WorldWideScience

Sample records for normal diffusion flames

  1. Effects of preheated combustion air on laminar coflow diffusion flames under normal and microgravity conditions

    Science.gov (United States)

    Ghaderi Yeganeh, Mohammad

    Global energy consumption has been increasing around the world, owing to the rapid growth of industrialization and improvements in the standard of living. As a result, more carbon dioxide and nitrogen oxide are being released into the environment. Therefore, techniques for achieving combustion at reduced carbon dioxide and nitric oxide emission levels have drawn increased attention. Combustion with a highly preheated air and low-oxygen concentration has been shown to provide significant energy savings, reduce pollution and equipment size, and uniform thermal characteristics within the combustion chamber. However, the fundamental understanding of this technique is limited. The motivation of the present study is to identify the effects of preheated combustion air on laminar coflow diffusion flames. Combustion characteristics of laminar coflow diffusion flames are evaluated for the effects of preheated combustion air temperature under normal and low-gravity conditions. Experimental measurements are conducted using direct flame photography, particle image velocimetry (PIV) and optical emission spectroscopy diagnostics. Laminar coflow diffusion flames are examined under four experimental conditions: normal-temperature/normal-gravity (case I), preheated-temperature/normal gravity (case II), normal-temperature/low-gravity (case III), and preheated-temperature/low-gravity (case IV). Comparisons between these four cases yield significant insights. In our studies, increasing the combustion air temperature by 400 K (from 300 K to 700 K), causes a 37.1% reduction in the flame length and about a 25% increase in peak flame temperature. The results also show that a 400 K increase in the preheated air temperature increases CH concentration of the flame by about 83.3% (CH is a marker for the rate of chemical reaction), and also increases the C2 concentration by about 60% (C2 is a marker for the soot precursor). It can therefore be concluded that preheating the combustion air

  2. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen; Hernandez Perez, Francisco; Shoshin, Yuriy; van Oijen, Jeroen A.; de Goey, Laurentius P.H.

    2017-01-01

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  3. Effect of Soret diffusion on lean hydrogen/air flames at normal and elevated pressure and temperature

    KAUST Repository

    Zhou, Zhen

    2017-04-12

    The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.

  4. Quantitative Measurements of Electronically Excited CH Concentration in Normal Gravity and Microgravity Coflow Laminar Diffusion Flames

    Science.gov (United States)

    Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A. V.; Smooke, M. D.; Long, M. B.

    2015-01-01

    With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the electronically excited CH spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of electronically excited CH chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on electronically excited CH concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the electronically excited CH emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the electronically excited CH concentration was possible. Results show that, in microgravity, the maximum flame electronically excited CH concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend

  5. Quantitative Measurements of CH* Concentration in Normal Gravity and Microgravity Coflow Laminar Diffusion Flames

    Science.gov (United States)

    Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A.; Smooke, M. D.; Long, M. B.

    2015-01-01

    With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the CH* spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of CH* chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on CH* concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the CH* emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the CH* concentration was possible. Results show that, in microgravity, the maximum flame CH* concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend, albeit with different peak concentrations. Comparisons with numerical simulations display reasonably good agreement between measured and

  6. Development of PIV for Microgravity Diffusion Flames

    Science.gov (United States)

    Greenberg, Paul S.; Wernet, Mark P.; Yanis, William; Urban, David L.; Sunderland, Peter B.

    2003-01-01

    Results are presented from the application of Particle Image Velocimetry(PIV) to the overfire region of a laminar gas jet diffusion flame in normal gravity. A methane flame burning in air at 0.98 bar was considered. The apparatus demonstrated here is packaged in a drop rig designed for use in the 2.2 second drop tower.

  7. Numerical study of turbulent normal diffusion flame CH4-air stabilized by coaxial burner

    Directory of Open Access Journals (Sweden)

    Riahi Zouhair

    2013-01-01

    Full Text Available The practical combustion systems such as combustion furnaces, gas turbine, engines, etc. employ non-premixed combustion due to its better flame stability, safety, and wide operating range as compared to premixed combustion. The present numerical study characterizes the turbulent flame of methane-air in a coaxial burner in order to determine the effect of airflow on the distribution of temperature, on gas consumption and on the emission of NOx. The results in this study are obtained by simulation on FLUENT code. The results demonstrate the influence of different parameters on the flame structure, temperature distribution and gas emissions, such as turbulence, fuel jet velocity, air jet velocity, equivalence ratio and mixture fraction. The lift-off height for a fixed fuel jet velocity is observed to increase monotonically with air jet velocity. Temperature and NOx emission decrease of important values with the equivalence ratio, it is maximum about the unity.

  8. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-07-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a fixed fuel flow rate, the central air jet Re was varied, leading to four air to fuel velocity ratios, namely Vr = 20.7, 29, 37.4 and 49.8. A double flame structure could be observed composed of a lower fuel entrainment region and an upper mixing and intense combustion region. The entrainment region was enveloped by an early OH layer, and then merged through a very thin OH neck to an annular OH layer located at the shear layer of the air jet. The two branches of this annular OH layer broaden as they moved downstream and eventfully merged together. Three types of events were observed common to all flames: breaks, closures and growing kernels. In upstream regions of the flames, the breaks were counterbalanced by flame closures. These breaks in OH signal were found to occur at locations where locally high velocity flows were impinging on the flame. As the Vr increased to 37.4, the OH layers became discontinuous over the downstream region of the flame, and these regions of low or no OH moved upstream. With further increases in Vr, these OH pockets act as flame kernels, growing as they moved downstream, and became the main mechanism for flame re-ignition. Along the flame length, the direction of the two dimensional principle compressive strain rate axis exhibited a preferred orientation of approximately 45° with respect to the flow direction. Moreover, the OH zones were associated with elongated regions of high vorticity. © 2013 Elsevier Inc.

  9. Flame structure of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2014-01-01

    This paper presents high speed images of OH-PLIF at 10. kHz simultaneously with 2D PIV (particle image velocimetry) measurements collected along the entire length of an inverse diffusion flame with circumferentially arranged methane fuel jets. For a

  10. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  11. Characteristics of transitional and turbulent jet diffusion flames in microgravity

    Science.gov (United States)

    Bahadori, Yousef M.; Small, James F., Jr.; Hegde, Uday G.; Zhou, Liming; Stocker, Dennis P.

    1995-01-01

    This paper presents the ground-based results obtained to date in preparation of a proposed space experiment to study the role of large-scale structures in microgravity transitional and turbulent gas-jet diffusion flames by investigating the dynamics of vortex/flame interactions and their influence on flame characteristics. The overall objective is to gain an understanding of the fundamental characteristics of transitional and turbulent gas-jet diffusion flames. Understanding of the role of large-scale structures on the characteristics of microgravity transitional and turbulent flames will ultimately lead to improved understanding of normal-gravity turbulent combustion.

  12. Premixed Flames Under Microgravity and Normal Gravity Conditions

    Science.gov (United States)

    Krikunova, Anastasia I.; Son, Eduard E.

    2018-03-01

    Premixed conical CH4-air flames were studied experimentally and numerically under normal straight, reversed gravity conditions and microgravity. Low-gravity experiments were performed in Drop tower. Classical Bunsen-type burner was used to find out features of gravity influence on the combustion processes. Mixture equivalence ratio was varied from 0.8 to 1.3. Wide range of flow velocity allows to study both laminar and weakly turbulized flames. High-speed flame chemoluminescence video-recording was used as diagnostic. The investigations were performed at atmospheric pressure. As results normalized flame height, laminar flame speed were measured, also features of flame instabilities were shown. Low- and high-frequency flame-instabilities (oscillations) have a various nature as velocity fluctuations, preferential diffusion instability, hydrodynamic and Rayleigh-Taylor ones etc., that was explored and demonstrated.

  13. Hydrogen-enriched non-premixed jet flames : analysis of the flame surface, flame normal, flame index and Wobbe index

    NARCIS (Netherlands)

    Ranga Dinesh, K.K.J.; Jiang, X.; Oijen, van J.A.

    2014-01-01

    A non-premixed impinging jet flame is studied using three-dimensional direct numerical simulation with detailed chemical kinetics in order to investigate the influence of fuel variability on flame surface, flame normal, flame index and Wobbe index for hydrogen-enriched combustion. Analyses indicate

  14. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.

    2014-06-26

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary from 8.3 to 66.5. Starting from Vr = 20.7, the flame is commonly characterized by three distinct zones. The length of the lower fuel entrainment region is inversely proportional to Vr. The flames investigated resemble a string shear layer confining this zone, and converging into the second distinct region, the flame neck zone. The third region is the rest of the flame, which spreads in a jet-like manner. The inverse diffusion flames exhibit varying degrees of partial premixing, depending upon on the velocity ratio Vr, and this region of partial premixing evolves into a well-mixed reaction zone along the flame centerline. The OH distribution correlated with the changes in the mean characteristics of the flow through reduction in the local Reynolds number due to heat release. The existence of a flame suppresses or laminarizes the turbulence at early axial locations and promotes fluctuations at the flame tip for flames with Vr < 49.8. In addition, the flame jet width can be correlated to the OH distribution. In upstream regions of the flames, the breaks in OH are counterbalanced by flame closures and are governed by edge flame propagation. These local extinctions were found to occur at locations where large flow structures were impinging on the flame and are associated with a locally higher strain rate or correlated to the local high strain rates at the flame hole edges without this flow impinging. Another contributor to re-ignition was found to be growing flame kernels. As the flames approach global blow-off, these kernels become the main mechanism for re-ignition further downstream of the flames. At low Vr, laminarization within the early regions of the flame provides an effective shield, preventing the jet flow from

  15. Experimental characterization of methane inverse diffusion flame

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2014-01-01

    This article presents 10-kHz images of OH-PLIF simultaneously with 2-D PIV measurements in an inverse methane diffusion flame. Under a constant fuel flow rate, the central air jet Re was varied, leading to air to fuel velocity ratio, Vr, to vary

  16. Characteristics of diffusion flames with accelerated motion

    Directory of Open Access Journals (Sweden)

    Lou Bo

    2016-01-01

    Full Text Available The aim of this work is to present an experiment to study the characteristics of a laminar diffusion flame under acceleration. A Bunsen burner (nozzle diameter 8 mm, using liquefied petroleum gas as its fuel, was ignited under acceleration. The temperature field and the diffusion flame angle of inclination were visualised with the assistance of the visual display technology incorporated in MATLAB™. Results show that the 2-d temperature field under different accelerations matched the variation in average temperatures: they both experience three variations at different time and velocity stages. The greater acceleration has a faster change in average temperature with time, due to the accumulation of combustion heat: the smaller acceleration has a higher average temperature at the same speed. No matter what acceleration was used, in time, the flame angle of inclination increased, but the growth rate decreased until an angle of 90°: this could be explained by analysis of the force distribution within the flame. It is also found that, initially, the growth rate of angle with velocity under the greater acceleration was always smaller than that at lower accelerations; it was also different in flames with uniform velocity fire conditions.

  17. The dilution effect on the extinction of wall diffusion flame

    Directory of Open Access Journals (Sweden)

    Ghiti Nadjib

    2014-12-01

    Full Text Available The dynamic process of the interaction between a turbulent jet diffusion methane flame and a lateral wall was experimentally studied. The evolution of the flame temperature field with the Nitrogen dilution of the methane jet flame was examined. The interaction between the diffusion flame and the lateral wall was investigated for different distance between the wall and the central axes of the jet flame. The dilution is found to play the central role in the flame extinction process. The flame response as the lateral wall approaches from infinity and the increasing of the dilution rate make the flame extinction more rapid than the flame without dilution, when the nitrogen dilution rate increase the flame temperature decrease.

  18. Edge flame instability in low-strain-rate counterflow diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Park, June Sung; Hwang, Dong Jin; Park, Jeong; Kim, Jeong Soo; Kim, Sungcho [School of Mechanical and Aerospace Engineering, Sunchon National University, 315 Maegok-dong, Suncheon, Jeonnam 540-742 (Korea, Republic of); Keel, Sang In [Environment & amp; Energy Research Division, Korea Institute of Machinery and Materials, P.O. Box 101, Yusung-gu, Taejon 305-343 (Korea, Republic of); Kim, Tae Kwon [School of Mechanical & amp; Automotive Engineering, Keimyung University, 1000 Sindang-dong, Dalseo-gu, Daegu 704-701 (Korea, Republic of); Noh, Dong Soon [Energy System Research Department, Korea Institute of Energy Research, 71-2 Jang-dong, Yusung-gu, Taejon 305-343 (Korea, Republic of)

    2006-09-15

    Experiments in low-strain-rate methane-air counterflow diffusion flames diluted with nitrogen have been conducted to study flame extinction behavior and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conductive heat loss, in addition to radiative loss, could be high at low global strain rates. The critical mole fraction at flame extinction is examined in terms of velocity ratio and global strain rate. Onset conditions of the edge flame oscillation and the relevant modes are also provided with global strain rate and nitrogen mole fraction in the fuel stream or in terms of fuel Lewis number. It is observed that flame length is intimately relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Lateral heat loss causes flame oscillation even at fuel Lewis number less than unity. Edge flame oscillations, which result from the advancing and retreating edge flame motion of the outer flame edge of low-strain-rate flames, are categorized into three modes: a growing, a decaying, and a harmonic-oscillation mode. A flame stability map based on the flame oscillation modes is also provided for low-strain-rate flames. The important contribution of lateral heat loss even to edge flame oscillation is clarified finally. (author)

  19. The structure of horizontal hydrogen-steam diffusion flames

    International Nuclear Information System (INIS)

    Chan, C.K.; Guerrero, A.

    1997-01-01

    This paper summarizes a systematic study on the stability, peak temperature and flame length of various horizontal hydrogen-steam diffusion flames in air. Results from this study are discussed in terms of their impact on hydrogen management in a nuclear containment building after a nuclear reactor accident. They show that, for a certain range of emerging hydrogen-steam compositions, a stable diffusion flame can anchor itself at the break in the primary heat transport system. The length of this flame can be up to 100 times the break diameter. This implies that creation of a stable diffusion flame at the break is a possible outcome of the deliberate ignition mitigation scheme. The high temperature and heat flux from a diffusion flame can threaten nearby equipment. However, due to the presence of steam and turbulent mixing with surrounding air, the peak temperatures of these diffusion flames are much lower than the adiabatic constant pressure combustion temperature of a stoichiometric hydrogen-air mixture. These results suggest that the threat of a diffusion flame anchored at the break may be less severe than conservative analysis would indicate. Furthermore, such a flame can remove hydrogen at the source and minimize the possibility of a global gas explosion. (author)

  20. Effects of Burner Configurations on the Natural Oscillation Characteristics of Laminar Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    K. R. V. Manikantachari

    2015-09-01

    Full Text Available In this work, effects of burner configurations on the natural oscillations of methane laminar diffusion flames under atmospheric pressure and normal gravity conditions have been studied experimentally. Three regimes of laminar diffusion flames, namely, steady, intermittent flickering and continuous flickering have been investigated. Burner configurations such as straight pipe, contoured nozzle and that having an orifice plate at the exit have been considered. All burners have the same area of cross section at the exit and same burner lip thickness. Flame height data has been extracted from direct flame video using MATLAB. Shadowgraph videos have been captured to analyze the plume width characteristics. Results show that, the oscillation characteristics of the orifice burner is significantly different from the other two burners; orifice burner produces a shorter flame and wider thermal plume width in the steady flame regime and the onset of the oscillation/flickering regimes for the orifice burner occurs at a higher fuel flow rate. In the natural flickering regime, the dominating frequency of flame flickering remains within a small range, 12.5 Hz to 15 Hz, for all the burners and for all fuel flow rates. The time-averaged flame length-scale parameters, such as the maximum and the minimum flame heights, increase with respect to the fuel flow rate, however, the difference in the maximum and the minimum flame heights remains almost constant.

  1. Investigations of Sooting Laminar Coflow Diffusion Flames at Elevated Pressures

    KAUST Repository

    Steinmetz, Scott A.

    2016-12-01

    Soot is a common byproduct of hydrocarbon based combustion systems. It poses a risk to human and environmental health, and can negatively or positively affect combustor performance. As a result, there is significant interest in understanding soot formation in order to better control it. More recently, the need to study soot formation in engine relevant conditions has become apparent. One engine relevant parameter that has had little focus is the ambient pressure. This body of work focuses on the formation of soot in elevated pressure environments, and a number of investigations are carried out with this purpose. Laminar coflow diffusion flames are used as steady, simple soot producers. First, a commonly studied flame configuration is further characterized. Coflow flames are frequently used for fundamental flame studies, particularly at elevated pressures. However, they are more susceptible to buoyancy induced instabilities at elevated pressures. The velocity of the coflow is known to have an effect on flame stability and soot formation, though these have not been characterized at elevated pressures. A series of flames are investigated covering a range of flowrates, pressures, and nozzle diameters. The stability limits of coflow flames in this range is investigated. Additionally, an alternative strategy for scaling these flames to elevated pressures is proposed. Finally, the effect of coflow rate on soot formation is evaluated. Identification of fundamental flames for coordinated research can facilitate our understanding of soot formation. The next study of this work focuses on adding soot concentration and particle size information to an existing fundamental flame dataset for the purpose of numerical model validation. Soot volume fraction and average particle diameters are successfully measured in nitrogen-diluted ethylene-air laminar coflow flames at pressures of 4, 8, 12, and 16 atm. An increase in particle size with pressure is found up to 12 atm, where particle

  2. Turbulent structure and emissions of strongly-pulsed jet diffusion flames

    Science.gov (United States)

    Fregeau, Mathieu

    -pulsed flames was not strongly impacted by buoyancy. This lack of sensitivity to buoyancy was consistent with offsetting changes in flame puff celerity and time to burnout for the microgravity versus normal-gravity cases. The emissions of CO and NO were examined in the vicinity of the visible flame tip and at the combustor exit for strongly-pulsed flames. The highest exhaust-point emission indices of CO for compact, isolated puffs were as much as a factor of six higher than those of elongated flames with longer injection times. The amount of CO decreased substantially with a decreased amount of flame puff interaction. The higher CO levels for pulsed flames with the shortest injection times were consistent with quenching due to the very rapid mixing and dilution with excess air for the most compact flame puffs. The injection time for which steady-flame emission levels were attained was comparable to the injection time for which the visible flame length approached the flame length of steady flames. The CO emissions, for a given fuelling rate, were strongly dependent on both the injection time and jet-off time for a jet-on fraction less than approximately 50%. The NO levels were generally proportional to the fuelling rate. This work indicates that there are specific combinations of injection time and jet-off time that considerably change the fuel/air mixing, resulting in emissions comparable to those of the steady flame while the flame length is significantly shorter. This points the potential utility of the strongly-pulsed injection technique in the development of compact, low emissions combustors involving turbulent diffusion flames. (Abstract shortened by UMI.)

  3. Log-Normality and Multifractal Analysis of Flame Surface Statistics

    Science.gov (United States)

    Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.

    2013-11-01

    The turbulent flame surface is typically highly wrinkled and folded at a multitude of scales controlled by various flame properties. It is useful if the information contained in this complex geometry can be projected onto a simpler regular geometry for the use of spectral, wavelet or multifractal analyses. Here we investigate local flame surface statistics of turbulent flame expanding under constant pressure. First the statistics of local length ratio is experimentally obtained from high-speed Mie scattering images. For spherically expanding flame, length ratio on the measurement plane, at predefined equiangular sectors is defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at corresponding area-ratio pdfs. Both the pdfs are found to be near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis. Currently at Indian Institute of Science, India.

  4. Diffusion Flame Extinction in a Low Strain Flow

    Science.gov (United States)

    Sutula, Jason; Jones, Joshua; Torero, Jose L.; Borlik, Jeffrey; Ezekoye, Ofodike A.

    1997-01-01

    Diffusion flames are of great interest in fire safety and many industrial processes. Many parameters significantly affect the flame structure, shape and stability, of particular importance are the constraints imposed by geometrical boundaries. Physical boundaries determine the characteristics of the flow, affect heat, fuel, and oxidizer transport from and towards the flame and can act as heat sinks or heat sources. As a result, the existence of a flame, its shape and nature are intimately related to the geometrical characteristics of the environment that surrounds it. The counter-flow configuration provides a constant strain flow, therefore, is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in micro-gravity conditions have begun to explore the low strain regimes. The main objective of these on-going studies is to determine the effect of radiative heat losses and variable strain on the structure and radiation-induced extinction of diffusion flames. For these programs, size, geometry, and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. Whether is the burning of condensed or gaseous fuels, for most real situations the boundaries impose a significant effect on the nature of the flame. There is, therefore, a need to better understand the effect that geometrical constraints (i.e. flow nonperpendicular to a fuel surface, heat losses to the boundaries, etc.) might have on the final characteristics of a diffusion flame. Preliminary experiments have shown that, in the absence of gravity, and depending on the distance from the flame to the boundary, three characteristically different regimes can be observed. Close to the boundary, the flame is parabolic, very thin and blue, almost soot-less. Diffusion is the main

  5. Soot emissions from turbulent diffusion flames burning simple alkane fuels

    Energy Technology Data Exchange (ETDEWEB)

    Canteenwalla, P.M.; Johnson, M.R. [Carleton Univ., Ottawa, ON (Canada). Dept. of Mechanical and Aerospace Engineering; Thomson, K.A.; Smallwood, G.J. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Chemical Process and Environmental Technology

    2007-07-01

    A classic problem in combustion involves measurement and prediction of soot emissions from turbulent diffusion flames. Very high-sensitivity measurements of particulate matter (PM) from very low-sooting diffusion flames burning methane and other simple alkane fuels have been enabled from recent advances in laser-induced incandescence (LII). In order to quantify soot emissions from a lab-scale turbulent diffusion flame burner, this paper presented a study that used LII to develop a sampling protocol. The purpose of the study was to develop an experimentally based model to predict PM emissions from flares used in industry using soot emissions from lab-scale flares. Quantitative results of mass of soot emitted per mass of fuel burned were presented across a range of flow conditions and fuels. The experiment used digital imaging to measure flame lengths and estimate flame residence times. Comparisons were also made between current measurements and results of previous researchers for soot in the overfire region. The study also considered the validity applicability of buoyancy based models for predicting and scaling soot emissions. The paper described the experimental setup including sampling system and flame length imaging. Background information on soot yield and a comparison of flame residence time definitions were provided. The results and discussion of results were also presented. It was concluded that the results highlighted the subjective nature of flame length measurements. 10 refs., 4 figs.

  6. Flame Structure and Chemiluminescence Emissions of Inverse Diffusion Flames under Sinusoidally Driven Plasma Discharges

    Directory of Open Access Journals (Sweden)

    Maria Grazia De Giorgi

    2017-03-01

    Full Text Available Reduction of nitric oxides (NOx in aircraft engines and in gas turbines by lean combustion is of great interest in the design of novel combustion systems. However, the stabilization of the flame under lean conditions is a main issue. In this context, the present work investigates the effects of sinusoidal dielectric barrier discharge (DBD on a lean inverse diffusive methane/air flame in a Bunsen-type burner under different actuation conditions. The flame appearance was investigated with fixed methane loading (mass flux, but with varying inner airflow rate. High-speed flame imaging was done by using an intensified (charge-coupled device CCD camera equipped with different optical filters in order to selectively record signals from the chemiluminescent species OH*, CH*, or CO2* to evaluate the flame behavior in presence of plasma actuation. The electrical power consumption was less than 33 W. It was evident that the plasma flame enhancement was significantly influenced by the plasma discharges, particularly at high inner airflow rates. The flame structure changes drastically when the dissipated plasma power increases. The flame area decreases due to the enhancement of mixing and chemical reactions that lead to a more anchored flame on the quartz exit with a reduction of the flame length.

  7. A LES-CMC formulation for premixed flames including differential diffusion

    Science.gov (United States)

    Farrace, Daniele; Chung, Kyoungseoun; Bolla, Michele; Wright, Yuri M.; Boulouchos, Konstantinos; Mastorakos, Epaminondas

    2018-05-01

    A finite volume large eddy simulation-conditional moment closure (LES-CMC) numerical framework for premixed combustion developed in a previous studyhas been extended to account for differential diffusion. The non-unity Lewis number CMC transport equation has an additional convective term in sample space proportional to the conditional diffusion of the progress variable, that in turn accounts for diffusion normal to the flame front and curvature-induced effects. Planar laminar simulations are first performed using a spatially homogeneous non-unity Lewis number CMC formulation and validated against physical-space fully resolved reference solutions. The same CMC formulation is subsequently used to numerically investigate the effects of curvature for laminar flames having different effective Lewis numbers: a lean methane-air flame with Leeff = 0.99 and a lean hydrogen-air flame with Leeff = 0.33. Results suggest that curvature does not affect the conditional heat release if the effective Lewis number tends to unity, so that curvature-induced transport may be neglected. Finally, the effect of turbulence on the flame structure is qualitatively analysed using LES-CMC simulations with and without differential diffusion for a turbulent premixed bluff body methane-air flame exhibiting local extinction behaviour. Overall, both the unity and the non-unity computations predict the characteristic M-shaped flame observed experimentally, although some minor differences are identified. The findings suggest that for the high Karlovitz number (from 1 to 10) flame considered, turbulent mixing within the flame weakens the differential transport contribution by reducing the conditional scalar dissipation rate and accordingly the conditional diffusion of the progress variable.

  8. Effect of Low Frequency Burner Vibrations on the Characteristics of Jet Diffusion Flames

    Directory of Open Access Journals (Sweden)

    C. Kanthasamy

    2012-03-01

    Full Text Available Mechanical vibrations introduced in diffusion flame burners significantly affect the flame characteristics. In this experimental study, the effects of axial vibrations on the characteristics of laminar diffusion flames are investigated systematically. The effect of the frequency and amplitude of the vibrations on the flame height oscillations and flame stability is brought out. The amplitude of flame height oscillations is found to increase with increase in both frequency and amplitude of burner vibrations. Vibrations are shown to enhance stability of diffusion flames. Although flame lifts-off sooner with vibrations, stability of the flame increases.

  9. Augmenting the Structures in a Swirling Flame via Diffusive Injection

    Directory of Open Access Journals (Sweden)

    Jonathan Lewis

    2014-01-01

    Full Text Available Small scale experimentation using particle image velocimetry investigated the effect of the diffusive injection of methane, air, and carbon dioxide on the coherent structures in a swirling flame. The interaction between the high momentum flow region (HMFR and central recirculation zone (CRZ of the flame is a potential cause of combustion induced vortex breakdown (CIVB and occurs when the HMFR squeezes the CRZ, resulting in upstream propagation. The diffusive introduction of methane or carbon dioxide through a central injector increased the size and velocity of the CRZ relative to the HMFR whilst maintaining flame stability, reducing the likelihood of CIVB occurring. The diffusive injection of air had an opposing effect, reducing the size and velocity of the CRZ prior to eradicating it completely. This would also prevent combustion induced vortex breakdown CIVB occurring as a CRZ is fundamental to the process; however, without recirculation it would create an inherently unstable flame.

  10. Gaseous diffusion flames: simple structures and their interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cavaliere, A. [Universita degli Studi Federico II, Naples (Italy). Dip. di Ingegneria Chimica; Ragucci, R. [Istituto di Ricerche sulla Combustione C,N.R., Naples (Italy)

    2001-07-01

    This is a synoptic overview of a selection of works dealing with single diffusive structures, with their mutual interaction in simple flows and their statistical modeling in complex flows. The focus is on reacting conditions pertaining to gaseous diffusion flames, but isothermal structures are also described when they are of some conceptual interest. This paper considers only few representative works for each subject, which are functional in explaining the key characteristics of the diffusive structures. The extension, given to single subjects, is not weighed according to the number of related publications but on the relevance to the basic understanding of the general framework concerning diffusion flames. One-dimensional structures are first discussed. They are ordered according to the number of balance equation terms needed for their description. Two-dimensional (2D) structures are then introduced following an order based on their convolution level. Some pioneering work on three-dimensional structures is further quoted. The temporal evolution of simple structures in quiescent or simple flowing 2D systems is considered. The latter case is exploited to present classification of diffusion-controlled mixing regimes. Modeling characterization approach of turbulent diffusion flames is also described in order to yield a self-sufficient didactic presentation. The approach based on the flame surface density model is specifically discussed because of its potential use in the determination of qualitative and quantitative features of simple diffusion flames. (author)

  11. On the dynamics of flame edges in diffusion-flame/vortex interactions

    Energy Technology Data Exchange (ETDEWEB)

    Hermanns, Miguel; Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain)

    2007-04-15

    We analyze the local flame extinction and reignition of a counterflow diffusion flame perturbed by a laminar vortex ring. Local flame extinction leads to the appearance of flame edges separating the burning and extinguished regions of the distorted mixing layer. The dynamics of these edges is modeled based on previous numerical results, with heat release effects fully taken into account, which provide the propagation velocity of triple and edge flames in terms of the upstream unperturbed value of the scalar dissipation. The temporal evolution of the mixing layer is determined using the classical mixture fraction approach, with both unsteady and curvature effects taken into account. Although variable density effects play an important role in exothermic reacting mixing layers, in this paper the description of the mixing layer is carried out using the constant density approximation, leading to a simplified analytical description of the flow field. The mathematical model reveals the relevant nondimensional parameters governing diffusion-flame/vortex interactions and provides the parameter range for the more relevant regime of local flame extinction followed by reignition via flame edges. Despite the simplicity of the model, the results show very good agreement with previously published experimental results. (author)

  12. Turbulent diffusion in the flame of a rotary kiln

    Energy Technology Data Exchange (ETDEWEB)

    Strekotin, V.V.; Telegin, A.A.; Lisin, F.N.; Malysheva, O.I.

    1987-09-01

    Experimental data on the distribution of velocities in the stream in the flow of air from models of a burner with a normal annular Laval nozzle and a burner with an increase in the angle of opening of the stream under supersonic conditions were obtained. The results of the work may be used in the design of burners for rotary kilns. According to the experimental data the coefficient of turbulent diffusion reaches a value of 0.0071 m/sup 2//sec for a pure flow and is reduced by 30% with an increase in the dust content from 0 to 1 kg/kg. It is desirable to use the data obtained in calculations of the flame processes and selection of means of intensification of the process of mixing of the fuel with the oxidizer in the presence of dust.

  13. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao; Hermanson, James C.

    2013-01-01

    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree

  14. Turbulent jet diffusion flame length evolution with cross flows in a sub-pressure atmosphere

    International Nuclear Information System (INIS)

    Wang, Qiang; Hu, Longhua; Zhang, Xiaozheng; Zhang, Xiaolei; Lu, Shouxiang; Ding, Hang

    2015-01-01

    Highlights: • Quantifying turbulent jet diffusion flame length with cross flows. • Unique data revealed for a sub-atmospheric pressure. • Non-dimensional global correlation proposed for flame trajectory-line length. - Abstract: This paper investigates the evolution characteristics of turbulent jet diffusion flame (flame trajectory-line length, flame height in vertical jet direction) with increasing cross flows in a sub-pressure (64 kPa) atmosphere. The combined effect of cross flow and a special sub-pressure atmosphere condition is revealed, where no data is available in the literatures. Experiments are carried out with a wind tunnel built specially in Lhasa city (altitude: 3650 m; pressure: 64 kPa) and in Hefei city (altitude: 50 m; pressure: 100 kPa), using nozzles with diameter of 3 mm, 4 mm and 5 mm and propane as fuel. It is found that, as cross flow air speed increases from zero, the flame trajectory-line length firstly decreases and then becomes almost stable (for relative small nozzle, 3 mm in this study) or increases (for relative large nozzle, 4 mm and 5 mm in this study) beyond a transitional critical cross flow air speed in normal pressure, however decreases monotonically until being blown-out in the sub-pressure atmosphere. The flame height in jet direction decreases monotonically with cross air flow speed and then reaches a steady value in both pressures. For the transitional state of flame trajectory-line length with increasing cross air flow speed, the corresponding critical cross flow air speed is found to be proportional to the fuel jet velocity, meanwhile independent of nozzle diameter. Correlation models are proposed for the flame height in jet direction and the flame trajectory-line length for both ambient pressures, which are shown to be in good agreement with the experimental results.

  15. Propagation of intense laser radiation through a diffusion flame of burning oil

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Pleshkov, V M [State Research Center of Russian Federation ' Troitsk Institute for Innovation and Fusion Research' , Troitsk, Moscow Region (Russian Federation)

    2015-06-30

    We report the results of measuring the absorption coefficient of radiation from a cw ytterbium fibre single-mode laser with the power up to 1.5 kW by a diffusion flame of oil, burning in the atmosphere air at normal pressure on a free surface. For the constant length (30 mm) and width (30 mm) of the flame and the distance 10 mm between the laser beam axis and the oil surface the dependence of the absorption coefficient, averaged over the flame length, on the mean radiation intensity (varied from 4.5 × 10{sup 3} to 1.2 × 10{sup 6} W cm{sup -2}) entering the flame is obtained. The qualitative explanation of nonmonotonic behaviour of the absorption coefficient versus the intensity is presented. (laser applications and other topics in quantum electronics)

  16. Propagation of intense laser radiation through a diffusion flame of burning oil

    International Nuclear Information System (INIS)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Pleshkov, V M

    2015-01-01

    We report the results of measuring the absorption coefficient of radiation from a cw ytterbium fibre single-mode laser with the power up to 1.5 kW by a diffusion flame of oil, burning in the atmosphere air at normal pressure on a free surface. For the constant length (30 mm) and width (30 mm) of the flame and the distance 10 mm between the laser beam axis and the oil surface the dependence of the absorption coefficient, averaged over the flame length, on the mean radiation intensity (varied from 4.5 × 10 3 to 1.2 × 10 6 W cm -2 ) entering the flame is obtained. The qualitative explanation of nonmonotonic behaviour of the absorption coefficient versus the intensity is presented. (laser applications and other topics in quantum electronics)

  17. Propagation of intense laser radiation through a diffusion flame of burning oil

    Science.gov (United States)

    Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Pleshkov, V. M.

    2015-06-01

    We report the results of measuring the absorption coefficient of radiation from a cw ytterbium fibre single-mode laser with the power up to 1.5 kW by a diffusion flame of oil, burning in the atmosphere air at normal pressure on a free surface. For the constant length (30 mm) and width (30 mm) of the flame and the distance 10 mm between the laser beam axis and the oil surface the dependence of the absorption coefficient, averaged over the flame length, on the mean radiation intensity (varied from 4.5 × 103 to 1.2 × 106 W cm-2) entering the flame is obtained. The qualitative explanation of nonmonotonic behaviour of the absorption coefficient versus the intensity is presented.

  18. Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D)

    International Nuclear Information System (INIS)

    Pitsch, H.; Steiner, H.

