This situation may be solved by adopting more efficient production methods. Here, we evaluated the potential of transient transfection in producing rFVIII in serum-free suspension HEK 293 cell cultures and investigated the effects of different DNA concentration (0.4, 0.6 and 0.8 μg/106 cells) and repeated transfections done at 34° and 37°C. Results We observed a decrease in cell growth when high DNA concentrations were used, but no significant differences in transfection efficiency and in the biological activity of the rFVIII were noticed. The best condition for rFVIII production was obtained with repeated transfections at 34°C using 0.4 μg DNA/106 cells through which almost 50 IU of active rFVIII was produced six days post-transfection. Conclusion Serum-free suspension transient transfection is thus a viable option for high-yield-rFVIII production. Work is in progress to further optimize the process and validate its scalability. PMID:22115125

  7. Silencing of SARS-CoV spike gene by small interfering RNA in HEK 293T cells

    International Nuclear Information System (INIS)

    Qin Zhaoling; Zhao Ping; Zhang Xiaolian; Yu Jianguo; Cao Mingmei; Zhao Lanjuan; Luan Jie; Qi Zhongtian

    2004-01-01

    Two candidate small interfering RNAs (siRNAs) corresponding to severe acute respiratory syndrome-associated coronavirus (SARS-CoV) spike gene were designed and in vitro transcribed to explore the possibility of silencing SARS-CoV S gene. The plasmid pEGFP-optS, which contains the codon-optimized SARS-CoV S gene and expresses spike-EGFP fusion protein (S-EGFP) as silencing target and expressing reporter, was transfected with siRNAs into HEK 293T cells. At various time points of posttransfection, the levels of S-EGFP expression and amounts of spike mRNA transcript were detected by fluorescence microscopy, flow cytometry, Western blot, and real-time quantitative PCR, respectively. The results showed that the cells transfected with pEGFP-optS expressed S-EGFP fusion protein at a higher level compared with those transfected with pEGFP-S, which contains wildtype SARS-CoV spike gene sequence. The green fluorescence, mean fluorescence intensity, and SARS-CoV S RNA transcripts were found significantly reduced, and the expression of SARS-CoV S glycoprotein was strongly inhibited in those cells co-transfected with either EGFP- or S-specific siRNAs. Our findings demonstrated that the S-specific siRNAs used in this study were able to specifically and effectively inhibit SARS-CoV S glycoprotein expression in cultured cells through blocking the accumulation of S mRNA, which may provide an approach for studies on the functions of SARS-CoV S gene and development of novel prophylactic or therapeutic agents for SARS-CoV

  8. Pharmacological characterization of emerging synthetic cannabinoids in HEK293T cells and hippocampal neurons.

    Science.gov (United States)

    Costain, Willard J; Tauskela, Joseph S; Rasquinha, Ingrid; Comas, Tanya; Hewitt, Melissa; Marleau, Vincent; Soo, Evelyn C

    2016-09-05

    There has been a worldwide proliferation of synthetic cannabinoids that have become marketed as legal alternatives to cannabis (marijuana). Unfortunately, there is a dearth of information about the pharmacological effects of many of these emerging synthetic cannabinoids (ESCs), which presents a challenge for regulatory authorities that need to take such scientific evidence into consideration in order to regulate ECSs as controlled substances. We aimed to characterize the pharmacological properties of ten ESCs using two cell based assays that enabled the determination of potency and efficacy relative to a panel of well-characterized cannabinoids. Agonist-mediated inhibition of forskolin-stimulated cyclic adenosine monophosphate (cAMP) levels was monitored in live HEK293T cells transfected with human cannabinoid receptor 1 gene (CNR1) and pGloSensor-22F. Pharmacological analysis of this data indicated that all of the ESCs tested were full agonists, with the following rank order of potency: Win 55212-2≈5F-PB-22≈AB-PINACA≈EAM-2201≈MAM-2201>JWH-250≈ PB-22>AKB48 N-(5FP)>AKB-48≈STS-135>XLR-11. Assessment of agonist-stimulated depression of Ca(2+) transients was also used to confirm the efficacy of five ESCs (XLR-11, JWH-250, AB-PINACA, 5F-PB-22, and MAM-2201) in cultured primary hippocampal neurons. This work aims to help inform decisions made by regulatory agencies concerned with the profusion of these poorly characterized recreational drugs. Copyright © 2016. Published by Elsevier B.V.

  9. Data Discovery and Access via the Heliophysics Events Knowledgebase (HEK)

    Science.gov (United States)

    Somani, A.; Hurlburt, N. E.; Schrijver, C. J.; Cheung, M.; Freeland, S.; Slater, G. L.; Seguin, R.; Timmons, R.; Green, S.; Chang, L.; Kobashi, A.; Jaffey, A.

    2011-12-01

    The HEK is a integrated system which helps direct scientists to solar events and data from a variety of providers. The system is fully operational and adoption of HEK has been growing since the launch of NASA's SDO mission. In this presentation we describe the different components that comprise HEK. The Heliophysics Events Registry (HER) and Heliophysics Coverage Registry (HCR) form the two major databases behind the system. The HCR allows the user to search on coverage event metadata for a variety of instruments. The HER allows the user to search on annotated event metadata for a variety of instruments. Both the HCR and HER are accessible via a web API which can return search results in machine readable formats (e.g. XML and JSON). A variety of SolarSoft services are also provided to allow users to search the HEK as well as obtain and manipulate data. Other components include - the Event Detection System (EDS) continually runs feature finding algorithms on SDO data to populate the HER with relevant events, - A web form for users to request SDO data cutouts for multiple AIA channels as well as HMI line-of-sight magnetograms, - iSolSearch, which allows a user to browse events in the HER and search for specific events over a specific time interval, all within a graphical web page, - Panorama, which is the software tool used for rapid visualization of large volumes of solar image data in multiple channels/wavelengths. The user can also easily create WYSIWYG movies and launch the Annotator tool to describe events and features. - EVACS, which provides a JOGL powered client for the HER and HCR. EVACS displays the searched for events on a full disk magnetogram of the sun while displaying more detailed information for events.

  10. Are cancer cells really softer than normal cells?

    Science.gov (United States)

    Alibert, Charlotte; Goud, Bruno; Manneville, Jean-Baptiste

    2017-05-01

    Solid tumours are often first diagnosed by palpation, suggesting that the tumour is more rigid than its surrounding environment. Paradoxically, individual cancer cells appear to be softer than their healthy counterparts. In this review, we first list the physiological reasons indicating that cancer cells may be more deformable than normal cells. Next, we describe the biophysical tools that have been developed in recent years to characterise and model cancer cell mechanics. By reviewing the experimental studies that compared the mechanics of individual normal and cancer cells, we argue that cancer cells can indeed be considered as softer than normal cells. We then focus on the intracellular elements that could be responsible for the softening of cancer cells. Finally, we ask whether the mechanical differences between normal and cancer cells can be used as diagnostic or prognostic markers of cancer progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  11. Down syndrome critical region 2 protein inhibits the transcriptional activity of peroxisome proliferator-activated receptor β in HEK293 cells

    International Nuclear Information System (INIS)

    Song, Hae Jin; Park, Joongkyu; Seo, Su Ryeon; Kim, Jongsun; Paik, Seung R.; Chung, Kwang Chul

    2008-01-01

    Down syndrome is mainly caused by a trisomy of chromosome 21. The Down syndrome critical region 2 (DSCR2) gene is located within a part of chromosome 21, the Down syndrome critical region (DSCR). To investigate the function of DSCR2, we sought to identify DSCR2-interacting proteins using yeast two-hybrid assays. A human fetal brain cDNA library was screened, and DSCR2 was found to interact with a member of the nuclear receptor superfamily, peroxisome proliferator-activated receptor β, (PPARβ). A co-immunoprecipitation assay demonstrated that DSCR2 physically interacts with PPARβ in mammalian HEK293 cells. DSCR2 also inhibited the ligand-induced transcriptional activity of PPARβ. Furthermore, PPARβ also decreased the solubility of DSCR2, which increased levels of insoluble DSCR2

  12. Inhibitory effects of hesperetin on Kv1.5 potassium channels stably expressed in HEK 293 cells and ultra-rapid delayed rectifier K(+) current in human atrial myocytes.

    Science.gov (United States)

    Wang, Huan; Wang, Hong-Fei; Wang, Chen; Chen, Yu-Fang; Ma, Rong; Xiang, Ji-Zhou; Du, Xin-Ling; Tang, Qiang

    2016-10-15

    In the present study, the inhibitory effects of hesperetin (HSP) on human cardiac Kv1.5 channels expressed in HEK 293 cells and the ultra-rapid delayed rectifier K(+) current (Ikur) in human atrial myocytes were examined by using the whole-cell configuration of the patch-clamp techniques. We found that hesperetin rapidly and reversibly suppressed human Kv1.5 current in a concentration dependent manner with a half-maximal inhibition (IC50) of 23.15 μΜ with a Hill coefficient of 0.89. The current was maximally diminished about 71.36% at a concentration of 300μM hesperetin. Hesperetin significantly positive shifted the steady-state activation curve of Kv1.5, while negative shifted the steady-state inactivation curve. Hesperetin also accelerated the inactivation and markedly slowed the recovery from the inactivation of Kv1.5 currents. Block of Kv1.5 currents by hesperetin was in a frequency dependent manner. However, inclusion of 30μM hesperetin in pipette solution produced no effect on Kv1.5 channel current, while the current were remarkable and reversibly inhibited by extracellular application of 30μM hesperetin. We also found that hesperetin potently and reversibly inhibited the ultra-repaid delayed K(+) current (Ikur) in human atrial myocytes, which is in consistent with the effects of hesperetin on Kv1.5 currents in HEK 293 cells. In conclusion, hesperetin is a potent inhibitor of Ikur (which is encoded by Kv1.5), with blockade probably due to blocking of both open state and inactivated state channels from outside of the cell. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effect of therapeutic concentration of lithium on live HEK293 cells, increase of Na+/K+-ATPase, change of overall protein composition and alteration of surface layer of plasma membrane

    Czech Academy of Sciences Publication Activity Database

    Vošahlíková, Miroslava; Ujčíková, Hana; Chernyavskiy, Oleksandr; Brejchová, Jana; Roubalová, Lenka; Alda, M.; Svoboda, Petr

    2017-01-01

    Roč. 1861, č. 5 (2017), s. 1099-1112 ISSN 0304-4165 R&D Projects: GA ČR(CZ) GAP207/12/0919; GA ČR(CZ) GA15-16605S; GA ČR(CZ) GA17-07070S Institutional support: RVO:67985823 Keywords : lithium * HEK293 cells * Na+/K+-ATPase * membrane biophysics * proteomic analysis Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.702, year: 2016

  14. Analysis of the regulation of fatty acid binding protein 7 expression in human renal carcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Sugiyama Takayuki

    2011-07-01

    Full Text Available Abstract Background Improving the treatment of renal cell carcinoma (RCC will depend on the development of better biomarkers for predicting disease progression and aiding the design of appropriate therapies. One such marker may be fatty acid binding protein 7 (FABP7, also known as B-FABP and BLBP, which is expressed normally in radial glial cells of the developing central nervous system and cells of the mammary gland. Melanomas, glioblastomas, and several types of carcinomas, including RCC, overexpress FABP7. The abundant expression of FABP7 in primary RCCs compared to certain RCC-derived cell lines may allow the definition of the molecular components of FABP7's regulatory system. Results We determined FABP7 mRNA levels in six RCC cell lines. Two were highly expressed, whereas the other and the embryonic kidney cell line (HEK293 were weakly expressed FABP7 transcripts. Western blot analysis of the cell lines detected strong FABP7 expression only in one RCC cell line. Promoter activity in the RCC cell lines was 3- to 21-fold higher than that of HEK293. Deletion analysis demonstrated that three FABP7 promoter regions contributed to upregulated expression in RCC cell lines, but not in the HEK293 cell. Competition analysis of gel shifts indicated that OCT1, OCT6, and nuclear factor I (NFI bound to the FABP7 promoter region. Supershift experiments indicated that BRN2 (POU3F2 and NFI bound to the FABP7 promoter region as well. There was an inverse correlation between FABP7 promoter activity and BRN2 mRNA expression. The FABP7-positive cell line's NFI-DNA complex migrated faster than in other cell lines. Levels of NFIA mRNA were higher in the HEK293 cell line than in any of the six RCC cell lines. In contrast, NFIC mRNA expression was lower in the HEK293 cell line than in the six RCC cell lines. Conclusions Three putative FABP7 promoter regions drive reporter gene expression in RCC cell lines, but not in the HEK293 cell line. BRN2 and NFI may be key

  15. Data on the construction of a recombinant HEK293 cell line overexpressing hERG potassium channel and examining the presence of hERG mRNA and protein expression

    Directory of Open Access Journals (Sweden)

    Yi Fan Teah

    2017-10-01

    Full Text Available The data presented in this article are related to the research article entitled “The effects of deoxyelephantopin on the cardiac delayed rectifier potassium channel current (IKr and human ether-a-go-go-related gene (hERG expression” (Y.F. Teah, M.A. Abduraman, A. Amanah, M.I. Adenan, S.F. Sulaiman, M.L. Tan [1], which the possible hERG blocking properties of deoxyelephantopin were investigated. This article describes the construction of human embryonic kidney 293 (HEK293 cells overexpressing HERG potassium channel and verification of the presence of hERG mRNA and protein expression in this recombinant cell line.

  16. Single Cell Force Spectroscopy for Quantification of Cellular Adhesion on Surfaces

    Science.gov (United States)

    Christenson, Wayne B.

    Cell adhesion is an important aspect of many biological processes. The atomic force microscope (AFM) has made it possible to quantify the forces involved in cellular adhesion using a technique called single cell force spectroscopy (SCFS). AFM based SCFS offers versatile control over experimental conditions for probing directly the interaction between specific cell types and specific proteins, surfaces, or other cells. Transmembrane integrins are the primary proteins involved in cellular adhesion to the extra cellular matix (ECM). One of the chief integrins involved in the adhesion of leukocyte cells is alpha Mbeta2 (Mac-1). The experiments in this dissertation quantify the adhesion of Mac-1 expressing human embryonic kidney (HEK Mac-1), platelets, and neutrophils cells on substrates with different concentrations of fibrinogen and on fibrin gels and multi-layered fibrinogen coated fibrin gels. It was shown that multi-layered fibrinogen reduces the adhesion force of these cells considerably. A novel method was developed as part of this research combining total internal reflection microscopy (TIRFM) with SCFS allowing for optical microscopy of HEK Mac-1 cells interacting with bovine serum albumin (BSA) coated glass after interacting with multi-layered fibrinogen. HEK Mac-1 cells are able to remove fibrinogen molecules from the multi-layered fibrinogen matrix. An analysis methodology for quantifying the kinetic parameters of integrin-ligand interactions from SCFS experiments is proposed, and the kinetic parameters of the Mac-1 fibrinogen bond are quantified. Additional SCFS experiments quantify the adhesion of macrophages and HEK Mac-1 cells on functionalized glass surfaces and normal glass surfaces. Both cell types show highest adhesion on a novel functionalized glass surface that was prepared to induce macrophage fusion. These experiments demonstrate the versatility of AFM based SCFS, and how it can be applied to address many questions in cellular biology offering

  17. The Economist peab Ilvest "aasta tõusvaks täheks"

    Index Scriptorium Estoniae

    2007-01-01

    Briti majandusajakiri The Economist nimetas aastaülevaates president Toomas Hendrik Ilvese 2006. aasta tõusvaks täheks Euroopa poliitikas. Ingl. k. ilmunud ka: In Time 2007, kevad, lk. 22, pealk.: Estonia's President a rising star

  18. Glutamine synthetase gene knockout-human embryonic kidney 293E cells for stable production of monoclonal antibodies.

    Science.gov (United States)

    Yu, Da Young; Lee, Sang Yoon; Lee, Gyun Min

    2018-05-01

    Previously, it was inferred that a high glutamine synthetase (GS) activity in human embryonic kidney (HEK) 293E cells results in elevated resistance to methionine sulfoximine (MSX) and consequently hampers GS-mediated gene amplification and selection by MSX. To overcome this MSX resistance in HEK293E cells, a GS-knockout HEK293E cell line was generated using the CRISPR/Cas9 system to target the endogenous human GS gene. The GS-knockout in the HEK293E cell line (RK8) was confirmed by Western blot analysis of GS and by observation of glutamine-dependent growth. Unlike the wild type HEK293E cells, the RK8 cells were successfully used as host cells to generate a recombinant HEK293E cell line (rHEK293E) producing a monoclonal antibody (mAb). When the RK8 cells were transfected with the GS expression vector containing the mAb gene, rHEK293E cells producing the mAb could be selected in the absence as well as in the presence of MSX. The gene copies and mRNA expression levels of the mAb in rHEK293E cells were also quantified using qRT-PCR. Taken together, the GS-knockout HEK293E cell line can be used as host cells to generate stable rHEK293E cells producing a mAb through GS-mediated gene selection in the absence as well as in the presence of MSX. © 2018 Wiley Periodicals, Inc.

  19. Interaction between amiodarone and hepatitis-C virus nucleotide inhibitors in human induced pluripotent stem cell-derived cardiomyocytes and HEK-293 Cav{sub 1.2} over-expressing cells

    Energy Technology Data Exchange (ETDEWEB)

    Lagrutta, Armando, E-mail: armando_lagrutta@merck.com; Zeng, Haoyu; Imredy, John; Balasubramanian, Bharathi; Dech, Spencer; Lis, Edward; Wang, Jixin; Zhai, Jin; DeGeorge, Joseph; Sannajust, Frederick

    2016-10-01

    Several clinical cases of severe bradyarrhythmias have been reported upon co-administration of the Hepatitis-C NS5B Nucleotide Polymerase Inhibitor (HCV-NI) direct-acting antiviral agent, sofosbuvir (SOF), and the Class-III anti-arrhythmic amiodarone (AMIO). We model the cardiac drug-drug interaction (DDI) between AMIO and SOF, and between AMIO and a closely-related SOF analog, MNI-1 (Merck Nucleotide Inhibitor #1), in functional assays of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), to provide mechanistic insights into recently reported clinical cases. AMIO co-applied with SOF or MNI-1 increased beating rate or field potential (FP) rate and decreased impedance (IMP) and Ca{sup 2+} transient amplitudes in hiPSC-CM syncytia. This action resembled that of Ca{sup 2+} channel blockers (CCBs) in the model, but CCBs did not substitute for AMIO in the DDI. AMIO analog dronedarone (DRON) did not substitute for, but competed with AMIO in the DDI. Ryanodine and thapsigargin, decreasing intracellular Ca{sup 2+} stores, and SEA-0400, a Na{sup +}/Ca{sup 2+} exchanger-1 (NCX1) inhibitor, partially antagonized or suppressed DDI effects. Other agents affecting FP rate only exerted additive or subtractive effects, commensurate with their individual effects. We also describe an interaction between AMIO and MNI-1 on Cav{sub 1.2} ion channels in an over-expressing HEK-293 cell line. MNI-1 enhanced Cav{sub 1.2} channel inhibition by AMIO, but did not affect inhibition of Cav{sub 1.2} by DRON, verapamil, nifedipine, or diltiazem. Our data in hiPSC-CMs indicate that HCV-NI agents such as SOF and MNI-1 interact with key intracellular Ca{sup 2+}-handling mechanisms. Additional study in a Cav{sub 1.2} HEK-293 cell-line suggests that HCV-NIs potentiate the inhibitory action of AMIO on L-type Ca{sup 2+} channels. - Highlights: • Adverse clinical interaction between amiodarone and HCV-NI drugs is captured by in vitro models. • Human iPSC-derived cardiomyocyte

  20. Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells.

    Directory of Open Access Journals (Sweden)

    Xi Chu

    Full Text Available Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells, and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV. Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively. Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities.

  1. Effects of Tannic Acid, Green Tea and Red Wine on hERG Channels Expressed in HEK293 Cells

    Science.gov (United States)

    Xu, Bingyuan; Li, Wenya; Lin, Yue; Sun, Xiaorun; Ding, Chunhua; Zhang, Xuan

    2015-01-01

    Tannic acid presents in varying concentrations in plant foods, and in relatively high concentrations in green teas and red wines. Human ether-à-go-go-related gene (hERG) channels expressed in multiple tissues (e.g. heart, neurons, smooth muscle and cancer cells), and play important roles in modulating cardiac action potential repolarization and tumor cell biology. The present study investigated the effects of tannic acid, green teas and red wines on hERG currents. The effects of tannic acid, teas and red wines on hERG currents stably transfected in HEK293 cells were studied with a perforated patch clamp technique. In this study, we demonstrated that tannic acid inhibited hERG currents with an IC50 of 3.4 μM and ~100% inhibition at higher concentrations, and significantly shifted the voltage dependent activation to more positive potentials (Δ23.2 mV). Remarkably, a 100-fold dilution of multiple types of tea (green tea, oolong tea and black tea) or red wine inhibited hERG currents by ~90%, and significantly shifted the voltage dependent activation to more positive potentials (Δ30.8 mV and Δ26.0 mV, respectively). Green tea Lung Ching and red wine inhibited hERG currents, with IC50 of 0.04% and 0.19%, respectively. The effects of tannic acid, teas and red wine on hERG currents were irreversible. These results suggest tannic acid is a novel hERG channel blocker and consequently provide a new mechanistic evidence for understanding the effects of tannic acid. They also revealed the potential pharmacological basis of tea- and red wine-induced biology activities. PMID:26625122

  2. Hypotonic activation of the myo-inositol transporter SLC5A3 in HEK293 cells probed by cell volumetry, confocal and super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Joseph Andronic

    Full Text Available Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol P ino [m/s] and expression/localization of SLC5A3. P ino values were determined by cell volumetry over a wide tonicity range (100-275 mOsm in myo-inositol-substituted solutions. While being negligible under mild hypotonicity (200-275 mOsm, P ino grew rapidly at osmolalities below 200 mOsm to reach a maximum of ∼ 3 nm/s at 100-125 mOsm, as indicated by fast cell swelling due to myo-inositol influx. The increase in P ino resulted most likely from the hypotonicity-mediated incorporation of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence microscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immunostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM. dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3 proteins of 200-2000 localizations/μm2. Assuming SLC5A3 to be the major path for myo-inositol, a turnover rate of 80-800 myo-inositol molecules per second for a single transporter protein was estimated from combined volumetric and dSTORM data. Hypotonic stress also caused a significant upregulation of SLC5A3 gene expression as detected by semiquantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this transporter in hypotonic volume regulation of mammalian cells.

  3. VHL Frameshift Mutation as Target of Nonsense-Mediated mRNA Decay in Drosophila melanogaster and Human HEK293 Cell Line

    Directory of Open Access Journals (Sweden)

    Lucia Micale

    2009-01-01

    Full Text Available There are many well-studied examples of human phenotypes resulting from nonsense or frameshift mutations that are modulated by Nonsense-Mediated mRNA Decay (NMD, a process that typically degrades transcripts containing premature termination codons (PTCs in order to prevent translation of unnecessary or aberrant transcripts. Different types of germline mutations in the VHL gene cause the von Hippel-Lindau disease, a dominantly inherited familial cancer syndrome with a marked phenotypic variability and age-dependent penetrance. By generating the Drosophila UAS:Upf1D45B line we showed the possible involvement of NMD mechanism in the modulation of the c.172delG frameshift mutation located in the exon 1 of Vhl gene. Further, by Quantitative Real-time PCR (QPCR we demonstrated that the corresponding c.163delG human mutation is targeted by NMD in human HEK 293 cells. The UAS:Upf1D45B line represents a useful system to identify novel substrates of NMD pathway in Drosophila melanogaster. Finally, we suggest the possible role of NMD on the regulation of VHL mutations.

  4. DNA amplification is rare in normal human cells

    International Nuclear Information System (INIS)

    Wright, J.A.; Watt, F.M.; Hudson, D.L.; Stark, G.R.; Smith, H.S.; Hancock, M.C.

    1990-01-01

    Three types of normal human cells were selected in tissue culture with three drugs without observing a single amplification event from a total of 5 x 10 8 cells. No drug-resistant colonies were observed when normal foreskin keratinocytes were selected with N-(phosphonacetyl)-L-aspartate or with hydroxyurea or when normal mammary epithelial cells were selected with methotrexate. Some slightly resistant colonies with limited potential for growth were obtained when normal diploid fibroblast cells derived from fetal lung were selected with methotrexate or hydroxyurea but careful copy-number analysis of the dihydrofolate reductase and ribonucleotide reductase genes revealed no evidence of amplification. The rarity of DNA amplification in normal human cells contrasts strongly with the situation in tumors and in established cell lines, where amplification of onogenes and of genes mediating drug resistance is frequent. The results suggest that tumors and cell lines have acquired the abnormal ability to amplify DNA with high frequency

  5. Limitations to the development of recombinant human embryonic kidney 293E cells using glutamine synthetase-mediated gene amplification: Methionine sulfoximine resistance.

    Science.gov (United States)

    Yu, Da Young; Noh, Soo Min; Lee, Gyun Min

    2016-08-10

    To investigate the feasibility of glutamine synthetase (GS)-mediated gene amplification in HEK293 cells for the high-level stable production of therapeutic proteins, HEK293E cells were transfected by the GS expression vector containing antibody genes and were selected at various methionine sulfoximine (MSX) concentrations in 96-well plates. For a comparison, CHOK1 cells were transfected by the same GS expression vector and selected at various MSX concentrations. Unlike CHOK1 cells, HEK293E cells producing high levels of antibodies were not selected at all. For HEK293E cells, the number of wells with the cell pool did not decrease with an increase in the concentration of MSX up to 500μM MSX. A q-RT-PCR analysis confirmed that the antibody genes in the HEK293E cells, unlike the CHOK1 cells, were not amplified after increasing the MSX concentration. It was found that the GS activity in HEK293E cells was much higher than that in CHOK1 cells (PMSX and therefore hampers GS-mediated gene amplification by MSX. Thus, in order to apply the GS-mediated gene amplification system to HEK293 cells, the endogenous GS expression level in HEK293 cells needs to be minimized by knock-out or down-regulation methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Phosphorylation and transport in the Na-K-2Cl cotransporters, NKCC1 and NKCC2A, compared in HEK-293 cells.

    Directory of Open Access Journals (Sweden)

    Anke Hannemann

    2011-03-01

    Full Text Available Na-K-2Cl cotransporters help determine cell composition and volume. NKCC1 is widely distributed whilst NKCC2 is only found in the kidney where it plays a vital role reabsorbing 20% of filtered NaCl. NKCC2 regulation is poorly understood because of its restricted distribution and difficulties with its expression in mammalian cell cultures. Here we compare phosphorylation of the N-termini of the cotransporters, measured with phospho-specific antibodies, with bumetanide-sensitive transport of K(+ ((86Rb(+ (activity in HEK-293 cells stably expressing fNKCC1 or fNKCC2A which were cloned from ferret kidney. Activities of transfected transporters were distinguished from those of endogenous ones by working at 37 °C. fNKCC1 and fNKCC2A activities were highest after pre-incubation of cells in hypotonic low-[Cl(-] media to reduce cell [Cl(-] and volume during flux measurement. Phosphorylation of both transporters more than doubled. Pre-incubation with ouabain also strongly stimulated fNKCC1 and fNKCC2A and substantially increased phosphorylation, whereas pre-incubation in Na(+-free media maximally stimulated fNKCC1 and doubled its phosphorylation, but inhibited fNKCC2A, with a small increase in its phosphorylation. Kinase inhibitors halved phosphorylation and activity of both transporters whereas inhibition of phosphatases with calyculin A strongly increased phosphorylation of both transporters but only slightly stimulated fNKCC1 and inhibited fNCCC2A. Thus kinase inhibition reduced phosphorylation and transport, and transport stimulation was only seen when phosphorylation increased, but transport did not always increase with phosphorylation. This suggests phosphorylation of the N-termini determines the transporters' potential capacity to move ions, but final activity also depends on other factors. Transport cannot be reliably inferred solely using phospho-specific antibodies on whole-cell lysates.

  7. Phosphorylation and transport in the Na-K-2Cl cotransporters, NKCC1 and NKCC2A, compared in HEK-293 cells.

    Science.gov (United States)

    Hannemann, Anke; Flatman, Peter W

    2011-03-25

    Na-K-2Cl cotransporters help determine cell composition and volume. NKCC1 is widely distributed whilst NKCC2 is only found in the kidney where it plays a vital role reabsorbing 20% of filtered NaCl. NKCC2 regulation is poorly understood because of its restricted distribution and difficulties with its expression in mammalian cell cultures. Here we compare phosphorylation of the N-termini of the cotransporters, measured with phospho-specific antibodies, with bumetanide-sensitive transport of K(+) ((86)Rb(+)) (activity) in HEK-293 cells stably expressing fNKCC1 or fNKCC2A which were cloned from ferret kidney. Activities of transfected transporters were distinguished from those of endogenous ones by working at 37 °C. fNKCC1 and fNKCC2A activities were highest after pre-incubation of cells in hypotonic low-[Cl(-)] media to reduce cell [Cl(-)] and volume during flux measurement. Phosphorylation of both transporters more than doubled. Pre-incubation with ouabain also strongly stimulated fNKCC1 and fNKCC2A and substantially increased phosphorylation, whereas pre-incubation in Na(+)-free media maximally stimulated fNKCC1 and doubled its phosphorylation, but inhibited fNKCC2A, with a small increase in its phosphorylation. Kinase inhibitors halved phosphorylation and activity of both transporters whereas inhibition of phosphatases with calyculin A strongly increased phosphorylation of both transporters but only slightly stimulated fNKCC1 and inhibited fNCCC2A. Thus kinase inhibition reduced phosphorylation and transport, and transport stimulation was only seen when phosphorylation increased, but transport did not always increase with phosphorylation. This suggests phosphorylation of the N-termini determines the transporters' potential capacity to move ions, but final activity also depends on other factors. Transport cannot be reliably inferred solely using phospho-specific antibodies on whole-cell lysates.

  8. Delivery of the autofluorescent protein R-phycoerythrin by calcium phosphate nanoparticles into four different eukaryotic cell lines (HeLa, HEK293T, MG-63, MC3T3: Highly efficient, but leading to endolysosomal proteolysis in HeLa and MC3T3 cells.

    Directory of Open Access Journals (Sweden)

    Mathis Kopp

    Full Text Available Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic molecules across the cell membrane because many molecules are not able to cross the cell membrane on their own. The uptake of nanoparticles together with their cargo typically occurs via endocytosis, raising concerns about the possible degradation of the cargo in the endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and processing is not indicative of the presence of the protein itself but only for the fluorescent label, a label-free tracking was performed with the red-fluorescing model protein R-phycoerythrin (R-PE. Four different eukaryotic cell lines were investigated: HeLa, HEK293T, MG-63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa cells, the protein was found in early endosomes (shown by the marker EEA1 and lysosomes (shown by the marker Lamp1. There, it was still intact and functional (i.e. properly folded as its red fluorescence was detected. However, a few hours after the uptake, proteolysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the protein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein degradation in lysosomes, the fluorescence of R-PE remained intact over the whole observation period in the four cell lines. These results indicate that despite an efficient nanoparticle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent the desired (e.g. therapeutic effect of a protein inside a cell.

  9. Delivery of the autofluorescent protein R-phycoerythrin by calcium phosphate nanoparticles into four different eukaryotic cell lines (HeLa, HEK293T, MG-63, MC3T3): Highly efficient, but leading to endolysosomal proteolysis in HeLa and MC3T3 cells.

    Science.gov (United States)

    Kopp, Mathis; Rotan, Olga; Papadopoulos, Chrisovalantis; Schulze, Nina; Meyer, Hemmo; Epple, Matthias

    2017-01-01

    Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic molecules across the cell membrane because many molecules are not able to cross the cell membrane on their own. The uptake of nanoparticles together with their cargo typically occurs via endocytosis, raising concerns about the possible degradation of the cargo in the endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and processing is not indicative of the presence of the protein itself but only for the fluorescent label, a label-free tracking was performed with the red-fluorescing model protein R-phycoerythrin (R-PE). Four different eukaryotic cell lines were investigated: HeLa, HEK293T, MG-63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa cells, the protein was found in early endosomes (shown by the marker EEA1) and lysosomes (shown by the marker Lamp1). There, it was still intact and functional (i.e. properly folded) as its red fluorescence was detected. However, a few hours after the uptake, proteolysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the protein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein degradation in lysosomes, the fluorescence of R-PE remained intact over the whole observation period in the four cell lines. These results indicate that despite an efficient nanoparticle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent the desired (e.g. therapeutic) effect of a protein inside a cell.

  10. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  11. A Chimeric NaV1.8 Channel Expression System Based on HEK293T Cell Line

    Directory of Open Access Journals (Sweden)

    Xi Zhou

    2018-04-01

    Full Text Available Among the nine voltage-gated sodium channel (NaV subtypes, NaV1.8 is an attractive therapeutic target for pain. The heterologous expression of recombinant NaV1.8 currents is of particular importance for its electrophysiological and pharmacological studies. However, NaV1.8 expresses no or low-level functional currents when transiently transfected into non-neuronal cell lines. The present study aims to explore the molecular determinants limiting its functional expression and accordingly establish a functional NaV1.8 expression system. We conducted screening analysis of the NaV1.8 intracellular loops by constructing NaV chimeric channels and confirmed that the NaV1.8 C-terminus was the only limiting factor. Replacing this sequence with that of NaV1.4, NaV1.5, or NaV1.7 constructed functional channels (NaV1.8/1.4L5, NaV1.8/1.5L5, and NaV1.8/1.7L5, respectively, which expressed high-level NaV1.8-like currents in HEK293T cells. The chimeric channel NaV1.8/1.7L5 displayed much faster inactivation of its macroscopic currents than NaV1.8/1.4L5 and NaV1.8/1.5L5, and it was the most similar to wild-type NaV1.8 expressed in ND7/23 cells. Its currents were very stable during repetitive depolarizations, while its repriming kinetic was different from wild-type NaV1.8. Most importantly, NaV1.8/1.7L5 pharmacologically resembled wild-type NaV1.8 as revealed by testing their susceptibility to two NaV1.8 selective antagonists, APETx-2 and MrVIB. NaV chimeras study showed that at least the domain 2 and domain 4 of NaV1.8 were involved in binding with APETx-2. Our study provided new insights into the function of NaV1.8 intracellular loops, as well as a reliable and convenient expression system which could be useful in NaV1.8 studies.

  12. Anion-sensitive regions of L-type CaV1.2 calcium channels expressed in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Norbert Babai

    2010-01-01

    Full Text Available L-type calcium currents (I(Ca are influenced by changes in extracellular chloride, but sites of anion effects have not been identified. Our experiments showed that CaV1.2 currents expressed in HEK293 cells are strongly inhibited by replacing extracellular chloride with gluconate or perchlorate. Variance-mean analysis of I(Ca and cell-attached patch single channel recordings indicate that gluconate-induced inhibition is due to intracellular anion effects on Ca(2+ channel open probability, not conductance. Inhibition of CaV1.2 currents produced by replacing chloride with gluconate was reduced from approximately 75%-80% to approximately 50% by omitting beta subunits but unaffected by omitting alpha(2delta subunits. Similarly, gluconate inhibition was reduced to approximately 50% by deleting an alpha1 subunit N-terminal region of 15 residues critical for beta subunit interactions regulating open probability. Omitting beta subunits with this mutant alpha1 subunit did not further diminish inhibition. Gluconate inhibition was unchanged with expression of different beta subunits. Truncating the C terminus at AA1665 reduced gluconate inhibition from approximately 75%-80% to approximately 50% whereas truncating it at AA1700 had no effect. Neutralizing arginines at AA1696 and 1697 by replacement with glutamines reduced gluconate inhibition to approximately 60% indicating these residues are particularly important for anion effects. Expressing CaV1.2 channels that lacked both N and C termini reduced gluconate inhibition to approximately 25% consistent with additive interactions between the two tail regions. Our results suggest that modest changes in intracellular anion concentration can produce significant effects on CaV1.2 currents mediated by changes in channel open probability involving beta subunit interactions with the N terminus and a short C terminal region.

  13. Distinct signalling pathways of murine histamine H1- and H4-receptors expressed at comparable levels in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Silke Beermann

    Full Text Available Histamine (HA is recognized by its target cells via four G-protein-coupled receptors, referred to as histamine H1-receptor (H1R, H2R, H3R, and H4R. Both H1R and H4R exert pro-inflammatory functions. However, their signal transduction pathways have never been analyzed in a directly comparable manner side by side. Moreover, the analysis of pharmacological properties of the murine orthologs, representing the main targets of pre-clinical research, is very important. Therefore, we engineered recombinant HEK293 cells expressing either mouse (mH1R or mH4R at similar levels and analyzed HA-induced signalling in these cells. HA induced intracellular calcium mobilization via both mH1R and mH4R, with the mH1R being much more effective. Whereas cAMP accumulation was potentiated via the mH1R, it was reduced via the mH4R. The regulation of both second messengers via the H4R, but not the H1R, was sensitive to pertussis toxin (PTX. The mitogen-activated protein kinases (MAPKs ERK 1/2 were massively activated downstream of both receptors and demonstrated a functional involvement in HA-induced EGR-1 gene expression. The p38 MAPK was moderately activated via both receptors as well, but was functionally involved in HA-induced EGR-1 gene expression only in H4R-expressing cells. Surprisingly, in this system p38 MAPK activity reduced the HA-induced gene expression. In summary, using this system which allows a direct comparison of mH1R- and mH4R-induced signalling, qualitative and quantitative differences on the levels of second messenger generation and also in terms of p38 MAPK function became evident.

  14. Regulation of Constitutive GPR3 Signaling and Surface Localization by GRK2 and β-arrestin-2 Overexpression in HEK293 Cells.

    Directory of Open Access Journals (Sweden)

    Katie M Lowther

    Full Text Available G protein-coupled receptor 3 (GPR3 is a constitutively active receptor that maintains high 3'-5'-cyclic adenosine monophosphate (cAMP levels required for meiotic arrest in oocytes and CNS function. Ligand-activated G protein-coupled receptors (GPCRs signal at the cell surface and are silenced by phosphorylation and β-arrestin recruitment upon endocytosis. Some GPCRs can also signal from endosomes following internalization. Little is known about the localization, signaling, and regulation of constitutively active GPCRs. We demonstrate herein that exogenously-expressed GPR3 localizes to the cell membrane and undergoes internalization in HEK293 cells. Inhibition of endocytosis increased cell surface-localized GPR3 and cAMP levels while overexpression of GPCR-Kinase 2 (GRK2 and β-arrestin-2 decreased cell surface-localized GPR3 and cAMP levels. GRK2 by itself is sufficient to decrease cAMP production but both GRK2 and β-arrestin-2 are required to decrease cell surface GPR3. GRK2 regulates GPR3 independently of its kinase activity since a kinase inactive GRK2-K220R mutant significantly decreased cAMP levels. However, GRK2-K220R and β-arrestin-2 do not diminish cell surface GPR3, suggesting that phosphorylation is required to induce GPR3 internalization. To understand which residues are targeted for desensitization, we mutated potential phosphorylation sites in the third intracellular loop and C-terminus and examined the effect on cAMP and receptor surface localization. Mutation of residues in the third intracellular loop dramatically increased cAMP levels whereas mutation of residues in the C-terminus produced cAMP levels comparable to GPR3 wild type. Interestingly, both mutations significantly reduced cell surface expression of GPR3. These results demonstrate that GPR3 signals at the plasma membrane and can be silenced by GRK2/β-arrestin overexpression. These results also strongly implicate the serine and/or threonine residues in the third

  15. Enhanced functional recombinant factor VII production by HEK 293 cells stably transfected with VKORC1 where the gamma-carboxylase inhibitor calumenin is stably suppressed by shRNA transfection.

    Science.gov (United States)

    Wajih, Nadeem; Owen, John; Wallin, Reidar

    2008-01-01

    Recombinant members of the vitamin K-dependent protein family (factors IX and VII and protein C) have become important pharmaceuticals in treatment of bleeding disorders and sepsis. However, because the in vivo gamma-carboxylation system in stable cell lines used for transfection has a limited capacity of post translational gamma-carboxylation, the recovery of fully gamma-carboxylated and functional proteins is low. In this work we have engineered recombinant factor VII producing HEK 293 cells to stably overexpress VKORC1, the reduced vitamin K gamma-carboxylase cofactor and in addition stably silenced the gamma-carboxylase inhibitory protein calumenin. Stable cell lines transfected with only a factor VII cDNA had a 9% production of functional recombinant factor VII. On the other hand, these recombinant factor VII producing cells when engineered to overexpress VKORC1 and having calumenin stably suppressed more than 80% by shRNA expression, produced 68% functional factor VII. The technology presented should be applicable to all vertebrae members of the vitamin K-dependent protein family and should lower the production cost of the clinically used factors VII, IX and protein C.

  16. Stable radioresistance in ataxia-telangiectasia cells containing DNA from normal human cells

    International Nuclear Information System (INIS)

    Kapp, L.N.; Painter, R.B.

    1989-01-01

    SV40-transformed ataxia-telangiectasia (AT) cells were transfected with a cosmid containing a normal human DNA library and selectable marker, the neo gene, which endows successfully transformed mammalian cells with resistance to the antibiotic G418. Cells from this line were irradiated with 50 Gy of X-rays and fused with non-transfected AT cells. Among the G418-resistant colonies recovered was one stably resistant to radiation. Resistance to ionizing radiation of both primary transfectant line and its fusion derivative was intermediate between that of AT cells and normal cells, as assayed by colony-forming ability and measurement of radiation-induced G 2 chromatic aberrations; both cell lines retained AT-like radioresistant DNA synthesis. Results suggest that, because radioresistance in transfected cells was not as great as in normal human cells, two hallmarks of AT, radiosensitivity and radioresistant DNA synthesis, may still be the result of a single defective AT gene. (author)

  17. Agonist-induced desensitization of human β3-adrenoceptors expressed in human embryonic kidney cells

    NARCIS (Netherlands)

    Michel-Reher, Martina B.; Michel, Martin C.

    2013-01-01

    β3-Adrenoceptors are resistant to agonist-induced desensitization in some cell types but susceptible in others including transfected human embryonic kidney (HEK) cells. Therefore, we have studied cellular and molecular changes involved in agonist-induced β3-adrenoceptor desensitization in HEK cells.

  18. Antiproliferative Effects of Bacillus coagulans Unique IS2 in Colon Cancer Cells.

    Science.gov (United States)

    Madempudi, Ratna Sudha; Kalle, Arunasree M

    2017-10-01

    In the present study, the in vitro anticancer (antiproliferative) effects of Bacillus coagulans Unique IS2 were evaluated on human colon cancer (COLO 205), cervical cancer (HeLa), and chronic myeloid leukemia (K562) cell lines with a human embryonic kidney cell line (HEK 293T) as noncancerous control cells. The Cytotoxicity assay (MTT) clearly demonstrated a 22%, 31.7%, and 19.5% decrease in cell proliferation of COLO 205, HeLa, and K562 cells, respectively, when compared to the noncancerous HEK 293T cells. Normal phase-contrast microscopic images clearly suggested that the mechanism of cell death is by apoptosis. To further confirm the induction of apoptosis by Unique IS2, the sub-G0-G1 peak of the cell cycle was quantified using a flow cytometer and the data indicated 40% of the apoptotic cells in Unique IS2-treated COLO cells when compared with their untreated control cells. The Western blot analysis showed an increase in pro-apoptotic protein BAX, decrease in antiapoptotic protein, Bcl2, decrease in mitochondrial membrane potential, increase in cytochrome c release, increase in Caspase 3 activity, and cleavage of poly(ADP-ribose) polymerase. The present study suggests that the heat-killed culture supernatant of B. coagulans can be more effective in inducing apoptosis of colon cancer cells and that can be considered for adjuvant therapy in the treatment of colon carcinoma.

  19. Fungal invasion of normally non-phagocytic host cells.

    Directory of Open Access Journals (Sweden)

    Scott G Filler

    2006-12-01

    Full Text Available Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research.

  20. DNA-repair, cell killing and normal tissue damage

    International Nuclear Information System (INIS)

    Dahm-Daphi, J.; Dikomey, E.; Brammer, I.

    1998-01-01

    Background: Side effects of radiotherapy in normal tissue is determined by a variety of factors of which cellular and genetic contributions are described here. Material and methods: Review. Results: Normal tissue damage after irradiation is largely due to loss of cellular proliferative capacity. This can be due to mitotic cell death, apoptosis, or terminal differentiation. Dead or differentiated cells release cytokines which additionally modulate the tissue response. DNA damage, in particular non-reparable or misrepaired double-strand breaks are considered the basic lesion leading to G1-arrest and ultimately to cell inactivation. Conclusion: Evidence for genetic bases of normal tissue response, cell killing and DNA-repair capacity is presented. However, a direct link of all 3 endpoints has not yet been proved directly. (orig.) [de

  1. Mast cell distribution in normal adult skin

    NARCIS (Netherlands)

    A.S. Janssens (Artiena Soe); R. Heide (Rogier); J.C. den Hollander (Jan); P.G.M. Mulder (P. G M); B. Tank (Bhupendra); A.P. Oranje (Arnold)

    2005-01-01

    markdownabstract__AIMS:__ To investigate mast cell distribution in normal adult skin to provide a reference range for comparison with mastocytosis. __METHODS:__ Mast cells (MCs) were counted in uninvolved skin adjacent to basal cell carcinomas and other dermatological disorders in adults.

  2. Mitogen-stimulated phospholipid synthesis in normal and immune-deficient human B cells

    International Nuclear Information System (INIS)

    Chien, M.M.; Yokoyama, W.M.; Ashman, R.F.

    1986-01-01

    Eight patients with common variable panhypogammaglobulinemia were shown in the in vitro Ig biosynthesis assay to have defective B cell responses to pokeweed mitogen (PWM). Phospholipid synthesis was assessed in the B cell plus monocyte fraction (MB) and irradiated T cells (T*) of patients and paired normal controls. Cell populations were studied separately and in the four possible combinations (1:1), with and without PWM, to reveal the effect of cell interactions. At 16 to 20 hr the mean stimulation index (SI) +/- standard error for MB cells alone was 1.01 +/- 0.02 for eight patients and 0.99 +/- 0.02 for the paired normals; the T* cell SI was 1.25 +/- 0.04 for patients and 1.28 +/- 0.05 for normals. Combinations of normal MB cells with normal T* cells showed significantly higher SI when compared with the combinations of normal MB cells with patient T* cells (p less than 0.005). However, the combination of patient MB cells with patient T* cells and the combination of patient MB cells with normal T* cells were not significantly different in SI (0.05 less than p less than 0.1). Isolation of patient and normal B cells, T* cells, and monocytes after the choline pulse showed that patient B cells gave a higher SI with normal T* help than with patient T* help. Of greatest interest is the finding that patient B cells that were defective in PWM-stimulated Ig production nevertheless showed a phospholipid synthesis response to PWM in the normal range, suggesting that the maturation defect in these B cells occurs later than the phospholipid synthesis acceleration step, or on a different pathway

  3. Microcystin-LR induces anoikis resistance to the hepatocyte uptake transporter OATP1B3-expressing cell lines

    International Nuclear Information System (INIS)

    Takano, Hiroyuki; Takumi, Shota; Ikema, Satoshi; Mizoue, Nozomi; Hotta, Yuki; Shiozaki, Kazuhiro; Sugiyama, Yasumasa; Furukawa, Tatsuhiko; Komatsu, Masaharu

    2014-01-01

    Microcystin-LR is a cyclic peptide released by several bloom-forming cyanobacteria. Understanding the mechanism of microcystin-LR toxicity is important, because of the both potencies of its acute cytotoxicity and tumor-promoting activity in hepatocytes of animals and humans. Recently, we have reported that the expression of human hepatocyte uptake transporter OATP1B3 was critical for the selective uptake of microcystin-LR into hepatocytes and for induction of its fatal cytotoxicity. In this study, we demonstrated a novel function of microcystin-LR which induced bipotential changes including anoikis resistance and cytoskeleton reorganization to OATP1B3-transfected HEK293 cells (HEK293-OATP1B3). After exposure to microcystin-LR, HEK293-OATP1B3 cells were divided to the floating cells and remaining adherent cells. After collection and reseeding the floating cells into a fresh flask, cells were confluently proliferated (HEK293-OATP1B3-FL) under the microcystin-LR-free condition. Both the proliferated HEK293-OATP1B3-FL and remaining adherent HEK293-OATP1B3-AD cells changed the character with down- and up-regulation of E-cadherin, respectively. Additionally, these cells acquired resistance to microcystin-LR. These results suggest that microcystin-LR could be associated with not only tumor promotion, but also epithelial–mesenchymal transition-mediated cancer metastasis. Furthermore, microcystin-LR might induce the cytoskeleton reorganization be accompanied epithelial–mesenchymal transition

  4. Cell survival of human tumor cells compared with normal fibroblasts following 60Co gamma irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Henning, C.B.; Reynolds, S.D.; Holmblad, G.L.; Trier, J.E.

    1982-01-01

    Three tumor cell lines, two of which were shown to be HeLa cells, were irradiated with 60 Co gamma irradiation, together with two cell cultures of normal human diploid fibroblasts. Cell survival was studied in three different experiments over a dose range of 2 to 14 gray. All the tumor cell lines showed a very wide shoulder in the dose response curves in contrast to the extremely narrow shoulder of the normal fibroblasts. In addition, the D/sub o/ values for the tumor cell lines were somewhat greater. These two characteristics of the dose response curves resulted in up to 2 orders of magnitude less sensitivity for cell inactivation of HeLa cells when compared with normal cells at high doses (10 gray). Because of these large differences, the extrapolation of results from the irradiation of HeLa cells concerning the mechanisms of normal cell killing should be interpreted with great caution

  5. Characterisation of endogenous A2A and A2B receptor-mediated cyclic AMP responses in HEK 293 cells using the GloSensor™ biosensor: Evidence for an allosteric mechanism of action for the A2B-selective antagonist PSB 603.

    Science.gov (United States)

    Goulding, Joelle; May, Lauren T; Hill, Stephen J

    2018-01-01

    Endogenous adenosine A 2B receptors (A 2B AR) mediate cAMP accumulation in HEK 293 cells. Here we have used a biosensor to investigate the mechanism of action of the A 2B AR antagonist PSB 603 in HEK 293 cells. The A 2A agonist CGS 21680 elicited a small response in these cells (circa 20% of that obtained with NECA), suggesting that they also contain a small population of A 2A receptors. The responses to NECA and adenosine were antagonised by PSB 603, but not by the selective A 2A AR antagonist SCH 58261. In contrast, CGS 21680 responses were not antagonised by high concentrations of PSB 603, but were sensitive to inhibition by SCH 58261. Analysis of the effect of increasing concentrations of PSB 603 on the response to NECA indicated a non-competitive mode of action yielding a marked reduction in the NECA E MAX with no significant effect on EC 50 values. Kinetics analysis of the effect of PSB 603 on the A 2B AR-mediated NECA responses confirmed a saturable effect that was consistent with an allosteric mode of antagonism. The possibility that PSB 603 acts as a negative allosteric modulator of A 2B AR suggests new approaches to the development of therapeutic agents to treat conditions where adenosine levels are high. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Experiment list: SRX958179 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available s=Normal 30920488,0.0,29.8,0 GSM1635909: HEK293T HBG112 cas9 replicate 3; Homo sapiens; DNase-Hypersensitivi...ty source_name=HEK293T_HBG112_cas9 cell line || transfection=dcas9 targetting HBG1/2 http://dbarchive.biosci

  7. Experiment list: SRX958181 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available s=Normal 30000886,0.0,30.9,0 GSM1635911: HEK293T HBG112 cas9 replicate 5; Homo sapiens; DNase-Hypersensitivi...ty source_name=HEK293T_HBG112_cas9 cell line || transfection=dcas9 targetting HBG1/2 http://dbarchive.biosci

  8. Experiment list: SRX958178 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available s=Normal 32596442,0.0,31.5,0 GSM1635908: HEK293T HBG112 cas9 replicate 2; Homo sapiens; DNase-Hypersensitivi...ty source_name=HEK293T_HBG112_cas9 cell line || transfection=dcas9 targetting HBG1/2 http://dbarchive.biosci

  9. Experiment list: SRX958180 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available s=Normal 31504221,0.0,20.8,0 GSM1635910: HEK293T HBG112 cas9 replicate 4; Homo sapiens; DNase-Hypersensitivi...ty source_name=HEK293T_HBG112_cas9 cell line || transfection=dcas9 targetting HBG1/2 http://dbarchive.biosci

  10. Experiment list: SRX958177 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available s=Normal 45776005,0.0,46.8,0 GSM1635907: HEK293T HBG112 cas9 replicate 1; Homo sapiens; DNase-Hypersensitivi...ty source_name=HEK293T_HBG112_cas9 cell line || transfection=dcas9 targetting HBG1/2 http://dbarchive.biosci

  11. Glycosaminoglycan-sac formation in vitro. Interactions between normal and malignant cells

    OpenAIRE

    Logothetou-Rella, H.

    1994-01-01

    The interaction of monolayer normal human or normal rat cells with suspension Walker rat tumor cells was demonstrated cytologically, during a cocultivation period of thirty days. At ten days, Walker rat tumor cells were interiorized in the cytoplasm of the normal monolayer host cells. At twenty days, degeneration of the interiorized tumor cells followed by mucification led to glycosaminoglycan-sac formation. At thirty days, tumor nodules and protease (a,- c...

  12. Effect of Marine Omega 3 Fatty Acids on Methylmercury-Induced Toxicity in Fish and Mammalian Cells In Vitro

    Directory of Open Access Journals (Sweden)

    O. J. Nøstbakken

    2012-01-01

    Full Text Available Methylmercury (MeHg is a ubiquitous environmental contaminant which bioaccumulates in marine biota. Fish constitute an important part of a balanced human diet contributing with health beneficial nutrients but may also contain contaminants such as MeHg. Interactions between the marine n-3 fatty acids eicosapentaenoic acid (20:5n-3, EPA and docosahexaenoic acid (22:6n-3, DHA with MeHg-induced toxicity were investigated. Different toxic and metabolic responses were studied in Atlantic salmon kidney (ASK cell line and the mammalian kidney-derived HEK293 cell line. Both cell lines were preincubated with DHA or EPA prior to MeHg-exposure, and cell toxicity was assessed differently in the cell lines by MeHg-uptake in cells (ASK and HEK293, proliferation (HEK293 and ASK, apoptosis (ASK, oxidation of the red-ox probe roGFP (HEK293, and regulation of selected toxicological and metabolic transcriptional markers (ASK. DHA was observed to decrease the uptake of MeHg in HEK293, but not in ASK cells. DHA also increased, while EPA decreased, MeHg-induced apoptosis in ASK. MeHg exposure induced changes in selected metabolic and known MeHg biomarkers in ASK cells. Both DHA and MeHg, but not EPA, oxidized roGFP in HEK293 cells. In conclusion, marine n-3 fatty acids may ameliorate MeHg toxicity, either by decreasing apoptosis (EPA or by reducing MeHg uptake (DHA. However, DHA can also augment MeHg toxicity by increasing oxidative stress and apoptosis when combined with MeHg.

  13. Cell Survival and DNA Damage in Normal Prostate Cells Irradiated Out-of-Field.

    LENUS (Irish Health Repository)

    Shields, L

    2014-10-31

    Interest in out-of-field radiation dose has been increasing with the introduction of new techniques, such as volumetric modulated arc therapy (VMAT). These new techniques offer superior conformity of high-dose regions to the target compared to conventional techniques, however more normal tissue is exposed to low-dose radiation with VMAT. There is a potential increase in radiobiological effectiveness associated with lower energy photons delivered during VMAT as normal cells are exposed to a temporal change in incident photon energy spectrum. During VMAT deliveries, normal cells can be exposed to the primary radiation beam, as well as to transmission and scatter radiation. The impact of low-dose radiation, radiation-induced bystander effect and change in energy spectrum on normal cells are not well understood. The current study examined cell survival and DNA damage in normal prostate cells after exposure to out-of-field radiation both with and without the transfer of bystander factors. The effect of a change in energy spectrum out-of-field compared to in-field was also investigated. Prostate cancer (LNCaP) and normal prostate (PNT1A) cells were placed in-field and out-of-field, respectively, with the PNT1A cells being located 1 cm from the field edge when in-field cells were being irradiated with 2 Gy. Clonogenic and γ-H2AX assays were performed postirradiation to examine cell survival and DNA damage. The assays were repeated when bystander factors from the LNCaP cells were transferred to the PNT1A cells and also when the PNT1A cells were irradiated in-field to a different energy spectrum. An average out-of-field dose of 10.8 ± 4.2 cGy produced a significant reduction in colony volume and increase in the number of γ-H2AX foci\\/cell in the PNT1A cells compared to the sham-irradiated control cells. An adaptive response was observed in the PNT1A cells having first received a low out-of-field dose and then the bystander factors. The PNT1A cells showed a significant

  14. Cell of origin associated classification of B-cell malignancies by gene signatures of the normal B-cell hierarchy.

    Science.gov (United States)

    Johnsen, Hans Erik; Bergkvist, Kim Steve; Schmitz, Alexander; Kjeldsen, Malene Krag; Hansen, Steen Møller; Gaihede, Michael; Nørgaard, Martin Agge; Bæch, John; Grønholdt, Marie-Louise; Jensen, Frank Svendsen; Johansen, Preben; Bødker, Julie Støve; Bøgsted, Martin; Dybkær, Karen

    2014-06-01

    Recent findings have suggested biological classification of B-cell malignancies as exemplified by the "activated B-cell-like" (ABC), the "germinal-center B-cell-like" (GCB) and primary mediastinal B-cell lymphoma (PMBL) subtypes of diffuse large B-cell lymphoma and "recurrent translocation and cyclin D" (TC) classification of multiple myeloma. Biological classification of B-cell derived cancers may be refined by a direct and systematic strategy where identification and characterization of normal B-cell differentiation subsets are used to define the cancer cell of origin phenotype. Here we propose a strategy combining multiparametric flow cytometry, global gene expression profiling and biostatistical modeling to generate B-cell subset specific gene signatures from sorted normal human immature, naive, germinal centrocytes and centroblasts, post-germinal memory B-cells, plasmablasts and plasma cells from available lymphoid tissues including lymph nodes, tonsils, thymus, peripheral blood and bone marrow. This strategy will provide an accurate image of the stage of differentiation, which prospectively can be used to classify any B-cell malignancy and eventually purify tumor cells. This report briefly describes the current models of the normal B-cell subset differentiation in multiple tissues and the pathogenesis of malignancies originating from the normal germinal B-cell hierarchy.

  15. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  16. Plurihormonal cells of normal anterior pituitary: Facts and conclusions

    OpenAIRE

    Mitrofanova, Lubov B.; Konovalov, Petr V.; Krylova, Julia S.; Polyakova, Victoria O.; Kvetnoy, Igor M.

    2017-01-01

    Introduction plurihormonality of pituitary adenomas is an ability of adenoma cells to produce more than one hormone. After the immunohistochemical analysis had become a routine part of the morphological study, a great number of adenomas appeared to be multihormonal in actual practice. We hypothesize that the same cells of a normal pituitary gland releases several hormones simultaneously. Objective To analyse a possible co-expression of hormones by the cells of the normal anterior pituitary of...

  17. Synthesis and biological evaluation of 6H-1-benzopyrano[4,3-b]quinolin-6-one derivatives as inhibitors of colon cancer cell growth

    Directory of Open Access Journals (Sweden)

    Tie-Ling Li

    2015-08-01

    Full Text Available A convenient synthesis of 6H-1-benzopyrano[4,3-b]quinolin-6-one derivatives was reported using 4-chloro-2-oxo-2H-chromene-3-carbaldehyde with different aromatic amines using silica sulfuric acid. The compounds were tested for their anticancer activity against colon (HCT-116 and S1-MI-80, prostate (PC3 and DU-145, breast (MCF-7 and MDAMB-231 cancer cells. These com-pounds showed more selectivity and potent cytotoxic activity against colon cancer cells. 3c was tested against five other colon cancer cell lines (HT-29, HCT-15, LS-180, LS-174, and LoVo, which had similar cytotoxicity and selectivity. 3c did not induce PXR-regulated ABCB1 or ABCG2 transporters. In fact, 3c induced cytotoxicity in HEK293 cells over expressing ABCB1 or ABCG2 to the same extent as in normal HEK293 cells. It was cytotoxic approximately 3- and 5-fold to resistant colon carcinoma S1-MI-80 cells. 3c also produced concentration-dependent changes in HCT-116 colon cancer cells, in mitochondrial membrane potential, leading to apoptosis, and sub-micromolar concentrations caused chromosomal DNA fragmentation.

  18. PLK-1 Silencing in Bladder Cancer by siRNA Delivered With Exosomes.

    Science.gov (United States)

    Greco, Kristin A; Franzen, Carrie A; Foreman, Kimberly E; Flanigan, Robert C; Kuo, Paul C; Gupta, Gopal N

    2016-05-01

    To use exosomes as a vector to deliver small interfering ribonucleic acid (siRNA) to silence the polo-like kinase 1 (PLK-1) gene in bladder cancer cells. Exosomes were isolated from both human embryonic kidney 293 (HEK293) cell and mesenchymal stem cell (MSC) conditioned media. Fluorescently labeled exosomes were co-cultured with bladder cancer and normal epithelial cells and uptake was quantified by image cytometry. PLK-1 siRNA and negative control siRNA were loaded into HEK293 and MSC exosomes using electroporation. An invasive bladder cancer cell line (UMUC3) was co-cultured with the electroporated exosomes. Quantitative reverse transcriptase polymerase chain reaction was performed. Protein analysis was performed by Western blot. Annexin V staining and MTT assays were used to investigate effects on apoptosis and viability. Bladder cancer cell lines internalize an increased percentage of HEK293 exosomes when compared to normal bladder epithelial cells. Treatment of UMUC3 cells with exosomes electroporated with PLK-1 siRNA achieved successful knockdown of PLK-1 mRNA and protein when compared to cells treated with negative control exosomes. HEK293 and MSC exosomes were effectively used as a delivery vector to transport PLK-1 siRNA to bladder cancer cells in vitro, resulting in selective gene silencing of PLK-1. The use of exosomes as a delivery vector for potential intravesical therapy is attractive. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Graphene as a nanocarrier for tamoxifen induces apoptosis in transformed cancer cell lines of different origins.

    Science.gov (United States)

    Misra, Santosh K; Kondaiah, Paturu; Bhattacharya, Santanu; Rao, C N R

    2012-01-09

    A cationic amphiphile, cholest-5en-3β-oxyethyl pyridinium bromide (PY(+) -Chol), is able to efficiently disperse exfoliated graphene (GR) in water by the physical adsorption of PY(+) -Chol on the surface of GR to form stable, dark aqueous suspensions at room temperature. The GR-PY(+) -Chol suspension can then be used to solubilize Tamoxifen Citrate (TmC), a breast cancer drug, in water. The resulting TmC-GR-PY(+) -Chol is stable for a long time without any precipitation. Fluorescence emission and UV absorption spectra indicate the existence of noncovalent interactions between TmC, GR, and PY(+) -Chol in these suspensions. Electron microscopy shows the existence of segregated GR sheets and TmC 'ribbons' in the composite suspensions. Atomic force microscopy indicates the presence of 'extended' structures of GR-PY(+) -Chol, which grows wider in the presence of TmC. The slow time-dependent release of TmC is noticed in a reconstituted cell culture medium, a property useful as a drug carrier. TmC-GR-PY(+) -Chol selectively enhanced the cell death (apoptosis) of the transformed cancer cells compared to normal cells. This potency is found to be true for a wide range of transformed cancer cells viz. HeLa, A549, ras oncogene-transformed NIH3T3, HepG2, MDA-MB231, MCF-7, and HEK293T compared to the normal cell HEK293 in vitro. Confocal microscopy confirmed the high efficiency of TmC-GR-PY(+) -Chol in delivering the drug to the cells, compared to the suspensions devoid of GR. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis and Anticancer Activity of Di(3-thienylmethanol and Di(3-thienylmethane

    Directory of Open Access Journals (Sweden)

    Nagendra Kumar Kaushik

    2012-09-01

    Full Text Available Di(3-thienylmethanol (2 and di(3-thienylmethane (3 have been synthesized and screened against the T98G (brain cancer cell line. Treatment induced cell death (MTT and macro-colony assay, growth inhibition, cytogenetic damage (micronuclei formation, were studied as cellular response parameters. Treatment with the compounds enhanced growth inhibition and cell death in a concentration dependent manner in both T98G and HEK (normal cell lines. At higher concentrations (>20 µg/mL the cytotoxic effects of the compounds were highly significant. The effect on clonogenic capacity and micronuclei formation observed after treatment of cells. Amongst the compounds, compound 2 exhibited potent activity against T98G brain cancer cells. Despite potent in vitro activity, both compounds exhibited less cytotoxicity against normal human HEK cells at all effective concentrations.

  1. Activation of ERK mitogen-activated protein kinase in human cells by the mycotoxin patulin

    International Nuclear Information System (INIS)

    Wu, T.-S.; Yu, F.-Y.; Su, C.-C.; Kan, J.-C.; Chung, C.-P.; Liu, B.-H.

    2005-01-01

    Patulin (PAT), a mycotoxin produced by certain species of Penicillium and Aspergillus, is often detectable in moldy fruits and their derivative products. PAT led to a concentration-dependent and time-dependent increase in phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human embryonic kidney (HEK293) cells, human peripheral blood mononuclear cells (PBMCs), and Madin-Darby canine kidney (MDCK) cells. Exposure of HEK293 cells to concentrations above 5 μM PAT for 30 min induced ERK1/2 phosphorylation; activation of ERK1/2 was also observed after 24 h incubation with 0.05 μM of PAT. Treatment of human PBMCs for 30 min with 30 μM PAT dramatically increased the phosphorylated ERK1/2 levels. Both MEK1/2 inhibitors, U0126 and PD98059, suppressed ERK1/2 activation in either HEK293 or MDCK cells. In HEK293 cells, U0126-mediated inhibition of PAT-induced ERK1/2 phosphorylation resulted in a significant decrease in levels of DNA damage, expressed as tail moment values, in the single cell gel electrophoresis assay. Conversely, U0126 did not affect cell viability, lactate dehydrogenase release, and the DNA synthesis rate in PAT-treated cultures. Exposure of HEK293 cells for 90 min to 15 μM PAT elevated the levels of early growth response gene-1 (egr-1) mRNA, but not of c-fos, fosB, and junB mRNAs. These results indicate that in human cells, PAT causes a rapid and persistent activation of ERK1/2 and this signaling pathway plays an important role in mediating PAT-induced DNA damage and egr-1 gene expression

  2. The Glycome of Normal and Malignant Plasma Cells

    Science.gov (United States)

    Hose, Dirk; Andrulis, Mindaugas; Moreaux, Jèrôme; Hielscher, Thomas; Willhauck-Fleckenstein, Martina; Merling, Anette; Bertsch, Uta; Jauch, Anna; Goldschmidt, Hartmut; Klein, Bernard; Schwartz-Albiez, Reinhard

    2013-01-01

    The glycome, i.e. the cellular repertoire of glycan structures, contributes to important functions such as adhesion and intercellular communication. Enzymes regulating cellular glycosylation processes are related to the pathogenesis of cancer including multiple myeloma. Here we analyze the transcriptional differences in the glycome of normal (n = 10) and two cohorts of 332 and 345 malignant plasma-cell samples, association with known multiple myeloma subentities as defined by presence of chromosomal aberrations, potential therapeutic targets, and its prognostic impact. We found i) malignant vs. normal plasma cells to show a characteristic glycome-signature. They can ii) be delineated by a lasso-based predictor from normal plasma cells based on this signature. iii) Cytogenetic aberrations lead to distinct glycan-gene expression patterns for t(11;14), t(4;14), hyperdiploidy, 1q21-gain and deletion of 13q14. iv) A 38-gene glycome-signature significantly delineates patients with adverse survival in two independent cohorts of 545 patients treated with high-dose melphalan and autologous stem cell transplantation. v) As single gene, expression of the phosphatidyl-inositol-glycan protein M as part of the targetable glycosyl-phosphatidyl-inositol-anchor-biosynthesis pathway is associated with adverse survival. The prognostically relevant glycome deviation in malignant cells invites novel strategies of therapy for multiple myeloma. PMID:24386263

  3. The glycome of normal and malignant plasma cells.

    Directory of Open Access Journals (Sweden)

    Thomas M Moehler

    Full Text Available The glycome, i.e. the cellular repertoire of glycan structures, contributes to important functions such as adhesion and intercellular communication. Enzymes regulating cellular glycosylation processes are related to the pathogenesis of cancer including multiple myeloma. Here we analyze the transcriptional differences in the glycome of normal (n = 10 and two cohorts of 332 and 345 malignant plasma-cell samples, association with known multiple myeloma subentities as defined by presence of chromosomal aberrations, potential therapeutic targets, and its prognostic impact. We found i malignant vs. normal plasma cells to show a characteristic glycome-signature. They can ii be delineated by a lasso-based predictor from normal plasma cells based on this signature. iii Cytogenetic aberrations lead to distinct glycan-gene expression patterns for t(11;14, t(4;14, hyperdiploidy, 1q21-gain and deletion of 13q14. iv A 38-gene glycome-signature significantly delineates patients with adverse survival in two independent cohorts of 545 patients treated with high-dose melphalan and autologous stem cell transplantation. v As single gene, expression of the phosphatidyl-inositol-glycan protein M as part of the targetable glycosyl-phosphatidyl-inositol-anchor-biosynthesis pathway is associated with adverse survival. The prognostically relevant glycome deviation in malignant cells invites novel strategies of therapy for multiple myeloma.