    2000-01-01

    The Lagrangian Flamelet Model is formulated as a combustion model for large-eddy simulations of turbulent jet diffusion flames. The model is applied in a large-eddy simulation of a piloted partially premixed methane/air diffusion flame (Sandia flame D). The results of the simulation are compared to experimental data of the mean and RMS of the axial velocity and the mixture fraction and the unconditional and conditional averages of temperature and various species mass fractions, including CO and NO. All quantities are in good agreement with the experiments. The results indicate in accordance with experimental findings that regions of high strain appear in layer like structures, which are directed inwards and tend to align with the reaction zone, where the turbulence is fully developed. The analysis of the conditional temperature and mass fractions reveals a strong influence of the partial premixing of the fuel. (c) 2000 American Institute of Physics

  19. Propagation and diffusion-limited extinction of nonadiabatic heterogeneous flame in the SHS process

    International Nuclear Information System (INIS)

    Makino, Atsushi

    1994-01-01

    Nonadiabatic heterogeneous flame propagation and extinction in self-propagating high-temperature synthesis (SHS) are analyzed based on a premixed mode of propagation for the bulk flame supported by the nonpremixed reaction of dispersed nonmetals in the liquid metal. The formulation allows for volumetric heat loss throughout the bulk flame, finite-rate Arrhenius reaction at the particle surface, and temperature-sensitive Arrhenius mass diffusion in the liquid. Results show that, subsequent to melting of the metal, the flame structure consists of a relatively thin diffusion-consumption/convection zone followed by a relatively thick convection-loss zone, that the flame propagation rate decreases with increasing heat loss, that at a critical heat-loss rate the flame extinguishes as indicated by the characteristic turning-point behavior, that the surface reaction is diffusion limited such that the nonlinear, temperature-sensitive nature of the system is actually a consequence of the Arrhenius mass diffusion, and that extinction is sensitively affected by the mixture ratio, the degree of dilution, the initial temperature of the compact, and the size of the nonmetal particles. An explicit expression is derived for the normalized mass burning rate, which exhibits the characteristic turning point and shows that extinction occurs when this value is reduced to e -1/2 , which is the same as that for the nonadiabatic gaseous premixed flame. It is further shown that the theoretical results agree well with available experimental data, indicating that the present formulation captures the essential features of the nonadiabatic heterogeneous SHS processes and its potential for extension to describe other SHS phenomena

  20. Cool diffusion flames of butane isomers activated by ozone in the counterflow

    KAUST Repository

    Alfazazi, Adamu; Al Omier, Abdullah Abdulaziz; Secco, Andrea; Selim, Hatem; Ju, Yiguang; Sarathy, Mani

    2018-01-01

    and sustenance of cool diffusion flames; as ozone-less cool diffusion flame of butane isomers could not be established even at high fuel mole fractions. The structure of a stable n-butane cool diffusion flame was qualitatively examined using a time of flight mass

  1. Analysis of Flame Extinguishment and Height in Low Frequency Acoustically Excited Methane Jet Diffusion Flame

    Science.gov (United States)

    Zong, Ruowen; Kang, Ruxue; Liu, Chen; Zhang, Zhiyang; Zhi, Youran

    2018-01-01

    The exploration of microgravity conditions in space is increasing and existing fire extinguishing technology is often inadequate for fire safety in this special environment. As a result, improving the efficiency of portable extinguishers is of growing importance. In this work, a visual study of the effects on methane jet diffusion flames by low frequency sound waves is conducted to assess the extinguishing ability of sound waves. With a small-scale sound wave extinguishing bench, the extinguishing ability of certain frequencies of sound waves are identified, and the response of the flame height is observed and analyzed. Results show that the flame structure changes with disturbance due to low frequency sound waves of 60-100 Hz, and quenches at effective frequencies in the range of 60-90 Hz. In this range, 60 Hz is considered to be the quick extinguishing frequency, while 70-90 Hz is the stable extinguishing frequency range. For a fixed frequency, the flame height decreases with sound pressure level (SPL). The flame height exhibits the greatest sensitivity to the 60 Hz acoustic waves, and the least to the 100 Hz acoustic waves. The flame height decreases almost identically with disturbance by 70-90 Hz acoustic waves.

  2. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    International Nuclear Information System (INIS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-01-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH 4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l −1 and 1.0 ng l −1 , respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l −1

  3. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    Energy Technology Data Exchange (ETDEWEB)

    Marschner, Karel, E-mail: karel.marschner@biomed.cas.cz [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic); Charles University in Prague, Faculty of Science, Department of Analytical Chemistry, Albertov 8, 128 43 Prague (Czech Republic); Musil, Stanislav; Dědina, Jiří [Institute of Analytical Chemistry of the ASCR, v. v. i., Veveří 97, 602 00 Brno (Czech Republic)

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH{sub 4} in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l{sup −1} and 1.0 ng l{sup −1}, respectively. - Highlights: • We optimized and compared two hydride atomizers for atomic fluorescence spectrometry. • Miniature diffusion flame and flame-in-gas-shield atomizer were optimized. • The limit of detection for arsenic was 1.0 ng l{sup −1}.

  4. Response to acoustic forcing of laminar coflow jet diffusion flames

    KAUST Repository

    Chrystie, Robin

    2014-04-23

    Toward the goal of understanding and controlling instability in combustion systems, we present a fundamental characterization of the interaction of the buoyancy-induced instability in flickering flames with forced excitation of fuel supply. Laminar coflow diffusion flames were acoustically forced, whose frequency responses were recorded as a function of excitation frequency and amplitude. The evolving structure of such flames was also examined through the use of video analysis and particle imaging velocimetry (PIV). For specific combinations of excitation frequency and amplitude, the frequency response of the flames was found to couple to that of the forcing, where the contribution of natural puffing frequency disappears. Such instances of coupling exhibited many harmonics of the excitation frequency, related indirectly to the natural puffing frequency. We showed how such harmonics form, through application of PIV, and furthermore unveiled insight into the physics of how the flame couples to the forcing under certain conditions. Our frequency response characterization provides quantitative results, which are of utility for both modeling studies and active-control strategies. Copyright © Taylor & Francis Group, LLC.

  5. The turbulence structure in an unconfined swirling diffusion flame

    International Nuclear Information System (INIS)

    Finzenhagen, F.; Doherty, T.O.; Bates, C.; Wirtz, S.; Kremer, H.

    1999-01-01

    Turbulent swirling flows are used in many practical combustion systems. The swirl improves the flame stability as a result of the formation of a central recirculation zone combined with fast mixing at the boundaries of this zone. Knowledge about swirl flames has increased over the last few decades as a result of practical experience and fundamental research. Some important questions concerning the influence of the turbulence structure on the flame stability and chemical kinetics of the combustion process remain unresolved. The structure of turbulence, especially turbulent scales and time dependent effects, at the outlet zone controls the mixing process and therefore the flame properties. Understanding of these complex phenomena is far from complete. The present work describes the results of an experimental study of the turbulence structure of a swirled diffusion flame using laser-optical measurement techniques, e.g. Laser Doppler Anemometry (LDA) and Particle Image Velocimetry (PW). All the processed information available from the burst-mode Laser Doppler Anemometry (LDA) measurements has been combined and compared with high spatial resolution PIV measurements of the flow. The extensive statistical post processing of the data has enabled the turbulent microstructure to be characterised. (author)

  6. Modelling thermal radiation and soot formation in buoyant diffusion flames

    International Nuclear Information System (INIS)

    Demarco Bull, R.A.

    2012-01-01

    The radiative heat transfer plays an important role in fire problems since it is the dominant mode of heat transfer between flames and surroundings. It controls the pyrolysis, and therefore the heat release rate, and the growth rate of the fire. In the present work a numerical study of buoyant diffusion flames is carried out, with the main objective of modelling the thermal radiative transfer and the soot formation/destruction processes. In a first step, different radiative property models were tested in benchmark configurations. It was found that the FSCK coupled with the Modest and Riazzi mixing scheme was the best compromise in terms of accuracy and computational requirements, and was a good candidate to be implemented in CFD codes dealing with fire problems. In a second step, a semi-empirical soot model, considering acetylene and benzene as precursor species for soot nucleation, was validated in laminar co flow diffusion flames over a wide range of hydrocarbons (C1-C3) and conditions. In addition, the optically-thin approximation was found to produce large discrepancies in the upper part of these small laminar flames. Reliable predictions of soot volume fractions require the use of an advanced radiation model. Then the FSCK and the semi-empirical soot model were applied to simulate laboratory-scale and intermediate-scale pool fires of methane and propane. Predicted flame structures as well as the radiant heat flux transferred to the surroundings were found to be in good agreement with the available experimental data. Finally, the interaction between radiation and turbulence was quantified. (author)

  7. Correlation of optical emission and turbulent length scale in a coaxial jet diffusion flame

    OpenAIRE

    松山, 新吾; Matsuyama, Shingo

    2014-01-01

    This article investigates the correlation between optical emission and turbulent length scale in a coaxial jet diffusion flame. To simulate the H2O emission from an H2/O2 diffusion flame, radiative transfer is calculated on flame data obtained by numerical simulation. H2O emission characteristics are examined for a one-dimensional opposed-flow diffusion flame. The results indicate that H2O emission intensity is linearly dependent on flame thickness. The simulation of H2O emission is then exte...

  8. Experimental studies of flame stability and emission characteristics of simple LPG jet diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    D.Y. Kiran; D.P. Mishra [Indian Institute of Technology Kanpur, Kanpur (India). Combustion Laboratory, Department of Aerospace Engineering

    2007-07-15

    In the present study, experiments were carried out to measure the lift-off height, H{sub L}; flame length, L{sub f} and blow-off velocity for a simple LPG (liquefied petroleum gas) jet diffusion flames. It is observed that lift-off height is proportional to the fuel exit velocity, U{sub f}. A semi-empirical correlation between lift-off height and global strain rate, U{sub f}/D{sub f} is proposed. Two regimes identified either as buoyancy or momentum dominated were characterized by Froude number, Fr. For momentum dominated jet diffusion flames, L{sub f}/D{sub f} remains almost constant and therefore is independent of the Froude number. The NOx emissions, expressed in terms of emission index, EINOx is found to decrease with U{sub f}. This decreasing trend is consistent with the concept that increasing jet velocity reduces the residence time as reported in the literature. The present data is also compared with the available data of propane gas and found to be in good agreement well particularly in trend wise. Besides these data, EINOx scaling law is also reported in the present study. 20 refs., 8 figs.

  9. Numerical Investigation of Laminar Diffusion Flames Established on a Horizontal Flat Plate in a Parallel Air Stream

    Directory of Open Access Journals (Sweden)

    E. D. Gopalakrishnan

    2011-06-01

    Full Text Available Numerical investigation of laminar diffusion flames established on a flat plate in a parallel air stream is presented. A numerical model with a multi-step chemical kinetics mechanism, variable thermo-physical properties, multi-component species diffusion and a radiation sub-model is employed for this purpose. Both upward and downward injection of fuel has been considered in a normal gravity environment. The thermal and aerodynamic structure of the flame has been explained with the help of temperature and species contours, net reaction rate of fuel and streamlines. Flame characteristics and stability aspects for several air and fuel velocity combinations have been studied. An important characteristic of a laminar boundary layer diffusion flame with upward injection of fuel is the velocity overshoot that occurs near the flame zone. This is not observed when the fuel is injected in the downward direction. The flame standoff distance is slightly higher for the downward injection of fuel due to increase in displacement thickness of boundary layer. Influence of an obstacle, namely the backward facing step, on the flame characteristics and stability aspects is also investigated. Effects of air and fuel velocities, size and location of the step are studied in detail. Based on the air and fuel velocities, different types of flames are predicted. The use of a backward-facing step as a flame holding mechanism for upward injection of fuel, results in increased stability limits due to the formation of a recirculation zone behind the step. The predicted stability limits match with experimentally observed limits. The step location is seen to play a more important role as compared to the step height in influencing the stability aspects of flames.

  10. Turbulent structure and dynamics of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2013-11-02

    The structure and dynamics of swirled, strongly pulsed, turbulent jet diffusion flames were examined experimentally in a co-flow swirl combustor. The dynamics of the large-scale flame structures, including variations in flame dimensions, the degree of turbulent flame puff interaction, and the turbulent flame puff celerity were determined from high-speed imaging of the luminous flame. All of the tests presented here were conducted with a fixed fuel injection velocity at a Reynolds number of 5000. The flame dimensions were generally found to be more impacted by swirl for the cases of longer injection time and faster co-flow flow rate. Flames with swirl exhibited a flame length up to 34% shorter compared to nonswirled flames. Both the turbulent flame puff separation and the flame puff celerity generally decreased when swirl was imposed. The decreased flame length, flame puff separation, and flame puff celerity are consistent with a greater momentum exchange between the flame and the surrounding co-flow, resulting from an increased rate of air entrainment due to swirl. Three scaling relations were developed to account for the impact of the injection time, the volumetric fuel-to-air flow rate ratio, and the jet-on fraction on the visible flame length. © 2013 Copyright Taylor and Francis Group, LLC.

  11. Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV

    KAUST Repository

    Elbaz, Ayman M.; Roberts, William L.

    2015-01-01

    Most previous work on inverse diffusion flames (IDFs) has focused on laminar IDF emissions and the soot formation characteristics. Here, we investigate the characteristics and structure of methane IDFs using high speed planar laser-induced fluorescence (PLIF) images of OH, particle image velocimetry (PIV), and acetone PLIF imaging for non-reacting cases. First, the flame appearance was investigated with fixed methane loading (mass flux) but with varying airflow rates, yielding a central air jet Reynolds number (Re) of 1,000 to 6,000 (when blow-off occurs). Next, it was investigated a fixed central air jet Re of 4500, but with varied methane mass flux such that the global equivalence ratio spanned 0.5 to 4. It was observed that at Re smaller than 2000, the inner air jet promotes the establishment of an inverse diffusion flame surrounded by a normal diffusion flame. However, when the Re was increased to 2500, two distinct zones became apparent in the flame, a lower entrainment zone and an upper mixing and combustion zone. 10 kHz OH-PLIF images, and 2D PIV allow the identification of the fate and spatial flame structure. Many flame features were identified and further analyzed using simple but effective image processing methods, where three types of structure in all the flames investigated here: flame holes or breaks; closures; and growing kernels. Insights about the rate of evolution of these features, the dynamics of local extinction, and the sequence of events that lead to re-ignition are reported here. In the lower entrainment zone, the occurrence of the flame break events is counterbalanced by closure events, and the edge propagation appears to control the rate at which the flame holes and closures propagate. The rate of propagation of holes was found to be statistically faster than the rate of closure. As the flames approach blow-off, flame kernels become the main mechanism for flame re-ignition further downstream. The simultaneous OH-PLIF/Stereo PIV

  12. Experimental study of the inverse diffusion flame using high repetition rate OH/acetone PLIF and PIV

    KAUST Repository

    Elbaz, Ayman M.

    2015-10-29

    Most previous work on inverse diffusion flames (IDFs) has focused on laminar IDF emissions and the soot formation characteristics. Here, we investigate the characteristics and structure of methane IDFs using high speed planar laser-induced fluorescence (PLIF) images of OH, particle image velocimetry (PIV), and acetone PLIF imaging for non-reacting cases. First, the flame appearance was investigated with fixed methane loading (mass flux) but with varying airflow rates, yielding a central air jet Reynolds number (Re) of 1,000 to 6,000 (when blow-off occurs). Next, it was investigated a fixed central air jet Re of 4500, but with varied methane mass flux such that the global equivalence ratio spanned 0.5 to 4. It was observed that at Re smaller than 2000, the inner air jet promotes the establishment of an inverse diffusion flame surrounded by a normal diffusion flame. However, when the Re was increased to 2500, two distinct zones became apparent in the flame, a lower entrainment zone and an upper mixing and combustion zone. 10 kHz OH-PLIF images, and 2D PIV allow the identification of the fate and spatial flame structure. Many flame features were identified and further analyzed using simple but effective image processing methods, where three types of structure in all the flames investigated here: flame holes or breaks; closures; and growing kernels. Insights about the rate of evolution of these features, the dynamics of local extinction, and the sequence of events that lead to re-ignition are reported here. In the lower entrainment zone, the occurrence of the flame break events is counterbalanced by closure events, and the edge propagation appears to control the rate at which the flame holes and closures propagate. The rate of propagation of holes was found to be statistically faster than the rate of closure. As the flames approach blow-off, flame kernels become the main mechanism for flame re-ignition further downstream. The simultaneous OH-PLIF/Stereo PIV

  13. Investigation of soot formation and temperature field in laminar diffusion flames of LPG-air mixture

    Energy Technology Data Exchange (ETDEWEB)

    Shahad, Haroun A.K.; Mohammed, Yassar K.A. [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Israel)

    2000-11-01

    Soot formation and burnout were studied at atmospheric pressure in co-flowing, axisymmetric buoyant laminar diffusion flames and double flames of liquefied petroleum gases (LPG)-air mixtures. In diffusion flames, two different fuel flow rates were examined. In double flames, three different primary air flow rates were examined. A soot sampling probe and a thermocouple were used to measure the local soot mass concentration and flame temperature, respectively. Flame residence time was predicted using a uniformly accelerated motion model as function of axial distance of the flame. The increase of primary air flow rate was found to suppress the energy transfer from the annular region, at which the soot is produced, to the flame axis. The time required to initiate soot formation at the flame axis becomes longer as the primary air is increased. The trend rate of soot formation was found to be similar along the flame axis in all tested diffusion flames. The increase of primary air by 10% of the stoichiometric air requirement of the fuel results in a 70% reduction in maximum soot concentration. The final exhaust of soot, which is determined by the net effect of soot formation and burnout, is much lower in double flames than that in diffusion flames. (Author)

  14. Validation of a mixture-averaged thermal diffusion model for premixed lean hydrogen flames

    Science.gov (United States)

    Schlup, Jason; Blanquart, Guillaume

    2018-03-01

    The mixture-averaged thermal diffusion model originally proposed by Chapman and Cowling is validated using multiple flame configurations. Simulations using detailed hydrogen chemistry are done on one-, two-, and three-dimensional flames. The analysis spans flat and stretched, steady and unsteady, and laminar and turbulent flames. Quantitative and qualitative results using the thermal diffusion model compare very well with the more complex multicomponent diffusion model. Comparisons are made using flame speeds, surface areas, species profiles, and chemical source terms. Once validated, this model is applied to three-dimensional laminar and turbulent flames. For these cases, thermal diffusion causes an increase in the propagation speed of the flames as well as increased product chemical source terms in regions of high positive curvature. The results illustrate the necessity for including thermal diffusion, and the accuracy and computational efficiency of the mixture-averaged thermal diffusion model.

  15. The influence of fuel-air swirl intensity on flame structures of syngas swirl-stabilized diffusion flame

    Science.gov (United States)

    Shao, Weiwei; Xiong, Yan; Mu, Kejin; Zhang, Zhedian; Wang, Yue; Xiao, Yunhan

    2010-06-01

    Flame structures of a syngas swirl-stabilized diffusion flame in a model combustor were measured using the OH-PLIF method under different fuel and air swirl intensity. The flame operated under atmospheric pressure with air and a typical low heating-value syngas with a composition of 28.5% CO, 22.5% H2 and 49% N2 at a thermal power of 34 kW. Results indicate that increasing the air swirl intensity with the same fuel, swirl intensity flame structures showed little difference except a small reduction of flame length; but also, with the same air swirl intensity, fuel swirl intensity showed great influence on flame shape, length and reaction zone distribution. Therefore, compared with air swirl intensity, fuel swirl intensity appeared a key effect on the flame structure for the model combustor. Instantaneous OH-PLIF images showed that three distinct typical structures with an obvious difference of reaction zone distribution were found at low swirl intensity, while a much compacter flame structure with a single, stable and uniform reaction zone distribution was found at large fuel-air swirl intensity. It means that larger swirl intensity leads to efficient, stable combustion of the syngas diffusion flame.

  16. Influence of thermal radiation on soot production in Laminar axisymmetric diffusion flames

    International Nuclear Information System (INIS)

    Demarco, R.; Nmira, F.; Consalvi, J.L.

    2013-01-01

    The aim of this paper is to study the effect of radiative heat transfer on soot production in laminar axisymmetric diffusion flames. Twenty-four C 1 –C 3 hydrocarbon–air flames, consisting of normal (NDF) and inverse (IDF) diffusion flames at both normal gravity (1 g) and microgravity (0 g), and covering a wide range of conditions affecting radiative heat transfer, were simulated. The numerical model is based on the Steady Laminar Flamelet (SLF) model, a semi-empirical two-equation acetylene/benzene based soot model and the Statistical Narrow Band Correlated K (SNBCK) model coupled to the Finite Volume Method (FVM) to compute thermal radiation. Predictions relative to velocity, temperature, soot volume fraction and radiative losses are on the whole in good agreement with the available experimental data. Model results show that, for all the flames considered, thermal radiation is a crucial process with a view to providing accurate predictions for temperatures and soot concentrations. It becomes increasingly significant from IDFs to NDFs and its influence is much greater as gravity is reduced. The radiative contribution of gas prevails in the weakly-sooting IDFs and in the methane and ethane NDFs, whereas soot radiation dominates in the other flames. However, both contributions are significant in all cases, with the exception of the 1 g IDFs investigated where soot radiation can be ignored. The optically-thin approximation (OTA) was also tested and found to be applicable as long as the optical thickness, based on flame radius and Planck mean absorption coefficient, is less than 0.05. The OTA is reasonable for the IDFs and for most of the 1 g NDFs, but it fails to predict the radiative heat transfer for the 0 g NDFs. The accuracy of radiative-property models was then assessed in the latter cases. Simulations show that the gray approximation can be applied to soot but not to combustion gases. Both the non-gray and gray soot versions of the Full Spectrum Correlated

  17. Role of Fluid-Dynamics in Soot Formation and Microstructure in Acetylene-Air Laminar Diffusion Flames

    Directory of Open Access Journals (Sweden)

    Praveen Pandey

    2015-03-01

    Full Text Available Residence time and thermo-chemical environment are important factors in the soot-formation process in flames. Studies have revealed that flow-dynamics plays a dominant role in soot formation process. For understanding the effect of flow dynamics on soot formation and physical structure of the soot formed in different combustion environments two types of laminar diffusion flames of Acetylene and air, a normal diffusion flame (NDF and an inverse diffusion flame (IDF have been investigated. The fuel and air supply in the reaction zone in two flame types were kept constant but the interchange of relative position of fuel and air altered the burner exit Reynolds and Froude numbers of gases, fuel/air velocity ratio and flame shape. Soot samples were collected using thermophoretic sampling on transmission electron microscope (TEM grids at different flame heights and were analyzed off-line in a Transmission Electron Microscope. Soot primary particle size, soot aggregate size and soot volume fraction were measured using an image analysis software. In NDF the maximum flame temperature was about 1525 K and 1230 K for IDF. The soot primary particles are distinctly smaller in size in IDF (between 19 – 26 nm compared to NDF (between 29–34 nm. Both NDF and IDF show chainlike branched structure of soot agglomerate with soot particles of a nearly spherical shape. The average number of soot primary particles per aggregate in NDF was in the range of 24 to 40 and in IDF it varied between 16 to 24. Soot volume fraction was between 0.6 to 1.5 ppm in NDF where as it was less than 0.2 ppm in IDF. The change in sooting characteristics of the two flame types is attributed to changed fuel/air velocity ratio, entrainment of gas molecules and thermophoresis on soot particles.

  18. Modelling thermal radiation in buoyant turbulent diffusion flames

    Science.gov (United States)

    Consalvi, J. L.; Demarco, R.; Fuentes, A.

    2012-10-01

    This work focuses on the numerical modelling of radiative heat transfer in laboratory-scale buoyant turbulent diffusion flames. Spectral gas and soot radiation is modelled by using the Full-Spectrum Correlated-k (FSCK) method. Turbulence-Radiation Interactions (TRI) are taken into account by considering the Optically-Thin Fluctuation Approximation (OTFA), the resulting time-averaged Radiative Transfer Equation (RTE) being solved by the Finite Volume Method (FVM). Emission TRIs and the mean absorption coefficient are then closed by using a presumed probability density function (pdf) of the mixture fraction. The mean gas flow field is modelled by the Favre-averaged Navier-Stokes (FANS) equation set closed by a buoyancy-modified k-ɛ model with algebraic stress/flux models (ASM/AFM), the Steady Laminar Flamelet (SLF) model coupled with a presumed pdf approach to account for Turbulence-Chemistry Interactions, and an acetylene-based semi-empirical two-equation soot model. Two sets of experimental pool fire data are used for validation: propane pool fires 0.3 m in diameter with Heat Release Rates (HRR) of 15, 22 and 37 kW and methane pool fires 0.38 m in diameter with HRRs of 34 and 176 kW. Predicted flame structures, radiant fractions, and radiative heat fluxes on surrounding surfaces are found in satisfactory agreement with available experimental data across all the flames. In addition further computations indicate that, for the present flames, the gray approximation can be applied for soot with a minor influence on the results, resulting in a substantial gain in Computer Processing Unit (CPU) time when the FSCK is used to treat gas radiation.

  19. Sooting Characteristics and Modeling in Counterflow Diffusion Flames

    KAUST Repository

    Wang, Yu

    2013-11-01

    Soot formation is one of the most complex phenomena in combustion science and an understanding of the underlying physico-chemical mechanisms is important. This work adopted both experimental and numerical approaches to study soot formation in laminar counterfl ow diffusion flames. As polycyclic aromatic hydrocarbons (PAHs) are the precursors of soot particles, a detailed gas-phase chemical mechanism describing PAH growth upto coronene for fuels with 1 to 4 carbon atoms was validated against laminar premixed and counter- flow diffusion fl ames. Built upon this gas-phase mechanism, a soot model was then developed to describe soot inception and surface growth. This soot model was sub- sequently used to study fuel mixing effect on soot formation in counterfl ow diffusion flames. Simulation results showed that compared to the baseline case of the ethylene flame, the doping of 5% (by volume) propane or ethane in ethylene tends to increase the soot volume fraction and number density while keeping the average soot size almost unchanged. These results are in agreement with experimental observations. Laser light extinction/scattering as well as laser induced fluorescence techniques were used to study the effect of strain rate on soot and PAH formation in counterfl ow diffusion ames. The results showed that as strain rate increased both soot volume fraction and PAH concentrations decreased. The concentrations of larger PAH were more sensitive to strain rate compared to smaller ones. The effect of CO2 addition on soot formation was also studied using similar experimental techniques. Soot loading was reduced with CO2 dilution. Subsequent numerical modeling studies were able to reproduce the experimental trend. In addition, the chemical effect of CO2 addition was analyzed using numerical data. Critical conditions for the onset of soot were systematically studied in counterfl ow diffusion ames for various gaseous hydrocarbon fuels and at different strain rates. A sooting

  20. Effect of H2 addition on combustion characteristics of dimethyl ether jet diffusion flame

    International Nuclear Information System (INIS)

    Kang, Yinhu; Lu, Xiaofeng; Wang, Quanhai; Gan, Lu; Ji, Xuanyu; Wang, Hu; Guo, Qiang; Song, Decai; Ji, Pengyu

    2015-01-01

    Highlights: • DME- and H 2 -dominated combustion regimes were quantitatively characterized. • The flame structure changed significantly when H 2 addition was above 60 vol.%. • An empirical correlation for normalized flame entrainment rate was developed. • The optimal H 2 addition to DME was 60 vol.% in the practical engineering. - Abstract: In this paper, experiments and numerical calculations were conducted to investigate the effect of H 2 addition on dimethyl ether (DME) jet diffusion flame behaviors, in terms of thermal and chemical structures, reaction zone size, flame entrainment, and NOx and CO emission indices. A wide range of H 2 additions from pure DME to pure H 2 were involved herein, while maintaining the volumetric flow rate of fuel mixture constant. The results indicate that when H 2 mole fraction in the fuel mixture exceeded 60%, the blended fuel was converted to H 2 -dominated. Besides, the flames behaved rather distinctly at the DME- and H 2 -dominated regimes. With the increment in H 2 addition, flame temperature, H 2 , H, O, and OH concentrations increased gradually, but concentrations of the intermediate hydrocarbons (such as CO, CH 2 O, CH 2 , and CH 3 ) decreased on the contrary. Additionally, after the flame became H 2 -dominated, the species concentrations varied increasingly quickly with H 2 addition. The reaction zone length and width decreased nearly linearly with H 2 addition at the DME- and H 2 -dominated regimes. But the decreasing speed of reaction zone length became faster after the flame was converted to H 2 -dominated. At the DME-dominated regime, the dependence of flame entrainment coefficient (C e ) on H 2 addition was rather small. While at the H 2 -dominated regime, C e increased increasingly quickly with H 2 addition. Moreover, with the increment in H 2 addition, NOx emission index increased and CO emission index decreased gradually. In addition, at the DME-dominated regime, NOx emission index increased fairly slowly

  1. Cool diffusion flames of butane isomers activated by ozone in the counterflow

    KAUST Repository

    Alfazazi, Adamu

    2018-02-02

    Ignition in low temperature combustion engines is governed by a coupling between low-temperature oxidation kinetics and diffusive transport. Therefore, a detailed understanding of the coupled effects of heat release, low-temperature oxidation chemistry, and molecular transport in cool flames is imperative to the advancement of new combustion concepts. This study provides an understanding of the low temperature cool flame behavior of butane isomers in the counterflow configuration through the addition of ozone. The initiation and extinction limits of butane isomers’ cool flames have been investigated under a variety of strain rates. Results revealed that, with ozone addition, establishment of butane cool diffusion flames was successful at low and moderate strain rates. iso-Butane has lower reactivity than n-butane, as shown by higher fuel mole fractions needed for cool flame initiation and lower extinction strain rate limits. Ozone addition showed a significant influence on the initiation and sustenance of cool diffusion flames; as ozone-less cool diffusion flame of butane isomers could not be established even at high fuel mole fractions. The structure of a stable n-butane cool diffusion flame was qualitatively examined using a time of flight mass spectrometer. Numerical simulations were performed using a detailed chemical kinetic model and molecular transport to simulate the extinction limits of the cool diffusion flames of the tested fuels. The model qualitatively captured experimental trends for both fuels and ozone levels, but over-predicted extinction limits of the flames. Reactions involving low-temperature species predominantly govern extinction limits of cool flames. The simulations were used to understand the effects of methyl branching on the behavior of n-butane and iso-butane cool diffusion flames.

  2. Structure of diffusion flames from a vertical burner

    Science.gov (United States)

    Mark A. Finney; Dan Jimenez; Jack D. Cohen; Isaac C. Grenfell; Cyle Wold

    2010-01-01

    Non-steady and turbulent flames are commonly observed to produce flame contacts with adjacent fuels during fire spread in a wide range of fuel bed depths. A stationary gas-fired burner (flame wall) was developed to begin study of flame edge variability along an analagous vertical fuel source. This flame wall is surrogate for a combustion interface at the edge of a deep...

  3. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan; Cha, Min; Chung, Suk-Ho

    2014-01-01

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  4. AC electric field induced vortex in laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2014-09-22

    Experiments were performed by applying sub-critical high-voltage alternating current (AC) to the nozzle of laminar propane coflow diffusion flames. Light scattering, laser-induced incandescence and laser-induced fluorescence techniques were used to identify the soot zone, and the structures of OH and polycyclic aromatic hydrocarbons (PAHs). Particle image velocimetry was adopted to quantify the velocity field. Under certain AC conditions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered, leading to the formation of toroidal vortices. Increased residence time and heat recirculation inside the vortex resulted in appreciable formation of PAHs and soot near the nozzle exit. Decreased residence time along the jet axis through flow acceleration by the vortex led to a reduction in the soot volume fraction in the downstream sooting zone. Electromagnetic force generated by AC was proposed as a viable mechanism for the formation of the toroidal vortex. The onset conditions for the vortex formation supported the role of an electromagnetic force acting on charged particles in the flame zone. (C) 2014 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

  5. Influence of thermal radiation on soot production in Laminar axisymmetric diffusion flames

    Science.gov (United States)

    Demarco, R.; Nmira, F.; Consalvi, J. L.

    2013-05-01

    The aim of this paper is to study the effect of radiative heat transfer on soot production in laminar axisymmetric diffusion flames. Twenty-four C1-C3 hydrocarbon-air flames, consisting of normal (NDF) and inverse (IDF) diffusion flames at both normal gravity (1 g) and microgravity (0 g), and covering a wide range of conditions affecting radiative heat transfer, were simulated. The numerical model is based on the Steady Laminar Flamelet (SLF) model, a semi-empirical two-equation acetylene/benzene based soot model and the Statistical Narrow Band Correlated K (SNBCK) model coupled to the Finite Volume Method (FVM) to compute thermal radiation. Predictions relative to velocity, temperature, soot volume fraction and radiative losses are on the whole in good agreement with the available experimental data. Model results show that, for all the flames considered, thermal radiation is a crucial process with a view to providing accurate predictions for temperatures and soot concentrations. It becomes increasingly significant from IDFs to NDFs and its influence is much greater as gravity is reduced. The radiative contribution of gas prevails in the weakly-sooting IDFs and in the methane and ethane NDFs, whereas soot radiation dominates in the other flames. However, both contributions are significant in all cases, with the exception of the 1 g IDFs investigated where soot radiation can be ignored. The optically-thin approximation (OTA) was also tested and found to be applicable as long as the optical thickness, based on flame radius and Planck mean absorption coefficient, is less than 0.05. The OTA is reasonable for the IDFs and for most of the 1 g NDFs, but it fails to predict the radiative heat transfer for the 0 g NDFs. The accuracy of radiative-property models was then assessed in the latter cases. Simulations show that the gray approximation can be applied to soot but not to combustion gases. Both the non-gray and gray soot versions of the Full Spectrum Correlated k (FSCK

  6. Liftoff characteristics of partially premixed flames under normal and microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lock, Andrew J.; Briones, Alejandro M.; Aggarwal, Suresh K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Qin, Xiao [Department of Mechanical & amp; Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Puri, Ishwar K. [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Hegde, Uday [National Center for Microgravity Research, Cleveland, OH 44135 (United States)

    2005-11-01

    An experimental and computational investigation on the liftoff characteristics of laminar partially premixed flames (PPFs) under normal (1-g) and microgravity ({mu}-g) conditions is presented. Lifted methane-air PPFs were established in axisymmetric coflowing jets using nitrogen dilution and various levels of partial premixing. The {mu}-g experiments were conducted in the 2.2-s drop tower at the NASA Glenn Research Center. A time-accurate, implicit algorithm that uses a detailed description of the chemistry and includes radiation effects is used for the simulations. The predictions are validated through a comparison of the flame reaction zone topologies, liftoff heights, lengths, and oscillation frequencies. The effects of equivalence ratio, gravity, jet velocity, and radiation on flame topology, liftoff height, flame length, base structure, and oscillation frequency are characterized. Both the simulations and measurements indicate that under identical conditions, a lifted {mu}-g PPF is stabilized closer to the burner compared with the 1-g flame, and that the liftoff heights of both 1-g and {mu}-g flames decrease with increasing equivalence ratio and approach their respective nonpremixed flame limits. The liftoff height also increases as the jet velocity is increased. In addition, the flame base structure transitions from a triple- to a double-flame structure as the flame liftoff height decreases. A modified flame index is developed to distinguish between the rich premixed, lean premixed, and nonpremixed reaction zones near the flame base. The 1-g lifted flames exhibit well-organized oscillations due to buoyancy-induced instability, while the corresponding {mu}-g flames exhibit steady-state behavior. The effect of thermal radiation is to slightly decrease the liftoff heights of both 1-g and {mu}-g flames under coflow conditions.

  7. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir; Anjum, Dalaver H.; Chung, Suk-Ho

    2013-01-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon

  8. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    Science.gov (United States)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  9. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    Science.gov (United States)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  10. Effect of diluents on soot precursor formation and temperature in ethylene laminar diffusion flames

    KAUST Repository

    Abhinavam Kailasanathan, Ranjith Kumar

    2013-03-01

    Soot precursor species concentrations and flame temperature were measured in a diluted laminar co-flow jet diffusion flame at pressures up to eight atmospheres while varying diluent type. The objective of this study was to gain a better understanding of soot production and oxidation mechanisms, which could potentially lead to a reduction in soot emissions from practical combustion devices. Gaseous samples were extracted from the centerline of an ethylene-air laminar diffusion flame, which was diluted individually with four diluents (argon, helium, nitrogen, and carbon dioxide) to manipulate flame temperature and transport properties. The diluted fuel and co-flow exit velocities (top-hat profiles) were matched at all pressures to minimize shear-layer effects, and the mass fluxes were fixed over the pressure range to maintain constant Reynolds number. The flame temperature was measured using a fine gauge R-type thermocouple at pressures up to four atmospheres. Centerline concentration profiles of major non-fuel hydrocarbons collected via extractive sampling with a quartz microprobe and quantification using GC/MS+FID are reported within. The measured hydrocarbon species concentrations are vary dramatically with pressure and diluent, with the helium and carbon dioxide diluted flames yielding the largest and smallest concentrations of soot precursors, respectively. In the case of C2H2 and C6H6, two key soot precursors, helium diluted flames had concentrations more than three times higher compared with the carbon dioxide diluted flame. The peak flame temperature vary with diluents tested, as expected, with carbon dioxide diluted flame being the coolest, with a peak temperature of 1760K at 1atm, and the helium diluted flame being the hottest, with a peak temperature of 2140K. At four atmospheres, the helium diluted flame increased to 2240K, but the CO2 flame temperature increased more, decreasing the difference to approximately 250K. © 2012 The Combustion Institute.

  11. TRAJECTORY AND INCINERATION OF ROGUE DROPLETS IN A TURBULENT DIFFUSION FLAME

    Science.gov (United States)

    The trajectory and incineration efficiency of individual droplet streams of a fuel mixture injected into a swirling gas turbulent diffusion flame were measured as a function of droplet size, droplet velocity, interdroplet spacing, and droplet injection angle. Additional experimen...

  12. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames

    KAUST Repository

    Wang, Yu; Chung, Suk-Ho

    2016-01-01

    The effects of strain rate, oxygen enrichment and fuel type on the sooting characteristics of counterflow diffusion flames were studied. The sooting structures and relative PAH concentrations were measured with laser diagnostics. Detailed soot

  13. Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames

    KAUST Repository

    Choi, Byungchul; Choi, Sangkyu; Chung, Suk-Ho

    2011-01-01

    The characteristics of polycyclic aromatic hydrocarbon (PAH) and soot for gasoline surrogate fuels have been investigated in counterflow diffusion flames by adopting laser-induced fluorescence (LIF) and laser-induced incandescence (LII) techniques

  14. Stochastic Simulation of Soot Formation Evolution in Counterflow Diffusion Flames

    Directory of Open Access Journals (Sweden)

    Xiao Jiang

    2018-01-01

    Full Text Available Soot generally refers to carbonaceous particles formed during incomplete combustion of hydrocarbon fuels. A typical simulation of soot formation and evolution contains two parts: gas chemical kinetics, which models the chemical reaction from hydrocarbon fuels to soot precursors, that is, polycyclic aromatic hydrocarbons or PAHs, and soot dynamics, which models the soot formation from PAHs and evolution due to gas-soot and soot-soot interactions. In this study, two detailed gas kinetic mechanisms (ABF and KM2 have been compared during the simulation (using the solver Chemkin II of ethylene combustion in counterflow diffusion flames. Subsequently, the operator splitting Monte Carlo method is used to simulate the soot dynamics. Both the simulated data from the two mechanisms for gas and soot particles are compared with experimental data available in the literature. It is found that both mechanisms predict similar profiles for the gas temperature and velocity, agreeing well with measurements. However, KM2 mechanism provides much closer prediction compared to measurements for soot gas precursors. Furthermore, KM2 also shows much better predictions for soot number density and volume fraction than ABF. The effect of nozzle exit velocity on soot dynamics has also been investigated. Higher nozzle exit velocity renders shorter residence time for soot particles, which reduces the soot number density and volume fraction accordingly.

  15. Numerical Analysis of Characteristics of Cellular Counterflow Diffusion Flames near Radiative Extinction Limit

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Ryong [Seoul National University of Technology, Seoul (Korea, Republic of)

    2014-06-15

    Nonlinear characteristics of cellular counterflow diffusion flame near the radiative extinction limit at large Damköhler number are numerically investigated. Lewis number is assumed to be 0.5 and flame evolution is calculated by imposing an infinitesimal disturbance to a one-dimensional(1-D) steady state flame. The early stage of nonlinear development is very similar to that predicted in a linear stability analysis. The disturbance with the wavenumber of the fastest growing mode emerges and grows gradually. Eventual, an alternating pattern of reacting and quenching stripes is developed. The cellular flame temperature is higher than that of 1-D flame because of the gain of the total enthalpy. As the Damköhler number is further increased, the shape of the cell becomes circular to increase the surface area per unit reacting volume. The cellular flames do not extinguish but survive even above the 1-D steady state extinction condition.

  16. Thermal fluid characteristics in diffusion flame formed by coaxial flow configuration

    Energy Technology Data Exchange (ETDEWEB)

    Torii, S. [Kumamoto Univ., Kumamoto (Japan). Dept. of Mechanical Engineering and Materials Science

    2005-07-01

    A numerical and experimental study was performed on the thermal transport phenomena of turbulent jet diffusion flames formed by coaxial flow configuration. Consideration was given to the effect of the flow rates of air and fuel on the flame morphology. It was noted that as the air flow rate increases, the augmentation of flow shear effect exerted on the shear layer form between the flame jet and the air flow induced the fuel-to-air mixture. Thermal diffusion was amplified with an increase in the Reynolds number. As the velocity ratio was increased, the streamwise velocity gradient along the radial axis was intensified, resulting in an amplification of thermal diffusion. Details of the experimental apparatus and method were provided, along with governing equations and numerical methods. It was concluded that the suppression of the flame length and an extension of flame blowoff limit caused an annular jet diffusion flame. An increase in the velocity ratio of air to fuel showed the blue flame. When cold and hot gases are injected along the same direction from the annular channel, the flow pattern and isotherms are affected by the velocity ratio. The streamwise velocity gradient along the r axis was intensified with an increase in N. The trend became larger in the vicinity of the injection nozzle. 15 refs., 9 figs.

  17. Flame Structure of Vitiated Fuel-Rich Inverse Diffusion Flames in a Cross-Flow (Postprint)

    Science.gov (United States)

    2011-12-01

    downstream of the slot. The flame length increases as the blowing ratio increases as a result of the greater mass of air which reacts. Ignition of...attributed to the greater penetration of the jet into the cross-stream. It is noted that the flame lengths are similar for the different blowing ratios

  18. Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Tarrazo, Eduardo [I.N.T.A. Area de Propulsion-Edificio R02, Ctra. Ajalvir, km 4, 28850 Torrejon de Ardoz, Madrid (Spain); Vera, Marcos [Area de Mecanica de Fluidos, Universidad Carlos III de Madrid, 28911 Leganes (Spain); Linan, Amable [Departamento de Motopropulsion y Termofluidodinamica, Universidad Politecnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid (Spain)

    2006-01-01

    A numerical analysis is presented to describe the liftoff and blowoff of a diffusion flame in the mixing layer between two parallel streams of fuel (mainly methane diluted with nitrogen) and air emerging from porous walls. The analysis, which takes into account the effects of thermal expansion, assumes a one-step overall Arrhenius reaction, where the activation energy E is allowed to vary to reproduce the variations of the planar flame propagation velocity with the equivalence ratio. First, we describe the steady flame-front structure when stabilized close to the porous wall (attached flame regime). Then, we analyze the case where the flame front is located far away from the porous wall, at a distance x{sub f}' such that, upstream of the flame front, the mixing layer has a self-similar structure (lifted flame regime). For steady lifted flames, the results, given here in the case when the fuel and air streams are injected with the same velocity, relate U{sub f}'/S{sub L}, the front velocity (relative to the upstream flow) measured with the planar stoichiometric flame velocity, with the Damkohler number D{sub m}=({delta}{sub m}/{delta}{sub L}){sup 2}, based on the thickness, {delta}{sub m}, of the nonreacting mixing layer at the flame-front position and the laminar flame thickness, {delta}{sub L}. For large values of D{sub m}, the results, presented here for a wide range of dilutions of the fuel stream, provide values of the front propagation velocity that are in good agreement with previous experimental results, yielding well-defined conditions for blowoff. The calculated flame-front velocity can also be used to describe the transient flame-front dynamics after ignition by an external energy source.

  19. Response to acoustic forcing of laminar coflow jet diffusion flames

    KAUST Repository

    Chrystie, Robin; Chung, Suk-Ho

    2014-01-01

    Toward the goal of understanding and controlling instability in combustion systems, we present a fundamental characterization of the interaction of the buoyancy-induced instability in flickering flames with forced excitation of fuel supply. Laminar

  20. Transition of carbon nanostructures in heptane diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei-Chieh [National Cheng Kung University, Department of Mechanical Engineering (China); Hou, Shuhn-Shyurng [Kun Shan University, Department of Mechanical Engineering (China); Lin, Ta-Hui, E-mail: thlin@mail.ncku.edu.tw [National Cheng Kung University, Department of Mechanical Engineering (China)

    2017-02-15

    The flame synthesis has high potential in industrial production of carbon nanostructure (CNS). Unfortunately, the complexity of combustion chemistry leads to less controlling of synthesized products. In order to improve the understanding of the relation between flames and CNSs synthesized within, experiments were conducted through heptane flames in a stagnation-point liquid-pool system. The operating parameters for the synthesis include oxygen supply, sampling position, and sampling time. Two kinds of nanostructures were observed, carbon nanotube (CNT) and carbon nano-onion (CNO). CNTs were synthesized in a weaker flame near extinction. CNOs were synthesized in a more sooty flame. The average diameter of CNTs formed at oxygen concentration of 15% was in the range of 20–30 nm. For oxygen concentration of 17%, the average diameter of CNTs ranged from 24 to 27 nm, while that of CNOs was around 28 nm. For oxygen concentration of 19%, the average diameter of CNOs produced at the sampling position 0.5 mm below the flame front was about 57 nm, while the average diameters of CNOs formed at the sampling positions 1–2.5 mm below the flame front were in the range of 20–25 nm. A transition from CNT to CNO was observed by variation of sampling position in a flame. We found that the morphology of CNS is directly affected by the presence of soot layer due to the carbonaceous environment and the growth mechanisms of CNT and CNO. The sampling time can alter the yield of CNSs depending on the temperature of sampling position, but the morphology of products is not affected.

  1. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    International Nuclear Information System (INIS)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-01-01

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the ∼10 3 - 5×10 4 W cm -2 range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  2. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    Science.gov (United States)

    Gvozdev, S. V.; Glova, A. F.; Dubrovskii, V. Yu; Durmanov, S. T.; Krasyukov, A. G.; Lysikov, A. Yu; Smirnov, G. V.; Solomakhin, V. B.

    2012-04-01

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the ~103 — 5×104 W cm-2 range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene — ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  3. Diffusion air effects on the soot axial distribution concentration in a premixed acetylene/air flame

    Energy Technology Data Exchange (ETDEWEB)

    Fassani, Fabio Luis; Santos, Alex Alisson Bandeira; Goldstein Junior, Leonardo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia Termica e de Fluidos]. E-mails: fassani@fem.unicamp.br; absantos@fem.unicamp.br; leonardo@fem.unicamp.br; Ferrari, Carlos Alberto [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica. Dept. de Eletronica Quantica]. E-mail: ferrari@ifi.unicamp.br

    2000-07-01

    Soot particles are produced during the high temperature pyrolysis or combustion of hydrocarbons. The emission of soot from a combustor, or from a flame, is determined by the competition between soot formation and its oxidation. Several factors affect these processes, including the type of fuel, the air-to-fuel ratio, flame temperature, pressure, and flow pattern. In this paper, the influence of the induced air diffusion on the soot axial distribution concentration in a premixed acetylene/air flame was studied. The flame was generated in a vertical axis burner in which the fuel - oxidant mixture flow was surrounded by a nitrogen discharge coming from the annular region between the burner tube and an external concentric tube. The nitrogen flow provided a shield that protected the flame from the diffusion of external air, enabling its control. The burner was mounted on a step-motor driven, vertical translation table. The use of several air-to-fuel ratios made possible to establish the sooting characteristics of this flame, by measuring soot concentration along the flame height with a non-intrusive laser light absorption technique. (author)

  4. Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghafour, S.A.A.; El-dein, A.H.E.; Aref, A.A.R. [Mechanical Power Engineering Department, Faculty of Engineering, Suez Canal University, Port-Said (Egypt)

    2010-03-15

    Combustion characteristics of natural gas - hydrogen hybrid fuel were investigated experimentally in a free jet turbulent diffusion flame flowing into a slow co-flowing air stream. Experiments were carried out at a constant jet exit Reynolds number of 4000 and with a wide range of NG-H{sub 2} mixture concentrations, varied from 100%NG to 50%NG-50% H{sub 2} by volume. The effect of hydrogen addition on flame stability, flame length, flame structure, exhaust species concentration and pollutant emissions was conducted. Results showed that, hydrogen addition sustains a progressive improvement in flame stability and reduction in flame length, especially for relatively high hydrogen concentrations. Hydrogen-enriched flames found to have a higher combustion temperatures and reactivity than natural gas flame. Also, it was found that hydrogen addition to natural gas is an ineffective strategy for NO and CO reduction in the studied range, while a significant reduction in the %CO{sub 2} molar concentration by about 30% was achieved. (author)

  5. The CO/NOx emissions of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao

    2014-05-28

    The CO and NOx exhaust emissions of swirled, strongly pulsed, turbulent jet diffusion flames were studied experimentally in a coflow swirl combustor. Measurements of emissions were performed on the combustor centerline using standard emission analyzers combined with an aspirated sampling probe located downstream of the visible flame tip. The highest levels of CO emissions are generally found for compact, isolated flame puffs, which is consistent with the quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels by up to a factor of 2.5, suggesting more rapid and compete fuel/air mixing by imposing swirl in the coflow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off times. The swirled coflow air can, in some cases, increase the NO emissions due to a longer combustion residence time due to the flow recirculation within the swirl-induced recirculation zone. Scaling relations, when taking into account the impact of air dilution over an injection cycle on the flame length, reveal a strong correlation between the CO emissions and the global residence time. However, the NO emissions do not successfully correlate with the global residence time. For some specific cases, a compact flame with a simultaneous decrease in both CO and NO emissions compared to the steady flames was observed. © Copyright © Taylor & Francis Group, LLC.

  6. Impact of co-flow air on buoyant diffusion flames flicker

    Energy Technology Data Exchange (ETDEWEB)

    Gohari Darabkhani, H., E-mail: h.g.darabkhani@gmail.com [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); Wang, Q.; Chen, L.; Zhang, Y. [Mechanical Engineering Department, University of Sheffield, Mapping Street, Sheffield S1 3JD (United Kingdom)

    2011-08-15

    Highlights: {yields} We present the co-flow effects on flickering behaviour of diffusion flames. {yields} Co-flow air is shown to fully suppress the buoyancy driven flame oscillations. {yields} Schlieren and PIV illustrate the shift of outer vortices beyond the flame zone. {yields} Stability controlling parameter as a ratio of air to fuel velocities is presented. {yields} Equation for linear increase in flickering frequency by co-flow air is presented. - Abstract: This paper describes experimental investigation of co-flow air velocity effects on the flickering behaviour of laminar non-lifted methane diffusion flames. Chemiluminescence, high-speed photography, schlieren and Particle Imaging Velocimetry (PIV), have been used to study the changes in the flame/vortex interactions as well as the flame flickering frequency and magnitude by the co-flow air. Four cases of methane flow rates at different co-flow air velocities are investigated. It has been observed that the flame dynamics and stability of co-flow diffusion flames are strongly affected by the co-flow air velocity. When the co-flow velocity has reached a certain value the buoyancy driven flame oscillation was completely suppressed. The schlieren and PIV imaging have revealed that the co-flow of air is able to push the initiation point of the outer toroidal vortices beyond the visible flame to create a very steady laminar flow region in the reaction zone. Then the buoyancy driven instability is only effective in the plume of hot gases above the visible flame. It is observed that a higher co-flow rate is needed in order to suppress the flame flickering at a higher fuel flow rate. Therefore the ratio of the air velocity to the fuel velocity, {gamma}, is a stability controlling parameter. The velocity ratio, {gamma}, was found to be 0.72 for the range of tested flow rates. The dominant flickering frequency was observed to increase linearly with the co-flow rate (a) as; f = 0.33a + 11. The frequency amplitudes

  7. Role of soot in the transport of chlorine in hydrocarbon-air diffusion flames

    International Nuclear Information System (INIS)

    Venkatesh, S.; Saito, K.; Stencel, J.M.; Majidi, V.; Owens, M.

    1991-01-01

    Soot is an inevitable product of incomplete combustion in many practical combustion systems such as automobiles, incinerators and furnaces. Recent studies on chlorinated hydrocarbon combustion have shown that soot and other praticulates (eg. fly ash) play an important role in secondary reactions leading to the formation of chlorine substituted polyaromatic hydrocarbons (PAHs). In order to attain very high destruction efficiencies the fundamental chemical and physical processes that are associated with combustion, and post-combustion cleanup must be well understood. In order to understand the effect of chlorine on the soot formed in a combustion system, fundamental studies using a coflow laminar hydrocarbon-air diffusion flame have been carried out. Phenomenological studies have revealed the effect of chlorine on the visible structure of the flame. Soot inception activation energies were estimated for methane, ethane and ethylene diffusion flames for the case of with and without chlorine addition. No significant difference in the activation energy was estimated for either case. The effect of chlorine on the soot escape rate of an acetylene diffusion flame was estimated. The soot formed in these diffusion flames was analyzed for chlorine using scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS) and by laser induced plasma spectroscopy (LIPS). REsults from these techniques indicate the presence of chlorine in the soot formed. In this paper a chemical scheme to explain the chlorine found in the soot is proposed based on known theories of soot formation

  8. Investigations of Sooting Laminar Coflow Diffusion Flames at Elevated Pressures

    KAUST Repository

    Steinmetz, Scott

    2016-01-01

    diameters are successfully measured in nitrogen-diluted ethylene-air laminar coflow flames at pressures of 4, 8, 12, and 16 atm. An increase in particle size with pressure is found up to 12 atm, where particle sizes plateau. Particle size in the annulus

  9. Sooting limit in counterflow diffusion flames of ethylene/propane fuels and implication to threshold soot index

    KAUST Repository

    Joo, Peter H.

    2013-01-01

    Sooting limits in counterflow diffusion flames of propane/ethylene fuels have been studied experimentally using a light scattering technique, including the effects of dilution, fuel mixing, and strain rate. The results are discussed in view of the threshold soot index (TSI). In soot-formation (SF) flames, where the flame is located on the oxidizer side of the stagnation plane, the sooting limit depends critically on fuel type and subsequently on flame temperature. The sooting limit has a non-linear dependence on the fuel-mixing ratio, which is similar to the non-linear mixing rule for TSI observed experimentally in rich premixed flames, where soot oxidation is absent for both SF and rich premixed flames. In soot-formation-oxidation (SFO) flames, where the flame is located on the fuel side, the sooting limit depends critically on flame temperature, while it is relatively independent on fuel type. This result suggests a linear mixing rule for sooting limits in SFO flames, which is similar to the TSI behavior for coflow diffusion flames. Soot oxidation takes place for both types of flames. The aerodynamic strain effect on the sooting limits has also been studied and an appreciable influence has been observed. Under sooting conditions, soot volume fraction was measured using a light extinction technique. The soot loadings in SF flames of the mixture fuels demonstrated a synergistic effect, i.e., soot production increased for certain mixture fuels as compared to the respective singlecomponent fuels. © 2012 The Combustion Institute.

  10. A multi-probe thermophoretic soot sampling system for high-pressure diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Alex M.; Gülder, Ömer L. [Institute for Aerospace Studies, University of Toronto, Toronto, Ontario M3H 5T6 (Canada)

    2016-05-15

    Optical diagnostics and physical probing of the soot processes in high pressure combustion pose challenges that are not faced in atmospheric flames. One of the preferred methods of studying soot in atmospheric flames is in situ thermophoretic sampling followed by transmission electron microscopy imaging and analysis for soot sizing and morphology. The application of this method of sampling to high pressures has been held back by various operational and mechanical problems. In this work, we describe a rotating disk multi-probe thermophoretic soot sampling system, driven by a microstepping stepper motor, fitted into a high-pressure chamber capable of producing sooting laminar diffusion flames up to 100 atm. Innovative aspects of the sampling system design include an easy and precise control of the sampling time down to 2.6 ms, avoidance of the drawbacks of the pneumatic drivers used in conventional thermophoretic sampling systems, and the capability to collect ten consecutive samples in a single experimental run. Proof of principle experiments were performed using this system in a laminar diffusion flame of methane, and primary soot diameter distributions at various pressures up to 10 atm were determined. High-speed images of the flame during thermophoretic sampling were recorded to assess the influence of probe intrusion on the flow field of the flame.

  11. Experimental investigation of laminar LPG-H{sub 2} jet diffusion flame with preheated reactants

    Energy Technology Data Exchange (ETDEWEB)

    D.P. Mishra; P. Kumar [Indian Institute of Technology, Kanpur (India). Combustion Laboratory, Department of Aerospace Engineering

    2008-10-15

    This paper presents an experimental investigation of the effect of H{sub 2} addition on flame length, soot free length fraction (SFLF), flame radiant fraction, gas temperature and emission level in LPG-H{sub 2} composite fuel jet diffusion flame for two preheated cases namely, (i) preheated air and (ii) preheated air and fuel. Results show that the H{sub 2} addition leads to a reduction in flame length which may be caused due to an increased gas temperature. Besides this, the flame length is also observed to be reduced with increasing reactants temperature. The soot free length fraction (SFLF) increases as H{sub 2} is added to fuel stream. This might have been caused by decrease in the C/H ratio in the flame and is favorable to attenuate PAH formation rate. Interestingly, the SFLF is observed to be reduced with increasing reactants temperature that may be due to reduction in induction period of soot formation caused by enhanced flame temperature. Moreover, the decreased radiant heat fraction with hydrogen addition is pertinent with the reduction in soot concentration level. The reduction in NOx emission level with H{sub 2} addition to the fuel stream is also observed. On the contrary, NOx emission level is found to be enhanced significantly with reactant temperature that can be attributed to the increase in thermal NOx through Zeldovich mechanism. 31 refs., 4 figs., 2 tabs.

  12. Particle Sampling and Real Time Size Distribution Measurement in H2/O2/TEOS Diffusion Flame

    International Nuclear Information System (INIS)

    Ahn, K.H.; Jung, C.H.; Choi, M.; Lee, J.S.

    2001-01-01

    Growth characteristics of silica particles have been studied experimentally using in situ particle sampling technique from H 2 /O 2 /Tetraethylorthosilicate (TEOS) diffusion flame with carefully devised sampling probe. The particle morphology and the size comparisons are made between the particles sampled by the local thermophoretic method from the inside of the flame and by the electrostatic collector sampling method after the dilution sampling probe. The Transmission Electron Microscope (TEM) image processed data of these two sampling techniques are compared with Scanning Mobility Particle Sizer (SMPS) measurement. TEM image analysis of two sampling methods showed a good agreement with SMPS measurement. The effects of flame conditions and TEOS flow rates on silica particle size distributions are also investigated using the new particle dilution sampling probe. It is found that the particle size distribution characteristics and morphology are mostly governed by the coagulation process and sintering process in the flame. As the flame temperature increases, the effect of coalescence or sintering becomes an important particle growth mechanism which reduces the coagulation process. However, if the flame temperature is not high enough to sinter the aggregated particles then the coagulation process is a dominant particle growth mechanism. In a certain flame condition a secondary particle formation is observed which results in a bimodal particle size distribution

  13. Experimental Observations on a Low Strain Counter-Flow Diffusion Flame: Flow and Bouyancy Effects

    Science.gov (United States)

    Sutula, J. A.; Torero, J. L.; Ezekoye, O. A.

    1999-01-01

    Diffusion flames are of great interest in fire safety and many industrial processes. The counter-flow configuration provides a constant strain flow, and therefore is ideal to study the structure of diffusion flames. Most studies have concentrated on the high velocity, high strain limit, since buoyantly induced instabilities will disintegrate the planar flame as the velocity decreases. Only recently, experimental studies in microgravity conditions have begun to explore the low strain regimes. Numerical work has shown the coupling between gas phase reaction rates, soot reaction rates, and radiation. For these programs, size, geometry and experimental conditions have been chosen to keep the flame unaffected by the physical boundaries. When the physical boundaries can not be considered infinitely far from the reaction zone discrepancies arise. A computational study that includes boundary effects and accounts for the deviations occurring when the major potential flow assumptions are relaxed was presented by Borlik et al. This development properly incorporates all heat loss terms and shows the possibility of extinction in the low strain regime. A major constraint of studying the low strain regime is buoyancy. Buoyant instabilities have been shown to have a significant effect on the nature of reactants and heat transport, and can introduce instabilities on the flow that result in phenomena such as flickering or fingering. The counter-flow configuration has been shown to provide a flame with no symmetry disrupting instabilities for inlet velocities greater than 50 mm/s. As the velocity approaches this limit, the characteristic length of the experiment has to be reduced to a few millimetres so as to keep the Rayleigh number (Ra(sub L) = (Beta)(g(sub 0))(L(exp 3) del T)/(alpha(v))) below 2000. In this work, a rectangular counter-flow burner was used to study a two-dimensional counter-flow diffusion flame. Flow visualisation and Particle Image Velocimetry served to describe

  14. A Numerical Study on Effect of Gas-Phase Radiative Heat Loss on Extinction of Hydrogen Diffusion Flames

    International Nuclear Information System (INIS)

    Sohn, Chae Hoon

    2007-01-01

    Extinction characteristics of hydrogen-air diffusion flames are investigated numerically by adopting counterflow flame configuration. At various pressures, effect of radiative heat loss on flame extinction is examined. Only gas-phase radiation is considered here. Radiative heat loss depends on flame thickness, temperature, H 2 O concentration, and pressure. From flame structures at various pressures, flame thickness decreases with pressure, but its gradient decreases at high pressure. Flame temperature and mole fraction of H 2 O increase slightly with pressure. Accordingly, as pressure increases, radiative heat loss becomes dominant. When radiative heat loss is considered, radiation-induced extinction is observed at low strain rate in addition to transport-induced extinction. As pressure increases, flammable region shifts to the high-temperature region and then, shrunk to the point on the coordinate plane of flame temperature and strain rate

  15. A comparative study on the sooting tendencies of various 1-alkene fuels in counterflow diffusion flames

    KAUST Repository

    Wang, Yu; Park, Sungwoo; Sarathy, Mani; Chung, Suk-Ho

    2018-01-01

    -alkenes through experiments and numerical simulations for counterflow diffusion flames. Soot and PAH formation tendencies of 1-alkene fuels, including ethylene (C2H4), propene (C3H6), 1-butene (1-C4H8), 1-pentene (1-C5H10), 1-hexene (1-C6H12) and 1-octene

  16. Numerical modeling of turbulent jet diffusion flames in the atmospheric surface layer

    NARCIS (Netherlands)

    Hernández, J.; Crespo, A.; Duijm, N.J.

    1995-01-01

    The evolution of turbulent jet diffusion flames of natural gas in air is predicted using a finite-volume procedure for solving the flow equations. The model is three dimensional, elliptic and based on the conserved-scalar approach and the laminar flamelet concept. A laminar flamelet prescription for

  17. POLYCYCLIC AROMATIC HYDROCARBON FORMATION IN OPPOSED FLOW DIFFUSION FLAMES OF ETHANE. (R825412)

    Science.gov (United States)

    AbstractThe effect of fuel-side carbon density on the levels of polycyclic aromatic hydrocarbon (PAH) formation in atmospheric pressure, opposed flow, ethane diffusion flames has been studied using heated micro-probe sampling and gas chromatography/mass spectrometry (...

  18. Ozone Activated Cool Diffusion Flames of Butane Isomers in a Counterflow Facility

    KAUST Repository

    Al Omier, Abdullah Abdulaziz

    2017-04-01

    Proceeding from the aim to reduce global pollution emissions from the continuous burning of hydrocarbons stimulated by increasing energy demand, more efficient and ultra-low emissions’ combustion concepts such as the homogenous charge compression ignition engines (HCCI) have been developed. These new engines rely on the low temperature chemistry (LTC) combustion concept. A detailed investigation of the properties of cool flames, governed by LTC, is essential for the design of these new engines. The primary goal of this work was to build a fundamental counterflow experiment for cool flames studies in a diffusive system, to better understand combustion in LTC engines. The project was intended to provide a basic understanding of the low-temperature reactivity and cool flames properties of butane isomers under atmospheric pressure conditions. This was achieved by establishing self-sustaining cool flames through a novel technique of ozone addition to an oxygen stream in a non-premixed counterflow model. The ignition and extinction limits of butane isomers’ cool flames have been investigated under a variety of strain rates. Results revealed that establishment of cool flames are favored at lower strain rates. Iso-butane was less reactive than n-butane by showing higher ignition and extinction limits. Ozone addition showed a significant influence on cool flame ignition and sustenance; it was found that increasing ozone concentration in the oxidizer stream dramatically increased the reactivity of both fuels. Results showed increased fuel reactivity as the temperature of the fuel stream outlet increased. 4 A numerical analysis was performed to simulate ignition and extinction of the cool flame in diffusive systems. The results revealed that ignition and extinction limits of cool flames are predominantly governed by LTC. The model qualitatively captured experimental trends for both fuels; however, it overpredicted both ignition and extinction limits under all strain rates

  19. Quantitative determination of flame color and its determining factor in hydrocarbon/air laminar diffusion flames; Soryu kakusan kaen ni okeru kaenshoku no teiryoka to sono kettei yoin

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, S. [Asahikawa National College of Technology, Hokkaido (Japan); Fujita, O.; Ito, K. [Hokkaido University, Sapporo (Japan)

    1998-08-25

    The color of laminar diffusion flames burning propane, methane and ethylene was determined by chromaticity coordinates (x, y) defined by the CIE 1931 standard colorimetric system. The differences in flame color attributed to burning condition and fuel types were examined with a colorimeter. Spectroscopic measurement and numerical analysis using a simplified radiation model were also carried out to discuss the determining factors of the flame color. The relation between x and y measured on the central axis of the flames was expressed in the experimental equations. The (x, y) in the luminous region plotted on a chromaticity diagram changed along Planckian locus with the burning conditions. The contribution of the thermal radiation of soot particles and the chemiluminescence to the flame color was successfully evaluated by introducing the concept of additive mixture of color stimuli. The (x, y) profiles from the numerical analysis agreed well with the experimental results. 17 refs., 14 figs., 1 tab.

  20. Radiation turbulence interactions in pulverized coal flames: Chaotic map models of soot fluctuations in turbulent diffusion flames. Quarterly report, October 1995--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    McDonough, J.M.; Menguc, M.P.; Mukerji, S.; Swabb, S.; Manickavasagam, S.; Ghosal, S.

    1995-12-31

    In this paper, we introduce a methodology to characterize soot volume fraction fluctuations in turbulent diffusion flames via chaotic maps. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames is deterministic in nature, rather than statistical. Out objective is to develop models to mimic these fluctuations. The models will be used eventually in comprehensive algorithms to study the true physics of turbulent flames and the interaction of turbulence with radiation. To this extent, we measured the time series of soot scattering coefficient in an ethylene diffusion flame from light scattering experiments. Following this, corresponding power spectra and delay maps were calculated. It was shown that if the data were averaged, the characteristics of the fluctuations were almost completely washed out. The psds from experiments were successfully modeled using a series of logistic maps.

  1. Effect of ac electric fields on counterflow diffusion flame of methane

    KAUST Repository

    Chul Choi, Byung

    2012-08-01

    The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force. © 2012 The Korean Society of Mechanical Engineers.

  2. Effect of ac electric fields on counterflow diffusion flame of methane

    KAUST Repository

    Chul Choi, Byung; Kuk Kim, Hyung; Chung, Suk-Ho

    2012-01-01

    The effect of electric fields on the response of diffusion flames in a counterflow has been investigated experimentally by varying the AC voltage and frequency. The result showed that the flame was stationary with high AC frequency above the threshold frequency, and it increased with the applied voltage and then leveled off at 35 Hz. Below the threshold frequency, however, the flame oscillated with a frequency that was synchronized with the applied AC frequency. This oscillation can be attributed to the ionic wind effect due to the generation of bulk flow, which arises from the momentum transfer by molecular collisions between neutral molecules and ions, where the ions in the reaction zone were accelerated by the Lorentz force. © 2012 The Korean Society of Mechanical Engineers.