  4. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    International Nuclear Information System (INIS)

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-01-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes

  5. Response of cultured normal human mammary epithelial cells to X rays

    International Nuclear Information System (INIS)

    Yang, T.C.; Stampfer, M.R.; Smith, H.S.

    1983-01-01

    The effect of X rays on the reproductive death of cultured normal human mammary epithelial cells was examined. Techniques were developed for isolating and culturing normal human mammary epithelial cells which provide sufficient cells at second passage for radiation studies, and an efficient clonogenic assay suitable for measuring radiation survival curves. It was found that the survival curves for epithelial cells from normal breast tissue were exponential and had D 0 values of about 109-148 rad for 225 kVp X rays. No consistent change in cell radiosensitivity with the age of donor was observed, and no sublethal damage repair in these cells could be detected with the split-dose technique

  6. Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective.

    Science.gov (United States)

    Darwiche, Walaa; Gubler, Brigitte; Marolleau, Jean-Pierre; Ghamlouch, Hussein

    2018-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells.

  7. LET effects on normal and radiosensitive cell lines

    International Nuclear Information System (INIS)

    Geard, C.R.; Travisano, M.

    1986-01-01

    Charged particles in the track segment mode were produced by the RARAF Van de Graaff accelerator and used to irradiate two CHO cell lines, a radiosensitive hypermutable line EM9 and its normal parent AA8. Asynchronous cells were irradiated attached to 6 micrometer thick Mylar with protons, deuterons and helium-3 particles at LETs ranging from 10 to 150 keV per micrometer. A 50 kVp x-ray tube integrated into the track segment facility provided a low LET comparison. Following irradiation cells were monitored for clonogenicity, and in a separate series of experiments frequencies of sister chromatid exchanges. Up to 9 experiments were carried out at each LET, with a total of 8 radiations of different LETs being compared. The optimally effective LET for cell survival was between 80 and 120 keV per micrometer, with the 150 keV per micrometer particles indicating energy wastage. The differential between the normal and radiosensitive cell lines was maintained at all LETs

  8. Overexpressed HDAC8 in cervical cancer cells shows functional redundancy of tubulin deacetylation with HDAC6.

    Science.gov (United States)

    Vanaja, G R; Ramulu, Hemalatha Golaconda; Kalle, Arunasree M

    2018-05-02

    Histone deacetylases (HDACs) are involved in epigenetic gene regulation via deacetylation of acetylated lysine residues of both histone and non-histone proteins. Among the 18 HDACs identified in humans, HDAC8, a class I HDAC, is best understood structurally and enzymatically. However, its precise subcellular location, function in normal cellular physiology, its protein partners and substrates still remain elusive. The subcellular localization of HDAC8 was studied using immunofluorescence and confocal imaging. The binding parterns were identified employing immunoprecipitation (IP) followed by MALDI-TOF analysis and confirmed using in-silico protein-protein interaction studies, HPLC-based in vitro deacetylation assay, intrinsic fluorescence spectrophotometric analysis, Circular dichroism (CD) and Surface Plasmon Resonance (SPR). Functional characterization of the binding was carried out using immunoblot and knockdown by siRNA. Using one way ANOVA statistical significance (n = 3) was determined. Here, we show that HDAC8 and its phosphorylated form (pHDAC8) localized predominantly in the cytoplasm in cancerous, HeLa, and non-cancerous (normal), HEK293T, cells, although nucleolar localization was observed in HeLa cells. The study identified Alpha tubulin as a novel interacting partner of HDAC8. Further, the results indicated binding and deacetylation of tubulin at ac-lys40 by HDAC8. Knockdown of HDAC8 by siRNA, inhibition of HDAC8 and/or HDAC6 by PCI-34051 and tubastatin respectively, cell-migration, cell morphology and cell cycle analysis clearly explained HDAC8 as tubulin deacetylase in HeLa cells and HDAC6 in HEK 293 T cells. HDAC8 shows functional redundancy with HDAC6 when overexpressed in cervical cancer cells, HeLa, and deacetylaes ac-lys40 of alpha tubulin leading to cervical cancer proliferation and progression.

  9. Spiclomazine induces apoptosis associated with the suppression of cell viability, migration and invasion in pancreatic carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Wenjing Zhao

    Full Text Available The effective treatment for pancreatic carcinoma remains critically needed. Herein, this current study showed that spiclomazine treatment caused a reduction in viability in pancreatic carcinoma cell lines CFPAC-1 and MIA PaCa-2 in vitro. It was notable in this regard that, compared with pancreatic carcinoma cells, normal human embryonic kidney (HEK-293 and liver (HL-7702 cells were more resistant to the antigrowth effect of spiclomazine. Biochemically, spiclomazine treatment regulated the expression of protein levels in the apoptosis related pathways. Consistent with this effect, spiclomazine reduced the mitochondria membrane potential, elevated reactive oxygen species, and activated caspase-3/9. In addition, a key finding from this study was that spiclomazine suppressed migration and invasion of cancer cells through down-regulation of MMP-2/9. Collectively, the proposed studies did shed light on the antiproliferation effect of spiclomazine on pancreatic carcinoma cell lines, and further clarified the mechanisms that spiclomazine induced apoptosis associated with the suppression of migration and invasion.

  10. Sub-cellular force microscopy in single normal and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Babahosseini, H. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Carmichael, B. [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Strobl, J.S. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Mahmoodi, S.N., E-mail: nmahmoodi@eng.ua.edu [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Agah, M., E-mail: agah@vt.edu [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States)

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.

  11. Sub-cellular force microscopy in single normal and cancer cells

    International Nuclear Information System (INIS)

    Babahosseini, H.; Carmichael, B.; Strobl, J.S.; Mahmoodi, S.N.; Agah, M.

    2015-01-01

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain

  12. Mast cell distribution in normal adult skin.

    Science.gov (United States)

    Janssens, A S; Heide, R; den Hollander, J C; Mulder, P G M; Tank, B; Oranje, A P

    2005-03-01

    To investigate mast cell distribution in normal adult skin to provide a reference range for comparison with mastocytosis. Mast cells (MCs) were counted in uninvolved skin adjacent to basal cell carcinomas and other dermatological disorders in adults. There was an uneven distribution of MCs in different body sites using the anti-tryptase monoclonal antibody technique. Numbers of MCs on the trunk, upper arm, and upper leg were similar, but were significantly different from those found on the lower leg and forearm. Two distinct groups were formed--proximal and distal. There were 77.0 MCs/mm2 at proximal body sites and 108.2 MCs/mm2 at distal sites. Adjusted for the adjacent diagnosis and age, this difference was consistent. The numbers of MCs in uninvolved skin adjacent to basal cell carcinomas and other dermatological disorders were not different from those in the control group. Differences in the numbers of MCs between the distal and the proximal body sites must be considered when MCs are counted for a reliable diagnosis of mastocytosis. A pilot study in patients with mastocytosis underlined the variation in the numbers of MCs in mastocytosis and normal skin, but showed a considerable overlap. The observed numbers of MCs in adults cannot be extrapolated to children. MC numbers varied significantly between proximal and distal body sites and these differences must be considered when MCs are counted for a reliable diagnosis of mastocytosis. There was a considerable overlap between the numbers of MCs in mastocytosis and normal skin.

  13. Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells.

    Science.gov (United States)

    Landerer, Eduardo; Villegas, Jaime; Burzio, Veronica A; Oliveira, Luciana; Villota, Claudio; Lopez, Constanza; Restovic, Franko; Martinez, Ronny; Castillo, Octavio; Burzio, Luis O

    2011-08-01

    We have previously shown a differential expression of a family of mitochondrial ncRNAs in normal and cancer cells. Normal proliferating cells and cancer cells express the sense mitochondrial ncRNA (SncmtRNA). In addition, while normal proliferating cells express two antisense mitochondrial ncRNAs (ASncmtRNAs-1 and -2), these transcripts seem to be universally down-regulated in cancer cells. In situ hybridization (ISH) of some normal and cancer tissues reveals nuclear localization of these transcripts suggesting that they are exported from mitochondria. FISH and confocal microscopy, in situ digestion with RNase previous to ISH and electron microscopy ISH was employed to confirm the extra-mitochondrial localization of the SncmtRNA and the ASncmtRNAs in normal proliferating and cancer cells of human and mouse. In normal human kidney and mouse testis the SncmtRNA and the ASncmtRNAs were found outside the organelle and especially localized in the nucleus associated to heterochromatin. In cancer cells, only the SncmtRNA was expressed and was found associated to heterochromatin and nucleoli. The ubiquitous localization of these mitochondrial transcripts in the nucleus suggests that they are new players in the mitochondrial-nuclear communication pathway or retrograde signaling. Down regulation of the ASncmtRNAs seems to be an important step on neoplastic transformation and cancer progression.

  14. Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells

    Directory of Open Access Journals (Sweden)

    Malik Mohammed T

    2005-01-01

    Full Text Available Abstract Background Pituitary tumor transforming gene1 (PTTG1 is a novel oncogene that is expressed in most tumors. It encodes a protein that is primarily involved in the regulation of sister chromatid separation during cell division. The oncogenic potential of PTTG1 has been well characterized in the mouse, particularly mouse fibroblast (NIH3T3 cells, in which it induces cell proliferation, promotes tumor formation and angiogenesis. Human tumorigenesis is a complex and a multistep process often requiring concordant expression of a number of genes. Also due to differences between rodent and human cell biology it is difficult to extrapolate results from mouse models to humans. To determine if PTTG1 functions similarly as an oncogene in humans, we have characterized its effects on human embryonic kidney (HEK293 cells. Results We report that introduction of human PTTG1 into HEK293 cells through transfection with PTTG1 cDNA resulted in increased cell proliferation, anchorage-independent growth in soft agar, and formation of tumors after subcutaneous injection of nu/nu mice. Pathologic analysis revealed that these tumors were poorly differentiated. Both analysis of HEK293 cells transiently transfected with PTTG1 cDNA and analysis of tumors developed on injection of HEK293 cells that had been stably transfected with PTTG1 cDNA indicated significantly higher levels of secretion and expression of bFGF, VEGF and IL-8 compared to HEK293 cells transfected with pcDNA3.1 vector or uninvolved tissues collected from the mice. Mutation of the proline-rich motifs at the C-terminal of PTTG1 abolished its oncogenic properties. Mice injected with this mutated PTTG1 either did not form tumors or formed very small tumors. Taken together our results suggest that PTTG1 is a human oncogene that possesses the ability to promote tumorigenesis in human cells at least in part through the regulation of expression or secretion of bFGF, VEGF and IL-8. Conclusions Our results

  15. Gene expression signature of normal cell-of-origin predicts ovarian tumor outcomes.

    Directory of Open Access Journals (Sweden)

    Melissa A Merritt

    Full Text Available The potential role of the cell-of-origin in determining the tumor phenotype has been raised, but not adequately examined. We hypothesized that distinct cells-of-origin may play a role in determining ovarian tumor phenotype and outcome. Here we describe a new cell culture medium for in vitro culture of paired normal human ovarian (OV and fallopian tube (FT epithelial cells from donors without cancer. While these cells have been cultured individually for short periods of time, to our knowledge this is the first long-term culture of both cell types from the same donors. Through analysis of the gene expression profiles of the cultured OV/FT cells we identified a normal cell-of-origin gene signature that classified primary ovarian cancers into OV-like and FT-like subgroups; this classification correlated with significant differences in clinical outcomes. The identification of a prognostically significant gene expression signature derived solely from normal untransformed cells is consistent with the hypothesis that the normal cell-of-origin may be a source of ovarian tumor heterogeneity and the associated differences in tumor outcome.

  16. EXPRESSION OF CELLULAR ADHESION MOLECULES IN LANGERHANS CELL HISTIOCYTOSIS AND NORMAL LANGERHANS CELLS

    NARCIS (Netherlands)

    DEGRAAF, JH; TAMMINGA, RYJ; KAMPS, WA; TIMENS, W

    1995-01-01

    Langerhans cell histiocytosis (LCH) is characterized by lesions with an accumulation and/or proliferation of Langerhans cells (LCs). Little is known of the etiology and pathogenesis of LCH. Although the relation between the LCH cell and normal LCs is currently uncertain, the localizations of the LCH

  17. A role for protein kinase C in the regulation of membrane fluidity and Ca²(+) flux at the endoplasmic reticulum and plasma membranes of HEK293 and Jurkat cells.

    Science.gov (United States)

    Chen, Lihong; Meng, Qingli; Jing, Xian; Xu, Pingxiang; Luo, Dali

    2011-02-01

    Protein kinase C (PKC) plays a prominent role in the regulation of a variety of cellular functions, including Ca²(+) signalling. In HEK293 and Jurkat cells, the Ca²(+) release and Ca²(+) uptake stimulated by several different activators were attenuated by activation of PKC with phorbol myristate acetate (PMA) or 1-oleoyl-2-acetyl-sn-glycerol (OAG) and potentiated by PKC inhibition with Gö6983 or knockdown of PKCα or PKCβ using shRNA. Immunostaining and Western blotting analyses revealed that PKCα and PKCβII accumulated at the plasma membrane (PM) and that these isoforms, along with PKCβI, also translocated to the endoplasmic reticulum (ER) upon activation with PMA. Measurements of membrane fluidity showed that, like the cell membrane stabilizers bovine serum albumin (BSA) and ursodeoxycholate (UDCA), PMA and OAG significantly reduced the fluidity of both the PM and ER membranes; these effects were blocked in PKC-knockdown cells. Interestingly, both BSA and UDCA inhibited the Ca²(+) responses to agonists to the same extent as PMA, whereas Tween 20, which increases membrane fluidity, raised the internal Ca²(+) concentration. Thus, activation of PKC induces both translocation of PKC to the PM and ER membranes and downregulation of membrane fluidity, thereby negatively modulating Ca²(+) flux. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.

    Science.gov (United States)

    Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T

    2008-12-01

    Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.

  19. Prostate-Specific Natural Health Products (Dietary Supplements) Radiosensitize Normal Prostate Cells

    International Nuclear Information System (INIS)

    Hasan, Yasmin; Schoenherr, Diane; Martinez, Alvaro A.; Wilson, George D.; Marples, Brian

    2010-01-01

    Purpose: Prostate-specific health products (dietary supplements) are taken by cancer patients to alleviate the symptoms linked with poor prostate health. However, the effect of these agents on evidence-based radiotherapy practice is poorly understood. The present study aimed to determine whether dietary supplements radiosensitized normal prostate or prostate cancer cell lines. Methods and Materials: Three well-known prostate-specific dietary supplements were purchased from commercial sources available to patients (Trinovin, Provelex, and Prostate Rx). The cells used in the study included normal prostate lines (RWPE-1 and PWR-1E), prostate tumor lines (PC3, DU145, and LNCaP), and a normal nonprostate line (HaCaT). Supplement toxicity was assessed using cell proliferation assays [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] and cellular radiosensitivity using conventional clonogenic assays (0.5-4Gy). Cell cycle kinetics were assessed using the bromodeoxyuridine/propidium iodide pulse-labeling technique, apoptosis by scoring caspase-3 activation, and DNA repair by assessing γH2AX. Results: The cell growth and radiosensitivity of the malignant PC3, DU145, and LNcaP cells were not affected by any of the dietary prostate supplements (Provelex [2μg/mL], Trinovin [10μg/mL], and Prostate Rx [50 μg/mL]). However, both Trinovin (10μg/mL) and Prostate Rx (6μg/mL) inhibited the growth rate of the normal prostate cell lines. Prostate Rx increased cellular radiosensitivity of RWPE-1 cells through the inhibition of DNA repair. Conclusion: The use of prostate-specific dietary supplements should be discouraged during radiotherapy owing to the preferential radiosensitization of normal prostate cells.

  20. Comparison of the circadian variation in cell proliferation in normal and neoplastic colonic epithelial cells.

    Science.gov (United States)

    Kennedy, M F; Tutton, P J; Barkla, D H

    1985-09-15

    Circadian variations in cell proliferation in normal tissues have been recognised for many years but comparable phenomena in neoplastic tissues appear not to have been reported. Adenomas and carcinomas were induced in mouse colon by injection of dimethylhydrazine (DMH) and cell proliferation in these tumors was measured stathmokinetically. In normal intestine cell proliferation is fastest at night whereas in both adenomas and carcinomas it was found to be slower at night than in the middle of the day. Chemical sympathectomy was found to abolish the circadian variation in tumor cell proliferation.

  1. CDK2 differentially controls normal cell senescence and cancer cell proliferation upon exposure to reactive oxygen species

    International Nuclear Information System (INIS)

    Hwang, Chae Young; Lee, Seung-Min; Park, Sung Sup; Kwon, Ki-Sun

    2012-01-01

    Highlights: ► H 2 O 2 differently adjusted senescence and proliferation in normal and cancer cells. ► H 2 O 2 exposure transiently decreased PCNA levels in normal cells. ► H 2 O 2 exposure transiently increased CDK2 activity in cancer cells. ► p21 Cip1 is likely dispensable when H 2 O 2 induces senescence in normal cells. ► Suggestively, CDK2 and PCNA play critical roles in H 2 O 2 -induced cell fate decision. -- Abstract: Reactive oxygen species modulate cell fate in a context-dependent manner. Sublethal doses of H 2 O 2 decreased the level of proliferating cell nuclear antigen (PCNA) in normal cells (including primary human dermal fibroblasts and IMR-90 cells) without affecting cyclin-dependent kinase 2 (CDK2) activity, leading to cell cycle arrest and subsequent senescence. In contrast, exposure of cancer cells (such as HeLa and MCF7 cells) to H 2 O 2 increased CDK2 activity with no accompanying change in the PCNA level, leading to cell proliferation. A CDK2 inhibitor, CVT-313, prevented H 2 O 2 -induced cancer cell proliferation. These results support the notion that the cyclin/CDK2/p21 Cip1 /PCNA complex plays an important role as a regulator of cell fate decisions.

  2. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique...... cancer cell lines (p immortalized cell line (p

  3. Regulation of heme metabolism in normal and sideroblastic bone marrow cells in culture

    International Nuclear Information System (INIS)

    Ibraham, N.G.; Lutton, J.D.; Hoffman, R.; Levere, R.D.

    1985-01-01

    Heme metabolism was examined in developing in vitro erythroid colonies (CFUE) and in bone marrow samples taken directly from four normal donors and four patients with sideroblastic anemia. Maximum activities of delta-aminolevulinic acid synthase (ALAS), ALA dehydratase (ALAD), and 14 C-ALA incorporation into heme were achieved in normal marrow CFUE after 8 days of culture, whereas heme oxygenase progressively decreased to low levels of activity during the same period. Assays on nucleated bone marrow cells taken directly from patients revealed that ALAS activity was considerably reduced in idiopathic sideroblastic anemia (IASA) and X-linked sideroblastic anemia (X-SA) bone marrow specimens, whereas the activity increased more than twofold (normal levels) when cells were assayed from 8-day CFUE. In all cases, ALAD activity appeared to be within normal levels. Measurement of heme synthesis revealed that normal levels of 14 C-ALA incorporation into heme were achieved in IASA cells but were reduced in X-SA cells. In marked contrast to levels in normal cells, heme oxygenase was found to be significantly elevated (two- to fourfold) in bone marrow cells taken directly from patients with IASA and X-SA. Results from this study demonstrate that IASA and X-SA bone marrow cells have disturbances in ALAS and heme metabolism, and that erythropoiesis (CFUE) can be restored to normal levels when cells are cultured in methylcellulose

  4. Differences in mitochondrial function and morphology during cooling and rewarming between hibernator and non-hibernator derived kidney epithelial cells.

    Science.gov (United States)

    Hendriks, Koen D W; Lupi, Eleonora; Hardenberg, Maarten C; Hoogstra-Berends, Femke; Deelman, Leo E; Henning, Robert H

    2017-11-14

    Hibernators show superior resistance to ischemia and hypothermia, also outside the hibernation season. Therefore, hibernation is a promising strategy to decrease cellular damage in a variety of fields, such as organ transplantation. Here, we explored the role of mitochondria herein, by comparing epithelial cell lines from a hibernator (hamster kidney cells, HaK) and a non-hibernator (human embryonic kidney cells, HEK293) during cold preservation at 4 °C and rewarming. Cell survival (Neutral Red), ATP and MDA levels, mitochondrial membrane potential (MMP), mitochondrial morphology (using fluorescent probes) and metabolism (seahorse XF) were assessed. Hypothermia induced dispersion of the tubular mitochondrial network, a loss of MMP, increased oxygen radical (MDA) and decreased ATP production in HEK293. In contrast, HaK maintained MMP and ATP production without an increase in oxygen radicals during cooling and rewarming, resulting in superior cell survival compared to HEK293. Further, normothermic HaK showed a dispersed mitochondrial network and higher respiratory and glycolysis capacity compared to HEK293. Disclosing the mechanisms that hibernators use to counteract cell death in hypothermic and ischemic circumstances may help to eventually improve organ preservation in a variety of fields, including organ transplantation.

  5. Intracellular Drug Uptake-A Comparison of Single Cell Measurements Using ToF-SIMS Imaging and Quantification from Cell Populations with LC/MS/MS.

    Science.gov (United States)

    Newman, Carla F; Havelund, Rasmus; Passarelli, Melissa K; Marshall, Peter S; Francis, Ian; West, Andy; Alexander, Morgan R; Gilmore, Ian S; Dollery, Colin T

    2017-11-21

    ToF-SIMS is a label-free imaging method that has been shown to enable imaging of amiodarone in single rat macrophage (NR8383) cells. In this study, we show that the method extends to three other cell lines relevant to drug discovery: human embryonic kidney (HEK293), cervical cancer (HeLa), and liver cancer (HepG2). There is significant interest in the variation of drug uptake at the single cell level, and we use ToF-SIMS to show that there is great diversity between individual cells and when comparing each of the cell types. These single cell measurements are compared to quantitative measurements of cell-associated amiodarone for the population using LC/MS/MS and cell counting with flow cytometry. NR8383 and HepG2 cells uptake the greatest amount of amiodarone with an average of 2.38 and 2.60 pg per cell, respectively, and HeLa and Hek 293 have a significantly lower amount of amiodarone at 0.43 and 0.36 pg per cell, respectively. The amount of cell-associated drug for the ensemble population measurement (LC/MS/MS) is compared with the ToF-SIMS single cell data: a similar amount of drug was detected per cell for the NR8383, and HepG2 cells at a greater level than that for the HEK293 cells. However, the two techniques did not agree for the HeLa cells, and we postulate potential reasons for this.

  6. Discrimination Between Cervical Cancer Cells and Normal Cervical Cells Based on Longitudinal Elasticity Using Atomic Force Microscopy.

    Science.gov (United States)

    Zhao, Xueqin; Zhong, Yunxin; Ye, Ting; Wang, Dajing; Mao, Bingwei

    2015-12-01

    The mechanical properties of cells are considered promising biomarkers for the early diagnosis of cancer. Recently, atomic force microscopy (AFM)-based nanoindentation technology has been utilized for the examination of cell cortex mechanics in order to distinguish malignant cells from normal cells. However, few attempts to evaluate the biomechanical properties of cells have focused on the quantification of the non-homogeneous longitudinal elasticity of cellular structures. In the present study, we applied a variation of the method of Carl and Schillers to investigate the differences between longitudinal elasticity of human cervical squamous carcinoma cells (CaSki) and normal cervical epithelial cells (CRL2614) using AFM. The results reveal a three-layer heterogeneous structure in the probing volume of both cell types studied. CaSki cells exhibited a lower whole-cell stiffness and a softer nuclei zone compared to the normal counterpart cells. Moreover, a better differentiated cytoskeleton was found in the inner cytoplasm/nuclei zone of the normal CRL2614 cells, whereas a deeper cytoskeletal distribution was observed in the probing volume of the cancerous counterparts. The sensitive cortical panel of CaSki cells, with a modulus of 0.35~0.47 kPa, was located at 237~225 nm; in normal cells, the elasticity was 1.20~1.32 kPa at 113~128 nm. The present improved method may be validated using the conventional Hertz-Sneddon method, which is widely reported in the literature. In conclusion, our results enable the quantification of the heterogeneous longitudinal elasticity of cancer cells, in particular the correlation with the corresponding depth. Preliminary results indicate that our method may potentially be applied to improve the detection of cancerous cells and provide insights into the pathophysiology of the disease.

  7. Cell Penetrating Polymers Containing Guanidinium Trigger Apoptosis in Human Hepatocellular Carcinoma Cells unless Conjugated to a Targeting N-Acetyl-Galactosamine Block.

    Science.gov (United States)

    Tan, Zhe; Dhande, Yogesh K; Reineke, Theresa M

    2017-12-20

    A series of 3-guanidinopropyl methacrylamide (GPMA)-based polymeric gene delivery vehicles were developed via aqueous reversible addition-fragmentation chain transfer (RAFT) polymerization. The polymers have been evaluated for their cellular internalization ability, transfection efficiency, and cytotoxicity. Two homopolymers: P(GPMA 20 ), P(GPMA 34 ), were synthesized to study the effect of guanidium polymer length on delivery efficiency and toxicity. In addition, an N-acetyl-d-galactosamine (GalNAc)-based hydrophilic block was incorporated to produce diblock polymers, which provides a neutral hydrophilic block that sterically protects plasmid-polymer complexes (polyplexes) from colloidal aggregation and aids polyplex targeting to hepatocytes via binding to asialoglycoprotein receptors (ASGPRs). Polyplexes formed with P(GPMA x ) (x = 20, 34) homopolymers were shown to be internalized via both energy-dependent and independent pathways, whereas polyplexes formed with block polymers were internalized through endocytosis. Notably, P(GPMA x ) polyplexes enter cells very efficiently but are also very toxic to human hepatocellular carcinoma (HepG2) cells and triggered cell apoptosis. In comparison, the presence of a carbohydrate block in the polymer structures reduced the cytotoxicity of the polyplex formulations and increased gene delivery efficiency with HepG2 cells. Transfection efficiency and toxicity studies were also carried out with HEK 293T (human embryonic kidney) cells for comparison. Results showed that polyplexes formed with the P(GPMA x ) homopolymers exhibit much higher transfection efficiency and lower toxicity with HEK 293T cells. The presence of the carbohydrate block did not further increase transfection efficiency in comparison to the homopolymers with HEK 293T cells, likely due to the lack of ASGPRs on the HEK 293T cell line. This study revealed that although guanidinium-based polymers have high membrane permeability, their application as plasmid

  8. Cdx2 modulates proliferation in normal human intestinal epithelial crypt cells

    International Nuclear Information System (INIS)

    Escaffit, Fabrice; Pare, Frederic; Gauthier, Remy; Rivard, Nathalie; Boudreau, Francois; Beaulieu, Jean-Francois

    2006-01-01

    The homeobox gene Cdx2 is involved in the regulation of the expression of intestine specific markers such as sucrase-isomaltase and lactase-phlorizin hydrolase. Previous studies performed with immortalized or transformed intestinal cell lines have provided evidence that Cdx2 can promote morphological and functional differentiation in these experimental models. However, no data exist concerning the implication of this factor in normal human intestinal cell physiology. In the present work, we have investigated the role of Cdx2 in normal human intestinal epithelial crypt (HIEC) cells that lack this transcription factor. The establishment of HIEC cells expressing Cdx2 in an inducible manner shows that forced expression of Cdx2 significantly alters the proliferation of intestinal crypt cells and stimulates dipeptidylpeptidase IV expression but is not sufficient to trigger intestinal terminal differentiation. These observations suggest that Cdx2 requires additional factors to activate the enterocyte differentiation program in normal undifferentiated cells

  9. Multidrug Resistance Protein-4 Influences Aspirin Toxicity in Human Cell Line

    Directory of Open Access Journals (Sweden)

    Isabella Massimi

    2015-01-01

    Full Text Available Overexpression of efflux transporters, in human cells, is a mechanism of resistance to drug and also to chemotherapy. We found that multidrug resistance protein-4 (MRP4 overexpression has a role in reducing aspirin action in patients after bypass surgery and, very recently, we found that aspirin enhances platelet MRP4 levels through peroxisome proliferator activated receptor-α (PPARα. In the present paper, we verified whether exposure of human embryonic kidney-293 cells (Hek-293 to aspirin modifies MRP4 gene expression and its correlation with drug elimination and cell toxicity. We first investigated the effect of high-dose aspirin in Hek-293 and we showed that aspirin is able to increase cell toxicity dose-dependently. Furthermore, aspirin effects, induced at low dose, already enhance MRP4 gene expression. Based on these findings, we compared cell viability in Hek-293, after high-dose aspirin treatment, in MRP4 overexpressing cells, either after aspirin pretreatment or in MRP4 transfected cells; in both cases, a decrease of selective aspirin cell growth inhibition was observed, in comparison with the control cultures. Altogether, these data suggest that exposing cells to low nontoxic aspirin dosages can induce gene expression alterations that may lead to the efflux transporter protein overexpression, thus increasing cellular detoxification of aspirin.

  10. Membrane associated ion transport enzymes in normal and transformed fibroblasts and epithelial cells

    International Nuclear Information System (INIS)

    Borek, C.

    1982-01-01

    In an effort to evaluate membrane changes associated with neoplastic transformation of fibroblasts and epithelial cells by radiation and chemicals, alterations in membrane-associated (Na + + K + )-ATPase and 5'-nucleotidase activities were investigated. Cell cultures consisted of normal and radiation transformed hamster embryo fibroblasts (HE) and mouse C3H 10T 1/2 fibroblasts, normal and chemically transformed adult rat liver epithelial cells (ARL), as well as hepatocarcinoma cells induced by the liver transformants. Transformed fibroblasts demonstrated a 1-2 fold increase in (Na + + K + )-ATPase activity over the normal, while the transformed liver epithelial cells and carcinoma cells showed a 60% and 40% decrease in activity compared to the normal values, respectively. The 5'-nucleotidase activity was 2 to 3 times higher in the transformed fibroblasts

  11. Polycystin-1 promotes PKCα-mediated NF-κB activation in kidney cells

    International Nuclear Information System (INIS)

    Banzi, Manuela; Aguiari, Gianluca; Trimi, Viky; Mangolini, Alessandra; Pinton, Paolo; Witzgall, Ralph; Rizzuto, Rosario; Senno, Laura del

    2006-01-01

    Polycystin-1 (PC1), the PKD1 gene product, is a membrane receptor which regulates many cell functions, including cell proliferation and apoptosis, both typically increased in cyst lining cells in autosomal dominant polycystic kidney disease. Here we show that PC1 upregulates the NF-κB signalling pathway in kidney cells to prevent cell death. Human embryonic kidney cell lines (HEK293 CTT ), stably expressing a PC1 cytoplasmic terminal tail (CTT), presented increased NF-κB nuclear levels and NF-κB-mediated luciferase promoter activity. This, consistently, was reduced in HEK293 cells in which the endogenous PC1 was depleted by RNA interference. CTT-dependent NF-κB promoter activation was mediated by PKCα because it was blocked by its specific inhibitor Ro-320432. Furthermore, it was observed that apoptosis, which was increased in PC1-depleted cells, was reduced in HEK293 CTT cells and in porcine kidney LtTA cells expressing a doxycycline-regulated CTT. Staurosporine, a PKC inhibitor, and parthenolide, a NF-κB inhibitor, significantly reduced the CTT-dependent antiapoptotic effect. These data reveal, therefore, a novel pathway by which polycystin-1 activates a PKCα-mediated NF-κB signalling and cell survival

  12. Production of functional human insulin-like growth factor binding proteins (IGFBPs) using recombinant expression in HEK293 cells.

    Science.gov (United States)

    Wanscher, Anne Sofie Molsted; Williamson, Michael; Ebersole, Tasja Wainani; Streicher, Werner; Wikström, Mats; Cazzamali, Giuseppe

    2015-04-01

    Insulin-like growth factor binding proteins (IGFBPs) display many functions in humans including regulation of the insulin-like growth factor (IGF) signaling pathway. The various roles of human IGFBPs make them attractive protein candidates in drug discovery. Structural and functional knowledge on human proteins with therapeutic relevance is needed to design and process the next generation of protein therapeutics. In order to conduct structural and functional investigations large quantities of recombinant proteins are needed. However, finding a suitable recombinant production system for proteins such as full-length human IGFBPs, still remains a challenge. Here we present a mammalian HEK293 expression method suitable for over-expression of secretory full-length human IGFBP-1 to -7. Protein purification of full-length human IGFBP-1, -2, -3 and -5 was conducted using a two-step chromatography procedure and the final protein yields were between 1 and 12mg protein per liter culture media. The recombinant IGFBPs contained PTMs and exhibited high-affinity interactions with their natural ligands IGF-1 and IGF-2. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Distinguishing normal cells from cancer cells via lysosome-targetable pH biomarkers with benzo[a]phenoxazine skeleton

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Yan-Hua [College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, 199 Ren’Ai Road, Suzhou, 215123 (China); Li, Xiao-Jun [School of Radiation Medicine and Protection, Medicine College of Soochow University, Suzhou, 215123 (China); Sun, Ru, E-mail: sunru924@hotmail.com [College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, 199 Ren’Ai Road, Suzhou, 215123 (China); Xu, Yu-Jie [School of Radiation Medicine and Protection, Medicine College of Soochow University, Suzhou, 215123 (China); Ge, Jian-Feng, E-mail: ge_jianfeng@hotmail.com [College of Chemistry, Chemical Engineering and Material Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Soochow University, 199 Ren’Ai Road, Suzhou, 215123 (China); Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163 (China)

    2016-08-24

    In this paper, the design of a lysosome-targetable pH probe that has a fluorescent OFF (pH = 4) to ON (pH = 5–6) response is described to identify lysosomes in normal cells. The mechanism of photoinduced electron transfer with a fluorophore-based reaction (FBR-PET) was proposed. Benzo[a]phenoxazines with electro-donating aryl groups were selected, its (2,5-dimethoxyphenyl)imino-, (2-hydroxyphenyl)imino- and (2-hydroxy-5-methoxyphenyl)- imino-derivatives (probes 1a−c) were prepared and their optical responses towards pH were evaluated; their fluorescence pH titration experiments gave regularly changes with the increasing electro-donating abilities at the linked aryl groups, the (2-hydroxy-5-methoxyphenyl)iminobenzo[a]phenoxazine (probe 1c) exhibited a nearly OFF−ON response at 580–800 nm. All probes were reversible, and they showed excellent selectivity toward the proton over other competitive species. Fluorescence confocal images were performed with HeLa, KB cancer cells and V79 normal cells, probes 1a−c are all lysosome-targetable pH probes, and benzo[a]phenoxazine with (2-hydroxy-5-methoxyphenyl)imino-group (probe 1c) has potential applications in selective differentiation of normal cells from cancer cells. - Highlights: • pH probes for lysosome detection in normal cells. • Differentiation of normal cells from cancer cells by lysosome-biomarker. • The PET mechanism promoted by fluorophore based reactions (FBR-PET).

  14. Distinguishing normal cells from cancer cells via lysosome-targetable pH biomarkers with benzo[a]phenoxazine skeleton

    International Nuclear Information System (INIS)

    Zhan, Yan-Hua; Li, Xiao-Jun; Sun, Ru; Xu, Yu-Jie; Ge, Jian-Feng

    2016-01-01

    In this paper, the design of a lysosome-targetable pH probe that has a fluorescent OFF (pH = 4) to ON (pH = 5–6) response is described to identify lysosomes in normal cells. The mechanism of photoinduced electron transfer with a fluorophore-based reaction (FBR-PET) was proposed. Benzo[a]phenoxazines with electro-donating aryl groups were selected, its (2,5-dimethoxyphenyl)imino-, (2-hydroxyphenyl)imino- and (2-hydroxy-5-methoxyphenyl)- imino-derivatives (probes 1a−c) were prepared and their optical responses towards pH were evaluated; their fluorescence pH titration experiments gave regularly changes with the increasing electro-donating abilities at the linked aryl groups, the (2-hydroxy-5-methoxyphenyl)iminobenzo[a]phenoxazine (probe 1c) exhibited a nearly OFF−ON response at 580–800 nm. All probes were reversible, and they showed excellent selectivity toward the proton over other competitive species. Fluorescence confocal images were performed with HeLa, KB cancer cells and V79 normal cells, probes 1a−c are all lysosome-targetable pH probes, and benzo[a]phenoxazine with (2-hydroxy-5-methoxyphenyl)imino-group (probe 1c) has potential applications in selective differentiation of normal cells from cancer cells. - Highlights: • pH probes for lysosome detection in normal cells. • Differentiation of normal cells from cancer cells by lysosome-biomarker. • The PET mechanism promoted by fluorophore based reactions (FBR-PET).

  15. Three-dimensional telomere architecture of esophageal squamous cell carcinoma: comparison of tumor and normal epithelial cells.

    Science.gov (United States)

    Sunpaweravong, S; Sunpaweravong, P; Sathitruangsak, C; Mai, S

    2016-05-01

    Telomeres are repetitive nucleotide sequences (TTAGGG)n located at the ends of chromosomes that function to preserve chromosomal integrity and prevent terminal end-to-end fusions. Telomere loss or dysfunction results in breakage-bridge-fusion cycles, aneuploidy, gene amplification and chromosomal rearrangements, which can lead to genomic instability and promote carcinogenesis. Evaluating the hypothesis that changes in telomeres contribute to the development of esophageal squamous cell carcinoma (ESCC) and to determine whether there are differences between young and old patients, we compared the three-dimensional (3D) nuclear telomere architecture in ESCC tumor cells with that of normal epithelial cells obtained from the same patient. Patients were equally divided by age into two groups, one comprising those less than 45 years of age and the other consisting of those over 80 years of age. Tumor and normal epithelial cells located at least 10 cm from the border of the tumor were biopsied in ESCC patients. Hematoxylin and eosin staining was performed for each sample to confirm and identify the cancer and normal epithelial cells. This study was based on quantitative 3D fluorescence in situ hybridization (Q-FISH), 3D imaging and 3D analysis of paraffin-embedded slides. The 3D telomere architecture data were computer analyzed using 100 nuclei per slide. The following were the main parameters compared: the number of signals (number of telomeres), signal intensity (telomere length), number of telomere aggregates, and nuclear volume. Tumor and normal epithelial samples from 16 patients were compared. The normal epithelial cells had more telomere signals and higher intensities than the tumor cells, with P-values of P architecture and found no statistically significant differences in any parameter tested between the young and old patients in either the tumor or epithelial cells. The 3D nuclear telomeric signature was able to detect differences in telomere architecture

  16. Human Embryonic Kidney 293 Cells: A Vehicle for Biopharmaceutical Manufacturing, Structural Biology, and Electrophysiology.

    Science.gov (United States)

    Hu, Jianwen; Han, Jizhong; Li, Haoran; Zhang, Xian; Liu, Lan Lan; Chen, Fei; Zeng, Bin

    2018-01-01

    Mammalian cells, e.g., CHO, BHK, HEK293, HT-1080, and NS0 cells, represent important manufacturing platforms in bioengineering. They are widely used for the production of recombinant therapeutic proteins, vaccines, anticancer agents, and other clinically relevant drugs. HEK293 (human embryonic kidney 293) cells and their derived cell lines provide an attractive heterologous system for the development of recombinant proteins or adenovirus productions, not least due to their human-like posttranslational modification of protein molecules to provide the desired biological activity. Secondly, they also exhibit high transfection efficiency yielding high-quality recombinant proteins. They are easy to maintain and express with high fidelity membrane proteins, such as ion channels and transporters, and thus are attractive for structural biology and electrophysiology studies. In this article, we review the literature on HEK293 cells regarding their origins but also stress their advancements into the different cell lines engineered and discuss some significant aspects which make them versatile systems for biopharmaceutical manufacturing, drug screening, structural biology research, and electrophysiology applications. © 2018 S. Karger AG, Basel.

  17. Microencapsulation of Lefty-secreting engineered cells for pulmonary fibrosis therapy in mice.

    Science.gov (United States)

    Ma, Hongge; Qiao, Shupei; Wang, Zeli; Geng, Shuai; Zhao, Yufang; Hou, Xiaolu; Tian, Weiming; Chen, Xiongbiao; Yao, Lifen

    2017-05-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease that causes unremitting deposition of extracellular matrix proteins, thus resulting in distortion of the pulmonary architecture and impaired gas exchange. Associated with high morbidity and mortality, IPF is generally refractory to current pharmacological therapies. Lefty A, a potent inhibitor of transforming growth factor-β signaling, has been shown to have promising antifibrotic ability in vitro for the treatment of renal fibrosis and other potential organ fibroses. Here, we determined whether Lefty A can attenuate bleomycin (BLM)-induced pulmonary fibrosis in vivo based on a novel therapeutic strategy where human embryonic kidney 293 (HEK293) cells are genetically engineered with the Lefty A-associated GFP gene. The engineered HEK293 cells were encapsulated in alginate microcapsules and then subcutaneously implanted in ICR mice that had 1 wk earlier been intratracheally administered BLM to induce pulmonary fibrosis. The severity of fibrosis in lung tissue was assessed using pathological morphology and collagen expression to examine the effect of Lefty A released from the microencapsulated cells. The engineered HEK293 cells with Lefty A significantly reduced the expression of connective tissue growth factor and collagen type I mRNA, lessened the morphological fibrotic effects induced by BLM, and increased the expression of matrix metalloproteinase-9. This illustrates that engineered HEK293 cells with Lefty A can attenuate pulmonary fibrosis in vivo, thus providing a novel method to treat human pulmonary fibrotic disease and other organ fibroses. Copyright © 2017 the American Physiological Society.

  18. Normalization of cell responses in cat striate cortex

    Science.gov (United States)

    Heeger, D. J.

    1992-01-01

    Simple cells in the striate cortex have been depicted as half-wave-rectified linear operators. Complex cells have been depicted as energy mechanisms, constructed from the squared sum of the outputs of quadrature pairs of linear operators. However, the linear/energy model falls short of a complete explanation of striate cell responses. In this paper, a modified version of the linear/energy model is presented in which striate cells mutually inhibit one another, effectively normalizing their responses with respect to stimulus contrast. This paper reviews experimental measurements of striate cell responses, and shows that the new model explains a significantly larger body of physiological data.

  19. Radiosensitivity of normal human epidermal cells in culture

    International Nuclear Information System (INIS)

    Dover, R.; Potten, C.S.

    1983-01-01

    Using an in vitro culture system the authors have derived #betta#-radiation survival curves over a dose range 0-8 Gy for the clonogenic cells of normal human epidermis. The culture system used allows the epidermal cells to stratify and form a multi-layered sheet of keratinizing cells. The cultures appear to be a very good model for epidermis in vivo. The survival curves show a population which is apparently more sensitive than murine epidermis in vivo. It remains unclear whether this is an intrinsic difference between the species or is a consequence of the in vitro cultivation of the human cells. (author)

  20. Impact of cell type and epitope tagging on heterologous expression of G protein-coupled receptor: a systematic study on angiotensin type II receptor.

    Directory of Open Access Journals (Sweden)

    Lili Jiang

    Full Text Available Despite heterologous expression of epitope-tagged GPCR is widely adopted for functional characterization, there is lacking of systematic analysis of the impact of expression host and epitope tag on GPCR expression. Angiotensin type II (AT2 receptor displays agonist-dependent and -independent activities, coupling to a spectrum of signaling molecules. However, consensus has not been reached on the subcellular distributions, signaling cascades and receptor-mediated actions. To examine the contributions of host cell and epitope tag on receptor expression and activity, epitope-tagged AT2 receptor variants were transiently or stably expressed in HEK293, CHO-K1 and PC12 cells. The epitope-tagged AT2 receptor variants were detected both on the cell membrane and in the perinuclear region. In transiently transfected HEK293 cells, Myc-AT2 existed predominantly as monomer. Additionally, a ladder of ubiquitinated AT2 receptor proteins was detected. By contrast, stably expressed epitope-tagged AT2 receptor variants existed as both monomer and high molecular weight complexes, and the latter was enriched in cell surface. Glycosylation promoted cell surface expression of Myc-AT2 but had no effect on AT2-GFP in HEK293 cells. In cells that stably expressed Myc-AT2, serum starvation induced apoptosis in CHO-K1 cells but not in HEK293 or PC12 cells. Instead, HEK293 and PC12 cells stably expressing Myc-AT2 exhibited partial cell cycle arrest with cells accumulating at G1 and S phases, respectively. Taken together, these results suggest that expression levels, subcellular distributions and ligand-independent constitutive activities of AT2 receptor were cell type-dependent while posttranslational processing of nascent AT2 receptor protein was modulated by epitope tag and mode of expression.

  1. Plurihormonal cells of normal anterior pituitary: Facts and conclusions.

    Science.gov (United States)

    Mitrofanova, Lubov B; Konovalov, Petr V; Krylova, Julia S; Polyakova, Victoria O; Kvetnoy, Igor M

    2017-04-25

    plurihormonality of pituitary adenomas is an ability of adenoma cells to produce more than one hormone. After the immunohistochemical analysis had become a routine part of the morphological study, a great number of adenomas appeared to be multihormonal in actual practice. We hypothesize that the same cells of a normal pituitary gland releases several hormones simultaneously. To analyse a possible co-expression of hormones by the cells of the normal anterior pituitary of adult humans in autopsy material. We studied 10 pituitary glands of 4 women and 6 men with cardiovascular and oncological diseases. Double staining immunohistochemistry using 11 hormone combinations was performed in all the cases. These combinations were: prolactin/thyroid-stimulating hormone (TSH), prolactin/luteinizing hormone (LH), prolactin/follicle-stimulating hormone (FSH), prolactin/adrenocorticotropic hormone (ACTH), growth hormone (GH)/TSH, GH/LH, GH/FSH, GH/ACTH, TSH/LH, TSH/FSH, TSH/ACTH. Laser Confocal Scanning Microscopy with a mixture of primary antibodies was performed in 2 cases. These mixtures were ACTH/prolactin, FSH/prolactin, TSH/prolactin, ACTH/GH, and FSH/GH. We found that the same cells of the normal adenohypophysis can co-express prolactin with ACTH, TSH, FSH, LH; GH with ACTH, TSH, FSH, LH, and TSH with ACTH, FSH, LH. The comparison of the average co-expression coefficients of prolactin, GH and TSH with other hormones showed that the TSH co-expression coefficient was significantly the least (9,5±6,9%; 9,6±7,8%; 1,0±1,3% correspondingly). Plurihormonality of normal adenohypophysis is an actually existing phenomenon. Identification of different hormones in pituitary adenomas enables to find new ways to improve both diagnostic process and targeted treatment.

  2. Alphavirus production is inhibited in neurofibromin 1-deficient cells through activated RAS signalling

    International Nuclear Information System (INIS)

    Kolokoltsova, Olga A.; Domina, Aaron M.; Kolokoltsov, Andrey A.; Davey, Robert A.; Weaver, Scott C.; Watowich, Stanley J.

    2008-01-01

    Virus-host interactions essential for alphavirus pathogenesis are poorly understood. To address this shortcoming, we coupled retrovirus insertional mutagenesis and a cell survival selection strategy to generate clonal cell lines broadly resistant to Sindbis virus (SINV) and other alphaviruses. Resistant cells had significantly impaired SINV production relative to wild-type (WT) cells, although virus binding and fusion events were similar in both sets of cells. Analysis of the retroviral integration sites identified the neurofibromin 1 (NF1) gene as disrupted in alphavirus-resistant cell lines. Subsequent analysis indicated that expression of NF1 was significantly reduced in alphavirus-resistant cells. Importantly, independent down-regulation of NF1 expression in WT HEK 293 cells decreased virus production and increased cell viability during SINV infection, relative to infected WT cells. Additionally, we observed hyperactive RAS signalling in the resistant HEK 293 cells, which was anticipated because NF1 is a negative regulator of RAS. Expression of constitutively active RAS (HRAS-G12V) in a WT HEK 293 cell line resulted in a marked delay in virus production, compared with infected cells transfected with parental plasmid or dominant-negative RAS (HRAS-S17N). This work highlights novel host cell determinants required for alphavirus pathogenesis and suggests that RAS signalling may play an important role in neuronal susceptibility to SINV infection

  3. Olfactory granule cell development in normal and hyperthyroid rats.

    Science.gov (United States)

    Brunjes, P C; Schwark, H D; Greenough, W T

    1982-10-01

    Dendritic development was examined in olfactory bulbs of both normal 7-, 14-, 21- and 60-day-old rats and littermates treated on postnatal days 1-4 with 1 microgram/g body weight of L-thyroxine sodium. Tissue was processed via the Golgi-Cox technique and subjected to quantitative analyses of mitral and internal layer granule cell development. These populations of granule cells were selected because their pattern of late proliferation suggested potentially greater susceptibility to postnatal hormonal alterations. Although neonatal hyperthyroidism induces widespread acceleration of maturation, including precocious chemosensitivity, granule cell development was unaffected relative to littermate controls. Both normal and hyperthyroid groups exhibited an inverted U-shaped pattern of cellular development, with rapid dendritic dendritic growth and expansion occurring during the earliest ages tested, but with loss of processes and dendritic field size occurring after day 21.

  4. Cell renewal of glomerular cell types in normal rats. An autoradiographic analysis

    International Nuclear Information System (INIS)

    Pabst, R.; Sterzel, R.B.

    1983-01-01

    Normal adult Sprague-Dawley rats received either a single or repetitive injection of the DNA precursor 3 H-thymidine ( 3 H-TdR). For autoradiography semi-thin sections were prepared 2 hr to 14 days after labeling. The majority of labeled cells noted in glomerular tufts were endothelial cells. Mesangial cells had a lower production rate. Podocytes revealed no evidence of proliferation. Bowman's capsule cells showed a higher labeling index than tuft cells at all times. Neither the urinary nor the vascular pole was found to be a proliferative zone for Bowman's capsule cells. The flash and repetitive labeling experiments demonstrated a constant rate of cell renewal of about 1% per day, resulting in a long life span for endothelial and mesangial cells as well as Bowman's capsule cells. These data provide a basis for cell kinetic studies in models of glomerular diseases

  5. Diatom-derived polyunsaturated aldehydes activate cell death in human cancer cell lines but not normal cells.

    Directory of Open Access Journals (Sweden)

    Clementina Sansone

    Full Text Available Diatoms are an important class of unicellular algae that produce bioactive polyunsaturated aldehydes (PUAs that induce abortions or malformations in the offspring of invertebrates exposed to them during gestation. Here we compare the effects of the PUAs 2-trans,4-trans-decadienal (DD, 2-trans,4-trans-octadienal (OD and 2-trans,4-trans-heptadienal (HD on the adenocarcinoma cell lines lung A549 and colon COLO 205, and the normal lung/brunch epithelial BEAS-2B cell line. Using the viability MTT/Trypan blue assays, we show that PUAs have a toxic effect on both A549 and COLO 205 tumor cells but not BEAS-2B normal cells. DD was the strongest of the three PUAs tested, at all time-intervals considered, but HD was as strong as DD after 48 h. OD was the least active of the three PUAs. The effect of the three PUAs was somewhat stronger for A549 cells. We therefore studied the death signaling pathway activated in A549 showing that cells treated with DD activated Tumor Necrosis Factor Receptor 1 (TNFR1 and Fas Associated Death Domain (FADD leading to necroptosis via caspase-3 without activating the survival pathway Receptor-Interacting Protein (RIP. The TNFR1/FADD/caspase pathway was also observed with OD, but only after 48 h. This was the only PUA that activated RIP, consistent with the finding that OD causes less damage to the cell compared to DD and HD. In contrast, cells treated with HD activated the Fas/FADD/caspase pathway. This is the first report that PUAs activate an extrinsic apoptotic machinery in contrast to other anticancer drugs that promote an intrinsic death pathway, without affecting the viability of normal cells from the same tissue type. These findings have interesting implications also from the ecological viewpoint considering that HD is one of the most common PUAs produced by diatoms.

  6. Biodistribution study of carbogenic dots in cells and in vivo for optical imaging

    International Nuclear Information System (INIS)

    Li Nan; Liang Xiaofei; Wang Lili; Li Zonghai; Li Peiyong; Zhu Yihua; Song Jing

    2012-01-01

    Blue fluorescent carbon dots (C-dots) were synthesized and evaluated for their cytotoxicity and also for their optical imaging performance. The results showed that the C-dots could enter into the Hela cells in 15 min incubation and the uptake increased rapidly from 15 min to 2 h. In cytotoxicity study, C-dots were biocompatible and nontoxic to three human cells including two cancer cells (Hela and SMCC-7721) and one normal cell (HEK 293) in concentrations up to 500 μg/mL. Since the endocytic interference factors, including NaN 3 , MβCD, sucrose, and low temperature, could not play an inhibitory effect on C-dots entering into cells, the direct nonendocytic pathway for C-dots was speculated. The C-dots showed encouraging cell-imaging applications in vitro and in vivo. They entered into cells without any further functionalization, and the fluorescence property of these particles can be used for fluorescence-based cell-imaging applications.

  7. Small copper fixed-point cells of the hybrid type to be used in place of normal larger cells

    Science.gov (United States)

    Battuello, M.; Girard, F.; Florio, M.

    2012-10-01

    Two small cells for the realization of the fixed point of copper were constructed and investigated at INRIM. They are of the same hybrid design generally adopted for the eutectic high-temperature fixed-point cells, namely a structure with a sacrificial graphite sleeve and a layer of flexible carbon-carbon composite sheet (C/C sheet). Because of the largely different design with respect to the cells normally adopted for the construction of pure metal fixed points, they were compared and characterized with respect to the normal cells used at INRIM for the ITS-90 realization. Two different furnaces were used to compare hybrid and normal cells. One of the hybrid cells was also used in different configurations, i.e. without the C/C sheet and with two layers of sheet. The cells were compared with different operative conditions, i.e. temperature settings of the furnaces for inducing the freeze, and repeatability and reproducibility were investigated. Freezing temperature and shape of the plateaux obtained under the different conditions were analysed. As expected the duration of the plateaux obtained with the hybrid cells is considerably shorter than with the normal cell, but this does not affect the results in terms of freezing temperature. Measurements with the modified cell showed that the use of a double C/C sheet may improve both repeatability and reproducibility of the plateaux.

  8. Small copper fixed-point cells of the hybrid type to be used in place of normal larger cells

    International Nuclear Information System (INIS)

    Battuello, M; Girard, F; Florio, M

    2012-01-01

    Two small cells for the realization of the fixed point of copper were constructed and investigated at INRIM. They are of the same hybrid design generally adopted for the eutectic high-temperature fixed-point cells, namely a structure with a sacrificial graphite sleeve and a layer of flexible carbon–carbon composite sheet (C/C sheet). Because of the largely different design with respect to the cells normally adopted for the construction of pure metal fixed points, they were compared and characterized with respect to the normal cells used at INRIM for the ITS-90 realization. Two different furnaces were used to compare hybrid and normal cells. One of the hybrid cells was also used in different configurations, i.e. without the C/C sheet and with two layers of sheet. The cells were compared with different operative conditions, i.e. temperature settings of the furnaces for inducing the freeze, and repeatability and reproducibility were investigated. Freezing temperature and shape of the plateaux obtained under the different conditions were analysed. As expected the duration of the plateaux obtained with the hybrid cells is considerably shorter than with the normal cell, but this does not affect the results in terms of freezing temperature. Measurements with the modified cell showed that the use of a double C/C sheet may improve both repeatability and reproducibility of the plateaux. (paper)

  9. CDDO-Me protects normal lung and breast epithelial cells but not cancer cells from radiation.

    Directory of Open Access Journals (Sweden)

    Mariam El-Ashmawy

    Full Text Available Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs. In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF = 1.3, and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients.

  10. Plurihormonal cells of normal anterior pituitary: Facts and conclusions

    Science.gov (United States)

    Mitrofanova, Lubov B.; Konovalov, Petr V.; Krylova, Julia S.; Polyakova, Victoria O.; Kvetnoy, Igor M.

    2017-01-01

    Introduction plurihormonality of pituitary adenomas is an ability of adenoma cells to produce more than one hormone. After the immunohistochemical analysis had become a routine part of the morphological study, a great number of adenomas appeared to be multihormonal in actual practice. We hypothesize that the same cells of a normal pituitary gland releases several hormones simultaneously. Objective To analyse a possible co-expression of hormones by the cells of the normal anterior pituitary of adult humans in autopsy material. Materials and methods We studied 10 pituitary glands of 4 women and 6 men with cardiovascular and oncological diseases. Double staining immunohistochemistry using 11 hormone combinations was performed in all the cases. These combinations were: prolactin/thyroid-stimulating hormone (TSH), prolactin/luteinizing hormone (LH), prolactin/follicle-stimulating hormone (FSH), prolactin/adrenocorticotropic hormone (ACTH), growth hormone (GH)/TSH, GH/LH, GH/FSH, GH/ACTH, TSH/LH, TSH/FSH, TSH/ACTH. Laser Confocal Scanning Microscopy with a mixture of primary antibodies was performed in 2 cases. These mixtures were ACTH/prolactin, FSH/prolactin, TSH/prolactin, ACTH/GH, and FSH/GH. Results We found that the same cells of the normal adenohypophysis can co-express prolactin with ACTH, TSH, FSH, LH; GH with ACTH, TSH, FSH, LH, and TSH with ACTH, FSH, LH. The comparison of the average co-expression coefficients of prolactin, GH and TSH with other hormones showed that the TSH co-expression coefficient was significantly the least (9,5±6,9%; 9,6±7,8%; 1,0±1,3% correspondingly). Conclusion Plurihormonality of normal adenohypophysis is an actually existing phenomenon. Identification of different hormones in pituitary adenomas enables to find new ways to improve both diagnostic process and targeted treatment. PMID:28418929

  11. Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1.

    Science.gov (United States)

    Almarwani, Bashiyar; Phambu, Esther Nzuzi; Alexander, Christopher; Nguyen, Ha Aimee T; Phambu, Nsoki; Sunda-Meya, Anderson

    2018-06-01

    The cell-penetrating peptide (CPP) Pep-1 presents a great potential in drug delivery due to its intrinsic property to cross plasma membrane. However, its mechanism of entry into the cell remains unresolved. In this study, we compare the selectivity of Pep-1 towards vesicles mimicking normal and cancer cell membranes. The interaction was performed in a wide range of peptide-to-lipid molar ratios using infrared (IR), fluorescence, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. At low peptide concentration, fluorescence experiments show that lipid-phosphatidylserine (PS) seems to enable Pep-1 translocation into cancer cell membrane as evidenced by the blue shift of its maximal emission wavelength. DSC data show that Pep-1 induces segregation of lipids. At high peptide concentration, IR data indicate that the interaction of Pep-1 is relatively stronger with normal cell membrane than with cancer cell membrane through the phosphate groups, while the interaction is weaker with normal cell membrane than with cancer cell membrane through the carbonyl groups. TGA and DSC data reveal that vesicles of normal cell membrane are thermally more stable than vesicles of cancer cell membrane. This suggests that the additional lipid PS included in cancer cell membrane has a destabilizing effect on the membrane structure. SEM images reveal that Pep-1 form superstructures including spherical particles and fibrils in the presence of both model membranes. PS seems to enhance peptide transport across cellular membranes. The biophysical techniques in this study provide valuable insights into the properties of CPPs in drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. THE HUNT FOR EXOMOONS WITH KEPLER (HEK). I. DESCRIPTION OF A NEW OBSERVATIONAL PROJECT

    International Nuclear Information System (INIS)

    Kipping, D. M.; Bakos, G. Á.; Buchhave, L.; Nesvorný, D.; Schmitt, A.

    2012-01-01

    Two decades ago, empirical evidence concerning the existence and frequency of planets around stars, other than our own, was absent. Since that time, the detection of extrasolar planets from Jupiter-sized to, most recently, Earth-sized worlds has blossomed and we are finally able to shed light on the plurality of Earth-like, habitable planets in the cosmos. Extrasolar moons may also be frequently habitable worlds, but their detection or even systematic pursuit remains lacking in the current literature. Here, we present a description of the first systematic search for extrasolar moons as part of a new observational project called 'The Hunt for Exomoons with Kepler' (HEK). The HEK project distills the entire list of known transiting planet candidates found by Kepler (2326 at the time of writing) down to the most promising candidates for hosting a moon. Selected targets are fitted using a multimodal nested sampling algorithm coupled with a planet-with-moon light curve modeling routine. By comparing the Bayesian evidence of a planet-only model to that of a planet-with-moon, the detection process is handled in a Bayesian framework. In the case of null detections, upper limits derived from posteriors marginalized over the entire prior volume will be provided to inform the frequency of large moons around viable planetary hosts, η leftmoon. After discussing our methodologies for target selection, modeling, fitting, and vetting, we provide two example analyses.

  13. Functional analysis of variant lysosomal acid glycosidases of Anderson-Fabry and Pompe disease in a human embryonic kidney epithelial cell line (HEK 293 T).

    Science.gov (United States)

    Ebrahim, Hatim Y; Baker, Robert J; Mehta, Atul B; Hughes, Derralynn A

    2012-03-01

    The functional significance of missense mutations in genes encoding acid glycosidases of lysosomal storage disorders (LSDs) is not always clear. Here we describe a method of investigating functional properties of variant enzymes in vitro using a human embryonic kidney epithelial cell line. Site-directed mutagenesis was performed on the parental plasmids containing cDNA encoding for alpha-galactosidase A (α-Gal A) and acid maltase (α-Glu) to prepare plasmids encoding relevant point mutations. Mutant plasmids were transfected into HEK 293 T cells, and transient over-expression of variant enzymes was measured after 3 days. We have illustrated the method by examining enzymatic activities of four unknown α-Gal A and one α-Glu variants identified in our patients with Anderson-Fabry disease and Pompe diseases respectively. Comparison with control variants known to be either pathogenic or non-pathogenic together with over-expression of wild-type enzyme allowed determination of the pathogenicity of the mutation. One leader sequence novel variant of α-Gal A (p.A15T) was shown not to significantly reduce enzyme activity, whereas three other novel α-Gal A variants (p.D93Y, p.L372P and p.T410I) were shown to be pathogenic as they resulted in significant reduction of enzyme activity. A novel α-Glu variant (p.L72R) was shown to be pathogenic as this significantly reduced enzyme activity. Certain acid glycosidase variants that have been described in association with late-onset LSDs and which are known to have variable residual plasma and leukocyte enzyme activity in patients appear to show intermediate to low enzyme activity (p.N215S and p.Q279E α-Gal A respectively) in the over-expression system.

  14. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    International Nuclear Information System (INIS)

    Kheradmand, Arash; Dezfoulian, Omid; Alirezaei, Masoud; Rasoulian, Bahram

    2012-01-01

    Highlights: ► Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. ► Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. ► Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. ► Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P 0.05). Upstream of Bax substance parallel to down-regulation of PCNA demonstrate that ghrelin may prevent massive accumulation of germ cells during normal spermatogenesis. These observations also indicate that ghrelin may be considered as a modulator of spermatogenesis in normal adult rats and could be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors.

  15. Substance P induces rapid and transient membrane blebbing in U373MG cells in a p21-activated kinase-dependent manner.

    Directory of Open Access Journals (Sweden)

    John Meshki

    Full Text Available U373MG astrocytoma cells endogenously express the full-length neurokinin 1 receptor (NK1R. Substance P (SP, the natural ligand for NK1R, triggers rapid and transient membrane blebbing and we report that these morphological changes have different dynamics and intracellular signaling as compared to the changes that we have previously described in HEK293-NK1R cells. In both cell lines, the SP-induced morphological changes are Gq-independent, and they require the Rho, Rho-associated coiled-coil kinase (ROCK signaling pathway. Using confocal microscopy we have demonstrated that tubulin is phosphorylated subsequent to cell stimulation with SP and that tubulin accumulates inside the blebs. Colchicine, a tubulin polymerization inhibitor, blocked SP-induced blebbing in U373MG but not in HEK293-NK1R cells. Although p21-activated kinase (PAK is expressed in both cell lines, SP induced rapid phosphorylation of PAK in U373MG, but failed to phosphorylate PAK in HEK293-NK1R cells. The cell-permeable Rho inhibitor C3 transferase inhibited SP-induced PAK phosphorylation, but the ROCK inhibitor Y27632 had no effect on PAK phosphorylation, suggesting that Rho activates PAK in a ROCK-independent manner. Our study demonstrates that SP triggers rapid changes in cell morphology mediated by distinct intracellular signaling mechanisms in U373MG versus HEK293-NK1R cells.

  16. Raman Spectroscopy of DNA Packaging in Individual Human Sperm Cells distinguishes Normal from Abnormal Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huser, T; Orme, C; Hollars, C; Corzett, M; Balhorn, R

    2009-03-09

    Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with male infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modes that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization.

  17. IND-2, a pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline derivative, circumvents multi-drug resistance and causes apoptosis in colon cancer cells.

    Science.gov (United States)

    Karthikeyan, Chandrabose; Lee, Crystal; Moore, Joshua; Mittal, Roopali; Suswam, Esther A; Abbott, Kodye L; Pondugula, Satyanarayana R; Manne, Upender; Narayanan, Narayanan K; Trivedi, Piyush; Tiwari, Amit K

    2015-02-01

    Naturally occurring condensed quinolines have anticancer properties. In efforts to find active analogues, we designed and synthesized eight polycyclic heterocycles with a pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline framework (IND series). The compounds were evaluated for activity against colon (HCT-116 and S1-MI-80), prostate (PC3 and DU-145), breast (MCF-7 and MDAMB-231), ovarian (ov2008 and A2780), and hepatocellular (HepG2) cancer cells and against non-cancerous Madin Darby canine kidney (MDCK), mouse embryonic fibroblast (NIH/3T3), and human embryonic kidney cells (HEK293). IND-2, a 4-chloro-2-methyl pyrimido[1″,2″:1,5]pyrazolo[3,4-b]quinoline, exhibited more than ten-fold selectivity and potent cytotoxic activity against colon cancer cells relative to the other cancer and non-cancer cells. With five additional colon cancer cell lines (HT-29, HCT-15, LS-180, LS-174, and LoVo), IND-2 had similar cytotoxicity and selectivity, and sub-micromolar concentrations caused changes in the morphology of HCT-116 and HCT-15 cells. IND-2 did not activate the transactivating function of the pregnane X receptor (PXR), indicating that it does not induce PXR-regulated ABCB1 or ABCG2 transporters. Indeed, IND-2 was not a substrate of ABCB1 or ABCG2, and it induced cytotoxicity in HEK293 cells overexpressing ABCB1 or ABCG2 to the same extent as in normal HEK293 cells. IND-2 was cytotoxic to resistant colon carcinoma S1-MI-80 cells, approximately three- and five-fold more than SN-38 and topotecan, respectively. In HCT-116 colon cancer cells, IND-2 produced concentration-dependent changes in mitochondrial membrane potential, leading to apoptosis, and sub-micromolar concentrations caused chromosomal DNA fragmentation. These findings suggest that, by increasing apoptosis, IND-2 has potential therapeutic efficacy for colorectal cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The morphological classification of normal and abnormal red blood cell using Self Organizing Map

    Science.gov (United States)

    Rahmat, R. F.; Wulandari, F. S.; Faza, S.; Muchtar, M. A.; Siregar, I.

    2018-02-01

    Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used self-organizing map method to classify the normal and abnormal form of red blood cells in the digital image. The use of self-organizing map neural network method can be implemented to classify the normal and abnormal form of red blood cells in the input image with 93,78% accuracy testing.

  19. The effect of the lamin A and its mutants on nuclear structure, cell proliferation, protein stability, and mobility in embryonic cells.

    Science.gov (United States)

    Piekarowicz, Katarzyna; Machowska, Magdalena; Dratkiewicz, Ewelina; Lorek, Daria; Madej-Pilarczyk, Agnieszka; Rzepecki, Ryszard

    2017-08-01

    LMNA gene encodes for nuclear intermediate filament proteins lamin A/C. Mutations in this gene lead to a spectrum of genetic disorders, collectively referred to as laminopathies. Lamin A/C are widely expressed in most differentiated somatic cells but not in early embryos and some undifferentiated cells. To investigate the role of lamin A/C in cell phenotype maintenance and differentiation, which could be a determinant of the pathogenesis of laminopathies, we examined the role played by exogenous lamin A and its mutants in differentiated cell lines (HeLa, NHDF) and less-differentiated HEK 293 cells. We introduced exogenous wild-type and mutated (H222P, L263P, E358K D446V, and ∆50) lamin A into different cell types and analyzed proteins' impact on proliferation, protein mobility, and endogenous nuclear envelope protein distribution. The mutants give rise to a broad spectrum of nuclear phenotypes and relocate lamin C. The mutations ∆50 and D446V enhance proliferation in comparison to wild-type lamin A and control cells, but no changes in exogenous protein mobility measured by FRAP were observed. Interestingly, although transcripts for lamins A and C are at similar level in HEK 293 cells, only lamin C protein is detected in western blots. Also, exogenous lamin A and its mutants, when expressed in HEK 293 cells underwent posttranscriptional processing. Overall, our results provide new insight into the maintenance of lamin A in less-differentiated cells. Embryonic cells are very sensitive to lamin A imbalance, and its upregulation disturbs lamin C, which may influence gene expression and many regulatory pathways.

  20. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  1. Bioactive form of resveratrol in glioblastoma cells and its safety for normal brain cells

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Shu

    2013-05-01

    Full Text Available ABSTRACTBackground: Resveratrol, a plant polyphenol existing in grapes and many other natural foods, possesses a wide range of biological activities including cancer prevention. It has been recognized that resveratrol is intracellularly biotransformed to different metabolites, but no direct evidence has been available to ascertain its bioactive form because of the difficulty to maintain resveratrol unmetabolized in vivo or in vitro. It would be therefore worthwhile to elucidate the potential therapeutic implications of resveratrol metabolism using a reliable resveratrol-sensitive cancer cells.Objective: To identify the real biological form of trans-resveratrol and to evaluate the safety of the effective anticancer dose of resveratrol for the normal brain cells.Methods: The samples were prepared from the condition media and cell lysates of human glioblastoma U251 cells, and were purified by solid phase extraction (SPE. The samples were subjected to high performance liquid chromatography (HPLC and liquid chromatography/tandem mass spectrometry (LC/MS analysis. According to the metabolite(s, trans-resveratrol was biotransformed in vitro by the method described elsewhere, and the resulting solution was used to treat U251 cells. Meanwhile, the responses of U251 and primarily cultured rat normal brain cells (glial cells and neurons to 100μM trans-resveratrol were evaluated by multiple experimental methods.Results: The results revealed that resveratrol monosulfate was the major metabolite in U251 cells. About half fraction of resveratrol monosulfate was prepared in vitro and this trans-resveratrol and resveratrol monosulfate mixture showed little inhibitory effect on U251 cells. It is also found that rat primary brain cells (PBCs not only resist 100μM but also tolerate as high as 200μM resveratrol treatment.Conclusions: Our study thus demonstrated that trans-resveratrol was the bioactive form in glioblastoma cells and, therefore, the biotransforming

  2. Distinct p53 genomic binding patterns in normal and cancer-derived human cells

    Energy Technology Data Exchange (ETDEWEB)

    Botcheva K.; McCorkle S. R.; McCombie W. R.; Dunn J. J.; Anderson C. W.

    2011-12-15

    We report here genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands, in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIPseq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells.

  3. The effects of environmental deuterium on normal and neoplastic cultured cell development

    International Nuclear Information System (INIS)

    Bild, W.; Schuller, T.; Zhihai, Qin; Blankenstein, T.; Nastasa, V.; Haulica, I.

    2000-01-01

    The powdered culture media (RPMI - 1640) were reconstituted either with normal distilled water (150 ppm deuterium) either with deuterium - depleted water (DDW) in various concentrations (30, 60, 90 ppm) and sterilized by filtration with 0.2 μm filters. The cell lines used were NIH (normal mouse fibroblasts), RAG (mouse renal carcinoma) and TS/A (mouse mammary adenocarcinoma). In auxiliary tests, BAIBC mouse splenocytes in direct culture were used, stimulated for growth with concanavalin A or LPS (bacterial lipopolysaccharide). The estimation of the growth was made using the MTT assay or direct counting with trypan blue exclusion. The following results were obtained: Deuterium - depleted water had a stimulating effect on cell growth, the most important stimulating action being from the 90 ppm deuterium-water. The growth curves show, in a first phase, a stimulation of the rapid -growing neoplastic cells, followed by a slower growth of the normal cells. Amiloride 100 mM blocking of the Na + /K + membrane pump did not affect the cell growth curves, while the lansoprazole 100 mM blocking of the K + /H + ATP-ase brought the growth curves at the level of those with normal water. This might show an eventual involvement of the K + /H + antiport in the stimulating effects of the DDW. (authors)

  4. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  5. Study of nuclear proteins in normal and xeroderma pigmentosum lymphoblastoid cells

    International Nuclear Information System (INIS)

    Amari, N.M.B.

    1985-01-01

    Nuclear histone and nonhistone (NHP) proteins from normal human and xeroderma pigmentosum, complementation group A (XP-A) lymphoblastoid cells were compared both qualitatively, quantitatively and for binding affinity for DNA. Histones and four NHP fractions (NHP/sub 1-4/) were isolated from purified cell nuclei. Binding affinity to [ 3 H] melanoma DNA of histones and each NHP fraction was then determined using gradient dialysis followed by a filter assay. Histones and each NHP fraction were then sub-fractionated by polyacrylamide gel electrophoresis. Densitometric scans of the separation of these proteins on the gels were qualitatively, and quantitatively analyzed and compared between the two cell lines. No qualitative or quantitative differences were observed between histones from XP-A or normal cells

  6. Increase in Dye:Dendrimer Ratio Decreases Cellular Uptake of Neutral Dendrimers in RAW Cells.

    Science.gov (United States)

    Vaidyanathan, Sriram; Kaushik, Milan; Dougherty, Casey; Rattan, Rahul; Goonewardena, Sascha N; Banaszak Holl, Mark M; Monano, Janet; DiMaggio, Stassi

    2016-09-12

    Neutral generation 3 poly(amidoamine) dendrimers were labeled with Oregon Green 488 (G3-OG n ) to obtain materials with controlled fluorophore:dendrimer ratios (n = 1-2), a mixture containing mostly 3 dyes per dendrimer, a mixture containing primarily 4 or more dyes per dendrimer ( n = 4+), and a stochastic mixture ( n = 4 avg ). The UV absorbance of the dye conjugates increased linearly as n increased and the fluorescence emission decreased linearly as n increased. Cellular uptake was studied in RAW cells and HEK 293A cells as a function of the fluorophore:dendrimer ratio (n). The cellular uptake of G3-OG n ( n = 3, 4+, 4 avg ) into RAW cells was significantly lower than G3-OG n ( n = 1, 2). The uptake of G3-OG n ( n = 3, 4+, 4 avg ) into HEK 293A cells was not significantly different from G3-OG 1 . Thus, the fluorophore:dendrimer ratio was observed to change the extent of uptake in the macrophage uptake mechanism but not in the HEK 293A cell. This difference in endocytosis indicates the presence of a pathway in the macrophage that is sensitive to hydrophobicity of the particle.

  7. On the nanotoxicity of PAMAM dendrimers: Superfect® stimulates the EGFR-ERK1/2 signal transduction pathway via an oxidative stress-dependent mechanism in HEK 293 cells.

    Science.gov (United States)

    Akhtar, Saghir; Chandrasekhar, Bindu; Attur, Sreeja; Yousif, Mariam H M; Benter, Ibrahim F

    2013-05-01

    Polyamidoamine (PAMAM) dendrimers are cationic branch-like macromolecules that may serve as drug delivery systems for gene-based therapies such as RNA interference. For their safe use in the clinic, they should ideally only enhance drug delivery to target tissues and exhibit no adverse effects. However, little is known about their toxicological profiles in terms of their interactions with cellular signal transduction pathways such as the epidermal growth factor receptor (EGFR). The EGFR is an important signaling cascade that regulates cell growth, differentiation, migration, survival and apoptosis. Here, we investigated the impact of naked, unmodified Superfect (SF), a commercially available generation 6 PAMAM dendrimer, on the epidermal growth factor receptor (EGFR) tyrosine kinase-extracellular-regulated kinase 1/2 (ERK1/2) signaling pathway in human embryonic kidney (HEK 293) cells. At concentrations routinely used for transfection, SF exhibited time and dose-dependent stimulation of EGFR and ERK1/2 phosphorylation whereas AG1478, a selective EGFR tyrosine kinase antagonist, inhibited EGFR-ERK1/2 signaling. SF-induced phosphorylation of EGFR for 1h was partly reversible upon removal of the dendrimer and examination of cells 24 later. Co-treatment of SF with epidermal growth factor (EGF) ligand resulted in greater EGFR stimulation than either agent alone implying that the stimulatory effects of SF and the ligand are synergistic. Dendrimer-induced stimulation of EGFR-ERK1/2 signaling could be attenuated by the antioxidants apocynin, catalase and tempol implying that an oxidative stress dependent mechanism was involved. These results show for the first time that PAMAM dendrimers, aside from their ability to improve drug delivery, can modulate the important EGFR-ERK1/2 cellular signal transduction pathway - a novel finding that may have a bearing on their safe application as drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Natural killer activity and suppressor cells in irradiated mice repopulated with a mixture of cells from normal and 89Sr-treated donors

    International Nuclear Information System (INIS)

    Levy, E.M.; Kumar, V.; Bennett, M.

    1981-01-01

    Mice that have been injected with 89 Sr have fairly normal B and T cell function, but are abnormal in that they lack natural killer (NK) activity and other functions that require an intact bone marrow. These mice also have an increased potential for suppressor cell activity. We had previously shown that spleen cells from 89 Sr-treated mice could transfer low NK activity and increased suppressor cell function to lethally irradiated syngeneic recipients. To investigate the mechanisms involved in perpetuating these defects, groups of normal spleen or bone marrow cells. Recipients were assayed for their NK activity and suppressor cell function 5 to 14 wk later. it was found that the addition of normal cells in the donor inoculum resulted in normal NK activity. This indicates that low NK activity in 89 Sr-treated mice was not due to the presence of a suppressor cell that prevented NK cell generation. It was additionally found that low NK activity in recipient mice could be boosted by interferon inducers. This would indicate that NK activity in the recipients was not due to a lack of interferon-sensitive pre-NK cells. Suppressor cell function in recipient mice depended on the type and number of normal cells in the donor inoculum. Bone marrow cells were very efficient in overcoming the tendency to produce suppressor cells. It took approximately 20 times more normal spleen cells to produce the same results. The implications of these findings are discussed

  9. CD4+ T Cell Activation and Vascular Normalization: Two Sides of the Same Coin?

    Science.gov (United States)

    De Palma, Michele; Jain, Rakesh K

    2017-05-16

    Normalization of tumor blood vessels enhances the infiltration and functions of T cells. Tian et al. (2017) report that effector CD4 + T cells, in turn, support vascular normalization, highlighting intertwined roles for blood vessels and T cells in cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A comparative study on the mast cells count in oral squamous cell carcinoma and normal oral mucosa

    Directory of Open Access Journals (Sweden)

    Mahsa Dastpak

    2015-03-01

    Full Text Available Introduction: Oral squamous cell carcinoma (OSCC is one of the 10 most common malignant tumors and SCC accounts 94% of all oral malignancies. Mast cells are regarded as complex and multifunctional cells, playing a significant role in immunopathology . The aim of this study is to evaluate the number of mast cells in tissue sections of oral squamous cell carcinoma (OSCC in comparison with normal mucosa. Materials & Methods: Sixty paraffin-embedded specimens were obtained from the archives of the Department of Oral and Maxillofacial Pathology,dental school of Babol university of medical science (15 high grade,15 low grade and 30 Iritation Fibroma. Classification of OSCC cases was according to the BRODER`S malignancy grading system. Hematoxylin and Eosin-stained slides were re-evaluated before entering the samples in our study. Toluidine blue(1% staining was used to identify Mast cells in samples . We used SPSS software version 18 and one way ANOVA test for analyzing data. Results: The highest mast cell count was seen in normal tissue and it was higher in low grade OSCC in comparison with high grade, but the differences between groups weren’t statistically significant. The Mean count of mast cell between OSCC and normal oral mucosa was statistically significant different(p=0.019.We didn’t observe any statistically significant difference between Mast cell counts of control group and low grade OSCC . The same result was seen between high garde and low grade OSCC . The Mean mast cell count difference between male and female groups weren’t statistically significant. The Mean mast cell count difference between high grade OSCC and control group was significant (p<0.05. Conclusion: According to the results, the average amount of mast cells decreased in OSCC in comparison with normal oral mucosa . It does not seem that mast cells play an important role in tumor progression, although further study is needed. 

  11. MUC-1-ESA+ progenitor cells in normal benign and malignant human breast epithelial cells

    OpenAIRE

    Lu, Xinquan; Li, Huixiang; Xu, Kejia; Nesland, Jahn M.; Suo, Zhenhe

    2009-01-01

    The existence of mammary epithelial stem/progenitor cells has been demonstrated in MUC-1-/ ESA+ subpopulations of breast epithelial cells. However, knowledge about the expression and localization in benign and malignant breast lesions is unknown. Using a double-staining immunohistochemistry method, we investigated MUC-1-/ESA+ cells in 10 normal breast tissues, 49 cases with fibrocystic disease, 40 fibroadenomas, 36 invasive ductal carcinomas and the breast cancer ce...

  12. Amniotic Fluid Cells Proliferation in Normal and Down Syndrome Subjects

    Directory of Open Access Journals (Sweden)

    Honcea Adina

    2016-02-01

    Full Text Available Down Syndrome/Trisomy 21 is the most common chromosomal anomaly, and it represents the most common congenital cause of infants’ intellectual disability. Subjects with this syndrome are affected by degenerative processes caused by accelerated aging or unknown ethyologies. In recent years, accumulating evidence revealed increased potential of amniotic fluid-derived stem cells to be used in regenerative therapy. Our aim was to assess differences in immunophenotype, cell morphology and proliferation of amniotic fluid cells from normal and Down Syndrome pregnancies using a quantitative cytometry approach. Results revealed the emergence of a population of small sized cells in Down Syndrome derived amniotic fluid cells that are readily visible upon microscopic inspection. Hence, the fluorescence–based quantitative image cytometry determinations showed a tendency of decrease in both cell and nuclei size in trisomy, with no significant modification in nuclei circularity, as measured following actin cytoskeleton and nuclei labeling. The propensity of Ki67 positive cells was found to be increased in Down Syndrome derived cells (48.92% as compared to normal specimens (28.68%. However, cells in S and G2/M cell cycle phases decreased from 32.91% to 4.49% in diseased cells. Further studies are devoted to understanding the molecular basis of the observed differences in the proliferation ability of Down Syndrome amniotic cells, in order to evaluate the potential therapeutic effect of amniotic fluid stem cells for tissue regeneration in subjects with trisomy and to find correlations between amniotic cells phenotype and patient prognosis.

  13. Single cell analysis of normal and leukemic hematopoiesis.

    Science.gov (United States)

    Povinelli, Benjamin J; Rodriguez-Meira, Alba; Mead, Adam J

    2018-02-01

    The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application. Copyright © 2017. Published by Elsevier Ltd.

  14. Culture of normal human blood cells in a diffusion chamber system II. Lymphocyte and plasma cell kinetics

    International Nuclear Information System (INIS)

    Chikkappa, G.; Carsten, A.L.; Chanana, A.D.; Cronkite, E.P.

    1979-01-01

    Normal human blood leukocytes were cultured in Millipore diffusion chambers implanted into the peritoneal cavities of irradiated mice. The evaluation of survival and proliferation kinetics of cells in lymphyocytic series suggested that the lymphoid cells are formed from transition of small and/or large lymphocytes, and the lymphoblasts from the lymphoid cells. There was also evidence indicating that some of the cells in these two compartments are formed by proliferation. The evaluation of plasmacytic series suggested that the plasma cells are formed from plasmacytoid-lymphocytes by transition, and the latter from the transition of lymphocytes. In addition, relatively a small fraction of cells in these two compartments are formed by proliferation. mature plasma cells do not and immature plasma cells do proliferate. Estimation of magnitude of plasma cells formed in the cultures at day 18 indicated that at least one plasma cell is formed for every 6 normal human blood lymphocytes introduced into the culture

  15. Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage

    NARCIS (Netherlands)

    Coppes, Rob P.; van der Goot, Annemieke; Lombaert, Isabelle M. A.

    Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their

  16. Duchenne muscular dystrophy: normal ATP turnover in cultured cells

    International Nuclear Information System (INIS)

    Fox, I.H.; Bertorini, T.; Palmieri, G.M.A.; Shefner, R.

    1986-01-01

    This paper examines ATP metabolism in cultured muscle cells and fibroblasts from patients with Duchenne dystrophy. ATP and ADP levels were the same in cultured cells from normal subjects and patients and there was no difference in ATP synthesis or degradation. The ATP synthesis was measured by the incorporation of C 14-U-adenine into aTP and ADP. although there was a significant decrease in radioactively labelled ATP after incubation with deoxyglucose in Duchenne muscle cells, there was no difference in ATP concentration of ADP metabolism

  17. GC-MS-Based Endometabolome Analysis Differentiates Prostate Cancer from Normal Prostate Cells

    Directory of Open Access Journals (Sweden)

    Ana Rita Lima

    2018-03-01

    Full Text Available Prostate cancer (PCa is an important health problem worldwide. Diagnosis and management of PCa is very complex because the detection of serum prostate specific antigen (PSA has several drawbacks. Metabolomics brings promise for cancer biomarker discovery and for better understanding PCa biochemistry. In this study, a gas chromatography–mass spectrometry (GC-MS based metabolomic profiling of PCa cell lines was performed. The cell lines include 22RV1 and LNCaP from PCa with androgen receptor (AR expression, DU145 and PC3 (which lack AR expression, and one normal prostate cell line (PNT2. Regarding the metastatic potential, PC3 is from an adenocarcinoma grade IV with high metastatic potential, DU145 has a moderate metastatic potential, and LNCaP has a low metastatic potential. Using multivariate analysis, alterations in levels of several intracellular metabolites were detected, disclosing the capability of the endometabolome to discriminate all PCa cell lines from the normal prostate cell line. Discriminant metabolites included amino acids, fatty acids, steroids, and sugars. Six stood out for the separation of all the studied PCa cell lines from the normal prostate cell line: ethanolamine, lactic acid, β-Alanine, L-valine, L-leucine, and L-tyrosine.

  18. Survival of human osteosarcoma cells and normal human fibroblasts following alpha particle irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.

    1981-01-01

    Cell survival of human osteosarcoma cells in culture following alpha particle irradiation is reported here for the first time. The osteosarcoma cell line (TE-85) is found to be less sensitive to inactivation by 5.6 MeV alpha particles (LET 86 keV/μm) than normal diploid human fibroblasts (NFS). Values for the mean lethal doses were estimated to be 103 rads for the TE-85 cells compared with 68 rads for the NFS cultures irradiated under identical conditions. It is postulated that the aneuploidy of the tumor cells with increased DNA chromosomal material may confer a selective advantage for the survival of tumor cells relative to normal cells with diploid chromosomes

  19. Analysis of epothilone B-induced cell death in normal ovarian cells.

    Science.gov (United States)

    Rogalska, Aneta; Gajek, Arkadiusz; Marczak, Agnieszka

    2013-12-01

    We have investigated the mode of cell death induced by a new microtubule-stabilizing agent, epothilone B (EpoB, patupilone), and a clinically used medicine, paclitaxel (PTX), in normal ovarian cells. Using fluorescence microscopy, polyacrylamide gel electrophoresis preceding Western blot analysis, as well as spectrofluorimetric and colorimetric detection, we demonstrate that, compared to EpoB, PTX induced high time-dependent morphological and biochemical changes typical of apoptosis. Induction of apoptosis followed an early increase in p53 levels. Apoptosis reached its maximum at 24-48 h. At the same time, there was a significant increase in caspase-9 and -3 activity and PARP fragmentation, which suggests that an intrinsic path was involved. Apoptosis in MM14 cells was increased more by PTX than EpoB, and also induced more necrosis responsible for inflammation (1.4-fold) than EpoB. © 2013 International Federation for Cell Biology.

  20. Construction of a high-EGFR expression cell line and its biological ...

    African Journals Online (AJOL)

    USER

    2010-07-26

    Jul 26, 2010 ... activator of transcription (STAT) pathways, which regulate cell transformation ... Construction of a EGFR eukaryotic expression vector. The plasmid .... was 4-5 times greater in the Aft-HEK293 cells following transfection. EGFR ...

  1. Modulation of KCNQ4 channel activity by changes in cell volume

    DEFF Research Database (Denmark)

    Hougaard, Charlotte; Klaerke, Dan A; Hoffmann, Else K

    2004-01-01

    KCNQ4 channels expressed in HEK 293 cells are sensitive to cell volume changes, being activated by swelling and inhibited by shrinkage, respectively. The KCNQ4 channels contribute significantly to the regulatory volume decrease (RVD) process following cell swelling. Under isoosmotic conditions...

  2. Evaluation of CD307a expression patterns during normal B-cell maturation and in B-cell malignancies by flow cytometry.

    Science.gov (United States)

    Auat, Mariangeles; Cardoso, Chandra Chiappin; Santos-Pirath, Iris Mattos; Rudolf-Oliveira, Renata Cristina Messores; Matiollo, Camila; Lange, Bárbara Gil; da Silva, Jessica Pires; Dametto, Gisele Cristina; Pirolli, Mayara Marin; Colombo, Maria Daniela Holthausen Perico; Santos-Silva, Maria Claudia

    2018-02-24

    Flow cytometric immunophenotyping is deemed a fundamental tool for the diagnosis of B-cell neoplasms. Currently, the investigation of novel immunophenotypic markers has gained importance, as they can assist in the precise subclassification of B-cell malignancies by flow cytometry. Therefore, the purpose of the present study was to evaluate the expression of CD307a during normal B-cell maturation and in B-cell malignancies as well as to investigate its potential role in the differential diagnosis of these entities. CD307a expression was assessed by flow cytometry in normal precursor and mature B cells and in 115 samples collected from patients diagnosed with precursor and mature B-cell neoplasms. CD307a expression was compared between neoplastic and normal B cells. B-acute lymphoblastic leukemia cases exhibited minimal expression of CD307a, displaying a similar expression pattern to that of normal B-cell precursors. Mantle cell lymphoma (MCL) cases showed the lowest levels of CD307a among mature B-cell neoplasms. CD307a expression was statistically lower in MCL cases than in chronic B lymphocytic leukemia (CLL) and marginal zone lymphoma (MZL) cases. No statistical differences were observed between CD307a expression in neoplastic and normal plasma cells. These results indicate that the assessment of CD307a expression by flow cytometry could be helpful to distinguish CLL from MCL, and the latter from MZL. Although these results are not entirely conclusive, they provide a basis for further studies in a larger cohort of patients. © 2018 International Clinical Cytometry Society. © 2018 International Clinical Cytometry Society.

  3. Synthesis and in Vitro Antiproliferative Evaluation of Some B-norcholesteryl Benzimidazole and Benzothiazole Derivatives

    Directory of Open Access Journals (Sweden)

    Jianguo Cui

    2015-04-01

    Full Text Available Taking orostanal (a compound from a Japanese marine sponge, Stelletta hiwasaensis as a lead compound, some novel B-norcholesteryl benzimidazole and benzothiazole derivatives were synthesized. The antiproliferative activity of the compounds against human cervical carcinoma (HeLa, human lung carcinoma (A549, human liver carcinoma cells (HEPG2 and normal kidney epithelial cells (HEK293T was assayed. The results revealed that the benzimidazole group was a better substituent than benzothiazole group for increasing the antiproliferative activity of compounds. 2-(3β′-Acetoxy-5β′-hydroxy-6′-B-norcholesterylbenzimidazole (9b with the structure of 6-benzimidazole displays the best antiproliferative activity to the cancer cells in all compounds, but is almost inactive to normal kidney epithelial cells (HEK293T. The assay of compound 9b to cancer cell apoptosis by flow cytometry showed that the compound was able to effectively induce cancer cell apoptosis. The research provided a theoretical reference for the exploration of new anti-cancer agents and may be useful for the design of novel chemotherapeutic drugs.

  4. Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas.

    Science.gov (United States)

    Nielsen, Michael Friberg Bruun; Mortensen, Michael Bau; Detlefsen, Sönke

    2017-10-01

    Pancreatic stellate cells (PSCs) play a central role as source of fibrogenic cells in pancreatic cancer and chronic pancreatitis. In contrast to quiescent hepatic stellate cells (qHSCs), a specific marker for quiescent PSCs (qPSCs) that can be used in formalin-fixed and paraffin embedded (FFPE) normal human pancreatic tissue has not been identified. The aim of this study was to identify a marker enabling the identification of qPSCs in normal human FFPE pancreatic tissue. Immunohistochemical (IHC), double-IHC, immunofluorescence (IF) and double-IF analyses were carried out using a tissue microarray consisting of cores with normal human pancreatic tissue. Cores with normal human liver served as control. Antibodies directed against adipophilin, α-SMA, CD146, CRBP-1, cytoglobin, desmin, GFAP, nestin, S100A4 and vinculin were examined, with special emphasis on their expression in periacinar cells in the normal human pancreas and perisinusoidal cells in the normal human liver. The immunolabelling capacity was evaluated according to a semiquantitative scoring system. Double-IF of the markers of interest together with markers for other periacinar cells was performed. Moreover, the utility of histochemical stains for the identification of human qPSCs was examined, and their ultrastructure was revisited by electron microscopy. Adipophilin, CRBP-1, cytoglobin and vinculin were expressed in qHSCs in the liver, whereas cytoglobin and adipophilin were expressed in qPSCs in the pancreas. Adipophilin immunohistochemistry was highly dependent on the preanalytical time interval (PATI) from removal of the tissue to formalin fixation. Cytoglobin, S100A4 and vinculin were expressed in periacinar fibroblasts (FBs). The other examined markers were negative in human qPSCs. Our data indicate that cytoglobin and adipophilin are markers of qPSCs in the normal human pancreas. However, the use of adipophilin as a qPSC marker may be limited due to its high dependence on optimal PATI

  5. Protection from intracellular oxidative stress by cytoglobin in normal and cancerous oesophageal cells.

    Directory of Open Access Journals (Sweden)

    Fiona E McRonald

    Full Text Available Cytoglobin is an intracellular globin of unknown function that is expressed mostly in cells of a myofibroblast lineage. Possible functions of cytoglobin include buffering of intracellular oxygen and detoxification of reactive oxygen species. Previous work in our laboratory has demonstrated that cytoglobin affords protection from oxidant-induced DNA damage when over expressed in vitro, but the importance of this in more physiologically relevant models of disease is unknown. Cytoglobin is a candidate for the tylosis with oesophageal cancer gene, and its expression is strongly down-regulated in non-cancerous oesophageal biopsies from patients with TOC compared with normal biopsies. Therefore, oesophageal cells provide an ideal experimental model to test our hypothesis that downregulation of cytoglobin expression sensitises cells to the damaging effects of reactive oxygen species, particularly oxidative DNA damage, and that this could potentially contribute to the TOC phenotype. In the current study, we tested this hypothesis by manipulating cytoglobin expression in both normal and oesophageal cancer cell lines, which have normal physiological and no expression of cytoglobin respectively. Our results show that, in agreement with previous findings, over expression of cytoglobin in cancer cell lines afforded protection from chemically-induced oxidative stress but this was only observed at non-physiological concentrations of cytoglobin. In addition, down regulation of cytoglobin in normal oesophageal cells had no effect on their sensitivity to oxidative stress as assessed by a number of end points. We therefore conclude that normal physiological concentrations of cytoglobin do not offer cytoprotection from reactive oxygen species, at least in the current experimental model.

  6. Sub-cellular force microscopy in single normal and cancer cells.

    Science.gov (United States)

    Babahosseini, H; Carmichael, B; Strobl, J S; Mahmoodi, S N; Agah, M

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Patterns of proliferation and differentiation of irradiated haemopoietic stem cells cultured on normal 'stromal' cell colonies in vitro

    International Nuclear Information System (INIS)

    Mori, K.J.

    1981-01-01

    Experiments were designed to elucidate whether or not the irradiated bone marrow cells receive any stimulation for the self-replication and differentiation from normal 'stromal' cell colonies in the bone marrow cell culture in vitro. When irradiated or unirradiated bone marrow cells were overlaid on the normal adherent cell colonies, the proliferation of haemopoietic stem cells was supported, the degree of the stimulation depending on the starting cellular concentration. There was, however, no significant changes in the concentration of either CFUs or CFUc regardless of the dose of irradiation on the bone marrow cells overlaid. This was a great contrast to the dose-dependent decrease of CFUs or CFUc within the culture in which both the stem cells and stromal cells were simultaneously irradiated. These results suggest that the balance of self-replication and differentiation of the haemopoietic stem cells is affected only when haemopoietic microenvironment is perturbed. (author)

  8. Validation of endogenous normalizing genes for expression analyses in adult human testis and germ cell neoplasms

    DEFF Research Database (Denmark)

    Svingen, T; Jørgensen, Anne; Rajpert-De Meyts, E

    2014-01-01

    to define suitable normalizing genes for specific cells and tissues. Here, we report on the performance of a panel of nine commonly employed normalizing genes in adult human testis and testicular pathologies. Our analyses revealed significant variability in transcript abundance for commonly used normalizers......, highlighting the importance of selecting appropriate normalizing genes as comparative measurements can yield variable results when different normalizing genes are employed. Based on our results, we recommend using RPS20, RPS29 or SRSF4 when analysing relative gene expression levels in human testis...... and associated testicular pathologies. OCT4 and SALL4 can be used with caution as second-tier normalizers when determining changes in gene expression in germ cells and germ cell tumour components, but the relative transcript abundance appears variable between different germ cell tumour types. We further...

  9. Expression of a family of noncoding mitochondrial RNAs distinguishes normal from cancer cells.

    Science.gov (United States)

    Burzio, Verónica A; Villota, Claudio; Villegas, Jaime; Landerer, Eduardo; Boccardo, Enrique; Villa, Luisa L; Martínez, Ronny; Lopez, Constanza; Gaete, Fancy; Toro, Viviana; Rodriguez, Ximena; Burzio, Luis O

    2009-06-09

    We reported the presence in human cells of a noncoding mitochondrial RNA that contains an inverted repeat (IR) of 815 nucleotides (nt) covalently linked to the 5' end of the mitochondrial 16S RNA (16S mtrRNA). The transcript contains a stem-loop structure and is expressed in human proliferating cells but not in resting cells. Here, we demonstrate that, in addition to this transcript, normal human proliferating cells in culture express 2 antisense mitochondrial transcripts. These transcripts also contain stem-loop structures but strikingly they are down-regulated in tumor cell lines and tumor cells present in 17 different tumor types. The differential expression of these transcripts distinguishes normal from tumor cells and might contribute a unique vision on cancer biology and diagnostics.

  10. visnormsc: A Graphical User Interface to Normalize Single-cell RNA Sequencing Data.

    Science.gov (United States)

    Tang, Lijun; Zhou, Nan

    2017-12-26

    Single-cell RNA sequencing (RNA-seq) allows the analysis of gene expression with high resolution. The intrinsic defects of this promising technology imports technical noise into the single-cell RNA-seq data, increasing the difficulty of accurate downstream inference. Normalization is a crucial step in single-cell RNA-seq data pre-processing. SCnorm is an accurate and efficient method that can be used for this purpose. An R implementation of this method is currently available. On one hand, the R package possesses many excellent features from R. On the other hand, R programming ability is required, which prevents the biologists who lack the skills from learning to use it quickly. To make this method more user-friendly, we developed a graphical user interface, visnormsc, for normalization of single-cell RNA-seq data. It is implemented in Python and is freely available at https://github.com/solo7773/visnormsc . Although visnormsc is based on the existing method, it contributes to this field by offering a user-friendly alternative. The out-of-the-box and cross-platform features make visnormsc easy to learn and to use. It is expected to serve biologists by simplifying single-cell RNA-seq normalization.

  11. Corneal endothelial cell density and morphology in normal Iranian eyes

    Directory of Open Access Journals (Sweden)

    Fallah Mohammad

    2006-03-01

    Full Text Available Abstract Background We describe corneal endothelial cell density and morphology in normal Iranian eyes and compare endothelial cell characteristics in the Iranian population with data available in the literature for American and Indian populations. Methods Specular microscopy was performed in 525 eyes of normal Iranian people aged 20 to 85 years old. The studied parameters including mean endothelial cell density (MCD, mean cell area (MCA and coefficient of variation (CV in cell area were analyzed in all of the 525 eyes. Results MCD was 1961 ± 457 cell/mm2 and MCA was 537.0 ± 137.4 μm2. There was no statistically significant difference in MCD, MCA and CV between genders (Student t-test, P = 0.85, P = 0.97 and P = 0.15 respectively. There was a statistically significant decrease in MCD with age (P r = -0.64. The rate of cell loss was 0.6% per year. There was also a statistically significant increase in MCA (P r = 0.56 and CV (P r = 0.30 from 20 to 85 years of age. Conclusion The first normative data for the endothelium of Iranian eyes seems to confirm that there are no differences in MCD, MCA and CV between genders. Nevertheless, the values obtained in Iranian eyes seem to be different to those reported by the literature in Indian and American populations.

  12. Oxidative stress by monosodium urate crystals promotes renal cell apoptosis through mitochondrial caspase-dependent pathway in human embryonic kidney 293 cells: mechanism for urate-induced nephropathy.

    Science.gov (United States)

    Choe, Jung-Yoon; Park, Ki-Yeun; Kim, Seong-Kyu

    2015-01-01

    The aim of this study is to clarify the effect of oxidative stress on monosodium urate (MSU)-mediated apoptosis of renal cells. Quantitative real-time polymerase chain reaction and immunoblotting for Bcl-2, caspase-9, caspase-3, iNOS, cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), IL-18, TNF receptor-associated factor-6 (TRAF-6), and mitogen-activated protein kinases were performed on human embryonic kidney 293 (HEK293) cells, which were stimulated by MSU crystals. Fluorescence-activated cell sorting was performed using annexin V for assessment of apoptosis. Reactive oxygen species (ROS) were measured. IL-1β siRNA was used for blocking IL-1β expression. MSU crystals promoted ROS, iNOS, and COX-2 expression and also increased TRAF-6 and IL-1β expression in HEK293 cells, which was inhibited by an antioxidant ascorbic acid. Caspase-dependent renal cell apoptosis was induced through attenuation of Bcl-2 and enhanced caspase-3 and caspase-9 expression by MSU crystals, which was significantly reversed by ascorbic acid and transfection of IL-1β siRNA to HEK293 cells. Ascorbic acid inhibited phosphorylation of extracellular signal-regulated kinase and Jun N-terminal protein kinase stimulated by MSU crystals. ROS accumulation and iNOS and COX-2 mRNA expression by MSU crystals was also suppressed by transfection with IL-1β siRNA. Oxidative stress generated by MSU crystals promotes renal apoptosis through the mitochondrial caspase-dependent apoptosis pathway.

  13. Studies by radioiodination of normal adult, fetal and leukemic cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kannourakis, G; Cauchi, M N [Department of Pathology and Immunology, Monash Medical School, Melbourne, Australia

    1978-01-01

    A comparison was made between cord blood lymphocytes, normal adult lymphocytes and leukemic cells after membrane iodination with lactoperoxidase. A double-labeling technique using lactoperoxidase iodination with /sup 125/I and /sup 131/I followed by analysis on polyacrylamide gel electrophoresis revealed a number of membrane differences between leukemic, normal and fetal cells. There was a reduction in the 70,000 molecular weight component in cord blood cells compared to adult lymphocytes, and an increase in membrane peptides with molecular weights of 35,000, 20,000, 9,000 and 4,000. Although smaller molecular weight peptides were also present in chronic lymphatic leukemia as well as acute myeloid leukemia, these were shown to be distinct from fetal type membrane components.

  14. Clinical and Pathologic Study of Feline Merkel Cell Carcinoma With Immunohistochemical Characterization of Normal and Neoplastic Merkel Cells.

    Science.gov (United States)

    Dohata, A; Chambers, J K; Uchida, K; Nakazono, S; Kinoshita, Y; Nibe, K; Nakayama, H

    2015-11-01

    The authors herein describe the morphologic and immunohistochemical features of normal Merkel cells as well as the clinicopathologic findings of Merkel cell carcinoma in cats. Merkel cells were characterized as vacuolated clear cells and were individually located in the epidermal basal layer of all regions examined. Clusters of Merkel cells were often observed adjacent to the sinus hair of the face and carpus. Immunohistochemically, Merkel cells were positive for cytokeratin (CK) 20, CK18, p63, neuron-specific enolase, synaptophysin, and protein gene product 9.5. Merkel cell carcinoma was detected as a solitary cutaneous mass in 3 aged cats (13 to 16 years old). On cytology, large lymphocyte-like cells were observed in all cases. Histologic examinations of surgically resected tumors revealed nests of round cells separated by various amounts of a fibrous stroma. Tumor cells were commonly immunopositive for CK20, CK18, p63, neuron-specific enolase, and synaptophysin, representing the characteristics of normal Merkel cells. © The Author(s) 2015.

  15. Discrimination of bladder cancer cells from normal urothelial cells with high specificity and sensitivity: combined application of atomic force microscopy and modulated Raman spectroscopy.

    Science.gov (United States)

    Canetta, Elisabetta; Riches, Andrew; Borger, Eva; Herrington, Simon; Dholakia, Kishan; Adya, Ashok K

    2014-05-01

    Atomic force microscopy (AFM) and modulated Raman spectroscopy (MRS) were used to discriminate between living normal human urothelial cells (SV-HUC-1) and bladder tumour cells (MGH-U1) with high specificity and sensitivity. MGH-U1 cells were 1.5-fold smaller, 1.7-fold thicker and 1.4-fold rougher than normal SV-HUC-1 cells. The adhesion energy was 2.6-fold higher in the MGH-U1 cells compared to normal SV-HUC-1 cells, which possibly indicates that bladder tumour cells are more deformable than normal cells. The elastic modulus of MGH-U1 cells was 12-fold lower than SV-HUC-1 cells, suggesting a higher elasticity of the bladder cancer cell membranes. The biochemical fingerprints of cancer cells displayed a higher DNA and lipid content, probably due to an increase in the nuclear to cytoplasm ratio. Normal cells were characterized by higher protein contents. AFM studies revealed a decrease in the lateral dimensions and an increase in thickness of cancer cells compared to normal cells; these studies authenticate the observations from MRS. Nanostructural, nanomechanical and biochemical profiles of bladder cells provide qualitative and quantitative markers to differentiate between normal and cancerous cells at the single cellular level. AFM and MRS allow discrimination between adhesion energy, elasticity and Raman spectra of SV-HUC-1 and MGH-U1 cells with high specificity (83, 98 and 95%) and sensitivity (97, 93 and 98%). Such single-cell-level studies could have a pivotal impact on the development of AFM-Raman combined methodologies for cancer profiling and screening with translational significance. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Pivotal advance: CTLA-4+ T cells exhibit normal antiviral functions during acute viral infection.

    Science.gov (United States)

    Raué, Hans-Peter; Slifka, Mark K

    2007-05-01

    Previous studies have shown that T cells, which are genetically deficient in CTLA-4/CD152 expression, will proliferate uncontrollably, resulting in lethal autoimmune disease. This and other evidence indicate that CTLA-4 plays a critical role in the negative regulation of effector T cell function. In contrast to expectations, BrdU incorporation experiments demonstrated that CTLA-4 expression was associated with normal or even enhanced in vivo proliferation of virus-specific CD4+ and CD8+ T cells following acute lymphocytic choriomeningitis virus or vaccinia virus infection. When compared with CTLA-4- T cells directly ex vivo, CTLA-4+ T cells also exhibited normal antiviral effector functions following stimulation with peptide-coated cells, virus-infected cells, plate-bound anti-CD3/anti-CTLA-4, or the cytokines IL-12 and IL-18. Together, this indicates that CTLA-4 does not directly inhibit antiviral T cell expansion or T cell effector functions, at least not under the normal physiological conditions associated with either of these two acute viral infections.

  17. JS-K, a nitric oxide-releasing prodrug, induces breast cancer cell death while sparing normal mammary epithelial cells.

    Science.gov (United States)

    McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M

    2011-04-01

    Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.

  18. RF Breakdown in Normal Conducting Single-cell Structures

    CERN Document Server

    Dolgashev, Valery A; Higo, Toshiyasu; Nantista, Christopher D; Tantawi, Sami G

    2005-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials an...

  19. Normal endometrial stromal cells regulate 17β-estradiol-induced epithelial-mesenchymal transition via slug and E-cadherin in endometrial adenocarcinoma cells in vitro.

    Science.gov (United States)

    Zhang, Hui; Li, Hongyan; Qi, Shasha; Liu, Zhao; Fu, Yibing; Li, Mingjiang; Zhao, Xingbo

    2017-01-01

    Stroma-tumor communication participates in the pathogenesis of endometrial carcinomas. In previous studies, we found that normal stromal cells inhibited the growth of endometrial carcinoma cells. Here, we investigated the role of normal stromal cells in the epithelial-mesenchymal transition (EMT) of endometrial carcinoma cells and explored the possible mechanism implied. We found that conditioned medium (CM) by normal endometrial stromal cells (NSC) reduced cell growth and induced cell apoptosis in Ishikawa cells. CM by NSC inhibited 17β-estradiol-induced cell growth and apoptosis decrease in Ishikawa cells. Moreover, CM by NSC inhibited the migration and invasion, and 17β-estradiol-induced migration and invasion in Ishikawa cells. Meanwhile, CM by NSC decreased Slug expression and 17β-estradiol-induced Slug expression, increased E-cadherin expression and abolished 17β-estradiol-induced E-cadherin reduction in Ishikawa cells. In conclusion, normal stromal factors can inhibit 17β-estradiol-induced cell proliferation and apoptosis inhibition, and abolished 17β-estradiol-induced EMT in endometrial cancer cell via regulating E-cadherin and Slug expression.

  20. Gamma-ray excision repair in normal and diseased human cells

    International Nuclear Information System (INIS)

    Cerutti, P.A.; Remsen, J.F.

    1976-01-01

    Radiation products of the 5,6-dihydroxy-dihydrothymine type (t') are efficiently removed from the DNA during postirradiation incubation of bacterial and mammalian cells. In this chapter we describe the t'-excision system contained in normal human cells, in human carcinoma HeLa S-3 cells, and in skin fibroblasts from xeroderma pigmentosum (XP) and Fanconi's anemia (FA) patients. The latter diseases are characterized among other symptoms by a genetically increased susceptibility for the development of cancer

  1. Ligand- and cell-dependent determinants of internalization and cAMP modulation by delta opioid receptor (DOR) agonists

    Science.gov (United States)

    Charfi, Iness; Nagi, Karim; Mnie-Filali, Ouissame; Thibault, Dominic; Balboni, Gianfranco; Schiller, Peter W.; Trudeau, Louis-Eric

    2014-01-01

    Signaling bias refers to G protein-coupled receptor ligand ability to preferentially activate one type of signal over another. Bias to evoke signaling as opposed to sequestration has been proposed as a predictor of opioid ligand potential for generating tolerance. Here we measured whether delta opioid receptor agonists preferentially inhibited cyclase activity over internalization in HEK cells. Efficacy (τ) and affinity (KA) values were estimated from functional data and bias was calculated from efficiency coefficients (log τ/KA). This approach better represented the data as compared to alternative methods that estimate bias exclusively from τ values. Log (τ/KA) coefficients indicated that SNC-80 and UFP-512 promoted cyclase inhibition more efficiently than DOR internalization as compared to DPDPE (bias factor for SNC-80: 50 and for UFP-512: 132). Molecular determinants of internalization were different in HEK293 cells and neurons with βarrs contributing to internalization in both cell types, while PKC and GRK2 activities were only involved in neurons. Rank orders of ligand ability to engage different internalization mechanisms in neurons were compared to rank order of Emax values for cyclase assays in HEK cells. Comparison revealed a significant reversal in rank order for cyclase Emax values and βarr-dependent internalization in neurons, indicating that these responses were ligand-specific. Despite this evidence, and because kinases involved in internalization were not the same across cellular backgrounds, it is not possible to assert if the magnitude and nature of bias revealed by rank orders of maximal responses is the same as the one measured in HEK cells. PMID:24022593

  2. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    Energy Technology Data Exchange (ETDEWEB)

    Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com [Department of Clinical Sciences, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Dezfoulian, Omid [Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorram Abad (Iran, Islamic Republic of); Alirezaei, Masoud [Division of Biochemistry, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Rasoulian, Bahram [Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorram Abad (Iran, Islamic Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact

  3. Cell adhesion-mediated radioresistance (CAM-RR). Extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro

    International Nuclear Information System (INIS)

    Cordes, N.; Meineke, V.

    2003-01-01

    Background: Cell-extracellular matrix (ECM) contact is thought to have great impact on cellular mechanisms resulting in increased cell survival upon exposure to ionizing radiation. Several human tumor cell lines and normal human fibroblastic cell strains of different origin, all of them expressing the wide-spread and important integrin subunit β1, were irradiated, and clonogenic cell survival, β1-integrin cell surface expression, and adhesive functionality were investigated. Material and Methods: Human tumor cell lines A172 (glioblastoma), PATU8902 (pancreas carcinoma), SKMES1 (lung carcinoma), A549 (lung carcinoma), and IPC298 (melanoma) as well as normal human skin (HSF1) and lung fibroblasts (CCD32) and human keratinocytes (HaCaT) were irradiated with 0-8 Gy. Besides colony formation assays, β1-integrin cell surface expression by flow cytometry and adhesive functionality by adhesion assays were analyzed. Results: All cell lines showed improved clonogenic survival after irradiation in the presence of fibronectin as compared to plastic. Irradiated cells exhibited a significant, dose-dependent increase in β1-integrin cell surface expression following irradiation. As a parameter of the adhesive functionality of the β1-integrin, a radiation-dependent elevation of cell adhesion to fibronectin in comparison with adhesion to plastic was demonstrated. Conclusion: The in vitro cellular radiosensitivity is highly influenced by fibronectin according to the phenomenon of cell adhesion-mediated radioresistance. Additionally, our emerging data question the results of former and current in vitro cytotoxicity studies performed in the absence of an ECM. These findings might also be important for the understanding of malignant transformation, anchorage-independent cell growth, optimization of radiotherapeutic regimes and the prevention of normal tissue side effects on the basis of experimental radiobiological data. (orig.)

  4. Identification and Characterization of Plasma Cells in Normal Human Bone Marrow by High-Resolution Flow Cytometry

    NARCIS (Netherlands)

    Terstappen, Leonardus Wendelinus Mathias Marie; Johnsen, Steen; Segers-Nolten, Gezina M.J.; Loken, Michael R.

    1990-01-01

    The low frequency of plasma cells and the lack of specific cell surface markers has been a major obstacle for a detailed characterization of plasma cells in normal human bone marrow. Multiparameter flow cytometry enabled the identification of plasma cells in normal bone marrow aspirates. The plasma

  5. Generation of hiPSTZ16 (ISMMSi003-A cell line from normal human foreskin fibroblasts

    Directory of Open Access Journals (Sweden)

    Marion Dejosez

    2018-01-01

    Full Text Available Human foreskin fibroblasts from a commercial source were reprogrammed into induced pluripotent stem cells to establish a clonal stem cell line, hiPSTZ16 (ISMMSi003-A. These cells show a normal karyotype and full differentiation potential in teratoma assays. The described cells provide a useful resource in combination with other iPS cell lines generated from normal human foreskin fibroblasts to study source- and reprogramming method-independent effects in downstream applications.

  6. Exocrine cell-derived microparticles in response to lipopolysaccharide promote endocrine dysfunction in cystic fibrosis.

    Science.gov (United States)

    Constantinescu, Andrei Alexandru; Gleizes, Céline; Alhosin, Mahmoud; Yala, Elhassan; Zobairi, Fatiha; Leclercq, Alexandre; Stoian, Gheorghe; Mitrea, Ioan Liviu; Prévost, Gilles; Toti, Florence; Kessler, Laurence

    2014-03-01

    Diabetes in cystic fibrosis (CF) is a result of exocrine pancreas alteration followed by endocrine dysfunction at a later stage. Microparticles (MPs) are plasma membrane fragments shed from stimulated or damaged cells that act as cellular effectors. Our aim was to identify a new form of interaction between exocrine and endocrine pancreatic cells mediated by exocrine MPs, in the context of recurrent infection in CF. MPs from either human exocrine CFTRΔF508-mutated (CFPAC-1) cells or exocrine normal pancreatic (PANC-1) cells were collected after treatment by LPS from Pseudomonas aeruginosa and applied to rat endocrine normal insulin-secreting RIN-m5F cells. MP membrane integration in target cells was established by confocal microscopy and flow cytometry using PKH26 lipid probe. Apoptosis, lysosomal activity, insulin secretion were measured after 18 h. MP-mediated NF-κB activation was measured in HEK-Blue reporter cells by SEAP reporter gene system and in RIN-m5F cells by Western blot. In endocrine normal cells, CFTR inhibition was achieved using Inhibitor-172. Compared to PANC-1, MPs from CFPAC-1 significantly reduced insulin secretion and lysosomal activity in RIN-m5F. MPs induced NF-κB activation by increasing the level of IκB phosphorylation. Moreover, the inhibition of NF-κB activation using specific inhibitors was associated with a restored insulin secretion. Interestingly, CFTR inhibition in normal RIN-m5F cells promoted apoptosis and decreased insulin secretion. During recurrent infections associated with CF, exocrine MPs may contribute to endocrine cell dysfunction via NF-κB pathways. Membrane CFTR dysfunction is associated with decreased insulin secretion. © 2013. Published by Elsevier B.V. on behalf of European Cystic Fibrosis Society. All rights reserved.

  7. Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells.

    Directory of Open Access Journals (Sweden)

    Yukihiro Nishikawa

    Full Text Available Withaferin A (WA, a major bioactive component of the Indian herb Withania somnifera, induces cell death (apoptosis/necrosis in multiple types of tumor cells, but the molecular mechanism underlying this cytotoxicity remains elusive. We report here that 2 μM WA induced cell death selectively in androgen-insensitive PC-3 and DU-145 prostate adenocarcinoma cells, whereas its toxicity was less severe in androgen-sensitive LNCaP prostate adenocarcinoma cells and normal human fibroblasts (TIG-1 and KD. WA also killed PC-3 cells in spheroid-forming medium. DNA microarray analysis revealed that WA significantly increased mRNA levels of c-Fos and 11 heat-shock proteins (HSPs in PC-3 and DU-145, but not in LNCaP and TIG-1. Western analysis revealed increased expression of c-Fos and reduced expression of the anti-apoptotic protein c-FLIP(L. Expression of HSPs such as HSPA6 and Hsp70 was conspicuously elevated; however, because siRNA-mediated depletion of HSF-1, an HSP-inducing transcription factor, reduced PC-3 cell viability, it is likely that these heat-shock genes were involved in protecting against cell death. Moreover, WA induced generation of reactive oxygen species (ROS in PC-3 and DU-145, but not in normal fibroblasts. Immunocytochemistry and immuno-electron microscopy revealed that WA disrupted the vimentin cytoskeleton, possibly inducing the ROS generation, c-Fos expression and c-FLIP(L suppression. These observations suggest that multiple events followed by disruption of the vimentin cytoskeleton play pivotal roles in WA-mediated cell death.

  8. Simple display system of mechanical properties of cells and their dispersion.

    Directory of Open Access Journals (Sweden)

    Yuji Shimizu

    Full Text Available The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others.

  9. Subcellular localization of YKL-40 in normal and malignant epithelial cells of the breast

    DEFF Research Database (Denmark)

    Roslind, A.; Balslev, E.; Kruse, H.

    2008-01-01

    . YKL-40 protein expression was redistributed in carcinoma versus normal glandular tissue of the breast. A reduced expression of YKL-40 in relation to intermediate filaments and desmosomes was found in tumor cells. Changes in YKL-40 expression suggest that the function of YKL-40 in cells of epithelial......YKL-40 is a new prognostic biomarker in cancer. The biological function is only poorly understood. This study aimed at determining the subcellular localization of YKL-40, using immunogold labeling, in normal epithelial cells and in malignant tumor cells of the breast by immunoelectron microscopy...

  10. Validation of endogenous normalizing genes for expression analyses in adult human testis and germ cell neoplasms.

    Science.gov (United States)

    Svingen, T; Jørgensen, A; Rajpert-De Meyts, E

    2014-08-01

    The measurement of gene expression levels in cells and tissues typically depends on a suitable point of reference for inferring biological relevance. For quantitative (or real-time) RT-PCR assays, the method of choice is often to normalize gene expression data to an endogenous gene that is stably expressed across the samples analysed: a so-called normalizing or housekeeping gene. Although this is a valid strategy, the identification of stable normalizing genes has proved challenging and a gene showing stable expression across all cells or tissues is unlikely to exist. Therefore, it is necessary to define suitable normalizing genes for specific cells and tissues. Here, we report on the performance of a panel of nine commonly employed normalizing genes in adult human testis and testicular pathologies. Our analyses revealed significant variability in transcript abundance for commonly used normalizers, highlighting the importance of selecting appropriate normalizing genes as comparative measurements can yield variable results when different normalizing genes are employed. Based on our results, we recommend using RPS20, RPS29 or SRSF4 when analysing relative gene expression levels in human testis and associated testicular pathologies. OCT4 and SALL4 can be used with caution as second-tier normalizers when determining changes in gene expression in germ cells and germ cell tumour components, but the relative transcript abundance appears variable between different germ cell tumour types. We further recommend that such studies should be accompanied by additional assessment of histology and cellularity of each sample. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. RF Breakdown in Normal Conducting Single-Cell Structures

    International Nuclear Information System (INIS)

    Dolgashev, V.A.; Nantista, C.D.; Tantawi, S.G.; Higashi, Y.; Higo, T.

    2006-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM 01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials and preparation techniques with short turn-around time. Simple 2D geometry of the test structures simplifies modeling of the breakdown currents and their thermal effects

  12. Characterization and Oral Delivery of Proinsulin-Transferrin Fusion Protein Expressed Using ExpressTec

    Directory of Open Access Journals (Sweden)

    Yu-Sheng Chen

    2018-01-01

    Full Text Available Proinsulin-transferrin fusion protein (ProINS-Tf has been designed and successfully expressed from the mammalian HEK293 cells (HEK-ProINS-Tf. It was found that HEK-ProINS-Tf could be converted into an activated form in the liver. Furthermore, HEK-ProINS-Tf was demonstrated as an extra-long acting insulin analogue with liver-specific insulin action in streptozotocin (STZ-induced type 1 diabetic mice. However, due to the low production yield from transfected HEK293 cells, there are other interesting features, including the oral bioavailability, which have not been fully explored and characterized. To improve the protein production yield, an alternative protein expression system, ExpressTec using transgenic rice (Oryza sativa L., was used. The intact and active rice-derived ProINS-Tf (ExpressTec-ProINS-Tf was successfully expressed from the transgenic rice expression system. Our results suggested that, although the insulin-like bioactivity of ExpressTec-ProINS-Tf was slightly lower in vitro, its potency of in vivo blood glucose control was considerably stronger than that of HEK-ProINS-Tf. The oral delivery studies in type 1 diabetic mice demonstrated a prolonged control of blood glucose to near-normal levels after oral administration of ExpressTec-ProINS-Tf. Results in this report suggest that ExpressTec-ProINS-Tf is a promising insulin analog with advantages including low cost, prolonged and liver targeting effects, and most importantly, oral bioactivity.

  13. Androgen receptor signalling in peritubular myoid cells is essential for normal differentiation and function of adult Leydig cells

    DEFF Research Database (Denmark)

    Welsh, M.; Moffat, L.; Belling, Kirstine Christensen

    2012-01-01

    Testosterone synthesis depends on normal Leydig cell (LC) development, but the mechanisms controlling this development remain unclear. We recently demonstrated that androgen receptor (AR) ablation from a proportion of testicular peritubular myoid cells (PTM-ARKO) did not affect LC number, but res......Testosterone synthesis depends on normal Leydig cell (LC) development, but the mechanisms controlling this development remain unclear. We recently demonstrated that androgen receptor (AR) ablation from a proportion of testicular peritubular myoid cells (PTM-ARKO) did not affect LC number......’ subpopulation that had arrested development and only weakly expressed INSL3, luteinizing hormone receptor, and several steroidogenic enzymes. Furthermore, unlike ‘normal’ LCs in PTM-ARKOs, the ‘abnormal’ LCs did not involute as expected in response to exogenous testosterone. Differential function of these LC...... sub-populations is likely to mean that the ‘normal’ LCs work harder to compensate for the ‘abnormal’ LCs to maintain normal serum testosterone. These findings reveal new paracrine mechanisms underlying adult LC development, which can be further investigated using PTM-ARKOs....

  14. HIV-Specific ADCC Improves After Antiretroviral Therapy and Correlates With Normalization of the NK Cell Phenotype

    DEFF Research Database (Denmark)

    Jensen, Sanne S; Hartling, Hans J; Tingstedt, Jeanette L

    2015-01-01

    analyzed. RESULTS: The ability of NK cells to mediate ADCC was significantly increased after only 6 months of HAART and was not explained by a normalization of NK cell subsets (CD56 CD16 and CD56 CD16 NK cells) but rather by normalization in the frequency of NK cells expressing CCR7 and CD27...

  15. Mast cells and atopic dermatitis. Stereological quantification of mast cells in atopic dermatitis and normal human skin

    DEFF Research Database (Denmark)

    Damsgaard, T E; Olesen, A B; Sørensen, Flemming Brandt

    1997-01-01

    Stereological quantification of mast cell numbers was applied to sections of punch biopsies from lesional and nonlesional skin of atopic dermatitis patients and skin of healthy volunteers. We also investigated whether the method of staining and/or the fixative influenced the results...... of the determination of the mast cell profile numbers. The punch biopsies were taken from the same four locations in both atopic dermatitis patients and normal individuals. The locations were the scalp, neck and flexure of the elbow (lesional skin), and nates (nonlesional skin). Clinical scoring was carried out...... yielded the following results: (1) in atopic dermatitis lesional skin an increased number of mast cell profiles was found as compared with nonlesional skin, (2) comparing atopic dermatitis skin with normal skin, a significantly increased number of mast cell profiles per millimetre squared was found...

  16. Identification of markers for quiescent pancreatic stellate cells in the normal human pancreas

    DEFF Research Database (Denmark)

    Nielsen, Michael Friberg Bruun; Mortensen, Michael Bau; Detlefsen, Sönke

    2017-01-01

    cells in the normal human pancreas and perisinusoidal cells in the normal human liver. The immunolabelling capacity was evaluated according to a semiquantitative scoring system. Double-IF of the markers of interest together with markers for other periacinar cells was performed. Moreover, the utility...... of histochemical stains for the identification of human qPSCs was examined, and their ultrastructure was revisited by electron microscopy. Adipophilin, CRBP-1, cytoglobin and vinculin were expressed in qHSCs in the liver, whereas cytoglobin and adipophilin were expressed in qPSCs in the pancreas. Adipophilin...... are markers of qPSCs in the normal human pancreas. However, the use of adipophilin as a qPSC marker may be limited due to its high dependence on optimal PATI. Cytoglobin, on the other hand, is a sensitive marker for qPSCs but is expressed in FBs as well....

  17. Cell biological effects of total body irradiation on growth and differentiation of acute myelogenous leukemia cells compared to normal bone marrow

    Energy Technology Data Exchange (ETDEWEB)

    Greenberger, J S; Weichselbaum, R R; Botnick, L E; Sakakeeny, M; Moloney, W C

    1979-01-01

    Radiation therapy is used as total body treatment in preparation of the acute myelogenous leukemia (AML) patient for bone marrow transplantation. Many AML patients will have residual leukemia cells at the time of total body irradiation (TBI). In the present study, the effect of TBI on leukemic myeloid cells was compared to the effect on normal marrow granulocytic stem cells (CFUc) in vitro. Little difference from that of normal CFUc was found in the radiosensitivity of two mouse myeloid leukemia cell lines. The effect of TBI on growth of WEHI-3 or J774 cells in millipore diffusion chambers was stimulatory. These AML cell lines as well as others derived from Friend or Abelson virus infected in vitro long term mouse marrow cultures showed some morphologic differentiation by 7 days growth in diffusion chambers in irradiated heterologous rat hosts, but immature cells predominated by day 21. Thus, evidence in murine models of AML indicates that residual AML cells surviving chemotherapy will show no greater susceptibility to radiation killing compared to normal stem cells and will rapidly repopulate the irradiated host.

  18. Comparison of radiosensitivity between tumor and normal tissue in terms of cell population kinetics

    International Nuclear Information System (INIS)

    Sugahara, Tsutomu; Utsumi, Hiroshi

    1975-01-01

    Puck and Marcus in 1956 established the in vitro colony formation of mammalian cells and demonstrated a dose-survival curve of mammalian cells well fitted to the target theory. Since then almost all of the work on the radiosensitivity of malignant and normal cells has been based on the reproductive integrity of cells. However, in the author's laboratory, a recent work was done on the effect of ionizing radiation on the differentiative trait, using clonal cell cultures developed by Coon (1966) in chick embryonic cartilage cells. This work demonstrated clearly that the differentiative trait is more radiosensitive than is reproduction. Based on this finding a new compartment model is proposed for a cell renewal system which demonstrates the difference between normal and malignant tissue. (author)

  19. Molecular dynamics study of lipid bilayers modeling the plasma membranes of normal murine thymocytes and leukemic GRSL cells.

    Science.gov (United States)

    Andoh, Yoshimichi; Okazaki, Susumu; Ueoka, Ryuichi

    2013-04-01

    Molecular dynamics (MD) calculations for the plasma membranes of normal murine thymocytes and thymus-derived leukemic GRSL cells in water have been performed under physiological isothermal-isobaric conditions (310.15K and 1 atm) to investigate changes in membrane properties induced by canceration. The model membranes used in our calculations for normal and leukemic thymocytes comprised 23 and 25 kinds of lipids, respectively, including phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, sphingomyelin, lysophospholipids, and cholesterol. The mole fractions of the lipids adopted here were based on previously published experimental values. Our calculations clearly showed that the membrane area was increased in leukemic cells, and that the isothermal area compressibility of the leukemic plasma membranes was double that of normal cells. The calculated membranes of leukemic cells were thus considerably bulkier and softer in the lateral direction compared with those of normal cells. The tilt angle of the cholesterol and the conformation of the phospholipid fatty acid tails both showed a lower level of order in leukemic cell membranes compared with normal cell membranes. The lateral radial distribution function of the lipids also showed a more disordered structure in leukemic cell membranes than in normal cell membranes. These observations all show that, for the present thymocytes, the lateral structure of the membrane is considerably disordered by canceration. Furthermore, the calculated lateral self-diffusion coefficient of the lipid molecules in leukemic cell membranes was almost double that in normal cell membranes. The calculated rotational and wobbling autocorrelation functions also indicated that the molecular motion of the lipids was enhanced in leukemic cell membranes. Thus, here we have demonstrated that the membranes of thymocyte leukemic cells are more disordered and more fluid than normal cell membranes. Copyright © 2013

  20. STAMP alters the growth of transformed and ovarian cancer cells

    International Nuclear Information System (INIS)

    He, Yuanzheng; Blackford, John A Jr; Kohn, Elise C; Simons, S Stoney Jr

    2010-01-01

    Steroid receptors play major roles in the development, differentiation, and homeostasis of normal and malignant tissue. STAMP is a novel coregulator that not only enhances the ability of p160 coactivator family members TIF2 and SRC-1 to increase gene induction by many of the classical steroid receptors but also modulates the potency (or EC 50 ) of agonists and the partial agonist activity of antisteroids. These modulatory activities of STAMP are not limited to gene induction but are also observed for receptor-mediated gene repression. However, a physiological role for STAMP remains unclear. The growth rate of HEK293 cells stably transfected with STAMP plasmid and overexpressing STAMP protein is found to be decreased. We therefore asked whether different STAMP levels might also contribute to the abnormal growth rates of cancer cells. Panels of different stage human cancers were screened for altered levels of STAMP mRNA. Those cancers with the greatest apparent changes in STAMP mRNA were pursued in cultured cancer cell lines. Higher levels of STAMP are shown to have the physiologically relevant function of reducing the growth of HEK293 cells but, unexpectedly, in a steroid-independent manner. STAMP expression was examined in eight human cancer panels. More extensive studies of ovarian cancers suggested the presence of higher levels of STAMP mRNA. Lowering STAMP mRNA levels with siRNAs alters the proliferation of several ovarian cancer tissue culture lines in a cell line-specific manner. This cell line-specific effect of STAMP is not unique and is also seen for the conventional effects of STAMP on glucocorticoid receptor-regulated gene transactivation. This study indicates that a physiological function of STAMP in several settings is to modify cell growth rates in a manner that can be independent of steroid hormones. Studies with eleven tissue culture cell lines of ovarian cancer revealed a cell line-dependent effect of reduced STAMP mRNA on cell growth rates. This

  1. Wnt/β-catenin Signaling in Normal and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Kenneth C. Valkenburg

    2011-04-01

    Full Text Available The ability of Wnt ligands to initiate a signaling cascade that results in cytoplasmic stabilization of, and nuclear localization of, β-catenin underlies their ability to regulate progenitor cell differentiation. In this review, we will summarize the current knowledge of the mechanisms underlying Wnt/β-catenin signaling and how the pathway regulates normal differentiation of stem cells in the intestine, mammary gland, and prostate. We will also discuss how dysregulation of the pathway is associated with putative cancer stem cells and the potential therapeutic implications of regulating Wnt signaling.