  3. Theory of the propagation dynamics of spiral edges of diffusion flames in von Karman swirling flows

    Energy Technology Data Exchange (ETDEWEB)

    Urzay, Javier; Williams, Forman A. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States); Nayagam, Vedha [National Center for Space Exploration Research, NASA Glenn Research Center, Cleveland, OH 44135 (United States)

    2011-02-15

    This analysis addresses the propagation of spiral edge flames found in von Karman swirling flows induced in rotating porous-disk burners. In this configuration, a porous disk is spun at a constant angular velocity in an otherwise quiescent oxidizing atmosphere. Gaseous methane is injected through the disk pores and burns in a flat diffusion flame adjacent to the disk. Among other flame patterns experimentally found, a stable, rotating spiral flame is observed for sufficiently large rotation velocities and small fuel flow rates as a result of partial extinction of the underlying diffusion flame. The tip of the spiral can undergo a steady rotation for sufficiently large rotational velocities or small fuel flow rates, whereas a meandering tip in an epicycloidal trajectory is observed for smaller rotational velocities and larger fuel flow rates. A formulation of this problem is presented in the equidiffusional and thermodiffusive limits within the framework of one-step chemistry with large activation energies. Edge-flame propagation regimes are obtained by scaling analyses of the conservation equations and exemplified by numerical simulations of straight two-dimensional edge flames near a cold porous wall, for which lateral heat losses to the disk and large strains induce extinction of the trailing diffusion flame but are relatively unimportant in the front region, consistent with the existence of the cooling tail found in the experiments. The propagation dynamics of a steadily rotating spiral edge is studied in the large-core limit, for which the characteristic Markstein length is much smaller than the distance from the center at which the spiral tip is anchored. An asymptotic description of the edge tangential structure is obtained, spiral edge shapes are calculated, and an expression is found that relates the spiral rotational velocity to the rest of the parameters. A quasiestatic stability analysis of the edge shows that the edge curvature at extinction in the tip

  4. Characterization of bluff-body stabilized LPG jet diffusion flame with N{sub 2} dilution

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.; Mishra, D.P. [Combustion Lab, Department of Aerospace Engineering, Indian Institute of Technology, Kanpur, Uttar Pradesh 208 016 (India)

    2008-10-15

    Measurements of several parameters like flame length, soot free length fraction (SFLF), radiant fraction, gas temperature and emission levels are performed in coaxial LPG jet diffusion flame to provide an insight into the effect of lip thickness and inert addition on flame characteristics. The present measurements reveal that the visible flame length is found to be reduced with increase in lip thickness. In contrast, the flame length for all lip thicknesses gets enhanced by inert addition to the fuel stream, which can be attributed to the reduced diffusivity of the mixture gases. The SFLF is seen to be enhanced with N{sub 2} addition due to decrease in the fuel concentration and flame temperature. However, the SFLF is reduced with increasing lip thickness of the bluff-body which is caused due to the reduction in induction period of soot formation. For all lip thickness, the NO{sub x} emission level is observed to be attenuated with inert (N{sub 2}) addition, which can be ascribed to reduction in residence time of gas mixture. Besides this, NO{sub x} emission level is enhanced with increasing lip thickness. The emission index of CO is found to be increased with nitrogen addition; in contrast, the EICO{sub 2} is seen to be reduced, for all lip thickness. This can be attributed to attrition in residence time with inert addition that tends to inhibit the conversion of CO to CO{sub 2}. Moreover, EICO is also observed to be attenuated while EICO{sub 2} gets enhanced, with increasing lip thickness which might be due to the increased residence time of mixture gases. (author)

  5. Characterization of bluff-body stabilized LPG jet diffusion flame with N2 dilution

    International Nuclear Information System (INIS)

    Kumar, P.; Mishra, D.P.

    2008-01-01

    Measurements of several parameters like flame length, soot free length fraction (SFLF), radiant fraction, gas temperature and emission levels are performed in coaxial LPG jet diffusion flame to provide an insight into the effect of lip thickness and inert addition on flame characteristics. The present measurements reveal that the visible flame length is found to be reduced with increase in lip thickness. In contrast, the flame length for all lip thicknesses gets enhanced by inert addition to the fuel stream, which can be attributed to the reduced diffusivity of the mixture gases. The SFLF is seen to be enhanced with N 2 addition due to decrease in the fuel concentration and flame temperature. However, the SFLF is reduced with increasing lip thickness of the bluff-body which is caused due to the reduction in induction period of soot formation. For all lip thickness, the NO x emission level is observed to be attenuated with inert (N 2 ) addition, which can be ascribed to reduction in residence time of gas mixture. Besides this, NO x emission level is enhanced with increasing lip thickness. The emission index of CO is found to be increased with nitrogen addition; in contrast, the EICO 2 is seen to be reduced, for all lip thickness. This can be attributed to attrition in residence time with inert addition that tends to inhibit the conversion of CO to CO 2 . Moreover, EICO is also observed to be attenuated while EICO 2 gets enhanced, with increasing lip thickness which might be due to the increased residence time of mixture gases

  6. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2013-09-01

    A reaction mechanism having molecular growth up to benzene for hydrocarbon fuels with up to four carbon-atoms was extended to include the formation and growth of polycyclic aromatic hydrocarbons (PAHs) up to coronene (C24H12). The new mechanism was tested for ethylene premixed flames at low (20torr) and atmospheric pressures by comparing experimentally observed species concentrations with those of the computed ones for small chemical species and PAHs. As compared to several existing mechanisms in the literature, the newly developed mechanism showed an appreciable improvement in the predicted profiles of PAHs. The new mechanism was also used to simulate PAH formation in counterflow diffusion flames of ethylene to study the effects of mixing propane and benzene in the fuel stream. In the ethylene-propane flames, existing experimental results showed a synergistic effect in PAH concentrations, i.e. PAH concentrations first increased and then decreased with increasing propane mixing. This PAH behavior was successfully captured by the new mechanism. The synergistic effect was predicted to be more pronounced for larger PAH molecules as compared to the smaller ones, which is in agreement with experimental observations. In the experimental study in which the fuel stream of ethylene-propane flames was doped with benzene, a synergistic effect was mitigated for benzene, but was observed for large PAHs. This effect was also predicted in the computed PAH profiles for these flames. To explain these responses of PAHs in the flames of mixture fuels, a pathway analysis has been conducted, which show that several resonantly stabilized species as well as C4H4 and H atom contribute to the enhanced synergistic behaviors of larger PAHs as compared to the small ones in the flames of mixture fuels. © 2013 The Combustion Institute.

  7. Absorption and scattering of laser radiation by the diffusion flame of aviation kerosene

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdev, S V; Glova, A F; Dubrovskii, V Yu; Durmanov, S T; Krasyukov, A G; Lysikov, A Yu; Smirnov, G V; Solomakhin, V B

    2012-04-30

    The absorption coefficient of the radiation of a repetitively pulsed Nd : YAG laser with an average output power up to 6 W and of a cw ytterbium optical fibre laser with an output power up to 3 kW was measured in the diffusion flame of aviation kerosene burning on a free surface in the atmospheric air. The absorption coefficient as a function of flame length, radiation power, and radiation intensity, which was varied in the {approx}10{sup 3} - 5 Multiplication-Sign 10{sup 4} W cm{sup -2} range, was obtained for two distances (1 and 2 cm) between the laser beam axis and the surface. The coefficient of radiation absorption by kerosene flame was compared with that in ethanol and kerosene - ethanol mixture flames. The radiation power scattered by a small segment of the kerosene flame irradiated by Nd : YAG laser radiation was measured as a function of longitudinal and azimuthal coordinates. An estimate was made of the total scattered radiation power.

  8. Application of a primitive variable Newton's method for the calculation of an axisymmetric laminar diffusion flame

    International Nuclear Information System (INIS)

    Xu, Yuenong; Smooke, M.D.

    1993-01-01

    In this paper we present a primitive variable Newton-based solution method with a block-line linear equation solver for the calculation of reacting flows. The present approach is compared with the stream function-vorticity Newton's method and the SIMPLER algorithm on the calculation of a system of fully elliptic equations governing an axisymmetric methane-air laminar diffusion flame. The chemical reaction is modeled by the flame sheet approximation. The numerical solution agrees well with experimental data in the major chemical species. The comparison of three sets of numerical results indicates that the stream function-vorticity solution using the approximate boundary conditions reported in the previous calculations predicts a longer flame length and a broader flame shape. With a new set of modified vorticity boundary conditions, we obtain agreement between the primitive variable and stream function-vorticity solutions. The primitive variable Newton's method converges much faster than the other two methods. Because of much less computer memory required for the block-line tridiagonal solver compared to a direct solver, the present approach makes it possible to calculate multidimensional flames with detailed reaction mechanisms. The SIMPLER algorithm shows a slow convergence rate compared to the other two methods in the present calculation

  9. NO emission characteristics in counterflow diffusion flame of blended fuel of H2/CO2/Ar

    International Nuclear Information System (INIS)

    Jeong Park; Kyunghwan Lee; Keeman Lee

    2002-01-01

    Flame structure and NO emission characteristics in counterflow diffusion flame of blended fuel of H 2 /CO 2 /Ar have been numerically simulated with detailed chemistry. The combination of H 2 , CO 2 and Ar as fuel is selected to clearly display the contribution of hydrocarbon products to flame structure and NO emission characteristics due to the breakdown of CO 2 . A radiative heat loss term is involved to correctly describe the flame dynamics especially at low strain rates. The detailed chemistry adopts the reaction mechanism of GRI 2.11, which consists of 49 species and 279 elementary reactions. All mechanisms including thermal, NO 2 , N 2 O and Fenimore are taken into account to separately evaluate the effects of CO 2 addition on NO emission characteristics. The increase of added CO 2 quantity causes flame temperature to fall since at high strain rates a diluent effect is prevailing and at low strain rates the breakdown of CO 2 produces relatively populous hydrocarbon products and thus the existence of hydrocarbon products inhibits chain branching. It is also found that the contribution of NO production by N 2 O and NO 2 mechanisms are negligible and that thermal mechanism is concentrated on only the reaction zone. As strain rate and CO 2 quantity increase, NO production is remarkably augmented. (Author)

  10. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio; El Morsli, Mbark

    2012-01-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons

  11. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam; Zhang, Ji; Fang, Tiegang; Roberts, William L.

    2014-01-01

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both

  12. Effects of N2 gas on preheated laminar LPG jet diffusion flame

    International Nuclear Information System (INIS)

    Mishra, D.P.; Kumar, P.

    2010-01-01

    This paper presents an experimental investigation of the inert gas effect on flame length, NO x and soot free length fraction (SFLF) in a laminar LPG diffusion flame. Besides this, flame radiant fraction and temperature are also measured to explain observed NO x emission and SFLF. The inert is added to both air and fuel stream at each base line condition by maintaining a constant mass flow rate in each stream. Results indicate that inert addition leads to a significant enhancement in flame length for air-diluted stream than fuel-diluted stream. However, the flame length is observed to reduce with increasing reactant temperature. It is also observed that the SFLF increases with addition of N 2 for fuel-diluted stream. In contrast, SFLF remains almost constant when N 2 is added to air stream. The decrease in fuel concentration and gas temperature caused by inert addition leads to reduction in soot volume fraction and hence enhances SFLF. Interestingly, the SFLF reduces with increasing reactant temperature, due to reduction in induction period of soot formation caused by enhanced flame temperature. Besides this, the reduction in NO x emission level with inert addition is also observed. For all the three cases, the air dilution proved to be much efficient in reducing NO x emission level as compared to fuel dilution. This can be attributed to the differences in reduced gas temperature and residence time between air and fuel-diluted streams. On the contrary, NO x emission level enhances significantly with increasing reactant temperature as a result of increase in thermal NO x through Zeldovich mechanism.

  13. Effects of N{sub 2} gas on preheated laminar LPG jet diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, D.P.; Kumar, P. [Department of Aerospace Engineering, Indian Institute of Technology, Kanpur 208 016 (India)

    2010-11-15

    This paper presents an experimental investigation of the inert gas effect on flame length, NO{sub x} and soot free length fraction (SFLF) in a laminar LPG diffusion flame. Besides this, flame radiant fraction and temperature are also measured to explain observed NO{sub x} emission and SFLF. The inert is added to both air and fuel stream at each base line condition by maintaining a constant mass flow rate in each stream. Results indicate that inert addition leads to a significant enhancement in flame length for air-diluted stream than fuel-diluted stream. However, the flame length is observed to reduce with increasing reactant temperature. It is also observed that the SFLF increases with addition of N{sub 2} for fuel-diluted stream. In contrast, SFLF remains almost constant when N{sub 2} is added to air stream. The decrease in fuel concentration and gas temperature caused by inert addition leads to reduction in soot volume fraction and hence enhances SFLF. Interestingly, the SFLF reduces with increasing reactant temperature, due to reduction in induction period of soot formation caused by enhanced flame temperature. Besides this, the reduction in NO{sub x} emission level with inert addition is also observed. For all the three cases, the air dilution proved to be much efficient in reducing NO{sub x} emission level as compared to fuel dilution. This can be attributed to the differences in reduced gas temperature and residence time between air and fuel-diluted streams. On the contrary, NO{sub x} emission level enhances significantly with increasing reactant temperature as a result of increase in thermal NO{sub x} through Zeldovich mechanism. (author)

  14. Fuel rich and fuel lean catalytic combustion of the stabilized confined turbulent gaseous diffusion flames over noble metal disc burners

    Directory of Open Access Journals (Sweden)

    Amal S. Zakhary

    2014-03-01

    Full Text Available Catalytic combustion of stabilized confined turbulent gaseous diffusion flames using Pt/Al2O3 and Pd/Al2O3 disc burners situated in the combustion domain under both fuel-rich and fuel-lean conditions was experimentally studied. Commercial LPG fuel having an average composition of: 23% propane, 76% butane, and 1% pentane was used. The thermal structure of these catalytic flames developed over Pt/Al2O3 and Pd/Al2O3 burners were examined via measuring the mean temperature distribution in the radial direction at different axial locations along the flames. Under-fuel-rich condition the flames operated over Pt catalytic disc attained high temperature values in order to express the progress of combustion and were found to achieve higher activity as compared to the flames developed over Pd catalytic disc. These two types of catalytic flames demonstrated an increase in the reaction rate with the downstream axial distance and hence, an increase in the flame temperatures was associated with partial oxidation towards CO due to the lack of oxygen. However, under fuel-lean conditions the catalytic flame over Pd catalyst recorded comparatively higher temperatures within the flame core in the near region of the main reaction zone than over Pt disc burner. These two catalytic flames over Pt and Pd disc burners showed complete oxidation to CO2 since the catalytic surface is covered by more rich oxygen under the fuel-lean condition.

  15. A computational study of radiation and gravity effect on temperature and soot formation in a methane air co-flow diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Bhowal, Arup Jyoti, E-mail: arupjyoti.bhowal@heritageit.edu [Department of Mechanical Engineering, Heritage Institute of Technology, Chowbaga Road, Anandapur, Kolkata-700 107, West Bengal (India); Mandal, Bijan Kumar, E-mail: bkm375@yahoo.co.in [Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    An effort has been made for a quantitative assessment of the soot formed under steady state in a methane air co flow diffusion flame by a numerical simulation at normal gravity and at lower gravity levels of 0.5 G, 0.1 G and 0.0001 G (microgravity). The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. There is an augmentation of soot formation at lower gravity levels. Peak value at microgravity multiplies by a factor of ∼7 of that at normal gravity. However, if radiation is not considered, soot formation is found to be much more.

  16. Quantitative characterization of steady and time-varying, sooting, laminar diffusion flames using optical techniques

    Science.gov (United States)

    Connelly, Blair C.

    In order to reduce the emission of pollutants such as soot and NO x from combustion systems, a detailed understanding of pollutant formation is required. In addition to environmental concerns, this is important for a fundamental understanding of flame behavior as significant quantities of soot lower local flame temperatures, increase overall flame length and affect the formation of such temperature-dependent species as NOx. This problem is investigated by carrying out coupled computational and experimental studies of steady and time-varying sooting, coflow diffusion flames. Optical diagnostic techniques are a powerful tool for characterizing combustion systems, as they provide a noninvasive method of probing the environment. Laser diagnostic techniques have added advantages, as systems can be probed with high spectral, temporal and spatial resolution, and with species selectivity. Experimental soot volume fractions were determined by using two-dimensional laser-induced incandescence (LII), calibrated with an on-line extinction measurement, and soot pyrometry. Measurements of soot particle size distributions are made using time-resolved LII (TR-LII). Laser-induced fluorescence measurements are made of NO and formaldehyde. These experimental measurements, and others, are compared with computational results in an effort to understand and model soot formation and to examine the coupled relationship of soot and NO x formation.

  17. Experimental and numerical investigation of fuel mixing effects on soot structures in counterflow diffusion flames

    KAUST Repository

    Choi, Byungchul

    2011-03-26

    Experimental and numerical analyses of laminar diffusion flames were performed to identify the effect of fuel mixing on soot formation in a counterflow burner. In this experiment, the volume fraction, number density, and particle size of soot were investigated using light extinction/scattering systems. The experimental results showed that the synergistic effect of an ethylene-propane flame is appreciable. Numerical simulations showed that the benzene (C6H6) concentration in mixture flames was higher than in ethylene-base flames because of the increase in the concentration of propargyl radicals. Methyl radicals were found to play an important role in the formation of propargyl, and the recombination of propargyl with benzene was found to lead to an increase in the number density for cases exhibiting synergistic effects. These results imply that methyl radicals play an important role in soot formation, particularly with regard to the number density. © 2011 The Korean Society of Automotive Engineers and Springer-Verlag Berlin Heidelberg.

  18. Soot particle size measurements in ethylene diffusion flames at elevated pressures

    KAUST Repository

    Steinmetz, Scott

    2016-05-07

    Soot particle size is investigated in laminar nitrogen-diluted ethylene coflow diffusion flames at 4, 8, 12 and 16 atm. Line of sight attenuation and scattering are used to measure two-dimensional soot volume fraction and particle size fields for the first time at elevated pressures. Soot volume fraction dependence on pressure is consistent with the observations of similar studies, scaling approximately with the square of pressure. Scattering intensity is analyzed through Rayleigh and Rayleigh-Debye-Gans polydisperse fractal aggregate theories to provide two estimates of particle size. An increase in overall particle sizes with pressure is found, consistent with similar one-dimensional studies. Particle diameters in the annulus of the flame increase faster with pressure than those on centerline. Contrary to previous studies, the dependence of particle size on pressure was found to taper off between 8 and 12 atm, with little observed growth beyond 12 atm. The measurements provide additional data for one of the International Sooting Flame (ISF) workshop\\'s target pressurized flames.

  19. Laminar oxy-fuel diffusion flame supported by an oxygen-permeable-ion-transport membrane

    KAUST Repository

    Hong, Jongsup

    2013-03-01

    A numerical model with detailed gas-phase chemistry and transport was used to predict homogeneous fuel conversion processes and to capture the important features (e.g., the location, temperature, thickness and structure of a flame) of laminar oxy-fuel diffusion flames stabilized on the sweep side of an oxygen permeable ion transport membrane (ITM). We assume that the membrane surface is not catalytic to hydrocarbon or syngas oxidation. It has been demonstrated that an ITM can be used for hydrocarbon conversion with enhanced reaction selectivity such as oxy-fuel combustion for carbon capture technologies and syngas production. Within an ITM unit, the oxidizer flow rate, i.e., the oxygen permeation flux, is not a pre-determined quantity, since it depends on the oxygen partial pressures on the feed and sweep sides and the membrane temperature. Instead, it is influenced by the oxidation reactions that are also dependent on the oxygen permeation rate, the initial conditions of the sweep gas, i.e., the fuel concentration, flow rate and temperature, and the diluent. In oxy-fuel combustion applications, the sweep side is fuel-diluted with CO2, and the entire unit is preheated to achieve a high oxygen permeation flux. This study focuses on the flame structure under these conditions and specifically on the chemical effect of CO2 dilution. Results show that, when the fuel diluent is CO2, a diffusion flame with a lower temperature and a larger thickness is established in the vicinity of the membrane, in comparison with the case in which N2 is used as a diluent. Enhanced OH-driven reactions and suppressed H radical chemistry result in the formation of products with larger CO and H2O and smaller H2 concentrations. Moreover, radical concentrations are reduced due to the high CO2 fraction in the sweep gas. CO2 dilution reduces CH3 formation and slows down the formation of soot precursors, C2H2 and C2H4. The flame location impacts the species diffusion and heat transfer from the

  20. Instability and electrical response of small laminar coflow diffusion flames under AC electric fields: Toroidal vortex formation and oscillating and spinning flames

    KAUST Repository

    Xiong, Yuan; Chung, Suk-Ho; Cha, Min

    2016-01-01

    Dynamical and electrical responses of a small coflow diffusion flame were investigated by applying a high-voltage alternating current (AC), to a fuel jet nozzle. High-speed imaging and electrical diagnostics were adopted to capture flame dynamics and electrical signals, such as voltage (V ), frequency (f ) and current (I ). In the V -f domain of 0-5kV and 0-5kHz, AC-driven instabilities, resulting in various flame modes such as an oscillation, pinch-off and spinning of flames were identified. Characteristic frequency of each mode was determined and a visualization of near-nozzle flow structures suggested a close causality of initial counter-rotating vortices (inner and outer toroidal vortices - ITV and OTV), to the other observed flame. An axisymmetric ITV shedding was identified within oscillating and pinch-off modes, while asymmetric ITV shedding was identified with the spinning mode. Integrated electric power over several AC periods correlated well with variation in the flame surface area for these instabilities, demonstrating that measured electric power is a potential indicator of combustion instabilities in electric-field-assisted combustion.

  1. Instability and electrical response of small laminar coflow diffusion flames under AC electric fields: Toroidal vortex formation and oscillating and spinning flames

    KAUST Repository

    Xiong, Yuan

    2016-06-24

    Dynamical and electrical responses of a small coflow diffusion flame were investigated by applying a high-voltage alternating current (AC), to a fuel jet nozzle. High-speed imaging and electrical diagnostics were adopted to capture flame dynamics and electrical signals, such as voltage (V ), frequency (f ) and current (I ). In the V -f domain of 0-5kV and 0-5kHz, AC-driven instabilities, resulting in various flame modes such as an oscillation, pinch-off and spinning of flames were identified. Characteristic frequency of each mode was determined and a visualization of near-nozzle flow structures suggested a close causality of initial counter-rotating vortices (inner and outer toroidal vortices - ITV and OTV), to the other observed flame. An axisymmetric ITV shedding was identified within oscillating and pinch-off modes, while asymmetric ITV shedding was identified with the spinning mode. Integrated electric power over several AC periods correlated well with variation in the flame surface area for these instabilities, demonstrating that measured electric power is a potential indicator of combustion instabilities in electric-field-assisted combustion.

  2. Investigation of noise radiation from a swirl stabilized diffusion flame with an array of microphones

    International Nuclear Information System (INIS)

    Singh, A.V.; Yu, M.; Gupta, A.K.; Bryden, K.M.

    2013-01-01

    Highlights: • Acoustic spectral characteristics independent of equivalence ratio and flow velocity. • Combustion noise dependent on global equivalence ratio and flow velocity. • Increased global equivalence ratio decreased the frequency of peak. • Decay and growth coefficients largely independent of different flow conditions. • Acoustic radiation coherent up to 1.5 kHz for spatially separated microphones. - Abstract: Next generation of combustors are expected to provide significant improvement on efficiency and reduced pollutants emission. In such combustors, the challenges of local flow, pressure, chemical composition and thermal signatures as well as their interactions will require detailed investigation for seeking optimum performance. Sensor networks with a large number of sensors will be employed in future smart combustors, which will allow one to obtain fast and comprehensive information on the various ongoing processes within the system. In this paper sensor networks with specific focus on an array of homogeneous microphones are used examine the spectral characteristics of combustion noise from a non-premixed combustor. A non-premixed double concentric swirl-flame burner was used. Noise spectra were determined experimentally for the non-premixed swirl flame at various fuel–air ratios using an array of homogeneous condenser microphones. Multiple microphones positioned at discrete locations around the turbulent diffusion flame, provided an understanding of the total sound power and their spectral characteristics. The growth and decay coefficients of total sound power were investigated at different test conditions. The signal coherence between different microphone pairs was also carried out to determine the acoustic behavior of a swirl stabilized turbulent diffusion flame. The localization of acoustic sources from the multiple microphones was examined using the noise spectra. The results revealed that integration of multiple sensors in combustors

  3. An experimental and numerical study of diffusion flames in cross-flow and quiescent environment at smoke point condition

    Science.gov (United States)

    Goh, Sien Fong

    An experimental and numerical study of a turbulent smoke point diffusion flame in a quiescent and cross-flow condition was performed. The fuel mass flow rate of a turbulent smoke point flame was determined at a quiescent condition and in cross-flow with velocity ranging from 2 to 4 m/s. This fuel mass flow rate is defined as the Critical Fuel Mass Flow Rate (CFMFR). At a fuel mass flow rate below the CFMFR the flame produces smoke. In the dilution study, an amount of inert gas (nitrogen) was added to the fuel stream to achieve the smoke point condition for ten different fractions of CFMFR. From this dilution study, three regions were defined, the chemically-dominated region, transition region, and momentum-dominated region. The first objective of this study was to determine the factors behind the distinction of these three regions. The second objective was to understand the effect of cross-flow velocity on the smoke point flame structure. The flame temperature, radiation, geometrical dimension of flame, velocity, and global emissions and in-flame species concentration were measured. The third objective was to study a numerical model that can simulate the turbulent smoke point flame structure. The dilution study showed that the flames in quiescent condition and in the 3.5 and 4 m/s cross-flow condition had the chemically-dominated region at 5% to 20% CFMFR, the transition region at 20% to 40% CFMFR, and the momentum-dominated region at 40% to 100% CFMFR. On the other hand, the flame in cross-flow of 2 to 3 m/s showed the chemically-dominated region at 5% to 10% CFMFR, the transition region at 10% to 30% CFMFR, and the momentum-dominated region at 30% to 100% CFMFR. The chemically-dominated flame had a sharp dual-peak structure for the flame temperature, CO2 and NO concentration profiles at 25% and 50% flame length. However, the momentum-dominated region flame exhibited a dual peak structure only at 25% flame length. The decrease of flow rate from 30% to 10% CFMFR

  4. Aromatic ring formation in opposed-flow diffusive 1,3-butadiene flames

    KAUST Repository

    Moshammer, Kai

    2016-10-17

    This paper is concerned with the formation of one- and two-ring aromatic species in near atmospheric-pressure opposed-flow diffusion flames of 1,3-butadiene (1,3-CH). The chemical structures of two different 1,3-CH/Ar-O/Ar flames were explored using flame-sampling molecular-beam mass spectrometry with both electron and single-photon ionization. We provide mole fraction profiles of 47 components as function of distance from the fuel outlet and compare them to chemically detailed modeling results. To this end, the hierarchically developed model described by Seidel et al. [16] has been updated to accurately comprise the chemistry of 1,3-butadiene. Generally a very good agreement is observed between the experimental and modeling data, allowing for a meaningful reaction path analysis. With regard to the formation of aromatic species up to naphthalene, it was essential to improve the fulvene and the C chemistry description in the mechanism. In particular, benzene is found to be formed mainly via fulvene through the reactions of the CH isomers with CH The n-CH radical reacts with CH forming 1,3-pentadiene (CH), which is subsequently oxidized to form the naphthalene precursor cyclopentadienyl (CH). Oxidation of naphthalene is predicted to be a contributor to the formation of phenylacetylene (CH), indicating that consumption reactions can be of similar importance as molecular growth reactions.

  5. Multiple-diffusion flame synthesis of pure anatase and carbon-coated titanium dioxide nanoparticles

    KAUST Repository

    Memon, Nasir

    2013-09-01

    A multi-element diffusion flame burner (MEDB) is useful in the study of flame synthesis of nanomaterials. Here, the growth of pure anatase and carbon-coated titanium dioxide (TiO2) using an MEDB is demonstrated. Hydrogen (H2), oxygen (O2), and argon (Ar) are utilized to establish the flame, whereas titanium tetraisopropoxide is used as the precursor for TiO2. The nanoparticles are characterized using high-resolution transmission electron microscopy, with elemental mapping (of C, O, and Ti), X-ray diffraction, Raman spectroscopy, and thermogravimetric analysis. The growth of pure anatase TiO2 nanoparticles occurs when Ar and H2 are used as the precursor carrier gas, while the growth of carbon-coated nanoparticles ensues when Ar and ethylene (C2H4) are used as the precursor carrier gas. A uniform coating of 3-5nm of carbon is observed around TiO2 particles. The growth of highly crystalline TiO2 nanoparticles is dependent on the gas flow rate of the precursor carrier and amorphous particles are observed at high flow rates. Carbon coating occurs only on crystalline nanoparticles, suggesting a possible growth mechanism of carbon-coated TiO2 nanoparticles. © 2013 The Combustion Institute.

  6. Aromatic ring formation in opposed-flow diffusive 1,3-butadiene flames

    KAUST Repository

    Moshammer, Kai; Seidel, Lars; Wang, Yu; Selim, Hatem; Sarathy, Mani; Mauss, Fabian; Hansen, Nils

    2016-01-01

    This paper is concerned with the formation of one- and two-ring aromatic species in near atmospheric-pressure opposed-flow diffusion flames of 1,3-butadiene (1,3-CH). The chemical structures of two different 1,3-CH/Ar-O/Ar flames were explored using flame-sampling molecular-beam mass spectrometry with both electron and single-photon ionization. We provide mole fraction profiles of 47 components as function of distance from the fuel outlet and compare them to chemically detailed modeling results. To this end, the hierarchically developed model described by Seidel et al. [16] has been updated to accurately comprise the chemistry of 1,3-butadiene. Generally a very good agreement is observed between the experimental and modeling data, allowing for a meaningful reaction path analysis. With regard to the formation of aromatic species up to naphthalene, it was essential to improve the fulvene and the C chemistry description in the mechanism. In particular, benzene is found to be formed mainly via fulvene through the reactions of the CH isomers with CH The n-CH radical reacts with CH forming 1,3-pentadiene (CH), which is subsequently oxidized to form the naphthalene precursor cyclopentadienyl (CH). Oxidation of naphthalene is predicted to be a contributor to the formation of phenylacetylene (CH), indicating that consumption reactions can be of similar importance as molecular growth reactions.

  7. Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames

    KAUST Repository

    Choi, Byungchul

    2011-01-01

    The characteristics of polycyclic aromatic hydrocarbon (PAH) and soot for gasoline surrogate fuels have been investigated in counterflow diffusion flames by adopting laser-induced fluorescence (LIF) and laser-induced incandescence (LII) techniques for both soot formation and soot formation/oxidation flames. Tested fuels were three binary mixtures from the primary reference fuels of n-heptane, iso-octane, and toluene. The result showed that PAH and soot maintained near zero level for all mixtures of n-heptane/iso-octane case under present experimental conditions. For n-heptane/toluene and iso-octane/toluene mixtures, PAH initially increased and then decreased with the toluene ratio, exhibiting a synergistic effect. The soot formation increased monotonically with the toluene ratio, however the effect of toluene on soot formation was minimal for relatively small toluene ratios. These results implied that even though toluene had a dominant role in soot and PAH formations, small amount of toluene had a minimal effect on soot formation. Numerical simulations have also been conducted by adopting recently proposed two kinetic mechanisms. The synergistic behavior of aromatic rings was predicted similar to the experimental PAH measurement, however, the degree of the synergistic effect was over-predicted for the soot formation flame, indicating the need for refinements in the kinetic mechanisms. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  8. Pollutant emission and noise radiation from open and impinging inverse diffusion flames

    International Nuclear Information System (INIS)

    Choy, Y.S.; Zhen, H.S.; Leung, C.W.; Li, H.B.

    2012-01-01

    Highlights: ► The effect of burner geometry (d air and S) on inverse diffusion flames is studied. ► With fixed air/fuel supplies, a smaller d air curtails NO x emission but augments noise radiation. ► With fixed air/fuel supplies, a larger S reduces NO x emission but increases noise radiation. ► Both NO x emission and noise radiation are maximum under stoichiometric combustion. ► Impinging flames are nosier than corresponding open flames due to the mirror effect of the plate. -- Abstract: This paper reports an experimental investigation of the pollutant emission and noise radiation characteristics of both open and impinging inverse diffusion flames (IDFs), produced by five burners of different air port diameter (d air = 5, 6 and 6.84 mm) and air-to-fuel spacing (S = 8, 11.5 and 15 mm). The effects of d air , S, overall equivalence ratio φ and nozzle-to-plate spacing H on the pollutant emissions of CO and NO x and the noise radiation are examined. The results show that at fixed air flow rate, a smaller d air curtails NO x emission but augments noise radiation, indicative of a role played by turbulence, which tends to decrease pollutant emission and increase noise radiation. A larger S reduces NO x emission but increases noise radiation, indicating that different flame zones may be responsible for pollutant emission and noise radiation. When the IDF is under stoichiometric φ = 1.6, both the NO x emission and noise radiation are highest, as a result of maximum heat release rate. A comparison of EINO x for the open and impinging IDFs shows that the impinging IDFs emit more NO x probably due to the absence of NO reburning. The impinging IDFs have higher noise radiation than the corresponding open IDFs. A higher level of noise radiation from the impinging IDFs is observed as the target plate is brought closer to the burner.

  9. Charge-induced secondary atomization in diffusion flames of electrostatic sprays

    Science.gov (United States)

    Gomez, Alessandro; Chen, Gung

    1994-01-01

    The combustion of electrostatic sprays of heptane in laminar counterflow diffusion flames was experimentally studied by measuring droplet size and velocity distributions, as well as the gas-phase temperature. A detailed examination of the evolution of droplet size distribution as droplets approach the flame shows that, if substantial evaporation occurs before droplets interact with the flame, an initially monodisperse size distribution becomes bimodal. A secondary sharp peak in the size histogram develops in correspondence of diameters about one order of magnitude smaller than the mean. No evaporation mechanism can account for the development of such bimodality, that can be explained only in terms of a disintegration of droplets into finer fragments of size much smaller than that of the parent. Other evidence in support of this interpretation is offered by the measurements of droplet size-velocity correlation and velocity component distributions, showing that, as a consequence of the ejection process, the droplets responsible for the secondary peak have velocities uncorrelated with the mean flow. The fission is induced by the electric charge. When a droplet evaporates, in fact, the electric charge density on the droplet surface increases while the droplet shrinks, until the so-called Rayleigh limit is reached at which point the repulsion of electric charges overcomes the surface tension cohesive force, ultimately leading to a disintegraton into finer fragments. We report on the first observation of such fissions in combustion environments. If, on the other hand, insufficient evaporation has occurred before droplets enter the high temperature region, there appears to be no significant evidence of bimodality in their size distribution. In this case, in fact, the concentration of flame chemi-ions or, in the case of positively charged droplets, electrons may be sufficient for them to neutralize the charge on the droplets and to prevent disruption.