  2. Ubiquitous expression of MAKORIN-2 in normal and malignant hematopoietic cells and its growth promoting activity.

    Directory of Open Access Journals (Sweden)

    King Yiu Lee

    Full Text Available Makorin-2 (MKRN2 is a highly conserved protein and yet its functions are largely unknown. We investigated the expression levels of MKRN2 and RAF1 in normal and malignant hematopoietic cells, and leukemia cell lines. We also attempted to delineate the role of MKRN2 in umbilical cord blood CD34+ stem/progenitor cells and K562 cell line by over-expression and inhibition of MKRN2 through lentivirus transduction and shRNA nucleofection, respectively. Our results provided the first evidence on the ubiquitous expression of MKRN2 in normal hematopoietic cells, embryonic stem cell lines, primary leukemia and leukemic cell lines of myeloid, lymphoid, erythroid and megakaryocytic lineages. The expression levels of MKRN2 were generally higher in primary leukemia samples compared with those in age-matched normal BM cells. In all leukemia subtypes, there was no significant correlation between expression levels of MKRN2 and RAF1. sh-MKRN2-silenced CD34+ cells had a significantly lower proliferation capacity and decreased levels of the early stem/progenitor subpopulation (CFU-GEMM compared with control cultures. Over-expression of MKRN2 in K562 cells increased cell proliferation. Our results indicated possible roles of MKRN2 in normal and malignant hematopoiesis.

  3. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Jungsug; Song, Taeyun [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Jie-Young; Yun, Yeon-Sook [Laboratory of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Choi, Il-Whan [Department of Microbiology, Center for Viral Disease Research, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Jeong, Yongsu [Department of Genetic Engineering, and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 614-735 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2009-09-25

    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cell proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.

  4. Fast detection of extrasynaptic GABA with a whole-cell sniffer.

    Science.gov (United States)

    Christensen, Rasmus K; Petersen, Anders V; Schmitt, Nicole; Perrier, Jean-François

    2014-01-01

    Gamma-amino-butyric acid (GABA) is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a human embryonic kidney (HEK) cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a "sniffer" allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations.

  5. The A-myb transcription factor in neoplastic and normal B cells.

    Science.gov (United States)

    Golay, J; Facchinetti, V; Ying, G; Introna, M

    1997-07-01

    The myb family of transcription factors has been strongly implicated in the regulation of cell growth and differentiation in the haematopoietic system. The v-myb oncogene, carried by avian defective retroviruses, causes leukaemias in the chicken and transforms haematopoietic cells in vitro. Its normal cellular equivalent c-myb, has been shown to promote the proliferation and block the differentiation of haematopoietic cells in several experimental models and is required for fetal haematopoiesis. Two other members of the family have been cloned more recently, A-myb and B-myb, which show sequence homology with c-myb in several domains, of which the DNA binding domain as well as other regulatory domains. Both have been shown to be transcription factors. B-myb is also involved in the control of proliferation and differentiation, but, unlike c-myb, it is expressed in many cell types. The third member of the family, A-myb, shows the most restricted pattern of expression, suggesting a very specific role for this transcription factor. A-myb is expressed in a subpopulation of normal B lymphocytes activated in vivo and localised in the germinal center of peripheral lymphoid organs and is not detected at significant levels in all other mature or immature haematopoietic populations studied, including bone marrow cells, T lymphocytes, granulocytes, monocytes, either at rest or after in vitro activation. These studies indicate that A-myb plays a role during a narrow window of normal B cell differentiation. A-myb expression has also been studied in a wide range of neoplastic B cells, representing the whole spectrum of B cell differentiation. A-myb is strongly expressed in Burkitt's lymphomas (BL) and slg+ B-acute lymphoblastic leukaemias (B-ALL) and not in all other leukaemias/lymphomas tested, with the exception of a subset of CLL (about 25% of cases). It is intriguing that the A-myb genome has been localised relatively close to the c-myc gene on chromosome 8, suggesting that

  6. O-naphthoquinone isolated from Capraria biflora L. induces selective cytotoxicity in tumor cell lines.

    Science.gov (United States)

    de S Wisintainer, G G N; Scola, G; Moura, S; Lemos, T L G; Pessoa, C; de Moraes, M O; Souza, L G S; Roesch-Ely, M; Henriques, J A P

    2015-12-21

    Biflorin is an o-naphthoquinone isolated from the roots of the plant Capraria biflora L. (Scrophulariaceae). In this study, the cytotoxic effects of biflorin were verified, and late apoptosis was detected in various cancer cell lines by in situ analysis. The cytotoxicity was further evaluated exclusively for 48 h of treatment in different tumor and non-tumor cell lines (Hep-2, HeLa, HT-29, A-375, and A-549, and HEK-293, respectively). The results indicated that biflorin induced selective cytotoxicity in tumor cells. HeLa cells were more susceptible to biflorin, followed by HT-29, A-549, A-375, and Hep-2 at all concentrations (range 5-50 μg/mL), and the highest half-maximal inhibitory concentration IC50 (56.01 ± 1.17 μg/mL) was observed in HEK-293 cells. Late apoptotic/necrotic events, observed by in situ immunostaining with Annexin V, varied with each cell line; an increase in late apoptotic events was observed corresponding to the increase in biflorin dosage. Hep-2 cells showed a greater percentage of late apoptotic events among the tumor cell lines when treated with higher concentrations of biflorin (69.63 ± 2.28%). The non-tumor HEK-293 line showed greater resistance to late apoptotic events, as well as a lower level of cytotoxicity (77.69 ± 6.68%) than the tested tumor lines. The data presented indicate that biflorin showed an important, possibly selective, cytotoxicity against tumor cell lines, thereby revealing a promising novel substance with potential anticancer activity for tumor therapy.

  7. Comparative histochemical study of Bowen’s disease and actinic keratosis: preserved normal basal cells in Bowen’s disease

    Directory of Open Access Journals (Sweden)

    H Ishida

    2009-12-01

    Full Text Available The degree of DNA-instability as revealed by immunohistochemical staining with anti-cytidine antibody after acid hydrolysis (DNA-instability test has been recently used as a marker of malignancy. This technique was applied to examine 17 skin tissue samples of Bowen’s disease, 47 of actinic keratosis, 15 of squamous cell carcinoma, 5 of seborrheic keratosis, and 10 of normal skin. All benign neoplastic cells of seborrheic keratosis and normal epidermal cells were negative. On the other hand, all cancer cells were positive with the DNA-instability test, indicating their malignancy, but all basal cells in Bowen’s disease were completely negative. Compatible with this result, the basal cells in Bowen’s disease were characteristically normal as evident in other histochemical examinations. Thus, they were negative with p53 immunohistochemistry, with normal signals of chromosome 17 in situ hybridisation and argyrophilic nucleolar organiser region, and showed slightly enhanced proliferative activity as revealed by proliferating cell nuclear antigen immunohistochemistry. Immunohistochemical staining with 34 ß E12 (monoclonal antibody against cytokeratins 1, 5, 10, and 14, which stains all normal epidermal keratinocytes including basal cells, showed that only the basal cells of Bowen’s disease stained strongly and homogeneously, while all cancer cells in the upper layers of Bowen’s disease and all layers of actinic keratosis were only sporadically or weakly stained. Staining with 34 ß B4 (monoclonal antibody against cytokeratin 1, which recognises the whole epidermis except for the basal layer in the normal epidermis, showed that the basal cells in the Bowen’s disease were completely negative, and lower layer cells in the actinic keratosis and upper layer cells in Bowen’s disease were only sporadically stained positive, although the superficial layer cells in actinic keratosis stained strongly and homogeneously. Our findings clearly

  8. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-01-01

    Highlights: → Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. → The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. → Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  9. Reduced migration of MLH1 deficient colon cancer cells depends on SPTAN1.

    Science.gov (United States)

    Hinrichsen, Inga; Ernst, Benjamin Philipp; Nuber, Franziska; Passmann, Sandra; Schäfer, Dieter; Steinke, Verena; Friedrichs, Nicolaus; Plotz, Guido; Zeuzem, Stefan; Brieger, Angela

    2014-01-24

    Defects in the DNA mismatch repair (MMR) protein MLH1 are frequently observed in sporadic and hereditary colorectal cancers (CRC). Affected tumors generate much less metastatic potential than the MLH1 proficient forms. Although MLH1 has been shown to be not only involved in postreplicative MMR but also in several MMR independent processes like cytoskeletal organization, the connection between MLH1 and metastasis remains unclear. We recently identified non-erythroid spectrin αII (SPTAN1), a scaffolding protein involved in cell adhesion and motility, to interact with MLH1. In the current study, the interaction of MLH1 and SPTAN1 and its potential consequences for CRC metastasis was evaluated. Nine cancer cell lines as well as fresh and paraffin embedded colon cancer tissue from 12 patients were used in gene expression studies of SPTAN1 and MLH1. Co-expression of SPTAN1 and MLH1 was analyzed by siRNA knock down of MLH1 in HeLa, HEK293, MLH1 positive HCT116, SW480 and LoVo cells. Effects on cellular motility were determined in MLH1 deficient HCT116 and MLH1 deficient HEK293T compared to their MLH1 proficient sister cells, respectively. MLH1 deficiency is clearly associated with SPTAN1 reduction. Moreover, siRNA knock down of MLH1 decreased the mRNA level of SPTAN1 in HeLa, HEK293 as well as in MLH1 positive HCT116 cells, which indicates a co-expression of SPTAN1 by MLH1. In addition, cellular motility of MLH1 deficient HCT116 and MLH1 deficient HEK293T cells was impaired compared to the MLH1 proficient sister clones. Consequently, overexpression of SPTAN1 increased migration of MLH1 deficient cells while knock down of SPTAN1 decreased cellular mobility of MLH1 proficient cells, indicating SPTAN1-dependent migration ability. These data suggest that SPTAN1 levels decreased in concordance with MLH1 reduction and impaired cellular mobility in MLH1 deficient colon cancer cells. Therefore, aggressiveness of MLH1-positive CRC might be related to SPTAN1.

  10. Normal function of immunologic stem cells from aged mice

    International Nuclear Information System (INIS)

    Harrison, D.E.; Doubleday, J.W.

    1975-01-01

    Marrow or spleen grafts from aged donor mice produced antibody-forming cells as effectively as did grafts from younger controls in recipients tested 3 to 10 months after the transplantation. All recipients were lethally irradiated, and the T6 chromosome marker was used to demonstrate that they were populated by donor cell lines. Recipients of aged or younger control grafts gave similar responses when stimulated with varying doses of antigen and when tested at different times after the transplantation except in two cases. Recipients of aged spleen grafts gave significantly lower responses than younger controls for the first few weeks after the transplantation. If recipients had been thymectomized before lethal irradiation, aged cell lines (pooled marrow and spleen cells) gave only 37 percent of the responses of younger controls. Given sufficient time and intact young recipients, immunologic stem cell lines from old donors populated recipients with cells having normal immune responses. These results suggest that age-related immunologic defects are not intrinsically timed in the precursor cell lines that populate the immune system. (U.S.)

  11. Identification of Noncanonical Wnt Receptors Required for Wnt-3a-Induced Early Differentiation of Human Neural Stem Cells.

    Science.gov (United States)

    Bengoa-Vergniory, Nora; Gorroño-Etxebarria, Irantzu; López-Sánchez, Inmaculada; Marra, Michele; Di Chiaro, Pierluigi; Kypta, Robert

    2017-10-01

    Wnt proteins preferentially activate either β-catenin-dependent or β-catenin-independent signals, but the activity of a particular Wnt also depends on cellular context and receptor availability. We previously reported that Wnt-3a induces neural differentiation of human embryonic stem cell-derived neural stem cells (NSCs) in a β-catenin-independent manner by activating a signal involving JNK and the AP-1 family member ATF-2. Here, we report the results of a gene silencing approach to identify the Wnt receptors that mediate this response to Wnt-3a. Silencing of ROR2 increased neuronal differentiation, as measured by expression of the genes DCX, NEUROD1, and NGN1, suggesting ROR2 signals normally prevent differentiation. Silencing of the other Wnt receptors singly did not affect Wnt-3a-induced neuronal differentiation. However, pairwise silencing of ROR1 and FZD4 or FZD5 and of LRP6 and FZD4 or FZD5 inhibited neuronal differentiation, as detected by reductions in the expression of neuronal genes and immunocytochemical detection of DCX, NEUROD1 and DCX. Ectopic expression of these receptors in HEK 293 cells increased ATF2-dependent transcription. In addition, ROR1 coimmunoprecipitated with FZD4 and LRP6 in transfected HEK 293 cells and colocalized with FZD4 and with LRP6 at the cell surface of transfected L cells. Wnt-3a did not appear to affect these interactions but did alter the interactions between LRP6 and FZD4/5. Together, these observations highlight roles for ROR1, LRP6, FZD4, and FZD5 in neural stem cell differentiation and provide support for a model in which dynamic interactions among these receptors mediate Wnt-3a activation of ATF2 signaling.

  12. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells.

    Science.gov (United States)

    Chen, Yu Qing; Min, Cui; Sang, Ming; Han, Yang Yang; Ma, Xiao; Xue, Xiao Qing; Zhang, Shuang Quan

    2010-08-01

    Some cationic antibacterial peptides exhibit a broad spectrum of cytotoxic activity against cancer cells, which could provide a new class of anticancer drugs. In the present study, the anticancer activity of ABP-CM4, an antibacterial peptide from Bombyx mori, against leukemic cell lines THP-1, K562 and U937 was evaluated, and the cytotoxicity compared with the effects on non-cancerous mammalian cells, including peripheral blood mononuclear cells (PBMCs), HEK-293 and erythrocytes. ABP-CM4 reduced the number of viable cells of the leukemic cell lines after exposure for 24h. The reduction was concentration dependent, and the IC50 values ranged from 14 to 18 microM. Conversely, ABP-CM4, even at 120 microM, exhibited no cytotoxicity toward HEK-293 or PBMCs, indicating that there was no significant effect on these two types of non-cancer cells. ABP-CM4 at a concentration of 200 microM had no hemolytic activity on mammalian erythrocytes. Together, these results suggested a selective cytotoxicity in leukemia cells. Flow cytometry demonstrated that the binding activity of ABP-CM4 to leukemia cells was much higher than that to HEK-293 or PBMCs, and there was almost no binding to erythrocytes. FITC-labeled ABP-CM4 molecules were examined under a confocal microscope and found to be concentrated at the surface of leukemia cells and changes of the cell membrane were determined by a cell permeability assay, which led us to the conclusion that ABP-CM4 could act at the cell membrane for its anticancer activity on leukemia cells. Collectively, our results indicated that ABP-CM4 has the potential for development as a novel antileukemic agent. Copyright 2010 Elsevier Inc. All rights reserved.

  13. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  14. Geometrical nuclear diagnosis and total paths of cervical cell evolution from normality to cancer

    Directory of Open Access Journals (Sweden)

    Javier Oswaldo Rodríguez Velásquez

    2015-01-01

    Full Text Available Background: The diagnosis of cervix cytology has problems of inter-observer reproducibility. Methodologies based on fractal geometry objectively differentiated normal, low-grade squamous intraepithelial lesion (L-SIL and high-grade squamous intraepithelial lesion (H-SIL states. Aims: The aim was to develop a mathematical-physical diagnosis and a theoretical generalization of the evolution paths of cervical cells from normal to carcinoma based on their occupation in the box-counting space. Subjects and Methods: Overlaying a grid of 8x8 pixels, the a number of squares occupying the nucleus surface and cytoplasm of 5 normal cells, 5 ASCUS, 5 L-SIL and 5 H-SIL were evaluated, as well as the ratio C/N, establishing differences between states. Sensitivity, specificity, negative likelihood ratio, and Kappa coefficient over the gold standard were calculated. Also was developed a generalization of all possible paths from normality to carcinoma. Results: The occupancy spaces of the nuclear surface allow differentiating normal L-SIL and H-SIL thus avoiding the indeterminacy of ASCUS cells. Compared to the Gold Standard, this method has sensitivity and specificity of 100%, negative likelihood ratio of 0, and Kappa coefficient of 1. 62,900 possible routes of evolution were determined between normal and H-SIL, states, based on the structural basis of the cells. Conclusions: it was obtained an objective and reproducible diagnostic methodology of the development of preneoplastic and neoplastic cervical cells for clinical application. Additionally were developed all possible paths of preneoplastic cellular alteration to carcinoma which facilitates the tracking of patients over time to clinical level, warning of alterations that lead to malignancy, based on the spatial occupation measurements of the nucleus in fractal space regardless of causes or risk factors.

  15. Leptin and Adiponectin Modulate the Self-renewal of Normal Human Breast Epithelial Stem Cells.

    Science.gov (United States)

    Esper, Raymond M; Dame, Michael; McClintock, Shannon; Holt, Peter R; Dannenberg, Andrew J; Wicha, Max S; Brenner, Dean E

    2015-12-01

    Multiple mechanisms are likely to account for the link between obesity and increased risk of postmenopausal breast cancer. Two adipokines, leptin and adiponectin, are of particular interest due to their opposing biologic functions and associations with breast cancer risk. In the current study, we investigated the effects of leptin and adiponectin on normal breast epithelial stem cells. Levels of leptin in human adipose explant-derived conditioned media positively correlated with the size of the normal breast stem cell pool. In contrast, an inverse relationship was found for adiponectin. Moreover, a strong linear relationship was observed between the leptin/adiponectin ratio in adipose conditioned media and breast stem cell self-renewal. Consistent with these findings, exogenous leptin stimulated whereas adiponectin suppressed breast stem cell self-renewal. In addition to local in-breast effects, circulating factors, including leptin and adiponectin, may contribute to the link between obesity and breast cancer. Increased levels of leptin and reduced amounts of adiponectin were found in serum from obese compared with age-matched lean postmenopausal women. Interestingly, serum from obese women increased stem cell self-renewal by 30% compared with only 7% for lean control serum. Taken together, these data suggest a plausible explanation for the obesity-driven increase in postmenopausal breast cancer risk. Leptin and adiponectin may function as both endocrine and paracrine/juxtacrine factors to modulate the size of the normal stem cell pool. Interventions that disrupt this axis and thereby normalize breast stem cell self-renewal could reduce the risk of breast cancer. ©2015 American Association for Cancer Research.

  16. Cell-Type-Specific Gene Programs of the Normal Human Nephron Define Kidney Cancer Subtypes.

    Science.gov (United States)

    Lindgren, David; Eriksson, Pontus; Krawczyk, Krzysztof; Nilsson, Helén; Hansson, Jennifer; Veerla, Srinivas; Sjölund, Jonas; Höglund, Mattias; Johansson, Martin E; Axelson, Håkan

    2017-08-08

    Comprehensive transcriptome studies of cancers often rely on corresponding normal tissue samples to serve as a transcriptional reference. In this study, we performed in-depth analyses of normal kidney tissue transcriptomes from the TCGA and demonstrate that the histological variability in cellularity, inherent in the kidney architecture, lead to considerable transcriptional differences between samples. This should be considered when comparing expression profiles of normal and cancerous kidney tissues. We exploited these differences to define renal-cell-specific gene signatures and used these as a framework to analyze renal cell carcinoma (RCC) ontogeny. Chromophobe RCCs express FOXI1-driven genes that define collecting duct intercalated cells, whereas HNF-regulated genes, specific for proximal tubule cells, are an integral part of clear cell and papillary RCC transcriptomes. These networks may be used as a framework for understanding the interplay between genomic changes in RCC subtypes and the lineage-defining regulatory machinery of their non-neoplastic counterparts. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Responses of human normal osteoblast cells and osteoblast-like cell line, MG-63 cells, to pulse electromagnetic field (PEMF

    Directory of Open Access Journals (Sweden)

    Suttatip Kamolmatyakul

    2008-01-01

    Full Text Available The objective of this in vitro study is to investigate the effect of pulsed electromagnetic field (PEMF on cellular proliferation and osteocalcin production of osteoblast-like cell line, MG-63 cells, and human normal osteoblast cells (NHOC obtained from surgical bone specimens. The cells were placed in 24-well culture plates in the amount of 3x104 cell/wells with 2 ml αMEM media supplemented with 10% FBS. The experimental plates were placed between a pair of Helmoltz coils powered by a pulse generator (PEMF, 50 Hz, 1.5 mV/cm in the upper compartment of a dual incubator (Forma. The control plates were placed in the lower compartment of the incubator without Helmotz coils. After three days, the cell proliferation was measured by the method modified from Mossman (J. Immunol Methods 1983; 65: 55-63. Other sets of plates were used for osteocalcin production assessment. Media from these sets were collected after 6 days and assessed for osteocalcin production using ELISA kits. The data were analyzed using a one-way analysis of variance (ANOVA. The results showed that MG-63 cells from the experimental group proliferated significantly more than those from the control group (20% increase, p<0.05. No significant difference in osteocalcin production was detected between the two groups. On the other hand, NHOC from the experimental group produced larger amount of osteocalcin (25% increase, p<0.05 and proliferated significantly more than those from the control group (100% increase, p<0.05. In conclusion, PEMF effect on osteoblasts might depend on their cell type of origin. For osteoblast-like cell line, MG-63 cells, PEMF increased proliferation rate but not osteocalcin production of the cells. However, PEMF stimulation effect on human normal osteoblast cells was most likely associated with enhancement of both osteocalcin production and cell proliferation.

  18. The Fate of a Normal Human Cell Traversed by a Single Charged Particle

    Science.gov (United States)

    Fournier, C.; Zahnreich, S.; Kraft, D.; Friedrich, T.; Voss, K.-O.; Durante, M.; Ritter, S.

    2012-01-01

    The long-term “fate” of normal human cells after single hits of charged particles is one of the oldest unsolved issues in radiation protection and cellular radiobiology. Using a high-precision heavy-ion microbeam we could target normal human fibroblasts with exactly one or five carbon ions and measured the early cytogenetic damage and the late behaviour using single-cell cloning. Around 70% of the first cycle cells presented visible aberrations in mFISH after a single ion traversal, and about 5% of the cells were still able to form colonies. In one third of selected high-proliferative colonies we observed clonal (radiation-induced) aberrations. Terminal differentiation and markers of senescence (PCNA, p16) in the descendants of cells traversed by one carbon ion occurred earlier than in controls, but no evidence of radiation-induced chromosomal instability was found. We conclude that cells surviving single-ion traversal, often carrying clonal chromosome aberrations, undergo accelerated senescence but maintain chromosomal stability. PMID:22966418

  19. Sensitivity to radiation of human normal, hyperthyroid, and neoplastic thyroid epithelial cells in primary culture

    International Nuclear Information System (INIS)

    Miller, R.C.; Hiraoka, Toshio; Kopecky, K.J.; Nakamura, Nori; Jones, M.P.; Ito, Toshio; Clifton, K.H.

    1986-09-01

    Samples of thyroid tissue removed surgically from 63 patients were cultured in vitro and X-irradiated to investigate the radiosensitivities of various types of thyroid epithelial cells. A total of 76 samples were obtained, including neoplastic cells from patients with papillary carcinoma (PC) or follicular adenoma (FA), cells from hyperthyroidism (HY) patients, and normal cells from the surgical margins of PC and FA patients. Culturing of the cells was performed in a manner which has been shown to yield a predominance of epithelial cells. Results of colony formation assays indicated that cells from HY and FA patients were the least radiosensitive: when adjusted to the overall geometric mean plating efficiency of 5.5 %, the average mean lethal dose D 0 was 97.6 cGy for HY cells, and 96.7 cGy and 94.3 cGy, respectively, for neoplastic and normal cells from FA patients. Cells from PC patients were more radiosensitive, normal cells having an adjusted average D 0 of 85.0 cGy and PC cells a significantly (p = .001) lower average D 0 of 74.4 cGy. After allowing for this variation by cell type, in vitro radiosensitivity was not significantly related to age at surgery (p = .82) or sex (p = .10). These results suggest that malignant thyroid cells may be especially radiosensitive. (author)

  20. E-cadherin promotes incorporation of mouse epiblast stem cells into normal development.

    Directory of Open Access Journals (Sweden)

    Satoshi Ohtsuka

    Full Text Available Mouse epiblast stem cells (mEpiSCs are pluripotent stem cells derived from epiblasts of postimplantation mouse embryos. Their pluripotency is distinct from that of mouse embryonic stem cells (mESCs in several cell biological criteria. One of the distinctions is that mEpiSCs contribute either not at all or at much lower efficiency to chimeric embryos after blastocyst injection compared to mESCs. However, here we showed that mEpiSCs can be incorporated into normal development after blastocyst injection by forced expression of the E-cadherin transgene for 2 days in culture. Using this strategy, mEpiSCs gave rise to live-born chimeras from 5% of the manipulated blastocysts. There were no obvious signs of reprogramming of mEpiSCs toward the mESC-like state during the 2 days after induction of the E-cadherin transgene, suggesting that mEpiSCs possess latent ability to integrate into the normal developmental process as its origin, epiblasts.

  1. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse

    International Nuclear Information System (INIS)

    Morgan, J.E.; Hoffman, E.P.; Partridge, T.A.

    1990-01-01

    Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc). However, it is difficult to determine whether this biochemical rescue results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration. By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily. Here, we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle

  2. Comparison of radiosensitivities of human autologous normal and neoplastic thyroid epithelial cells

    International Nuclear Information System (INIS)

    Miller, R.C.; Kopecky, K.J.; Hiraoka, T.; Ezaki, H.; Clifton, K.H.

    1986-01-01

    Studies were conducted to examine differences between the radiosensitivities of normal and neoplastic epithelial cells of the human thyroid. Freshly excised thyroid tissues from the tumours of eight patients with papillary carcinoma (PC) and five with follicular adenoma (FA) were cultured in vitro separately from normal thyroid tissue obtained from the surgical margins of the same patients. Plating efficiency of unirradiated control tissue was lower, on average for tumour tissue compared with normal tissue. Radiosensitivity, measured by the 37% inactivation dose D 0 , was greater for carcinoma tissue than for normal tissue in seven out of eight PC cases. Adenomatous tissue was less radiosensitive than normal tissue in four out of five FA cases. This is the first report comparing the radiosensitivity of autologous normal and abnormal epithelial tissue from the human thyroid. (author)

  3. [Distribution diversity of integrins and calcium channels on major human and mouse host cells of Leptospira species].

    Science.gov (United States)

    Li, Cheng-xue; Zhao, Xin; Qian, Jing; Yan, Jie

    2012-07-01

    To determine the distribution of integrins and calcium channels on major human and mouse host cells of Leptospira species. The expression of β1, β2 and β3 integrins was detected with immunofluorescence assay on the surface of human monocyte line THP-1, mouse mononuclear-macrophage-like cell line J774A.1, human vascular endothelial cell line HUVEC, mouse vascular endothelial cell EOMA, human hepatocyte line L-02, mouse hepatocyte line Hepa1-6, human renal tubular epithelial cell line HEK-293, mouse glomerular membrane epithelial cell line SV40-MES13, mouse collagen blast line NIH/3T3, human and mouse platelets. The distribution of voltage gate control calcium channels Cav3.1, Cav3.2, Cav3.3 and Cav2.3, and receptor gate calcium channels P(2)X(1), P(2)2X(2), P(2)X(3), P(2)X(4), P(2)X(5), P(2)X(6) and P(2)X(7) were determined with Western blot assay. β1 integrin proteins were positively expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, L-02, Hepa1-6 and HEK-239 cells as well as human and mouse platelets. β2 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, and NIH/3T3 cells. β3 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, Hepa1-6, HEK-239 and NIH/3T3 cells as well as human and mouse platelets. P(2)X(1) receptor gate calcium channel was expressed on the membrane surface of human and mouse platelets, while P(2)X(5) receptor gate calcium channel was expressed on the membrane surface of J774A.1, THP-1, L-02, Hepa1-6, HEK-239 and HUVEC cells. However, the other calcium channels were not detected on the tested cell lines or platelets. There is a large distribution diversity of integrins and calcium channel proteins on the major human and mouse host cells of Leptospira species, which may be associated with the differences of leptospira-induced injury in different host cells.

  4. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  5. Shape-dependent regulation of proliferation in normal and malignant human cells and its alteration by interferon

    International Nuclear Information System (INIS)

    Kulesh, D.A.; Greene, J.J.

    1986-01-01

    The relationship between cell morphology, proliferation, and contact inhibition was studied in normal and malignant human cells which varied in their sensitivity to contact inhibition. Their ability to proliferate was examined under conditions where the cells were constrained into different shapes by plating onto plastic surfaces coated with poly(2-hydroxyethyl methacrylate). Poly(2-hydroxyethyl methacrylate) can precisely vary the shape of cells without toxicity. Cell proliferation was quantitated by cell counts and labeling indices were determined by autoradiography. The normal JHU-1 foreskin fibroblasts and IMR-90 lung fibroblasts exhibited contact-inhibited growth with a saturation density of 2.9 X 10(5) and 2.0 X 10(5) cells/cm2, respectively. These cells also exhibited stringent dependency on cell shape with a mitotic index of less than 3% at poly(2-hydroxyethyl methacrylate) concentrations at which the cells were rounded versus a labeling index of 75-90% when the cells were flat. The malignant bladder carcinoma line RT-4 exhibited partial contact-inhibited growth. Its dependency on cell shape was less stringent than that of normal cells with a mitotic index of 37-40% when rounded and 79% when flat. The malignant fibrosarcoma line, HT1080, was not contact inhibited and was entirely shape independent with a mitotic index of 70-90% regardless of cell shape. Treatment of HT1080 cells with low concentration of human fibroblast interferon (less than 40 units/ml) restored shape-dependent proliferation while having little effect on normal cells. Subantiproliferative doses of interferon were also shown to restore contact-inhibited proliferation control to malignant cells previously lacking it

  6. Radiation-induced chromosome aberrations and cell killing in normal human fibroblasts and ataxia telangiectasia fibroblasts

    International Nuclear Information System (INIS)

    Kawata, T.; Saito, M.; Uno, T.; Ito, H.; Shigematsu, N.

    2003-01-01

    Full text: When cells are held in a non-dividing state (G0) after irradiation, an enhanced survival can be observed compared to that of immediate plating. A change of survival depending on post irradiation condition is known to be repair of potentially lethal damage (RPLD). The effects of confluent holding recovery (24-h incubation following irradiation) on chromosome aberrations in normal human fibroblasts (AG1522) and ataxia telangiectasia fibroblasts (GM02052C) were examined. A chemical-induced premature chromosome condensation (PCC) technique with fluorescent in situ hybridization (FISH) was applied to study chromosome aberrations in G2 and M-phase. Results from cell survival showed that the capacity for potentially lethal damage repair was normal in AG1522 cells but very little in GM02052C cells. The frequency of chromosome aberrations in AG1522 cells decreased when cells were allowed to repair for 24-h. Especially complex type exchanges were found to decrease markedly at high doses (4Gy and 6Gy). However, the frequency of chromosome aberrations including complex type exchanges showed little decrease in GM02052C cells. Confluent holding can effectively reduce chromosome aberrations, especially complex type exchanges in normal cells

  7. Monomeric adiponectin increases cell viability in porcine aortic endothelial cells cultured in normal and high glucose conditions: Data on kinases activation

    Directory of Open Access Journals (Sweden)

    Elena Grossini

    2016-09-01

    Full Text Available We found that monomeric adiponectin was able to increase cell viability in porcine aortic endothelial cells (PAE cultured both in normal and high glucose condition. Moreover, in normal glucose condition monomeric adiponectin increased p38MAPK, Akt, ERK1/2 and eNOS phosphorylation in a dose- and time-dependent way. Also in high glucose condition monomeric adiponectin increased eNOS and above kinases phosphorylation with similar patterns but at lower extent. For interpretation of the data presented in this article, please see the research article “Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions” (Grossini et al., in press [1].

  8. The rate of DNA synthesis in normal human and ataxia telangiectasia cells after exposure to X-irradiation

    International Nuclear Information System (INIS)

    Wit, J. de; Bootsma, D.; Jaspers, N.G.J.; Rijksverdedigingsorganisatie TNO, Rijswijk

    1981-01-01

    The rate of DNA synthesis was studied in normal cell strains and in strains from patients suffering from the inherited disorder ataxia telangiectasia (AT). After exposure to relatively low doses of oxic X-rays (0- 4 krad) DNA synthesis was depressed in AT cell strains to a significantly lesser extent than in normal cells. This response was observed in both an excision-deficient and an excision-proficient strain. In contrast, there was no difference in DNA-synthesis inhibition between AT and normal cells after UV exposure. After X-irradiation of cells from patients with xeroderma pigmentosum, both complementation group A and XP variants, the observed rate of DNA synthesis was equal to that in normal cells. An exception was the strain XP3BR which has been shown to be X-ray-sensitive. This strain exhibited diminished DNA synthesis inhibition after X-ray doses below 1 krad. These data suggest a relationship between hypersensitivity to X-rays and diminished depression of DNA synthesis. (orig.)

  9. Involvement of ERK-Nrf-2 signaling in ionizing radiation induced cell death in normal and tumor cells.

    Directory of Open Access Journals (Sweden)

    Raghavendra S Patwardhan

    Full Text Available Prolonged oxidative stress favors tumorigenic environment and inflammation. Oxidative stress may trigger redox adaptation mechanism(s in tumor cells but not normal cells. This may increase levels of intracellular antioxidants and establish a new redox homeostasis. Nrf-2, a master regulator of battery of antioxidant genes is constitutively activated in many tumor cells. Here we show that, murine T cell lymphoma EL-4 cells show constitutive and inducible radioresistance via activation of Nrf-2/ERK pathway. EL-4 cells contained lower levels of ROS than their normal counterpart murine splenic lymphocytes. In response to radiation, the thiol redox circuits, GSH and thioredoxin were modified in EL-4 cells. Pharmacological inhibitors of ERK and Nrf-2 significantly enhanced radiosensitivity and reduced clonogenic potential of EL-4 cells. Unirradiated lymphoma cells showed nuclear accumulation of Nrf-2, upregulation of its dependent genes and protein levels. Interestingly, MEK inhibitor abrogated its nuclear translocation suggesting role of ERK in basal and radiation induced Nrf-2 activation in tumor cells. Double knockdown of ERK and Nrf-2 resulted in higher sensitivity to radiation induced cell death as compared to individual knockdown cells. Importantly, NF-kB which is reported to be constitutively active in many tumors was not present at basal levels in EL-4 cells and its inhibition did not influence radiosensitivity of EL-4 cells. Thus our results reveal that, tumor cells which are subjected to heightened oxidative stress employ master regulator cellular redox homeostasis Nrf-2 for prevention of radiation induced cell death. Our study reveals the molecular basis of tumor radioresistance and highlights role of Nrf-2 and ERK.

  10. Fast detection of extrasynaptic GABA with a whole-cell sniffer

    Directory of Open Access Journals (Sweden)

    Rasmus Kordt Christensen

    2014-05-01

    Full Text Available Gamma-amino-butyric acid (GABA is the main inhibitory transmitter of the brain. It operates by binding to specific receptors located both inside and outside synapses. The extrasynaptic receptors are activated by spillover from GABAergic synapses and by ambient GABA in the extracellular space. Ambient GABA is essential for adjusting the excitability of neurons. However, due to the lack of suitable methods, little is known about its dynamics. Here we describe a new technique that allows detection of GABA transients and measurement of the steady state GABA concentration with high spatial and temporal resolution. We used a Human Embryonic Kidney (HEK cell line that stably expresses GABAA receptors composed of α1, β2, and γ2 subunits. We recorded from such a HEK cell with the whole-cell patch-clamp technique. The presence of GABA near the HEK cell generated a measurable electric current whose magnitude increased with concentration. A fraction of the current did not inactivate during prolonged exposition to GABA. This technique, which we refer to as a sniffer allows the measurement of ambient GABA concentration inside nervous tissue with a resolution of few tens of nanomolars. In addition, the sniffer detects variations in the extrasynaptic GABA concentration with millisecond time resolution. Pilot experiments demonstrate that the sniffer is able to report spillover of GABA induced by synaptic activation in real time. This is the first report on a GABA sensor that combines the ability to detect fast transients and to measure steady concentrations.

  11. Rapid Fabrication of Cell-Laden Alginate Hydrogel 3D Structures by Micro Dip-Coating.

    Science.gov (United States)

    Ghanizadeh Tabriz, Atabak; Mills, Christopher G; Mullins, John J; Davies, Jamie A; Shu, Wenmiao

    2017-01-01

    Development of a simple, straightforward 3D fabrication method to culture cells in 3D, without relying on any complex fabrication methods, remains a challenge. In this paper, we describe a new technique that allows fabrication of scalable 3D cell-laden hydrogel structures easily, without complex machinery: the technique can be done using only apparatus already available in a typical cell biology laboratory. The fabrication method involves micro dip-coating of cell-laden hydrogels covering the surface of a metal bar, into the cross-linking reagents calcium chloride or barium chloride to form hollow tubular structures. This method can be used to form single layers with thickness ranging from 126 to 220 µm or multilayered tubular structures. This fabrication method uses alginate hydrogel as the primary biomaterial and a secondary biomaterial can be added depending on the desired application. We demonstrate the feasibility of this method, with survival rate over 75% immediately after fabrication and normal responsiveness of cells within these tubular structures using mouse dermal embryonic fibroblast cells and human embryonic kidney 293 cells containing a tetracycline-responsive, red fluorescent protein (tHEK cells).

  12. Intermittent Fluorescence Oscillations in Lipid Droplets in a Live Normal and Lung Cancer Cell: Time-Resolved Confocal Microscopy.

    Science.gov (United States)

    Chowdhury, Rajdeep; Amin, Md Asif; Bhattacharyya, Kankan

    2015-08-27

    Intermittent structural oscillation in the lipid droplets of live lung cells is monitored using time-resolved confocal microscopy. Significant differences are observed between the lung cancer cell (A549) and normal (nonmalignant) lung cell (WI38). For this study, the lipid droplets are covalently labeled with a fluorescent dye, coumarin maleimide (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin, CPM). The number of lipid droplets in the cancer cell is found to be ∼20-fold higher than that in the normal (nonmalignant) cell. The fluctuation in the fluorescence intensity of the dye (CPM) is attributed to the red-ox processes and periodic formation/rupture of the S-CPM bond. The amount of reactive oxygen species (ROS) is much higher in a cancer cell. This is manifested in faster oscillations (0.9 ± 0.3 s) in cancer cells compared to that in the normal cells (2.8 ± 0.7 s). Solvation dynamics in the lipid droplets of cancer cells is slower compared to that in the normal cell.

  13. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration

    DEFF Research Database (Denmark)

    Voena, Claudia; Conte, Chiara; Ambrogio, Chiara

    2007-01-01

    Anaplastic large cell lymphomas (ALCL) are mainly characterized by the reciprocal translocation t(2;5)(p23;q35) that involves the anaplastic lymphoma kinase (ALK) gene and generates the fusion protein NPM-ALK with intrinsic tyrosine kinase activity. NPM-ALK triggers several signaling cascades......, leading to increased cell growth, resistance to apoptosis, and changes in morphology and migration of transformed cells. To search for new NPM-ALK interacting molecules, we developed a mass spectrometry-based proteomic approach in HEK293 cells expressing an inducible NPM-ALK and identified the tyrosine...... phosphatase Shp2 as a candidate substrate. We found that NPM-ALK was able to bind Shp2 in coprecipitation experiments and to induce its phosphorylation in the tyrosine residues Y542 and Y580 both in HEK293 cells and ALCL cell lines. In primary lymphomas, antibodies against the phosphorylated tyrosine Y542...

  14. Toxic effect of C60 fullerene-doxorubicin complex towards tumor and normal cells in vitro

    Directory of Open Access Journals (Sweden)

    Prylutska S. V.

    2014-09-01

    Full Text Available Creation of new nanostructures possessing high antitumor activity is an important problem of modern biotechnology. Aim. To evaluate cytotoxicity of created complex of pristine C60 fullerene with the anthracycline antibiotic doxorubicin (Dox, as well as of free C60 fullerene and Dox, towards different cell types – tumor, normal immunocompetent and hepatocytes. Methods. Measurement of size distribution for particles in C60 + Dox mixture was performed by a dynamic light scattering (DLS technique. Toxic effect of C60 + Dox complex in vitro towards tumor and normal cells was studied using the MTT assay. Results. DLS experiment demonstrated that the main fraction of the particles in C60 + Dox mixture had a diameter in the range of about 132 nm. The toxic effect of C60 + Dox complex towards normal (lymphocytes, macrophages, hepatocytes and tumor (Ehrlich ascites carcinoma, leukemia L1210, Lewis lung carcinoma cells was decreased by ~10–16 % and ~7–9 %, accordingly, compared with the same effect of free Dox. Conclusions. The created C60 + Dox composite may be considered as a new pharmacological agent that kills effectively tumor cells in vitro and simultaneously prevents a toxic effect of the free form of Dox on normal cells.

  15. Live Cell Imaging and 3D Analysis of Angiotensin Receptor Type 1a Trafficking in Transfected Human Embryonic Kidney Cells Using Confocal Microscopy.

    Science.gov (United States)

    Kadam, Parnika; McAllister, Ryan; Urbach, Jeffrey S; Sandberg, Kathryn; Mueller, Susette C

    2017-03-27

    Live-cell imaging is used to simultaneously capture time-lapse images of angiotensin type 1a receptors (AT1aR) and intracellular compartments in transfected human embryonic kidney-293 (HEK) cells following stimulation with angiotensin II (Ang II). HEK cells are transiently transfected with plasmid DNA containing AT1aR tagged with enhanced green fluorescent protein (EGFP). Lysosomes are identified with a red fluorescent dye. Live-cell images are captured on a laser scanning confocal microscope after Ang II stimulation and analyzed by software in three dimensions (3D, voxels) over time. Live-cell imaging enables investigations into receptor trafficking and avoids confounds associated with fixation, and in particular, the loss or artefactual displacement of EGFP-tagged membrane receptors. Thus, as individual cells are tracked through time, the subcellular localization of receptors can be imaged and measured. Images must be acquired sufficiently rapidly to capture rapid vesicle movement. Yet, at faster imaging speeds, the number of photons collected is reduced. Compromises must also be made in the selection of imaging parameters like voxel size in order to gain imaging speed. Significant applications of live-cell imaging are to study protein trafficking, migration, proliferation, cell cycle, apoptosis, autophagy and protein-protein interaction and dynamics, to name but a few.

  16. Biogenic amines as regulators of the proliferative activity of normal and neoplastic intestinal epithelial cells (review).

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1987-01-01

    The role of extracellular amines such as noradrenaline and serotonin and their interaction with cyclic nucleotides and intracellular polyamines in the regulation of intestinal epithelial cell proliferation is reviewed with particular reference to the differences between normal and neoplastic cells. In respect to the normal epithelium of the small intestine there is a strong case to support the notion that cell proliferation is controlled by, amongst other things, sympathetic nerves. In colonic carcinomas, antagonists for certain serotonin receptors, for histamine H2 receptors and for dopamine D2 receptors inhibit both cell division and tumour growth. Because of the reproducible variations between tumour lines in the response to these antagonists, this inhibition appears to be due to a direct effect on the tumour cells rather than an indirect effect via the tumour host or stroma. This conclusion is supported by the cytocidal effects of toxic congeners of serotonin on the tumour cells. The most salient difference between the amine responses of normal and neoplastic cells relates to the issue of amine uptake. Proliferation of crypt cells is promoted by amine uptake inhibitors, presumably because they block amine re-uptake by the amine secreting cells--sympathetic neurones and enteroendocrine cells. However, tumour cell proliferation is strongly inhibited by amine uptake inhibitors, suggesting that neoplastic cells can, and need to take up the amine before being stimulated by it. Recent revelations in the field of oncogenes also support an important association between amines, cyclic nucleotides and cell division. The ras oncogenes code for a protein that is a member of a family of molecules which relay information from extracellular regulators, such as biogenic amines, to the intracellular regulators, including cyclic nucleotides. Evidence is presented suggesting that enteroendocrine cells, enterocytes, carcinoid tumour cells and adenocarcinoma cells all have the same

  17. Single-cell analysis of ploidy and centrosomes underscores the peculiarity of normal hepatocytes.

    Directory of Open Access Journals (Sweden)

    Francesca Faggioli

    Full Text Available Polyploidization is the most well recognized feature of the liver. Yet, a quantitative and behavioral analysis of centrosomes and DNA content in normal hepatocytes has been limited by the technical challenges of methods available. By using a novel approach employing FISH for chromosomes 18, X and Y we provide, for the first time, a detailed analysis of DNA copies during physiological development in the liver at single cell level. We demonstrate that aneuploidy and unbalanced DNA content in binucleated hepatocytes are common features in normal adult liver. Despite the common belief that hepatocytes contain 1, 2 or no more than 4 centrosomes, our double staining for centrosome associated proteins reveals extranumerary centrosomes in a high percentage of cells as early as 15 days of age. We show that in murine liver the period between 15 days and 1.5 months marks the transition from a prevalence of mononucleated cells to up to 75% of binucleated cells. Our data demonstrate that this timing correlates with a switch in centrosomes number. At 15 days the expected 1 or 2 centrosomes converge with several hepatocytes that contain 3 centrosomes; at 1.5 months the percentage of cells with 3 centrosomes decreases concomitantly with the increase of cells with more than 4 centrosomes. Our analysis shows that the extranumerary centrosomes emerge in concomitance with the process of binucleation and polyploidization and maintain α-tubulin nucleation activity. Finally, by integrating interphase FISH and immunofluorescent approaches, we detected an imbalance between centrosome number and DNA content in liver cells that deviates from the equilibrium expected in normal cells. We speculate that these unique features are relevant to the peculiar biological function of liver cells which are continuously challenged by stress, a condition that could predispose to genomic instability.

  18. Distribution of CD163-positive cell and MHC class II-positive cell in the normal equine uveal tract.

    Science.gov (United States)

    Sano, Yuto; Matsuda, Kazuya; Okamoto, Minoru; Takehana, Kazushige; Hirayama, Kazuko; Taniyama, Hiroyuki

    2016-02-01

    Antigen-presenting cells (APCs) in the uveal tract participate in ocular immunity including immune homeostasis and the pathogenesis of uveitis. In horses, although uveitis is the most common ocular disorder, little is known about ocular immunity, such as the distribution of APCs. In this study, we investigated the distribution of CD163-positive and MHC II-positive cells in the normal equine uveal tract using an immunofluorescence technique. Eleven eyes from 10 Thoroughbred horses aged 1 to 24 years old were used. Indirect immunofluorescence was performed using the primary antibodies CD163, MHC class II (MHC II) and CD20. To demonstrate the site of their greatest distribution, positive cells were manually counted in 3 different parts of the uveal tract (ciliary body, iris and choroid), and their average number was assessed by statistical analysis. The distribution of pleomorphic CD163- and MHC II-expressed cells was detected throughout the equine uveal tract, but no CD20-expressed cells were detected. The statistical analysis demonstrated the distribution of CD163- and MHC II-positive cells focusing on the ciliary body. These results demonstrated that the ciliary body is the largest site of their distribution in the normal equine uveal tract, and the ciliary body is considered to play important roles in uveal and/or ocular immune homeostasis. The data provided in this study will help further understanding of equine ocular immunity in the normal state and might be beneficial for understanding of mechanisms of ocular disorders, such as equine uveitis.

  19. Phosphorylation of intracellular proteins related to the multihormonal regulation of prolactin: comparison of normal anterior pituitary cells in culture with the tumor-derived GH cell lines

    International Nuclear Information System (INIS)

    Beretta, L.; Boutterin, M.C.; Sobel, A.

    1988-01-01

    We have previously identified a group of cytoplasmic phosphoproteins (proteins 1-11) whose phosphorylation could be related, on a pharmacological basis, to the multihormonal regulation of PRL synthesis and release in the anterior pituitary tumor-derived GH cell lines. Phosphoproteins with identical migration properties on two-dimensional electrophoresis gels were also detectable in normal rat anterior pituitary cells in culture. We designed appropriate culture and [ 32 P] phosphate-labeling conditions allowing to analyze the regulation of the phosphorylation of these proteins in normal pituitary cells. TRH, 12-O-tetradecanoylphorbol-13-acetate, and vasoactive intestinal peptide induced the same qualitative changes in phosphorylation of proteins 1-11 in normal as in GH cells. Quantitative differences observed are most likely due to the heterogeneity of primary pituitary cultures. Phosphorylation changes affecting proteins 14-16, not previously detected in GH cells, were also observed with normal anterior pituitary cells. GH cell lines have lost the sensitivity of pituitary lactotrophs for dopamine, an important physiological inhibitor of PRL synthesis and release. In normal anterior pituitary cells in culture, dopamine inhibited also the TRH-stimulated phosphorylation of proteins 1-10, thus strengthening the correlation between phosphorylation of these proteins and multihormonal regulation of pituitary cell functions. Our results indicate: 1) that the same phosphoproteins as in GH cells are related to the multihormonal regulation of nontumoral, normal anterior pituitary cells in culture; 2) that dopamine acts by interfering with the phosphorylation of these proteins

  20. Characterization of exosomes derived from ovarian cancer cells and normal ovarian epithelial cells by nanoparticle tracking analysis.

    Science.gov (United States)

    Zhang, Wei; Peng, Peng; Kuang, Yun; Yang, Jiaxin; Cao, Dongyan; You, Yan; Shen, Keng

    2016-03-01

    Cellular exosomes are involved in many disease processes and have the potential to be used for diagnosis and treatment. In this study, we compared the characteristics of exosomes derived from human ovarian epithelial cells (HOSEPiC) and three epithelial ovarian cancer cell lines (OVCAR3, IGROV1, and ES-2) to investigate the differences between exosomes originating from normal and malignant cells. Two established colloid-chemical methodologies, electron microscopy (EM) and dynamic light scattering (DLS), and a relatively new method, nanoparticle tracking analysis (NTA), were used to measure the size and size distribution of exosomes. The concentration and epithelial cellular adhesion molecule (EpCAM) expression of exosomes were measured by NTA. Quantum dots were conjugated with anti-EpCAM to label exosomes, and the labeled exosomes were detected by NTA in fluorescent mode. The normal-cell-derived exosomes were significantly larger than those derived from malignant cells, and exosomes were successfully labeled using anti-EpCAM-conjugated quantum dots. Exosomes from different cell lines may vary in size, and exosomes might be considered as potential diagnosis biomarkers. NTA can be considered a useful, efficient, and objective method for the study of different exosomes and their unique properties in ovarian cancer.

  1. Formation of newly synthesized adeno-associated virus capsids in the cell nucleus.

    Science.gov (United States)

    Bell, Peter; Vandenberghe, Luk H; Wilson, James M

    2014-06-01

    Adeno-associated virus (AAV) particles inside the nucleus of a HEK 293 cell are shown by electron microscopy. Cells have been triple-transfected for vector production and were analyzed for capsid formation three days later. Newly assembled particle are visible as seemingly unstructured conglomerates or crystal-like arrays.

  2. DNA strand breaking and rejoining in response to ultraviolet light in normal human and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Dingman, C.W.; Kakunaga, T.

    1976-01-01

    A description is given of a reproducible technique for measuring DNA strand breaking and rejoining in cells after treatment with U.V.-light. Results obtained with normal human cells, xeroderma pigmentosum cells (XP, complementation group A) and XP variant cells suggested that all three of these cell-types can carry out single-strand incision with equal rapidity. However, the breaks so induced appeared to be only slowly rejoined in the XP variant cells and rejoined not at all in XP complementation group A cells. Furthermore, parental strand rejoining was inhibited by caffeine in XP variant cells but not in normal cells. (author)

  3. Monitoring change in refractive index of cytosol of animal cells on affinity surface under osmotic stimulus for label-free measurement of viability.

    Science.gov (United States)

    Park, Jina; Jin, Sung Il; Kim, Hyung Min; Ahn, Junhyoung; Kim, Yeon-Gu; Lee, Eun Gyo; Kim, Min-Gon; Shin, Yong-Beom

    2015-02-15

    We demonstrated that a metal-clad waveguide (MCW)-based biosensor can be applied to label-free measurements of viability of adherent animal cells with osmotic stimulation in real time. After Chinese hamster ovary (CHO) and human embryonic kidney cell 293 (HEK293) cells were attached to a Concanavalin A (Con A)-modified sensor surface, the magnitudes of cell responses to non-isotonic stimulation were compared between live and dead cells. The live cells exhibited a change in the refractive index (RI) of the cytosol caused by a redistribution of water through the cell membrane, which was induced by the osmotic stimulus, but the dead cells did not. Moreover, the normalized change in the RI measured via the MCW sensor was linearly proportional to the viability of attached cells and the resolution in monitoring cell viability was about 0.079%. Therefore, the viability of attached animal cells can be measured without labels by observing the relative differences in the RI of cytosol in isotonic and non-isotonic buffers. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Assay based on electrical impedance spectroscopy to discriminate between normal and cancerous mammalian cells

    Science.gov (United States)

    Giana, Fabián Eduardo; Bonetto, Fabián José; Bellotti, Mariela Inés

    2018-03-01

    In this work we present an assay to discriminate between normal and cancerous cells. The method is based on the measurement of electrical impedance spectra of in vitro cell cultures. We developed a protocol consisting on four consecutive measurement phases, each of them designed to obtain different information about the cell cultures. Through the analysis of the measured data, 26 characteristic features were obtained for both cell types. From the complete set of features, we selected the most relevant in terms of their discriminant capacity by means of conventional statistical tests. A linear discriminant analysis was then carried out on the selected features, allowing the classification of the samples in normal or cancerous with 4.5% of false positives and no false negatives.

  5. Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer.

    Science.gov (United States)

    Vancha, Ajith R; Govindaraju, Suman; Parsa, Kishore V L; Jasti, Madhuri; González-García, Maribel; Ballestero, Rafael P

    2004-10-15

    Several cell lines and primary cultures benefit from the use of positively charged extracellular matrix proteins or polymers that enhance their ability to attach to culture plates. Polyethyleneimine is a positively charged polymer that has gained recent attention as a transfection reagent. A less known use of this cationic polymer as an attachment factor was explored with several cell lines. Polyethyleneimine compared favorably to traditional attachment factors such as collagen and polylysine. PC-12 and HEK-293 cells plated on dishes coated with polyethyleneimine showed a homogeneous distribution of cells in the plate, demonstrating strong cell adhesion that survived washing procedures. The polymer could also be used to enhance the adherence and allow axonal outgrowth from zebrafish retinal explants. The effects of this coating agent on the transfection of loosely attaching cell lines were studied. Pre-coating with polyethyleneimine had the effect of enhancing the transfection yield in procedures using lipofection reagents. Polyethyleneimine is an effective attachment factor for weakly anchoring cell lines and primary cells. Its use in lipofection protocols makes the procedures more reliable and increases the yield of expressed products with commonly used cell lines such as PC-12 and HEK-293 cells.

  6. AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells

    International Nuclear Information System (INIS)

    Fuhrmann, A; Staunton, J R; Banyai, N; Davies, P C W; Ros, R; Nandakumar, V

    2011-01-01

    The mechanical stiffness of individual cells is important in tissue homeostasis, cell growth, division and motility, and the epithelial–mesenchymal transition in the initiation of cancer. In this work, a normal squamous cell line (EPC2) and metaplastic (CP-A) as well as dysplastic (CP-D) Barrett's Esophagus columnar cell lines are studied as a model of pre-neoplastic progression in the human esophagus. We used the combination of an atomic force microscope (AFM) with a scanning confocal fluorescence lifetime imaging microscope to study the mechanical properties of single adherent cells. Sixty four force indentation curves were taken over the nucleus of each cell in an 8 × 8 grid pattern. Analyzing the force indentation curves, indentation depth-dependent Young's moduli were found for all cell lines. Stiffness tomograms demonstrate distinct differences between the mechanical properties of the studied cell lines. Comparing the stiffness for indentation forces of 1 nN, most probable Young's moduli were calculated to 4.7 kPa for EPC2 (n = 18 cells), 3.1 kPa for CP-A (n = 10) and 2.6 kPa for CP-D (n = 19). We also tested the influence of nuclei and nucleoli staining organic dyes on the mechanical properties of the cells. For stained EPC2 cells (n = 5), significant stiffening was found (9.9 kPa), while CP-A cells (n = 5) showed no clear trend (2.9 kPa) and a slight softening was observed (2.1 kPa) in the case of CP-D cells (n = 16). Some force–indentation curves show non-monotonic discontinuities with segments of negative slope, resembling a sawtooth pattern. We found the incidence of these 'breakthrough events' to be highest in the dysplastic CP-D cells, intermediate in the metaplastic CP-A cells and lowest in the normal EPC2 cells. This observation suggests that the microscopic explanation for the increased compliance of cancerous and pre-cancerous cells may lie in their susceptibility to 'crumble and yield' rather than their

  7. Construction of a high-EGFR expression cell line and its biological ...

    African Journals Online (AJOL)

    Targeted screening of EGFR compounds has become one of the medical research focuses for tumor therapy. A431, which naturally expresses high levels of EGFR, was compared with the stably high expressing EGFR cell line HEK293. Flow cytometry was used to analyze cell growth and Western blot was used to ...

  8. Dopamine D2 receptor expression in the corticotroph cells of the human normal pituitary gland.

    Science.gov (United States)

    Pivonello, Rosario; Waaijers, Marlijn; Kros, Johan M; Pivonello, Claudia; de Angelis, Cristina; Cozzolino, Alessia; Colao, Annamaria; Lamberts, Steven W J; Hofland, Leo J

    2017-08-01

    The dopamine D 2 receptor is the main dopamine receptor expressed in the human normal pituitary gland. The aim of the current study was to evaluate dopamine D 2 receptor expression in the corticotroph cell populations of the anterior lobe and pars intermedia, as well as posterior lobe of the human normal pituitary gland by immunohistochemistry. Human normal pituitary gland samples obtained from routine autopsies were used for the study. In all cases, histology together with immunostaining for adrenocorticotropic hormone, melanocyte-stimulating hormone, prolactin, and neurofilaments were performed and compared to the immunostaining for D 2 receptor. D 2 receptor was heterogeneously expressed in the majority of the cell populations of the anterior and posterior lobe as well as in the area localized between the anterior and posterior lobe, and arbitrary defined as "intermediate zone". This zone, characterized by the presence of nerve fibers included the residual pars intermedia represented by the colloid-filled cysts lined by the remnant melanotroph cells strongly expressing D 2 receptors, and clusters of corticotroph cells, belonging to the anterior lobe but localized within the cysts and adjacent to the posterior lobe, variably expressing D 2 receptors. D 2 dopamine receptor is expressed in the majority of the cell populations of the human normal pituitary gland, and particularly, in the different corticotroph cell populations localized in the anterior lobe and the intermediate zone of the pituitary gland.

  9. Modulation of GLO1 Expression Affects Malignant Properties of Cells

    Directory of Open Access Journals (Sweden)

    Antje Hutschenreuther

    2016-12-01

    Full Text Available The energy metabolism of most tumor cells relies on aerobic glycolysis (Warburg effect characterized by an increased glycolytic flux that is accompanied by the increased formation of the cytotoxic metabolite methylglyoxal (MGO. Consequently, the rate of detoxification of this reactive glycolytic byproduct needs to be increased in order to prevent deleterious effects to the cells. This is brought about by an increased expression of glyoxalase 1 (GLO1 that is the rate-limiting enzyme of the MGO-detoxifying glyoxalase system. Here, we overexpressed GLO1 in HEK 293 cells and silenced it in MCF-7 cells using shRNA. Tumor-related properties of wild type and transformed cells were compared and key glycolytic enzyme activities assessed. Furthermore, the cells were subjected to hypoxic conditions to analyze the impact on cell proliferation and enzyme activities. Our results demonstrate that knockdown of GLO1 in the cancer cells significantly reduced tumor-associated properties such as migration and proliferation, whereas no functional alterations where found by overexpression of GLO1 in HEK 293 cells. In contrast, hypoxia caused inhibition of cell growth of all cells except of those overexpressing GLO1. Altogether, we conclude that GLO1 on one hand is crucial to maintaining tumor characteristics of malignant cells, and, on the other hand, supports malignant transformation of cells in a hypoxic environment when overexpressed.

  10. Host cell virus entry mediated by Australian bat lyssavirus G envelope glycoprotein occurs through a clathrin-mediated endocytic pathway that requires actin and Rab5.

    Science.gov (United States)

    Weir, Dawn L; Laing, Eric D; Smith, Ina L; Wang, Lin-Fa; Broder, Christopher C

    2014-02-27

    Australian bat lyssavirus (ABLV), a rhabdovirus of the genus Lyssavirus which circulates in both pteropid fruit bats and insectivorous bats in mainland Australia, has caused three fatal human infections, the most recent in February 2013, manifested as acute neurological disease indistinguishable from clinical rabies. Rhabdoviruses infect host cells through receptor-mediated endocytosis and subsequent pH-dependent fusion mediated by their single envelope glycoprotein (G), but the specific host factors and pathways involved in ABLV entry have not been determined. ABLV internalization into HEK293T cells was examined using maxGFP-encoding recombinant vesicular stomatitis viruses (rVSV) that express ABLV G glycoproteins. A combination of chemical and molecular approaches was used to investigate the contribution of different endocytic pathways to ABLV entry. Dominant negative Rab GTPases were used to identify the endosomal compartment utilized by ABLV to gain entry into the host cell cytosol. Here we show that ABLV G-mediated entry into HEK293T cells was significantly inhibited by the dynamin-specific inhibitor dynasore, chlorpromazine, a drug that blocks clathrin-mediated endocytosis, and the actin depolymerizing drug latrunculin B. Over expression of dominant negative mutants of Eps15 and Rab5 also significantly reduced ABLV G-mediated entry into HEK293T cells. Chemical inhibitors of caveolae-dependent endocytosis and macropinocytosis and dominant negative mutants of Rab7 and Rab11 had no effect on ABLV entry. The predominant pathway utilized by ABLV for internalization into HEK293T cells is clathrin-and actin-dependent. The requirement of Rab5 for productive infection indicates that ABLV G-mediated fusion occurs within the early endosome compartment.

  11. In vitro culture of oocytes and granulosa cells collected from normal, obese, emaciated and metabolically stressed ewes.

    Science.gov (United States)

    Tripathi, S K; Farman, M; Nandi, S; Mondal, S; Gupta, Psp; Kumar, V Girish

    2016-07-01

    The present study was undertaken to investigate the oocyte morphology, its fertilizing capacity and granulosa cell functions in ewes (obese, normal, metabolic stressed and emaciated). Ewes (Ovis aries) of approximately 3 years of age (Bellary breed) from a local village were screened, chosen and categorized into a) normal b) obese but not metabolically stressed, c) Emaciated but not metabolically stressed d) Metabolically stressed based on body condition scoring and blood markers. Oocytes and granulosa cells were collected from ovaries of the ewes of all categories after slaughter and were classified into good (oocytes with more than three layers of cumulus cells and homogenous ooplasm), fair (oocytes one or two layers of cumulus cells and homogenous ooplasm) and poor (denuded oocytes or with dark ooplasm). The good and fair quality oocytes were in vitro matured and cultured with fresh semen present and the fertilization, cleavage and blastocyst development were observed. The granulosa cells were cultured for evaluation of metabolic activity by use of the MTT assay, and cell viability, cell number as well as estrogen and progesterone production were assessed. It was observed that the good and fair quality oocytes had greater metabolic activity when collected from normal and obese ewes compared with those from emaciated and metabolically stressed ewes. No significant difference was observed in oocyte quality and maturation amongst the oocytes collected from normal and obese ewes. The cleavage and blastocyst production rates were different for the various body condition classifications and when ranked were: normal>obese>metabolically stressed>emaciated. Lesser metabolic activity was observed in granulosa cells obtained from ovaries of emaciated ewes. However, no changes were observed in viability and cell number of granulosa cells obtained from ewes with the different body condition categories. Estrogen and progesterone production from cultured granulosa cells were

  12. Cerebral blood flow and red cell delivery in normal subjects and in multiple sclerosis

    International Nuclear Information System (INIS)

    Swank, R.L.; Roth, J.G.; Woody, D.C. Jr.

    1983-01-01

    Regional cerebral blood flow (rCBF) was determined in 77 normal females and 53 normal males of different ages and in 26 men and 45 women with multiple sclerosis by the inhalation of radioactive Xe133 method. In the normal subjects the CBF was relatively high in the teens and fell, at first rapidly and then slowly in both sexes with age. During adult life the flow in females was significantly higher than in males. The delivery of packed red cells (RCD) was determined by multiplying the CBF by the percentage concentration of red cells (HCT). The RCD for both sexes was nearly the same. In the patients with multiple sclerosis there occurred a progressive generalized decrease in CBF and in RCD with age which was significantly greater than observed in normal subjects. The rate of decrease in CBF and RCD correlated directly with the rate of progress of the disease

  13. ADAM28 is expressed by epithelial cells in human normal tissues and protects from C1q-induced cell death.

    Science.gov (United States)

    Miyamae, Yuka; Mochizuki, Satsuki; Shimoda, Masayuki; Ohara, Kentaro; Abe, Hitoshi; Yamashita, Shuji; Kazuno, Saiko; Ohtsuka, Takashi; Ochiai, Hiroki; Kitagawa, Yuko; Okada, Yasunori

    2016-05-01

    ADAM28 (disintegrin and metalloproteinase 28), which was originally reported to be lymphocyte-specific, is over-expressed by carcinoma cells and plays a key role in cell proliferation and progression in human lung and breast carcinomas. We studied ADAM28 expression in human normal tissues and examined its biological function. By using antibodies specific to ADAM28, ADAM28 was immunolocalized mainly to epithelial cells in several tissues, including epididymis, bronchus and stomach, whereas lymphocytes in lymph nodes and spleen were negligibly immunostained. RT-PCR, immunoblotting and ELISA analyses confirmed the expression in these tissues, and low or negligible expression by lymphocytes was found in the lymph node and spleen. C1q was identified as a candidate ADAM28-binding protein from a human lung cDNA library by yeast two-hybrid system, and specific binding was demonstrated by binding assays, immunoprecipitation and surface plasmon resonance. C1q treatment of normal bronchial epithelial BEAS-2B and NHBE cells, both of which showed low-level expression of ADAM28, caused apoptosis through activation of p38 and caspase-3, and cell death with autophagy through accumulation of LC3-II and autophagosomes, respectively. C1q-induced cell death was attenuated by treatment of the cells with antibodies against the C1q receptor gC1qR/p33 or cC1qR/calreticulin. Treatment of C1q with recombinant ADAM28 prior to addition to culture media reduced C1q-induced cell death, and knockdown of ADAM28 using siRNAs increased cell death. These data demonstrate that ADAM28 is expressed by epithelial cells of several normal organs, and suggest that ADAM28 plays a role in cell survival by suppression of C1q-induced cytotoxicity in bronchial epithelial cells. © 2016 Federation of European Biochemical Societies.

  14. Comparison of radiosensitivity between human hematopoietic cell lines derived from patients with Down's syndrome and from normal persons

    International Nuclear Information System (INIS)

    Huang, C.C.; Banerjee, A.; Tan, J.C.; Hou, Y.

    1977-01-01

    Seven hematopoietic cell lines, four derived from the peripheral blood of patients with Down's syndrome (DS) and three from normal persons, were irradiated with 100, 150, 300, and 500 rads from a 60 Co source and harvested for cell count and chromosome aberration studies every 12 hours for 72 hours post irradiation. Cell growth inhibition and an increase in chromosome aberration were observed in all the cell lines at each dose level and time interval. No significant difference was observed in the effects between DS and normal cell lines. The most common types of aberrations in the 12-hour samples were chromosome and/or chromatid breaks. In the later samples, chromatid exchanges were predominant. The results of the variance analyses on the induced chromosome aberrations in six lines (three DS and three normal lines) showed radiation dosage to be the largest component of total variance, following postirradiation duration and cell lines. The samples harvested 24 and 36 hours post irradiation generally showed greater effects than the samples of other harvest durations. The cell line variance could only be attributed to the differences among and between individual cell lines rather than the difference between DS and normal cell lines

  15. Detection of genomic instability in normal human bronchial epithelial cells exposed to 238Pu

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Fukushima, N.H.; Neft, R.E.; Lechner, J.F.

    1994-01-01

    Alpha particle-emitting radon daughters constitute a risk for development of lung cancer in humans. The development of this disease involves multiple genetic alterations. These changes and the time course they follow are not yet defined despite numerous in vitro endeavors to transform human lung cells with various physical or chemical agents. However, genomic instability, characterized both by structural and numerical chromosomal aberrations and by elevated rates of point mutations, is a common feature of tumor cells. Further, both types of genomic instability have been reported in the noncancerous progeny of normal murine hemopoietic cells exposed in vitro to α-particles. The purpose of this investigation was to determine if genomic instability is also a prominent feature of normal human bronchial epithelial cells exposed to α-particle irradiation from the decay of inhaled radon daughters

  16. Inactivation of ultraviolet repair in normal and xeroderma pigmentosum cells by methyl methanesulfonate

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1982-01-01

    Excision repair of ultraviolet damage in the DNA of normal and xeroderma pigmentosum (Groups C, D, and variant) cells was inactivated by exposure of cells to methyl methanesulfonate immediately before irradiation independent of the presence of 0 to 10% fetal calf serum. The inactivation could be represented by a semilog relationship between the amount of repair and methyl methanesulfonate concentration up to approximately 5 mM. The inactivation can be considered to occur as the result of alkylation of a large (about 10(6) daltons) repair enzyme complex, and the dose required to reduce repair to 37% for most cells types was between 4 and 7 mM. No consistent, large difference in sensitivity to methyl methanesulfonate was found in any xeroderma pigmentosum complementation group compared to normal cells, implying that reduced repair in these groups may be caused by small inherited changes in the amino acid composition (i.e., point mutations or small deletions) rather than by losses of major components of the repair enzyme complex

  17. Epidermal stem cells - role in normal, wounded and pathological psoriatic and cancer skin

    DEFF Research Database (Denmark)

    Kamstrup, M.; Faurschou, A.; Gniadecki, R.

    2008-01-01

    In this review we focus on epidermal stem cells in the normal regeneration of the skin as well as in wounded and psoriatic skin. Furthermore, we discuss current data supporting the idea of cancer stem cells in the pathogenesis of skin carcinoma and malignant melanoma. Epidermal stem cells present...... or transit amplifying cells constitute a primary pathogenetic factor in the epidermal hyperproliferation seen in psoriasis. In cutaneous malignancies mounting evidence supports a stem cell origin in skin carcinoma and malignant melanoma and a possible existence of cancer stem cells Udgivelsesdato: 2008/5...

  18. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation

    International Nuclear Information System (INIS)

    Desai, Sejal; Kobayashi, Alisa; Konishi, Teruaki; Oikawa, Masakazu; Pandey, Badri N.

    2014-01-01

    Graphical abstract: - Highlights: • Proton-microbeam irradiated A549 cells send damaging signals to bystander A549 cells. • Irradiated A549–A549 bystander response is through gap junctional communication. • Bystander WI38 cells exert protective signalling in irradiated A549 cells. • Rescue of irradiated A549 cells by WI38 cells is independent of gap junctions. - Abstract: Most of the studies of radiation-induced bystander effects (RIBE) have been focused on understanding the radiobiological changes observed in bystander cells in response to the signals from irradiated cells in a normal cell population with implications to radiation risk assessment. However, reports on RIBE with relevance to cancer radiotherapy especially investigating the bidirectional and criss-cross bystander communications between cancer and normal cells are limited. Hence, in present study employing co-culture approach, we have investigated the bystander cross-talk between lung cancer (A549) and normal (WI38) cells after proton-microbeam irradiation using γ-H2AX foci fluorescence as a measure of DNA double-strand breaks (DSBs). We observed that in A549–A549 co-cultures, irradiated A549 cells exert damaging effects in bystander A549 cells, which were found to be mediated through gap junctional intercellular communication (GJIC). However, in A549–WI38 co-cultures, irradiated A549 did not affect bystander WI38 cells. Rather, bystander WI38 cells induced inverse protective signalling (rescue effect) in irradiated A549 cells, which was independent of GJIC. On the other hand, in response to irradiated WI38 cells neither of the bystander cells (A549 or WI38) showed significant increase in γ-H2AX foci. The observed bystander signalling between tumour and normal cells may have potential implications in therapeutic outcome of cancer radiotherapy

  19. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Desai, Sejal [Radiation Signalling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kobayashi, Alisa; Konishi, Teruaki; Oikawa, Masakazu [Radiation System and Engineering Section, Department of Technical Support and Development, Research, Development and Support Center, National Institute of Radiological Sciences, Chiba 263-8555 (Japan); Pandey, Badri N., E-mail: badrinarain@yahoo.co.in [Radiation Signalling and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-05-15

    Graphical abstract: - Highlights: • Proton-microbeam irradiated A549 cells send damaging signals to bystander A549 cells. • Irradiated A549–A549 bystander response is through gap junctional communication. • Bystander WI38 cells exert protective signalling in irradiated A549 cells. • Rescue of irradiated A549 cells by WI38 cells is independent of gap junctions. - Abstract: Most of the studies of radiation-induced bystander effects (RIBE) have been focused on understanding the radiobiological changes observed in bystander cells in response to the signals from irradiated cells in a normal cell population with implications to radiation risk assessment. However, reports on RIBE with relevance to cancer radiotherapy especially investigating the bidirectional and criss-cross bystander communications between cancer and normal cells are limited. Hence, in present study employing co-culture approach, we have investigated the bystander cross-talk between lung cancer (A549) and normal (WI38) cells after proton-microbeam irradiation using γ-H2AX foci fluorescence as a measure of DNA double-strand breaks (DSBs). We observed that in A549–A549 co-cultures, irradiated A549 cells exert damaging effects in bystander A549 cells, which were found to be mediated through gap junctional intercellular communication (GJIC). However, in A549–WI38 co-cultures, irradiated A549 did not affect bystander WI38 cells. Rather, bystander WI38 cells induced inverse protective signalling (rescue effect) in irradiated A549 cells, which was independent of GJIC. On the other hand, in response to irradiated WI38 cells neither of the bystander cells (A549 or WI38) showed significant increase in γ-H2AX foci. The observed bystander signalling between tumour and normal cells may have potential implications in therapeutic outcome of cancer radiotherapy.

  20. Comparative analysis of gene expression in normal and cancer human prostate cell lines

    Directory of Open Access Journals (Sweden)

    E. E. Rosenberg

    2014-04-01

    Full Text Available Prostate cancer is one of the main causes of mortality in men with malignant tumors. The urgent problem was a search for biomarkers of prostate cancer, which would allow distinguishing between aggressive metastatic and latent tumors. The aim of this work was to search for differentially expressed genes in normal epithelial cells PNT2 and prostate cancer cell lines LNCaP, DU145 and PC3, produced from tumors with different aggressiveness and metas­tatic ability. Such genes might be used to create a panel of prognostic markers for aggressiveness and metastasis. Relative gene expression of 65 cancer-related genes was determined by the quantitative polymerase chain reaction (Q-PCR. Expression of 29 genes was changed in LNCaP cells, 20 genes in DU145 and 16 genes in PC3 cell lines, compared with normal line PNT2. The obtained data make it possible to conclude that the epithelial-mesenchymal cell transition took place, which involved the loss of epithelial markers, reduced cell adhesion and increased migration. We have also found few differentially expressed genes among 3 prostate cancer cell lines. We have found that genes, involved in cell adhesion (CDH1, invasiveness and metastasis (IL8, CXCL2 and cell cycle control (P16, CCNE1 underwent most changes. These genes might be used for diagnosis and prognosis of invasive metastatic prostate tumors.

  1. Sequence of activation of template biosyntheses in normal and transformed human cells after synchronization with a double thimidine block

    International Nuclear Information System (INIS)

    Alekseev, S.B.; Boikov, P.Ya.; Ebralidze, L.K.; Stepanova, L.G.

    1986-01-01

    The sequences of synthesis of DNA, RNA, and various groups of proteins in normal and transformed human fibroblasts was studied in the first mitotic cycle synchronization of the cells by a double thymidine block. Two peculiarities of the synthesis of acid-soluble histone and acid-insoluble proteins in the normal and transformed cells, were detected: (1) in normal fibroblasts the synthesis of the two groups of proteins is a minimum before DNA replication, and the greatest activity is achieved in the G 2 phase; in transformed cells protein synthesis is a maximum after the removal of the thymine block, while in the G 2 phase it is decreased; (2) in normal fibroblasts the synthesis of acid-insoluble proteins is a maximum before the maximum synthesis of DNA, and that of acid-soluble proteins is a maximum after the maximum of DNA synthesis. The opposite picture is observed in transformed cells. RNA synthesis in normal and transformed cells is activated at the end of the G 2 phase. In normal cells the synthesis of proteins is coupled with the activation of RNA synthesis, while in transformed cells protein synthesis is evidently transferred to the following mitotic cycle. Especially pronounced differences were detected in the expression of certain LMG proteins. Thus, in transformed cells the regulation of the coupling of the template syntheses is modified

  2. DNA crosslinking and cytotoxicity in normal and transformed human cells treated with antitumor nitrosoureas.

    OpenAIRE

    Erickson, L C; Bradley, M O; Ducore, J M; Ewig, R A; Kohn, K W

    1980-01-01

    Normal (IMR-90) and simian virus 40-transformed (VA-13) human embryo cells were treated with antitumor nitrosoureas, and the effects on cell viability and cell DNA were compared. All six nitrosoureas tested were more toxic to VA-13 cells than to IMR-90 cells as measured by decrease in cell proliferation or in colony formation. The nitrosoureas capable of generating alkylisocyanates produced a smaller difference between the cell types than did derivatives lacking this capacity. DNA damage was ...

  3. Liver X receptor ligand cytotoxicity in colon cancer cells and not in normal colon epithelial cells depends on LXRβ subcellular localization.

    Science.gov (United States)

    Courtaut, Flavie; Derangère, Valentin; Chevriaux, Angélique; Ladoire, Sylvain; Cotte, Alexia K; Arnould, Laurent; Boidot, Romain; Rialland, Mickaël; Ghiringhelli, François; Rébé, Cédric

    2015-09-29

    Increasing evidence indicates that Liver X Receptors (LXRs) have some anticancer properties. We recently demonstrated that LXR ligands induce colon cancer cell pyroptosis through an LXRβ-dependent pathway. In the present study, we showed that human colon cancer cell lines presented differential cytoplasmic localizations of LXRβ. This localization correlated with caspase-1 activation and cell death induction under treatment with LXR ligand. The association of LXRβ with the truncated form of RXRα (t-RXRα) was responsible for the sequestration of LXRβ in the cytoplasm in colon cancer cells. Moreover t-RXRα was not expressed in normal colon epithelial cells. These cells presented a predominantly nuclear localization of LXRβ and were resistant to LXR ligand cytotoxicity. Our results showed that predominant cytoplasmic localization of LXRβ, which occurs in colon cancer cells but not in normal colon epithelial cells, allowed LXR ligand-induced pyroptosis. This study strengthens the hypothesis that LXRβ could be a promising target in cancer therapy.

  4. Marked differences in immunocytological localization of [3H]estradiol-binding protein in rat pancreatic acinar tumor cells compared to normal acinar cells

    International Nuclear Information System (INIS)

    Beaudoin, A.R.; Grondin, G.; St Jean, P.; Pettengill, O.; Longnecker, D.S.; Grossman, A.

    1991-01-01

    [ 3 H]Estradiol can bind to a specific protein in normal rat pancreatic acinar cells. Electron microscopic immunocytochemical analysis has shown this protein to be localized primarily in the rough endoplasmic reticulum and mitochondria. Rat exocrine pancreatic tumor cell lines, whether grown in tissue culture (AR42J) or as a tumor mass after sc injection into rats (DSL-2), lacked detectable amounts of this [ 3 H]estradiol-binding protein (EBP), as determined by the dextran-coated charcoal assay. Furthermore, primary exocrine pancreatic neoplasms induced with the carcinogen azaserine contained little or no detectable [ 3 H]estradiol-binding activity. However, electron immunocytochemical studies of transformed cells indicated the presence of material that cross-reacted with antibodies prepared against the [ 3 H]EBP. The immunopositive reaction in transformed cells was localized almost exclusively in lipid granules. Such lipid organelles in normal acinar cells, although present less frequently than in transformed cells, have never been observed to contain EBP-like immunopositive material. Presumably, the aberrant localization of EBP in these acinar tumor cells results in loss of function of this protein, which in normal pancreatic acinar cells appears to exert a modulating influence on zymogen granule formation and the process of secretion

  5. Normal telomere lengths in naive and memory CD4+ T cells in HIV type 1 infection: a mathematical interpretation

    NARCIS (Netherlands)

    Wolthers, K. C.; Noest, A. J.; Otto, S. A.; Miedema, F.; de Boer, R. J.

    1999-01-01

    To study CD4+ T cell productivity during HIV-1 infection, CD4+ T cell telomere lengths were measured. Cross-sectional and longitudinal analysis of HIV-1-infected individuals with CD4+ T cells counts >300 cells/mm3 showed normal average telomeric restriction fragment (TRF) length and normal

  6. Normal telomere lengths in naive and memory CD4 T cells in HIV type 1 infection : a mathematical interpretation

    NARCIS (Netherlands)

    Wolthers, K.C.; Noest, A.J.; Otto, S.A.; Miedema, F.; Boer, R.J. de

    1999-01-01

    To study CD4+ T cell productivity during HIV-1 infection, CD4+ T cell telomere lengths were measured. Cross-sectional and longitudinal analysis of HIV-1-infected individuals with CD4+ T cells counts >300 cells/mm3 showed normal average telomeric restriction fragment (TRF) length and normal

  7. Mechanism of suppression of normal hemopoietic activity by lymphokine-activated killer cells and their products

    International Nuclear Information System (INIS)

    Gibson, F.M.; Malkovska, V.; Myint, A.A.; Meager, A.; Gordon-Smith, E.C.

    1991-01-01

    Interleukin 2 (IL-2)-activated lymphocytes (lymphokine-activated killer [LAK] cells) have been shown to inhibit the formation of autologous human granulocyte-macrophage hemopoietic progenitors (granulocyte-macrophage colony-forming units, CFU-GM) in vitro. Effects of LAK cells on these progenitors may include a number of different mechanisms. LAK cells are potent cytotoxic lymphocytes capable of lysing certain normal autologous cells. They also produce cytokines known to inhibit hemopoiesis (interferon gamma [IFN-gamma] and tumor necrosis factor alpha [TNF-alpha]) or enhance it (granulocyte-macrophage colony-stimulating factor, GM-CSF). In the authors' current study they analyzed the mechanism of suppression of autologous CFU-GM by LAK cells. Their results suggest that LAK cells are not directly cytotoxic to normal CFU-GM. They show that it is possible to abolish the hemopoiesis-inhibiting activity of LAK cells without abrogating their cytotoxicity against tumor cell lines using inhibitors of DNA synthesis, namely hydroxyurea or irradiation

  8. Efficient generation of patient-matched malignant and normal primary cell cultures from clear cell renal cell carcinoma patients: clinically relevant models for research and personalized medicine

    International Nuclear Information System (INIS)

    Lobo, Nazleen C.; Gedye, Craig; Apostoli, Anthony J.; Brown, Kevin R.; Paterson, Joshua; Stickle, Natalie; Robinette, Michael; Fleshner, Neil; Hamilton, Robert J.; Kulkarni, Girish; Zlotta, Alexandre; Evans, Andrew; Finelli, Antonio; Moffat, Jason; Jewett, Michael A. S.; Ailles, Laurie

    2016-01-01

    Patients with clear cell renal cell carcinoma (ccRCC) have few therapeutic options, as ccRCC is unresponsive to chemotherapy and is highly resistant to radiation. Recently targeted therapies have extended progression-free survival, but responses are variable and no significant overall survival benefit has been achieved. Commercial ccRCC cell lines are often used as model systems to develop novel therapeutic approaches, but these do not accurately recapitulate primary ccRCC tumors at the genomic and transcriptional levels. Furthermore, ccRCC exhibits significant intertumor genetic heterogeneity, and the limited cell lines available fail to represent this aspect of ccRCC. Our objective was to generate accurate preclinical in vitro models of ccRCC using tumor tissues from ccRCC patients. ccRCC primary single cell suspensions were cultured in fetal bovine serum (FBS)-containing media or defined serum-free media. Established cultures were characterized by genomic verification of mutations present in the primary tumors, expression of renal epithelial markers, and transcriptional profiling. The apparent efficiency of primary cell culture establishment was high in both culture conditions, but genotyping revealed that the majority of cultures contained normal, not cancer cells. ccRCC characteristically shows biallelic loss of the von Hippel Lindau (VHL) gene, leading to accumulation of hypoxia-inducible factor (HIF) and expression of HIF target genes. Purification of cells based on expression of carbonic anhydrase IX (CA9), a cell surface HIF target, followed by culture in FBS enabled establishment of ccRCC cell cultures with an efficiency of >80 %. Culture in serum-free conditions selected for growth of normal renal proximal tubule epithelial cells. Transcriptional profiling of ccRCC and matched normal cell cultures identified up- and down-regulated networks in ccRCC and comparison to The Cancer Genome Atlas confirmed the clinical validity of our cell cultures. The ability

  9. Competition between clonal plasma cells and normal cells for potentially overlapping bone marrow niches is associated with a progressively altered cellular distribution in MGUS vs myeloma.

    Science.gov (United States)

    Paiva, B; Pérez-Andrés, M; Vídriales, M-B; Almeida, J; de las Heras, N; Mateos, M-V; López-Corral, L; Gutiérrez, N C; Blanco, J; Oriol, A; Hernández, M T; de Arriba, F; de Coca, A G; Terol, M-J; de la Rubia, J; González, Y; Martín, A; Sureda, A; Schmidt-Hieber, M; Schmitz, A; Johnsen, H E; Lahuerta, J-J; Bladé, J; San-Miguel, J F; Orfao, A

    2011-04-01

    Disappearance of normal bone marrow (BM) plasma cells (PC) predicts malignant transformation of monoclonal gammopathy of undetermined significance (MGUS) and smoldering myeloma (SMM) into symptomatic multiple myeloma (MM). The homing, behavior and survival of normal PC, but also CD34(+) hematopoietic stem cells (HSC), B-cell precursors, and clonal PC largely depends on their interaction with stromal cell-derived factor-1 (SDF-1) expressing, potentially overlapping BM stromal cell niches. Here, we investigate the distribution, phenotypic characteristics and competitive migration capacity of these cell populations in patients with MGUS, SMM and MM vs healthy adults (HA) aged >60 years. Our results show that BM and peripheral blood (PB) clonal PC progressively increase from MGUS to MM, the latter showing a slightly more immature immunophenotype. Of note, such increased number of clonal PC is associated with progressive depletion of normal PC, B-cell precursors and CD34(+) HSC in the BM, also with a parallel increase in PB. In an ex vivo model, normal PC, B-cell precursors and CD34(+) HSC from MGUS and SMM, but not MM patients, were able to abrogate the migration of clonal PC into serial concentrations of SDF-1. Overall, our results show that progressive competition and replacement of normal BM cells by clonal PC is associated with more advanced disease in patients with MGUS, SMM and MM.

  10. An ultra-sensitive biophysical risk assessment of light effect on skin cells.

    Science.gov (United States)

    Bennet, Devasier; Viswanath, Buddolla; Kim, Sanghyo; An, Jeong Ho

    2017-07-18

    The aim of this study was to analyze photo-dynamic and photo-pathology changes of different color light radiations on human adult skin cells. We used a real-time biophysical and biomechanics monitoring system for light-induced cellular changes in an in vitro model to find mechanisms of the initial and continuous degenerative process. Cells were exposed to intermittent, mild and intense (1-180 min) light with On/Off cycles, using blue, green, red and white light. Cellular ultra-structural changes, damages, and ECM impair function were evaluated by up/down-regulation of biophysical, biomechanical and biochemical properties. All cells exposed to different color light radiation showed significant changes in a time-dependent manner. Particularly, cell growth, stiffness, roughness, cytoskeletal integrity and ECM proteins of the human dermal fibroblasts-adult (HDF-a) cells showed highest alteration, followed by human epidermal keratinocytes-adult (HEK-a) cells and human epidermal melanocytes-adult (HEM-a) cells. Such changes might impede the normal cellular functions. Overall, the obtained results identify a new insight that may contribute to premature aging, and causes it to look aged in younger people. Moreover, these results advance our understanding of the different color light-induced degenerative process and help the development of new therapeutic strategies.

  11. Effect of radiation dosage changes on the cell viability and the apoptosis induction on normal and tumorigenic cells

    International Nuclear Information System (INIS)

    Park, In Woo; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk

    1999-01-01

    The study was aimed to detect the differences in the cell viability and the apoptosis induction after irradiation on normal and tumorigenic cells. The study, that was generated for two human normal cells (RHEK, HGF-1) and two human tumor cells (KB, HT-1080), was tested using MTT assay at 1 day and 3 day after irradiation and TUNEL assay under confocal laser scanning microscope at 1 day after irradiation. Single irradiation of 0.5, 1, 2, 4, and 8 Gy were applied to the cells. The two fractions of 1, 2, 4, and 8 Gy were separated with a 4 hour time interval. The irradiation was done with 5.38 Gy/min dose rate using Cs-137 irradiator at room temperature. 1. In 3-day group, the cell viability of HGF-1 cell was significantly decreased at 2, 4 and 8 Gy irradiation, the cell viability of KB cell was significantly decreased at 8 Gy irradiation and the cell viability of HT-1080 cell was significantly decreased at 4 and 8 Gy irradiation. 2. There was significant difference between RHEK and KB cell line in the cell viability of 3-day group at 8 Gy irradiation. There was significant difference between RHEK and HGF-1 cell line in the cell viability of 3-day group at 4 and 8 Gy irradiation. 3. There was a significantly decreased cell viability in 3-day group than those in 1-day group at 2, 4 and 8 Gy on HGF-1 cell, at 4 and 8 Gy on HT-1080 cell, at 8 Gy on KB cell.4. We could detect DNA fragmented cells only on KB cell. Number of apoptotic cells of KB cell was significantly increased at 4 and 8 Gy irradiation. However, there was no correlation between cell viability and apoptosis.5. On all 4 cell lines, there were no differences between single and split irradiation method in cell viability and apoptosis.

  12. Murine leukemia virus-derived retroviral vector has differential integration patterns in human cell lines used to produce recombinant factor VIII

    Directory of Open Access Journals (Sweden)

    Marcela Cristina Correa de Freitas

    2014-06-01

    Full Text Available OBJECTIVE: Nowadays recombinant factor VIII is produced in murine cells including in Chinese hamster ovary (CHO and baby hamster kidney cells (BHK. Previous studies, using the murine leukemia virus-derived retroviral vector pMFG-FVIII-P140K, modified two recombinant human cell lines, HepG2 and Hek293 to produce recombinant factor VIII. In order to characterize these cells, the present study aimed to analyze the integration pattern of retroviral vector pMFG-FVIII-P140K.METHODS: This study used ligation-mediated polymerase chain reaction to locate the site of viral vector integration by sequencing polymerase chain reaction products. The sequences were compared to genomic databases to characterize respective clones.RESULTS: The retroviral vector presented different and non-random profiles of integration between cells lines. A preference of integration for chromosomes 19, 17 and 11 was observed for HepG2FVIIIdB/P140K and chromosome 9 for Hek293FVIIIdB/P140K. In genomic regions such as CpG islands and transcription factor binding sites, there was no difference in the integration profiles for both cell lines. Integration in intronic regions of encoding protein genes (RefSeq genes was also observed in both cell lines. Twenty percent of integrations occurred at fragile sites in the genome of the HepG2 cell line and 17% in Hek293.CONCLUSION: The results suggest that the cell type can affect the profile of chromosomal integration of the retroviral vector used; these differences may interfere in the level of expression of recombinant proteins.

  13. Quantification of Crypt and Stem Cell Evolution in the Normal and Neoplastic Human Colon

    Directory of Open Access Journals (Sweden)

    Ann-Marie Baker

    2014-08-01

    Full Text Available Human intestinal stem cell and crypt dynamics remain poorly characterized because transgenic lineage-tracing methods are impractical in humans. Here, we have circumvented this problem by quantitatively using somatic mtDNA mutations to trace clonal lineages. By analyzing clonal imprints on the walls of colonic crypts, we show that human intestinal stem cells conform to one-dimensional neutral drift dynamics with a “functional” stem cell number of five to six in both normal patients and individuals with familial adenomatous polyposis (germline APC−/+. Furthermore, we show that, in adenomatous crypts (APC−/−, there is a proportionate increase in both functional stem cell number and the loss/replacement rate. Finally, by analyzing fields of mtDNA mutant crypts, we show that a normal colon crypt divides around once every 30–40 years, and the division rate is increased in adenomas by at least an order of magnitude. These data provide in vivo quantification of human intestinal stem cell and crypt dynamics.

  14. Aging and insulin signaling differentially control normal and tumorous germline stem cells.

    Science.gov (United States)

    Kao, Shih-Han; Tseng, Chen-Yuan; Wan, Chih-Ling; Su, Yu-Han; Hsieh, Chang-Che; Pi, Haiwei; Hsu, Hwei-Jan

    2015-02-01

    Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age-dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC-male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  15. Nonphotochemical Hole-Burning Imaging Studies of in vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Richard Joseph [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria due to the high lipid composition of mitochondria and the generation of a large negative membrane potential (relative to the cellular cytoplasm) for oxidative phosphorylation. Results presented for NPHB of MF680 located in the cells show significant differences between the two cell lines. The results are interpreted on the basis of the NPHB mechanism and characteristic interactions between the host (cellular mitochondrial) and the guest (MF680) in the burning of spectral holes, thus providing an image of the cellular ultrastructure. Hole growth kinetics (HGK) were found to differ markedly between the two cell lines, with the carcinoma cell line burning at a faster average rate for the same exposure fluence. Theoretical fits to the data suggest a lower degree of structural heterogeneity in the carcinoma cell line relative to the normal cell line. Measurement of changes in the permanent dipole moment (fΔμ) were accomplished by measurement of changes in hole width in response to the application of an external electric field (the Stark effect), and found that Δμ values for the carcinoma line were 1.5x greater than those of the SV40 antigen-free normal analogs. These findings are interpreted in terms of effects from the mitochondrial membrane potential. Results for HGK on the scale of single cells is

  16. Nonphotochemical Hole-Burning Imaging Studies of In Vitro Carcinoma and Normal Cells Utilizing a Mitochondrial Specific Dye

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Richard Joseph [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Low temperature Nonphotochemical Hole Burning (NPHB) Spectroscopy of the dye rhodamine 800 (MF680) was applied for the purpose of discerning differences between cultured normal and carcinoma ovarian surface epithelial (OSE) cells. Both the cell lines were developed and characterized at the Mayo Clinic (Rochester, MN), with the normal cell line having been transfected with a strain of temperature sensitive Simian Virus 40 Large T Antigen (SV40) for the purpose of extending the life of the cell culture without inducing permanent changes in the characteristics of the cell line. The cationic lipophilic fluorophore rhodamine 800 preferentially locates in in situ mitochondria due to the high lipid composition of mitochondria and the generation of a large negative membrane potential (relative to the cellular cytoplasm) for oxidative phosphorylation. Results presented for NPHB of MF680 located in the cells show significant differences between the two cell lines. The results are interpreted on the basis of the NPHB mechanism and characteristic interactions between the host (cellular mitochondrial) and the guest (MF680) in the burning of spectral holes, thus providing an image of the cellular ultrastructure. Hole growth kinetics (HGK) were found to differ markedly between the two cell lines, with the carcinoma cell line burning at a faster average rate for the same exposure fluence. Theoretical fits to the data suggest a lower degree of structural heterogeneity in the carcinoma cell line relative to the normal cell line. Measurement of changes in the permanent dipole moment (fΔμ)were accomplished by measurement of changes in hole width in response to the application of an external electric field (the Stark effect), and found that Δμ values for the carcinoma line were 1.5x greater than those of the SV40 antigen-free normal analogs. These findings are interpreted in terms of effects from the mitochondrial membrane potential. Results for HGK on the scale of single cells is

  17. Metallothionein 2A affects the cell respiration by suppressing the expression of mitochondrial protein cytochrome c oxidase subunit II.

    Science.gov (United States)

    Bragina, Olga; Gurjanova, Karina; Krishtal, Jekaterina; Kulp, Maria; Karro, Niina; Tõugu, Vello; Palumaa, Peep

    2015-06-01

    Metallothioneins (MT) are involved in a broad range of cellular processes and play a major role in protection of cells towards various stressors. Two functions of MTs, namely the maintaining of the homeostasis of transition metal ions and the redox balance, are directly linked to the functioning of mitochondria. Dyshomeostasis of MTs is often related with malfunctioning of mitochondria; however, the mechanism by which MTs affect the mitochondrial respiratory chain is still unknown. We demonstrated that overexpression of MT-2A in HEK cell line decreased the oxidative phosphorylation capacity of the cells. HEK cells overexpressing MT-2A demonstrated reduced oxygen consumption and lower cellular ATP levels. MT-2A did not affect the number of mitochondria, but reduced specifically the level of cytochrome c oxidase subunit II protein, which resulted in lower activity of the complex IV.

  18. Divergent Label-free Cell Phenotypic Pharmacology of Ligands at the Overexpressed β2-Adrenergic Receptors

    Science.gov (United States)

    Ferrie, Ann M.; Sun, Haiyan; Zaytseva, Natalya; Fang, Ye

    2014-01-01

    We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.

  19. No evidence of genome editing activity from Natronobacterium gregoryi Argonaute (NgAgo) in human cells.

    Science.gov (United States)

    Javidi-Parsijani, Parisa; Niu, Guoguang; Davis, Meghan; Lu, Pin; Atala, Anthony; Lu, Baisong

    2017-01-01

    The argonaute protein from the thermophilic bacterium Thermus thermophilus shows DNA-guided DNA interfering activity at high temperatures, complicating its application in mammalian cells. A recent work reported that the argonaute protein from Natronobacterium gregoryi (NgAgo) had DNA-guided genome editing activity in mammalian cells. We compared the genome editing activities of NgAgo and Staphylococcus aureus Cas9 (SaCas9) in human HEK293T cells side by side. EGFP reporter assays and DNA sequencing consistently revealed high genome editing activity from SaCas9. However, these assays did not demonstrate genome editing activity by NgAgo. We confirmed that the conditions allowed simultaneous transfection of the NgAgo expressing plasmid DNA and DNA guides, as well as heterologous expression of NgAgo in the HEK293T cells. Our data show that NgAgo is not a robust genome editing tool, although it may have such activity under other conditions.

  20. The novel AML stem cell associated antigen CLL-1 aids in discrimination between normal and leukemic stem cells.

    Science.gov (United States)

    van Rhenen, Anna; van Dongen, Guus A M S; Kelder, Angèle; Rombouts, Elwin J; Feller, Nicole; Moshaver, Bijan; Stigter-van Walsum, Marijke; Zweegman, Sonja; Ossenkoppele, Gert J; Jan Schuurhuis, Gerrit

    2007-10-01

    In CD34(+) acute myeloid leukemia (AML), the malignant stem cells reside in the CD38(-) compartment. We have shown before that the frequency of such CD34(+)CD38(-) cells at diagnosis correlates with minimal residual disease (MRD) frequency after chemotherapy and with survival. Specific targeting of CD34(+)CD38(-) cells might thus offer therapeutic options. Previously, we found that C-type lectin-like molecule-1 (CLL-1) has high expression on the whole blast compartment in the majority of AML cases. We now show that CLL-1 expression is also present on the CD34(+)CD38(-) stem- cell compartment in AML (77/89 patients). The CD34(+)CLL-1(+) population, containing the CD34(+)CD38(-)CLL-1(+) cells, does engraft in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice with outgrowth to CLL-1(+) blasts. CLL-1 expression was not different between diagnosis and relapse (n = 9). In remission, both CLL-1(-) normal and CLL-1(+) malignant CD34(+)CD38(-) cells were present. A high CLL-1(+) fraction was associated with quick relapse. CLL-1 expression is completely absent both on CD34(+)CD38(-) cells in normal (n = 11) and in regenerating bone marrow controls (n = 6). This AML stem-cell specificity of the anti-CLL-1 antibody under all conditions of disease and the leukemia-initiating properties of CD34(+)CLL-1(+) cells indicate that anti-CLL-1 antibody enables both AML-specific stem-cell detection and possibly antigen-targeting in future.

  1. Use of polyethyleneimine polymer in cell culture as attachment factor and lipofection enhancer

    Directory of Open Access Journals (Sweden)

    González-García Maribel

    2004-10-01

    Full Text Available Abstract Background Several cell lines and primary cultures benefit from the use of positively charged extracellular matrix proteins or polymers that enhance their ability to attach to culture plates. Polyethyleneimine is a positively charged polymer that has gained recent attention as a transfection reagent. A less known use of this cationic polymer as an attachment factor was explored with several cell lines. Results Polyethyleneimine compared favorably to traditional attachment factors such as collagen and polylysine. PC-12 and HEK-293 cells plated on dishes coated with polyethyleneimine showed a homogeneous distribution of cells in the plate, demonstrating strong cell adhesion that survived washing procedures. The polymer could also be used to enhance the adherence and allow axonal outgrowth from zebrafish retinal explants. The effects of this coating agent on the transfection of loosely attaching cell lines were studied. Pre-coating with polyethyleneimine had the effect of enhancing the transfection yield in procedures using lipofection reagents. Conclusion Polyethyleneimine is an effective attachment factor for weakly anchoring cell lines and primary cells. Its use in lipofection protocols makes the procedures more reliable and increases the yield of expressed products with commonly used cell lines such as PC-12 and HEK-293 cells.

  2. Photoreactivation of pyrimidine dimers in the DNA of normal and xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Sutherland, B.M.; Oliver, R.; Fuselier, C.O.; Sutherland, J.C.

    1976-01-01

    Photoproducts formed in the DNA of human cells irradiated with ultraviolet light (uv) were identified as cyclobutyl pyrimidine dimers by their chromatographic mobility, reversibility to monomers upon short wavelength uv irradiation, and comparison of the kinetics of this monomerization with that of authentic cis--syn thymine--thymine dimers prepared by irradiation of thymine in ice. The level of cellular photoreactivation of these dimers reflects the level of photoreactivating enzyme measured in cell extracts. Action spectra for cellular dimer photoreactivation in the xeroderma pigmentosum line XP12BE agree in range (300 nm to at least 577 nm) and maximum (near 400 nm) with that for photoreactivation by purified human photoreactivating enzyme. Normal human cells can also photoreactivate dimers in their DNA. The action spectrum for the cellular monomerization of dimers is similar to that for photoreactivation by the photoreactivating enzyme in extracts of normal human fibroblasts

  3. Characterization of adenoviral transduction profile in prostate cancer cells and normal prostate tissue.

    Science.gov (United States)

    Ai, Jianzhong; Tai, Phillip W L; Lu, Yi; Li, Jia; Ma, Hong; Su, Qin; Wei, Qiang; Li, Hong; Gao, Guangping

    2017-09-01

    Prostate diseases are common in males worldwide with high morbidity. Gene therapy is an attractive therapeutic strategy for prostate diseases, however, it is currently underdeveloped. As well known, adeno virus (Ad) is the most widely used gene therapy vector. The aims of this study are to explore transduction efficiency of Ad in prostate cancer cells and normal prostate tissue, thus further providing guidance for future prostate pathophysiological studies and therapeutic development of prostate diseases. We produced Ad expressing enhanced green fluorescence protein (EGFP), and characterized the transduction efficiency of Ad in both human and mouse prostate cancer cell lines in vitro, as well as prostate tumor xenograft, and wild-type mouse prostate tissue in vivo. Ad transduction efficiency was determined by EGFP fluorescence using microscopy and flow cytometry. Cell type-specific transduction was examined by immunofluorescence staining of cell markers. Our data showed that Ad efficiently transduced human and mouse prostate cancer cells in vitro in a dose dependent manner. Following intratumoral and intraprostate injection, Ad could efficiently transduce prostate tumor xenograft and the major prostatic cell types in vivo, respectively. Our findings suggest that Ad can efficiently transduce prostate tumor cells in vitro as well as xenograft and normal prostate tissue in vivo, and further indicate that Ad could be a potentially powerful toolbox for future gene therapy of prostate diseases. © 2017 Wiley Periodicals, Inc.

  4. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

    Science.gov (United States)

    Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent

    2018-04-13

    Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Dominant ELOVL1 mutation causes neurological disorder with ichthyotic keratoderma, spasticity, hypomyelination and dysmorphic features.

    Science.gov (United States)

    Kutkowska-Kaźmierczak, Anna; Rydzanicz, Małgorzata; Chlebowski, Aleksander; Kłosowska-Kosicka, Kamila; Mika, Adriana; Gruchota, Jakub; Jurkiewicz, Elżbieta; Kowalewski, Cezary; Pollak, Agnieszka; Stradomska, Teresa Joanna; Kmieć, Tomasz; Jakubowski, Rafał; Gasperowicz, Piotr; Walczak, Anna; Śladowski, Dariusz; Jankowska-Steifer, Ewa; Korniszewski, Lech; Kosińska, Joanna; Obersztyn, Ewa; Nowak, Wieslaw; Śledziński, Tomasz; Dziembowski, Andrzej; Płoski, Rafał

    2018-06-01

    Ichthyosis and neurological involvement occur in relatively few known Mendelian disorders caused by mutations in genes relevant both for epidermis and neural function. To identify the cause of a similar phenotype of ichthyotic keratoderma, spasticity, mild hypomyelination (on MRI) and dysmorphic features (IKSHD) observed in two unrelated paediatric probands without family history of disease. Whole exome sequencing was performed in both patients. The functional effect of prioritised variant in ELOVL1 (very-long-chain fatty acids (VLCFAs) elongase) was analysed by VLCFA profiling by gas chromatography-mass spectrometry in stably transfected HEK2932 cells and in cultured patient's fibroblasts. Probands shared novel heterozygous ELOVL1 p.Ser165Phe mutation (de novo in one family, while in the other family, father could not be tested). In transfected cells p.Ser165Phe: (1) reduced levels of FAs C24:0-C28:0 and C26:1 with the most pronounced effect for C26:0 (P=7.8×10 -6  vs HEK293 cells with wild type (wt) construct, no difference vs naïve HEK293) and (2) increased levels of C20:0 and C22:0 (P=6.3×10 -7 , P=1.2×10 -5 , for C20:0 and C22:0, respectively, comparison vs HEK293 cells with wt construct; P=2.2×10 -7 , P=1.9×10 -4 , respectively, comparison vs naïve HEK293). In skin fibroblasts, there was decrease of C26:1 (P=0.014), C28:0 (P=0.001) and increase of C20:0 (P=0.033) in the patient versus controls. There was a strong correlation (r=0.92, P=0.008) between the FAs profile of patient's fibroblasts and that of p.Ser165Phe transfected HEK293 cells. Serum levels of C20:0-C26:0 FAs were normal, but the C24:0/C22:0 ratio was decreased. The ELOVL1 p.Ser165Phe mutation is a likely cause of IKSHD. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Effects of D2O on biochemical parameters of normal cells and tumour cells

    International Nuclear Information System (INIS)

    Biesewig, G.

    1975-01-01

    The influence of high temperatures (Hyperthermia) on normal tissue and Ehrlich-Ascites tumour cells ('ATZ') was examined under several conditions with regard to the application of deuterium oxide as a stabilising factor. It was proven that the DNA-synthesis of normal tissue (liver, mouse) is not sensitive to temperature. This effect of hyperthermia only occurs when the tissue is damaged, e.g. by trypsinising. The influence of hyperthermia on several biochemical parameters and on morphological changes of the Ascites cells was examined. The findings show that deuterium oxide (D 2 O) is able to reduce both the thermal and the ureal denaturation of enzymes. Thus tests were carried out to find out if D 2 O also reduces toxic influence in complicated biological systems. The assumption of high D 2 O concentrations to prevent several reactions was confirmed. When the Ascites tumour cells in the H 2 O-buffer were exposed to the damaging influence of hyperthermia, the high degree of damage was seen with the decreasing DNA synthesis, reduced aerobic glycose capacity, a drop in the ATP values and breakdown of the permeability of the membrane. Deuterium oxide was able under high temperature (from appr. 44 0 C on) to reduce the degree of damage to DNA synthesis, while auto-effects (inhibition of synthesis) of D 2 O predominate in the lower region. Aerobic glycolysis was damaged in both cases to the same degree, however. In D 2 O after hyperthermia the ATP-level dropped faster than in H 2 O. D 2 O not only reduces the thermal denaturation of the Ascites tumour cells, but it also eliminates the toxic influence of the zytostaticum TRENIMONsup(R) (under 38 0 or 46 0 C incubation). (orig./AJ) [de

  7. Photo-transfection of mammalian cells via femtosecond laser pulses

    CSIR Research Space (South Africa)

    Mthunzi, P

    2009-06-01

    Full Text Available on transient photo-transfection of ovary (CHO-Kl), neuroblastoma (NG-I08 & SKN-SH) and embryonic kidney (HEK-293) as well as primary non-differentiated stem cells (EI4g2a) using a tightly focused titanium sapphire laser beam (1.1 urn diameter spot size...

  8. Biphasic voltage-dependent inactivation of human NaV 1.3, 1.6 and 1.7 Na+ channels expressed in rodent insulin-secreting cells.

    Science.gov (United States)

    Godazgar, Mahdieh; Zhang, Quan; Chibalina, Margarita V; Rorsman, Patrik

    2018-05-01

    Na + current inactivation is biphasic in insulin-secreting cells, proceeding with two voltage dependences that are half-maximal at ∼-100 mV and -60 mV. Inactivation of voltage-gated Na + (Na V ) channels occurs at ∼30 mV more negative voltages in insulin-secreting Ins1 and primary β-cells than in HEK, CHO or glucagon-secreting αTC1-6 cells. The difference in inactivation between Ins1 and non-β-cells persists in the inside-out patch configuration, discounting an involvement of a diffusible factor. In Ins1 cells and primary β-cells, but not in HEK cells, inactivation of a single Na V subtype is biphasic and follows two voltage dependences separated by 30-40 mV. We propose that Na V channels adopt different inactivation behaviours depending on the local membrane environment. Pancreatic β-cells are equipped with voltage-gated Na + channels that undergo biphasic voltage-dependent steady-state inactivation. A small Na + current component (10-15%) inactivates over physiological membrane potentials and contributes to action potential firing. However, the major Na + channel component is completely inactivated at -90 to -80 mV and is therefore inactive in the β-cell. It has been proposed that the biphasic inactivation reflects the contribution of different Na V α-subunits. We tested this possibility by expression of TTX-resistant variants of the Na V subunits found in β-cells (Na V 1.3, Na V 1.6 and Na V 1.7) in insulin-secreting Ins1 cells and in non-β-cells (including HEK and CHO cells). We found that all Na V subunits inactivated at 20-30 mV more negative membrane potentials in Ins1 cells than in HEK or CHO cells. The more negative inactivation in Ins1 cells does not involve a diffusible intracellular factor because the difference between Ins1 and CHO persisted after excision of the membrane. Na V 1.7 inactivated at 15--20 mV more negative membrane potentials than Na V 1.3 and Na V 1.6 in Ins1 cells but this small difference is insufficient to solely

  9. Lethality and the depression on DNA synthesis in UV-irradiated normal human and xeroderma pigmentosum cells

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K. (Kobe Univ. (Japan). School of Medicine)

    1983-12-01

    Ultraviolet radiation suppresses the semiconservative DNA replication in mammalian cells. The rate of DNA synthesis is initially depressed and later recovers after low doses of UV radiation in human cells. Such a response is more sensitive to UV radiation in cells derived from patients with xeroderma pigmentosum (XP) than that in normal human cells. The relative rate of DNA synthesis is not always correlated with cell survival because, unlike cell survival, the dose-response curve of the relative rate of DNA synthesis shows the biphasic nature of the sensitivity. In the experiments reported herein, the total amount (not the rate) of DNA synthesized during a long interval of incubation which covers the period of inhibition and recovery (but not longer than one generation time) after irradiation with various doses of UV radiation was examined in normal human and XP cells, and was found to be well correlated with cell survival in all the cells tested.

  10. The Effects of Imatinib Mesylate on Cellular Viability, Platelet Derived Growth Factor and Stem Cell Factor in Mouse Testicular Normal Leydig Cells.

    Science.gov (United States)

    Kheradmand, Fatemeh; Hashemnia, Seyyed Mohammad Reza; Valizadeh, Nasim; Roshan-Milani, Shiva

    2016-01-01

    Growth factors play an essential role in the development of tumor and normal cells like testicular leydig cells. Treatment of cancer with anti-cancer agents like imatinib mesylate may interfere with normal leydig cell activity, growth and fertility through failure in growth factors' production or their signaling pathways. The purpose of the study was to determine cellular viability and the levels of, platelet derived growth factor (PDGF) and stem cell factor (SCF) in normal mouse leydig cells exposed to imatinib, and addressing the effect of imatinib on fertility potential. The mouse TM3 leydig cells were treated with 0 (control), 2.5, 5, 10 and 20 μM imatinib for 2, 4 and 6 days. Each experiment was repeated three times (15 experiments in each day).The cellular viability and growth factors levels were assessed by MTT and ELISA methods, respectively. For statistical analysis, one-way ANOVA with Tukey's post hoc and Kruskal-Wallis test were performed. A p-value less than 0.05 was considered statistically significant. With increasing drug concentration, cellular viability decreased significantly (pcellular viability, PDGF and SCF levels. Imatinib may reduce fertility potential especially at higher concentrations in patients treated with this drug by decreasing cellular viability. The effect of imatinib on leydig cells is associated with PDGF stimulation. Of course future studies can be helpful in exploring the long term effects of this drug.

  11. Expression of UV-irradiated adenovirus in normal and UV-sensitive Chinese hamster ovary cells

    International Nuclear Information System (INIS)

    Rainbow, A.J.

    1985-01-01

    The chinese hamster ovary (CHO) cell mutants UV-20, UV-24, and UV-41 are abnormally sensitive to UV and harbour various defects lin their ability to repair cellular DNA. This study has examined the expression of UV-irradiated AD2 in these cells. HCR of UV-irradiated Ad2, as measured by viral structural antigen (Vag) formation or progeny production, was found to be similar for the normal and the UV-sensitive CHO strains. UV-irradiation of Ad2 (1200 J/m/sup 2/) resulted in a delay of Vag expression of 18 hours in normal human fibroblasts, which is thought to reflect the time required for removal of UV-induced lesions from the DNA before viral DNA synthesis can proceed. However, a similar UV-irradiation of Ad2 did not result in a delay of Vag expression for infection of CHO cells, suggesting that UV-induced lesions in Ad2 DNA do not inhibit its replication in CHO cells. These results indicate a fundamental difference in the processing of UV-irradiated AD2-DNA in CHO as compared to human cells

  12. Effect of capping agents on the cytotoxicity of silver nanoparticles in human normal and cancer skin cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Netchareonsirisuk, Ponsawan [Chulalongkorn University, Program in Biotechnology, Faculty of Science (Thailand); Puthong, Songchan [Chulalongkorn University, Antibody Production Research Unit, Institute of Biotechnology and Genetic Engineering (Thailand); Dubas, Stephan [Chulalongkorn University, Petroleum and Petrochemical College (Thailand); Palaga, Tanapat [Chulalongkorn University, Department of Microbiology, Faculty of Science (Thailand); Komolpis, Kittinan, E-mail: kittinan.k@chula.ac.th [Chulalongkorn University, Antibody Production Research Unit, Institute of Biotechnology and Genetic Engineering (Thailand)

    2016-11-15

    Silver nanoparticles (AgNPs) are among the most widely used nanomaterials in medical and consumer products. However, safety in the uses of AgNPs is still controversial. The toxicity of AgNPs toward various cell types has been reported to depend on the surface properties of the nanoparticles. In this study, the effect of AgNPs with the average size of 5–15 nm on the viability of the CCD-986SK human normal skin fibroblast cell line and A375 human malignant melanoma cell line was evaluated. Comparative toxicity studies, based on MTT assay, were performed by using either sodium alginate or poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) as capping agent in the nanoparticle preparation. The cytotoxicity tests revealed that AgNO{sub 3} alone was highly toxic to both cell types while both alginate and PSSMA alone were not toxic. AgNPs capped with alginate were selectively toxic to the cancer cell line but not to the normal cell line while AgNPs capped with PSSMA were toxic to both cancer and normal cell lines. Judging from the 50 % inhibition concentration (IC{sub 50}), it was found that the cancer cell line was more sensitive to AgNPs than the normal cell line. Study on the mode of cell death by annexin V and propidium iodide staining revealed that AgNPs induced more apoptotic cell death (84–90 %) than necrosis (8–12 %) in the skin cancer cell line. These results suggest that the toxicity of AgNPs depended on the type of capping agent and the type of cell line.

  13. Identification and Characterization of Mesenchymal-Epithelial Progenitor-Like Cells in Normal and Injured Rat Liver

    Science.gov (United States)

    Liu, Daqing; Yovchev, Mladen I.; Zhang, Jinghang; Alfieri, Alan A.; Tchaikovskaya, Tatyana; Laconi, Ezio; Dabeva, Mariana D.

    2016-01-01

    In normal rat liver, thymocyte antigen 1 (Thy1) is expressed in fibroblasts/myofibroblasts and in some blood progenitor cells. Thy1-expressing cells also accumulate in the liver during impaired liver regeneration. The origin and nature of these cells are not well understood. By using RT-PCR analysis and immunofluorescence microscopy, we describe the presence of rare Thy1+ cells in the liver lobule of normal animals, occasionally forming small collections of up to 20 cells. These cells constitute a small portion (1.7% to 1.8%) of nonparenchymal cells and reveal a mixed mesenchymal-epithelial phenotype, expressing E-cadherin, cytokeratin 18, and desmin. The most potent mitogens for mesenchymal-epithelial Thy1+ cells in vitro are the inflammatory cytokines interferon γ, IL-1, and platelet-derived growth factor-BB, which are not produced by Thy1+ cells. Thy1+ cells express all typical mesenchymal stem cell and hepatic progenitor cell markers and produce growth factor and cytokine mRNA (Hgf, Il6, Tgfa, and Tweak) for proteins that maintain oval cell growth and differentiation. Under appropriate conditions, mesenchymal-epithelial cells differentiate in vitro into hepatocyte-like cells. In this study, we show that the adult rat liver harbors a small pool of endogenous mesenchymal-epithelial cells not recognized previously. In the quiescent state, these cells express both mesenchymal and epithelial cell markers. They behave like hepatic stem cells/progenitors with dual phenotype, exhibiting high plasticity and long-lasting proliferative activity. PMID:25447047

  14. Establishment of human induced pluripotent stem cell lines from normal fibroblast TIG-1.

    Science.gov (United States)

    Kumazaki, Tsutomu; Kurata, Sayaka; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2011-06-01

    Normal human cells have a replicative life span and therefore senesce. Usually, normal human cell strains are differentiated cells and reach a terminally differentiated state after a number of cell divisions. At present, definitive differences are not known between replicative senescence and terminal differentiation. TIG-1 is a human fibroblast strain established from fetal lung and has been used extensively in studies of cellular senescence, and numerous data were accumulated at the molecular level. Recently, a method for generating induced pluripotent stem cells (iPSCs) was developed. Using the method, we introduced four reprogramming genes to TIG-1 fibroblasts and succeeded in isolating colonies that had embryonic stem cell (ESC)-like morphologies. They showed alkaline phosphatase activity and expressed ESC markers, as shown by immunostaining of OCT4, SOX2, SSEA4, and TRA-1-81 as well as reverse-transcription polymerase chain reaction (RT-PCR) for OCT4 and NANOG transcripts. Thus, we succeeded in establishing iPSC clones from TIG-1. The iPSC clones could differentiate to cells originated from all three germ-cell layers, as shown by RT-PCR, for messenger RNA (mRNA) expression of α-fetoprotein (endoderm), MSX1 (mesoderm) and microtubule-associated protein 2 (ectoderm), and by immunostaining for α-fetoprotein (endoderm), α-smooth muscle actin (mesoderm), and β-III-tubulin (ectoderm). The iPSCs formed teratoma containing the structures developed from all three germ-cell layers in severe combined immune-deficiency mice. Thus, by comparing the aging process of parental TIG-1 cells and the differentiation process of iPSC-derived fibrocytes to fibroblasts, we can reveal the exact differences in processes between senescence and terminal differentiation.

  15. Local stem cell depletion model for normal tissue damage

    International Nuclear Information System (INIS)

    Yaes, R.J.; Keland, A.

    1987-01-01

    The hypothesis that radiation causes normal tissue damage by completely depleting local regions of tissue of viable stem cells leads to a simple mathematical model for such damage. In organs like skin and spinal cord where destruction of a small volume of tissue leads to a clinically apparent complication, the complication probability is expressed as a function of dose, volume and stem cell number by a simple triple negative exponential function analogous to the double exponential function of Munro and Gilbert for tumor control. The steep dose response curves for radiation myelitis that are obtained with our model are compared with the experimental data for radiation myelitis in laboratory rats. The model can be generalized to include other types or organs, high LET radiation, fractionated courses of radiation, and cases where an organ with a heterogeneous stem cell population receives an inhomogeneous dose of radiation. In principle it would thus be possible to determine the probability of tumor control and of damage to any organ within the radiation field if the dose distribution in three dimensional space within a patient is known

  16. Cell Proliferation during Lymphopoiesis in the Thymus of Normal and Continuously Irradiated Mice

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J. I. [Department of Radiological Science, Johns Hopkins University, Baltimore, MD (United States)

    1968-08-15

    The patterns of lymphoid cell proliferation in the thymus and spleen in normal and continuously irradiated young C57BL mice have been examined with techniques of flash and repeated labelling with tritiated thymidine and high resolution autoradiography. Changes in percentage labelling indices and labelled mitoses data have provided information on sites and rates of lymphoid cell proliferation in the thymus cortex (reticular cells, large, medium and small lymphocytes) and the spleen white pulp (germinal centre cells, large, medium and small lymphocytes). Labelling rates were fastest in the more primitive cell forms; in both lymphoid organs, the stem-cell labelling - reticular cells and germinal centre cells - reached 100% rapidly, whereas this was not the case for the different lymphocyte populations, and thymic lymphopoiesis was more rapid than splenic lymphopoiesis. Mean cycle times for thymus lymphoid cells were {approx} 12.5 hours for reticular cells, {approx} 9.5 hours for large lymphocytes, and {approx} 10.0 hours for medium and small lymphocytes; in the spleen, representative cycle times were significantly longer. Small lymphocytes were replaced at a greater rate in the thymus than in the spleen. Under continuous {gamma}-irradiation (caesium-137) at 45 rad/day and 75 rad/day for 15 days, there was a progressive depopulation of all lymphoid cell classes, an increase in the relative proportion of the more primitive forms, and a marked decrease in the numbers of small lymphocytes in both tissues. In the thymus and in the spleen, there was an increase in proliferation rates in both stem-cell populations and in all lymphoid cell forms, a decrease in mean cell cycle times to shorter values and a possible reduction in the spread of cell cycle times. In irradiated tissues, there was little evidence for lymphoid cell emigration. Tentative patterns of lymphopoiesis in the normal thymus and spleen based on the autoradiographic data aredescribed and changes in the

  17. Inhibition of OCT2, MATE1 and MATE2-K as a possible mechanism of drug interaction between pazopanib and cisplatin.

    Science.gov (United States)

    Sauzay, C; White-Koning, M; Hennebelle, I; Deluche, T; Delmas, C; Imbs, D C; Chatelut, E; Thomas, F

    2016-08-01

    We hypothesized that pazopanib is an inhibitor of cisplatin renal transporters OCT2, MATE1 and MATE2-K based on previous studies demonstrating an interaction between tyrosine kinase inhibitors and these transporters. Because several combinations of targeted therapies and cytotoxics are currently in development for cancer treatment, such an interaction is worth investigating. Experiments on HEK293 cells stably transfected to express OCT2, MATE1, MATE2-K or an empty vector (EV) were conducted. The inhibitory effect of pazopanib on these transporters was measured using the uptake of fluorescent substrate ASP+ and cisplatin in the different cell lines. The effect of pazopanib on cisplatin-induced cytotoxicity was also evaluated. A decrease of ASP+ uptake was observed in OCT2-HEK, MATE1-HEK and MATE2K-HEK cell lines after addition of pazopanib at increasing concentrations. Pazopanib inhibited cisplatin specific uptake in OCT2-HEK, MATE1-HEK and MATE2K-HEK lines. Cytotoxicity experiments showed that co-incubation of cisplatin with pazopanib multiplied up to 2.7, 2.4 and 1.6 times the EC50 values of cisplatin in OCT2-HEK, MATE1-HEK and MATE2K-HEK cell lines respectively, reaching about the same values as in EV-HEK cells. To conclude, pazopanib inhibits OCT2, MATE1 and MATE2-K, which are involved in cisplatin secretion into urine. The combination of these two drugs may lead to an interaction and increase the cisplatin-induced systemic toxicity. Given the wide variability of plasma pazopanib concentrations observed in vivo, the interaction may occur in a clinical setting, particularly in overexposed patients. The existence of a drug-drug interaction should be investigated when pazopanib is associated with a substrate of these transporters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Establishment of ultra long-lived cell lines by transfection of TERT into normal human fibroblast TIG-1 and their characterization.

    Science.gov (United States)

    Kamada, Mizuna; Kumazaki, Tsutomu; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2012-06-01

    To establish useful human normal cell lines, TERT (telomerase reverse transcriptase) cDNA was transfected into normal female lung fibroblast, TIG-1. After long-term-sub-cultivation of 74 individual clones selected for resistance to G418, we obtained 55 cultures with normal range of life span [75 PDL (population doubling level)], 16 cultures with extended life span (75-140 PDL). In addition, 3 immortal cell strains and unexpectedly, one ultra long-lived cell line (ULT-1) with life span of 166 PDL were established. IMT-1, one of the immortal cell strains was confirmed to maintain long telomere length, high telomerase activity and an extremely low level of p16INK4A. They also showed moderate p53 and p21CIP1 expression, keeping vigorous growth rate even at 450 PDL. High level of fibronectin and collagen 1α expression confirmed IMT-1 as normal fibroblasts, although one X chromosome had been lost. ULT-1, however, kept a near normal karyotypes and had shortening of telomere length, high expression of p16INK4A, moderate levels of senescence associated-β-galactosidase positive cells and decreased growth rate only after 150 PDs (population doublings), and finally reached senescence at 166 PDL with morphology of normal senescent fibroblasts. As resources of standard normal human cell, abundant vials of early and middle passages of ULT-1 have been stocked. The use of the cell line is discussed, focusing on isograft of artificial skin and screening of anti-aging or safe chemical agents.

  19. Effect of microculture on cell metabolism and biochemistry: do cells get stressed in microchannels?

    Science.gov (United States)

    Su, Xiaojing; Theberge, Ashleigh B; January, Craig T; Beebe, David J

    2013-02-05

    Microfluidics is emerging as a promising platform for cell culture, enabling increased microenvironment control and potential for integrated analysis compared to conventional macroculture systems such as well plates and Petri dishes. To advance the use of microfluidic devices for cell culture, it is necessary to better understand how miniaturization affects cell behavior. In particular, microfluidic devices have significantly higher surface-area-to-volume ratios than conventional platforms, resulting in lower volumes of media per cell, which can lead to cell stress. We investigated cell stress under a variety of culture conditions using three cell lines: parental HEK (human embryonic kidney) cells and transfected HEK cells that stably express wild-type (WT) and mutant (G601S) human ether-a-go-go related gene (hERG) potassium channel protein. These three cell lines provide a unique model system through which to study cell-type-specific responses in microculture because mutant hERG is known to be sensitive to environmental conditions, making its expression a particularly sensitive readout through which to compare macro- and microculture. While expression of WT-hERG was similar in microchannel and well culture, the expression of mutant G601S-hERG was reduced in microchannels. Expression of the endoplasmic reticulum (ER) stress marker immunoglobulin binding protein (BiP) was upregulated in all three cell lines in microculture. Using BiP expression, glucose consumption, and lactate accumulation as readouts we developed methods for reducing ER stress including properly increasing the frequency of media replacement, reducing cell seeding density, and adjusting the serum concentration and buffering capacity of culture medium. Indeed, increasing the buffering capacity of culture medium or frequency of media replacement partially restored the expression of the G601S-hERG in microculture. This work illuminates how biochemical properties of cells differ in macro- and

  20. Radiation effects in silicon and gallium arsenide solar cells using isotropic and normally incident radiation

    Science.gov (United States)

    Anspaugh, B. E.; Downing, R. G.

    1984-01-01

    Several types of silicon and gallium arsenide solar cells were irradiated with protons with energies between 50 keV and 10 MeV at both normal and isotropic incidence. Damage coefficients for maximum power relative to 10 MeV were derived for these cells for both cases of omni-directional and normal incidence. The damage coefficients for the silicon cells were found to be somewhat lower than those quoted in the Solar Cell Radiation Handbook. These values were used to compute omni-directional damage coefficients suitable for solar cells protected by coverglasses of practical thickness, which in turn were used to compute solar cell degradation in two proton-dominated orbits. In spite of the difference in the low energy proton damage coefficients, the difference between the handbook prediction and the prediction using the newly derived values was negligible. Damage coefficients for GaAs solar cells for short circuit current, open circuit voltage, and maximum power were also computed relative to 10 MeV protons. They were used to predict cell degradation in the same two orbits and in a 5600 nmi orbit. Results show the performance of the GaAs solar cells in these orbits to be superior to that of the Si cells.

  1. Enhanced effect of geldanamycin nanocomposite against breast cancer cells growing in vitro and as xenograft with vanquished normal cell toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu, Suma [Department of Radiation Biology and Toxicology, School of Life Sciences, Manipal University, Manipal 576 104, Karnataka (India); Ananthanarayanan, Preeta; Aziz, Sajida Kannangar [Department of Biotechnology, School of Life Sciences, Manipal University, Manipal 576 104, Karnataka (India); Rai, Sharada [Department of Pathology, Kasturba Medical College, Mangalore Campus, Manipal University, Mangalore 575 001, Karnataka (India); Mutalik, Srinivas [Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576 104, Karnataka (India); Sadashiva, Satish Rao Bola, E-mail: rao.satish@manipal.edu [Department of Radiation Biology and Toxicology, School of Life Sciences, Manipal University, Manipal 576 104, Karnataka (India)

    2017-04-01

    Despite enormous advances in remedies developed for breast cancer, an effective therapeutic strategy by targeting malignant cells with the least normal tissue toxicity is yet to be developed. Hsp90 is considered to be an important therapeutic target to inhibit cell proliferation. Geldanamycin (GDM), a potent inhibitor of Hsp90 was withdrawn from clinical trials due to its undesirable hepatotoxicity. We report a superparamagnetic iron oxide (SPION) based polymeric nanocomposite of GDM augmenting anticancer competence with decreased hepatic toxicity. The particle size of nanocomposite was ascertained to be 76 ± 10 nm with acceptable stability. A comparative dose dependent in vitro validation of cytotoxicity showed an enhanced cellular damage and necrosis in breast cancer (MCF-7) cell line at a low dose of 5.49 nM (in GDM nanocomposite) in contrast to 20 nM of pure GDM, while normal breast epithelial cells (MCF-10A) were least affected. Besides, in vivo study (in breast cancer xenografts) substantiated 2.7 fold delay in tumor progression mediated by redundancy in the downstream functions of p-Akt and MAPK-Erk leading to apoptosis with negligible hepatotoxicity. Pure GDM disrupted the function and morphology of liver with lesser therapeutic efficacy than the GDM nanocomposite. These findings deduce that GDM based polymeric magnetite nanocomposite play a vital role in efficacious therapy while vanquishing normal cells and hepatic toxicity and thereby promising it to be reinstated in clinics. - Highlights: • GDM nanocomposite shows selective cell kill of cancerous breast cells. • Nanocomposite delays the growth of tumor in comparison to pure GDM treatment. • GDM promotes apoptosis by down-regulation of p-Akt and MAPK-Erk. • GDM nanocomposite nullifies the hepatotoxicity generally exhibited by pure GDM.

  2. Effects of recombinant human interleukin-8 (rhIL-8) on the bone marrow cells of normal BALB/c mice

    International Nuclear Information System (INIS)

    Liu Yulong; Zhou Jianying; Wang Guoquan; Dai Hong; Duan Yingying; Guo Xiaokui

    2001-01-01

    Objective: To observe the colony formation ability of recombinant human interleukin-8 (rhIL-8) on bone marrow cells (BMCs) of normal mice in vivo. Methods: By means of cells culture and flow cytometry (FCM), the colony-stimulating activity of rhIL-8 on BMCs of normal mice was studied. Results: The experimental studies in vivo demonstrated that rhIL-8 could not changed the counts of CFU-GM and distribution of cell cycle in BMCs. Conclusion: rhIL-8 has no colony-stimulating activity to BMCs of normal mice

  3. Attenuation of hedgehog acyltransferase-catalyzed sonic Hedgehog palmitoylation causes reduced signaling, proliferation and invasiveness of human carcinoma cells

    DEFF Research Database (Denmark)

    Konitsiotis, Antonios D; Chang, Shu-Chun; Jovanović, Biljana

    2014-01-01

    ) cell line PANC-1 and transfected HEK293a cells Hhat localized to the endoplasmic reticulum. siRNA knockdown showed that Hhat is required for Sonic hedgehog (Shh) palmitoylation, for its assembly into high molecular weight extracellular complexes and for functional activity. Hhat knockdown inhibited Hh...

  4. Characteristics and function of bone marrow stromal adherent cells in normal and irradiated mice and guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Changyu, Zheng; Ji, Liu; Xiaoying, Bi

    1986-04-01

    It has been shown from cytochemical and other characteristic studies of bone marrow stromal cells in CFU-F that there are seven types of stromal cells in the stromal adherent cell layer of normal and irradiated C/sub 57/ mice whereas there are only six types in guinea pigs. On the other hand, a radioresistant cell subtype appears in adherent layer after irradiation of both C/sub 57/ mice and guinea pig since the supernatant of cultured CFU-F of the normal and irradiated C/sub 57/ mice can stimulate production of CFU-Gm. It is justifiable that the bone marrow stromal adherent cells of the C/sub 57/ mice could produce CSF.