  10. An assessment of radiation modeling strategies in simulations of laminar to transitional, oxy-methane, diffusion flames

    International Nuclear Information System (INIS)

    Abdul-Sater, Hassan; Krishnamoorthy, Gautham

    2013-01-01

    Twenty four, laboratory scale, laminar to transitional, diffusion oxy-methane flames were simulated employing different radiation modeling options and their predictions compared against experimental measurements of: temperature, flame length and radiant fraction. The models employed were: gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model, non-adiabatic extension of the equilibrium based mixture fraction model and investigations into the effects of: the thermal boundary conditions, soot and turbulence radiation interactions (TRI). Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. Flame lengths determined through the axial profiles of OH confirmed with the experimental trends by increasing with increase in fuel-inlet Reynolds numbers and decreasing with the increase in O 2 composition in oxidizer. The temperature and flame length predictions were not sensitive to the radiative property model employed. There were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The inclusion of soot model and TRI model did not affect our predictions as a result of low soot volume fractions and the radiation emission enhancement to the temperature fluctuations being localized to the flame sheet. -- Highlights: • Twenty four, lab scale, laminar to transitional, diffusion, oxy-methane flames were simulated. • Equilibrium model adequately predicted the temperature and flame lengths. • The experimental trends in radiant fractions were replicated. • Gray and non-gray model differences in radiant fractions were amplified at low Re. • Inclusion of soot and TRI models did not affect our predictions

  11. Effect of pointed and diffused air injection on premixed flame confined in a Rijke tube

    Directory of Open Access Journals (Sweden)

    Nilaj N. Deshmukh

    2016-12-01

    Full Text Available The coupling between pressure fluctuations and unsteady heat release in a combustion systems results in acoustic oscillations inside the combustion system. These acoustic oscillations, when grow sufficiently, may cause serious structural damage thereby reducing the lifespan of jet engines, gas turbines, and industrial burners. The aim of the first part of study is to define acoustically stable and unstable regions. The second part is focused on studying the effect of change in pressure field near the flame on the amplitude and frequency of the oscillations of instability. This study is carried out for three-burner positions and equivalence ratio of 0.7 by varying heat supply and total flow rate. The results show two acoustically unstable regions for 0.1 and 0.2 burner positions and only one acoustically unstable region for 0.25 burner position. The effect of pointed injection and diffused injection over a premixed flame on the sound pressure level was studied. The results show for burner position of x/L = 0.2 there is 25 dB suppression is possible using pointed injection at higher total flow rate. The experiment of diffused injection shows sound amplification more than 12 dB was observed.

  12. Simulation of Electron and Ion Transport in Methane-Air Counterflow Diffusion Flames

    Science.gov (United States)

    Choi, Sangkyu; Bisetti, Fabrizio; Chung, Suk Ho

    2010-11-01

    The spatial distribution of charged species in a methane-air counterflow diffusion flame is simulated with a detailed ion chemistry. The electric field induced by the distribution of charged species is calculated and compared to that obtained invoking the ambipolar diffusion assumption. The two calculations showed identical profiles for charged species and electric field. The profiles of ion mole fractions show two peaks: one near the maximum temperature and a second peak on the oxidizer side. The major ions near the maximum temperature are electron, C2H3O+ and H3O+. CHO3- and H3O+ contribute to the second peak. These profiles are quite different from those adopting a simplified three-step mechanism based solely on E-, CHO+ and H3O+, which shows only a single peak. Reaction pathway analyses showed that near the flame region, the proton is transferred by the path of CHO+ -> H3O+ -> C2H3O+ -> CHO+ in a circulating manner. In the second peak, CHO3- is produced though the pathway of E- -> O- -> OH- -> CHO3-. The sensitivity of the charged species profiles to transport properties is investigated, and it is found that the variation of charged species profiles near peak temperature is relatively small, while on the oxidizer side, it is quite sensitive to transport properties.

  13. Fuel density effect on near nozzle flow field in small laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2015-01-01

    Flow characteristics in small coflow diffusion flames were investigated with a particular focus on the near-nozzle region and on the buoyancy force exerted on fuels with densities lighter and heavier than air (methane, ethylene, propane, and n-butane). The flow-fields were visualized through the trajectories of seed particles. The particle image velocimetry technique was also adopted for quantitative velocity field measurements. The results showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle, emphasizing the importance of the relative density of the fuel to that of the air on the flow-field. Nozzle heating influenced the near-nozzle flow-field particularly among lighter fuels (methane and ethylene). Numerical simulations were also conducted, focusing specifically on the effect of specifying inlet boundary conditions for fuel. The results showed that a fuel inlet boundary with a fully developed velocity profile for cases with long tubes should be specified inside the fuel tube to permit satisfactory prediction of the flow-field. The calculated temperature fields also indicated the importance of the selection of the location of the inlet boundary, especially in testing various combustion models that include soot in small coflow diffusion flames. © 2014 The Combustion Institute.

  14. Physical and chemical comparison of soot in hydrocarbon and biodiesel fuel diffusion flames: A study of model and commercial fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matti Maricq, M. [Research and Advanced Engineering, Ford Motor Company, Dearborn, MI (United States)

    2011-01-15

    Data are presented to compare soot formation in both surrogate and practical fatty acid methyl ester biodiesel and petroleum fuel diffusion flames. The approach here uses differential mobility analysis to follow the size distributions and electrical charge of soot particles as they evolve in the flame, and laser ablation particle mass spectrometry to elucidate their composition. Qualitatively, these soot properties exhibit a remarkably similar development along the flames. The size distributions begin as a single mode of precursor nanoparticles, evolve through a bimodal phase marking the onset of aggregate formation, and end in a self preserving mode of fractal-like particles. Both biodiesel and hydrocarbon fuels yield a common soot composition dominated by C{sub x}H{sub y}{sup +} ions, stabilomer PAHs, and fullerenes in the positive ion mass spectrum, and C{sub x}{sup -} and C{sub 2x}H{sup -} in the negative ion spectrum. These ion intensities initially grow with height in the diffusion flames, but then decline during later stages, consistent with soot carbonization. There are important quantitative differences between fuels. The surrogate biodiesel fuel methyl butanoate substantially reduces soot levels, but soot formation and evolution in this flame are delayed relative to both soy and petroleum fuels. In contrast, soots from soy and hexadecane flames exhibit nearly quantitative agreement in their size distribution and composition profiles with height, suggesting similar soot precursor chemistry. (author)

  15. Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames

    KAUST Repository

    Bisetti, Fabrizio

    2012-12-01

    Simulations of ion and electron transport in flames routinely adopt plasma fluid models, which require transport coefficients to compute the mass flux of charged species. In this work, the mobility and diffusion coefficient of thermal electrons in atmospheric premixed methane/air flames are calculated and analyzed. The electron mobility is highest in the unburnt region, decreasing more than threefold across the flame due to mixture composition effects related to the presence of water vapor. Mobility is found to be largely independent of equivalence ratio and approximately equal to 0.4m 2V -1s -1 in the reaction zone and burnt region. The methodology and results presented enable accurate and computationally inexpensive calculations of transport properties of thermal electrons for use in numerical simulations of charged species transport in flames. © 2012 The Combustion Institute.

  16. Experimental Characterization of Soot Formation in Diffusion Flames and Explosive Fireballs

    Science.gov (United States)

    2012-04-01

    profiles for the opposed jet burner using Unicorn and Chemkin Pro, ethylene/air flame, Wang-Colket mechanism. .............................33 Figure...35 Figure 31. Flame simulations using UNICORN (Katta et al...two-dimensional (2-D) flame simulation computer code UNICORN (Katta et al., 2006) with those obtained using the one- dimensional (1-D) flame

  17. Numerical modeling of soot formation in a turbulent C2H4/air diffusion flame

    Directory of Open Access Journals (Sweden)

    Manedhar Reddy Busupally

    2016-06-01

    Full Text Available Soot formation in a lifted C2H4-Air turbulent diffusion flame is studied using two different paths for soot nucleation and oxidation; by a 2D axisymmetric RANS simulation using ANSYS FLUENT 15.0. The turbulence-chemistry interactions are modeled using two different approaches: steady laminar flamelet approach and flamelet-generated manifold. Chemical mechanism is represented by POLIMI to study the effect of species concentration on soot formation. P1 approximation is employed to approximate the radiative transfer equation into truncated series expansion in spherical harmonics while the weighted sum of gray gases is invoked to model the absorption coefficient while the soot model accounts for nucleation, coagulation, surface growth, and oxidation. The first route for nucleation considers acetylene concentration as a linear function of soot nucleation rate, whereas the second route considers two and three ring aromatic species as function of nucleation rate. Equilibrium-based and instantaneous approach has been used to estimate the OH concentration for soot oxidation. Lee and Fenimore-Jones soot oxidation models are studied to shed light on the effect of OH on soot oxidation. Moreover, the soot-radiation interactions are also included in terms of absorption coefficient of soot. Furthermore, the soot-turbulence interactions have been invoked using a temperature/mixture fraction-based single variable PDF. Both the turbulence-chemistry interaction models are able to accurately predict the flame liftoff height, and for accurate prediction of flame length, radiative heat loss should be accounted in an accurate way. The soot-turbulence interactions are found sensitive to the PDF used in present study.

  18. Strain rate effect on sooting characteristics in laminar counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2016-01-20

    The effects of strain rate, oxygen enrichment and fuel type on the sooting characteristics of counterflow diffusion flames were studied. The sooting structures and relative PAH concentrations were measured with laser diagnostics. Detailed soot modeling using recently developed PAH chemistry and surface reaction mechanism was performed and the results were compared with experimental data for ethylene flames, focusing on the effects of strain rates. The results showed that increase in strain rate reduced soot volume fraction, average size and peak number density. Increase in oxygen mole fraction increased soot loading and decreased its sensitivity on strain rate. The soot volume fractions of ethane, propene and propane flames were also measured as a function of global strain rate. The sensitivity of soot volume fraction to strain rate was observed to be fuel dependent at a fixed oxygen mole fraction, with the sensitivity being higher for more sooting fuels. However, when the soot loadings were matched at a reference strain rate for different fuels by adjusting oxygen mole fraction, the dependence of soot loading on strain rate became comparable among the tested fuels. PAH concentrations were shown to decrease with increase in strain rate and the dependence on strain rate is more pronounced for larger PAHs. Soot modeling was performed using detailed PAH growth chemistry with molecular growth up to coronene. A qualitative agreement was obtained between experimental and simulation results, which was then used to explain the experimentally observed strain rate effect on soot growth. However, quantitatively, the simulation result exhibits higher sensitivity to strain rate, especially for large PAHs and soot volume fractions.

  19. Formation of Soot in Counterflow Diffusion Flames with Carbon Dioxide Dilution

    KAUST Repository

    Wang, Yu

    2016-05-04

    Experimental and numerical modeling studies have been performed to investigate the effect of CO2 dilution on soot formation in ethylene counterflow diffusion flames. Thermal and chemical effects of CO2 addition on soot growth was numerically identified by using a fictitious CO2 species, which was treated as inert in terms of chemical reactions. The results showed that CO2 addition reduces soot formation both thermodynamically and chemically. In terms of chemical effect, the addition of CO2 decreases soot formation through various pathways, including: (1) reduced soot precursor (PAH) formation leading to lower inception rates and soot number density, which in turn results in lower surface area for soot mass addition; (2) reduced H, CH3, and C3H3 concentrations causing lower H abstraction rate and therefore less active site per surface area for soot growth; and (3) reduced C2H2 mole fraction and thus a slower C2H2 mass addition rate. In addition, the sooting limits were also measured for ethylene counterflow flames in both N2 and CO2 atmosphere and the results showed that sooting region was significantly reduced in the CO2 case compared to the N2 case. © 2016 Taylor & Francis.

  20. Experimental and detailed kinetic modeling study of PAH formation in laminar co-flow methane diffusion flames

    DEFF Research Database (Denmark)

    Cuoci, Alberto; Frassoldati, Alessio; Faravelli, Tiziano

    2013-01-01

    In the present paper, synchrotron VUV photoionization mass spectrometry is used to study the detailed chemistry of co-flow methane diffusion flames with different dilution ratios. The experimental results constitute a comprehensive characterization of species important for PAH and soot formation...

  1. Investigation of mass and energy coupling between soot particles and gas species in modelling ethylene counterflow diffusion flames

    NARCIS (Netherlands)

    Zimmer, L.; Pereira, F.M.; van Oijen, J.A.; de Goey, L.P.H.

    2017-01-01

    A numerical model is developed aiming at investigating soot formation in ethylene counterflow diffusion flames. The mass and energy coupling between soot solid particles and gas-phase species is investigated in detail. A semi-empirical two-equation model is chosen for predicting soot mass fraction

  2. Heat, mass, and momentum transport model for hydrogen diffusion flames in nuclear reactor containments

    International Nuclear Information System (INIS)

    Travis, J.R.

    1985-01-01

    It is now possible to analyze the time-dependent, fully three-dimensional behavior of hydrogen diffusion flames in nuclear reactor containments. This analysis involves coupling the full Navier-Stokes equations with multi-species transport to the global chemical kinetics of hydrogen combustion. A transport equation for the subgrid scale turbulent kinetic energy density is solved to produce the time and space dependent turbulent transport coefficients. The heat transfer coefficient governing the exchange of heat between fluid computational cells adjacent to wall cells is calculated by a modified Reynolds analogy formulation. The analysis of a MARK-III containment indicates very complex flow patterns that greatly influence fluid and wall temperatures and heat fluxes. 18 refs., 24 figs

  3. Investigation of buoyancy effects on turbulent nonpremixed jet flames by using normal and low-gravity conditions

    Science.gov (United States)

    Idicheria, Cherian Alex

    An experimental study was performed with the aim of investigating the structure of transitional and turbulent nonpremixed jet flames under different gravity conditions. In particular, the focus was to determine the effect of buoyancy on the mean and fluctuating characteristics of the jet flames. Experiments were conducted under three gravity levels, viz. 1 g, 20 mg and 100 mug. The milligravity and microgravity conditions were achieved by dropping a jet-flame rig in the UT-Austin 1.25-second and the NASA-Glenn Research Center 2.2-second drop towers, respectively. The principal diagnostics employed were time-resolved, cinematographic imaging of the visible soot luminosity and planar laser Mie scattering (PLMS). For the cinematographic flame luminosity imaging experiments, the flames studied were piloted nonpremixed propane, ethylene and methane jet flames at source Reynolds numbers ranging from 2000 to 10500. From the soot luminosity images, mean and root-mean square (RMS) images were computed, and volume rendering of the image sequences was used to investigate the large-scale structure evolution and flame tip dynamics. The relative importance of buoyancy was quantified with the parameter, xL , as defined by Becker and Yamazaki [1978]. The results show, in contrast to previous microgravity studies, that the high Reynolds number flames have the same flame length irrespective of the gravity level. The RMS fluctuations and volume renderings indicate that the large-scale structure and flame tip dynamics are essentially identical to those of purely momentum driven flames provided xL is approximately less than 2. The volume-renderings show that the luminous structure celerities (normalized by jet exit velocity) are approximately constant for xL 8. The celerity values for xL > 8 are seen to follow a x3/2L scaling, which can be predicted with a simplified momentum equation analysis for the buoyancy-dominated regime. The underlying turbulent structure and mean mixture

  4. Effects of pressure and fuel dilution on coflow laminar methane-air diffusion flames: A computational and experimental study

    Science.gov (United States)

    Cao, Su; Ma, Bin; Giassi, Davide; Bennett, Beth Anne V.; Long, Marshall B.; Smooke, Mitchell D.

    2018-03-01

    In this study, the influence of pressure and fuel dilution on the structure and geometry of coflow laminar methane-air diffusion flames is examined. A series of methane-fuelled, nitrogen-diluted flames has been investigated both computationally and experimentally, with pressure ranging from 1.0 to 2.7 atm and CH4 mole fraction ranging from 0.50 to 0.65. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modelled by sectional aerosol equations. The governing equations and boundary conditions were discretised on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, chemiluminescence measurements of CH* were taken to determine its relative concentration profile and the structure of the flame front. A thin-filament ratio pyrometry method using a colour digital camera was employed to determine the temperature profiles of the non-sooty, atmospheric pressure flames, while soot volume fraction was quantified, after evaluation of soot temperature, through an absolute light calibration using a thermocouple. For a broad spectrum of flames in atmospheric and elevated pressures, the computed and measured flame quantities were examined to characterise the influence of pressure and fuel dilution, and the major conclusions were as follows: (1) maximum temperature increases with increasing pressure or CH4 concentration; (2) lift-off height decreases significantly with increasing pressure, modified flame length is roughly independent of pressure, and flame radius decreases with pressure approximately as P-1/2; and (3) pressure and fuel stream dilution significantly affect the spatial distribution and the peak value of the soot volume fraction.

  5. A computational study of soot formation in opposed-flow diffusion flame interacting with vortices

    KAUST Repository

    Selvaraj, Prabhu; Im, Hong G.

    2017-01-01

    ethylene-air flame is simulated. A reduced mechanism with PAH pathways that includes until coronene and method of moments with interpolative closure (MOMIC) has been employed to calculate the soot characteristics. Interaction of sooting flame with a

  6. A comparison of the thermal, emission and heat transfer characteristics of swirl-stabilized premixed and inverse diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Zhen, H.S.; Leung, C.W.; Cheung, C.S. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong (China)

    2011-02-15

    Two swirl-stabilized flames, a premixed flame (PMF-s) and an inverse diffusion flame (IDF-s), were investigated experimentally in order to obtain information on their thermal, emission and heat transfer characteristics. The two flames, having different global air/fuel mixing mechanisms, were compared under identical air and fuel flow rates. Results showed that the two flames have similar visual features such as flame shape, size and structure because the Reynolds number and the swirl number which are important parameters representative of the aerodynamic characteristics of a swirling jet flow, are almost the same for the two flames. The minor dissimilarity in flame color and flame length indicates that the IDF-s is more diffusional. Both the PMF-s and IDF-s are stabilized by the internal recirculation zone (IRZ) and the IDF-s is more stable. Flame temperature is uniformly distributed in the IRZ due to the strong mixing caused by flow recirculation. The highest flame temperature is achieved at the main reaction zone and it is higher for the PMF-s due to more rapid and localized heat release. For the IDF-s, the thermal NO mechanism dominates the NO{sub x} formation. For the PMF-s, both the thermal and prompt mechanisms tend to play important roles in the global NO{sub x} emission under rich conditions. The comparison of EINO{sub x} and EICO shows that the PMF-s has lower level of NO{sub x} emission under lean combustion and lower level of CO emission under all conditions. The reason is that the air/fuel premixing in the PMF-s significantly enhances the mixedness of the supplied air/fuel mixture. The analysis of the behaviors of the impinging PMF-s and IDF-s heat transfer reveals that because the PMF-s has more rapid and localized heat release at the main reaction zone, the peak heat flux is higher than that of the IDF-s and the IDF-s has more uniform heating effect. A comparison of the overall heat transfer rates shows that, due to more complete combustion, the PMF

  7. A comparison of the thermal, emission and heat transfer characteristics of swirl-stabilized premixed and inverse diffusion flames

    International Nuclear Information System (INIS)

    Zhen, H.S.; Leung, C.W.; Cheung, C.S.

    2011-01-01

    Two swirl-stabilized flames, a premixed flame (PMF-s) and an inverse diffusion flame (IDF-s), were investigated experimentally in order to obtain information on their thermal, emission and heat transfer characteristics. The two flames, having different global air/fuel mixing mechanisms, were compared under identical air and fuel flow rates. Results showed that the two flames have similar visual features such as flame shape, size and structure because the Reynolds number and the swirl number which are important parameters representative of the aerodynamic characteristics of a swirling jet flow, are almost the same for the two flames. The minor dissimilarity in flame color and flame length indicates that the IDF-s is more diffusional. Both the PMF-s and IDF-s are stabilized by the internal recirculation zone (IRZ) and the IDF-s is more stable. Flame temperature is uniformly distributed in the IRZ due to the strong mixing caused by flow recirculation. The highest flame temperature is achieved at the main reaction zone and it is higher for the PMF-s due to more rapid and localized heat release. For the IDF-s, the thermal NO mechanism dominates the NO x formation. For the PMF-s, both the thermal and prompt mechanisms tend to play important roles in the global NO x emission under rich conditions. The comparison of EINO x and EICO shows that the PMF-s has lower level of NO x emission under lean combustion and lower level of CO emission under all conditions. The reason is that the air/fuel premixing in the PMF-s significantly enhances the mixedness of the supplied air/fuel mixture. The analysis of the behaviors of the impinging PMF-s and IDF-s heat transfer reveals that because the PMF-s has more rapid and localized heat release at the main reaction zone, the peak heat flux is higher than that of the IDF-s and the IDF-s has more uniform heating effect. A comparison of the overall heat transfer rates shows that, due to more complete combustion, the PMF-s has higher overall

  8. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels

    KAUST Repository

    Park, Sungwoo

    2017-02-05

    Gasoline surrogate fuels are widely used to understand the fundamental combustion properties of complex refinery gasoline fuels. In this study, the compositional effects on polycyclic aromatic hydrocarbons (PAHs) and soot formation were investigated experimentally for gasoline surrogate mixtures comprising n-heptane, iso-octane, and toluene in counterflow diffusion flames. A comprehensive kinetic model for the gasoline surrogate mixtures was developed to accurately predict the fuel oxidation along with the formation of PAHs and soot in flames. This combined model was first tested against ignition delay times and laminar burning velocities data. The proposed model for the formation and growth of PAHs up to coronene (C24H12) was based on previous studies and was tested against existing and present new experimental data. Additionally, in the accompanied soot model, PAHs with sizes larger than (including) pyrene were used for the inception of soot particles, followed by particle coagulations and PAH condensation/chemical reactions on soot surfaces. The major pathways for the formation of PAHs were also identified for the surrogate mixtures. The model accurately captures the synergistic PAH formation characteristics observed experimentally for n-heptane/toluene and iso-octane/toluene binary mixtures. Furthermore, the present experimental and modeling results also elucidated different trends in the formation of larger PAHs and soot between binary n-heptane/iso-octane and ternary n-heptane/iso-octane/toluene mixtures. Propargyl radicals (C3H3) were shown to be important in the formation and growth of PAHs for n-heptane/iso-octane mixtures when the iso-octane concentration increased; however, reactions involving benzyl radicals (C6H5CH2) played a significant role in the formation of PAHs for n-heptane/iso-octane/toluene mixtures. These results indicated that the formation of PAHs and subsequently soot was strongly affected by the composition of gasoline surrogate mixtures.

  9. Compositional effects on PAH and soot formation in counterflow diffusion flames of gasoline surrogate fuels

    KAUST Repository

    Park, Sungwoo; Wang, Yu; Chung, Suk-Ho; Sarathy, Mani

    2017-01-01

    Gasoline surrogate fuels are widely used to understand the fundamental combustion properties of complex refinery gasoline fuels. In this study, the compositional effects on polycyclic aromatic hydrocarbons (PAHs) and soot formation were investigated experimentally for gasoline surrogate mixtures comprising n-heptane, iso-octane, and toluene in counterflow diffusion flames. A comprehensive kinetic model for the gasoline surrogate mixtures was developed to accurately predict the fuel oxidation along with the formation of PAHs and soot in flames. This combined model was first tested against ignition delay times and laminar burning velocities data. The proposed model for the formation and growth of PAHs up to coronene (C24H12) was based on previous studies and was tested against existing and present new experimental data. Additionally, in the accompanied soot model, PAHs with sizes larger than (including) pyrene were used for the inception of soot particles, followed by particle coagulations and PAH condensation/chemical reactions on soot surfaces. The major pathways for the formation of PAHs were also identified for the surrogate mixtures. The model accurately captures the synergistic PAH formation characteristics observed experimentally for n-heptane/toluene and iso-octane/toluene binary mixtures. Furthermore, the present experimental and modeling results also elucidated different trends in the formation of larger PAHs and soot between binary n-heptane/iso-octane and ternary n-heptane/iso-octane/toluene mixtures. Propargyl radicals (C3H3) were shown to be important in the formation and growth of PAHs for n-heptane/iso-octane mixtures when the iso-octane concentration increased; however, reactions involving benzyl radicals (C6H5CH2) played a significant role in the formation of PAHs for n-heptane/iso-octane/toluene mixtures. These results indicated that the formation of PAHs and subsequently soot was strongly affected by the composition of gasoline surrogate mixtures.

  10. Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels

    KAUST Repository

    Wang, Yu

    2015-03-01

    A soot model was developed based on the recently proposed PAH growth mechanism for C1-C4 gaseous fuels (KAUST PAH Mechanism 2, KM2) that included molecular growth up to coronene (A7) to simulate soot formation in counterflow diffusion flames of ethylene and its binary mixtures with methane, ethane and propane based on the method of moments. The soot model has 36 soot nucleation reactions from 8 PAH molecules including pyrene and larger PAHs. Soot surface growth reactions were based on a modified hydrogen-abstraction-acetylene-addition (HACA) mechanism in which CH3, C3H3 and C2H radicals were included in the hydrogen abstraction reactions in addition to H atoms. PAH condensation on soot particles was also considered. The experimentally measured profiles of soot volume fraction, number density, and particle size were well captured by the model for the baseline case of ethylene along with the cases involving mixtures of fuels. The simulation results, which were in qualitative agreement with the experimental data in the effects of binary fuel mixing on the sooting structures of the measured flames, showed in particular that 5% addition of propane (ethane) led to an increase in the soot volume fraction of the ethylene flame by 32% (6%), despite the fact that propane and ethane are less sooting fuels than is ethylene, which is in reasonable agreement with experiments of 37% (14%). The model revealed that with 5% addition of methane, there was an increase of 6% in the soot volume fraction. The average soot particle sizes were only minimally influenced while the soot number densities were increased by the fuel mixing. Further analysis of the numerical data indicated that the chemical cross-linking effect between ethylene and the dopant fuels resulted in an increase in PAH formation, which led to higher soot nucleation rates and therefore higher soot number densities. On the other hand, the rates of soot surface growth per unit surface area through the HACA mechanism were

  11. CFD studies of soot production in a coflow laminar diffusion flame under conditions of micro-gravity in fire safety

    Directory of Open Access Journals (Sweden)

    Arnaud Mbainguebem

    2017-07-01

    Full Text Available This work which is in the fire safety framework is focused on a numerical study of the production of soot in a laminar diffusion flame, under different conditions of micro-gravity in unsteady regime. It is intended to evaluate the temperature and rate at which the production of soot is predominant, to quantify their concentrations and volume fraction in dispersion. It has been accomplished by modification of the ReactingFOAM application source code of the OpenFOAM-2.3.0 by introducing for the first time, the equations of concentration transport and of volume fractions of soot. The results of the different values of gravity obtained are compared with the normal value of gravity and we ascertain that the results obtained were satisfactory and show the ability of the code to predict the speed and temperature of the formation of soot, their concentrations and their volume fractions. The maximum peak of the volume fraction varies from 7 × 10−8 to 4.5 × 10−6. The maximum temperature, which was 2423 K before changing the code, is about 2410 K after implementation of our modifications due to the taking into account of the numerical model.

  12. Effects of diluents on soot surface temperature and volume fraction in diluted ethylene diffusion flames at pressure

    KAUST Repository

    Kailasanathan, Ranjith Kumar Abhinavam

    2014-05-20

    Soot surface temperature and volume fraction are measured in ethylene/air coflowing laminar diffusion flames at high pressures, diluted with one of four diluents (argon, helium, nitrogen, and carbon dioxide) using a two-color technique. Both temperature and soot measurements presented are line-of-sight averages. The results aid in understanding the kinetic and thermodynamic behavior of the soot formation and oxidation chemistry with changes in diluents, ultimately leading to possible methods of reducing soot emission from practical combustion hardware. The diluted fuel and coflow exit velocities (top-hat profiles) were matched at all pressures to minimize shear effects. In addition to the velocity-matched flow rates, the mass fluxes were held constant for all pressures. Addition of a diluent has a pronounced effect on both the soot surface temperature and volume fraction, with the helium diluted flame yielding the maximum and carbon dioxide diluted flame yielding minimum soot surface temperature and volume fraction. At low pressures, peak soot volume fraction exists at the tip of the flame, and with an increase in pressure, the location shifts lower to the wings of the flame. Due to the very high diffusivity of helium, significantly higher temperature and volume fraction are measured and explained. Carbon dioxide has the most dramatic soot suppression effect. By comparing the soot yield with previously measured soot precursor concentrations in the same flame, it is clear that the lower soot yield is a result of enhanced oxidation rates rather than a reduction in precursor formation. Copyright © 2014 Taylor & Francis Group, LLC.

  13. Effects of organophosphorus flame retardant TDCPP on normal human corneal epithelial cells: Implications for human health.

    Science.gov (United States)

    Xiang, Ping; Liu, Rong-Yan; Li, Chao; Gao, Peng; Cui, Xin-Yi; Ma, Lena Q

    2017-11-01

    Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is one of the most detected organophosphorus flame retardants (OPFRs) in the environment, especially in indoor dust. Continuous daily exposure to TDCPP-containing dust may adversely impact human cornea. However, its detrimental effects on human corneal epithelium are largely unknown. In this study, we investigated the cell apoptosis in normal human corneal epithelial cells (HCECs) after TDCPP exposure and elucidated the underlying molecular mechanisms. Our data indicated a dose-dependent decrease of cell viability after TDCPP exposure with LC 50 at 202 μg/mL. A concentration-dependent apoptotic sign was observed in HCECs after exposing to ≥2 μg/mL TDCPP. Endoplasmic reticulum stress induction was evidenced by up-regulation of its biomarker genes (ATF-4, CHOP, BiP, and XBP1). Furthermore, alternation of Bcl-2/Bax expression, mitochondrial membrane potential loss, cellular ATP content decrease, and caspase-3 and -9 activity increase were observed after exposing to 2 or 20 μg/mL TDCPP. Taken together, the data implicated the involvement of endoplasmic reticulum stress in TDCPP-induced HCEC apoptosis, probably mediated by mitochondrial apoptotic pathway. Our findings showed TDCPP exposure induced toxicity to human cornea. Due to TDCPP's presence at high levels in indoor dust, further study is warranted to evaluate its health risk on human corneas. Published by Elsevier Ltd.

  14. Diffusion-weighted imaging in normal fetal brain maturation

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J.F. [University Children' s Hospital UKBB, Department of Pediatric Radiology, Basel (Switzerland); Confort-Gouny, S.; Le Fur, Y.; Viout, P.; Cozzone, P. [UMR-CNRS 6612, Faculte de Medecine, Universite de la Mediterranee, Centre de Resonance Magnetique Biologique et Medicale, Marseille (France); Bennathan, M.; Chapon, F.; Fogliarini, C.; Girard, N. [Universite de la Mediterranee, Department of Neuroradiology AP-HM Timone, Marseille (France)

    2007-09-15

    Diffusion-weighted imaging (DWI) provides information about tissue maturation not seen on conventional magnetic resonance imaging. The aim of this study is to analyze the evolution over time of the apparent diffusion coefficient (ADC) of normal fetal brain in utero. DWI was performed on 78 fetuses, ranging from 23 to 37 gestational weeks (GW). All children showed at follow-up a normal neurological evaluation. ADC values were obtained in the deep white matter (DWM) of the centrum semiovale, the frontal, parietal, occipital and temporal lobe, in the cerebellar hemisphere, the brainstem, the basal ganglia (BG) and the thalamus. Mean ADC values in supratentorial DWM areas (1.68 {+-} 0.05 mm{sup 2}/s) were higher compared with the cerebellar hemisphere (1.25 {+-} 0.06 mm{sup 2}/s) and lowest in the pons (1.11 {+-} 0.05 mm{sup 2}/s). Thalamus and BG showed intermediate values (1.25 {+-} 0.04 mm{sup 2}/s). Brainstem, cerebellar hemisphere and thalamus showed a linear negative correlation with gestational age. Supratentorial areas revealed an increase in ADC values, followed by a decrease after the 30th GW. This study provides a normative data set that allows insights in the normal fetal brain maturation in utero, which has not yet been observed in previous studies on premature babies. (orig.)

  15. Characteristics of combustion flame sprayed nickel aluminum using a Coanda Assisted Spray Manipulation collar for off-normal deposits

    Science.gov (United States)

    Archibald, Reid S.

    A novel flame spray collar called the Coanda Assisted Spray Manipulation collar (CSM) has been tested for use on the Sulzer Metco 5P II combustion flame spray gun. A comparison study of the stock nozzle and the CSM has been performed by evaluating the porosity, surface roughness, microhardness, tensile strength and microscopy of normal and off-normal sprayed NiAl deposits. The use of the CSM collar resulted in the need to position the sprayed coupons closer to the gun, which in turn affected the particle impact energy and particle temperatures of the NiAl powder. For the CSM, porosities had a larger scatterband, surface roughness was comparably the same, microhardness was lower, and tensile strength was higher. The microscopy analysis revealed a greater presence of unmelted particles and steeper intersplat boundaries for the CSM. For both processes, the porosity and surface roughness increased and the microhardness decreased as the spray angle decreased.