  5. Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance

    Directory of Open Access Journals (Sweden)

    Biddle Adrian

    2010-04-01

    Full Text Available Abstract Background Subsets of cells with stem-like properties have been previously isolated from human epithelial cancers and their resistance to apoptosis-inducing stimuli has been related to carcinoma recurrence and treatment failure. The aim of this study was to investigate the mechanisms of resistance to apoptosis-inducing agents of cells with stem-like properties in both normal and malignant human epithelia. Methods Cells isolated from fresh human head and neck carcinomas (n = 11, cell lines derived from head and neck, prostate and breast human carcinomas (n = 7, and from normal human oral mucosa (n = 5, were exposed to various apoptosis-inducing stimuli (UV, Tumour Necrosis Factor, Cisplatin, Etoposide, and Neocarzinostatin. Flow cytometry for CD44 and epithelial-specific antigen (ESA expression, colony morphology, tumour sphere formation and rapid adherence assays were used to identify the subset of cells with stem-like properties. Apoptosis, cell cycle and expression of various cell cycle checkpoint proteins were assessed (Western Blot, qPCR. The role of G2-checkpoint regulators Chk1 and Chk2 was investigated by use of debromohymenialdisine (DBH and siRNA. Results In both cancer biopsies and carcinoma cell lines a subset of CD44high cells showed increased clonogenicity, a significantly lower rate of apoptosis, and a significantly higher proportion of cells in the G2-phase of the cell cycle. An inverse correlation between the percentage of cells in G2-phase and the rate of apoptosis was found. Pulse-chase with iododeoxyuridine (IdU demonstrated that CD44high carcinoma cells spent longer time in G2, even in un-treated controls. These cells expressed higher levels of G2 checkpoint proteins, and their release from G2 with BDH or Chk1 siRNA increased their rate of apoptosis. Low passage cultures of normal keratinocytes were also found to contain a subset of CD44high cells showing increased clonogenicity, and a similar pattern of G2-block

  6. Normal and malignant epithelial cells with stem-like properties have an extended G2 cell cycle phase that is associated with apoptotic resistance

    International Nuclear Information System (INIS)

    Harper, Lisa J; Costea, Daniela Elena; Gammon, Luke; Fazil, Bilal; Biddle, Adrian; Mackenzie, Ian C

    2010-01-01

    Subsets of cells with stem-like properties have been previously isolated from human epithelial cancers and their resistance to apoptosis-inducing stimuli has been related to carcinoma recurrence and treatment failure. The aim of this study was to investigate the mechanisms of resistance to apoptosis-inducing agents of cells with stem-like properties in both normal and malignant human epithelia. Cells isolated from fresh human head and neck carcinomas (n = 11), cell lines derived from head and neck, prostate and breast human carcinomas (n = 7), and from normal human oral mucosa (n = 5), were exposed to various apoptosis-inducing stimuli (UV, Tumour Necrosis Factor, Cisplatin, Etoposide, and Neocarzinostatin). Flow cytometry for CD44 and epithelial-specific antigen (ESA) expression, colony morphology, tumour sphere formation and rapid adherence assays were used to identify the subset of cells with stem-like properties. Apoptosis, cell cycle and expression of various cell cycle checkpoint proteins were assessed (Western Blot, qPCR). The role of G2-checkpoint regulators Chk1 and Chk2 was investigated by use of debromohymenialdisine (DBH) and siRNA. In both cancer biopsies and carcinoma cell lines a subset of CD44 high cells showed increased clonogenicity, a significantly lower rate of apoptosis, and a significantly higher proportion of cells in the G2-phase of the cell cycle. An inverse correlation between the percentage of cells in G2-phase and the rate of apoptosis was found. Pulse-chase with iododeoxyuridine (IdU) demonstrated that CD44 high carcinoma cells spent longer time in G2, even in un-treated controls. These cells expressed higher levels of G2 checkpoint proteins, and their release from G2 with BDH or Chk1 siRNA increased their rate of apoptosis. Low passage cultures of normal keratinocytes were also found to contain a subset of CD44 high cells showing increased clonogenicity, and a similar pattern of G2-block associated with apoptotic resistance. These data

  7. Fruit extract from a Sechium edule hybrid induce apoptosis in leukaemic cell lines but not in normal cells.

    Science.gov (United States)

    Aguiñiga-Sánchez, Itzen; Soto-Hernández, Marcos; Cadena-Iñiguez, Jorge; Ruíz-Posadas, Lucero del Mar; Cadena-Zamudio, Jorge David; González-Ugarte, Ana Karen; Steider, Benny Weiss; Santiago-Osorio, Edelmiro

    2015-01-01

    The antiproliferative potential of a crude extract from the chayote hybrid H-837-07-GISeM® and its potential for apoptosis induction were assessed in leukaemic cell lines and normal mouse bone marrow mononuclear cells (BM-MNCs). The extract strongly inhibited the proliferation of the P388, J774, and WEHI-3 cell lines (with an IC50 below 1.3 μg·mL(-1)), reduced cell viability, and induced apoptotic body production, phosphatidylserine translocation, and DNA fragmentation. However, the extract had no effect on BM-MNCs. We postulate that these properties make the extract a good candidate for an anti-tumour agent for clinical use.

  8. Optimization of cAMP fluorescence dataset from ACTOne cannabinoid receptor 1 cell line

    Directory of Open Access Journals (Sweden)

    Chaela S. Presley

    2016-06-01

    Full Text Available The ACTOne cannabinoid receptor 1 functional system is comprised of transfected HEK cells with the parental cyclic nucleotide gated channel (CNG co-transfected with cannabinoid receptor 1 (CB1. The ACTOne CB1 cell line was evaluated for cAMP driven fluorescence by optimizing experimental conditions for sensitivity to forskolin and CP 55,940, reading time point, reliability of cell passage number, and pertussis inactivation of Gi/o.

  9. EphA2 Is a Potential Player of Malignant Cellular Behavior in Non-Metastatic Renal Cell Carcinoma Cells but Not in Metastatic Renal Cell Carcinoma Cells.

    Science.gov (United States)

    Cho, Min Chul; Cho, Sung Yong; Yoon, Cheol Yong; Lee, Seung Bae; Kwak, Cheol; Kim, Hyeon Hoe; Jeong, Hyeon

    2015-01-01

    To investigate the role of EphA2 in malignant cellular behavior in renal cell carcinoma (RCC) cells and whether FAK/RhoA signaling can act as downstream effectors of EphA2 on RCC cells. Expression of EphA2 protein in non-metastatic RCC (Caki-2 and A498), metastatic RCC cells (Caki-1 and ACHN), HEK-293 cells and prostate cancer cells (PC-3 and DU-145; positive controls of EphA2 expression) was evaluated by Western blot. Changes in mRNA or protein expression of EphA2, FAK or membrane-bound RhoA following EphA2, FAK or RhoA small interfering RNA (siRNA) transfection were determined by reverse transcription polymerase chain reaction or Western blot. The effect of siRNA treatment on cellular viability, apoptosis and invasion was analyzed by cell counting kit-8, Annexin-V and modified Matrigel-Boyden assays, respectively. In all RCC cell lines, the expression of EphA2 protein was detectable at variable levels; however, in HEK-293 cells, EphA2 expression was very low. Treatment with EphA2 siRNA significantly reduced the expression of EphA2 mRNA and protein in all RCC cell lines. For non-metastatic RCC cells (Caki-2 and A498) but not metastatic RCC cells (Caki-1 and ACHN), cellular viability, invasiveness, resistance to apoptosis, expression of membrane-bound RhoA protein and FAK phosphorylation were significantly decreased in EphA2 siRNA-treated cells compared to the control. In non-metastatic RCC cells, FAK siRNA significantly attenuated the invasiveness, resistance to apoptosis, as well as expression of membrane-bound RhoA protein without changing protein expression of EphA2. RhoA siRNA significantly decreased the malignant cellular behavior and expression of membrane-bound RhoA protein without changing EphA2 protein expression or FAK phosphorylation. Our data provide the first functional evidence that the EphA2/FAK/RhoA signaling pathway plays a critical role in the malignant cellular behavior of RCC and appears to be functional particularly in the early stage of

  10. Role of growth factors in the growth of normal and transformed cells

    International Nuclear Information System (INIS)

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both 125 I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product

  11. Blockade of TRPM7 channel activity and cell death by inhibitors of 5-lipoxygenase.

    Directory of Open Access Journals (Sweden)

    Hsiang-Chin Chen

    2010-06-01

    Full Text Available TRPM7 is a ubiquitous divalent-selective ion channel with its own kinase domain. Recent studies have shown that suppression of TRPM7 protein expression by RNA interference increases resistance to ischemia-induced neuronal cell death in vivo and in vitro, making the channel a potentially attractive pharmacological target for molecular intervention. Here, we report the identification of the 5-lipoxygenase inhibitors, NDGA, AA861, and MK886, as potent blockers of the TRPM7 channel. Using a cell-based assay, application of these compounds prevented cell rounding caused by overexpression of TRPM7 in HEK-293 cells, whereas inhibitors of 12-lipoxygenase and 15-lipoxygenase did not prevent the change in cell morphology. Application of the 5-lipoxygenase inhibitors blocked heterologously expressed TRPM7 whole-cell currents without affecting the protein's expression level or its cell surface concentration. All three inhibitors were also effective in blocking the native TRPM7 current in HEK-293 cells. However, two other 5-lipoxygenase specific inhibitors, 5,6-dehydro-arachidonic acid and zileuton, were ineffective in suppressing TRPM7 channel activity. Targeted knockdown of 5-lipoxygenase did not reduce TRPM7 whole-cell currents. In addition, application of 5-hydroperoxyeicosatetraenoic acid (5-HPETE, the product of 5-lipoxygenase, or 5-HPETE's downstream metabolites, leukotriene B4 and leukotriene D4, did not stimulate TRPM7 channel activity. These data suggested that NDGA, AA861, and MK886 reduced the TRPM7 channel activity independent of their effect on 5-lipoxygenase activity. Application of AA861 and NDGA reduced cell death for cells overexpressing TRPM7 cultured in low extracellular divalent cations. Moreover, treatment of HEK-293 cells with AA861 increased cell resistance to apoptotic stimuli to a level similar to that obtained for cells in which TRPM7 was knocked down by RNA interference. In conclusion, NDGA, AA861, and MK886 are potent blockers of

  12. Age-Related Change in Vestibular Ganglion Cell Populations in Individuals With Presbycusis and Normal Hearing.

    Science.gov (United States)

    Gluth, Michael B; Nelson, Erik G

    2017-04-01

    We sought to establish that the decline of vestibular ganglion cell counts uniquely correlates with spiral ganglion cell counts, cochlear hair cell counts, and hearing phenotype in individuals with presbycusis. The relationship between aging in the vestibular system and aging in the cochlea is a topic of ongoing investigation. Histopathologic age-related changes the vestibular system may mirror what is seen in the cochlea, but correlations with hearing phenotype and the impact of presbycusis are not well understood. Vestibular ganglion cells, spiral ganglion cells, and cochlear hair cells were counted in specimens from individuals with presbycusis and normal hearing. These were taken from within a large collection of processed human temporal bones. Correlations between histopathology and hearing phenotype were investigated. Vestibular ganglion cell counts were positively correlated with spiral ganglion cell counts and cochlear hair cell counts and were negatively correlated with hearing phenotype. There was no statistical evidence on linear regression to suggest that the relationship between age and cell populations differed significantly according to whether presbycusis was present or not. Superior vestibular ganglion cells were more negatively correlated with age than inferior ganglion cells. No difference in vestibular ganglion cells was noted based on sex. Vestibular ganglion cell counts progressively deteriorate with age, and this loss correlates closely with changes in the cochlea, as well as hearing phenotype. However, these correlations do not appear to be unique in individuals with presbycusis as compared with those with normal hearing.

  13. Lycopene inhibits IGF-I signal transduction and growth in normal prostate epithelial cells by decreasing DHT-modulated IGF-I production in co-cultured reactive stromal cells.

    Science.gov (United States)

    Liu, Xunxian; Allen, Jeffrey D; Arnold, Julia T; Blackman, Marc R

    2008-04-01

    Prostate stromal and epithelial cell communication is important in prostate functioning and cancer development. Primary human stromal cells from normal prostate stromal cells (PRSC) maintain a smooth muscle phenotype, whereas those from prostate cancer (6S) display reactive and fibroblastic characteristics. Dihydrotestosterone (DHT) stimulates insulin-like growth factor-I (IGF-I) production by 6S but not PSRC cells. Effects of reactive versus normal stroma on normal human prostate epithelial (NPE or PREC) cells are poorly understood. We co-cultured NPE plus 6S or PRSC cells to compare influences of different stromal cells on normal epithelium. Because NPE and PREC cells lose androgen receptor (AR) expression in culture, DHT effects must be modulated by associated stromal cells. When treated with camptothecin (CM), NPE cells, alone and in stromal co-cultures, displayed a dose-dependent increase in DNA fragmentation. NPE/6S co-cultures exhibited reduced CM-induced cell death with exposure to DHT, whereas NPE/PRSC co-cultures exhibited CM-induced cell death regardless of DHT treatment. DHT blocked CM-induced, IGF-I-mediated, NPE death in co-cultured NPE/6S cells without, but not with, added anti-IGF-I and anti-IGF-R antibodies. Lycopene consumption is inversely related to human prostate cancer risk and inhibits IGF-I and androgen signaling in rat prostate cancer. In this study, lycopene, in dietary concentrations, reversed DHT effects of 6S cells on NPE cell death, decreased 6S cell IGF-I production by reducing AR and beta-catenin nuclear localization and inhibited IGF-I-stimulated NPE and PREC growth, perhaps by attenuating IGF-I's effects on serine phosphorylation of Akt and GSK3beta and tyrosine phosphorylation of GSK3. This study expands the understanding of the preventive mechanisms of lycopene in prostate cancer.

  14. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    Energy Technology Data Exchange (ETDEWEB)

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng; Sarsour, Ehab H.; Goswami, Prabhat C., E-mail: prabhat-goswami@uiowa.edu

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.

  15. On the use of plate-type normal pressure cells in silos

    DEFF Research Database (Denmark)

    Ramirez, Alvaro; Nielsen, Jørgen; Ayuga, F.

    2010-01-01

    the interpretation of results. Once the cells have been delivered from the manufacturer to the researcher, they should be calibrated and validated with reference to the measurement of pressure from a granular material against a silo wall. Two related papers deal with a specific plate-type normal pressure cell...... for use in an installation of three full-scale steel silos with different hopper eccentricities (concentric, half-eccentric and full-eccentric) as part of a silo research project. It was found to be necessary to validate the performance of the cells when measuring pressures in the silos in order to arrive...... at a solid basis for the interpretation of the pressure measurements in the silo installation aforementioned. This paper presents calibration results from three investigated methods as well as results from a finite element analysis of the plate deflection of the pressure cell which were performed to evaluate...

  16. Phosphoglycolate phosphatase and 2,3-diphosphoglycerate in red cells of normal and anemic subjects.

    Science.gov (United States)

    Somoza, R; Beutler, E

    1983-10-01

    Red cell phosphoglycolate phosphatase (PGP) and 2,3-diphosphoglycerate (2,3-DPG) were investigated in normal and anemic patients and rabbits. In hemolytic anemia and blood-loss anemia, characterized by a young red cell population, there was an increase in both phosphoglycolate phosphatase activity and 2,3-diphosphoglycerate levels. In aplastic anemia, the phosphoglycolate phosphatase activity was normal, but the 2,3-diphosphoglycerate values were nonetheless increased. Thus, no relationship was found between phosphoglycolate phosphatase activity and 2,3-diphosphoglycerate levels. The lack of correlation between the activity of phosphoglycolate phosphatase and 2,3-DPG levels suggests that modulation of phosphoglycolate phosphatase activity does not control the level of 2,3-DPG in erythrocytes.

  17. Cytokine Release and Focal Adhesion Proteins in Normal Thyroid Cells Cultured on the Random Positioning Machine

    Directory of Open Access Journals (Sweden)

    Elisabeth Warnke

    2017-08-01

    Full Text Available Background/Aims: Spaceflight impacts on the function of the thyroid gland in vivo. In vitro normal and malignant thyrocytes assemble in part to multicellular spheroids (MCS after exposure to the random positioning machine (RPM, while a number of cells remain adherent (AD. We aim to elucidate possible differences between AD and MCS cells compared to 1g-controls of normal human thyroid cells. Methods: Cells of the human follicular epithelial thyroid cell line Nthy-ori 3-1 were incubated for up to 72 h on the RPM. Afterwards, they were investigated by phase-contrast microscopy, quantitative real-time PCR and by determination of cytokines released in their supernatants. Results: A significant up-regulation of IL6, IL8 and CCL2 gene expression was found after a 4h RPM-exposure, when the whole population was still growing adherently. MCS and AD cells were detected after 24 h on the RPM. At this time, a significantly reduced gene expression in MCS compared to 1g-controls was visible for IL6, IL8, FN1, ITGB1, LAMA1, CCL2, and TLN1. After a 72 h RPM-exposure, IL-6, IL-8, and TIMP-1 secretion rates were increased significantly. Conclusion: Normal thyrocytes form MCS within 24 h. Cytokines seem to be involved in the initiation of MCS formation via focal adhesion proteins.

  18. The Expression of Markers for Intratubular Germ Cell Neoplasia in Normal Infantile Testes

    Directory of Open Access Journals (Sweden)

    Kolja Kvist

    2018-06-01

    Full Text Available BackgroundPositive immunohistochemical expression of testicular cancer markers is often reported beyond 12 months of age in cryptorchid testes, which is assumed to indicate delayed maturation of the fetal germ cells, or neoplastic changes. These findings allowed for questions as to the extent of positive reaction in normal testes. The aim of the study was to clarify the expression of these markers in a normal material up to 2 years.MethodsTesticular material from 69 boys aged 1–690 days, who died of causes with no association of testicular pathology. Histology sections were incubated with primary antibodies including anti-placental-like alkaline phosphatase (PLAP, anti-C-Kit, anti-D2–40, and anti-Oct3/4. The mean germ cell number per tubular transverse section (G/T was calculated based on the G/T of both testes of every boy.ResultsThe mean G/T declined through the 690 days. PLAP appeared stably expressed throughout the ages studied. The likelihood of a positive reaction for C-Kit waned with increasing age within the study period. Positive staining for D2–40 and Oct3/4 was demonstrated up to 6 and 9 months respectively.ConclusionUp to 1 or 2 years of age, normal infantile testes contain germ cells positive for the immunohistochemical markers commonly utilized to aid in the detection of testicular cancer. This finding supports the concept of germ cells undergoing a continuous maturational process in a heterogeneous fashion, and that this process is not complete by 2 years of age.

  19. Human respiratory syncytial virus load normalized by cell quantification as predictor of acute respiratory tract infection.

    Science.gov (United States)

    Gómez-Novo, Miriam; Boga, José A; Álvarez-Argüelles, Marta E; Rojo-Alba, Susana; Fernández, Ana; Menéndez, María J; de Oña, María; Melón, Santiago

    2018-05-01

    Human respiratory syncytial virus (HRSV) is a common cause of respiratory infections. The main objective is to analyze the prediction ability of viral load of HRSV normalized by cell number in respiratory symptoms. A prospective, descriptive, and analytical study was performed. From 7307 respiratory samples processed between December 2014 to April 2016, 1019 HRSV-positive samples, were included in this study. Low respiratory tract infection was present in 729 patients (71.54%). Normalized HRSV load was calculated by quantification of HRSV genome and human β-globin gene and expressed as log10 copies/1000 cells. HRSV mean loads were 4.09 ± 2.08 and 4.82 ± 2.09 log10 copies/1000 cells in the 549 pharyngeal and 470 nasopharyngeal samples, respectively (P respiratory tract infection and 4.22 ± 2.28 log10 copies/1000 cells with upper respiratory tract infection or febrile syndrome (P < 0.05). A possible cut off value to predict LRTI evolution was tentatively established. Normalization of viral load by cell number in the samples is essential to ensure an optimal virological molecular diagnosis avoiding that the quality of samples affects the results. A high viral load can be a useful marker to predict disease progression. © 2018 Wiley Periodicals, Inc.

  20. Localization of cells containing sedimented amyloplasts in the shoots of normal and lazy rice seedlings.

    Science.gov (United States)

    Abe, K; Takahashi, H; Suge, H

    1994-12-01

    We have examined the localization of the cells containing sedimented amyloplasts (putative statocytes) and its relation to the graviresponding sites in the shoots of normal and lazy rice seedlings. All graviresponsive organs of the shoots of normal rice seedlings, the mesocotyl, the coleoptile and the leaf-sheath base, were found to possess the statocytes. This is the first indication that mesocotyl senses gravity by its own cells in inducing gravitropic bending in rice seedlings. In lazy-Kamenoo, although the shoots lost their gravitropic response with the advance of age, sedimentation of amyloplasts itself might not be attributable to the agravitropic growth of the shoots, because, including those of the leaf-sheath bases that had lost their response to gravity, sedimented amyloplasts appeared to be identical to those of normal Kamenoo and of younger seedlings of lazy-Kamenoo whose gravitropism is still apparent.

  1. Myeloperoxidase-positive cell infiltration of normal colorectal mucosa is related to body fatness and is predictive of adenoma occurrence.

    Science.gov (United States)

    Mariani, F; Boarino, V; Bertani, A; Merighi, A; Pedroni, M; Rossi, G; Mancini, S; Sena, P; Benatti, P; Roncucci, L

    2017-06-01

    Body fatness is a risk factor for colorectal cancer, and promotes an inflammatory environment. Indeed, inflammation in normal colorectal mucosa may be a factor linking body fatness to colorectal carcinogenesis. In this study, we evaluated myeloperoxidase (MPO)-positive cells infiltration of normal colorectal mucosa as a marker of cancer-promoting inflammation in overweight and obese subjects. One hundred and three subjects with normal colonoscopy entered the study. Waist circumference (WC) and body mass index (BMI) were measured, and MPO-positive cells on histological sections of biopsies of normal colorectal mucosa were counted under a light microscope. The occurrence of adenomas was then evaluated on follow-up colonoscopies. Mean MPO-positive cell count (±s.e.m.) was higher in subject with a WC equal or above the obesity cutoff values according to gender (2.63±0.20 vs 2.06±0.18, P=0.03), and in subjects with BMI equal or above 25 kg m - 2 (2.54±0.18 vs 1.97±0.20, P=0.03). A Cox proportional hazard model showed that mean MPO-positive cell count in normal colorectal mucosa was the only factor independently related to occurrence of adenomas in follow-up colonoscopies. Though preliminary, these results show that MPO-positive cell infiltration in normal colorectal mucosa is related with body fatness, as evaluated by WC and BMI, and it may be considered a useful and simple marker to estimate adenoma occurrence risk.

  2. Ex vivo 2D and 3D HSV-2 infection model using human normal vaginal epithelial cells.

    Science.gov (United States)

    Zhu, Yaqi; Yang, Yan; Guo, Juanjuan; Dai, Ying; Ye, Lina; Qiu, Jianbin; Zeng, Zhihong; Wu, Xiaoting; Xing, Yanmei; Long, Xiang; Wu, Xufeng; Ye, Lin; Wang, Shubin; Li, Hui

    2017-02-28

    Herpes simplex virus type 2 (HSV-2) infects human genital mucosa and establishes life-long latent infection. It is unmet need to establish a human cell-based microphysiological system for virus biology and anti-viral drug discovery. One of barriers is lacking of culture system of normal epithelial cells in vitro over decades. In this study, we established human normal vaginal epithelial cell (HNVEC) culture using co-culture system. HNVEC cells were then propagated rapidly and stably in a defined culture condition. HNVEC cells exhibited a normal diploid karyotype and formed the well-defined and polarized spheres in matrigel three-dimension (3D) culture, while malignant cells (HeLa) formed disorganized and nonpolar solid spheres. HNVEC cells had a normal cellular response to DNA damage and had no transforming property using soft agar assays. HNVEC expressed epithelial marker cytokeratin 14 (CK14) and p63, but not cytokeratin 18 (CK18). Next, we reconstructed HNVEC-derived 3D vaginal epithelium using air-liquid interface (ALI) culture. This 3D vaginal epithelium has the basal and apical layers with expression of epithelial markers as its originated human vaginal tissue. Finally, we established an HSV-2 infection model based on the reconstructed 3D vaginal epithelium. After inoculation of HSV-2 (G strain) at apical layer of the reconstructed 3D vaginal epithelium, we observed obvious pathological effects gradually spreading from the apical layer to basal layer with expression of a viral protein. Thus, we established an ex vivo 2D and 3D HSV-2 infection model that can be used for HSV-2 virology and anti-viral drug discovery.

  3. Insulin resistance according to β-cell function in women with polycystic ovary syndrome and normal glucose tolerance.

    Science.gov (United States)

    Song, Do Kyeong; Hong, Young Sun; Sung, Yeon-Ah; Lee, Hyejin

    2017-01-01

    Polycystic ovary syndrome (PCOS) is associated with insulin resistance (IR) and compensatory hyperinsulinemia. IR is recognized as a major risk factor for the development of type 2 diabetes mellitus. However, few studies have investigated IR in women with PCOS and normal glucose tolerance. The objective of this study was to evaluate IR and β-cell function in women with PCOS and normal glucose tolerance. Additionally, we sought to evaluate the usefulness of oral glucose tolerance test (OGTT)-derived IR indices in lean women with PCOS. We recruited 100 women with PCOS and normal glucose tolerance and 100 age- and BMI-matched women as controls. IR and insulin secretory indices, including the homeostasis-model assessment (HOMA)-IR, HOMA-M120, HOMA-F and the Stumvoll index, were calculated from an OGTT. Increased β-cell function was defined as>75th percentile for the HOMA-F in control women. Women with PCOS had higher values for post-load 2-hour glucose, fasting insulin, post-load 2-hour insulin, HOMA-IR, HOMA-M120, HOMA-F and lower values for the Stumvoll index than the controls (all PsWomen with PCOS and increased β-cell function showed lower Stumvoll index values than the matched controls (Plean women with PCOS (all PsWomen with PCOS and normal glucose tolerance showed higher IR than controls matched for age, BMI, and β-cell function. β-cell function was increased in women with PCOS when compared to the matched controls, but not when the lean subjects were compared to the matched controls separately. Therefore, early evaluation of IR in women with PCOS and normal glucose tolerance may be needed.

  4. Procalcitonin NH2-terminal cleavage peptide has no mitogenic effect on normal human osteoblast-like cells

    International Nuclear Information System (INIS)

    Hassager, C.; Bonde, S.K.; Anderson, M.A.; Rink, H.; Spelsberg, T.C.; Riggs, B.L.

    1991-01-01

    The NH2-terminal cleavage peptide of procalcitonin (N-proCT) recently was reported to be a bone cell mitogen. The authors have investigated the effect of N-proCT on the proliferation of normal human cells that have the phenotype of mature osteoblasts (hOB cells). N-proCT treatment for 24, 48, or 96 h in concentrations from 1 nM to 1 microM did not significantly increase [3H]thymidine uptake (means ranged from -19% to 38% of control, no significant differences) in hOB cells (6-10 cell strains per experiment) plated at four different densities. However, the hOB cells responded significantly to treatment with transforming growth factor β (3 ng/ml), bovine insulin (300 micrograms/ml), or 30% fetal calf serum, which were included in all experiments as positive controls. The [3H]thymidine uptake data were confirmed in a direct cell count experiment tested at 96 h. Thus they data do not support the hypothesis that N-proCT is a potent mitogen for normal human osteoblasts

  5. Effect of resveratrol and zinc on intracellular zinc status in normal human prostate epithelial cells

    Science.gov (United States)

    To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...

  6. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis—Masters of Survival and Clonality?

    Science.gov (United States)

    Pleyer, Lisa; Valent, Peter; Greil, Richard

    2016-01-01

    Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs. PMID:27355944

  7. MUC1 (CD227) interacts with lck tyrosine kinase in Jurkat lymphoma cells and normal T cells.

    Science.gov (United States)

    Mukherjee, P; Tinder, T L; Basu, G D; Gendler, S J

    2005-01-01

    MUC1 (CD227) is a large transmembrane epithelial mucin glycoprotein, which is aberrantly overexpressed in most adenocarcinomas and is a target for immune therapy for epithelial tumors. Recently, MUC1 has been detected in a variety of hematopoietic cell malignancies including T and B cell lymphomas and myelomas; however, its function in these cells is not clearly defined. Using the Jurkat T cell lymphoma cell line and normal human T cells, we demonstrate that MUC1 is not only expressed in these cells but is also phosphorylated upon T cell receptor (TCR) ligation and associates with the Src-related T cell tyrosine kinase, p56lck. Upon TCR-mediated activation of Jurkat cells, MUC1 is found in the low-density membrane fractions, where linker of T cell activation is contained. Abrogation of MUC1 expression in Jurkat cells by MUC1-specific small interfering RNA resulted in defects in TCR-mediated downstream signaling events associated with T cell activation. These include reduction in Ca2+ influx and extracellular signal-regulated kinase 1/2 phosphorylation, leading to a decrease in CD69 expression, proliferation, and interleukin-2 production. These results suggest a regulatory role of MUC1 in modulating proximal signal transduction events through its interaction with proteins of the activation complex.

  8. Pathway of 3-MCPD-induced apoptosis in human embryonic kidney cells.

    Science.gov (United States)

    Ji, Jian; Zhu, Pei; Sun, Chao; Sun, Jiadi; An, Lu; Zhang, Yinzhi; Sun, Xiulan

    2017-01-01

    3-Chloropropane-1,2-diol (3-MCPD) is a heat-produced contaminant formed during the preparation of soy sauce worldwide. The present investigation was conducted to determine the molecular aspects of 3-MCPD toxicity on human embryonic kidney cells (HEK293). Cell viability and apoptosis were assessed in response to exposure to 3-MCPD using the MTT assay and high-content screening (HCS). DNA damage, intracellular reactive oxygen species (ROS) and apoptosis-related proteins were evaluated. Genes related with apoptosis were detected by qPCR-array for further understanding the 3-MCPD induced cell apoptosis signaling pathway. Our results clearly showed that 3-MCPD treatment inhibits cell proliferation and reactive oxygen species generation. qPCR-array indicated that nine apoptotic genes were up-regulated more than 2-fold and six down-regulated more than 2-fold. Genes associated with the mitochondrial apoptotic pathway, especially BCL2 family genes, changed significantly, indicating that the mitochondrial apoptotic pathway is activated. Death receptor pathway-related genes, TNFRSF11B and TNFRSF1A, changed significantly, indicating that the death receptor pathway is also activated, resulting in the inhibition of cell growth and proliferation as well as induction of apoptosis. To sum up, the experiment results indicated that 3-MCPD induced HEK293 cell toxicity through the death receptor pathway and mitochondrial pathway.

  9. Clathrin-dependent internalization, signaling, and metabolic processing of guanylyl cyclase/natriuretic peptide receptor-A.

    Science.gov (United States)

    Somanna, Naveen K; Mani, Indra; Tripathi, Satyabha; Pandey, Kailash N

    2018-04-01

    Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125 I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand-receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.

  10. Combined Treatment with Low Concentrations of Decitabine and SAHA Causes Cell Death in Leukemic Cell Lines but Not in Normal Peripheral Blood Lymphocytes

    Directory of Open Access Journals (Sweden)

    Barbora Brodská

    2013-01-01

    Full Text Available Epigenetic therapy reverting aberrant acetylation or methylation offers the possibility to target preferentially tumor cells and to preserve normal cells. Combination epigenetic therapy may further improve the effect of individual drugs. We investigated combined action of demethylating agent decitabine and histone deacetylase inhibitor SAHA (Vorinostat on different leukemic cell lines in comparison with peripheral blood lymphocytes. Large decrease of viability, as well as huge p21WAF1 induction, reactive oxygen species formation, and apoptotic features due to combined decitabine and SAHA action were detected in leukemic cell lines irrespective of their p53 status, while essentially no effect was observed in response to the combined drug action in normal peripheral blood lymphocytes of healthy donors. p53-dependent apoptotic pathway was demonstrated to participate in the wtp53 CML-T1 leukemic cell line response, while significant influence of reactive oxygen species on viability decrease has been detected in p53-null HL-60 cell line.

  11. Human Mesenchymal Stem Cell Treatment Normalizes Cortical Gene Expression after Traumatic Brain Injury.

    Science.gov (United States)

    Darkazalli, Ali; Vied, Cynthia; Badger, Crystal-Dawn; Levenson, Cathy W

    2017-01-01

    Traumatic brain injury (TBI) results in a progressive disease state with many adverse and long-term neurological consequences. Mesenchymal stem cells (MSCs) have emerged as a promising cytotherapy and have been previously shown to reduce secondary apoptosis and cognitive deficits associated with TBI. Consistent with the established literature, we observed that systemically administered human MSCs (hMSCs) accumulate with high specificity at the TBI lesion boundary zone known as the penumbra. Substantial work has been done to illuminate the mechanisms by which MSCs, and the bioactive molecules they secrete, exert their therapeutic effect. However, no such work has been published to examine the effect of MSC treatment on gene expression in the brain post-TBI. In the present study, we use high-throughput RNA sequencing (RNAseq) of cortical tissue from the TBI penumbra to assess the molecular effects of both TBI and subsequent treatment with intravenously delivered hMSCs. RNAseq revealed that expression of almost 7000 cortical genes in the penumbra were differentially regulated by TBI. Pathway analysis using the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway database revealed that TBI regulated a large number of genes belonging to pathways involved in metabolism, receptor-mediated cell signaling, neuronal plasticity, immune cell recruitment and infiltration, and neurodegenerative disease. Remarkably, hMSC treatment was found to normalize 49% of all genes disrupted by TBI, with notably robust normalization of specific pathways within the categories mentioned above, including neuroactive receptor-ligand interactions (57%), glycolysis and gluconeogenesis (81%), and Parkinson's disease (100%). These data provide evidence in support of the multi-mechanistic nature of stem cell therapy and suggest that hMSC treatment is capable of simultaneously normalizing a wide variety of important molecular pathways that are disrupted by brain injury.

  12. The cytogenetic estimate of the radioprotective effect of antioxydant on normal and defected human cells

    International Nuclear Information System (INIS)

    Zvereva, S.V.; Mutovina, G.R.; Khandogina, E.K.; Marchenko, L.F.; Neudakhin, E.V.; Artamonov, R.G.; Akif'ev, A.P.

    1993-01-01

    In studying the radioprotective action of natural and synthesised antioxydants a decreased yield of chromosome aberrations with respect to those in untreated cells was noted in normal cells irradiated in phase G 1 whereas no radioprotective effect was found in cells irradiated in G 0 . The addition of antioxydants into the cell cultures from patients with Turner's syndrome did not change their radiosensitivity. No adaptive response was induced in lymphocytes from patients with Down's syndrome cultivated with vitamine E

  13. Effects of ultraviolet irradiation on the cell cycle in normal and UV-sensitive cell lines with reference to the nature of the defect in xeroderma pigmentosum variant

    International Nuclear Information System (INIS)

    Imray, P.; Mangan, T.; Saul, A.; Kidson, C.

    1983-01-01

    Analysis of the distribution of cells through the phases of the cell cycle by DNA flow cytofluorimetry has been utilized to investigate the effects of ultraviolet (UV) irradiation on cell-cycle progression in normal and UV-sensitive lymphoblastoid cell lines. In time-course studies only slight perturbation of DNA distribution was seen in normal cells, or UV-sensitive familial melanoma (FM) lines in the 48 h following irradiation. Xeroderma pigmentosum (XPA) excision-deficient cells showed a large increase in the proportion of cells in S phase 16-40 h post-irradiation. XP variant (XPV) cells were blocked in G 1 and S phases with the complete absence of cells with G 2 DNA content 16-28 h after irradiation. By 48 h post-irradiation the DNA distribution of XPA and XPV cells had returned to that of an unirradiated control. When colcemid was added to the cultures immediately after irradiation to prevent mitotic cells dividing and re-entering the cell cycle, progression through the first cycle after irradiation was followed. UV irradiation did not affect the rate of movement of cells out of G 1 into S phase in normal, FM or XPA cells. The proportion of cells in S phase was increased in UV-irradiated cultures in these cell types and the number of cells entering the G 2 +M compartment was reduced. (orig./AJ)

  14. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J. [and others

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  15. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    International Nuclear Information System (INIS)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J.

    1995-01-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to α-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMVΒ vector; and (2) the antibiotic hygromycin-resistant transfected cells

  16. The toxicity of saffron (Crocus sativus L. and its constituents against normal and cancer cells

    Directory of Open Access Journals (Sweden)

    Alireza Milajerdi

    2016-03-01

    Conclusion: In conclusion, emerging evidence suggests that saffron extract and its crocin, crocetin and safranal have a selective toxicity effects against cancer cells and also may have cancer preventive functions. However, Saffron and its constituent's toxicity against normal cells is negligible and they are even non-toxic in oral administration.

  17. Comparison of multiple assays for detecting human antibodies directed against antigens on normal and malignant tissue culture cells

    International Nuclear Information System (INIS)

    Rosenberg, S.A.; Schwarz, S.; Anding, H.; Hyatt, C.; Williams, G.M.; Johns Hopkins Univ., Baltimore, Md.

    1977-01-01

    Four separate assays of human antibody reactivity to four separate normal and malignant human tissue culture cells lines from two patients have been evaluated using a single highly-reactive allogeneic serum. The visual end-point cytolysis assay and the chromium-51 release assay were equally sensitive in measuring complement mediated antibody cytotoxicity and both were far more sensitive than a trypan blue dye exclusion assay. The assay of antibody reactivity by hemadsorption technique was about 10 times more sensitive than any of the cytotoxicity assays. This latter assay measures only IgG antibody however. These assays showed that cell lines from different patients may differ greatly in 'reactivity' to an allogeneic serum and emphasized the importance of utilizing tumor and normal cells from the same patient when using tissue culture cells to search for tumor specific reactivity. These observations emphasize the importance of utilizing multiple assays against paired normal and malignant cells from the same patient to be certain of the specificity and magnitude of the measured antibody

  18. Comparison of the suppressor cells found in the spleens of 89Sr-treated mice and in normal murine bone marrow

    International Nuclear Information System (INIS)

    Levy, E.M.; Corvese, J.S.; Bennett, M.

    1981-01-01

    Normal murine bone marrow cells and spleen cells of mice treated with 89 Sr both have suppressive activity. These nonspecific suppressor cells inhibit the ability of normal spleen cells to undergo antibody responses in vitro. After being precultured for 24 hr, these cells will also suppress antibody responses in vivo and the responses of normal spleen cells to T and B cell mitogens in vitro. These cells have previously been shown not to be mature T or B lymphocytes or macrophages. Velocity sedimentation and cell-size analysis indicated that both suppressor cells are large (approx. =206 μ 3 ). Mitomycin C treatment eliminated the ability of both suppressor cells to inhibit an in vitro antibody response. In contrast, this treatment did not reduce the ability of the cells to inhibit an in vitro antibody response. In contrast, this treatment did not reduce the ability of the cells to suppress a mitogenic response. Irradiation (1000 R) was also ineffective in eliminating the ability of either cell to suppress a mitogenic response. We conclude that the 2 suppressor cells are closely related if not identical, and we speculate that these cells may function in vivo to suppress immune reactivity in areas of intense hematopoiesis

  19. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  20. DNA crosslinking and cytotoxicity in normal and transformed human cells treated with antitumor nitrosoureas.

    Science.gov (United States)

    Erickson, L C; Bradley, M O; Ducore, J M; Ewig, R A; Kohn, K W

    1980-01-01

    Normal (IMR-90) and simian virus 40-transformed (VA-13) human embryo cells were treated with antitumor nitrosoureas, and the effects on cell viability and cell DNA were compared. All six nitrosoureas tested were more toxic to VA-13 cells than to IMR-90 cells as measured by decrease in cell proliferation or in colony formation. The nitrosoureas capable of generating alkylisocyanates produced a smaller difference between the cell types than did derivatives lacking this capacity. DNA damage was measured by alkaline elution in cells treated with four chloroethylnitrosoureas. Whereas VA-13 cells exhibited dose-dependent interstrand crosslinking, little or none was detected in IMR-90 cells. The IMR-90 cells, however, exhibited at least as much DNA-protein crosslinking as did VA-13 cells. The results can be interpreted in terms of a possible difference in DNA repair between the cell lines. PMID:6928639

  1. Immune cells in the normal ovary and spontaneous ovarian tumors in the laying hen (Gallus domesticus) model of human ovarian cancer.

    Science.gov (United States)

    Bradaric, Michael J; Penumatsa, Krishna; Barua, Animesh; Edassery, Seby L; Yu, Yi; Abramowicz, Jacques S; Bahr, Janice M; Luborsky, Judith L

    2013-01-01

    Spontaneous ovarian cancer in chickens resembles human tumors both histologically and biochemically. The goal was to determine if there are differences in lymphocyte content between normal ovaries and ovarian tumors in chickens as a basis for further studies to understand the role of immunity in human ovarian cancer progression. Hens were selected using grey scale and color Doppler ultrasound to determine if they had normal or tumor morphology. Cells were isolated from ovaries (n = 6 hens) and lymphocyte numbers were determined by flow cytometry using antibodies to avian CD4 and CD8 T and B (Bu1a) cells. Ovarian sections from another set of hens (n = 26) were assessed to verify tumor type and stage and to count CD4, CD8 and Bu1a immunostained cells by morphometric analysis. T and B cells were more numerous in ovarian tumors than in normal ovaries by flow cytometry and immunohistochemistry. There were less CD4+ cells than CD8+ and Bu1a+ cells in normal ovaries or ovarian tumors. CD8+ cells were the dominant T cell sub-type in both ovarian stroma and in ovarian follicles compared to CD4+ cells. Bu1a+ cells were consistently found in the stroma of normal ovaries and ovarian tumors but were not associated with follicles. The number of immune cells was highest in late stage serous tumors compared to endometrioid and mucinous tumors. The results suggest that similar to human ovarian cancer there are comparatively more immune cells in chicken ovarian tumors than in normal ovaries, and the highest immune cell content occurs in serous tumors. Thus, this study establishes a foundation for further study of tumor immune responses in a spontaneous model of ovarian cancer which will facilitate studies of the role of immunity in early ovarian cancer progression and use of the hen in pre-clinical vaccine trials.

  2. Molecular characterization of neoplastic and normal "sister" lymphoblastoid B-cell lines from chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Lanemo Myhrinder, Anna; Hellqvist, Eva; Bergh, Ann-Charlotte

    2013-01-01

    Chronic lymphocytic leukemia (CLL) B-cells resemble self-renewing CD5 + B-cells carrying auto/xeno-antigen-reactive B-cell receptors (BCRs) and multiple innate pattern-recognition receptors, such as Toll-like receptors and scavenger receptors. Integration of signals from BCRs with multiple surface...... a comprehensive genotypic and phenotypic characterization of available CLL and normal B-cell-derived lymphoblastoid cell lines (LCLs) from the same individuals (n = 17). Authenticity and verification studies of CLL-patient origin were done by IGHV sequencing, fluorescence in situ hybridization (FISH) and DNA...

  3. The F309S mutation increases factor VIII secretion in human cell line

    Directory of Open Access Journals (Sweden)

    Daianne Maciely Carvalho Fantacini

    2016-06-01

    Full Text Available ABSTRACT OBJECTIVES: The capacity of a human cell line to secrete recombinant factor VIII with a F309S point mutation was investigated, as was the effect of the addition of chemical chaperones (betaine and sodium-4-phenylbutyrate on the secretion of factor VIII. METHODS: This work used a vector with a F309S mutation in the A1 domain to investigate FVIII production in the HEK 293 human cell line. Factor VIII activity was measured by chromogenic assay. Furthermore, the effects of chemical drugs on the culture were evaluated. RESULTS: The addition of the F309S mutation to a previously described FVIII variant increased FVIII secretion by 4.5 fold. Moreover, the addition of betaine or sodium-4-phenylbutyrate increased the secretion rate of FVIIIΔB proteins in HEK 293 cells, but the same effect was not seen for FVIIIΔB-F309S indicating that all the recombinant protein produced had been efficiently secreted. CONCLUSION: Bioengineering factor VIII expressed in human cells may lead to an efficient production of recombinant factor VIII and contribute toward low-cost coagulation factor replacement therapy for hemophilia A. FVIII-F309S produced in human cells can be effective in vivo.

  4. Industrial production of clotting factors: Challenges of expression, and choice of host cells.

    Science.gov (United States)

    Kumar, Sampath R

    2015-07-01

    The development of recombinant forms of blood coagulation factors as safer alternatives to plasma derived factors marked a major advance in the treatment of common coagulation disorders. These are complex proteins, mostly enzymes or co-enzymes, involving multiple post-translational modifications, and therefore are difficult to express. This article reviews the nature of the expression challenges for the industrial production of these factors, vis-à-vis the translational and post-translational bottlenecks, as well as the choice of host cell lines for high-fidelity production. For achieving high productivities of vitamin K dependent proteins, which include factors II (prothrombin), VII, IX and X, and protein C, host cell limitation of γ-glutamyl carboxylation is a major bottleneck. Despite progress in addressing this, involvement of yet unidentified protein(s) impedes a complete cell engineering solution. Human factor VIII expresses at very low levels due to limitations at several steps in the protein secretion pathway. Protein and cell engineering, vector improvement and alternate host cells promise improvement in the productivity. Production of Von Willebrand factor is constrained by its large size, complex structure, and the need for extensive glycosylation and disulfide-bonded oligomerization. All the licensed therapeutic factors are produced in CHO, BHK or HEK293 cells. While HEK293 is a recent adoption, BHK cells appear to be disfavored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nonlinear spectral imaging of human normal skin, basal cell carcinoma and squamous cell carcinoma based on two-photon excited fluorescence and second-harmonic generation

    Science.gov (United States)

    Xiong, S. Y.; Yang, J. G.; Zhuang, J.

    2011-10-01

    In this work, we use nonlinear spectral imaging based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) for analyzing the morphology of collagen and elastin and their biochemical variations in basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and normal skin tissue. It was found in this work that there existed apparent differences among BCC, SCC and normal skin in terms of their thickness of the keratin and epithelial layers, their size of elastic fibers, as well as their distribution and spectral characteristics of collagen. These differences can potentially be used to distinguish BCC and SCC from normal skin, and to discriminate between BCC and SCC, as well as to evaluate treatment responses.

  6. Detection of Apoptosis and Necrosis in Normal Human Lung Cells Using 1H NMR Spectroscopy

    Science.gov (United States)

    Shih, Chwen-Ming; Ko, Wun-Chang; Yang, Liang-Yo; Lin, Chien-Ju; Wu, Jui-Sheng; Lo, Tsui-Yun; Wang, Shwu-Huey; Chen, Chien-Tsu

    2005-05-01

    This study aimed to detect apoptosis and necrosis in MRC-5, a normal human lung cell line, by using noninvasive proton nuclear magnetic resonance (1H NMR). Live MRC-5 cells were processed first for 1H NMR spectroscopy; subsequently their types and the percentage of cell death were assessed on a flow cytometer. Cadmium (Cd) and mercury (Hg) induced apoptosis and necrosis in MRC-5 cells, respectively, as revealed by phosphatidylserine externalization on a flow cytometer. The spectral intensity ratio of methylene (CH2) resonance (at 1.3 ppm) to methyl (CH3) resonance (at 0.9 ppm) was directly proportional to the percentage of apoptosis and strongly and positively correlated with PI staining after Cd treatment (r2 = 0.9868, P In contrast, this ratio only increased slightly within 2-h Hg treatment, and longer Hg exposure failed to produce further increase. Following 2-h Hg exposure, the spectral intensity of choline resonance (at 3.2 ppm) was abolished, but this phenomenon was absent in Cd-induced apoptosis. These findings together demonstrate that 1H NMR is a novel tool with a quantitative potential to distinguish apoptosis from necrosis as early as the onset of cell death in normal human lung cells.

  7. Progesterone Upregulates Gene Expression in Normal Human Thyroid Follicular Cells

    Directory of Open Access Journals (Sweden)

    Ana Paula Santin Bertoni

    2015-01-01

    Full Text Available Thyroid cancer and thyroid nodules are more prevalent in women than men, so female sex hormones may have an etiological role in these conditions. There are no data about direct effects of progesterone on thyroid cells, so the aim of the present study was to evaluate progesterone effects in the sodium-iodide symporter NIS, thyroglobulin TG, thyroperoxidase TPO, and KI-67 genes expression, in normal thyroid follicular cells, derived from human tissue. NIS, TG, TPO, and KI-67 mRNA expression increased significantly after TSH 20 μUI/mL, respectively: 2.08 times, P<0.0001; 2.39 times, P=0.01; 1.58 times, P=0.0003; and 1.87 times, P<0.0001. In thyroid cells treated with 20 μUI/mL TSH plus 10 nM progesterone, RNA expression of NIS, TG, and KI-67 genes increased, respectively: 1.78 times, P<0.0001; 1.75 times, P=0.037; and 1.95 times, P<0.0001, and TPO mRNA expression also increased, though not significantly (1.77 times, P=0.069. These effects were abolished by mifepristone, an antagonist of progesterone receptor, suggesting that genes involved in thyroid cell function and proliferation are upregulated by progesterone. This work provides evidence that progesterone has a direct effect on thyroid cells, upregulating genes involved in thyroid function and growth.

  8. High load of Merkel cell polyomavirus DNA detected in the normal skin of Japanese patients with Merkel cell carcinoma.

    Science.gov (United States)

    Hashida, Yumiko; Nakajima, Kimiko; Nakajima, Hideki; Shiga, Takeo; Tanaka, Moe; Murakami, Masanao; Matsuzaki, Shigenobu; Naganuma, Seiji; Kuroda, Naoki; Seki, Yasutaka; Katano, Harutaka; Sano, Shigetoshi; Daibata, Masanori

    2016-09-01

    Although Merkel cell polyomavirus (MCPyV) has the potential to cause Merkel cell carcinoma (MCC), it is also found in the normal skin of healthy individuals. However, the mechanism for transformation of MCPyV to an oncogenic form is unknown. To investigate the levels of MCPyV infection in the normal skin patients with MCC compared with those in a control cohort. We studied a total of six Japanese patients with cutaneous MCC. Sun-exposed and sun-unexposed skin swabs were obtained and analyzed for MCPyV loads using quantitative real-time polymerase chain reaction. At first, we found a patient with MCC carrying an extremely high load of MCPyV DNA in normal skin. This unique case prompted us to further explore the levels of MCPyV as skin microbiota in patients with MCC. We showed that MCPyV DNA levels were significantly higher in swabs obtained from normal skin samples of six patients with MCC compared with those from 30 age-matched healthy individuals and 19 patients with other cutaneous cancers. Whereas MCPyV strains obtained from the normal skin of patients with MCC had gene sequences without structural alterations, sequences of the tumor-derived strains showed truncating mutations or deletions. Although the number of patients with MCC studied was small, our findings suggest that MCC may occur with a background of high MCPyV load in the skin, and are expected to stimulate further studies on whether such skin virome levels could be one of predictive markers for the development of MCC. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Expression of a TGF-{beta} regulated cyclin-dependent kinase inhibitor in normal and immortalized airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, L.A.; Bloomfield, C.; Johnson, N.F. [and others

    1995-12-01

    Tumors arising from epithelial cells, including lung cancers are frequently resistant to factors that regulate growth and differentiation in normal in normal cells. Once such factor is transforming growth factor-{Beta} (TGF-{Beta}). Escape from the growth-inhibitory effects of TGF-{Beta} is thought to be a key step in the transformation of airway epithelial cells. most lung cancer cell lines require serum for growth. In contrast, normal human bronchial epithelial (NHBE) cells are exquisitely sensitive to growth-inhibitory and differentiating effects of TGF-{Beta}. The recent identification of a novel cyclin-dependent kinase inhibitor, p15{sup INK4B}, which is regulated by TGF-{Beta}, suggests a mechanism by which TGF-{Beta} mediates growth arrest in NHBE cells. The purpose of this study was two-fold: (1) to determine if p15{sup INK4B} is induced by TGF-{Beta} in NHBE cells or immortalized bronchial epithelial (R.1) cells and if that induction corresponds to a G1/S cell-cycle arrest; (2) to determine the temporal relationship between p15{sup INK4B} induction, cell-cycle arrest, and the phosphorylation state of the pRB because it is thought that p15{sup INK4B} acts indirectly by preventing phosphorylation of the RB gene product. In this study, expression of p15{sup INK4B} was examined in NHBE cells and R.1 cells at different time intervals following TGF-{Beta} treatment. The expression of this kinase inhibitor and its relationship to the cell and the pRb phosphorylation state were examined in cells that were both sensitive (NHBE) and resistant (R.1) to the effects of TGF-{Beta}. These results suggest that the cyclin-dependent kinase inhibitor, p15{sup INK4B}, is involved in airway epithelial cell differentiation and that loss or reduction of expression plays a role in the resistance of transformed or neoplastic cells to the growth-inhibitory effects of TGF-{Beta}.

  10. Heterogeneity in c-jun gene expression in normal and malignant cells exposed to either ionizing radiation or hydrogen peroxide

    International Nuclear Information System (INIS)

    Horio, M.; Collart, F.R.; Huberman, E.

    1993-01-01

    We investigated the role of reactive oxygen intermediates and protein kinase C (PKC) in induction of c-jun gene expression in human ML-2 leukemic cells and normal DET-551 fibroblasts by comparing the effects of either ionizing radiation or H 2 O 2 exposure in the presence or absence of appropriate inhibitors. In these cell types, the radiation and H 2 O 2 -mediated increase in c-jun mRNA levels could be prevented by pretreatment of the cells with N-acetylcysteine, an antioxidant, or H7, an inhibitor of PKC and cAMP-dependent protein kinase (PKA), but not by HA1004, an inhibitor of PKA. These results suggest a role for PKC and reactive oxygen intermediates in the induction of c-jun gene expression in both normal and tumor cells. We also investigated potential differences in radiation- or H 2 O 2 -induced c-jun gene expression in normal and tumor cells by examining steady-state c-jun mRNA levels in a number of human fibroblast, leukemia, melanoma, sarcoma, and carcinoma cell types. We observed heterogeneity in the steady-state level of c-jun mRNA in both the untreated normal and tumor cells and in such cells exposed to ionizing radiation or to H 2 O 2 . Exposure to radiation or to hydrogen peroxide produced a varied response which ranged from little or no induction to a more than two orders of magnitude increase in the steady-state level of the c-jun mRNA

  11. Comparative analysis of the surface exposed proteome of two canine osteosarcoma cell lines and normal canine osteoblasts.

    Science.gov (United States)

    Milovancev, Milan; Hilgart-Martiszus, Ian; McNamara, Michael J; Goodall, Cheri P; Seguin, Bernard; Bracha, Shay; Wickramasekara, Samanthi I

    2013-06-13

    Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive of the mass spectrometry data

  12. Experiment list: SRX684263 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ce_name=Cell culture || cell line=HEK 293 || chip antibody=none || growth protocol=HEK293 cells were grown in 37°C, 5% CO2, 95% humid...ity in high glucose DMEM (Invitrogen) supplemented with

  13. Experiment list: SRX684265 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ce_name=Cell culture || cell line=HEK 293 || chip antibody=none || growth protocol=HEK293 cells were grown in 37°C, 5% CO2, 95% humid...ity in high glucose DMEM (Invitrogen) supplemented with

  14. Evaluation of the Cytotoxic Effects of CAM Therapies: An In Vitro Study in Normal Kidney Cell Lines

    Directory of Open Access Journals (Sweden)

    Shagun Arora

    2014-01-01

    Full Text Available The purpose of this current study was to justify the incorporation of complementary and alternate medicine (CAM in current cancer treatments. The major drawback of anticancer drugs is their nonselective killing, which ultimately leads to attrition of normal cells. Keeping this as the foundation of our study, we made an effort to compare the cytotoxicity associated with a known chemotherapeutic drug 5-Fluorouracil (5-FU, with certain CAM therapies previously reported to have anticancer activity. The parameters chosen for the study were based on antiproliferative and cytotoxic effects on normal, kidney epithelial cells (NRK-52E. The MTT assay, colony formation assay, DNA fragmentation, and differential staining using AO/EB, following treatment with either 5-FU or CAM therapies, were performed. The CAM therapies under study were various extracts of wheatgrass, roots of Achyranthes aspera (AA, mushroom extracts (Pleurotus ostreatus, Macrolepiota procera, and Auricularia polytricha, and a homeopathic drug, Ruta graveolens (Ruta. The results showed that treatment of normal cells with the CAM therapies led to minimum cell damage in comparison to 5-FU. This evidence-based study will lead to greater acceptance of alternative therapies against cancer.

  15. Mammary stem cell and macrophage markers are enriched in normal tissue adjacent to inflammatory breast cancer.

    Science.gov (United States)

    Reddy, Jay P; Atkinson, Rachel L; Larson, Richard; Burks, Jared K; Smith, Daniel; Debeb, Bisrat G; Ruffell, Brian; Creighton, Chad J; Bambhroliya, Arvind; Reuben, James M; Van Laere, Steven J; Krishnamurthy, Savitri; Symmans, William F; Brewster, Abenaa M; Woodward, Wendy A

    2018-06-01

    We hypothesized that breast tissue not involved by tumor in inflammatory breast cancer (IBC) patients contains intrinsic differences, including increased mammary stem cells and macrophage infiltration, which may promote the IBC phenotype. Normal breast parenchyma ≥ 5 cm away from primary tumors was obtained from mastectomy specimens. This included an initial cohort of 8 IBC patients and 60 non-IBC patients followed by a validation cohort of 19 IBC patients and 25 non-IBC patients. Samples were immunostained for either CD44 + CD49f + CD133/2 + mammary stem cell markers or the CD68 macrophage marker and correlated with IBC status. Quantitation of positive cells was determined using inForm software from PerkinElmer. We also examined the association between IBC status and previously published tumorigenic stem cell and IBC tumor signatures in the validation cohort samples. 8 of 8 IBC samples expressed isolated CD44 + CD49f + CD133/2 + stem cell marked cells in the initial cohort as opposed to 0/60 non-IBC samples (p = 0.001). Similarly, the median number of CD44 + CD49f + CD133/2 + cells was significantly higher in the IBC validation cohort as opposed to the non-IBC validation cohort (25.7 vs. 14.2, p = 0.007). 7 of 8 IBC samples expressed CD68 + histologically confirmed macrophages in initial cohort as opposed to 12/48 non-IBC samples (p = 0.001). In the validation cohort, the median number of CD68 + cells in IBC was 3.7 versus 1.0 in the non-IBC cohort (p = 0.06). IBC normal tissue was positively associated with a tumorigenic stem cell signature (p = 0.02) and with a 79-gene IBC signature (p stem cell signature and IBC-specific tumor signature. Collectively, these data suggest that IBC normal tissue differs from non-IBC tissue. Whether these changes occur before the tumor develops or is induced by tumor warrants further investigation.

  16. Knockdown of αII spectrin in normal human cells by siRNA leads to chromosomal instability and decreased DNA interstrand cross-link repair

    International Nuclear Information System (INIS)

    McMahon, Laura W.; Zhang Pan; Sridharan, Deepa M.; Lefferts, Joel A.; Lambert, Muriel W.

    2009-01-01

    Nonerythroid α-spectrin (αIISp) is a structural protein involved in repair of DNA interstrand cross-links and is deficient in cells from patients with Fanconi anemia (FA), which are defective in ability to repair cross-links. In order to further demonstrate the importance of the role that αIISp plays in normal human cells and in the repair defect in FA, αIISp was knocked down in normal cells using siRNA. Depletion of αIISp in normal cells by siRNA resulted in chromosomal instability and cellular hypersensitivity to DNA interstrand cross-linking agents. An increased number of chromosomal aberrations were observed and, following treatment with a DNA interstrand cross-linking agent, mitomycin C, cells showed decreased cell growth and survival and decreased formation of damage-induced αIISp and XPF nuclear foci. Thus depletion of αIISp in normal cells leads to a number of defects observed in FA cells, such as chromosome instability and a deficiency in cross-link repair.

  17. Short-term arginine deprivation results in large-scale modulation of hepatic gene expression in both normal and tumor cells: microarray bioinformatic analysis

    Directory of Open Access Journals (Sweden)

    Sabo Edmond

    2006-09-01

    Full Text Available Abstract Background We have reported arginine-sensitive regulation of LAT1 amino acid transporter (SLC 7A5 in normal rodent hepatic cells with loss of arginine sensitivity and high level constitutive expression in tumor cells. We hypothesized that liver cell gene expression is highly sensitive to alterations in the amino acid microenvironment and that tumor cells may differ substantially in gene sets sensitive to amino acid availability. To assess the potential number and classes of hepatic genes sensitive to arginine availability at the RNA level and compare these between normal and tumor cells, we used an Affymetrix microarray approach, a paired in vitro model of normal rat hepatic cells and a tumorigenic derivative with triplicate independent replicates. Cells were exposed to arginine-deficient or control conditions for 18 hours in medium formulated to maintain differentiated function. Results Initial two-way analysis with a p-value of 0.05 identified 1419 genes in normal cells versus 2175 in tumor cells whose expression was altered in arginine-deficient conditions relative to controls, representing 9–14% of the rat genome. More stringent bioinformatic analysis with 9-way comparisons and a minimum of 2-fold variation narrowed this set to 56 arginine-responsive genes in normal liver cells and 162 in tumor cells. Approximately half the arginine-responsive genes in normal cells overlap with those in tumor cells. Of these, the majority was increased in expression and included multiple growth, survival, and stress-related genes. GADD45, TA1/LAT1, and caspases 11 and 12 were among this group. Previously known amino acid regulated genes were among the pool in both cell types. Available cDNA probes allowed independent validation of microarray data for multiple genes. Among genes downregulated under arginine-deficient conditions were multiple genes involved in cholesterol and fatty acid metabolism. Expression of low-density lipoprotein receptor was

  18. Estimation of low-dose radiation-responsive proteins in the absence of genomic instability in normal human fibroblast cells.

    Science.gov (United States)

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Nam, Seon Young; Kim, Cha Soon

    2017-11-01

    Low-dose radiation has various biological effects such as adaptive responses, low-dose hypersensitivity, as well as beneficial effects. However, little is known about the particular proteins involved in these effects. Here, we sought to identify low-dose radiation-responsive phosphoproteins in normal fibroblast cells. We assessed genomic instability and proliferation of fibroblast cells after γ-irradiation by γ-H2AX foci and micronucleus formation analyses and BrdU incorporation assay, respectively. We screened fibroblast cells 8 h after low-dose (0.05 Gy) γ-irradiation using Phospho Explorer Antibody Microarray and validated two differentially expressed phosphoproteins using Western blotting. Cell proliferation proceeded normally in the absence of genomic instability after low-dose γ-irradiation. Phospho antibody microarray analysis and Western blotting revealed increased expression of two phosphoproteins, phospho-NFκB (Ser536) and phospho-P70S6K (Ser418), 8 h after low-dose radiation. Our findings suggest that low-dose radiation of normal fibroblast cells activates the expression of phospho-NFκB (Ser536) and phospho-P70S6K (Ser418) in the absence of genomic instability. Therefore, these proteins may be involved in DNA damage repair processes.

  19. Molecular and functional profiling of histamine receptor-mediated calcium ion signals in different cell lines.

    Science.gov (United States)

    Meisenberg, Annika; Kaschuba, Dagmar; Balfanz, Sabine; Jordan, Nadine; Baumann, Arnd

    2015-10-01

    Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Isotropic 3D nuclear morphometry of normal, fibrocystic and malignant breast epithelial cells reveals new structural alterations.

    Science.gov (United States)

    Nandakumar, Vivek; Kelbauskas, Laimonas; Hernandez, Kathryn F; Lintecum, Kelly M; Senechal, Patti; Bussey, Kimberly J; Davies, Paul C W; Johnson, Roger H; Meldrum, Deirdre R

    2012-01-01

    Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D) objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria. We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure. We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio) between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At pfibrocystic from the metastatic cell populations. Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the value of automated quantitative 3D nuclear morphometry as an objective tool to enable development of sensitive and specific nuclear grade classification in breast cancer diagnosis.

  1. HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution.

    Science.gov (United States)

    Stepanenko, A A; Dmitrenko, V V

    2015-09-15

    293 cell line (widely known as the Human Embryonic Kidney 293 cells) and its derivatives were the most used cells after HeLa in cell biology studies and after CHO in biotechnology as a vehicle for the production of adenoviral vaccines and recombinant proteins, for analysis of the neuronal synapse formation, in electrophysiology and neuropharmacology. Despite the historically long-term productive exploitation, the origin, phenotype, karyotype, and tumorigenicity of 293 cells are still debated. 293 cells were considered the kidney epithelial cells or even fibroblasts. However, 293 cells demonstrate no evident tissue-specific gene expression signature and express the markers of renal progenitor cells, neuronal cells and adrenal gland. This complicates efforts to reveal the authentic cell type/tissue of origin. On the other hand, the potential to propagate the highly neurotropic viruses, inducible synaptogenesis, functionality of the endogenous neuron-specific voltage-gated channels, and response to the diverse agonists implicated in neuronal signaling give credibility to consider 293 cells of neuronal lineage phenotype. The compound phenotype of 293 cells can be due to heterogeneous, unstable karyotype. The mean chromosome number and chromosome aberrations differ between 293 cells and derivatives as well as between 293 cells from the different cell banks/labs. 293 cells are tumorigenic, whereas acute changes of expression of the cancer-associated genes aggravate tumorigenicity by promoting chromosome instability. Importantly, the procedure of a stable empty vector transfection can also impact karyotype and phenotype. The discussed issues caution against misinterpretations and pitfalls during the different experimental manipulations with 293 cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Attenuation of radiation-induced DNA damage due to paracrine interactions between normal human epithelial and stromal cells

    International Nuclear Information System (INIS)

    Saenko, V.A.; Nakazawa, Yu.; Rogounovitch, T.I.; Suzuki, K.; Mitsutake, N.; Matsuse, M.; Yamashita, S.

    2007-01-01

    Complete text of publication follows. Objective: Developmentally, every tissue accommodates different types of cells, such as epitheliocytes and stromal cells in parenchymal organs. To better understand the complexity of radiation response, it is necessary to evaluate possible cross-talk between different tissue components. This work was set out to investigate reciprocal influence of normal human epithelial cells and fibroblasts on the extent of radiation-induced DNA damage. Methods: Model cultures of primary human thyrocytes (PT), normal diploid fibroblasts (BJ), PT/BJ cell co-culture and conditioned medium transfer were used to examine DNA damage in terms of γ-H2AX foci number per cell or by Comet assay after exposure to different doses of γ-rays. Results: In co-cultures, the kinetics of γ-H2AX foci number change was dose-dependent and similar to that in individual PT and BJ cultures. The number of γ-H2AX foci in co-cultures was significantly lower (∼25%) in both types of cells comparing to individual cultures. Reciprocal conditioned medium transfer to individual counterpart cells prior to irradiation resulted in approximately 35% reduction in the number γ-H2AX foci at 1 Gy and lower doses in both PT and BJ demonstrating the role of paracrine soluble factors. Comet assay corroborated the results of γ-H2AX foci counting in conditioned medium transfer experiments. In contrast to medium conditioned on PT cells, conditioned medium collected from several human thyroid cancer cell lines failed to establish DNA-protected state in BJ fibroblasts. In its turn, medium conditioned on BJ cells did not change the extent of radiation-induced DNA damage in cancer cell lines tested. Conclusion: The results imply the existence of a network of soluble factor-mediated paracrine interactions between normal epithelial and stromal cells that could be a part of natural mechanism by which cells protect DNA from genotoxic stress.

  3. ADAMTS-1 Is Found in the Nuclei of Normal and Tumoral Breast Cells.

    Directory of Open Access Journals (Sweden)

    Suély V Silva

    Full Text Available Proteins secreted in the extracellular matrix microenvironment (ECM by tumor cells are involved in cell adhesion, motility, intercellular communication and invasion. The tumor microenvironment is expansively modified and remodeled by proteases, resulting in important changes in both cell-cell and cell-ECM interactions and in the generation of new signals from the cell surface. Metalloproteinases belonging to the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs family have been implicated in tissue remodeling events observed in cancer development, growth and progression. Here we investigated the subcellular localization of ADAMTS-1 in normal-like (MCF10-A and tumoral (MCF7 and MDA-MB-231 human breast cells. ADAMTS-1 is a secreted protease found in the extracellular matrix. However, in this study we show for the first time that ADAMTS-1 is also present in the nuclei and nucleoli of the three mammary cell lines studied here. Our findings indicate that ADAMTS-1 has proteolytic functions in the nucleus through its interaction with aggrecan substrate.

  4. Regulation of normal B-cell differentiation and malignant B-cell survival by OCT2.

    Science.gov (United States)

    Hodson, Daniel J; Shaffer, Arthur L; Xiao, Wenming; Wright, George W; Schmitz, Roland; Phelan, James D; Yang, Yandan; Webster, Daniel E; Rui, Lixin; Kohlhammer, Holger; Nakagawa, Masao; Waldmann, Thomas A; Staudt, Louis M

    2016-04-05

    The requirement for the B-cell transcription factor OCT2 (octamer-binding protein 2, encoded by Pou2f2) in germinal center B cells has proved controversial. Here, we report that germinal center B cells are formed normally after depletion of OCT2 in a conditional knockout mouse, but their proliferation is reduced and in vivo differentiation to antibody-secreting plasma cells is blocked. This finding led us to examine the role of OCT2 in germinal center-derived lymphomas. shRNA knockdown showed that almost all diffuse large B-cell lymphoma (DLBCL) cell lines are addicted to the expression of OCT2 and its coactivator OCA-B. Genome-wide chromatin immunoprecipitation (ChIP) analysis and gene-expression profiling revealed the broad transcriptional program regulated by OCT2 that includes the expression of STAT3, IL-10, ELL2, XBP1, MYC, TERT, and ADA. Importantly, genetic alteration of OCT2 is not a requirement for cellular addiction in DLBCL. However, we detected amplifications of the POU2F2 locus in DLBCL tumor biopsies and a recurrent mutation of threonine 223 in the DNA-binding domain of OCT2. This neomorphic mutation subtly alters the DNA-binding preference of OCT2, leading to the transactivation of noncanonical target genes including HIF1a and FCRL3 Finally, by introducing mutations designed to disrupt the OCT2-OCA-B interface, we reveal a requirement for this protein-protein interface that ultimately might be exploited therapeutically. Our findings, combined with the predominantly B-cell-restricted expression of OCT2 and the absence of a systemic phenotype in our knockout mice, suggest that an OCT2-targeted therapeutic strategy would be efficacious in both major subtypes of DLBCL while avoiding systemic toxicity.

  5. In-vitro secretion of inhibin-like activity by Sertoli cells from normal and prenatally irradiated immature rats

    International Nuclear Information System (INIS)

    Ultee-van Gessel, A.M.; Leemborg, F.G.; Jong, F.H. de; Molen, H.J. van der

    1986-01-01

    The influence of in-vitro conditions on the production of inhibin by Sertoli cells from 21-day-old normal and prenatally irradiated rat testes was studied by measuring inhibin activity in culture media, using the suppression of the release of FSH from cultured rat pituitary cells. Sertoli cells secreted inhibin-like activity during at least 21 days of culture, and cells cultured at 37 0 C produced significantly more inhibin than those cultured at 32 0 C. The presence of fetal calf serum had no significant effect on inhibin production at 32 0 C, while at 37 0 C the production was decreased. The presence of ovine FSH stimulated inhibin secretion, while inhibin concentrations in Sertoli cell culture media were decreased after the addition of testosterone. Testosterone, added together with ovine FSH, suppressed inhibin secretion when compared with the levels found in the presence of FSH alone. The presence of spermatogenic cells decreased the release of inhibin. From these results it was concluded that both Sertoli cells isolated from normal immature rat testes and those from testes without spermatogenic cells can secrete inhibin-like activity in culture. A number of discrepancies with in-vivo observations was observed. (author)

  6. [Study on detoxication of kansui radix on normal liver cells LO2 after stir-baking with vinegar].

    Science.gov (United States)

    Yan, Xiaojing; Zhang, Li; Li, Lin; Cao, Yudan; Li, Zhengjun; Tang, Yuping; Ding, Anwei

    2012-06-01

    To compare the toxicity on normal liver cells LO2 before and after Kansui Radix stir-baked with vinegar, and make a preliminary study on the mechanism of detoxication of Kansui Radix stir-baked with vinegar. The MTT method was adopted to detect the cell activity, with normal liver cells LO2 as the study object. The morphology of cells were observed, and the level or content of AST, ALT, LDH, SOD, Na+-K+-ATPase, Ca2+-Mg2+ -ATPase, GSH and MDA were determined in cell culture supernatant and splitting supernatant. Compared with the control group, Kansui can obviously inhibit the cell activity (P baked with vinegar can significantly decrease the cell proliferation inhibition and the trend of morphological variation, and obviously decrease the levels of ALT, AST, and LDH (P baking with rice vinegar can release the hepatotoxicity of Kansui Radix. Its possible mechanism was that Kansui Radix stir-baked with vinegar can decrease the influence of Kansui Radix on the permeability of liver cells LO2 membrane and oxidative damage, in order to provide basis for further exploration of the detoxication mechanism of Kansui Radix stir-baked with vinegar.

  7. Insulin resistance according to β-cell function in women with polycystic ovary syndrome and normal glucose tolerance.

    Directory of Open Access Journals (Sweden)

    Do Kyeong Song

    Full Text Available Polycystic ovary syndrome (PCOS is associated with insulin resistance (IR and compensatory hyperinsulinemia. IR is recognized as a major risk factor for the development of type 2 diabetes mellitus. However, few studies have investigated IR in women with PCOS and normal glucose tolerance. The objective of this study was to evaluate IR and β-cell function in women with PCOS and normal glucose tolerance. Additionally, we sought to evaluate the usefulness of oral glucose tolerance test (OGTT-derived IR indices in lean women with PCOS.We recruited 100 women with PCOS and normal glucose tolerance and 100 age- and BMI-matched women as controls. IR and insulin secretory indices, including the homeostasis-model assessment (HOMA-IR, HOMA-M120, HOMA-F and the Stumvoll index, were calculated from an OGTT. Increased β-cell function was defined as>75th percentile for the HOMA-F in control women.Women with PCOS had higher values for post-load 2-hour glucose, fasting insulin, post-load 2-hour insulin, HOMA-IR, HOMA-M120, HOMA-F and lower values for the Stumvoll index than the controls (all Ps<0.05. Women with PCOS and increased β-cell function showed lower Stumvoll index values than the matched controls (P<0.05. The HOMA-F was significantly associated with the HOMA-M120 and Stumvoll index when adjusted for age and BMI in a multiple regression analysis (all Ps<0.05. The HOMA-M120 was positively correlated with triglycerides and free testosterone, and the Stumvoll index was negatively correlated with triglycerides and free testosterone in lean women with PCOS (all Ps<0.05.Women with PCOS and normal glucose tolerance showed higher IR than controls matched for age, BMI, and β-cell function. β-cell function was increased in women with PCOS when compared to the matched controls, but not when the lean subjects were compared to the matched controls separately. Therefore, early evaluation of IR in women with PCOS and normal glucose tolerance may be needed.

  8. HIV enteropathy: HAART reduces HIV-induced stem cell hyperproliferation and crypt hypertrophy to normal in jejunal mucosa.

    Science.gov (United States)

    Batman, Philip A; Kapembwa, Moses S; Belmonte, Liliana; Tudor, Gregory; Kotler, Donald P; Potten, Christopher S; Booth, Catherine; Cahn, Pedro; Griffin, George E

    2014-01-01

    To analyse the structural and kinetic response of small intestinal crypt epithelial cells including stem cells to highly active antiretroviral therapy (HAART). Crypt size and proliferative activity of transit and stem cells in jejunal mucosa were quantified using morphometric techniques. Crypt length was measured by counting the number of enterocytes along one side of a number of crypts in each biopsy specimen and the mean crypt length was calculated. Proliferating crypt cells were identified with MIB-1 monoclonal antibody, and the percentage of crypt cells in proliferation was calculated at each cell position along the length of the crypt (proliferation index). Data were obtained from 9 HIV-positive test patients co-infected with microsporidia, 34 HIV-positive patients receiving HAART and 13 control cases. Crypt length was significantly greater in test patients than in controls, but crypt length in patients receiving HAART was normal. The proliferation index was greater in test subjects than in controls in stem and transit cell compartments, and was decreased in patients treated with HAART only in the stem cell region of the crypt. Villous atrophy in HIV enteropathy is attributed to crypt hypertrophy and encroachment of crypt cells onto villi. HAART restores normal crypt structure by inhibition of HIV-driven stem cell hyperproliferation at the crypt bases.

  9. Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma.

    Science.gov (United States)

    Zhao, Q; He, Y; Wang, X-L; Zhang, Y-X; Wu, Y-M

    2015-08-01

    To explore the differentially expressed proteins in normal cervix, cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) tissues by differential proteomics technique. Cervical tissues (including normal cervix, CIN and CSCC) were collected in Department of Gynecologic Oncology of Beijing Obstetrics and Gynecology Hospital. Two-dimensional fluorescence difference in gel electrophoresis (2-D DIGE) and DeCyder software were used to detect the differentially expressed proteins. Matrix-assisted laser desorption/ionization-time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) was used to identify the differentially expressed proteins. Western blot (WB) and immunohistochemistry (IHC) were performed to validate the expressions of selected proteins among normal cervix, CIN and CSCC. 2-D DIGE images with high resolution and good repeatability were obtained. Forty-six differentially expressed proteins (27 up-regulated and 19 down-regulated) were differentially expressed among the normal cervix, CIN and CSCC. 26 proteins were successfully identified by MALDI-TOF/TOF MS. S100A9 (S100 calcium-binding protein A9) was the most significantly up-regulated protein. Eukaryotic elongation factor 1-alpha-1 (eEF1A1) was the most significantly down-regulated protein. Pyruvate kinase isozymes M2 (PKM2) was both up-regulated and down-regulated. The results of WB showed that with the increase in the severity of cervical lesions, the expression of S100A9 protein was significantly increased among the three groups (P = 0.010). The expression of eEF1A1 was reduced but without significant difference (P = 0.861). The expression of PKM2 was significantly reduced (P = 0.000). IHC showed that protein S100A9 was mainly expressed in the cytoplasm, and its positive expression rate was 20.0 % in normal cervix, 70.0 % in CIN and 100.0 % in CSCC, with a significant difference among them (P = 0.006). eEF1A1 was mainly expressed in the cell plasma, and its

  10. Multiplexed expression and screening for recombinant protein production in mammalian cells

    Directory of Open Access Journals (Sweden)

    McCafferty John

    2006-12-01

    Full Text Available Abstract Background A variety of approaches to understanding protein structure and function require production of recombinant protein. Mammalian based expression systems have advantages over bacterial systems for certain classes of protein but can be slower and more laborious. Thus the availability of a simple system for production and rapid screening of constructs or conditions for mammalian expression would be of great benefit. To this end we have coupled an efficient recombinant protein production system based on transient transfection in HEK-293 EBNA1 (HEK-293E suspension cells with a dot blot method allowing pre-screening of proteins expressed in cells in a high throughput manner. Results A nested PCR approach was used to clone 21 extracellular domains of mouse receptors as CD4 fusions within a mammalian GATEWAY expression vector system. Following transient transfection, HEK-293E cells grown in 2 ml cultures in 24-deep well blocks showed similar growth kinetics, viability and recombinant protein expression profiles, to those grown in 50 ml shake flask cultures as judged by western blotting. Following optimisation, fluorescent dot blot analysis of transfection supernatants was shown to be a rapid method for analysing protein expression yielding similar results as western blot analysis. Addition of urea enhanced the binding of glycoproteins to a nitrocellulose membrane. A good correlation was observed between the results of a plate based small scale transient transfection dot blot pre-screen and successful purification of proteins expressed at the 50 ml scale. Conclusion The combination of small scale multi-well plate culture and dot blotting described here will allow the multiplex analysis of different mammalian expression experiments enabling a faster identification of high yield expression constructs or conditions prior to large scale protein production. The methods for parallel GATEWAY cloning and expression of multiple constructs in cell

  11. Evaluation of the transforming growth factor-beta activity in normal and dry eye human tears by CCL-185 cell bioassay.

    Science.gov (United States)

    Zheng, Xiaofen; De Paiva, Cintia S; Rao, Kavita; Li, De-Quan; Farley, William J; Stern, Michael; Pflugfelder, Stephen C

    2010-09-01

    To develop a new bioassay method using human lung epithelial cells (CCL-185) to assess activity of transforming growth factor beta (TGF-beta) in human tear fluid from normal subjects and patients with dry eye. Two epithelial cell lines, mink lung cells (CCL-64) and human lung cells (CCL-185), were compared to detect the active form of TGF-beta by BrdU incorporation (quantitation of cell DNA synthesis) and WST assay (metabolic activity of viable cells). The effect of TGF-beta on the growth of CCL-185 cells was observed microscopically. Human tears from normal control subjects and patients with dry eye (DE) with and without Sjögren syndrome were evaluated for TGF-beta concentration by Luminex microbead assay, and TGF-beta activity by the CCL-185 cell growth inhibition bioassay. The metabolic activity of viable CCL-185 cells, measured by WST, was shown to be proportional to the TGF-beta1 concentration (R = 0.919) and confirmed by BrdU assay (R = 0.969). Compared with CCL-185, metabolic activity of viable cells and DNA synthesis, measured by WST and BrdU incorporation assays, were shown to be less proportional to the TGF-beta1 concentration in the CCL-64 line (R = 0.42 and 0.17, respectively). Coincubation with human anti-TGF-beta1 antibody (MAB-240) yielded a dose-dependent inhibition of TGF-beta1 (0.3 ng/mL) activity. CCL-185 cell growth observed microscopically was noted to decrease in response to increasing TGF-beta1 concentrations. Levels of immuodetectable TGF-beta1 and TGF-beta2 were similar in normal and DE tears. TGF-beta bioactivity in DE human tears measured by the CCL-185 cells assay was found to be higher (9777.5 +/- 10481.9 pg/mL) than those in normal controls (4129.3 +/- 1342.9 pg/mL) (P tears and 37.6% TGF-beta in normal tears were found to be biologically active. The CCL-185 cell assay was found to be a suitable tool for assessing TGF-beta activity in human tears. Tear TGF-beta bioactivity increases in DE, particularly in Sjögren syndrome, where

  12. Controversial Effects of D-Amino Acid Oxidase Activator (DAOA)/G72 on D-Amino Acid Oxidase (DAO) Activity in Human Neuronal, Astrocyte and Kidney Cell Lines: The N-methyl D-aspartate (NMDA) Receptor Hypofunction Point of View.

    Science.gov (United States)

    Jagannath, Vinita; Brotzakis, Zacharias Faidon; Parrinello, Michele; Walitza, Susanne; Grünblatt, Edna

    2017-01-01

    Dysfunction of D-amino acid oxidase ( DAO ) and DAO activator ( DAOA )/ G72 genes have been linked to neuropsychiatric disorders. The glutamate hypothesis of schizophrenia has proposed that increased DAO activity leads to decreased D-serine, which subsequently may lead to N-methyl-D-aspartate (NMDA) receptor hypofunction. It has been shown that DAOA binds to DAO and increases its activity. However, there are also studies showing DAOA decreases DAO activity. Thus, the effect of DAOA on DAO is controversial. We aimed to understand the effect of DAOA on DAO activity in neuron-like (SH-SY5Y), astrocyte-like (1321N1) and kidney-like (HEK293) human cell lines. DAO activity was measured based on the release of hydrogen peroxide and its interaction with Amplex Red reagent. We found that DAOA increases DAO activity only in HEK293 cells, but has no effect on DAO activity in SH-SY5Y and 1321N1 cells. This might be because of different signaling pathways, or due to lower DAO and DAOA expression in SH-SY5Y and 1321N1 cells compared to HEK293 cells, but also due to different compartmentalization of the proteins. The lower DAO and DAOA expression in neuron-like SH-SY5Y and astrocyte-like 1321N1 cells might be due to tightly regulated expression, as previously reported in the human post-mortem brain. Our simulation experiments to demonstrate the interaction between DAOA and human DAO (hDAO) showed that hDAO holoenzyme [hDAO with flavine adenine dinucleotide (FAD)] becomes more flexible and misfolded in the presence of DAOA, whereas DAOA had no effect on hDAO apoprotein (hDAO without FAD), which indicate that DAOA inactivates hDAO holoenzyme. Furthermore, patch-clamp analysis demonstrated no effect of DAOA on NMDA receptor activity in NR1/NR2A HEK293 cells. In summary, the interaction between DAO and DAOA seems to be cell type and its biochemical characteristics dependent which still needs to be elucidated.

  13. Controversial Effects of D-Amino Acid Oxidase Activator (DAOA/G72 on D-Amino Acid Oxidase (DAO Activity in Human Neuronal, Astrocyte and Kidney Cell Lines: The N-methyl D-aspartate (NMDA Receptor Hypofunction Point of View

    Directory of Open Access Journals (Sweden)

    Vinita Jagannath

    2017-10-01

    Full Text Available Dysfunction of D-amino acid oxidase (DAO and DAO activator (DAOA/G72 genes have been linked to neuropsychiatric disorders. The glutamate hypothesis of schizophrenia has proposed that increased DAO activity leads to decreased D-serine, which subsequently may lead to N-methyl-D-aspartate (NMDA receptor hypofunction. It has been shown that DAOA binds to DAO and increases its activity. However, there are also studies showing DAOA decreases DAO activity. Thus, the effect of DAOA on DAO is controversial. We aimed to understand the effect of DAOA on DAO activity in neuron-like (SH-SY5Y, astrocyte-like (1321N1 and kidney-like (HEK293 human cell lines. DAO activity was measured based on the release of hydrogen peroxide and its interaction with Amplex Red reagent. We found that DAOA increases DAO activity only in HEK293 cells, but has no effect on DAO activity in SH-SY5Y and 1321N1 cells. This might be because of different signaling pathways, or due to lower DAO and DAOA expression in SH-SY5Y and 1321N1 cells compared to HEK293 cells, but also due to different compartmentalization of the proteins. The lower DAO and DAOA expression in neuron-like SH-SY5Y and astrocyte-like 1321N1 cells might be due to tightly regulated expression, as previously reported in the human post-mortem brain. Our simulation experiments to demonstrate the interaction between DAOA and human DAO (hDAO showed that hDAO holoenzyme [hDAO with flavine adenine dinucleotide (FAD] becomes more flexible and misfolded in the presence of DAOA, whereas DAOA had no effect on hDAO apoprotein (hDAO without FAD, which indicate that DAOA inactivates hDAO holoenzyme. Furthermore, patch-clamp analysis demonstrated no effect of DAOA on NMDA receptor activity in NR1/NR2A HEK293 cells. In summary, the interaction between DAO and DAOA seems to be cell type and its biochemical characteristics dependent which still needs to be elucidated.

  14. Exposure to febrile-range hyperthermia potentiates Wnt signalling and epithelial-mesenchymal transition gene expression in lung epithelium.

    Science.gov (United States)

    Potla, Ratnakar; Tulapurkar, Mohan E; Luzina, Irina G; Atamas, Sergei P; Singh, Ishwar S; Hasday, Jeffrey D

    2018-02-01

    As environmental and body temperatures vary, lung epithelial cells experience temperatures significantly different from normal core temperature. Our previous studies in human lung epithelium showed that: (i) heat shock accelerates wound healing and activates profibrotic gene expression through heat shock factor-1 (HSF1); (ii) HSF1 is activated at febrile temperatures (38-41 °C) and (iii) hypothermia (32 °C) activates and hyperthermia (39.5 °C) reduces expression of a subset of miRNAs that target protein kinase-Cα (PKCα) and enhance proliferation. We analysed the effect of hypo- and hyperthermia exposure on Wnt signalling by exposing human small airway epithelial cells (SAECs) and HEK293T cells to 32, 37 or 39.5 °C for 24 h, then analysing Wnt-3a-induced epithelial-mesenchymal transition (EMT) gene expression by qRT-PCR and TOPFlash reporter plasmid activity. Effects of miRNA mimics and inhibitors and the HSF1 inhibitor, KNK437, were evaluated. Exposure to 39.5 °C for 24 h increased subsequent Wnt-3a-induced EMT gene expression in SAECs and Wnt-3a-induced TOPFlash activity in HEK293T cells. Increased Wnt responsiveness was associated with HSF1 activation and blocked by KNK437. Overexpressing temperature-responsive miRNA mimics reduced Wnt responsiveness in 39.5 °C-exposed HEK293T cells, but inhibitors of the same miRNAs failed to restore Wnt responsiveness in 32 °C-exposed HEK293T cells. Wnt responsiveness, including expression of genes associated with EMT, increases after exposure to febrile-range temperature through an HSF1-dependent mechanism that is independent of previously identified temperature-dependent miRNAs. This process may be relevant to febrile fibrosing lung diseases, including the fibroproliferative phase of acute respiratory distress syndrome (ARDS) and exacerbations of idiopathic pulmonary fibrosis (IPF).

  15. Comparison of heat and/or radiation sensitivity and membrane composition of seven X-ray-transformed C3H 10T1/2 cell lines and normal C3H 10T1/2 cells

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Vadasz, J.A.; Azzam, E.I.; Sargent, M.D.; Borsa, J.; Einspenner, M.

    1985-01-01

    C3H 10T1/2 mouse embryo cells were transformed by X-irradiation, and seven transformed clones were isolated and propagated as cell lines. Some of these cell lines produced tumors in syngeneic mice and grew in agarose while the normal C3H 10T1/2 cell line did not possess these characteristics. Exponentially growing cell cultures with comparable cell-cycle distributions as measured by flow cytometry were tested for heat and X-ray sensitivity. The heat and X-ray sensitivity varied randomly compared to the normal cell line. One cell line was more heat resistant and one more heat sensitive than the normal cell line, and the others had sensitivities comparable to the normal cell line. Measurements on some of the biochemical parameters of the particulate fraction of cells after sonication and 24,000 X g centrifugation showed that altered thermal sensitivity was not correlated with protein, cholesterol, or phospholipid content of this fraction

  16. Influence of lead on normal and abnormal cell-growth and on certain organs

    Energy Technology Data Exchange (ETDEWEB)

    Bell, W B

    1924-02-09

    The general poisonous effects of lead are described. Descriptions and discussions are presented concerning the toxic effects of lead preparations on heart, intestine, uterus, kidney, and blood. The influence of lead on normal growth is discussed, including effects on the development of hyacynth bulbs, the germination of seeds, the germination of frog's eggs, and the growth of tadpoles. The influences of lead on the cells concerned in the implantation of the ovum are also discussed. The effects of lead on abnormal cell growth are discussed. 17 references, 8 figures.

  17. Do early premalignant changes in normal breast epithelial cells predict cancer development?

    International Nuclear Information System (INIS)

    Clarke, Robert B; Bundred, Nigel J

    2005-01-01

    A recent report suggests that, in an in vitro model of premalignant breast cells (vHMECs), silencing of INK4A gene is accompanied by over-expression of cyclo-oxygenase (COX)-2. This suggests that COX-2 over-expression may be an early event in breast cancer aetiology permitting clones within the normal epithelium to evade apoptosis, to increase their numbers and perhaps acquire further changes that promote the formation of hyperplasias, and eventually carcinomas. While COX-2 expression in normal breast epithelium in vivo has not been proven to be linked to an increased risk of breast cancer, its over-expression in the premalignant model in vitro does provide preliminary evidence that COX-2 inhibition may be a useful chemoprevention strategy

  18. Multidrug and toxin extrusion proteins mediate cellular transport of cadmium

    International Nuclear Information System (INIS)

    Yang, Hong; Guo, Dong; Obianom, Obinna N.; Su, Tong; Polli, James E.; Shu, Yan

    2017-01-01

    Cadmium (Cd) is an environmentally prevalent toxicant posing increasing risk to human health worldwide. As compared to the extensive research in Cd tissue accumulation, little was known about the elimination of Cd, particularly its toxic form, Cd ion (Cd 2+ ). In this study, we aimed to examine whether Cd 2+ is a substrate of multidrug and toxin extrusion proteins (MATEs) that are important in renal xenobiotic elimination. HEK-293 cells overexpressing the human MATE1 (HEK-hMATE1), human MATE2-K (HEK-hMATE2-K) and mouse Mate1 (HEK-mMate1) were used to study the cellular transport and toxicity of Cd 2+ . The cells overexpressing MATEs showed a 2–4 fold increase of Cd 2+ uptake that could be blocked by the MATE inhibitor cimetidine. A saturable transport profile was observed with the Michaelis-Menten constant (K m ) of 130 ± 15.8 μM for HEK-hMATE1; 139 ± 21.3 μM for HEK-hMATE2-K; and 88.7 ± 13.5 μM for HEK-mMate1, respectively. Cd 2+ could inhibit the uptake of metformin, a substrate of MATE transporters, with the half maximal inhibitory concentration (IC 50 ) of 97.5 ± 6.0 μM, 20.2 ± 2.6 μM, and 49.9 ± 6.9 μM in HEK-hMATE1, HEK-hMATE2-K, and HEK-mMate1 cells, respectively. In addition, hMATE1 could transport preloaded Cd 2+ out of the HEK-hMATE1 cells, thus resulting in a significant decrease of Cd 2+ -induced cytotoxicity. The present study has provided the first evidence supporting that MATEs transport Cd 2+ and may function as cellular elimination machinery in Cd intoxication. - Highlights: • Cadmium is an environmentally prevalent toxicant. • Little was known regarding the elimination and detoxification of cadmium. • Cadmium ion is here demonstrated as a substrate of MATE transporters. • MATEs may function as cellular elimination machinery in cadmium detoxification.

  19. Induction of TLR-2 and TLR-5 expression by Helicobacter pylori switches cagPAI-dependent signalling leading to the secretion of IL-8 and TNF-α.

    Directory of Open Access Journals (Sweden)

    Suneesh Kumar Pachathundikandi

    2011-05-01

    Full Text Available Helicobacter pylori is the causative agent for developing gastritis, gastric ulcer, and even gastric cancer. Virulent strains carry the cag pathogenicity island (cagPAI encoding a type-IV secretion system (T4SS for injecting the CagA protein. However, mechanisms of sensing this pathogen through Toll-like receptors (TLRs and downstream signalling pathways in the development of different pathologies are widely unclear. Here, we explored the involvement of TLR-2 and TLR-5 in THP-1 cells and HEK293 cell lines (stably transfected with TLR-2 or TLR-5 during infection with wild-type H. pylori and isogenic cagPAI mutants. H. pylori triggered enhanced TLR-2 and TLR-5 expression in THP-1, HEK293-TLR2 and HEK293-TLR5 cells, but not in the HEK293 control. In addition, IL-8 and TNF-α cytokine secretion in THP-1 cells was induced in a cagPAI-dependent manner. Furthermore, we show that HEK293 cells are not competent for the uptake of T4SS-delivered CagA, and are therefore ideally suited for studying TLR signalling in the absence of T4SS functions. HEK293 control cells, which do not induce TLR-2 and TLR-5 expression during infection, only secreted cytokines in small amounts, in agreement with T4SS functions being absent. In contrast, HEK293-TLR2 and HEK293-TLR5 cells were highly competent for inducing the secretion of IL-8 and TNF-α cytokines in a cagPAI-independent manner, suggesting that the expression of TLR-2 or TLR-5 has profoundly changed the capability to trigger pro-inflammatory signalling upon infection. Using phospho-specific antibodies and luciferase reporter assays, we further demonstrate that H. pylori induces IRAK-1 and IκB phosphorylation in a TLR-dependent manner, and this was required for activation of transcription factor NF-κB. Finally, NF-κB activation in HEK293-TLR2 and HEK293-TLR5 cells was confirmed by expressing p65-GFP which was translocated from the cytoplasm into the nucleus. These data indicate that H. pylori-induced expression

  20. Sezary syndrome cells unlike normal circulating T lymphocytes fail to migrate following engagement of NT1 receptor.

    Science.gov (United States)

    Magazin, Marilyn; Poszepczynska-Guigné, Ewa; Bagot, Martine; Boumsell, Laurence; Pruvost, Christelle; Chalon, Pascale; Culouscou, Jean-Michel; Ferrara, Pascual; Bensussan, Armand

    2004-01-01

    Circulating malignant Sezary cells are a clonal proliferation of CD4+CD45RO+ T lymphocytes primarily involving the skin. To study the biology of these malignant T lymphocytes, we tested their ability to migrate in chemotaxis assays. Previously, we had shown that the neuropeptide neurotensin (NT) binds to freshly isolated Sezary malignant cells and induces through NT1 receptors the cell migration of the cutaneous T cell lymphoma cell line Cou-L. Here, we report that peripheral blood Sezary cells as well as the Sezary cell line Pno fail to migrate in response to neurotensin although they are capable of migrating to the chemokine stromal-cell-derived factor 1 alpha. This is in contrast with normal circulating CD4+ or CD8+ lymphocytes, which respond to both types of chemoattractants except after ex vivo short-time anti-CD3 monoclonal antibody activation, which abrogates the neurotensin-induced lymphocyte migration. Furthermore, we demonstrate that neurotensin-responsive T lymphocytes express the functional NT1 receptor responsible for chemotaxis. In these cells, but not in Sezary cells, neurotensin induces recruitment of phosphatidylinositol-3 kinase, and redistribution of phosphorylated cytoplasmic tyrosine kinase focal adhesion kinase and filamentous actin. Taken together, these results, which show functional distinctions between normal circulating lymphocytes and Sezary syndrome cells, contribute to further understanding of the physiopathology of these atypical cells.

  1. Knockdown of αII spectrin in normal human cells by siRNA leads to chromosomal instability and decreased DNA interstrand cross-link repair

    OpenAIRE

    McMahon, Laura W.; Zhang, Pan; Sridharan, Deepa M.; Lefferts, Joel A.; Lambert, Muriel W.

    2009-01-01

    Nonerythroid α-spectrin (αIISp) is a structural protein involved in repair of DNA interstrand cross-links and is deficient in cells from patients with Fanconi anemia (FA), which are defective in ability to repair cross-links. In order to further demonstrate the importance of the role that αIISp plays in normal human cells and in the repair defect in FA, αIISp was knocked down in normal cells using siRNA. Depletion of αIISp in normal cells by siRNA resulted in chromosomal instability and cellu...

  2. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    International Nuclear Information System (INIS)

    Youakim, A.; Herscovics, A.

    1985-01-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-[2- 3 H]mannose or L-[5,6- 3 H]fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with [2- 3 H]mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with [2- 3 H]mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-[1,6- 3 H]glucosamine and L-[1- 14 C]fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced 3 H-labeled N-acetylglucosamine and N-acetylgalactosamine

  3. Inflammatory Cytokine Tumor Necrosis Factor α Confers Precancerous Phenotype in an Organoid Model of Normal Human Ovarian Surface Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Joseph Kwong

    2009-06-01

    Full Text Available In this study, we established an in vitro organoid model of normal human ovarian surface epithelial (HOSE cells. The spheroids of these normal HOSE cells resembled epithelial inclusion cysts in human ovarian cortex, which are the cells of origin of ovarian epithelial tumor. Because there are strong correlations between chronic inflammation and the incidence of ovarian cancer, we used the organoid model to test whether protumor inflammatory cytokine tumor necrosis factor α would induce malignant phenotype in normal HOSE cells. Prolonged treatment of tumor necrosis factor α induced phenotypic changes of the HOSE spheroids, which exhibited the characteristics of precancerous lesions of ovarian epithelial tumors, including reinitiation of cell proliferation, structural disorganization, epithelial stratification, loss of epithelial polarity, degradation of basement membrane, cell invasion, and overexpression of ovarian cancer markers. The result of this study provides not only an evidence supporting the link between chronic inflammation and ovarian cancer formation but also a relevant and novel in vitro model for studying of early events of ovarian cancer.

  4. Experimental study on the start-up with dry gases from normal cell temperatures in self-humidified proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Kong, Im Mo; Jung, Aeri; Kim, Beom Jun; Baik, Kyung Don; Kim, Min Soo

    2015-01-01

    In this study, the start-up characteristics of PEMFCs (proton exchange membrane fuel cells) was investigated with dry gases from normal cell temperatures above 0 °C. Firstly, the effects of flow arrangements (co-flow and counter-flow) were evaluated at a starting cell temperature of 25 °C. Then, the start-up was successful in both arrangements, but it showed better performance with counter-flow. In addition, the hydrogen concentration was measured and it showed that hydrogen crossover contributes to the membrane hydration and the first phase of dry start-up. However, although the cell temperature rose above 45 °C after start-up form 25 °C with counter-flow arrangement, the restart-up after shut-down failed at a starting cell temperature of 45 °C regardless of flow arrangements. Considering the needs of restart-up, the available starting cell temperature should be improved. For this, after first sub-step of start-up process, relatively low flow rates were maintained to retain produced water without purge so that the membrane can be hydrated sufficiently. With this modified process, denominated as WSP (water storage process) in this study, the dry start-up became successful at a starting cell temperature of 45 °C and the cell performance was remarkably improved especially with counter-flow arrangement. - Highlights: • Start-up with dry gases from normal cell temperatures was investigated. • Counter-flow arrangement showed better performance over co-flow arrangement. • Water is produced by hydrogen crossover and its direct reaction with oxygen at cathode side. • It prevents the membrane dehydration and helps the start-up during the first phase of the process. • Available starting cell temperature and cell performance could be improved with WSP.

  5. Generation of induced pluripotent stem cell line (ZZUi011-A from urine sample of a normal human

    Directory of Open Access Journals (Sweden)

    Huifang Sun

    2018-05-01

    Full Text Available Urine cells collected from 200 mL clean midsection urine of a 25-year-old healthy man were reprogrammed into pluripotent stem cells via Sendai virus delivery system. The induced pluripotent stem cells showed a normal karyotype and exhibited the potential to differentiate into three germ layers in a teratoma assay. This cell line may serve as a useful control for comparison with other pluripotent stem cell lines induced from somatic cells of patients with genetic neurodegenerative disorders.

  6. Cytotoxicity of Portuguese Propolis: The Proximity of the In Vitro Doses for Tumor and Normal Cell Lines

    Directory of Open Access Journals (Sweden)

    Ricardo C. Calhelha

    2014-01-01

    Full Text Available With a complex chemical composition rich in phenolic compounds, propolis (resinous substance collected by Apis mellifera from various tree buds exhibits a broad spectrum of biological activities. Recently, in vitro and in vivo data suggest that propolis has anticancer properties, but is the cytoxicity of propolis specific for tumor cells? To answer this question, the cytotoxicity of phenolic extracts from Portuguese propolis of different origins was evaluated using human tumor cell lines (MCF7—breast adenocarcinoma, NCI-H460—non-small cell lung carcinoma, HCT15—colon carcinoma, HeLa—cervical carcinoma, and HepG2—hepatocellular carcinoma, and non-tumor primary cells (PLP2. The studied propolis presented high cytotoxic potential for human tumor cell lines, mostly for HCT15. Nevertheless, excluding HCT15 cell line, the extracts at the GI50 obtained for tumor cell lines showed, in general, cytotoxicity for normal cells (PLP2. Propolis phenolic extracts comprise phytochemicals that should be further studied for their bioactive properties against human colon carcinoma. In the other cases, the proximity of the in vitro cytotoxic doses for tumor and normal cell lines should be confirmed by in vivo tests and may highlight the need for selection of specific compounds within the propolis extract.

  7. Mast cells and atopic dermatitis. Stereological quantification of mast cells in atopic dermatitis and normal human skin

    DEFF Research Database (Denmark)

    Damsgaard, T E; Olesen, A B; Sørensen, Flemming Brandt

    1997-01-01

    Stereological quantification of mast cell numbers was applied to sections of punch biopsies from lesional and nonlesional skin of atopic dermatitis patients and skin of healthy volunteers. We also investigated whether the method of staining and/or the fixative influenced the results...... of the determination of the mast cell profile numbers. The punch biopsies were taken from the same four locations in both atopic dermatitis patients and normal individuals. The locations were the scalp, neck and flexure of the elbow (lesional skin), and nates (nonlesional skin). Clinical scoring was carried out...... at the site of each biopsy. After fixation and plastic embedding, the biopsies were cut into 2 microns serial sections. Ten sections, 30 microns apart, from each biopsy were examined and stained alternately with either toluidine blue or Giemsa stain and mast cell profile numbers were determined. The study...

  8. Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy

    Science.gov (United States)

    Yi, Faliu; Moon, Inkyu; Lee, Yeon H.

    2015-01-01

    Counting morphologically normal cells in human red blood cells (RBCs) is extremely beneficial in the health care field. We propose a three-dimensional (3-D) classification method of automatically determining the morphologically normal RBCs in the phase image of multiple human RBCs that are obtained by off-axis digital holographic microscopy (DHM). The RBC holograms are first recorded by DHM, and then the phase images of multiple RBCs are reconstructed by a computational numerical algorithm. To design the classifier, the three typical RBC shapes, which are stomatocyte, discocyte, and echinocyte, are used for training and testing. Nonmain or abnormal RBC shapes different from the three normal shapes are defined as the fourth category. Ten features, including projected surface area, average phase value, mean corpuscular hemoglobin, perimeter, mean corpuscular hemoglobin surface density, circularity, mean phase of center part, sphericity coefficient, elongation, and pallor, are extracted from each RBC after segmenting the reconstructed phase images by using a watershed transform algorithm. Moreover, four additional properties, such as projected surface area, perimeter, average phase value, and elongation, are measured from the inner part of each cell, which can give significant information beyond the previous 10 features for the separation of the RBC groups; these are verified in the experiment by the statistical method of Hotelling's T-square test. We also apply the principal component analysis algorithm to reduce the dimension number of variables and establish the Gaussian mixture densities using the projected data with the first eight principal components. Consequently, the Gaussian mixtures are used to design the discriminant functions based on Bayesian decision theory. To improve the performance of the Bayes classifier and the accuracy of estimation of its error rate, the leaving-one-out technique is applied. Experimental results show that the proposed method can

  9. Regulation of collagen production in freshly isolated cell populations from normal and cirrhotic rat liver: Effect of lactate

    International Nuclear Information System (INIS)

    Cerbon-Ambriz, J.; Cerbon-Solorzano, J.; Rojkind, M.

    1991-01-01

    Previous work has shown that lactic acid, and to a lesser extent pyruvic acid, is able to increase collagen synthesis significantly in liver slices of CCl4-treated rats but not normal rats. The purpose of this report is to document which cells in the cirrhotic liver are responsible for the lactate-stimulated increase in collagen synthesis. It was found that (a) incorporation of 3H-proline into protein-bound 3H-hydroxyproline is increased threefold to fourfold in hepatocytes from CCl4-treated rats as compared with normal rat hepatocytes; (b) neither the hepatocytes from normal nor those from CCl4-treated rats modify their collagen synthesizing capacity when 30 mmol/L lactic acid was added to the incubation medium; (c) nonparenchymal cells obtained from livers of CCl4-treated rats synthesize much less collagen than hepatocytes, but their synthesis is stimulated twofold by lactic acid; (d) from the different nonparenchymal cells, only fat-storing (Ito) cells increase collagen synthesis when lactic acid is present in the incubation medium. These results suggest that the increased lactic acid levels observed in patients with alcoholic hepatic cirrhosis may play an important role in the development of fibrosis by stimulating collagen production by fat-storing (Ito) cells

  10. Isotropic 3D nuclear morphometry of normal, fibrocystic and malignant breast epithelial cells reveals new structural alterations.

    Directory of Open Access Journals (Sweden)

    Vivek Nandakumar

    Full Text Available Grading schemes for breast cancer diagnosis are predominantly based on pathologists' qualitative assessment of altered nuclear structure from 2D brightfield microscopy images. However, cells are three-dimensional (3D objects with features that are inherently 3D and thus poorly characterized in 2D. Our goal is to quantitatively characterize nuclear structure in 3D, assess its variation with malignancy, and investigate whether such variation correlates with standard nuclear grading criteria.We applied micro-optical computed tomographic imaging and automated 3D nuclear morphometry to quantify and compare morphological variations between human cell lines derived from normal, benign fibrocystic or malignant breast epithelium. To reproduce the appearance and contrast in clinical cytopathology images, we stained cells with hematoxylin and eosin and obtained 3D images of 150 individual stained cells of each cell type at sub-micron, isotropic resolution. Applying volumetric image analyses, we computed 42 3D morphological and textural descriptors of cellular and nuclear structure.We observed four distinct nuclear shape categories, the predominant being a mushroom cap shape. Cell and nuclear volumes increased from normal to fibrocystic to metastatic type, but there was little difference in the volume ratio of nucleus to cytoplasm (N/C ratio between the lines. Abnormal cell nuclei had more nucleoli, markedly higher density and clumpier chromatin organization compared to normal. Nuclei of non-tumorigenic, fibrocystic cells exhibited larger textural variations than metastatic cell nuclei. At p<0.0025 by ANOVA and Kruskal-Wallis tests, 90% of our computed descriptors statistically differentiated control from abnormal cell populations, but only 69% of these features statistically differentiated the fibrocystic from the metastatic cell populations.Our results provide a new perspective on nuclear structure variations associated with malignancy and point to the

  11. RPE cell surface proteins in normal and dystrophic rats

    International Nuclear Information System (INIS)

    Clark, V.M.; Hall, M.O.

    1986-01-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE

  12. DNA measurements on cell nuclei of normal, proliferating and neoplastic thyroid tissues in rats

    International Nuclear Information System (INIS)

    Christov, K.; Thomas, C.; Sandritter, W.

    1975-01-01

    Nuclear DNA content was measured in 3 normal, 9 hyperplastic and 16 neoplastic rat thyroid glands. Thyroid hyperplasia and tumor growth were induced after treatment of the animals with X rays and methylthiouracil. In the control animals only diploid thyroid epithelial cells were observed. In stages of diffuse and nodular thyroid hyperplasia, the total DNA content per nucleus indicated that most chromosomes were diploid; only a few cells were hyperdiploid. In thyroid adenomas and carcinomas scattering of the diploid region and an increased number of hyperdiploid cells were found. Among the various types of thyroid tumors neither a difference in the number of hyperdiploid cells, nor the typical pattern of the distribution of these cells in a histogram was found. The increased number of hyperdiploid cells in hyperplastic and neoplastic thyroids only suggested an increase in the proportion of cells entering the cell cycle and not an appearance of a neoplastic strain. (author)

  13. DNA measurements on cell nuclei of normal, proliferating and neoplastic thyroid tissues in rats

    Energy Technology Data Exchange (ETDEWEB)

    Christov, K [National Center of Oncology, Academy of Medicine, Sofia-56 (Bulgaria); Thomas, C; Sandritter, W [Freiburg Univ. (F.R. Germany). Pathologisches Inst.

    1975-01-01

    Nuclear DNA content was measured in 3 normal, 9 hyperplastic and 16 neoplastic rat thyroid glands. Thyroid hyperplasia and tumor growth were induced after treatment of the animals with X rays and methylthiouracil. In the control animals only diploid thyroid epithelial cells were observed. In stages of diffuse and nodular thyroid hyperplasia, the total DNA content per nucleus indicated that most chromosomes were diploid; only a few cells were hyperdiploid. In thyroid adenomas and carcinomas scattering of the diploid region and an increased number of hyperdiploid cells were found. Among the various types of thyroid tumors neither a difference in the number of hyperdiploid cells, nor the typical pattern of the distribution of these cells in a histogram was found. The increased number of hyperdiploid cells in hyperplastic and neoplastic thyroids only suggested an increase in the proportion of cells entering the cell cycle and not an appearance of a neoplastic strain.

  14. Functional expression of the Na-K-2Cl cotransporter NKCC2 in mammalian cells fails to confirm the dominant-negative effect of the AF splice variant.

    Science.gov (United States)

    Hannemann, Anke; Christie, Jenny K; Flatman, Peter W

    2009-12-18

    The renal bumetanide-sensitive Na-K-2Cl cotransporter (NKCC2) is the major salt transport pathway in the apical membrane of the mammalian thick ascending limb. It is differentially spliced and the three major variants (A, B, and F) differ in their localization and transport characteristics. Most knowledge about its regulation comes from experiments in Xenopus oocytes as NKCC2 proved difficult to functionally express in a mammalian system. Here we report the cloning and functional expression of untagged and unmodified versions of the major splice variants from ferret kidney (fNKCC2A, -B, and -F) in human embryonic kidney (HEK) 293 cells. Many NKCC2 antibodies used in this study detected high molecular weight forms of the transfected proteins, probably NKCC2 dimers, but not the monomers. Interestingly, monomers were strongly detected by phosphospecific antibodies directed against phosphopeptides in the regulatory N terminus. Bumetanide-sensitive (86)Rb uptake was significantly higher in transfected HEK-293 cells and could be stimulated by incubating cells in a medium containing a low chloride concentration prior the uptake measurements. fNKCC2 was less sensitive to the reduction in chloride concentration than NKCC1. Using HEK-293 cells stably expressing fNKCC2A we also show that co-expression of variant NKCC2AF does not have the dominant-negative effect on NKCC2A activity that was seen in Xenopus oocytes, nor is it trafficked to the cell surface. In addition, fNKCC2AF is neither complex glycosylated nor phosphorylated in its N terminus regulatory region like other variants.

  15. Histamine type I (H1) receptor radioligand binding studies on normal T cell subsets, B cells, and monocytes

    International Nuclear Information System (INIS)

    Cameron, W.; Doyle, K.; Rocklin, R.E.

    1986-01-01

    A single, specific binding site for [ 3 H]pyrilamine on normal human T helper, T suppressor, B cells, and monocytes was documented. The binding of the radioligand to its receptor is reversible with cold H 1 antagonist, saturates at 40 to 60 nM, and binding equilibrium is achieved in 2 to 4 min. Using a computer program (Ligand), the authors calculated the dissociation constants, binding capacities, and numbers of receptors per cell for each of the different cell types. Monocytes were found to have the highest affinity for [ 3 H]pyrilamine, followed by T helper cells, B cells and T suppressor cells (K/sub D/ = 44.6 +/- 49.4 nM). T suppressor cells were found to express the higher number of H 1 receptors per cell followed by B cells, T helper cells, and monocytes. The binding affinity for [ 3 H]pyrilamine increased over a 48-hr period, whereas the number of receptors per T cell was essentially unchanged. In contrast, T cells stimulated with Con A or PHA were shown to have a greater than fourfold increase in the number of receptors per cell, whereas the binding affinity for [ 3 H]pyrilamine decreased over the 48-hr period. Although the function of H 1 receptors on T cells, B cells, and monocytes has not been completely defined, this receptor has the potential of playing an important role in the modulating the immune response

  16. Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells.

    Science.gov (United States)

    Zhang, Yue-Hui; Li, Hai-Dong; Li, Bo; Jiang, Sheng-Dan; Jiang, Lei-Sheng

    2014-02-01

    Panax ginseng is a Chinese medicinal herb. Ginsenosides are the main bioactive components of P. ginseng, and ginsenoside Rg3 is the primary ginsenoside. Ginsenosides can potently kill various types of cancer cells. The present study was designed to evaluate the potential genotoxicity of ginsenoside Rg3 in human osteosarcoma cells and the protective effect of ginsenoside Rg3 with respect to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced DNA damage and apoptosis in a normal human cell line (human fibroblasts). Four human osteosarcoma cell lines (MG-63, OS732, U-2OS and HOS cells) and a normal human cell line (human fibroblasts) were employed to investigate the cytotoxicity of ginsenosides Rg3 by MTT assay. Alkaline comet assay and γH2AX focus staining were used to detect the DNA damage in MG-63 and U-2OS cells. The extent of cell apoptosis was determined by flow cytometry and a DNA ladder assay. Our results demonstrated that the cytotoxicity of ginsenoside Rg3 was dose-dependent in the human osteosarcoma cell lines, and MG-63 and U-2OS cells were the most sensitive to ginsenoside Rg3. As expected, compared to the negative control, ginsenoside Rg3 significantly increased DNA damage in a concentration-dependent manner. In agreement with the comet assay data, the percentage of γH2AX-positive MG-63 and U-2OS cells indicated that ginsenoside Rg3 induced DNA double-strand breaks in a concentration-dependent manner. The results also suggest that ginsenoside Rg3 reduces the extent of MNNG-induced DNA damage and apoptosis in human fibroblasts.

  17. Potential genotoxic and cytotoxicity of emamectin benzoate in human normal liver cells.

    Science.gov (United States)

    Zhang, Zhijie; Zhao, Xinyu; Qin, Xiaosong

    2017-10-10

    Pesticide residue inducing cancer-related health problems draw people more attention recently. Emamectin benzoate (EMB) has been widely used in agriculture around the world based on its specificity targets. Although potential risk and the molecular mechanism of EMB toxicity to human liver has not been well-characterized. Unlike well-reported toxicity upon central nervous system, potential genotoxic and cytotoxicity of EMB in human liver cell was ignored and very limited. In this study, we identify genotoxicity and cytotoxicity of EMB to human normal liver cells (QSG7701 cell line) in vitro . We demonstrate that EMB inhibited the viability of QSG7701 cells and induced the DNA damage. Established assays of cytotoxicity were performed to characterize the mechanism of EMB toxicity on QSG7701 cells. Typical chromatin condensation and DNA fragmentation indicated the apoptosis of QSG7701 cells induced by EMB. And the intracellular biochemical results demonstrated that EMB-enhanced apoptosis of QSG7701 cells concurrent with generated ROS, a loss of mitochondrial membrane potential, the cytochrome-c release, up regulate the Bax/Bcl-2 and the activation of caspase-9/-3. Our results of EMB induces the death of QSG7701 cells maybe via mitochondrial-mediated intrinsic apoptotic pathways would contribute to promote the awareness of EMB as an extensive used pesticide to human being effects and reveal the underlying mechanisms of potential genotoxic.

  18. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas; Jensen, Taylor J.; Garbe, James C.; Heimark, Ronald L.; Cress, Anne E.; Dickinson, Sally; Stampfer, Martha R.; Futscher, Bernard W.

    2009-12-23

    BACKGROUND: The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. METHODOLOGY/ PRINCIPAL FINDINGS: Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2'-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. CONCLUSIONS/ SIGNIFICANCE: We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation

  19. Steroid hormones as regulators of the proliferative activity of normal and neoplastic intestinal epithelial cells (review).

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1988-01-01

    Glucocorticoid and mineralocorticoid receptors are present in normal epithelial cells of both the small and large intestine and there have also been contentious reports of androgen, oestrogen and progesterone receptors in the epithelium of the normal large intestine. The majority of reports suggest that stimulation of the intestinal glucocorticoid receptors results in increased proliferation of epithelial cells in the small bowel, as does stimulation of androgen receptors and possibly mineralocorticoid receptors. The proliferative response of the normal intestine to oestrogens is difficult to evaluate and that to progestigens appears not to have been reported. Epidemiological studies reveal a higher incidence of bowel cancer in premenopausal women than in men of the same age and yet there is a lower incidence of these tumors in women of higher parity. These findings have been atributted to a variety of non-epithelial gender characteristic such as differences in bile metabolism, colonic bacterial and fecal transit times. In experimental animals, androgens have also been shown to influence carcinogenesis and this could well be attributed to changes in food intake etc. However, many studies have now revealed steroid hormone receptors on colorectal tumor cells and thus a direct effect of the steroid hormones on the epithelium during and after malignant transformation must now be considered.

  20. Classification of Normal and Apoptotic Cells from Fluorescence Microscopy Images Using Generalized Polynomial Chaos and Level Set Function.

    Science.gov (United States)

    Du, Yuncheng; Budman, Hector M; Duever, Thomas A

    2016-06-01

    Accurate automated quantitative analysis of living cells based on fluorescence microscopy images can be very useful for fast evaluation of experimental outcomes and cell culture protocols. In this work, an algorithm is developed for fast differentiation of normal and apoptotic viable Chinese hamster ovary (CHO) cells. For effective segmentation of cell images, a stochastic segmentation algorithm is developed by combining a generalized polynomial chaos expansion with a level set function-based segmentation algorithm. This approach provides a probabilistic description of the segmented cellular regions along the boundary, from which it is possible to calculate morphological changes related to apoptosis, i.e., the curvature and length of a cell's boundary. These features are then used as inputs to a support vector machine (SVM) classifier that is trained to distinguish between normal and apoptotic viable states of CHO cell images. The use of morphological features obtained from the stochastic level set segmentation of cell images in combination with the trained SVM classifier is more efficient in terms of differentiation accuracy as compared with the original deterministic level set method.

  1. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Bakiza Kamal

    2016-06-30

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  2. Assessment of Membrane Fluidity Fluctuations during Cellular Development Reveals Time and Cell Type Specificity

    KAUST Repository

    Noutsi, Bakiza Kamal; Gratton, Enrico; Chaieb, Saharoui

    2016-01-01

    Cell membrane is made up of a complex structure of lipids and proteins that diffuse laterally giving rise to what we call membrane fluidity. During cellular development, such as differentiation cell membranes undergo dramatic fluidity changes induced by proteins such as ARC and Cofilin among others. In this study we used the generalized polarization (GP) property of fluorescent probe Laurdan using two-photon microscopy to determine membrane fluidity as a function of time and for various cell lines. A low GP value corresponds to a higher fluidity and a higher GP value is associated with a more rigid membrane. Four different cell lines were monitored such as hN2, NIH3T3, HEK293 and L6 cells. Membrane fluidity was measured at 12h, 72h and 92 h. Our results show significant changes in membrane fluidity among all cell types at different time points. GP values tend to increase significantly within 92 h in hN2 cells and 72 h in NIH3T3 cells and only at 92 h in HEK293 cells. L6 showed a marked decrease in membrane fluidity at 72 h and starts to increase at 92 h. As expected, NIH3T3 cells have more rigid membrane at earlier time points. On the other hand, neurons tend to have the highest membrane fluidity at early time points emphasizing its correlation with plasticity and the need for this malleability during differentiation. This study sheds light on the involvement of membrane fluidity during neuronal differentiation and development of other cell lines.

  3. Immunohistochemical analysis of regulatory T cell markers FOXP3 and GITR on CD4(+) CD25(+) T cells in normal skin and inflammatory dermatoses

    NARCIS (Netherlands)

    de Boer, Onno J.; van der Loos, Chris M.; Teeling, Peter; van der Wal, Allard C.; Teunissen, Marcel B. M.

    2007-01-01

    Regulatory T cells (Treg) are a subset of T lymphocytes that play a central role in immunologic tolerance and in the termination of immune responses. The identification of these cells in normal and inflammatory conditions may contribute to a better understanding of underlying pathology. We

  4. Potentially lethal damage repair in cell lines of radioresistant human tumours and normal skin fibroblasts

    International Nuclear Information System (INIS)

    Marchese, M.J.; Minarik, L.; Hall, E.J.; Zaider, M.

    1985-01-01

    Radiation cell survival data were obtained in vitro for three cell lines isolated from human tumours traditionally considered to be radioresistant-two melanomas and one osteosarcoma-as well as from a diploid skin fibroblast cell line. One melanoma cell line was much more radioresistant than the other, while the osteosarcoma and fibroblast cell lines were more radiosensitive than either. For cells growing exponentially, little potentially lethal damage repair (PLDR) could be demonstrated by comparing survival data for cells in which subculture was delayed by 6 h with those sub-cultured immediately after treatment. For the malignant cells in plateau phase, which in these cells might be better termed 'slowed growth phase', since an appreciable fraction of the cells are still cycling, a small amount of PLDR was observed, but not as much as reported by other investigators in the literature. The normal fibroblasts, which achieved a truer plateau phase in terms of noncycling cells, showed a significantly larger amount of PLDR than the tumour cells. (author)

  5. Comparative assessment of button cells using a normalized index for potential pollution by heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Merino, Luis, E-mail: l.moreno@igme.es [Geological Survey of Spain, Environmental Geology Research Group, C/ Ríos Rosas 23, 28003 Madrid (Spain); Jiménez-Hernández, Maria Emilia; Losa, Almudena de la [Geological Survey of Spain, Environmental Geology Research Group, C/ Ríos Rosas 23, 28003 Madrid (Spain); Huerta-Muñoz, Virginia [Universidad Complutense de Madrid, Departamento de Geodinámica Externa, C/ José Antonio Novais, 12, Ciudad Universitaria, 28040 Madrid (Spain)

    2015-09-01

    Many household batteries worldwide still end up in landfills or are incinerated due to inefficient collection and recycling schemes. Toxic heavy metals from improperly discarded button cells pose a serious risk to human health and the environment, as they can pollute air, soil and water. This paper analyses a series of button cells selected from batteries available on the retail market, and compares their polluting potential. A total of 64 batteries were subjected to chemical analyses of 19 elements — including metals and metalloids — , and energy density measurements. The samples were from four different brands of each of the four most common button cell technologies (alkaline, zinc-air, silver oxide and lithium). An energy-normalized index — the Weighted Potential Pollution Index (WPPI) — was proposed to compare the polluting potential of the different batteries. The higher the battery WPPI score, the greater the content in toxic elements and the lower the energy output. The results of the chemical composition and energy density varied depending on the construction technology of the button cells. However, significant differences in both variables were also found when comparing different brands within the same technology. The differences in WPPI values confirmed the existence of a significant margin to reduce the environmental impact of discarded button cells simply by avoiding the most polluting options. The choice of the battery with the most favourable WPPI produced a reduction in potential pollution of 3–53% for silver oxide batteries, 4–39% for alkaline, 20–28% for zinc-air and 12–26% for lithium. Comparative potential pollution could be assessed when selecting batteries using an energy-normalized index such as WPPI to reduce the environmental impact of improperly disposed button cells. - Highlights: • We compare the polluting potential of button cells using an energy-normalized index. • This battery index considers both chemical

  6. Comparative assessment of button cells using a normalized index for potential pollution by heavy metals

    International Nuclear Information System (INIS)

    Moreno-Merino, Luis; Jiménez-Hernández, Maria Emilia; Losa, Almudena de la; Huerta-Muñoz, Virginia

    2015-01-01

    Many household batteries worldwide still end up in landfills or are incinerated due to inefficient collection and recycling schemes. Toxic heavy metals from improperly discarded button cells pose a serious risk to human health and the environment, as they can pollute air, soil and water. This paper analyses a series of button cells selected from batteries available on the retail market, and compares their polluting potential. A total of 64 batteries were subjected to chemical analyses of 19 elements — including metals and metalloids — , and energy density measurements. The samples were from four different brands of each of the four most common button cell technologies (alkaline, zinc-air, silver oxide and lithium). An energy-normalized index — the Weighted Potential Pollution Index (WPPI) — was proposed to compare the polluting potential of the different batteries. The higher the battery WPPI score, the greater the content in toxic elements and the lower the energy output. The results of the chemical composition and energy density varied depending on the construction technology of the button cells. However, significant differences in both variables were also found when comparing different brands within the same technology. The differences in WPPI values confirmed the existence of a significant margin to reduce the environmental impact of discarded button cells simply by avoiding the most polluting options. The choice of the battery with the most favourable WPPI produced a reduction in potential pollution of 3–53% for silver oxide batteries, 4–39% for alkaline, 20–28% for zinc-air and 12–26% for lithium. Comparative potential pollution could be assessed when selecting batteries using an energy-normalized index such as WPPI to reduce the environmental impact of improperly disposed button cells. - Highlights: • We compare the polluting potential of button cells using an energy-normalized index. • This battery index considers both chemical

  7. N-acetylcysteine normalizes the urea cycle and DNA repair in cells from patients with Batten disease.

    Science.gov (United States)

    Kim, June-Bum; Lim, Nary; Kim, Sung-Jo; Heo, Tae-Hwe

    2012-12-01

    Batten disease is an inherited disorder characterized by early onset neurodegeneration due to the mutation of the CLN3 gene. The function of the CLN3 protein is not clear, but an association with oxidative stress has been proposed. Oxidative stress and DNA damage play critical roles in the pathogenesis of neurodegenerative diseases. Antioxidants are of interest because of their therapeutic potential for treating neurodegenerative diseases. We tested whether N-acetylcysteine (NAC), a well-known antioxidant, improves the pathology of cells from patients with Batten disease. At first, the expression levels of urea cycle components and DNA repair enzymes were compared between Batten disease cells and normal cells. We used both mRNA expression levels and Western blot analysis. We found that carbamoyl phosphate synthetase 1, an enzyme involved in the urea cycle, 8-oxoguanine DNA glycosylase 1 and DNA polymerase beta, enzymes involved in DNA repair, were expressed at higher levels in Batten disease cells than in normal cells. The treatment of Batten disease cells with NAC for 48 h attenuated activities of the urea cycle and of DNA repair, as indicated by the substantially decreased expression levels of carbamoyl phosphate synthetase 1, 8-oxoguanine DNA glycosylase 1 and DNA polymerase beta proteins compared with untreated Batten cells. NAC may serve in alleviating the burden of urea cycle and DNA repair processes in Batten disease cells. We propose that NAC may have beneficial effects in patients with Batten disease. Copyright © 2012 John Wiley & Sons, Ltd.

  8. High normal fasting glucose level in obese youth: a marker for insulin resistance and beta cell dysregulation.

    LENUS (Irish Health Repository)

    O'Malley, G

    2010-06-01

    A high but normal fasting plasma glucose level in adults is a risk factor for future development of type 2 diabetes mellitus and cardiovascular disease. We investigated whether normal fasting plasma glucose levels (<5.60 mmol\\/l) are associated with decreases in insulin sensitivity and beta cell function, as well as an adverse cardiovascular profile in obese youth.

  9. Quantitation of chemopreventive synergism between (-)-epigallocatechin-3-gallate and curcumin in normal, premalignant and malignant human oral epithelial cells.

    Science.gov (United States)

    Khafif, A; Schantz, S P; Chou, T C; Edelstein, D; Sacks, P G

    1998-03-01

    An in vitro model for oral cancer was used to examine the growth inhibitory effects of chemopreventive agents when used singly and in combination. The model consists of primary cultures of normal oral epithelial cells, newly established cell lines derived from dysplastic leukoplakia and squamous cell carcinoma. Two naturally occurring substances, (-)-epigallocatechin-3-gallate (EGCG) from green tea and curcumin from the spice turmeric were tested. Cells were treated singly and in combination and effects on growth determined in 5-day growth assays and by cell cycle analysis. Effective dose 50s and the combination index were calculated with the computerized Chou-Talalay method which is based on the median-effect principle. Agents were shown to differ in their inhibitory potency. EGCG was less effective with cell progression; the cancer cells were more resistant than normal or dysplastic cells. In contrast, curcumin was equally effective regardless of the cell type tested. Cell cycle analysis indicated that EGCG blocked cells in G1, whereas curcumin blocked cells in S/G2M. The combination of both agents showed synergistic interactions in growth inhibition and increased sigmoidicity (steepness) of the dose-effect curves, a response that was dose and cell type dependent. Combinations allowed for a dose reduction of 4.4-8.5-fold for EGCG and 2.2-2.8-fold for curcumin at ED50s as indicated by the dose reduction index (DRI). Even greater DRI values were observed above ED50 levels. Our results demonstrate that this model which includes normal, premalignant and malignant oral cells can be used to analyse the relative potential of various chemopreventive agents. Two such naturally-occurring agents, EGCG and curcumin, were noted to inhibit growth by different mechanisms, a factor which may account for their demonstrable interactive synergistic effect.

  10. First-In-Class Small Molecule ONC201 Induces DR5 and Cell Death in Tumor but Not Normal Cells to Provide a Wide Therapeutic Index as an Anti-Cancer Agent.

    Science.gov (United States)

    Allen, Joshua E; Crowder, Roslyn N; Crowder, Roslyn; El-Deiry, Wafik S

    2015-01-01

    We previously identified ONC201 (TIC10) as a first-in-class orally active small molecule with robust antitumor activity that is currently in clinical trials in advanced cancers. Here, we further investigate the safety characteristics of ONC201 in preclinical models that reveal an excellent safety profile at doses that exceed efficacious doses by 10-fold. In vitro studies indicated a strikingly different dose-response relationship when comparing tumor and normal cells where maximal effects are much stronger in tumor cells than in normal cells. In further support of a wide therapeutic index, investigation of tumor and normal cell responses under identical conditions demonstrated large apoptotic effects in tumor cells and modest anti-proliferative effects in normal cells that were non-apoptotic and reversible. Probing the underlying mechanism of apoptosis indicated that ONC201 does not induce DR5 in normal cells under conditions that induce DR5 in tumor cells; DR5 is a pro-apoptotic TRAIL receptor previously linked to the anti-tumor mechanism of ONC201. GLP toxicology studies in Sprague-Dawley rats and beagle dogs at therapeutic and exaggerated doses revealed no dose-limiting toxicities. Observations in both species at the highest doses were mild and reversible at doses above 10-fold the expected therapeutic dose. The no observed adverse event level (NOAEL) was ≥42 mg/kg in dogs and ≥125 mg/kg in rats, which both correspond to a human dose of approximately 1.25 g assuming standard allometric scaling. These results provided the rationale for the 125 mg starting dose in dose escalation clinical trials that began in 2015 in patients with advanced cancer.

  11. First-In-Class Small Molecule ONC201 Induces DR5 and Cell Death in Tumor but Not Normal Cells to Provide a Wide Therapeutic Index as an Anti-Cancer Agent.

    Directory of Open Access Journals (Sweden)

    Joshua E Allen

    Full Text Available We previously identified ONC201 (TIC10 as a first-in-class orally active small molecule with robust antitumor activity that is currently in clinical trials in advanced cancers. Here, we further investigate the safety characteristics of ONC201 in preclinical models that reveal an excellent safety profile at doses that exceed efficacious doses by 10-fold. In vitro studies indicated a strikingly different dose-response relationship when comparing tumor and normal cells where maximal effects are much stronger in tumor cells than in normal cells. In further support of a wide therapeutic index, investigation of tumor and normal cell responses under identical conditions demonstrated large apoptotic effects in tumor cells and modest anti-proliferative effects in normal cells that were non-apoptotic and reversible. Probing the underlying mechanism of apoptosis indicated that ONC201 does not induce DR5 in normal cells under conditions that induce DR5 in tumor cells; DR5 is a pro-apoptotic TRAIL receptor previously linked to the anti-tumor mechanism of ONC201. GLP toxicology studies in Sprague-Dawley rats and beagle dogs at therapeutic and exaggerated doses revealed no dose-limiting toxicities. Observations in both species at the highest doses were mild and reversible at doses above 10-fold the expected therapeutic dose. The no observed adverse event level (NOAEL was ≥42 mg/kg in dogs and ≥125 mg/kg in rats, which both correspond to a human dose of approximately 1.25 g assuming standard allometric scaling. These results provided the rationale for the 125 mg starting dose in dose escalation clinical trials that began in 2015 in patients with advanced cancer.