  16. Study of apparent diffusion coefficient value in the normal breastq

    International Nuclear Information System (INIS)

    Cai Shifeng

    2007-01-01

    Objective: To investigate the differences of apparent diffusion coefficient (ADC) value in normal breasts and to evaluate the correlation between ADC value and corresponding histology. Methods: Sixty-two normal breasts including 42 normal breasts of 42 patients with unilateral lesions and 20 normal breasts of 10 volunteers were studied. The ADC value of all 62 normal breasts were calculated when b value was given from 1000 to 0 s/mm 2 , 1000 to 500 s/mm 2 and 500 to 0 s/mm 2 . The MRI features of 60 normal breasts were classified into 3 types (dense, lobular-speckled, degenerative types) according to Wolf's classification and histology. Results: DWI and ADC images were different in 3 types of normal breasts because of different histologic structures. The mean ADC value of the dense type breasts was (1.70 ± 0.37) x 10 -3 mm 2 /s, the lobular-speckled type was (1.93 ± 0.46) x 10 -3 mm 2 /s and the degenerative type was (1.18 ± 0.65) x 10 -3 mm 2 /s (F=12.998, P=0.000). There were no significant differences between the dense type and the lobular-speckled type (F=2.167, P=0.147), but significant differences between the dense type and the degenerative type, the lobular-speckled type and the degenerate type (F=5.593 and 19.128; P=0.029 and 0.000). When b value decreased, the ADC value of the dense type and the lobular-speckled type increased correspondingly, but the degenerative type didn't increase apparently. Conclusion: ADC value was influenced by histologic structures in normal breasts and also was influenced by b value in the dense type and lobular-speckled type breasts. (authors)

  17. Effect of strain rate on sooting limits in counterflow diffusion flames of gaseous hydrocarbon fuels: Sooting temperature index and sooting sensitivity index

    KAUST Repository

    Wang, Yu

    2014-05-01

    The effect of the strain rate on the sooting limits in counterflow diffusion flames was investigated in various gaseous hydrocarbon fuels by varying the nitrogen dilution in the fuel and oxidizer streams. The sooting limit was defined as the critical fuel and oxygen mole fraction at which soot started to appear in the elastic light scattering signal. The sooting region for normal alkane fuels at a specified strain rate, in terms of the fuel and oxygen mole fraction, expanded as the number of carbon atoms increased. The alkene fuels (ethylene, propene) tested had a higher propensity for sooting as compared with alkane fuels with the same carbon numbers (ethane, propane). Branched iso-butane had a higher propensity for sooting than did n-butane. An increase in the strain rate reduced the tendency for sooting in all the fuels tested. The sensitivity of the sooting limit to the strain rate was more pronounced for less sooting fuels. When plotted in terms of calculated flame temperature, the critical oxygen mole fraction exhibited an Arrhenius form under sooting limit conditions, which can be utilized to significantly reduce the effort required to determine sooting limits at different strain rates. We found that the limiting temperatures of soot formation flames are viable sooting metrics for quantitatively rating the sooting tendency of various fuels, based on comparisons with threshold soot index and normalized smoke point data. We also introduce a sooting temperature index and a sooting sensitivity index, two quantitative measures to describe sooting propensity and its dependence on strain rate. © 2013 The Combustion Institute.

  18. A computational study of soot formation in opposed-flow diffusion flame interacting with vortices

    KAUST Repository

    Selvaraj, Prabhu

    2017-01-05

    The flame-vortex interaction enables the study of basic phenomena that control the coupling between combustion and turbulence. Employing a gas phase reaction mechanism considering polycyclic aromatic hydrocarbons (PAH), a two dimensional counterflow ethylene-air flame is simulated. A reduced mechanism with PAH pathways that includes until coronene and method of moments with interpolative closure (MOMIC) has been employed to calculate the soot characteristics. Interaction of sooting flame with a prescribed decaying random velocity field is being investigated. Counterflow nonpremixed flames at low strain rate sooting conditions are considered. Effects of vortices are studied on the flame structures and its sensitivity on the soot formation characteristics. As the vortex rolls up the flame, integrated soot volume fraction is found to be larger for the air-side vortex. A detailed analysis on the flame structure and its influence on the formation of soot were carried out. The results indicate that the larger PAH species contributes to the soot formation in the airside perturbation regimes, whereas the soot formation is dominated by the soot transport in fuel-side perturbation.

  19. Predictions of nitrogen oxides production in diffusion turbulent flames; Predictions de la production des oxydes d`azote dans les flammes turbulentes de diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, H.; Gokalp, I. [Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France). Laboratoire de Combustion Systemes Reactifs

    1996-12-31

    The suitability of the turbulent combustion flamelets model in order to predict the index of NO{sub x} production in turbulent flames of hydrogen diffusion is analyzed. In the flamelet approach, the turbulent flame is equivalent to a group of laminar flames submitted to a mechanical stretching which generates a chemical disequilibrium. This effect can be described by the stretching or by the scalar dissipation ratio. A numerical modeling is performed in order to evaluate the advantages of both approaches and to compare the behaviour of the NO{sub x} emission index with the experiments of Chen and Driscoll. This study shows that predictions of NO{sub x} emission indexes have a correct behaviour with respect to the Damkoehler number only when the scalar dissipation ratio is used as a parameter to describe the chemical state outside equilibrium. Predictions of the flamelet models are improving when the Damkoehler number increases. On the other hand, the absolute NO{sub x} concentrations are overestimated and can be due to the effects of differential diffusion. (J.S.) 14 refs.

  20. A comparative study on the sooting tendencies of various 1-alkene fuels in counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2018-02-19

    Alkenes are important components in transportation fuels, and are known to have increased sooting tendencies compared to analogous saturated hydrocarbons with the same carbon number. This work aims to understand the sooting tendencies of various 1-alkenes through experiments and numerical simulations for counterflow diffusion flames. Soot and PAH formation tendencies of 1-alkene fuels, including ethylene (C2H4), propene (C3H6), 1-butene (1-C4H8), 1-pentene (1-C5H10), 1-hexene (1-C6H12) and 1-octene (1-C8H16), were experimentally studied using laser induced-incandescence (LII) and laser-induced fluorescence (LIF) techniques, respectively. From the LII results, 1-C4H8 was found to be the most sooting fuel, followed by C3H6 > 1-C5H10 > 1-C6H12 > 1-C8H16 > C2H4. The LIF data with a detection wavelength of 500 nm indicated the PAH formation tendencies followed the order of 1-C4H8 > 1-C5H10 ∼1-C6H12 > C3H6 > 1-C8H16 > C2H4, which were different from the order of sooting tendencies. Numerical simulations with a comprehensive chemical kinetic model including PAH growth chemistry for the tested 1-alkene fuels were conducted to elucidate the aromatic formation pathways and rationalize the experimentally observed trends. The numerical results highlighted the importance of intermediate species with odd carbon numbers in aromatic species formation, such as propargyl, allyl, cyclopentadienyl and indenyl radicals. Their concentration differences, which could be traced back to the parent fuel molecules through rate of production analysis, rationalize the experimentally observed differences in soot and PAH formation tendencies.

  1. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames.

    Science.gov (United States)

    Singh, Ajay V; Gollner, Michael J

    2016-06-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.

  2. The CO/NOx emissions of swirled, strongly pulsed jet diffusion flames

    KAUST Repository

    Liao, Ying-Hao; Hermanson, James C.

    2014-01-01

    recirculation within the swirl-induced recirculation zone. Scaling relations, when taking into account the impact of air dilution over an injection cycle on the flame length, reveal a strong correlation between the CO emissions and the global residence time

  3. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames

    KAUST Repository

    Wang, Yu; Raj, Abhijeet Dhayal; Chung, Suk-Ho

    2013-01-01

    was tested for ethylene premixed flames at low (20torr) and atmospheric pressures by comparing experimentally observed species concentrations with those of the computed ones for small chemical species and PAHs. As compared to several existing mechanisms

  4. Ozone Activated Cool Diffusion Flames of Butane Isomers in a Counterflow Facility

    KAUST Repository

    Al Omier, Abdullah Abdulaziz

    2017-01-01

    ignition engines (HCCI) have been developed. These new engines rely on the low temperature chemistry (LTC) combustion concept. A detailed investigation of the properties of cool flames, governed by LTC, is essential for the design of these new engines

  5. Diffusion-weighted MR imaging of the normal fetal lung

    International Nuclear Information System (INIS)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Hoermann, Marcus; Bankier, Alexander; Herold, Christian J.; Prayer, Daniela; Brugger, Peter C.; Csapo, Bence; Bammer, Roland

    2008-01-01

    To quantify apparent diffusion coefficient (ADC) changes in fetuses with normal lungs and to determine whether ADC can be used in the assessment of fetal lung development. In 53 pregnancies (20-37th weeks of gestation), we measured ADC on diffusion-weighted imaging (DWI) in the apical, middle, and basal thirds of the right lung. ADCs were correlated with gestational age. Differences between the ADCs were assessed. Fetal lung volumes were measured on T2-weighted sequences and correlated with ADCs and with age. ADCs were 2.13 ± 0.44 μm 2 /ms (mean ± SD) in the apex, 1.99 ± 0.42 μm 2 /ms (mean ± SD) in the middle third, and 1.91 ± 0.41 μm 2 /ms (mean ± SD) in the lung base. Neither the individual ADC values nor average ADC values showed a significant correlation with gestational age or with lung volumes. Average ADCs decreased significantly from the lung apex toward the base. Individual ADCs showed little absolute change and heterogeneity. Lung volumes increased significantly during gestation. We have not been able to identify a pattern of changes in the ADC values that correlate with lung maturation. Furthermore, the individual, gravity-related ADC changes are subject to substantial variability and show nonuniform behavior. ADC can therefore not be used as an indicator of lung maturity. (orig.)

  6. Diffusion-weighted MR imaging of the normal fetal lung

    Energy Technology Data Exchange (ETDEWEB)

    Balassy, Csilla; Kasprian, Gregor; Weber, Michael; Hoermann, Marcus; Bankier, Alexander; Herold, Christian J.; Prayer, Daniela [Medical University of Vienna, Department of Radiology, Vienna (Austria); Brugger, Peter C. [Medical University of Vienna, Center of Anatomy and Cell Biology, Vienna (Austria); Csapo, Bence [Medical University of Vienna, Department of Obstetrics and Gyneocology, Vienna (Austria); Bammer, Roland [University of Stanford, Department of Radiology, Stanford, CA (United States)

    2008-04-15

    To quantify apparent diffusion coefficient (ADC) changes in fetuses with normal lungs and to determine whether ADC can be used in the assessment of fetal lung development. In 53 pregnancies (20-37th weeks of gestation), we measured ADC on diffusion-weighted imaging (DWI) in the apical, middle, and basal thirds of the right lung. ADCs were correlated with gestational age. Differences between the ADCs were assessed. Fetal lung volumes were measured on T2-weighted sequences and correlated with ADCs and with age. ADCs were 2.13 {+-} 0.44 {mu}m{sup 2}/ms (mean {+-} SD) in the apex, 1.99 {+-} 0.42 {mu}m{sup 2}/ms (mean {+-} SD) in the middle third, and 1.91 {+-} 0.41 {mu}m{sup 2}/ms (mean {+-} SD) in the lung base. Neither the individual ADC values nor average ADC values showed a significant correlation with gestational age or with lung volumes. Average ADCs decreased significantly from the lung apex toward the base. Individual ADCs showed little absolute change and heterogeneity. Lung volumes increased significantly during gestation. We have not been able to identify a pattern of changes in the ADC values that correlate with lung maturation. Furthermore, the individual, gravity-related ADC changes are subject to substantial variability and show nonuniform behavior. ADC can therefore not be used as an indicator of lung maturity. (orig.)

  7. Diffusely increased uptake in the skull in normal bone scans

    International Nuclear Information System (INIS)

    Suematsu, Toru; Yoshida, Shoji; Motohara, Tomofumi; Fujiwara, Hirofumi; Nishii, Hironori; Komiyama, Toyozo; Yanase, Masakazu; Mizutani, Masahiro

    1992-01-01

    Diffusely increased skull uptake (a hot skull) is often seen in patients with bone metastases and metabolic disease. This finding is also, however, noticed in normal bone scans of aged women. To determine whether the hot skull could be considered a normal variant in elderly women and is associated to menopause, we studied 282 normal bone scans (166 women and 116 men without metabolic and hormonal disease; age range 11 to 84 yr). We divided the patients into eight age groups--ages 10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, and 80-89 yrs. Measurements of skull uptake were obtained from anterior total body views using contrast-to-noise ratio (CNR). CNR for the skull was calculated using an equation. The sex dependent difference in skull uptake began to develop in the age group 30-39 yrs (p<0.05). The skull showed greater activity in women than in men for age groups from 30-39 to 80-89 yrs. In the age groups 50-59 and 60-69, the difference was particularly large (p<0.001). For women, the 50-59 yr age group had a significantly higher CNR than the 40-49 yr (p<0.01), 30-39 yr (p<0.05), and 20-29 yr age group (p<0.05). On the other hand, there was no significant difference between the 20-29 yr, 30-39 yr and 40-49 yr age groups. For men, the skull uptake was virtually unchanged with age. Our data strongly suggested that the hot skull in normal bone scan is related to menopausal estrogen deficiency. One should not necessarily regard it abnormal that elderly women suffer hot skull. (J.P.N.)

  8. Gravitational Effects on Cellular Flame Structure

    Science.gov (United States)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  9. Modelling of a 400 kW natural gas diffusion flame using finite-rate chemistry schemes

    International Nuclear Information System (INIS)

    Mueller, Christian; Kremer, Hans; Brink, Anders; Kilpinen, Pia; Hupa, Mikko

    1999-01-01

    The Eddy-Dissipation Combustion Model combined with three different reaction mechanisms is applied to simulate a fuel-rich 400 kW natural gas diffusion flame. The chemical schemes include a global 2-step and a global 4-step approach as well as a reduced 4-step mechanism systematically derived from an elementary scheme. The species and temperature distributions resulting from the different schemes are studied in detail and compared to each other and to experiments. Furthermore the method of implementing finite-rate chemistry to the Eddy-Dissipation Combustion Model is discussed. (author)

  10. Large eddy simulation of turbulent diffusion flame with hybrid fuel of CH4/H2 in various background conditions

    Science.gov (United States)

    Hong, Sungmin; Lee, Wook; Song, Han Ho; Kang, Seongwon

    2014-11-01

    A turbulent diffusion flame with hybrid fuel of methane and hydrogen is analyzed to investigate the effects of operating conditions on flame shape, rate of fuel consumption and pollutant formation. Various combinations of operating parameter, i.e. hydrogen concentration, background pressure and temperature, are examined in relatively high pressure and temperature conditions that can be found at the end of compression stroke in an internal combustion engine. A flamelet-progress variable approach (FPVA) and a dynamic subgrid scale (SGS) model are used for large eddy simulation (LES). A comparison with previous experiments and simulations in the standard condition shows a good agreement in the statistics of flow fields and chemical compositions, as well as in the resultant trends by similar parametric studies. As a result, the effects of added hydrogen are found to be consistent for most of the chemical species in the range of background pressure and temperature conditions. However, the flow fields of some species such as OH, NO, CO at a higher pressure and temperature state show a behavior different from the standard condition. Finally, hydrogen addition is shown to improve flame stability which is measured by the pressure fluctuations in all the tested conditions.

  11. A scale-entropy diffusion equation to describe the multi-scale features of turbulent flames near a wall

    Science.gov (United States)

    Queiros-Conde, D.; Foucher, F.; Mounaïm-Rousselle, C.; Kassem, H.; Feidt, M.

    2008-12-01

    Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we thus introduce a general scale-entropy diffusion equation. We define the notion of “scale-evolutivity” which characterises the deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant “scale-evolutivity” over the scale-range is studied. In this case, called “parabolic scaling”, the fractal dimension is a linear function of the logarithm of scale. The case of a constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of turbulent flames near a wall.

  12. Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Zhu, Delin; Law, Chung K.

    2012-01-01

    In this Letter we present turbulent flame speeds and their scaling from experimental measurements on constant-pressure, unity Lewis number expanding turbulent flames, propagating in nearly homogeneous isotropic turbulence in a dual-chamber, fan-stirred vessel. It is found that the normalized turbulent flame speed as a function of the average radius scales as a turbulent Reynolds number to the one-half power, where the average radius is the length scale and the thermal diffusivity is the transport property, thus showing self-similar propagation. Utilizing this dependence it is found that the turbulent flame speeds from the present expanding flames and those from the Bunsen geometry in the literature can be unified by a turbulent Reynolds number based on flame length scales using recent theoretical results obtained by spectral closure of the transformed G equation.

  13. Diffusion tensor imaging of the normal prostate at 3 Tesla

    International Nuclear Information System (INIS)

    Guerses, Bengi; Kabakci, Neslihan; Kovanlikaya, Arzu; Firat, Zeynep; Bayram, Ali; Kovanlikaya, Ilhami; Ulud, Aziz M.

    2008-01-01

    The aim of this study was to assess the feasibility of diffusion tensor imaging (DTI) of the prostate and to determine normative fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values of healthy prostate with a 3-Tesla magnetic resonance imaging (MRI) system. Thirty volunteers with a mean age of 28 (25-35) years were scanned with a 3-Tesla MRI (Intera Achieva; Philips, The Netherlands) system using a six-channel phased array coil. Initially, T2-weighted turbo spin-echo (TSE) axial images of the prostate were obtained. In two subjects, a millimetric hypointense signal change was detected in the peripheral zones on T2-weighted TSE images. These two subjects were excluded from the study. DTI with single-shot echo-planar imaging (ssEPI) was performed in the remaining 28 subjects. ADC and FA values were measured using the manufacturer supplied software by positioning 9-pixel ROIs on each zone. Differences between parameters of the central and peripheral zones were assessed. Mean ADC value of the central (1.220 ± 0.271 x 10 -3 mm 2 /s) was found to be significantly lower when compared with the peripheral gland (1.610 ± 0.347 x 10 -3 mm 2 /s) (P < 0.01). Mean FA of the central gland was significantly higher (0.26), compared with the peripheral gland (0.16) (P < 0.01). This study shows the feasibility of prostate DTI with a 3-Tesla MR system and the normative FA and ADC values of peripheral and central zones of the normal prostate. The results are compatible with the microstructural organization of the gland. (orig.)

  14. Turbulent Flame Speed Scaling for Positive Markstein Number Expanding Flames in Near Isotropic Turbulence

    Science.gov (United States)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung

    2012-11-01

    In this work we clarify the role of Markstein diffusivity on turbulent flame speed and it's scaling, from analysis and experimental measurements on constant-pressure expanding flames propagating in near isotropic turbulence. For all C0-C4 hydrocarbon-air mixtures presented in this work and recently published C8 data from Leeds, the normalized turbulent flame speed data of individual mixtures approximately follows the recent theoretical and experimental ReT, f 0 . 5 scaling, where the average radius is the length scale and thermal diffusivity is the transport property. We observe that for a constant ReT, f 0 . 5 , the normalized turbulent flame speed decreases with increasing Mk. This could be explained by considering Markstein diffusivity as the large wavenumber, flame surface fluctuation dissipation mechanism. As originally suggested by the theory, replacing thermal diffusivity with Markstein diffusivity in the turbulence Reynolds number definition above, the present and Leeds dataset could be scaled by the new ReT, f 0 . 5 irrespective of the fuel considered, equivalence ratio, pressure and turbulence intensity for positive Mk flames. This work was supported by the Combustion Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0001198 and by the Air Force Office of Scientific Research.

  15. The impact of hydrogen enrichment and bluff-body lip thickness on characteristics of blended propane/hydrogen bluff-body stabilized turbulent diffusion flames

    International Nuclear Information System (INIS)

    Kashir, Babak; Tabejamaat, Sadegh; Jalalatian, Nafiseh

    2015-01-01

    Highlights: • Characteristics of C 3 H 8 –H 2 bluff-body stabilized flames are investigated. • Decreasing the bluff-body lip thickness led into enhanced flame length. • CO mass fraction is increased with reducing hydrogen content in the fuel stream. • Augmenting hydrogen content increased the maximum temperature. • Jet-like zone in propane–hydrogen bluff-body stabilized flames is very unstable. - Abstract: At the beginning of this study, the well-known turbulent bluff-body stabilized diffusion flame of HM1 is simulated by a coupled flamelet/radiation approach. The HM1 flame comprises a CH 4 :H 2 [50:50 Vol.] jet flame at a Reynolds number of 15,800. The results showed reasonable agreement for the flow field and species. Afterwards, the abovementioned approach is employed to investigate the effects of hydrogen addition on bluff-body stabilized flames of propane–hydrogen. Adding hydrogen to the blended fuel of propane/hydrogen shifts the recirculation zone outwards the bluff-body and thus culminates in increased flame length. Besides this, the flame length is predicted to be enhanced with decreasing the lip thickness of the bluff-body configuration. The CO emission level is found to be decreased with hydrogen addition in near-burner and far field regions which might be attributed to the decrease of inflow carbon atoms. The local radiative heat power reveals higher values for fuel blends with decreased contents of hydrogen at the recirculation and jet-like zones. This might be attributed to the increased local heat release rate due to breaking further carbon bonds

  16. Increased self-diffusion of brain water in normal aging

    DEFF Research Database (Denmark)

    Gideon, P; Thomsen, C; Henriksen, O

    1994-01-01

    With magnetic resonance (MR) imaging, brain water self-diffusion was measured in 17 healthy volunteers 22-76 (mean, 44.6) years old. The calculated values for the apparent diffusion coefficients (ADCs) ranged from 0.58 x 10(-9) to 1.23 x 10(-9) m2/sec in cerebral white matter. A significant...... by an increase in the extracellular volume due to age-dependent neuronal degeneration or to changes in myelination. These findings have implications for future clinical investigations with diffusion MR imaging techniques in patients with neurologic diseases, and stress the importance of having an age...

  17. Reynolds averaged modelling of low momentum propane jet diffusion flames in cross flow

    Energy Technology Data Exchange (ETDEWEB)

    Majeski, A.J.; Chui, E.H. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Energy Technology Centre; Kostiuk, L.W. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2003-07-01

    It is common practice to use continuous low flow rate flares to dispose of unwanted or by-product combustible gases resulting from the manufacturing process or oil recovery operations. This study evaluates the usefulness of computational fluid dynamics (CFD) modelling in the context of low momentum flux reacting jets. The experimental data was gathered at the University of Alberta's Combustion Wind Tunnel. This data was used to compare data obtained from the CFD simulations. Only a small subset of the experimental conditions was used for the computational model. No attempt was made to fine tune any of the individual models. They were all part of the commercial CFD software package CFX-TASC flow, by ANSYS Inc. Flame length and angle results compared favourably with experiments. The shape of the plume changed significantly in the far field. This could be explained by distortion caused by the turbulence model used. A flame front model was incorporated in an effort to estimate combustion efficiency. The results obtained were not conclusive. 20 refs., 4 figs.

  18. Numerical investigation of biogas diffusion flames characteristics under several operation conditions in counter-flow configuration with an emphasis on thermal and chemical effects of CO2 in the fuel mixture

    Science.gov (United States)

    Mameri, A.; Tabet, F.; Hadef, A.

    2017-08-01

    This study addresses the influence of several operating conditions (composition and ambient pressure) on biogas diffusion flame structure and NO emissions with particular attention on thermal and chemical effect of CO2. The biogas flame is modeled by a counter flow diffusion flame and analyzed in mixture fraction space using flamelet approach. The GRI Mech-3.0 mechanism that involves 53 species and 325 reactions is adopted for the oxidation chemistry. It has been observed that flame properties are very sensitive to biogas composition and pressure. CO2 addition decreases flame temperature by both thermal and chemical effects. Added CO2 may participate in chemical reaction due to thermal dissociation (chemical effect). Excessively supplied CO2 plays the role of pure diluent (thermal effect). The ambient pressure rise increases temperature and reduces flame thickness, radiation losses and dissociation amount. At high pressure, recombination reactions coupled with chain carrier radicals reduction, diminishes NO mass fraction.

  19. Advection-diffusion model for normal grain growth and the stagnation of normal grain growth in thin films

    International Nuclear Information System (INIS)

    Lou, C.

    2002-01-01

    An advection-diffusion model has been set up to describe normal grain growth. In this model grains are divided into different groups according to their topological classes (number of sides of a grain). Topological transformations are modelled by advective and diffusive flows governed by advective and diffusive coefficients respectively, which are assumed to be proportional to topological classes. The ordinary differential equations governing self-similar time-independent grain size distribution can be derived analytically from continuity equations. It is proved that the time-independent distributions obtained by solving the ordinary differential equations have the same form as the time-dependent distributions obtained by solving the continuity equations. The advection-diffusion model is extended to describe the stagnation of normal grain growth in thin films. Grain boundary grooving prevents grain boundaries from moving, and the correlation between neighbouring grains accelerates the stagnation of normal grain growth. After introducing grain boundary grooving and the correlation between neighbouring grains into the model, the grain size distribution is close to a lognormal distribution, which is usually found in experiments. A vertex computer simulation of normal grain growth has also been carried out to make a cross comparison with the advection-diffusion model. The result from the simulation did not verify the assumption that the advective and diffusive coefficients are proportional to topological classes. Instead, we have observed that topological transformations usually occur on certain topological classes. This suggests that the advection-diffusion model can be improved by making a more realistic assumption on topological transformations. (author)

  20. Multilevel quadrature of elliptic PDEs with log-normal diffusion

    KAUST Repository

    Harbrecht, Helmut

    2015-01-07

    We apply multilevel quadrature methods for the moment computation of the solution of elliptic PDEs with lognormally distributed diffusion coefficients. The computation of the moments is a difficult task since they appear as high dimensional Bochner integrals over an unbounded domain. Each function evaluation corresponds to a deterministic elliptic boundary value problem which can be solved by finite elements on an appropriate level of refinement. The complexity is thus given by the number of quadrature points times the complexity for a single elliptic PDE solve. The multilevel idea is to reduce this complexity by combining quadrature methods with different accuracies with several spatial discretization levels in a sparse grid like fashion.

  1. Effects of H2O, CO2, and N2 Air Contaminants on Critical Airside Strain Rates for Extinction of Hydrogen-Air Counterflow Diffusion Flames

    Science.gov (United States)

    Pellett, G. L.; Wilson, L. G.; Northam, G. B.; Guerra, Rosemary

    1989-01-01

    Coaxial tubular opposed jet burners (OJB) were used to form dish shaped counterflow diffusion flames (CFDF), centered by opposing laminar jets of H2, N2 and both clean and contaminated air (O2/N2 mixtures) in an argon bath at 1 atm. Jet velocities for flame extinction and restoration limits are shown versus wide ranges of contaminant and O2 concentrations in the air jet, and also input H2 concentration. Blowoff, a sudden breaking of CFDF to a stable ring shape, occurs in highly stretched stagnation flows and is generally believed to measure kinetically limited flame reactivity. Restore, a sudden restoration of central flame, is a relatively new phenomenon which exhibits a H2 dependent hysteresis from Blowoff. For 25 percent O2 air mixtures, mole for mole replacement of 25 percent N2 contaminant by steam increased U(air) or flame strength at Blowoff by about 5 percent. This result is consistent with laminar burning velocity results from analogous substitution of steam for N2 in a premixed stoichiometric H2-O2-N2 (or steam) flame, shown by Koroll and Mulpuru to promote a 10 percent increase in experimental and calculated laminar burning velocity, due to enhanced third body efficiency of water in: H + O2 + M yields HO2 + M. When the OJB results were compared with Liu and MacFarlane's experimental laminar burning velocity of premixed stoichiometric H2 + air + steam, a crossover occurred, i.e., steam enhanced OJB flame strength at extinction relative to laminar burning velocity.

  2. Implementation of two-equation soot flamelet models for laminar diffusion flames

    Energy Technology Data Exchange (ETDEWEB)

    Carbonell, D.; Oliva, A.; Perez-Segarra, C.D. [Centre Tecnologic de Transferencia de Calor (CTTC), Universitat Politecnica de Catalunya (UPC), ETSEIAT, Colom 11, E-08222, Terrassa (Barcelona) (Spain)

    2009-03-15

    The two-equation soot model proposed by Leung et al. [K.M. Leung, R.P. Lindstedt, W.P. Jones, Combust. Flame 87 (1991) 289-305] has been derived in the mixture fraction space. The model has been implemented using both Interactive and Non-Interactive flamelet strategies. An Extended Enthalpy Defect Flamelet Model (E-EDFM) which uses a flamelet library obtained neglecting the soot formation is proposed as a Non-Interactive method. The Lagrangian Flamelet Model (LFM) is used to represent the Interactive models. This model uses direct values of soot mass fraction from flamelet calculations. An Extended version (E-LFM) of this model is also suggested in which soot mass fraction reaction rates are used from flamelet calculations. Results presented in this work show that the E-EDFM predict acceptable results. However, it overpredicts the soot volume fraction due to the inability of this model to couple the soot and gas-phase mechanisms. It has been demonstrated that the LFM is not able to predict accurately the soot volume fraction. On the other hand, the extended version proposed here has been shown to be very accurate. The different flamelet mathematical formulations have been tested and compared using well verified reference calculations obtained solving the set of the Full Transport Equations (FTE) in the physical space. (author)

  3. Study of the performance of three micromixing models in transported scalar PDF simulations of a piloted jet diffusion flame ('Delft Flame III')

    Energy Technology Data Exchange (ETDEWEB)

    Merci, Bart [Department of Flow, Heat and Combustion Mechanics, Ghent University-UGent, B-9000 Ghent (Belgium); Roekaerts, Dirk [Department of Multi-Scale Physics, Delft University of Technology, Delft (Netherlands); Naud, Bertrand [CIEMAT, Madrid (Spain)

    2006-02-01

    Numerical simulation results are presented for a turbulent nonpremixed flame with local extinction and reignition. The transported scalar PDF approach is applied to the turbulence-chemistry interaction. The turbulent flow field is obtained with a nonlinear two-equation turbulence model. A C{sub 1} skeletal scheme is used as the chemistry model. The performance of three micromixing models is compared: the interaction by exchange with the mean model (IEM), the modified Curl's coalescence/dispersion model (CD) and the Euclidean minimum spanning tree model (EMST). With the IEM model, global extinction occurs. With the standard value of model constant C{sub f}=2, the CD model yields a lifted flame, unlike the experiments, while with the EMST model the correct flame shape is obtained. However, the conditional variances of the thermochemical quantities are underestimated with the EMST model, due to a lack of local extinction in the simulations. With the CD model, the flame becomes attached when either the value of C{sub f} is increased to 3 or the pilot flame thermal power is increased by a factor of 1.5. With increased value of C{sub f} better results for mixture fraction variance are obtained with both the CD and the EMST model. Lowering the value of C{sub f} leads to better predictions for mean temperature with EMST, but at the cost of stronger overprediction of mixture fraction variance. These trends are explained as a consequence of variance production by macroscopic inhomogeneity and the specific properties of the micromixing models. Local time stepping is applied so that convergence is obtained more quickly. Iteration averaging reduces statistical error so that the limited number of 50 particles per cell is sufficient to obtain accurate results. (author)

  4. PIV Measurements in Weakly Buoyant Gas Jet Flames

    Science.gov (United States)

    Sunderland, Peter B.; Greenbberg, Paul S.; Urban, David L.; Wernet, Mark P.; Yanis, William

    2001-01-01

    Despite numerous experimental investigations, the characterization of microgravity laminar jet diffusion flames remains incomplete. Measurements to date have included shapes, temperatures, soot properties, radiative emissions and compositions, but full-field quantitative measurements of velocity are lacking. Since the differences between normal-gravity and microgravity diffusion flames are fundamentally influenced by changes in velocities, it is imperative that the associated velocity fields be measured in microgravity flames. Velocity measurements in nonbuoyant flames will be helpful both in validating numerical models and in interpreting past microgravity combustion experiments. Pointwise velocity techniques are inadequate for full-field velocity measurements in microgravity facilities. In contrast, Particle Image Velocimetry (PIV) can capture the entire flow field in less than 1% of the time required with Laser Doppler Velocimetry (LDV). Although PIV is a mature diagnostic for normal-gravity flames , restrictions on size, power and data storage complicate these measurements in microgravity. Results from the application of PIV to gas jet flames in normal gravity are presented here. Ethane flames burning at 13, 25 and 50 kPa are considered. These results are presented in more detail in Wernet et al. (2000). The PIV system developed for these measurements recently has been adapted for on-rig use in the NASA Glenn 2.2-second drop tower.

  5. Computational error estimates for Monte Carlo finite element approximation with log normal diffusion coefficients

    KAUST Repository

    Sandberg, Mattias

    2015-01-07

    The Monte Carlo (and Multi-level Monte Carlo) finite element method can be used to approximate observables of solutions to diffusion equations with log normal distributed diffusion coefficients, e.g. modelling ground water flow. Typical models use log normal diffusion coefficients with H¨older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible and can be larger than the computable low frequency error. This talk will address how the total error can be estimated by the computable error.

  6. Indoor NO/sub 2/ sampling in a large university campus in Benin city, southern Nigeria, using flames diffusion tubes

    International Nuclear Information System (INIS)

    Ukpebor, E.E.; Sadiku, Y.T.; Ahonkhai, S.I.

    2005-01-01

    Monitoring of NO/sub 2/ in different indoor environments (without cooking and with cooking using different fuels) was done. Flames diffusion tubes were used for the monitoring. The sampling duration was two weeks. The highest NO/sub 2/ concentration of 38.61 ppb (73.74 mug/m3) was monitored in the room where the cooking was done with a gas burner. This was followed by the room with firewood cooking, where the concentration was 36.75 ppb (70.19 mug/m3) and the least concentration of 24.05 ppb (46.80 mug/m3) was noted in the room, where kerosene stove was used for cooking. It is of significance to observe that the WHO annual average guideline value of 40 mug/m3 was exceeded in al the rooms where cooking was done. Levels obtained in this study, therefore, suggest a need for precautionary mitigation. However, the outdoor concentration of NO/sub 2/ was almost the same as that obtained indoors in the rooms without cooking. This suggests high penetration indoors of outdoor NO/sub 2/. A background level of 3.40 ppb (6.49 mug/m3) was established for the environment in Ugbowo, Benin City, Nigeria. (author)

  7. Normal and Inverse Diffusive Isotope Fractionation of Deuterated Toluene and Benzene in Aqueous Systems

    DEFF Research Database (Denmark)

    Rolle, Massimo; Jin, Biao

    2017-01-01

    and toluene. Multitracer experiments were carried out in 1-D gel dissection tubes and in a quasi-2-D flow-through porous medium. The experiments allowed us to simultaneously and directly compare the diffusive and dispersive behavior of benzene and toluene. We observed an unexpected, opposite behavior...... of the two monoaromatic hydrocarbons. Toluene showed a normal diffusive isotope effect (DC7D8/DC7H8 = 0.96) with enrichment of the nondeuterated isotopologue in the direction of the diffusive and transverse dispersive fluxes. Conversely, the measured trends for benzene indicate inverse diffusive...

  8. Acoustic excitation of diffusion flames with coherent structure in a plane shear layer.; Effects of acoustic excitation on combustion properties; Soshiki kozo wo tomonau sendan kakusan kaen no onkyo reiki.; Onkyo reiki ni yoru nensho tokusei no henka

    Energy Technology Data Exchange (ETDEWEB)

    Ishino, Y.; Kojima, T.; Oiwa, N.; Yamaguchi, S. [Nagoya Institute of Technology, Nagoya (Japan)

    1993-10-25

    This paper reports on experiments for acoustic excitation of plane shear structured flame. Flows of air separated into the higher velocity side and the lower velocity side by a partition on the center of a flow path merge at the measuring point to form a mixed layer with coherent structure. Fuel is supplied to this mixed layer with the flows so adjusted that the generated flame will attach to the partition on the lower velocity side. Acoustic excitation (at a sound pressure level of 100 dB to 120 dB) is performed in a speaker fitted on a wall on the higher velocity side. The paper mentions the results of the experiments as follows: the acoustic excitation produces such changes to diffusion flame in the plane shear layer as shorter flame and blue flame combustion and clarification of flame structures; as seen from spectral characteristics of temperature change in the flames, a flame acoustically excited strongly presents remarkable improvements in periodicity of the structure; as seen from sound pressure distribution in the flow direction at the measuring point, the flame zone of the flame acoustically excited strongly is positioned at the middle of the node and loop of a standing wave. 6 refs., 9 figs., 1 tab.

  9. Experimental study of an oxygen-hydrogen diffusion flame laden with solid alumina particles; Etude experimentale d'une flamme de diffusion oxygene-hydrogene ensemencee en particules solides d'alumine

    Energy Technology Data Exchange (ETDEWEB)

    Labor, S.

    2003-07-15

    Monocrystalline sapphire microspheres are generated through the melting of alumina (AL{sub 2}O{sub 3}) particles in a flame. The alumina particles are injected in a very peculiar O{sub 2}/H{sub 2} confined diffusion flame as it is a downwards vertical flame having fuel in periphery of a central powdered oxygen jet. Quantitative measurements were carried out (ADL, PIV) and supplemented by a numerical study (N3S-Natur). (1) The laminar behavior of the isothermal conditions is kept through reactive flow. Therefore, particles will mainly collide due to speed gradients. (2) It has been shown that an axial particle will have a transit time int the high temperature zone very different to that of an off-line one. (3) The PIV date proved that the particle density was not homogeneous. (4) The hydrogen jet hardly influences the flame aerodynamic structure. Conversely, the central oxygen jet is at premium due to its effect on both the flame speed and temperature distribution. (author)

  10. Normal and Inverse Diffusive Isotope Fractionation of Deuterated Toluene and Benzene in Aqueous Systems

    DEFF Research Database (Denmark)

    Rolle, Massimo; Jin, Biao

    2017-01-01

    Diffusive isotope fractionation of organic contaminants in aqueous solution is difficult to quantify, and only a few experimental data sets are available for compounds of environmental interest. In this study, we investigate diffusive fractionation of perdeuterated and nondeuterated benzene...... and toluene. Multitracer experiments were carried out in 1-D gel dissection tubes and in a quasi-2-D flow-through porous medium. The experiments allowed us to simultaneously and directly compare the diffusive and dispersive behavior of benzene and toluene. We observed an unexpected, opposite behavior...... of the two monoaromatic hydrocarbons. Toluene showed a normal diffusive isotope effect (DC7D8/DC7H8 = 0.96) with enrichment of the nondeuterated isotopologue in the direction of the diffusive and transverse dispersive fluxes. Conversely, the measured trends for benzene indicate inverse diffusive...

  11. Experimental and numerical study of temperature fields and flows in flame during the diffusion combustion of certain liquid fuels

    Science.gov (United States)

    Loboda, E. L.; Matvienko, O. V.; Agafontsev, M. V.; Reyno, V. V.

    2017-11-01

    The paper represents experimental studying the pulsations of temperature fields and the structure of a flow in the flame formed during the combustion of certain fuels. Also, the paper provides the mathematical modeling of a flow in the flame formed during the combustion of diesel fuels, as well as the comparison with experimental data and the estimation of the scale for turbulent vortices in flame. The experimental results are in satisfactory agreement with numerical modeling, which confirms the hypothesis of similarity for the pulsations of hydrodynamic and thermodynamic parameters.

  12. Conjugate gradient filtering of instantaneous normal modes, saddles on the energy landscape, and diffusion in liquids.

    Science.gov (United States)

    Chowdhary, J; Keyes, T

    2002-02-01

    Instantaneous normal modes (INM's) are calculated during a conjugate-gradient (CG) descent of the potential energy landscape, starting from an equilibrium configuration of a liquid or crystal. A small number (approximately equal to 4) of CG steps removes all the Im-omega modes in the crystal and leaves the liquid with diffusive Im-omega which accurately represent the self-diffusion constant D. Conjugate gradient filtering appears to be a promising method, applicable to any system, of obtaining diffusive modes and facilitating INM theory of D. The relation of the CG-step dependent INM quantities to the landscape and its saddles is discussed.

  13. Polydisperse effects in jet spray flames

    Science.gov (United States)

    Weinberg, Noam; Greenberg, J. Barry

    2018-01-01

    A laminar jet polydisperse spray diffusion flame is analysed mathematically for the first time using an extension of classical similarity solutions for gaseous jet flames. The analysis enables a comparison to be drawn between conditions for flame stability or flame blow-out for purely gaseous flames and for spray flames. It is found that, in contrast to the Schmidt number criteria relevant to gas flames, droplet size and initial spray polydispersity play a critical role in determining potential flame scenarios. Some qualitative agreement for lift-off height is found when comparing predictions of the theory and sparse independent experimental evidence from the literature.

  14. Self-normalizing multiple-echo technique for measuring the in vivo apparent diffusion coefficient

    International Nuclear Information System (INIS)

    Perman, W.H.; Gado, M.; Sandstrom, J.C.

    1989-01-01

    This paper presents work to develop a new technique for quantitating the in vivo apparent diffusion/perfusion coefficient (ADC) by obtaining multiple data points from only two images with the capability to normalize the data from consecutive images, thus minimizing the effect of interimage variation. Two multiple-echo (six-to eight-echo) cardiac-gated images are obtained, one without and one with additional diffusion/perfusion encoding gradients placed about the 180 RF pulses of all but the first echo. Since the first echoes of both images have identical pulse sequence parameters, variations in signal intensity-between the first echoes represent image-to-image variation. The signal intensities of the subsequent echoes with additional diffusion/perfusion encoding gradients are then normalized by using the ratio of the first-echo signal intensities

  15. Meissner effect in diffusive normal metal/d-wave superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, Takehito; Tanaka, Yukio; Golubov, Alexandre Avraamovitch; Inoue, Jun-ichiro; Asano, Yasuhiro

    2005-01-01

    The Meissner effect in diffusive normal metal/insulator/d-wave superconductor junctions is studied theoretically in the framework of the Usadel equation under the generalized boundary condition. The effect of midgap Andreev resonant states (MARS) formed at the interface of d-wave superconductor is

  16. Theory of charge transport in diffusive normal metal conventional superconductor point contacts

    NARCIS (Netherlands)

    Tanaka, Y.; Golubov, Alexandre Avraamovitch; Kashiwaya, S.

    2003-01-01

    Tunneling conductance in diffusive normal (DN) metal/insulator/s-wave superconductor junctions is calculated for various situations by changing the magnitudes of the resistance and Thouless energy in DN and the transparency of the insulating barrier. The generalized boundary condition introduced by

  17. Computational error estimates for Monte Carlo finite element approximation with log normal diffusion coefficients

    KAUST Repository

    Sandberg, Mattias

    2015-01-01

    log normal diffusion coefficients with H¨older regularity of order up to 1/2 a.s. This low regularity implies that the high frequency finite element approximation error (i.e. the error from frequencies larger than the mesh frequency) is not negligible

  18. Influence of magnetic impurities on charge transport in diffusive-normal-metal/superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Inoue, J.; Asano, Y.

    2005-01-01

    Charge transport in the diffusive normal metal (DN)/insulator/s- and d-wave superconductor junctions is studied in the presence of magnetic impurities in DN in the framework of the quasiclassical Usadel equations with the generalized boundary conditions. The cases of s- and d-wave superconducting

  19. Theory of thermal and charge transport in diffusive normal metal / superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Asano, Y.

    2005-01-01

    Thermal and charge transport in diffusive normal metal (DN)/insulator/s-, d-, and p-wave superconductor junctions are studied based on the Usadel equation with the Nazarov's generalized boundary condition. We derive a general expression of the thermal conductance in unconventional superconducting

  20. Linear response of stretch-affected premixed flames to flow oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.Y.; Law, C.K. [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Lieuwen, T. [School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2009-04-15

    The linear response of 2D wedge-shaped premixed flames to harmonic velocity disturbances was studied, allowing for the influence of flame stretch manifested as variations in the local flame speed along the wrinkled flame front. Results obtained from analyzing the G-equation show that the flame response is mainly characterized by a Markstein number {sigma}{sub C}, which measures the curvature effect of the wrinkles, and a Strouhal number, St{sub f}, defined as the angular frequency of the disturbance normalized by the time taken for the disturbance to propagate the flame length. Flame stretch is found to become important when the disturbance frequency satisfies {sigma}{sub C}St{sub f}{sup 2}{proportional_to} O(1), i.e. St{sub f}{proportional_to} O({sigma}{sub C}{sup -1/2}). Specifically, for disturbance frequencies below this order, stretch effects are small and the flame responds as an unstretched one. When the disturbance frequencies are of this order, the transfer function, defined as the ratio of the normalized fluctuation of the heat release rate to that of the velocity, is contributed mostly from fluctuations of the flame surface area, which is now affected by stretch. Finally, as the disturbance frequency increases to St{sub f}{proportional_to} O({sigma}{sub C}{sup -1}), i.e. {sigma}{sub C}St{sub f}{proportional_to} O(1), the direct contribution from the stretch-affected flame speed fluctuation to the transfer function becomes comparable to that of the flame surface area. The present study phenomenologically explains the experimentally observed filtering effect in which the flame wrinkles developed at the flame base decay along the flame surface for large frequency disturbances as well as for thermal-diffusively stable and weakly unstable mixtures. (author)

  1. Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm

    Science.gov (United States)

    Liu, Xunchen; Zhang, Guoyong; Huang, Yan; Wang, Yizun; Qi, Fei

    2018-04-01

    We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its v_3 fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its v_3 vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.

  2. Soot measurements by two angle scattering and extinction in an N 2 -diluted ethylene/air counterflow diffusion flame from 2 to 5 atm

    KAUST Repository

    Amin, Hafiz M.F.

    2016-06-27

    The soot formed in an N-diluted ethylene/air counterflow diffusion flame at elevated pressure was investigated using two angle light scattering/extinction technique. To provide a well-controlled pressurized environment for the flame, a novel pressure vessel was built with the required optical access. The soot parameters were measured along the centerline of the counterflow flame. These properties included soot volume fraction (f ), primary particle diameter (d ), population averaged radius of gyration (R ) and number density of primary particles (n ). The Rayleigh-Debye-Gans theory for Fractal Aggregates (RDG-FA) was used to retrieve these properties from scattering and extinction measurements. Soot volume fraction was measured via light extinction from 2 to 5atm while maintaining the same global strain rate at all pressures. Scattered light from soot particles was measured at 45° and 135° and primary particle diameter was calculated using scattering/extinction ratio and the radius of gyration was determined from the dissymmetry ratio. Soot volume fraction, primary particle diameter and radius of gyration all increased with pressure while the number density of primary particles decreased with increasing pressure.

  3. Soot measurements by two angle scattering and extinction in an N 2 -diluted ethylene/air counterflow diffusion flame from 2 to 5 atm

    KAUST Repository

    Amin, Hafiz M.F.; Roberts, William L.

    2016-01-01

    The soot formed in an N-diluted ethylene/air counterflow diffusion flame at elevated pressure was investigated using two angle light scattering/extinction technique. To provide a well-controlled pressurized environment for the flame, a novel pressure vessel was built with the required optical access. The soot parameters were measured along the centerline of the counterflow flame. These properties included soot volume fraction (f ), primary particle diameter (d ), population averaged radius of gyration (R ) and number density of primary particles (n ). The Rayleigh-Debye-Gans theory for Fractal Aggregates (RDG-FA) was used to retrieve these properties from scattering and extinction measurements. Soot volume fraction was measured via light extinction from 2 to 5atm while maintaining the same global strain rate at all pressures. Scattered light from soot particles was measured at 45° and 135° and primary particle diameter was calculated using scattering/extinction ratio and the radius of gyration was determined from the dissymmetry ratio. Soot volume fraction, primary particle diameter and radius of gyration all increased with pressure while the number density of primary particles decreased with increasing pressure.

  4. Investigating the Use of a Diffusion Flame to Produce Black Carbon Standards for Thermal- Optical Analysis of Carbonaceous Aerosols

    Science.gov (United States)

    Ortiz Montalvo, D. L.; Kirchstetter, T. W.; Soto-García, L. L.; Mayol-Bracero, O. L.

    2006-12-01

    Combustion generated particles are a concern to both climate and public health due to their ability to scatter and absorb solar radiation and alter cloud properties, and because they are small enough to be inhaled and deposit in the lungs where they may cause respiratory and other health problems. Specific concern is focused on particles that originate from the combustion of diesel fuel. Diesels particles are composed mainly of carbonaceous material, especially in locations where diesel fuel sulfur is low. These particles are black due to the strongly light absorbing nature of the refractory carbon components, appropriately called black carbon (BC). This research project focuses on the uncertainty in the measurement of BC mass concentration, which is typically determined by analysis of particles collected on a filter using a thermal-optical analysis (TOA) method. Many studies have been conducted to examine the accuracy of the commonly used variations of the TOA method, which vary in their sample heating protocol, carrier gas, and optical measurement. These studies show that BC measurements are inaccurate due to the presence of organic carbon (OC) in the aerosols. OC may co-evolve with BC or char to form BC during analysis, both of which make it difficult to distinguish between the OC and BC in the sample. The goal of this study is to develop the capability of producing standard samples of known amounts of BC, either alone or mixed with other aerosol constituents, and then evaluate which TOA methods accurately determine the BC amount. An inverted diffusion flame of methane and air was used to produce particle samples containing only BC as well as samples of BC mixed with humic acid (HA). Our study found that HA is light absorbing and catalyzes the combustion of BC. It is expected that both of these attributes will challenge the ability of TOA methods in distinguishing between OC and BC, such as the simple two step TOA method which relies solely on temperature to

  5. Risk for COPD with Obstruction of Active Smokers with Normal Spirometry and Reduced Diffusion Capacity

    Science.gov (United States)

    Kaner, Robert J.; Sanders, Abraham; Vincent, Thomas L.; Mezey, Jason G.; Crystal, Ronald G.

    2016-01-01

    Background Smokers are assessed for COPD using spirometry, with COPD defined by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) as airflow limitation not fully reversible with bronchodilators. There is a subset of smokers with normal spirometry (by GOLD criteria), who have a low diffusion capacity (DLCO), a parameter linked to emphysema and small airway disease. The natural history of these “normal spirometry/low DLCO” smokers is unknown. Methods From a cohort of 1570 smokers in the New York City metropolitian area, all of whom had normal spirometry, two groups were randomly selected for lung function follow-up: smokers with normal spirometry/normal DLCO (n=59) and smokers with normal spirometry/low DLCO (n=46). All had normal history, physical examination, CBC, urinalysis, HIV status, α1-antitrypsin level, chest X-ray, FEV1, FVC, FEV1/FVC ratio and total lung capacity (TLC). Throughout the study, all continued to be active smokers. Findings In the normal spirometry/normal DLCO group assessed over 45 ± 20 months, 3% developed GOLD-defined COPD. In contrast, in the normal spirometry/low DLCO group, followed over 41 ± 31 months, 22% developed GOLD-defined COPD. Interpretation Despite appearing “normal” by GOLD, smokers with normal spirometry but low DLCO are at significant risk for developing COPD with obstruction to airflow. PMID:26541521

  6. Diffusion-weighted magnetic resonance imaging with apparent diffusion coefficient (ADC) determination in normal and pathological fetal kidneys.

    Science.gov (United States)

    Chaumoitre, K; Colavolpe, N; Shojai, R; Sarran, A; D' Ercole, C; Panuel, M

    2007-01-01

    To assess the use of diffusion-weighted magnetic resonance imaging (DW-MRI) in the evaluation of the fetal kidney and to estimate age-dependent changes in the apparent diffusion coefficient (ADC) of normal and pathological fetal kidneys. DW-MRI was performed on a 1.5-T machine at 23-38 gestational weeks in 51 pregnant women in whom the fetal kidneys were normal and in 10 whose fetuses had renal pathology (three with suspected nephropathy, three with renal tract dilatation, one with unilateral renal venous thrombosis, and three with twin-twin transfusion syndrome (TTTS)). The ADC was measured in an approximately 1-cm2 region of interest within the renal parenchyma. ADC values in normal renal parenchyma ranged from 1.1 to 1.8 10(-3) mm2 s-1. There was no significant age-dependent change in the ADC of normal kidneys. In cases of nephropathy, the ADC value was not always pathological but an ADC map could show abnormal findings. In cases of dilatation, the ADC value was difficult to determine when the dilatation was huge. In cases of TTTS, the ADC of the donor twin was higher than that of the recipient twin and the difference seemed to be related to the severity of the syndrome. Evaluation of the ADC for fetal kidneys is feasible. Fetal measurement of the ADC value and ADC maps may be useful tools with which to explore the fetal kidney when used in conjunction with current methods. DW-MR images, ADC value and ADC map seem to be useful in cases of suspected nephropathy (hyperechoic kidneys), dilated kidney and vascular pathology (renal venous thrombosis, TTTS). Copyright (c) 2006 ISUOG.

  7. Preliminary study of diffusion tensor MR on the cervical spinal cord in normal subjects

    International Nuclear Information System (INIS)

    Zheng Kuihong; Ma Lin; Guo Xinggao; Liang Li

    2006-01-01

    Objective: To investigate a simplified and practical strategy for MR diffusion tensor imaging (DTI) of the cervical spinal cord and acquire the normal values of DTI parameters in normal subjects, and to offer the basis for the research of the cervical spinal cord disorders. Methods: DTI examinations were performed in 36 consecutive healthy subjects by using SE-EPI sequence on the cervical spinal cord. The values of apparent diffusion coefficient (ADC), fractional anisotropy (FA), λ 1 , λ 2 , and λ 3 were measured in regions of interest positioned in the normal cervical cords. Results: All 36 subjects completed the examinations. The cervical spinal cords were clearly demonstrated on the postprocessing images, and there were no obvious artifacts on the diffusion tensor images. The average value of ADC was (914.44±82.61) x 10 -6 mm 2 /s and FA was (593.84±52.22) x 10 -3 . The diffusivity components parallel (λ 1 ) and orthogonal (λ 2 and λ 3 ) to the longitudinal axes of the spinal cord were (1585.10±130.07) x 10 -6 mm 2 /s, (559.84±66.49) x 10 -6 mm 2 /s, and (613.28±128.71) x 10 -6 mm 2 /s, respectively. The value of λ 1 was significantly higher than that of λ 2 and λ 3 (P 2 and λ 3 (P>0.05). The value of 2λ 1 /(λ 2 +λ 3 ) was 2.74± 0.32. Conclusion: The normal cervical spinal cord can be well demonstrated in vivo by using DTI with SE-EPI sequence, and various parameters acquired on DTI are stable. The water diffusivity in the direction parallel to the longitudinal axes of the spinal cord is found to be higher than that in directions perpendicular to the longitudinal axes of the spinal cord, thus suggesting the cylindrical anisotropic characteristics in the cervical spinal cord. (authors)

  8. Apparent diffusion coefficient values of the normal uterus: Interindividual variations during menstrual cycle

    International Nuclear Information System (INIS)

    Tsili, A.C.; Argyropoulou, M.I.; Tzarouchi, L.; Dalkalitsis, N.; Koliopoulos, G.; Paraskevaidis, E.; Tsampoulas, K.

    2012-01-01

    Objectives: To assess the apparent diffusion coefficient (ADC) changes of the normal uterine zones among reproductive women during the menstrual cycle. Methods: The study included 101 women of reproductive age, each with regular cycle and normal endometrium/myometrium, as proved on histopathology or MR imaging examination. Diffusion-weighted (DW) imaging was performed along the axial plane, using a single shot, multi-slice spin-echo planar diffusion pulse sequence and b-values of 0 and 800 s/mm 2 . The mean and standard deviation of the ADC values of normal endometrium/myometrium were calculated for menstrual, proliferative and secretory phase. Analysis of variance followed by the least significant difference test was used for statistical analysis. Results: The ADC values of the endometrium were different in the three phases of the menstrual cycle (menstrual phase: 1.25 ± 0.27; proliferative phase: 1.39 ± 0.20; secretory phase: 1.50 ± 0.18) (F: 9.64, p: 0.00). Statistical significant difference was observed among all groups (p 0.05). Conclusions: A wide variation of ADC values of normal endometrium and myometrium is observed during different phases of the menstrual cycle.

  9. Diffusion-weighted MRI in prostatic lesions: Diagnostic performance of normalized ADC using normal peripheral prostatic zone as a reference

    Directory of Open Access Journals (Sweden)

    Tamer F. Taha Ali

    2018-03-01

    Full Text Available Aim of study: Evaluate the potential value of the normal peripheral zone as a reference organ to normalize prostatic lesion apparent diffusion coefficient (ADC to improve its evaluation of prostatic lesions. Patients and methods: This prospective study included 38 patients with clinical suspicion of cancer prostate (increased PSA levels (>4 ng/ml, hard prostate in digital rectal examination and who are scheduled to undergo a TRUS-guided biopsy. Conventional and DW-MRI was done and ADC was calculated. The normalized ADC value was calculated by dividing the ADC of lesion by ADC of reference site (healthy peripheral zone. DWI-MRI results were compared to the results of biopsy. Comparison of ADCs and nADCs of benign and malignant lesions was done. Receiver operating characteristics (ROC curve analysis was done. Results: The patients were classified by histopathology into non-malignant group (16 patients and malignant group (22 patients. Significant negative correlation between ADC and normalized ADC (nADC and malignancy was detected. There was no significant difference between the mean ADC of peripheral health prostatic zones (PZ between benign and malignant cases (2.221 ± 0.356 versus 1.99 ± 0.538x10−3 mm2/sec, p = 0.144.There was significant difference between the mean ADC and mean nADC in benign and malignant lesions (1.049 ± 0.217 versus 0.659 ± 0.221x10−3 mm2/sec, p < 0.001 and (0.475 ± 0.055 versus 0.328 ± 0.044, p < 0.001 respectively.There was significant higher diagnostic performance of nADC than ADC with ADC Cut-off value 0.75 × 10−3 mm2/sec and nADC cut-off value 0.39 could significantly differentiate between benign and malignant lesion with sensitivity, specificity, PPV,NPV of 86.36,75,82.61 and 80% respectively, p < 0.0001 for ADC and 95.45, 93.75, 95.45 and 93.75%, p < 0.0001 for nADC. Conclusion: diagnostic performance of nADC using normal peripheral zone is higher than

  10. Apparent diffusion coefficients of normal uterus in premenopausal women with 3 T MRI

    International Nuclear Information System (INIS)

    Kuang, F.; Chen, Z.; Zhong, Q.; Fu, L.; Ma, M.

    2013-01-01

    Aim: To investigate the apparent diffusion coefficient (ADC) values of the normal uterine cervical zonal structures (cervical epithelium, the junctional zone, and myometrium) during different phases of the menstrual cycle among premenopausal women in different age groups. Materials and methods: Seventy healthy women, who were divided into three age groups (group A, 24 women in their twenties; group B, 23 women in their thirties; group C, 23 women in their forties), underwent 3 T magnetic resonance imaging (MRI) with T2-weighted and diffusion-weighted imaging (DWI) during the mid-proliferative and the mid-secretory phases. Results: The ADC values of each cervical zonal structure were significantly different from one another (p 0.05). Conclusion: ADC values of normal cervical epithelium and the junctional zone change with different phases of the menstrual cycle, which should be taken into consideration when early cervical disease is detected, when monitoring treatment response, and differentiating early tumour recurrence

  11. Risk of COPD with obstruction in active smokers with normal spirometry and reduced diffusion capacity.

    Science.gov (United States)

    Harvey, Ben-Gary; Strulovici-Barel, Yael; Kaner, Robert J; Sanders, Abraham; Vincent, Thomas L; Mezey, Jason G; Crystal, Ronald G

    2015-12-01

    Smokers are assessed for chronic obstructive pulmonary disease (COPD) using spirometry, with COPD defined by the Global Initiative for Chronic Obstructive Lung Disease (GOLD) as airflow limitation that is not fully reversible with bronchodilators. There is a subset of smokers with normal spirometry (by GOLD criteria), who have a low diffusing capacity of the lung for carbon monoxide (DLCO), a parameter linked to emphysema and small airway disease. The natural history of these "normal spirometry/low DLCO" smokers is unknown.From a cohort of 1570 smokers in the New York City metropolitian area, all of whom had normal spirometry, two groups were randomly selected for lung function follow-up: smokers with normal spirometry/normal DLCO (n=59) and smokers with normal spirometry/low DLCO (n=46). All had normal history, physical examination, complete blood count, urinalysis, HIV status, α1-antitrypsin level, chest radiography, forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC ratio and total lung capacity. Throughout the study, all continued to be active smokers.In the normal spirometry/normal DLCO group assessed over 45±20 months, 3% developed GOLD-defined COPD. In contrast, in the normal spirometry/low DLCO group, followed over 41±31 months, 22% developed GOLD-defined COPD.Despite appearing "normal" according to GOLD, smokers with normal spirometry but low DLCO are at significant risk of developing COPD with obstruction to airflow. Copyright ©ERS 2015.

  12. [What is "normal"? Maternal parenting behavior as risk and protective factor for psychopathology and identity diffusion].

    Science.gov (United States)

    Seiffge-Krenke, Inge; Escher, Fabian J

    2018-06-01

    What is "normal"? Maternal parenting behavior as risk and protective factor for psychopathology and identity diffusion Objectives: This study analyzes the implications of today's highly altered maternal parenting behaviors on children's development and psychological health. The relationship between maternal parenting behaviors (support, psychological control, and anxious monitoring) and delayed identity development or identity diffusion as well as internalizing or externalizing symptomatology was investigated in a sample of 732 youths (301 adolescents, 351 young adults, and 80 patients). Cluster analysis identified two types of maternal parenting behaviors: authoritative maternal behavior and dysfunctionalmaternal behavior. As expected, patients exhibited a high degree of dysfunctional maternal parenting behavior (low support, high psychological control), delayed identity development as well as elevated identity diffusion and symptomatology.Authoritative maternal parenting emerged as a protective factor in the prediction of identity diffusion and symptomatology.All three groups described a high degree of anxious maternal monitoring. The implications of changed maternal parenting behaviors on identity diffusion and symptomatology are discussed in light of societal changes and changing criteria of personality disorders in the new DSM-5.

  13. Apparent diffusion coefficient values of the normal uterus: Interindividual variations during menstrual cycle

    Energy Technology Data Exchange (ETDEWEB)

    Tsili, A.C., E-mail: a_tsili@yahoo.gr [Department of Clinical Radiology, University Hospital of Ioannina (Greece); Argyropoulou, M.I., E-mail: margyrop@cc.uoi.gr [Department of Clinical Radiology, University Hospital of Ioannina (Greece); Tzarouchi, L., E-mail: ltzar@cc.uoi.gr [Department of Clinical Radiology, University Hospital of Ioannina (Greece); Dalkalitsis, N., E-mail: ndalkal@cc.uoi.gr [Department of Obstetrics and Gynaecology, University Hospital of Ioannina (Greece); Koliopoulos, G., E-mail: georgekoliopoulos@yahoo.com [Department of Obstetrics and Gynaecology, University Hospital of Ioannina (Greece); Paraskevaidis, E., E-mail: eparaske@cc.uoi.gr [Department of Obstetrics and Gynaecology, University Hospital of Ioannina (Greece); Tsampoulas, K., E-mail: ctsampou@uoi.gr [Department of Clinical Radiology, University Hospital of Ioannina (Greece)

    2012-08-15

    Objectives: To assess the apparent diffusion coefficient (ADC) changes of the normal uterine zones among reproductive women during the menstrual cycle. Methods: The study included 101 women of reproductive age, each with regular cycle and normal endometrium/myometrium, as proved on histopathology or MR imaging examination. Diffusion-weighted (DW) imaging was performed along the axial plane, using a single shot, multi-slice spin-echo planar diffusion pulse sequence and b-values of 0 and 800 s/mm{sup 2}. The mean and standard deviation of the ADC values of normal endometrium/myometrium were calculated for menstrual, proliferative and secretory phase. Analysis of variance followed by the least significant difference test was used for statistical analysis. Results: The ADC values of the endometrium were different in the three phases of the menstrual cycle (menstrual phase: 1.25 {+-} 0.27; proliferative phase: 1.39 {+-} 0.20; secretory phase: 1.50 {+-} 0.18) (F: 9.64, p: 0.00). Statistical significant difference was observed among all groups (p < 0.05). The ADC values of the normal myometrium were different in the three phases of the menstrual cycle (menstrual phase: 1.91 {+-} 0.35; proliferative phase: 1.72 {+-} 0.27; secretory phase: 1.87 {+-} 0.28) (F: 3.60, p: 0.03). Statistical significant difference was observed between menstrual and proliferative phase and between proliferative and secretory phase (p < 0.05). No significant difference was noted between menstrual and secretory phase (p > 0.05). Conclusions: A wide variation of ADC values of normal endometrium and myometrium is observed during different phases of the menstrual cycle.

  14. Phase-conjugate resonant holographic interferometry applied to NH concentration measurements in a 2D diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Tzannis, A P; Beaud, P; Frey, H M; Gerber, T; Mischler, B; Radi, P P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Resonant Holographic Interferometry is a method based on the anomalous dispersion of light having a frequency close to an electronic transition of a molecule. We propose a novel single-laser, two-colour setup for recording resonant holograms and apply it to 2D species concentration measurements. The second colour is generated by optical phase-conjugation from Stimulated Brillouin scattering in a cell. Phase-Conjugate Resonant Holographic Interferometry (PCRHI) is demonstrated in a 2D NH{sub 3}/O{sub 2} flame yielding interferograms that contain information on the NH radical distribution in the flame. Experimental results are quantified by applying a numerical computation of the Voigt profiles. (author) 1 fig., 3 refs.

  15. Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix

    International Nuclear Information System (INIS)

    Naganawa, Shinji; Sato, Chiho; Ishigaki, Takeo; Kumada, Hisashi; Miura, Shunichi; Takizawa, Osamu

    2005-01-01

    A relation between apparent diffusion coefficient (ADC) values and tumor cellular density has been reported. The purpose of this study was to measure the ADC values of cervical cancers in the uterus and compare them with those of normal cervical tissues, and to test whether ADC could differentiate between normal and malignant cervical tissues in the uterus. Twelve consecutive female patients with cervical cancer of the uterus and ten female patients with other pelvic abnormalities were included in this study. ADC was measured at 1.5 T with b-factors of 0, 300 and 600 s/mm 2 using single-shot echo-planar diffusion-weighted imaging and a parallel imaging technique. The mean ADC value of cervical cancer lesions was 1.09±0.20 x 10 -3 mm 2 /s, and that of normal cervix tissue was 1.79±0.24 x 10 -3 mm 2 /s (P<0.0001). In nine patients treated by chemotherapy and/or radiation therapy, the mean ADC value of the cervical cancer lesion increased significantly after therapy (P<0.001). The present study showed, with a small number of patients, that ADC measurement has a potential ability to differentiate between normal and cancerous tissue in the uterine cervix. Further study is necessary to determine the accuracy of ADC measurement in monitoring the treatment response. (orig.)

  16. Optimization of b-value distribution for biexponential diffusion-weighted MR imaging of normal prostate.

    Science.gov (United States)

    Jambor, Ivan; Merisaari, Harri; Aronen, Hannu J; Järvinen, Jukka; Saunavaara, Jani; Kauko, Tommi; Borra, Ronald; Pesola, Marko

    2014-05-01

    To determine the optimal b-value distribution for biexponential diffusion-weighted imaging (DWI) of normal prostate using both a computer modeling approach and in vivo measurements. Optimal b-value distributions for the fit of three parameters (fast diffusion Df, slow diffusion Ds, and fraction of fast diffusion f) were determined using Monte-Carlo simulations. The optimal b-value distribution was calculated using four individual optimization methods. Eight healthy volunteers underwent four repeated 3 Tesla prostate DWI scans using both 16 equally distributed b-values and an optimized b-value distribution obtained from the simulations. The b-value distributions were compared in terms of measurement reliability and repeatability using Shrout-Fleiss analysis. Using low noise levels, the optimal b-value distribution formed three separate clusters at low (0-400 s/mm2), mid-range (650-1200 s/mm2), and high b-values (1700-2000 s/mm2). Higher noise levels resulted into less pronounced clustering of b-values. The clustered optimized b-value distribution demonstrated better measurement reliability and repeatability in Shrout-Fleiss analysis compared with 16 equally distributed b-values. The optimal b-value distribution was found to be a clustered distribution with b-values concentrated in the low, mid, and high ranges and was shown to improve the estimation quality of biexponential DWI parameters of in vivo experiments. Copyright © 2013 Wiley Periodicals, Inc.

  17. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho

    2013-03-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of burner diameter, burner gap, and velocity ratio. A critical nitrogen mole fraction exists beyond which the flame cannot be sustained; the critical nitrogen mole fraction versus global strain rate curves have C-shapes for various burner diameters, burner gaps, and velocity ratios. At sufficiently high strain-rate flames, these curves collapse into one curve; therefore, the flames follow the one-dimensional flame response of a typical diffusion flame. Low strain-rate flames are significantly affected by radial conductive heat loss, and therefore flame length. Three flame extinction modes are identified: flame extinction through shrinkage of the outer-edge flame with or without oscillations at the outer-edge flame prior to the extinction, and flame extinction through a flame hole at the flame center. The extinction modes are significantly affected by the behavior of the outer-edge flame. Detailed explanations are provided based on the measured flame-surface temperature and numerical evaluation of the fractional contribution of each term in the energy equation. Radial conductive heat loss at the flame edge to ambience is the main mechanism of extinction through shrinkage of the outer-edge flame in low strain-rate flames. Reduction of the burner diameter can extend the flame extinction mode by shrinking the outer-edge flame in higher strain-rate flames. © 2012 Elsevier Ltd. All rights reserved.

  18. Dynamics of normal and superfluid fogs using diffusing-wave spectroscopy

    International Nuclear Information System (INIS)

    Kim, Heetae; Lemieux, Pierre-Anthony; Durian, Douglas J.; Williams, Gary A.