  12. Mapping of Carboxypeptidase M in Normal Human Kidney and Renal Cell Carcinoma

    Science.gov (United States)

    Denis, Catherine J.; Van Acker, Nathalie; De Schepper, Stefanie; De Bie, Martine; Andries, Luc; Fransen, Erik; Hendriks, Dirk; Kockx, Mark M.

    2013-01-01

    Although the kidney generally has been regarded as an excellent source of carboxypeptidase M (CPM), little is known about its renal-specific expression level and distribution. This study provides a detailed localization of CPM in healthy and diseased human kidneys. The results indicate a broad distribution of CPM along the renal tubular structures in the healthy kidney. CPM was identified at the parietal epithelium beneath the Bowman’s basement membrane and in glomerular mesangial cells. Capillaries, podocytes, and most interstitial cells were CPM negative. Tumor cells of renal cell carcinoma subtypes lose CPM expression upon dedifferentiation. Tissue microarray analysis demonstrated a correlation between low CPM expression and tumor cell type. CPM staining was intense on phagocytotic tumor-associated macrophages. Immunoreactive CPM was also detected in the tumor-associated vasculature. The absence of CPM in normal renal blood vessels points toward a role for CPM in angiogenesis. Coexistence of CPM and the epidermal growth factor receptor (EGFR) was detected in papillary renal cell carcinoma. However, the different subcellular localization of CPM and EGFR argues against an interaction between these h proteins. The description of the distribution of CPM in human kidney forms the foundation for further study of the (patho)physiological activities of CPM in the kidney. PMID:23172796

  13. Cationic Polyamidoamine Dendrimers as Modulators of EGFR Signaling In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Saghir Akhtar

    Full Text Available Cationic polyamidoamine (PAMAM dendrimers are branch-like spherical polymers being investigated for a variety of applications in nanomedicine including nucleic acid drug delivery. Emerging evidence suggests they exhibit intrinsic biological and toxicological effects but little is known of their interactions with signal transduction pathways. We previously showed that the activated (fragmented generation (G 6 PAMAM dendrimer, Superfect (SF, stimulated epidermal growth factor receptor (EGFR tyrosine kinase signaling-an important signaling cascade that regulates cell growth, survival and apoptosis- in cultured human embryonic kidney (HEK 293 cells. Here, we firstly studied the in vitro effects of Polyfect (PF, a non-activated (intact G6 PAMAM dendrimer, on EGFR tyrosine kinase signaling via extracellular-regulated kinase 1/2 (ERK1/2 and p38 mitogen-activated protein kinase (MAPK in cultured HEK 293 cells and then compared the in vivo effects of a single administration (10mg/kg i.p of PF or SF on EGFR signaling in the kidneys of normal and diabetic male Wistar rats. Polyfect exhibited a dose- and time-dependent inhibition of EGFR, ERK1/2 and p38 MAPK phosphorylation in HEK-293 cells similar to AG1478, a selective EGFR inhibitor. Administration of dendrimers to non-diabetic or diabetic animals for 24h showed that PF inhibited whereas SF stimulated EGFR phosphorylation in the kidneys of both sets of animals. PF-mediated inhibition of EGFR phosphorylation as well as SF or PF-mediated apoptosis in HEK 293 cells could be significantly reversed by co-treatment with antioxidants such as tempol implying that both these effects involved an oxidative stress-dependent mechanism. These results show for the first time that SF and PF PAMAM dendrimers can differentially modulate the important EGFR signal transduction pathway in vivo and may represent a novel class of EGFR modulators. These findings could have important clinical implications for the use of PAMAM

  14. HIF2A and IGF2 Expression Correlates in Human Neuroblastoma Cells and Normal Immature Sympathetic Neuroblasts

    Directory of Open Access Journals (Sweden)

    Sofie Mohlin

    2013-03-01

    Full Text Available During normal sympathetic nervous system (SNS development, cells of the ganglionic lineage can malignantly transform and develop into the childhood tumor neuroblastoma. Hypoxia-inducible transcription factors (HIFs mediate cellular responses during normal development and are central in the adaptation to oxygen shortage. HIFs are also implicated in the progression of several cancer forms, and high HIF-2α expression correlates with disseminated disease and poor outcome in neuroblastoma. During normal SNS development, HIF2A is transiently expressed in neuroblasts and chromaffin cells. SNS cells can, during development, be distinguished by distinct gene expression patterns, and insulin-like growth factor 2 (IGF2 is a marker of sympathetic chromaffin cells, whereas sympathetic neuroblasts lack IGF2 expression. Despite the neuronal derivation of neuroblastomas, we show that neuroblastoma cell lines and specimens express IGF2 and that expression of HIF2A and IGF2 correlates, with the strongest correlation in high-stage tumors. In neuroblastoma, both IGF2 and HIF2A are hypoxia-driven and knocking down IGF2 at hypoxia resulted in downregulated HIF2A levels. HIF-2α and IGF2 were strongly expressed in subsets of immature neuroblastoma cells, suggesting that these two genes could be co-expressed also at early stages of SNS development. We show that IGF2 is indeed expressed in sympathetic chain ganglia at embryonic week 6.5, a developmental stage when HIF-2α is present. These findings provide a rationale for the unexpected IGF2 expression in neuroblastomas and might suggest that IGF2 and HIF2A positive neuroblastoma cells are arrested at an embryonic differentiation stage corresponding to the stage when sympathetic chain ganglia begins to coalesce.

  15. Modulation of cisplatin-induced reactive oxygen species production by fullerene C(60 in normal and transformed lymphoid cells

    Directory of Open Access Journals (Sweden)

    D. V. Franskevych

    2016-02-01

    Full Text Available The early response of normal (Wistar rat thymocytes and transformed (mice lymphoid leukemia L1210 cells to treatment with anticancer drug cisplatin or to combined treatment with cisplatin and carbon nanostructure fullerene C60 was studied. We demonstrated with fluorescent probes DCFH-DA and TMRE that cisplatin at concentration 1 μg/ml induced reactive oxygen species (ROS production and decreased the value of mitochondrial membrane potential in both cell types. The combined treatment with cisplatin (1 μg/ml and fullerene C60 (7.2 μg/ml was shown to be followed by oppositely directed modulation of ROS production in thymocytes and L1210 cells. Cisplatin-induced ROS production was intensified in L1210 cells, while in thymocytes it was decreased. It is supposed that the different effects of combined treatment are associated with peculiarities of fullerene C60 accumulation and localization in normal and cancer cells.

  16. The rarity of ALDH(+) cells is the key to separation of normal versus leukemia stem cells by ALDH activity in AML patients.

    Science.gov (United States)

    Hoang, Van T; Buss, Eike C; Wang, Wenwen; Hoffmann, Isabel; Raffel, Simon; Zepeda-Moreno, Abraham; Baran, Natalia; Wuchter, Patrick; Eckstein, Volker; Trumpp, Andreas; Jauch, Anna; Ho, Anthony D; Lutz, Christoph

    2015-08-01

    To understand the precise disease driving mechanisms in acute myeloid leukemia (AML), comparison of patient matched hematopoietic stem cells (HSC) and leukemia stem cells (LSC) is essential. In this analysis, we have examined the value of aldehyde dehydrogenase (ALDH) activity in combination with CD34 expression for the separation of HSC from LSC in 104 patients with de novo AML. The majority of AML patients (80 out of 104) had low percentages of cells with high ALDH activity (ALDH(+) cells; cells (≥1.9%; ALDH-numerous AML). In patients with ALDH-rare AML, normal HSC could be separated by their CD34(+) ALDH(+) phenotype, whereas LSC were exclusively detected among CD34(+) ALDH(-) cells. For patients with ALDH-numerous AML, the CD34(+) ALDH(+) subset consisted mainly of LSC and separation from HSC was not feasible. Functional analyses further showed that ALDH(+) cells from ALDH-numerous AML were quiescent, refractory to ARA-C treatment and capable of leukemic engraftment in a xenogenic mouse transplantation model. Clinically, resistance to chemotherapy and poor long-term outcome were also characteristic for patients with ALDH-numerous AML providing an additional risk-stratification tool. The difference in spectrum and relevance of ALDH activity in the putative LSC populations demonstrates, in addition to phenotypic and genetic, also functional heterogeneity of leukemic cells and suggests divergent roles for ALDH activity in normal HSC versus LSC. By acknowledging these differences our study provides a new and useful tool for prospective identification of AML cases in which separation of HSC from LSC is possible. © 2014 UICC.

  17. Aberrant expression of interleukin-22 and its targeting microRNAs in oral lichen planus: a preliminary study.

    Science.gov (United States)

    Shen, Zhengyu; Du, Guanhuan; Zhou, Zengtong; Liu, Wei; Shi, Linjun; Xu, Hui

    2016-08-01

    Oral lichen planus (OLP) is a T cell-mediated autoimmune disease involving oral mucosa. Interleukin-22 (IL-22) as the signature cytokine of T helper 22 cells is increasingly recognized as a key regulator in various autoimmune diseases. Our previous study reported that IL-22 immunoexpression in OLP was significantly increased compared with the normal controls. The objective of this preliminary study was to compare the IL-22 expression levels in oral biopsies from patients with OLP (n = 50) against normal oral mucosa (n = 19) using RT-qPCR and Western blot, identify the potential targeting miRNAs of IL-22, and examine the miRNA expression levels in OLP. Interleukin-22 expression level in OLP was significantly increased compared with the normal controls. The Dual-Luciferase reporter assay system in human embryonic kidney 293 (HEK293) cells demonstrated that miR-562 and miR-203 were the target miRNAs of IL-22, which was consistent with predictions from bioinformatics software analyses. Interestingly, miR-562 expression in OLP was significantly decreased, but miR-203 expression in OLP was significantly increased compared with the normal controls. This preliminary study for the first time reported that aberrant expression levels of miR-562 and miR-203 were associated with high expression of IL-22 and demonstrated the target relationship between miRNAs and IL-22 in HEK293 cells. Our data indicated that IL-22 and its targeting miRNAs contribute to the pathogenesis of OLP. Further studies are required to investigate the regulatory pathways of IL-22 and miR-562 and miR-203 in OLP. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Radiosensitivity of cancer-initiating cells and normal stem cells (or what the Heisenberg uncertainly principle has to do with biology).

    Science.gov (United States)

    Woodward, Wendy Ann; Bristow, Robert Glen

    2009-04-01

    Mounting evidence suggests that parallels between normal stem cell biology and cancer biology may provide new targets for cancer therapy. Prospective identification and isolation of cancer-initiating cells from solid tumors has promoted the descriptive and functional identification of these cells allowing for characterization of their response to contemporary cancer therapies, including chemotherapy and radiation. In clinical radiation therapy, the failure to clinically eradicate all tumor cells (eg, a lack of response, partial response, or nonpermanent complete response by imaging) is considered a treatment failure. As such, biologists have explored the characteristics of the small population of clonogenic cancer cells that can survive and are capable of repopulating the tumor after subcurative therapy. Herein, we discuss the convergence of these clonogenic studies with contemporary radiosensitivity studies that use cell surface markers to identify cancer-initiating cells. Implications for and uncertainties regarding incorporation of these concepts into the practice of modern radiation oncology are discussed.

  19. Epigenetic regulation of normal human mammary cell type-specific miRNAs

    Energy Technology Data Exchange (ETDEWEB)

    Vrba, Lukas [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Inst. of Plant Molecular Biology, Ceske Budejovice (Czech Republic). Biology Centre ASCR; Garbe, James C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Stampfer, Martha R. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Center; Futscher, Bernard W. [Univ. of Arizona, Tucson, AZ (United States). Arizona Cancer Center and Dept. of Pharmacology & Toxicology

    2011-08-26

    Epigenetic mechanisms are important regulators of cell type–specific genes, including miRNAs. In order to identify cell type-specific miRNAs regulated by epigenetic mechanisms, we undertook a global analysis of miRNA expression and epigenetic states in three isogenic pairs of human mammary epithelial cells (HMEC) and human mammary fibroblasts (HMF), which represent two differentiated cell types typically present within a given organ, each with a distinct phenotype and a distinct epigenotype. While miRNA expression and epigenetic states showed strong interindividual concordance within a given cell type, almost 10% of the expressed miRNA showed a cell type–specific pattern of expression that was linked to the epigenetic state of their promoter. The tissue-specific miRNA genes were epigenetically repressed in nonexpressing cells by DNA methylation (38%) and H3K27me3 (58%), with only a small set of miRNAs (21%) showing a dual epigenetic repression where both DNA methylation and H3K27me3 were present at their promoters, such as MIR10A and MIR10B. Individual miRNA clusters of closely related miRNA gene families can each display cell type–specific repression by the same or complementary epigenetic mechanisms, such as the MIR200 family, and MIR205, where fibroblasts repress MIR200C/141 by DNA methylation, MIR200A/200B/429 by H3K27me3, and MIR205 by both DNA methylation and H3K27me3. Since deregulation of many of the epigenetically regulated miRNAs that we identified have been linked to disease processes such as cancer, it is predicted that compromise of the epigenetic control mechanisms is important for this process. Overall, these results highlight the importance of epigenetic regulation in the control of normal cell type–specific miRNA expression.

  20. MicroRNAs in Control of Stem Cells in Normal and Malignant Hematopoiesis.

    Science.gov (United States)

    Roden, Christine; Lu, Jun

    2016-09-01

    Studies on hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs) have helped to establish the paradigms of normal and cancer stem cell concepts. For both HSCs and LSCs, specific gene expression programs endowed by their epigenome functionally distinguish them from their differentiated progenies. MicroRNAs (miRNAs), as a class of small non-coding RNAs, act to control post-transcriptional gene expression. Research in the past decade has yielded exciting findings elucidating the roles of miRNAs in control of multiple facets of HSC and LSC biology. Here we review recent progresses on the functions of miRNAs in HSC emergence during development, HSC switch from a fetal/neonatal program to an adult program, HSC self-renewal and quiescence, HSC aging, HSC niche, and malignant stem cells. While multiple different miRNAs regulate a diverse array of targets, two common themes emerge in HSC and LSC biology: miRNA mediated regulation of epigenetic machinery and cell signaling pathways. In addition, we propose that miRNAs themselves behave like epigenetic regulators, as they possess key biochemical and biological properties that can provide both stability and alterability to the epigenetic program. Overall, the studies of miRNAs in stem cells in the hematologic contexts not only provide key understandings to post-transcriptional gene regulation mechanisms in HSCs and LSCs, but also will lend key insights for other stem cell fields.

  1. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp.

    Science.gov (United States)

    Gao, Shiqiang; Nagpal, Jatin; Schneider, Martin W; Kozjak-Pavlovic, Vera; Nagel, Georg; Gottschalk, Alexander

    2015-09-08

    Cyclic GMP (cGMP) signalling regulates multiple biological functions through activation of protein kinase G and cyclic nucleotide-gated (CNG) channels. In sensory neurons, cGMP permits signal modulation, amplification and encoding, before depolarization. Here we implement a guanylyl cyclase rhodopsin from Blastocladiella emersonii as a new optogenetic tool (BeCyclOp), enabling rapid light-triggered cGMP increase in heterologous cells (Xenopus oocytes, HEK293T cells) and in Caenorhabditis elegans. Among five different fungal CyclOps, exhibiting unusual eight transmembrane topologies and cytosolic N-termini, BeCyclOp is the superior optogenetic tool (light/dark activity ratio: 5,000; no cAMP production; turnover (20 °C) ∼17 cGMP s(-1)). Via co-expressed CNG channels (OLF in oocytes, TAX-2/4 in C. elegans muscle), BeCyclOp photoactivation induces a rapid conductance increase and depolarization at very low light intensities. In O2/CO2 sensory neurons of C. elegans, BeCyclOp activation evokes behavioural responses consistent with their normal sensory function. BeCyclOp therefore enables precise and rapid optogenetic manipulation of cGMP levels in cells and animals.

  2. Novel Solvent-free Perovskite Deposition in Fabrication of Normal and Inverted Architectures of Perovskite Solar Cells

    Science.gov (United States)

    Nejand, Bahram Abdollahi; Gharibzadeh, Saba; Ahmadi, Vahid; Shahverdi, H. Reza

    2016-01-01

    We introduced a new approach to deposit perovskite layer with no need for dissolving perovskite precursors. Deposition of Solution-free perovskite (SFP) layer is a key method for deposition of perovskite layer on the hole or electron transport layers that are strongly sensitive to perovskite precursors. Using deposition of SFP layer in the perovskite solar cells would extend possibility of using many electron and hole transport materials in both normal and invert architectures of perovskite solar cells. In the present work, we synthesized crystalline perovskite powder followed by successful deposition on TiO2 and cuprous iodide as the non-sensitve and sensitive charge transport layers to PbI2 and CH3NH3I solution in DMF. The post compressing step enhanced the efficiency of the devices by increasing the interface area between perovskite and charge transport layers. The 9.07% and 7.71% cell efficiencies of the device prepared by SFP layer was achieved in respective normal (using TiO2 as a deposition substrate) and inverted structure (using CuI as deposition substrate) of perovskite solar cell. This method can be efficient in large-scale and low cost fabrication of new generation perovskite solar cells. PMID:27640991

  3. Hypothyroidism after primary radiotherapy for head and neck squamous cell carcinoma: Normal tissue complication probability modeling with latent time correction

    DEFF Research Database (Denmark)

    Rønjom, Marianne Feen; Brink, Carsten; Bentzen, Søren

    2013-01-01

    To develop a normal tissue complication probability (NTCP) model of radiation-induced biochemical hypothyroidism (HT) after primary radiotherapy for head and neck squamous cell carcinoma (HNSCC) with adjustment for latency and clinical risk factors.......To develop a normal tissue complication probability (NTCP) model of radiation-induced biochemical hypothyroidism (HT) after primary radiotherapy for head and neck squamous cell carcinoma (HNSCC) with adjustment for latency and clinical risk factors....

  4. CD4+ T regulatory cells from the colonic lamina propria of normal mice inhibit proliferation of enterobacteria-reactive, disease-inducing Th1-cells from scid mice with colitis

    DEFF Research Database (Denmark)

    Gad, M; Brimnes, J; Claesson, Mogens Helweg

    2003-01-01

    Adoptive transfer of CD4+ T cells into scid mice leads to a chronic colitis in the recipients. The transferred CD4+ T cells accumulate in the intestinal lamina propria (LP), express an activated Th1 phenotype and proliferate vigorously when exposed ex vivo to enteric bacterial antigens. As LP CD4......+ T cells from normal BALB/c mice do not respond to enteric bacterial antigens, we have investigated whether colonic LP-derived CD4+ T cells from normal mice suppress the antibacterial response of CD4+ T cells from scid mice with colitis. LP-derived CD4+ T cells cocultured with bone marrow......-derived dendritic cells effectively suppress the antibacterial proliferative response of CD4+ T cells from scid mice with colitis. The majority of these LP T-reg cells display a nonactivated phenotype and suppression is independent of antigen exposure, is partly mediated by soluble factor(s) different from IL-10...

  5. Multidrug and toxin extrusion proteins mediate cellular transport of cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hong; Guo, Dong; Obianom, Obinna N. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Su, Tong [Department of Oral Maxillofacial Surgery, the First Affiliated Hospital, Xiangya Medical School, Central South University, Hunan 410007 (China); Polli, James E. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Shu, Yan, E-mail: yshu@rx.umaryland.edu [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States)

    2017-01-01

    Cadmium (Cd) is an environmentally prevalent toxicant posing increasing risk to human health worldwide. As compared to the extensive research in Cd tissue accumulation, little was known about the elimination of Cd, particularly its toxic form, Cd ion (Cd{sup 2+}). In this study, we aimed to examine whether Cd{sup 2+} is a substrate of multidrug and toxin extrusion proteins (MATEs) that are important in renal xenobiotic elimination. HEK-293 cells overexpressing the human MATE1 (HEK-hMATE1), human MATE2-K (HEK-hMATE2-K) and mouse Mate1 (HEK-mMate1) were used to study the cellular transport and toxicity of Cd{sup 2+}. The cells overexpressing MATEs showed a 2–4 fold increase of Cd{sup 2+} uptake that could be blocked by the MATE inhibitor cimetidine. A saturable transport profile was observed with the Michaelis-Menten constant (K{sub m}) of 130 ± 15.8 μM for HEK-hMATE1; 139 ± 21.3 μM for HEK-hMATE2-K; and 88.7 ± 13.5 μM for HEK-mMate1, respectively. Cd{sup 2+} could inhibit the uptake of metformin, a substrate of MATE transporters, with the half maximal inhibitory concentration (IC{sub 50}) of 97.5 ± 6.0 μM, 20.2 ± 2.6 μM, and 49.9 ± 6.9 μM in HEK-hMATE1, HEK-hMATE2-K, and HEK-mMate1 cells, respectively. In addition, hMATE1 could transport preloaded Cd{sup 2+} out of the HEK-hMATE1 cells, thus resulting in a significant decrease of Cd{sup 2+}-induced cytotoxicity. The present study has provided the first evidence supporting that MATEs transport Cd{sup 2+} and may function as cellular elimination machinery in Cd intoxication. - Highlights: • Cadmium is an environmentally prevalent toxicant. • Little was known regarding the elimination and detoxification of cadmium. • Cadmium ion is here demonstrated as a substrate of MATE transporters. • MATEs may function as cellular elimination machinery in cadmium detoxification.

  6. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids

    Energy Technology Data Exchange (ETDEWEB)

    Amos, T.A.S.; Lewis, J.L.; Grand, F.H.; Gooding, R.P.; Goldman, J.M.; Gordon, M.Y. [Royal Postgraduate Medical School, London (United Kingdom)

    1995-10-01

    Inhibition of apoptosis (genetically programmed active cell death) by p210 BCR-ABL expression is a mechanism that might contribute to clonal expansion in chronic myeloid leukaemia (CML). Since cell death following exposure to ionizing radiation and many chemotherapeutic agents can occur by the apoptotic pathway, inhibition of apoptosis would be expected to confer a relative resistance to these treatments. Similarly, cells deprived of growth factors in vitro die by apoptosis, and inhibition of apoptosis would therefore be expected to allow cells to survive better in growth factor-deprived conditions. We found that the survival of normal and CML myeloid progenitors was the same after in vitro incubation in deprived conditions and after treatment with X-irradiation or glucocorticoids. We also found that mature cells in colonies produced by CML progenitors (CFU-GM) did not survive better than those produced by normal progenitor cells. Flow cytometric analysis of propidium iodide-stained cells provided a direct indication that the degree of apoptosis may correspond to the degree of deprivation. These results suggest that inhibition of apoptosis may not be the primary mechanism whereby BCR-ABL influences the expansion of the malignant clone in CML. (Author).

  7. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids

    International Nuclear Information System (INIS)

    Amos, T.A.S.; Lewis, J.L.; Grand, F.H.; Gooding, R.P.; Goldman, J.M.; Gordon, M.Y.

    1995-01-01

    Inhibition of apoptosis (genetically programmed active cell death) by p210 BCR-ABL expression is a mechanism that might contribute to clonal expansion in chronic myeloid leukaemia (CML). Since cell death following exposure to ionizing radiation and many chemotherapeutic agents can occur by the apoptotic pathway, inhibition of apoptosis would be expected to confer a relative resistance to these treatments. Similarly, cells deprived of growth factors in vitro die by apoptosis, and inhibition of apoptosis would therefore be expected to allow cells to survive better in growth factor-deprived conditions. We found that the survival of normal and CML myeloid progenitors was the same after in vitro incubation in deprived conditions and after treatment with X-irradiation or glucocorticoids. We also found that mature cells in colonies produced by CML progenitors (CFU-GM) did not survive better than those produced by normal progenitor cells. Flow cytometric analysis of propidium iodide-stained cells provided a direct indication that the degree of apoptosis may correspond to the degree of deprivation. These results suggest that inhibition of apoptosis may not be the primary mechanism whereby BCR-ABL influences the expansion of the malignant clone in CML. (Author)

  8. Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles

    Directory of Open Access Journals (Sweden)

    Lummis Sarah CR

    2011-06-01

    Full Text Available Abstract Background Biolistic transfection is proving an increasingly popular method of incorporating DNA or RNA into cells that are difficult to transfect using traditional methods. The technique routinely uses 'microparticles', which are ~1 μm diameter projectiles, fired into tissues using pressurised gas. These microparticles are efficient at delivering DNA into cells, but cannot efficiently transfect small cells and may cause significant tissue damage, thus limiting their potential usefulness. Here we describe the use of 40 nm diameter projectiles - nanoparticles - in biolistic transfections to determine if they are a suitable alternative to microparticles. Results Examination of transfection efficiencies in HEK293 cells, using a range of conditions including different DNA concentrations and different preparation procedures, reveals similar behaviour of microparticles and nanoparticles. The use of nanoparticles, however, resulted in ~30% fewer damaged HEK293 cells following transfection. Biolistic transfection of mouse ear tissue revealed similar depth penetration for the two types of particles, and also showed that 20% in microparticle-transfected samples. Visualising details of small cellular structures was also considerably enhanced when using nanoparticles. Conclusions We conclude that nanoparticles are as efficient for biolistic transfection as microparticles, and are more appropriate for use in small cells, when examining cellular structures and/or where tissue damage is a problem.

  9. Clinical dosing regimen of selinexor maintains normal immune homeostasis and T cell effector function in mice: implications for combination with immunotherapy

    Science.gov (United States)

    Tyler, Paul M.; Servos, Mariah M.; de Vries, Romy C.; Klebanov, Boris; Kashyap, Trinayan; Sacham, Sharon; Landesman, Yosef; Dougan, Michael; Dougan, Stephanie K.

    2017-01-01

    Selinexor (KPT-330) is a first in class nuclear transport inhibitor currently in clinical trials as an anti-cancer agent. To determine how selinexor might impact anti-tumor immunity, we analyzed immune homeostasis in mice treated with selinexor and found disruptions in T cell development, a progressive loss of CD8 T cells and increases in inflammatory monocytes. Antibody production in response to immunization was mostly normal. Precursor populations in bone marrow and thymus were unaffected by selinexor, suggesting that normal immune homeostasis could recover. We found that a high dose of selinexor given once per week preserved nearly normal immune functioning, whereas a lower dose given 3 times per week did not restore immune homeostasis. Both naïve and effector CD8 T cells cultured in vitro showed impaired activation in the presence of selinexor. These experiments suggest that nuclear exportins are required for T cell development and function. We determined the minimum concentration of selinexor required to block T cell activation, and showed that T cell inhibitory effects of selinexor occur at levels above 100nM, corresponding to the first 24 hours post-oral dosing. In a model of implantable melanoma, selinexor treatment at 10 mg/kg with a 5 day drug holiday led to intratumoral IFNγ+, granzyme B+ cytotoxic CD8 T cells that were comparable to vehicle treated mice. Overall, selinexor treatment leads to transient inhibition of T cell activation but clinically relevant once and twice weekly dosing schedules that incorporate sufficient drug holidays allow for normal CD8 T cell functioning and development of anti-tumor immunity. PMID:28148714

  10. Comparison of growth factor signalling pathway utilisation in cultured normal melanocytes and melanoma cell lines

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Stones, Clare; Joseph, Wayne R; Leung, Euphemia; Finlay, Graeme J; Shelling, Andrew N; Phillips, Wayne A; Shepherd, Peter R; Baguley, Bruce C

    2012-01-01

    The phosphatidylinositol-3-kinase (PI3K-PKB), mitogen activated protein kinase (MEK-ERK) and the mammalian target of rapamycin (mTOR- p70S6K), are thought to regulate many aspects of tumour cell proliferation and survival. We have examined the utilisation of these three signalling pathways in a number of cell lines derived from patients with metastatic malignant melanoma of known PIK3CA, PTEN, NRAS and BRAF mutational status. Western blotting was used to compare the phosphorylation status of components of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways, as indices of pathway utilisation. Normal melanocytes could not be distinguished from melanoma cells on the basis of pathway utilisation when grown in the presence of serum, but could be distinguished upon serum starvation, where signalling protein phosphorylation was generally abrogated. Surprisingly, the differential utilisation of individual pathways was not consistently associated with the presence of an oncogenic or tumour suppressor mutation of genes in these pathways. Utilisation of the PI3K-PKB, MEK-ERK and mTOR-p70S6K signalling pathways in melanoma, as determined by phosphorylation of signalling components, varies widely across a series of cell lines, and does not directly reflect mutation of genes coding these components. The main difference between cultured normal melanocytes and melanoma cells is not the pathway utilisation itself, but rather in the serum dependence of pathway utilisation

  11. Repair of DNA lesions induced by ultraviolet irradiation and aromatic amines in normal and repair-deficient human lymphoblastoid cell lines

    DEFF Research Database (Denmark)

    Stevnsner, Tinna; Frandsen, Henrik; Autrup, Herman

    1995-01-01

    (AAF) respectively. The cell line belonging to xeroderma pigmentosum complementation group C (XP-C) removed all three types of damage less efficiently than the normal cell line, but more efficiently than the cell line belonging to xeroderma pigmentosum complementation group D (XP-D). The cell line...

  12. Light trapping for emission from a photovoltaic cell under normally incident monochromatic illumination

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Yasuhiko, E-mail: takeda@mosk.tytlabs.co.jp; Iizuka, Hideo; Mizuno, Shintaro; Hasegawa, Kazuo; Ichikawa, Tadashi; Ito, Hiroshi; Kajino, Tsutomu [Toyota Central Research and Development Laboratories, Inc., 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan); Ichiki, Akihisa; Motohiro, Tomoyoshi [Green Mobility Collaborative Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan)

    2014-09-28

    We have theoretically demonstrated a new light-trapping mechanism to reduce emission from a photovoltaic (PV) cell used for a monochromatic light source, which improves limiting conversion efficiency determined by the detailed balance. A multilayered bandpass filter formed on the surface of a PV cell has been found to prevent the light generated inside by radiative recombination from escaping the cell, resulting in a remarkable decrease of the effective solid angle for the emission. We have clarified a guide to design a suitable configuration of the bandpass filter and achieved significant reduction of the emission. The resultant gain in monochromatic conversion efficiency in the radiative limit due to the optimally designed 18-layerd bandpass filters is as high as 6% under normally incident 1064 nm illumination of 10 mW/cm²~ 1 kW/cm², compared with the efficiency for the perfect anti-reflection treatment to the surface of a conventional solar cell.

  13. Effect of dioxin on normal and leukemic human hematopoietic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lambertenghi-Deliliers, G.; Soligo, D. [Univ. degli Studi, Milan (Italy). Dipt. die Ematologia, Ospedale Maggiore Policlinico IRCCS; Fracchiolla, N.S. [Ospedale Maggiore Policlinico IRCCS, Milan (Italy). Dipt. di Ematologia; Servida, F. [Fondazione Matarelli, Milan (Italy); Bertazzi, P.A. [Istituti Clinici di Perfezionamento, Milan (Italy). Dipt. di Medicina del Lavoro

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) arises from chlorination of phenolic substrates or from partial combustion of organic materials in the presence of chlorine sources. TCDD has a large number of biological effects such as long-lasting skin disease, cardiovascular disease, diabete and cancer. TCDD is the prototypical agonist of the aryl hydrocarbon receptor (AhR), a member of the erb-A family that also includes the receptors for steroids, thyroid hormones, peroxisome proliferators and retinoids. When bound to dioxin, the AhR can bind to DNA and alter the expression of some genes including cytokines and growth factors. In this study, we analyzed the effect of escalating doses of TCDD on human CD34{sup +} progenitor cells from the leukapheresis of normal donors stimulated with G-CSF as well as the human myeloid leukemic cell lines HL60 (promyelocytic leukemia) and K562 (chronic myelogenous leukemia). The possible specific modulation of gene expression induced by the TCDD exposure was then tested by means of microarray analyses.

  14. Radioresistant CD4+ T cells in normal, unprimed mice, with verification of the Bergonie-Tribondeau law

    International Nuclear Information System (INIS)

    Makidono, Reiko; Ito, Akira.

    1997-01-01

    This is the first report on radioresistant CD4+ T cells found in normal, unprimed mice. After sublethal whole body irradiation, regular CD4+ as well as primitive NK1.1+ CD4+ T cells were enriched in the spleen. Since it has been well established that virgin T and B cells are highly radiosensitive, these cells were once assumed to be a unique lymphocyte population for which radiosensitivity does not follow the general law of radiation sensitivity for mammalian cells (Bergonie-Tribondeau law). These cells exhibited higher proliferative response to accessory cells than the non-irradiated control cells in the syngeneic mixed leukocyte reaction (SMLR). This indicated that virgin CD4+ T cells sensitized to, and readily respond to self-MHC class II molecules are radioresistant, and that their radioresistance, as activated cells, is consistent with the Bergonie-Tribondeau law. (author)

  15. The human PKP2/plakophilin-2 gene is induced by Wnt/β-catenin in normal and colon cancer-associated fibroblasts.

    Science.gov (United States)

    Niell, Núria; Larriba, María Jesús; Ferrer-Mayorga, Gemma; Sánchez-Pérez, Isabel; Cantero, Ramón; Real, Francisco X; Del Peso, Luis; Muñoz, Alberto; González-Sancho, José Manuel

    2018-02-15

    Colorectal cancer results from the malignant transformation of colonic epithelial cells. Stromal fibroblasts are the main component of the tumour microenvironment, and play an important role in the progression of this and other neoplasias. Wnt/β-catenin signalling is essential for colon homeostasis, but aberrant, constitutive activation of this pathway is a hallmark of colorectal cancer. Here we present the first transcriptomic study on the effect of a Wnt factor on human colonic myofibroblasts. Wnt3A regulates the expression of 1,136 genes, of which 662 are upregulated and 474 are downregulated in CCD-18Co cells. A set of genes encoding inhibitors of the Wnt/β-catenin pathway stand out among those induced by Wnt3A, which suggests that there is a feedback inhibitory mechanism. We also show that the PKP2 gene encoding the desmosomal protein Plakophilin-2 is a novel direct transcriptional target of Wnt/β-catenin in normal and colon cancer-associated fibroblasts. PKP2 is induced by β-catenin/TCF through three binding sites in the gene promoter and one additional binding site located in an enhancer 20 kb upstream from the transcription start site. Moreover, Plakophilin-2 antagonizes Wnt/β-catenin transcriptional activity in HEK-293T cells, which suggests that it may act as an intracellular inhibitor of the Wnt/β-catenin pathway. Our results demonstrate that stromal fibroblasts respond to canonical Wnt signalling and that Plakophilin-2 plays a role in the feedback control of this effect suggesting that the response to Wnt factors in the stroma may modulate Wnt activity in the tumour cells. © 2017 The Authors International Journal of Cancer published by John Wiley & Sons Ltd on behalf of UICC.

  16. Highly active antiretroviral therapy normalizes the function of progenitor cells in human immunodeficiency virus-infected patients

    DEFF Research Database (Denmark)

    Dam Nielsen, S.; Ersbøll, A. K.; Mathiesen, L.

    1998-01-01

    -infected patients were determined prior to HAART and after 2, 4, 8, and 12 weeks of therapy. The mean number of colony-forming units (cells) per milliliter (cfu/mL) was 15.0 prior to HAART vs. 109.8 in healthy controls (P.../mL eliminated the differences between HIV-infected patients and controls. Significant increases in numbers of CD34 cells were not detected. Of importance, the cloning efficiency of CD34 cells increased from 1.7% prior to therapy to a peak at 18.7% (P=.003). In conclusion, HAART normalized CD34 cell function...

  17. Epigenetic alterations of the SERPINE1 gene in oral squamous cell carcinomas and normal oral mucosa

    DEFF Research Database (Denmark)

    Gao, Shan; Nielsen, Boye Schnack; Krogdahl, Annelise

    2010-01-01

    cells in oral carcinomas by immunohistochemistry, we found that PAI-1 was expressed in 18 of the 20 patients, mainly by cancer cells. Two showed PAI-1 positive stromal cells surrounding the tumor areas and five showed PAI-1 positive cells in tumor-adjacent normal epithelium. By real-time RT-PCR analysis......A high level of plasminogen activator inhibitor-1 (PAI-1 or SERPINE1) in tumor extracts is a marker of a poor prognosis in human cancers, including oral carcinomas. However, the mechanisms responsible for the upregulation of PAI-1 in cancers remain unclear. Investigating specific PAI-1 expressing...

  18. Three dimensional analysis of histone methylation patterns in normal and tumor cell nuclei

    Directory of Open Access Journals (Sweden)

    M Cremer

    2009-06-01

    Full Text Available Histone modifications represent an important epigenetic mechanism for the organization of higher order chromatin structure and gene regulation. Methylation of position-specific lysine residues in the histone H3 and H4 amino termini has been linked with the formation of constitutive and facultative heterochromatin as well as with specifically repressed single gene loci. Using an antibody, directed against dimethylated lysine 9 of histone H3 and several other lysine methylation sites, we visualized the nuclear distribution pattern of chromatin flagged by these methylated lysines in 3D preserved nuclei of normal and malignant cell types. Optical confocal serial sections were used for a quantitative evaluation. We demonstrate distinct differences of these histone methylation patterns among nuclei of different cell types after exit of the cell cycle. Changes in the pattern formation were also observed during the cell cycle. Our data suggest an important role of methylated histones in the reestablishment of higher order chromatin arrangements during telophase/early G1. Cell type specific histone methylation patterns are possibly causally involved in the formation of cell type specific heterochromatin compartments, composed of (pericentromeric regions and chromosomal subregions from neighboring chromosome territories, which contain silent genes.

  19. Inhibitor production by normal rat tracheal epithelial cells influences the frequency of spontaneous and X-ray-induced enhanced growth variants

    International Nuclear Information System (INIS)

    Terzaghi-Howe, M.

    1989-01-01

    A cell culture model was used to assay for the induction of cell populations with enhanced growth capacity in culture in irradiated normal rat tracheal epithelial cells (NTEC). Some growth conditions appear to favor the proliferation of both normal and carcinogen-exposed populations, while others appear to select for populations previously exposed to carcinogen. In the present report we focus on what growth conditions are critical for controlling the emergence of spontaneous and X-ray induced proliferating epithelial foci (PEF) and what factor(s) directly influences the relative frequency of PEF in irradiated and control NTEC cultures. (author)

  20. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    International Nuclear Information System (INIS)

    Machowska, Magdalena; Wachowicz, Katarzyna; Sopel, Mirosław; Rzepecki, Ryszard

    2014-01-01

    Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti-proliferative effect of nuclear

  1. Nuclear location of tumor suppressor protein maspin inhibits proliferation of breast cancer cells without affecting proliferation of normal epithelial cells

    Science.gov (United States)

    2014-01-01

    Background Maspin, which is classified as a tumor suppressor protein, is downregulated in many types of cancer. Several studies have suggested potential anti-proliferative activity of maspin as well as sensitizing activity of maspin for therapeutic cytotoxic agents in breast cancer tissue culture and animal models. All of the experimental data gathered so far have been based on studies with maspin localized cytoplasmically, while maspin in breast cancer tumor cells may be located in the cytoplasm, nucleus or both. In this study, the effect of maspin cytoplasmic and nuclear location and expression level on breast cancer proliferation and patient survival was studied. Methods Tissue sections from 166 patients with invasive ductal breast cancer were stained by immunohistochemistry for maspin and Ki-67 protein. The localization and expression level of maspin were correlated with estimated patient overall survival and percent of Ki-67-positive cells. In further studies, we created constructs for transient transfection of maspin into breast cancer cells with targeted cytoplasmic and nuclear location. We analyzed the effect of maspin location in normal epithelial cell line MCF10A and three breast cancer cell lines - MCF-7, MDA-MB-231 and SKBR-3 - by immunofluorescence and proliferation assay. Results We observed a strong positive correlation between moderate and high nuclear maspin level and survival of patients. Moreover, a statistically significant negative relationship was observed between nuclear maspin and Ki-67 expression in patients with invasive ductal breast cancer. Spearman’s correlation analysis showed a negative correlation between level of maspin localized in nucleus and percentage of Ki-67 positive cells. No such differences were observed in cells with cytoplasmic maspin. We found a strong correlation between nuclear maspin and loss of Ki-67 protein in breast cancer cell lines, while there was no effect in normal epithelial cells from breast. The anti

  2. Anti-platelet aggregation of mixtures of betulinic oleanolic and ...

    African Journals Online (AJOL)

    on human embryonic kidney (HEK293) and hepatocellular carcinoma (HEPG2) cell lines ... exhibited low cytotoxic effect on both HEK293 cells (IC50: 724.43, 269.08 and 407.89 mg/mL ..... Triterpenes from the stem bark of Protorhus longifolia.

  3. In vitro assessment of antiproliferative action selectivity of dietary isothiocyanates for tumor versus normal human cells

    Directory of Open Access Journals (Sweden)

    Konić-Ristić Aleksandra

    2016-01-01

    Full Text Available Background/Aim. Numerous epidemiological studies have shown beneficial effects of cruciferous vegetables consumption in cancer chemoprevention. Biologically active compounds of different Brassicaceae species with antitumor potential are isothiocyanates, present in the form of their precursors - glucosinolates. The aim of this study was to determine the selectivity of antiproliferative action of dietary isothiocyanates for malignant versus normal cells. Methods. Antiproliferative activity of three isothiocyanates abundant in human diet: sulforaphane, benzyl isothiocyanate (BITC and phenylethyl isothiocyanate, on human cervix carcinoma cell line - HeLa, melanoma cell line - Fem-x, and colon cancer cell line - LS 174, and on peripheral blood mononuclear cells (PBMC, with or without mitogen, were determined by MTT colorimetric assay 72 h after their continuous action. Results. All investigated isothiocyanates inhibited the proliferation of HeLa, Fem-x and LS 174 cells. On all cell lines treated, BITC was the most potent inhibitor of cell proliferation with half-maximum inhibitory concentration (IC50 values of 5.04 mmoL m-3 on HeLa cells, 2.76 mmol m-3 on Fem-x, and 14.30 mmol m-3 on LS 174 cells. Antiproliferative effects on human PBMC were with higher IC50 than on malignant cells. Indexes of selectivity, calculated as a ratio between IC50 values obtained on PBMC and malignant cells, were between 1.12 and 16.57, with the highest values obtained for the action of BITC on melanoma Fem-x cells. Conclusion. Based on its antiproliferative effects on malignant cells, as well as the selectivity of the action to malignant vs normal cells, benzyl isothiocyanate can be considered as a promising candidate in cancer chemoprevention. In general, the safety of investigated compounds, in addition to their antitumor potential, should be considered as an important criterion in cancer chemoprevention. Screening of selectivity is a plausible approach to the evaluation

  4. RAC3 nuclear receptor co-activator has a protective role in the apoptosis induced by different stimuli

    International Nuclear Information System (INIS)

    Colo, Georgina P.; Rubio, Maria F.; Alvarado, Cecilia V.; Costas, Monica A.

    2007-01-01

    RAC3 belongs to the family of p160 nuclear receptors co activators and it is over-expressed in several tumors. We have previously shown that RAC3 is a NF-κB co activator. In this paper, we investigated the role of RAC3 in cell-sensitivity to apoptosis, using H 2 O 2 in the human embryonic kidney cell line (HEK293), and tumor necrosis factor-related apoptosis inducing ligand (TRAIL) in a human chronic myeloid leukemia cell line (K562) naturally resistant to TRAIL. We observed that the tumoral K562 cells have high levels of RAC3 if compared with the non-tumoral HEK293 cells. The normal or transfected co activator over-expression inhibits apoptosis through a diminished caspase activity and AIF nuclear translocation, increased NF--κB, AKT and p38, and decreased ERK activities. In contrast, inhibition of RAC3 by siRNA induced sensitivity of K562 to TRAIL-induced apoptosis. Such results suggest that over-expression of RAC3 contributes to tumor development through molecular mechanisms that do not depend strictly on acetylation and/or steroid hormones, which control cell death. This could be a possible target for future tumor therapies. (author) [es

  5. Marrow transfusions into normal recipients

    International Nuclear Information System (INIS)

    Brecher, G.

    1983-01-01

    During the past several years we have explored the transfusion of bone marrow into normal nonirradiated mice. While transfused marrow proliferates readily in irradiated animals, only minimal proliferation takes place in nonirradiated recipients. It has generally been assumed that this was due to the lack of available proliferative sites in recipients with normal marrow. Last year we were able to report that the transfusion of 200 million bone marrow cells (about 2/3 of the total complement of marrow cells of a normal mouse) resulted in 20% to 25% of the recipient's marrow being replaced by donor marrow. Thus we can now study the behavior of animals that have been transfused (donor) and endogenous (recipient) marrow cells, although none of the tissues of either donor or recipient have been irradiated. With these animals we hope to investigate the nature of the peculiar phenomenon of serial exhaustion of marrow, also referred to as the limited self-replicability of stem cells

  6. Regulation of pigmentation by substrate elasticity in normal human melanocytes and melanotic MNT1 human melanoma cells.

    Science.gov (United States)

    Choi, Hyunjung; Kim, Mina; Ahn, Song Ih; Cho, Eun-Gyung; Lee, Tae Ryong; Shin, Jennifer H

    2014-03-01

    The elasticity of the cellular microenvironment is a key regulator of cellular physiology in many cell types. To investigate the effects of substrate stiffness on the pigmentation process, we cultured normal human melanocytes (NHM) and MNT1 melanoma cells on laminin-coated polydimethylsiloxane (PDMS) substrates of different stiffness. The dendricity of NHM and MNT1 cells was reduced as the substrate stiffness decreased, and the degree of melanosome transfer from NHM or MNT1 cells to normal human keratinocytes was decreased on softer substrates with the reduced dendricity. Gene and protein expressions of MITF, tyrosinase, TRP2, and gp100/PMEL17 exhibited a consistent decreasing trend with the decreasing stiffness. Because the stiffness sensing is mediated by focal adhesion complex through integrin receptors, we checked laminin specific integrin alpha 6 and p-FAK for MNT1 cells to observe that the substrate adhesion was weakened as the substrate stiffness decreased. Weaker adhesion on a softer substrate was accompanied by dynamic shape changes in MNT1 cells with higher speed and larger scattering. Dendritic MNT1 cells cultured on a stiffer substrate exhibited lower migration with smaller root mean squared displacement. These results demonstrate the possibility that skin pigmentation can be influenced by mechanical properties of the cellular microenvironment and can increase when the skin becomes stiff. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Genetic Analysis of Somatic Cell Score in Danish Holsteins Using a Liability-Normal Mixture Model

    DEFF Research Database (Denmark)

    Madsen, P; Shariati, M M; Ødegård, J

    2008-01-01

    Mixture models are appealing for identifying hidden structures affecting somatic cell score (SCS) data, such as unrecorded cases of subclinical mastitis. Thus, liability-normal mixture (LNM) models were used for genetic analysis of SCS data, with the aim of predicting breeding values for such cas...

  8. Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes

    International Nuclear Information System (INIS)

    Pascal, Laura E; Liu, Alvin Y; Vêncio, Ricardo ZN; Page, Laura S; Liebeskind, Emily S; Shadle, Christina P; Troisch, Pamela; Marzolf, Bruz; True, Lawrence D; Hood, Leroy E

    2009-01-01

    Prostate cancer cells in primary tumors have been typed CD10 - /CD13 - /CD24 hi /CD26 + /CD38 lo /CD44 - /CD104 - . This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. CD26 + cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types

  9. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis.

    Science.gov (United States)

    Huang, Emina H; Hynes, Mark J; Zhang, Tao; Ginestier, Christophe; Dontu, Gabriela; Appelman, Henry; Fields, Jeremy Z; Wicha, Max S; Boman, Bruce M

    2009-04-15

    Although the concept that cancers originate from stem cells (SC) is becoming scientifically accepted, mechanisms by which SC contribute to tumor initiation and progression are largely unknown. For colorectal cancer (CRC), investigation of this problem has been hindered by a paucity of specific markers for identification and isolation of SC from normal and malignant colon. Accordingly, aldehyde dehydrogenase 1 (ALDH1) was investigated as a possible marker for identifying colonic SC and for tracking them during cancer progression. Immunostaining showed that ALDH1(+) cells are sparse and limited to the normal crypt bottom, where SCs reside. During progression from normal epithelium to mutant (APC) epithelium to adenoma, ALDH1(+) cells increased in number and became distributed farther up the crypt. CD133(+) and CD44(+) cells, which are more numerous and broadly distributed in normal crypts, showed similar changes during tumorigenesis. Flow cytometric isolation of cancer cells based on enzymatic activity of ALDH (Aldefluor assay) and implantation of these cells in nonobese diabetic-severe combined immunodeficient mice (a) generated xenograft tumors (Aldefluor(-) cells did not), (b) generated them after implanting as few as 25 cells, and (c) generated them dose dependently. Further isolation of cancer cells using a second marker (CD44(+) or CD133(+) serially) only modestly increased enrichment based on tumor-initiating ability. Thus, ALDH1 seems to be a specific marker for identifying, isolating, and tracking human colonic SC during CRC development. These findings also support our original hypothesis, derived previously from mathematical modeling of crypt dynamics, that progressive colonic SC overpopulation occurs during colon tumorigenesis and drives CRC development.

  10. Enhancement of mouse germ cell-associated genes expression by injection of human umbilical cord mesenchymal stem cells into the testis of chemical-induced azoospermic mice

    Directory of Open Access Journals (Sweden)

    Rui-Feng Yang

    2014-10-01

    Full Text Available Various methods are currently under investigation to preserve fertility in males treated with high-dose chemotherapy and radiation for malignant and nonmalignant disorders. Human umbilical cord mesenchymal stem cells (HUC-MSCs, which possess potent immunosuppressive function and secrete various cytokines and growth factors, have the potential clinical applications. As a potential alternative, we investigate whether injection of HUC-MSCs into the interstitial compartment of the testes to promote spermatogenic regeneration efficiently. HUC-MSCs were isolated from different sources of umbilical cords and injected into the interstitial space of one testis from 10 busulfan-treated mice (saline and HEK293 cells injections were performed in a separate set of mice and the other testis remained uninjected. Three weeks after MSCs injection, Relative quantitative reverse transcription polymerase chain reaction was used to identify the expression of 10 of germ cell associated, which are all related to meiosis, demonstrated higher levels of spermatogenic gene expression (2-8 fold in HUC-MSCs injected testes compared to the contralateral uninjected testes (five mice. Protein levels for germ cell-specific genes, miwi, vasa and synaptonemal complex protein (Scp3 were also higher in MSC-treated testes compared to injected controls 3 weeks after treatment. However, no different expression was detected in saline water and HEK293 cells injection control group. We have demonstrated HUC-MSCs could affect mouse germ cell-specific genes expression. The results also provide a possibility that the transplanted HUC-MSCs may promote the recovery of spermatogenesis. This study provides further evidence for preclinical therapeutic effects of HUC-MSCs, and explores a new approach to the treatment of azoospermia.

  11. Enhanced iodide sequestration by 3-biphenyl-5,6-dihydroimidazo 2,1-b thiazole in sodium/iodide sym-porter (NIS)-expressing cells

    International Nuclear Information System (INIS)

    Lecat-Guillet, N.; Ambroise, Y.

    2008-01-01

    The ability of the sodium/iodide sym-porter (NIS) to take up iodide has long provided the basis for cyto-reductive gene therapy and cancer treatment with radio-iodide. One of the major limitations of this approach is that radio-iodide retention in NIS-expressing cells is not sufficient for their destruction. We identified and characterized a small organic molecule capable of increasing iodide retention in HEK293 cells permanently transfected with human NIS cDNA (hNIS-HEK293) and in the rat thyroid-derived cell line FRTL-5. In the presence of 3-biphenyl-4'-yl-5,6-dihydroimidazo[2,1-b)thiazole (ISA1), the transmembrane iodide concentration gradient was increased up to 4.5-fold. Our experiments indicate that the imidazo-thiazole derivative acts either by inhibiting anion efflux mechanisms, or by promoting the relocation of iodide into subcellular compartments. This new compound is not only an attractive chemical tool to investigate the mechanisms of iodide flux at the cellular level, but also opens promising perspectives in the treatment of cancer after NIS gene transfer. (authors)

  12. TOTAL NUMBER, DISTRIBUTION, AND PHENOTYPE OF CELLS EXPRESSING CHONDROITIN SULPHATE PROTEOGLYCANS IN THE NORMAL HUMAN AMYGDALA

    Science.gov (United States)

    Pantazopoulos, Harry; Murray, Elisabeth A.; Berretta, Sabina

    2009-01-01

    Chondroitin sulphate proteoglycans (CSPGs) are a key structural component of the brain extracellular matrix. They are involved in critical neurodevelopmental functions and are one of the main components of pericellular aggregates known as perineuronal nets. As a step toward investigating their functional and pathophysiological roles in the human amygdala, we assessed the pattern of CSPG expression in the normal human amygdala using wisteria floribunda agglutinin (WFA) lectin-histochemistry. Total numbers of WFA-labeled elements were measured in the lateral (LN), basal (BN), accessory basal (ABN) and cortical (CO) nuclei of the amygdala from 15 normal adult human subjects. For interspecies qualitative comparison, we also investigated the pattern of WFA labeling in the amygdala of naïve rats (n=32) and rhesus monkeys (Macaca mulatta; n=6). In human amygdala, WFA lectin-histochemistry resulted in labeling of perineuronal nets and cells with clear glial morphology, while neurons did not show WFA-labeling. Total numbers of WFA-labeled glial cells showed high interindividual variability. These cells aggregated in clusters with a consistent between-subjects spatial distribution. In a subset of human subjects (n=5), dual color fluorescence using an antibody raised against glial fibrillary acidic protein (GFAP) and WFA showed that the majority (93.7%) of WFA-labeled glial cells correspond to astrocytes. In rat and monkey amygdala, WFA histochemistry labeled perineuronal nets, but not glial cells. These results suggest that astrocytes are the main cell type expressing CSPGs in the adult human amygdala. Their highly segregated distribution pattern suggests that these cells serve specialized functions within human amygdalar nuclei. PMID:18374308

  13. Clinical Dosing Regimen of Selinexor Maintains Normal Immune Homeostasis and T-cell Effector Function in Mice: Implications for Combination with Immunotherapy.

    Science.gov (United States)

    Tyler, Paul M; Servos, Mariah M; de Vries, Romy C; Klebanov, Boris; Kashyap, Trinayan; Sacham, Sharon; Landesman, Yosef; Dougan, Michael; Dougan, Stephanie K

    2017-03-01

    Selinexor (KPT-330) is a first-in-class nuclear transport inhibitor currently in clinical trials as an anticancer agent. To determine how selinexor might affect antitumor immunity, we analyzed immune homeostasis in mice treated with selinexor and found disruptions in T-cell development, a progressive loss of CD8 T cells, and increases in inflammatory monocytes. Antibody production in response to immunization was mostly normal. Precursor populations in bone marrow and thymus were unaffected by selinexor, suggesting that normal immune homeostasis could recover. We found that a high dose of selinexor given once per week preserved nearly normal immune functioning, whereas a lower dose given 3 times per week did not restore immune homeostasis. Both naïve and effector CD8 T cells cultured in vitro showed impaired activation in the presence of selinexor. These experiments suggest that nuclear exportins are required for T-cell development and function. We determined the minimum concentration of selinexor required to block T-cell activation and showed that T-cell-inhibitory effects of selinexor occur at levels above 100 nmol/L, corresponding to the first 24 hours post-oral dosing. In a model of implantable melanoma, selinexor treatment at 10 mg/kg with a 4-day drug holiday led to intratumoral IFNγ + , granzyme B + cytotoxic CD8 T cells that were comparable with vehicle-treated mice. Overall, selinexor treatment leads to transient inhibition of T-cell activation, but clinically relevant once and twice weekly dosing schedules that incorporate sufficient drug holidays allow for normal CD8 T-cell functioning and development of antitumor immunity. Mol Cancer Ther; 16(3); 428-39. ©2017 AACR See related article by Farren et al., p. 417 . ©2017 American Association for Cancer Research.

  14. Adult hematopoietic stem cells lacking Hif-1α self-renew normally

    Science.gov (United States)

    Vukovic, Milica; Sepulveda, Catarina; Subramani, Chithra; Guitart, Amélie V.; Mohr, Jasmine; Allen, Lewis; Panagopoulou, Theano I.; Paris, Jasmin; Lawson, Hannah; Villacreces, Arnaud; Armesilla-Diaz, Alejandro; Gezer, Deniz; Holyoake, Tessa L.; Ratcliffe, Peter J.

    2016-01-01

    The hematopoietic stem cell (HSC) pool is maintained under hypoxic conditions within the bone marrow microenvironment. Cellular responses to hypoxia are largely mediated by the hypoxia-inducible factors, Hif-1 and Hif-2. The oxygen-regulated α subunits of Hif-1 and Hif-2 (namely, Hif-1α and Hif-2α) form dimers with their stably expressed β subunits and control the transcription of downstream hypoxia-responsive genes to facilitate adaptation to low oxygen tension. An initial study concluded that Hif-1α is essential for HSC maintenance, whereby Hif-1α–deficient HSCs lost their ability to self-renew in serial transplantation assays. In another study, we demonstrated that Hif-2α is dispensable for cell-autonomous HSC maintenance, both under steady-state conditions and following transplantation. Given these unexpected findings, we set out to revisit the role of Hif-1α in cell-autonomous HSC functions. Here we demonstrate that inducible acute deletion of Hif-1α has no impact on HSC survival. Notably, unstressed HSCs lacking Hif-1α efficiently self-renew and sustain long-term multilineage hematopoiesis upon serial transplantation. Finally, Hif-1α–deficient HSCs recover normally after hematopoietic injury induced by serial administration of 5-fluorouracil. We therefore conclude that despite the hypoxic nature of the bone marrow microenvironment, Hif-1α is dispensable for cell-autonomous HSC maintenance. PMID:27060169

  15. Different apoptotic effects of [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin on normal and cancerous human epithelial breast cells in primary culture.

    Science.gov (United States)

    Vetrugno, Carla; Muscella, Antonella; Fanizzi, Francesco Paolo; Cossa, Luca Giulio; Migoni, Danilo; De Pascali, Sandra Angelica; Marsigliante, Santo

    2014-11-01

    The aim of this study was to determine whether [platinum (Pt)(O,O'-acetylacetonate (acac))(γ-acac)(dimethylsulphide (DMS))] is differentially cytotoxic in normal and cancer cells, and to measure comparative levels of cytotoxicity compared with cisplatin in the same cells. We performed experiments on cancerous and normal epithelial breast cells in primary culture obtained from the same patients. The apoptotic effects [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin in cancerous and normal breast cells were compared. Cancer cells were more sensitive to [Pt(O,O'-acac)(γ-acac)(DMS)] (IC50 = 5.22 ± 1.2 μmol·L(-1)) than normal cells (IC50 = 116.9 ± 8.8 μmol·L(-1)). However, the difference was less strong when cisplatin was used (IC50 = 96.0 ± 6.9 and 61.9 ± 6.1 μmol·L(-1) for cancer and normal cells respectively). Both compounds caused reactive oxygen species (ROS) production with different mechanisms: [Pt(O,O'-acac)(γ-acac)(DMS)] quickly activated NAD(P)H oxidase while cisplatin caused a slower formation of mitochondrial ROS. Cisplatin and [Pt(O,O'-acac)(γ-acac)(DMS)] caused activation of caspases, proteolysis of PARP and modulation of Bcl-2, Bax and Bid. [Pt(O,O'-acac)(γ-acac)(DMS)] also caused leakage of cytochrome c from the mitochondria. Overall, these processes proceeded more quickly in cells treated with [Pt(O,O'-acac)(γ-acac)(DMS)] compared with cisplatin. [Pt(O,O'-acac)(γ-acac)(DMS)] effects were faster and quantitatively greater in cancer than in normal cells. [Pt(O,O'-acac)(γ-acac)(DMS)] caused a fast decrease of mitochondrial membrane potential, especially in cancer cells. [Pt(O,O'-acac)(γ-acac)(DMS)] was specific to breast cancer cells in primary culture, and this observation makes this compound potentially more interesting than cisplatin. © 2014 The British Pharmacological Society.

  16. Different apoptotic effects of [Pt(O,O′-acac)(γ-acac)(DMS)] and cisplatin on normal and cancerous human epithelial breast cells in primary culture

    Science.gov (United States)

    Vetrugno, Carla; Muscella, Antonella; Fanizzi, Francesco Paolo; Cossa, Luca Giulio; Migoni, Danilo; De Pascali, Sandra Angelica; Marsigliante, Santo

    2014-01-01

    Background and Purpose The aim of this study was to determine whether [platinum (Pt)(O,O′-acetylacetonate (acac))(γ-acac)(dimethylsulphide (DMS))] is differentially cytotoxic in normal and cancer cells, and to measure comparative levels of cytotoxicity compared with cisplatin in the same cells. Experimental Approach We performed experiments on cancerous and normal epithelial breast cells in primary culture obtained from the same patients. The apoptotic effects [Pt(O,O′-acac)(γ-acac)(DMS)] and cisplatin in cancerous and normal breast cells were compared. Key Results Cancer cells were more sensitive to [Pt(O,O′-acac)(γ-acac)(DMS)] (IC50 = 5.22 ± 1.2 μmol·L−1) than normal cells (IC50 = 116.9 ± 8.8 μmol·L−1). However, the difference was less strong when cisplatin was used (IC50 = 96.0 ± 6.9 and 61.9 ± 6.1 μmol·L−1 for cancer and normal cells respectively). Both compounds caused reactive oxygen species (ROS) production with different mechanisms: [Pt(O,O′-acac)(γ-acac)(DMS)] quickly activated NAD(P)H oxidase while cisplatin caused a slower formation of mitochondrial ROS. Cisplatin and [Pt(O,O′-acac)(γ-acac)(DMS)] caused activation of caspases, proteolysis of PARP and modulation of Bcl-2, Bax and Bid. [Pt(O,O′-acac)(γ-acac)(DMS)] also caused leakage of cytochrome c from the mitochondria. Overall, these processes proceeded more quickly in cells treated with [Pt(O,O′-acac)(γ-acac)(DMS)] compared with cisplatin. [Pt(O,O′-acac)(γ-acac)(DMS)] effects were faster and quantitatively greater in cancer than in normal cells. [Pt(O,O′-acac)(γ-acac)(DMS)] caused a fast decrease of mitochondrial membrane potential, especially in cancer cells. Conclusions and Implications [Pt(O,O′-acac)(γ-acac)(DMS)] was specific to breast cancer cells in primary culture, and this observation makes this compound potentially more interesting than cisplatin. PMID:24990093

  17. [Inheritable phenotypic normalization of rodent cells transformed by simian adenovirus SA7 E1 oncogenes by singled-stranded oligonucleotides complementary to a long region of integrated oncogenes].

    Science.gov (United States)

    Grineva, N I; Borovkova, T V; Sats, N V; Kurabekova, R M; Rozhitskaia, O S; Solov'ev, G Ia; Pantin, V I

    1995-08-01

    G11 mouse cells and SH2 rat cells transformed with simian adenovirus SA7 DNA showed inheritable oncogen-specific phenotypic normalization when treated with sense and antisense oligonucleotides complementary to long RNA sequences, plus or minus strands of the integrated adenovirus oncogenes E1A and E1B. Transitory treatment of the cells with the oligonucleotides in the absence of serum was shown to cause the appearance of normalized cell lines with fibroblastlike morphology, slower cell proliferation, and lack of ability to form colonies in soft agar. Proliferative activity and adhesion of the normalized cells that established cell lines were found to depend on the concentration of growth factors in the cultural medium. In some of the cell lines, an inhibition of transcription of the E1 oncogenes was observed. The normalization also produced cells that divided 2 - 5 times and died and cells that reverted to a transformed phenotype in 2 - 10 days. The latter appeared predominantly upon the action of the antisense oligonucleotides.

  18. Artichoke compound cynarin differentially affects the survival, growth and stress response of normal, immortalized and cancerous human cells

    DEFF Research Database (Denmark)

    Gezer, Ceren; Yücecan, Sevinç; Rattan, Suresh Inder Singh

    2015-01-01

    of CYN on the proliferative potential, survival, morphology, and stress response (SR) markers haemoxygenase-1 (HO-1) and heat shock protein-70 (HSP70) in normal human skin fibroblasts (FSF-1), telomerase-immortalized mesenchymal stem cells (hTERT-MSC) and cervical cancer cells, HeLa. Effects of CYN...

  19. Isolation and genome-wide expression and methylation characterization of CD31+ cells from normal and malignant human prostate tissue

    Science.gov (United States)

    Luo, Wei; Hu, Qiang; Wang, Dan; Deeb, Kristin K.; Ma, Yingyu; Morrison, Carl D.; Liu, Song; Johnson, Candace S.; Trump, Donald L.

    2013-01-01

    Endothelial cells (ECs) are an important component involved in the angiogenesis. Little is known about the global gene expression and epigenetic regulation in tumor endothelial cells. The identification of gene expression and epigenetic difference between human prostate tumor-derived endothelial cells (TdECs) and those in normal tissues may uncover unique biological features of TdEC and facilitate the discovery of new anti-angiogenic targets. We established a method for isolation of CD31+ endothelial cells from malignant and normal prostate tissues obtained at prostatectomy. TdECs and normal-derived ECs (NdECs) showed >90% enrichment in primary culture and demonstrated microvascular endothelial cell characteristics such as cobblestone morphology in monolayer culture, diI-acetyl-LDL uptake and capillary-tube like formation in Matrigel®. In vitro primary cultures of ECs maintained expression of endothelial markers such as CD31, von Willebrand factor, intercellular adhesion molecule, vascular endothelial growth factor receptor 1, and vascular endothelial growth factor receptor 2. We then conducted a pilot study of transcriptome and methylome analysis of TdECs and matched NdECs from patients with prostate cancer. We observed a wide spectrum of differences in gene expression and methylation patterns in endothelial cells, between malignant and normal prostate tissues. Array-based expression and methylation data were validated by qRT-PCR and bisulfite DNA pyrosequencing. Further analysis of transcriptome and methylome data revealed a number of differentially expressed genes with loci whose methylation change is accompanied by an inverse change in gene expression. Our study demonstrates the feasibility of isolation of ECs from histologically normal prostate and prostate cancer via CD31+ selection. The data, although preliminary, indicates that there exist widespread differences in methylation and transcription between TdECs and NdECs. Interestingly, only a small

  20. Genomic instability induced by 60Co γ ray radiation in normal human liver cells

    International Nuclear Information System (INIS)

    Gen Xiaohua; Guo Xianhua; Zuo Yahui; Wang Xiaoli; Wang Zhongwen

    2007-01-01

    Objective: To explore the genomic instability induced by 60 Co γ rays. Methods: The cloning efficiency and micronucleus efficiency of normal human liver cell irradiated by 60 Co γ rays were detected, and the method of single cell gel electrophoresis (SCGE) was carried out to measure DNA chains damage. The fast-growing cells were divided into different dose-groups and then irradiated by 60 Co γ rays. After 40 populations doubling, the progenies were secondly irradiated with 2 Gy 60 Co γ rays. Results: The cloning efficiency decreased with the increase of doses after the initial irradiation. After the survival cells were given second irradiation, both results of SCGE and micronucleus frequency showed that the second damage was correlated with the original irradiation doses. Conclusions: 60 Co γ rays can not only induce the immediate biological effects in liver cells, but also lead to the genomic instability in the descendants that leads to an enhanced frequency of genetic changes occurring among the progeny of the original irradiated cell. The expanding effect of second event helps to study the genomic instability. (authors)