    2004-01-01

    The dynamics of normal and superfluid fogs are studied using the technique of diffusing-wave spectroscopy. For a water fog generated with a 1.75 MHz piezoelectric driver below the liquid surface, the 7 μm diameter droplets are found to have diffusive dynamics for correlation times long compared to the viscous time. For a fog of 10 μm diameter superfluid helium droplets in helium vapor at 1.5 K the motion appears to be ballistic for correlation times short compared to the viscous time. The velocity correlations between the helium droplets are found to depend on the initial velocity with which the droplets are injected from the helium surface into the fog

  19. Pediatric and adult MRI atlas of bone marrow. Normal appearances, variants and diffuse disease states

    Energy Technology Data Exchange (ETDEWEB)

    Ilaslan, Hakan; Sundaram, Murali [Cleveland Clinic Lerner College of Medicine, OH (United States); Cleveland Clinic Department of Radiology, OH (United States)

    2016-08-01

    This comprehensive atlas is unique in being devoted to the MRI appearances of bone marrow in the axial and appendicular skeleton of adults and children. Normal MRI findings, including common variants and degenerative changes, are first documented. MRI appearances in the entire spectrum of neoplastic and non-neoplastic infiltrative marrow disorders are then presented, with accompanying explanatory text. Among the conditions considered are multiple myeloma, the acute and chronic leukemias, diffuse metastases, diffuse lymphomas, the anemias, polycythemia vera, myelofibrosis, storage disorders, and infections. Characteristic changes to bone marrow following various forms of treatment are also displayed and discussed. The selected images reflect the use of a variety of sequences and techniques, such as fat suppression, and contrast-enhanced imaging.

  20. Transition from normal to ballistic diffusion in a one-dimensional impact system

    Science.gov (United States)

    Livorati, André L. P.; Kroetz, Tiago; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.

    2018-03-01

    We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of noninteracting particles, experiencing elastic collisions with a heavy and periodically moving wall under the influence of a constant gravitational field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are able to characterize a transition between the two regimes, where transport properties were used to characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit to reach an accelerator mode as a function of the velocity, we observe a competition between the normal and ballistic transport in the midrange velocity.

  1. Reproducibility of corticospinal diffusion tensor tractography in normal subjects and hemiparetic stroke patients

    International Nuclear Information System (INIS)

    Lin, Chao-Chun; Tsai, Miao-Yu; Lo, Yu-Chien; Liu, Yi-Jui; Tsai, Po-Pang; Wu, Chiao-Ying; Lin, Chia-Wei; Shen, Wu-Chung; Chung, Hsiao-Wen

    2013-01-01

    Purpose: The reproducibility of corticospinal diffusion tensor tractography (DTT) for a guideline is important before longitudinal monitoring of the therapy effects in stroke patients. This study aimed to establish the reproducibility of corticospinal DTT indices in healthy subjects and chronic hemiparetic stroke patients. Materials and methods: Written informed consents were obtained from 10 healthy subjects (mean age 25.8 ± 6.8 years), who underwent two scans in one session plus the third scan one week later, and from 15 patients (mean age 47.5 ± 9.1 years, 6–60 months after the onset of stroke, NIHSS scores between 9 and 20) who were scanned thrice on separate days within one month. Diffusion-tensor imaging was performed at 3 T with 25 diffusion directions. Corticospinal tracts were reconstructed using fiber assignment by continuous tracking without and with motion/eddy-current corrections. Intra- and inter-rater as well as intra- and inter-session variations of the DTT derived indices (fiber number, apparent diffusion coefficient (ADC), and fractional anisotropy (FA)) were assessed. Results: Intra-session and inter-session coefficients of variations (CVs) are small for FA (1.13–2.09%) and ADC (0.45–1.64%), but much larger for fiber number (8.05–22.4%). Inter-session CVs in the stroke side of patients (22.4%) are higher than those in the normal sides (18.0%) and in the normal subjects (14.7%). Motion/eddy-current correction improved inter-session reproducibility only for the fiber number of the infarcted corticospinal tract (CV reduced from 22.4% to 14.1%). Conclusion: The fiber number derived from corticospinal DTT shows substantially lower precision than ADC and FA, with infarcted tracts showing lower reproducibility than the healthy tissues

  2. REDUCTION OF NO FORMATION BY THERMAL EFFECT OF A TURBULNENT DIFFUSION FLAME H2/AIR MODELED BY THE CONCEPT OF LAMINAR FLAMELET

    Directory of Open Access Journals (Sweden)

    HADEF AMAR

    2016-03-01

    Full Text Available Highly exothermic reactions are responsible for the formation of harmful polluting chemical species to humans and the biosphere. In this context, nitrogen oxides (NOx are pollutants that are the subject of special attention on the part of regulators. In this work we studied the impact of a co-flow swirl on the internal structure of a turbulent diffusion flame H2-N2/Air and its role in reducing the formation of NO, which is modeled by the concept of laminar flamelet, while the flow field is modeled by the standard model k-ε, with a correction term for round jets.The results show good agreement with data from the experimental data.

  3. Dual-pump CARS measurements in a hydrogen diffusion flame in cross-flow with AC dielectric barrier discharge

    Science.gov (United States)

    Nishihara, Munetake; Freund, Jonathan B.; Glumac, Nick G.; Elliott, Gregory S.

    2018-03-01

    This paper presents dual-pump coherent anti-Stokes Raman scattering (CARS) measurements for simultaneous detection of flow temperature and relative concentration, applied to the characterization of a discharge-coupled reacting jet in a cross flow. The diagnostic is hydrogen Q-branch based, providing a much wider dynamic range compared to detection in the S-branch. For a previously developed dielectric barrier discharge, aligned co-axially with the fuel jet, OH planar laser induced fluorescence measurements show that the disturbance in the flame boundary leads to mixing enhancement. The H2-N2 dual-pump CARS measurement was used to map two-dimensional temperature distributions. The increase of the maximum temperature was up to 300 K, with 50% more H2 consumption, providing the reason for the decrease in the flame length by 25%. The increase of the relative H2O-H2 fraction was accompanied with a temperature increase, which indicates local equivalence ratios of below 1. The H2-O2 dual-pump measurements confirmed that the fuel-oxidizer ratios remain in the fuel-lean side at most of the probed locations.

  4. The VLT-FLAMES Tarantula Survey. IX. The interstellar medium seen through diffuse interstellar bands and neutral sodium

    NARCIS (Netherlands)

    van Loon, J.Th.; Bailey, M.; Tatton, B.L.; Maíz Apellániz, J.; Crowther, P.A.; de Koter, A.; Evans, C.J.; Hénault-Brunet, V.; Howarth, I.D.; Richter, P.; Sana, H.; Simón-Díaz, S.; Taylor, W.; Walborn, N.R.

    2013-01-01

    Context. The Tarantula Nebula (a.k.a. 30 Dor) is a spectacular star-forming region in the Large Magellanic Cloud (LMC), seen through gas in the Galactic disc and halo. Diffuse interstellar bands (DIBs) offer a unique probe of the diffuse, cool-warm gas in these regions. Aims. The aim is to use DIBs

  5. Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor

    International Nuclear Information System (INIS)

    Zijta, F.M.; Froeling, M.; Paardt, M.P. van der; Bipat, S.; Nederveen, A.J.; Stoker, J.; Lakeman, M.M.E.; Montauban van Swijndregt, A.D.; Strijkers, G.J.

    2011-01-01

    To prospectively determine the feasibility of diffusion tensor imaging (DTI) with fibre tractography as a tool for the three-dimensional (3D) visualisation of normal pelvic floor anatomy. Five young female nulliparous subjects (mean age 28 ± 3 years) underwent DTI at 3.0T. Two-dimensional diffusion-weighted axial spin-echo echo-planar (SP-EPI) pulse sequence of the pelvic floor was performed, with additional T2-TSE multiplanar sequences for anatomical reference. Fibre tractography for visualisation of predefined pelvic floor and pelvic wall muscles was performed offline by two observers, applying a consensus method. Three eigenvalues (λ1, λ2, λ3), fractional anisotropy (FA) and mean diffusivity (MD) were calculated from the fibre trajectories. In all subjects fibre tractography resulted in a satisfactory anatomical representation of the pubovisceral muscle, perineal body, anal - and urethral sphincter complex and internal obturator muscle. Mean FA values ranged from 0.23 ± 0.02 to 0.30 ± 0.04, MD values from 1.30 ± 0.08 to 1.73 ± 0.12 x 10- 3 mm 2 /s. Muscular structures in the superficial layer of the pelvic floor could not be satisfactorily identified. This study demonstrates the feasibility of visualising the complex three-dimensional pelvic floor architecture using 3T-DTI with fibre tractography. DTI of the deep female pelvic floor may provide new insights into pelvic floor disorders. (orig.)

  6. Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor

    Energy Technology Data Exchange (ETDEWEB)

    Zijta, F.M. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Onze Lieve Vrouwe Gasthuis, Department of Radiology, Amsterdam (Netherlands); Froeling, M. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Eindhoven University of Technology, Biomedical NMR, Department of Biomedical Engineering, Eindhoven (Netherlands); Paardt, M.P. van der; Bipat, S.; Nederveen, A.J.; Stoker, J. [University of Amsterdam, Department of Radiology, Academic Medical Center, Amsterdam (Netherlands); Lakeman, M.M.E. [University of Amsterdam, Department of Gynaecology, Academic Medical Center, Amsterdam (Netherlands); Montauban van Swijndregt, A.D. [Onze Lieve Vrouwe Gasthuis, Department of Radiology, Amsterdam (Netherlands); Strijkers, G.J. [Eindhoven University of Technology, Biomedical NMR, Department of Biomedical Engineering, Eindhoven (Netherlands)

    2011-06-15

    To prospectively determine the feasibility of diffusion tensor imaging (DTI) with fibre tractography as a tool for the three-dimensional (3D) visualisation of normal pelvic floor anatomy. Five young female nulliparous subjects (mean age 28 {+-} 3 years) underwent DTI at 3.0T. Two-dimensional diffusion-weighted axial spin-echo echo-planar (SP-EPI) pulse sequence of the pelvic floor was performed, with additional T2-TSE multiplanar sequences for anatomical reference. Fibre tractography for visualisation of predefined pelvic floor and pelvic wall muscles was performed offline by two observers, applying a consensus method. Three eigenvalues ({lambda}1, {lambda}2, {lambda}3), fractional anisotropy (FA) and mean diffusivity (MD) were calculated from the fibre trajectories. In all subjects fibre tractography resulted in a satisfactory anatomical representation of the pubovisceral muscle, perineal body, anal - and urethral sphincter complex and internal obturator muscle. Mean FA values ranged from 0.23 {+-} 0.02 to 0.30 {+-} 0.04, MD values from 1.30 {+-} 0.08 to 1.73 {+-} 0.12 x 10-{sup 3} mm{sup 2}/s. Muscular structures in the superficial layer of the pelvic floor could not be satisfactorily identified. This study demonstrates the feasibility of visualising the complex three-dimensional pelvic floor architecture using 3T-DTI with fibre tractography. DTI of the deep female pelvic floor may provide new insights into pelvic floor disorders. (orig.)

  7. Characteristics of Oscillating Flames in a Coaxial Confined Jet

    Directory of Open Access Journals (Sweden)

    Min Suk Cha

    2010-12-01

    Full Text Available Flame characteristics when a non-premixed n-butane jet is ejected into a coaxial cylindrical tube are investigated experimentally. Flame stability depends mainly on the characteristics of flame propagation as well as air entrainment which depend on the jet momentum and on the distance between the nozzle exit and the base of a confined tube. As flow rate increases, the flame lifts off from a nozzle attached diffusion flame and a stationary lifted flame can be stabilized. The liftoff height increases nearly linearly with the average velocity at the nozzle exit. The lifted flame has a tribrachial flame structure, which consists of a rich premixed flame, a lean premixed flame, and a diffusion flame, all extending from a single location. As flow rate further increases, periodically oscillating flames are observed inside the confined tube. Once flame oscillation occurs, the flame undergoes relatively stable oscillation such that it has nearly constant oscillation amplitude and frequency. The criteria of flame oscillation are mapped as functions of nozzle diameter, the distance between nozzle and tube, and jet velocity. This type of flame oscillation can be characterized by Strouhal number in terms of flame oscillation amplitude, frequency, and jet velocity. Buoyancy driven flame oscillation which is one of the viable mechanism for flame oscillation is modeled and the results agrees qualitatively with experimental results, suggesting that the oscillation is due to periodic blowoff and flashback under the influence of buoyancy.

  8. Strained flamelets for turbulent premixed flames, I: Formulation and planar flame results

    Energy Technology Data Exchange (ETDEWEB)

    Kolla, H.; Swaminathan, N. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2010-05-15

    A strained flamelet model is proposed for turbulent premixed flames using scalar dissipation rate as a parameter. The scalar dissipation rate of reaction progress variable is a suitable quantity to describe the flamelet structure since it is governed by convection-diffusion-reaction balance and it is defined at every location in the flamelets, which are represented by laminar flames in reactant-to-product opposed flow configuration. The mean reaction rate is obtained by using the flamelets reaction rate and the joint pdf of the progress variable and its dissipation rate. The marginal pdf of the progress variable is presumed to be {beta}-pdf and the pdf of the conditional dissipation rate is taken to be log-normal. The conditional mean dissipation rate is obtained from modelled mean dissipation rate. This reaction rate closure is assessed using RANS calculations of statistically planar flames in the corrugated flamelets and thin reaction zones regimes. The flame speeds calculated using this closure are close to the experimental data of Abdel-Gayed et al. (1987) for flames in both the regimes. Comparisons with other reaction rate closures showed the benefits of the strained flamelets approach. (author)

  9. Analysis of Flame Characteristics in a Laboratory-Scale Turbulent Lifted Jet Flame via DNS

    Directory of Open Access Journals (Sweden)

    Haiou Wang

    2013-09-01

    Full Text Available A fully compressible 3D solver for reacting flows has been developed and applied to investigate a turbulent lifted jet flame in a vitiated coflow by means of direct numerical simulation (DNS to validate the solver and analyze the flame characteristics. An eighth-order central differencing scheme is used for spatial discretization and a fourth-order Runge-Kutta method is employed for time integration. The DNS results agree well with the experimental measurements for the conditional means of reactive scalars. However, the lift-off height is under predicted. The mean axial velocity develops into a self-similar profile after x/D = 6. The normalized flame index is employed to characterize the combustion regime. It is found that at the flame base the gradients of the reactants are opposed and diffusion combustion is dominant. Further downstream, the contribution of premixed combustion increases and peaks at x/D = 8. Finally, the stabilization process is examined. The turbulent lifted flame is proved to stabilize in the lean mixtures and low scalar dissipation rate regions.

  10. Normal versus anomalous self-diffusion in two-dimensional fluids: Memory function approach and generalized asymptotic Einstein relation

    Science.gov (United States)

    Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun

    2014-12-01

    Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.

  11. Stability of diffusion flame formed in a laminar flat plate boundary layer. Effect of fuel dilution; Soryu heiban kyokai sonai ni keiseisareru kakusan kaen no anteisei. Nenryo kishaku no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, M [National Institute for Resources and Environment, Tsukuba (Japan); Ueda, T; Mizumoto, M [Keio University, Tokyo (Japan). Faculty of Science and Technology; Amari, T [Keio University, Tokyo (Japan)

    1998-10-25

    A stability limit of the diffusion flame with fuel injection from a porous wall in a laminar flat plate boundary layer is measured as functions of fuel (CH4) concentration of CH4/N2 injectant mixture ({chi}) and its injection velocity (v). The free stream velocity (U{infinity}) is set as 0.6 m/s. The thermal condition at the wall is controlled by setting temperature at the upstream end of the porous wall as a reference temperature. When v >20 mm/s, the flame becomes unstable with the separation of leading flame edge with decreasing {chi}. The value of {chi} at the stability limit is constant without regard to v as long as the wall temperature is kept constant. As the wall temperature is decreased the value of {chi} increases. The separation is supposed to take place as a result of the limit of the reaction rate. When v <20 mm/s, the flame becomes unstable with the oscillation. The value of {chi} at the stability limit increases drastically with decreasing v. The oscillation takes place mainly due to the repeat of the extinction due to heat loss to the wall and the flame propagation in the combustible layer. 10 refs., 8 figs., 1 tab.

  12. Diffusion tensor tractography of language functional areas and fiber pathways in normal human brain

    International Nuclear Information System (INIS)

    Sun Xuejin; Dai Jianping; Chen Hongyan; Gao Peiyi; Ai Lin; Tian Shengyong; Pang Ruilin

    2007-01-01

    Objective: To demonstrate the fiber pathways of Broca area to the other functional brain areas with diffusion tensor imaging and fiber tracking. Methods: Conventionality MRI, diffusion tensor imaging (DTI) and fiber tracking were performed using 3.0 T MRI in 20 healthy person. The fiber bundles and tracts were analyzed in Broca area and contralateral normal area. Results: The left-side fiber bundles were 428 and the right-side were 416 in B45 area, there were no statistically significant differences between both sides (t=0.216, P>0.05). The left-side fiber bundles were 432 and the right-side were 344 in B44 area,there were statistically significant (t=2.314, P 0.05). Differences of the arcuate fascicule between both sides were not statistically significant (t=-0.465, P>0.05), the mean FA on the left was higher than the right (t=1.912, P<0.05). DTI and fiber tracking exhibited that the fiber bundles from Broca area were distributed superoanteriorly to the lateral foreside of the frontal lobe, lateroinferiorly to the occipital lobe through external capsule, and went down through globus pallidus and internal capsule. Conclusion: The fiber tracts bewteen Broca area and other brain areas were the fundamental structures for performing language function of the human brain. (authors)

  13. Normal and anomalous diffusion in fluctuations of dust concentration nearby emission source

    Science.gov (United States)

    Szczurek, Andrzej; Maciejewska, Monika; Wyłomańska, Agnieszka; Sikora, Grzegorz; Balcerek, Michał; Teuerle, Marek

    2018-02-01

    Particulate matter (PM) is an important component of air. Nowadays, major attention is payed to fine dust. It has considerable environmental impact, including adverse effect on human health. One of important issues regarding PM is the temporal variation of its concentration. The variation contains information about factors influencing this quantity in time. The work focuses on the character of PM concentration dynamics indoors, in the vicinity of emission source. The objective was to recognize between the homogeneous or heterogeneous dynamics. The goal was achieved by detecting normal and anomalous diffusion in fluctuations of PM concentration. For this purpose we used anomalous diffusion exponent, β which was derived from Mean Square Displacement (MSD) analysis. The information about PM concentration dynamics may be used to design sampling strategy, which serves to attain representative information about PM behavior in time. The data analyzed in this work was collected from single-point PM concentration monitoring in the vicinity of seven emission sources in industrial environment. In majority of cases we observed heterogeneous character of PM concentration dynamics. It confirms the complexity of interactions between the emission sources and indoor environment. This result also votes against simplistic approach to PM concentration measurement indoors, namely their occasional character, short measurement periods and long term averaging.

  14. Dynamics of an optically confined nanoparticle diffusing normal to a surface.

    Science.gov (United States)

    Schein, Perry; O'Dell, Dakota; Erickson, David

    2016-06-01

    Here we measure the hindered diffusion of an optically confined nanoparticle in the direction normal to a surface, and we use this to determine the particle-surface interaction profile in terms of the absolute height. These studies are performed using the evanescent field of an optically excited single-mode silicon nitride waveguide, where the particle is confined in a height-dependent potential energy well generated from the balance of optical gradient and surface forces. Using a high-speed cmos camera, we demonstrate the ability to capture the short time-scale diffusion dominated motion for 800-nm-diam polystyrene particles, with measurement times of only a few seconds per particle. Using established theory, we show how this information can be used to estimate the equilibrium separation of the particle from the surface. As this measurement can be made simultaneously with equilibrium statistical mechanical measurements of the particle-surface interaction energy landscape, we demonstrate the ability to determine these in terms of the absolute rather than relative separation height. This enables the comparison of potential energy landscapes of particle-surface interactions measured under different experimental conditions, enhancing the utility of this technique.

  15. Strain Map of the Tongue in Normal and ALS Speech Patterns from Tagged and Diffusion MRI.

    Science.gov (United States)

    Xing, Fangxu; Prince, Jerry L; Stone, Maureen; Reese, Timothy G; Atassi, Nazem; Wedeen, Van J; El Fakhri, Georges; Woo, Jonghye

    2018-02-01

    Amyotrophic Lateral Sclerosis (ALS) is a neurological disease that causes death of neurons controlling muscle movements. Loss of speech and swallowing functions is a major impact due to degeneration of the tongue muscles. In speech studies using magnetic resonance (MR) techniques, diffusion tensor imaging (DTI) is used to capture internal tongue muscle fiber structures in three-dimensions (3D) in a non-invasive manner. Tagged magnetic resonance images (tMRI) are used to record tongue motion during speech. In this work, we aim to combine information obtained with both MR imaging techniques to compare the functionality characteristics of the tongue between normal and ALS subjects. We first extracted 3D motion of the tongue using tMRI from fourteen normal subjects in speech. The estimated motion sequences were then warped using diffeomorphic registration into the b0 spaces of the DTI data of two normal subjects and an ALS patient. We then constructed motion atlases by averaging all warped motion fields in each b0 space, and computed strain in the line of action along the muscle fiber directions provided by tractography. Strain in line with the fiber directions provides a quantitative map of the potential active region of the tongue during speech. Comparison between normal and ALS subjects explores the changing volume of compressing tongue tissues in speech facing the situation of muscle degradation. The proposed framework provides for the first time a dynamic map of contracting fibers in ALS speech patterns, and has the potential to provide more insight into the detrimental effects of ALS on speech.

  16. Preliminary study of normal changes in brain white matter during childhood with diffusion tensor imaging

    International Nuclear Information System (INIS)

    Xiao Jiangxi; Guo Xuemei; Xie Sheng; Wang Xiaoying; Jiang Xuexiang

    2005-01-01

    Objective: To study the normal changes in brain white matter during childhood by analyzing the anisotropy of different regions and different age groups with diffusion tensor imaging (DTI). Methods: DTI was performed in 89 children (age range from 2 days to 18 years) without brain abnormalities, and the data measured in fractional anisotropy (FA) maps were analyzed statistically. Children less than 6 months were ranged to group 1, 6-12 months to group 2, 1-3 years to group 3, 3-5 years to group 4, 5-8 years to group 5, 8-12 years to group 6, 12-18 years to group 7. Results: (1) There were significant differences in anisotropy (FA values) among different regions of white matter in brain. In group 7, the FA value of corpus callosum was 0.826 ± 0.039, middle cerebellar peduncle 0.678 ± 0.043, frontal white matter 0.489 ± 0.033. (2) The anisotropy among different age group was statistically different, P<0.05. (3) The anisotropy of white matter increased with the increasing of age, and FA values showed positively exponentially correlations with age. Conclusion: DTI shows the structure of white matters in vivo, with which normal changes in brain during childhood can be evaluated. (authors)

  17. Regional diffusion changes of cerebral grey matter during normal aging-A fluid-inversion prepared diffusion imaging study

    International Nuclear Information System (INIS)

    Ni Jianming; Chen Shuang; Liu Jianjun; Huang Gang; Shen Tianzhen; Chen Xingrong

    2010-01-01

    Background and purpose: Although diffusion characteristics of white matter (WM) and its aging effects have been well described in the literature, diffusion characteristics of grey matter (GM), especially the cortical GM, have not been fully evaluated. In the present study, we used the fluid-inversion prepared diffusion imaging (FLIPD) technique to determine if there are age-related water diffusivity changes in GM. Materials and methods: 120 healthy volunteers were recruited for our study. They were divided into three age groups: group one (20-39 years old), group two (40-59 years old) and group three (60 years or older). All patients were evaluated with MRI using FLIPD at 3.0 T. Apparent diffusion coefficient (ADC) values of the frontal GM, cingulate cortex and thalami were determined bilaterally by region-of-interest analysis. Results: Group three had significantly higher ADC values in both thalami and the left frontal GM compared to group two or group one. No ADC value difference was found among the three groups in the right frontal GM and bilateral cingulate cortex. There was a significant positive correlation between individual ADC values and age in both thalami and left frontal GM. For the cingulate cortex and the right frontal GM, ADC values did not correlate significantly with advancing age. Conclusion: Statistically significant age-related diffusion changes were observed in both thalami and the left frontal cortex. The data reported here may serve as a reference for future studies.

  18. BROAD BALMER WINGS IN BA HYPER/SUPERGIANTS DISTORTED BY DIFFUSE INTERSTELLAR BANDS: FIVE EXAMPLES IN THE 30 DORADUS REGION FROM THE VLT-FLAMES TARANTULA SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Walborn, Nolan R.; Sana, Hugues; Sabbi, Elena, E-mail: walborn@stsci.edu, E-mail: hsana@stsci.edu, E-mail: sabbi@stsci.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2015-08-10

    Extremely broad emission wings at Hβ and Hα have been found in VLT-FLAMES Tarantula Survey data for five very luminous BA supergiants in or near 30 Doradus in the Large Magellanic Cloud. The profiles of both lines are extremely asymmetrical, which we have found to be caused by very broad diffuse interstellar bands (DIBs) in the longward wing of Hβ and the shortward wing of Hα. These DIBs are well known to interstellar but not to many stellar specialists, so that the asymmetries may be mistaken for intrinsic features. The broad emission wings are generally ascribed to electron scattering, although we note difficulties for that interpretation in some objects. Such profiles are known in some Galactic hyper/supergiants and are also seen in both active and quiescent Luminous Blue Variables (LBVs). No prior or current LBV activity is known in these 30 Dor stars, although a generic relationship to LBVs is not excluded; subject to further observational and theoretical investigation, it is possible that these very luminous supergiants are approaching the LBV stage for the first time. Their locations in the HRD and presumed evolutionary tracks are consistent with that possibility. The available evidence for spectroscopic variations of these objects is reviewed, while recent photometric monitoring does not reveal variability. A search for circumstellar nebulae has been conducted, with an indeterminate result for one of them.

  19. Properties of flames propagating in rich propane-air mixtures at microgravity

    Science.gov (United States)

    Wang, S. F.; Pu, Y. K.; Jia, F.; Jarosinski, J.

    Under normal gravity conditions it was found that the rich flammability limits for propane-air mixture are 9 2 C 3 H 8 equivalence ratio phi 2 42 for upward and 6 3 C 3 H 8 phi 1 60 for downward propagating flames An extremely large concentration gap exists between these two limits which is attributed to the influence of buoyancy and preferential diffusion in the mixture The present study enables a better understanding of flame behaviors in rich propane-air mixtures through microgravity experiments in which flame propagation can be examined in the absence of buoyancy The experiments were carried out in a cubic closed vessel of 80 mm inner length made of quartz glass A high-speed camera recorded flame propagation in the combustion vessel while the pressure history was measured by a transducer to indicate corresponding changes in heat release rate and the temperature development was measured by a thermocouple During the microgravity experiments the vessel was located inside a drop tower assembly The experimental data were compared with similar experiments conducted under normal gravity The flame characteristics were investigated for mixture concentrations between 6 5 C 3 H 8 and 9 2 C 3 H 8 Reliable data related to laminar burning velocity and flame thickness were obtained Some new details of the flame propagation near rich flammability limits were deduced Comparative experiments revealed the influence of gravity on combustion processes of rich propane-air

  20. Theoretical analysis of the conical premixed flame response to upstream velocity disturbances considering flame speed development effects

    Directory of Open Access Journals (Sweden)

    Ghazaleh Esmaeelzade

    2017-03-01

    Full Text Available The effect of upstream velocity perturbations on the response of a premixed flame was investigated in terms of the flame transfer function dependency on excitation frequency. In this study, the assumption of constant flame speed was extended and the effect of flame speed development was considered; i.e., the flame speed would grow with the time after ignition or with the distance from a flame-holder. In the present study, the kinematics of a conical flame was investigated by linearization of the front tracking equation of flame to uniform and convected fluctuations of the flow velocity and the response was compared with that of a V-shaped flame and the experimental data in the previous studies. The results show that the effect of flame speed development could influence a decreasing gain and increase the phase of the flame response to the uniform velocity oscillations in low and moderate frequencies. Comparing the variations in the gain of flame response upon normalized frequency, show that a conical flame has lower values than the V-flame. In other words, these flames might be less susceptible to combustion instabilities than the V-flames. Furthermore, the variations in phase of the V-flames responses, which show a quasi-linear behavior with normalized frequency, have higher values than the saturated behavior in phase of the conical flame responses. Also, considering that the flame speed development induces an increase in the gain and phase of the conical flame response to the convected velocity oscillations in certain frequencies; because the developed flame front has longer length in comparison to the flame front in constant flame speed model. Therefore, the flame length may be longer than convective wavelength and the heat release would be generated in different points of the flame; consequently the flow oscillations might exert a stronger impact on the unsteady heat release fluctuations.

  1. Synthesis of TiO2 nanoparticles containing Fe, Si, and V using multiple diffusion flames and catalytic oxidation capability of carbon-coated nanoparticles

    KAUST Repository

    Ismail, Mohamed

    2016-01-19

    Titanium dioxide (TiO2) nanoparticles containing iron, silicon, and vanadium are synthesized using multiple diffusion flames. The growth of carbon-coated (C–TiO2), carbon-coated with iron oxide (Fe/C–TiO2), silica-coated (Si–TiO2), and vanadium-doped (V–TiO2) TiO2 nanoparticles is demonstrated using a single-step process. Hydrogen, oxygen, and argon are utilized to establish the flame, with titanium tetraisopropoxide (TTIP) as the precursor for TiO2. For the growth of Fe/C–TiO2 nanoparticles, TTIP is mixed with xylene and ferrocene. While for the growth of Si–TiO2 and V–TiO2, TTIP is mixed with hexamethyldisiloxane (HMDSO) and vanadium (V) oxytriisopropoxide, respectively. The synthesized nanoparticles are characterized using high-resolution transmission electron microscopy (HRTEM) with energy-filtered TEM for elemental mapping (of Si, C, O, and Ti), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption BET surface area analysis, and thermogravimetric analysis. Anatase is the dominant phase for the C–TiO2, Fe/C–TiO2, and Si–TiO2 nanoparticles, whereas rutile is the dominant phase for the V–TiO2 nanoparticles. For C–TiO2 and Fe/C–TiO2, the nanoparticles are coated with about 3-5-nm thickness of carbon. The iron-based TiO2 nanoparticles significantly improve the catalytic oxidation of carbon, where complete oxidation of carbon occurs at a temperature of 470 °C (with iron) compared to 610 °C (without iron). Enhanced catalytic oxidation properties are also observed for model soot particles, Printex-U, when mixed with Fe/C-TiO2. With regards to Si–TiO2 nanoparticles, a uniform coating of 3 to 8 nm of silicon dioxide is observed around the TiO2 particles. This coating mainly occurs due to variance in the chemical reaction rates of the precursors. Finally, with regards to V–TiO2, vanadium is doped within the TiO2 nanoparticles as visualized by HRTEM and XPS further confirms the formation of

  2. Synthesis of TiO{sub 2} nanoparticles containing Fe, Si, and V using multiple diffusion flames and catalytic oxidation capability of carbon-coated nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Mohamed A. [King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (Saudi Arabia); Memon, Nasir K., E-mail: nmemon@qf.org.qa [HBKU, Qatar Foundation, Qatar Environment and Energy Research Institute (QEERI) (Qatar); Hedhili, Mohamed N.; Anjum, Dalaver H. [KAUST, Imaging and Characterization Lab (Saudi Arabia); Chung, Suk Ho [King Abdullah University of Science and Technology (KAUST), Clean Combustion Research Center (Saudi Arabia)

    2016-01-15

    Titanium dioxide (TiO{sub 2}) nanoparticles containing iron, silicon, and vanadium are synthesized using multiple diffusion flames. The growth of carbon-coated (C–TiO{sub 2}), carbon-coated with iron oxide (Fe/C–TiO{sub 2}), silica-coated (Si–TiO{sub 2}), and vanadium-doped (V–TiO{sub 2}) TiO{sub 2} nanoparticles is demonstrated using a single-step process. Hydrogen, oxygen, and argon are utilized to establish the flame, with titanium tetraisopropoxide (TTIP) as the precursor for TiO{sub 2}. For the growth of Fe/C–TiO{sub 2} nanoparticles, TTIP is mixed with xylene and ferrocene. While for the growth of Si–TiO{sub 2} and V–TiO{sub 2}, TTIP is mixed with hexamethyldisiloxane (HMDSO) and vanadium (V) oxytriisopropoxide, respectively. The synthesized nanoparticles are characterized using high-resolution transmission electron microscopy (HRTEM) with energy-filtered TEM for elemental mapping (of Si, C, O, and Ti), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption BET surface area analysis, and thermogravimetric analysis. Anatase is the dominant phase for the C–TiO{sub 2}, Fe/C–TiO{sub 2}, and Si–TiO{sub 2} nanoparticles, whereas rutile is the dominant phase for the V–TiO{sub 2} nanoparticles. For C–TiO{sub 2} and Fe/C–TiO{sub 2}, the nanoparticles are coated with about 3-5-nm thickness of carbon. The iron-based TiO{sub 2} nanoparticles significantly improve the catalytic oxidation of carbon, where complete oxidation of carbon occurs at a temperature of 470 °C (with iron) compared to 610 °C (without iron). Enhanced catalytic oxidation properties are also observed for model soot particles, Printex-U, when mixed with Fe/C-TiO{sub 2}. With regards to Si–TiO{sub 2} nanoparticles, a uniform coating of 3 to 8 nm of silicon dioxide is observed around the TiO{sub 2} particles. This coating mainly occurs due to variance in the chemical reaction rates of the precursors. Finally, with regards

  3. Synthesis of TiO2 nanoparticles containing Fe, Si, and V using multiple diffusion flames and catalytic oxidation capability of carbon-coated nanoparticles

    KAUST Repository

    Ismail, Mohamed; Memon, Nasir K.; Hedhili, Mohamed N.; Anjum, Dalaver H.; Chung, Suk-Ho

    2016-01-01

    Titanium dioxide (TiO2) nanoparticles containing iron, silicon, and vanadium are synthesized using multiple diffusion flames. The growth of carbon-coated (C–TiO2), carbon-coated with iron oxide (Fe/C–TiO2), silica-coated (Si–TiO2), and vanadium-doped (V–TiO2) TiO2 nanoparticles is demonstrated using a single-step process. Hydrogen, oxygen, and argon are utilized to establish the flame, with titanium tetraisopropoxide (TTIP) as the precursor for TiO2. For the growth of Fe/C–TiO2 nanoparticles, TTIP is mixed with xylene and ferrocene. While for the growth of Si–TiO2 and V–TiO2, TTIP is mixed with hexamethyldisiloxane (HMDSO) and vanadium (V) oxytriisopropoxide, respectively. The synthesized nanoparticles are characterized using high-resolution transmission electron microscopy (HRTEM) with energy-filtered TEM for elemental mapping (of Si, C, O, and Ti), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption BET surface area analysis, and thermogravimetric analysis. Anatase is the dominant phase for the C–TiO2, Fe/C–TiO2, and Si–TiO2 nanoparticles, whereas rutile is the dominant phase for the V–TiO2 nanoparticles. For C–TiO2 and Fe/C–TiO2, the nanoparticles are coated with about 3-5-nm thickness of carbon. The iron-based TiO2 nanoparticles significantly improve the catalytic oxidation of carbon, where complete oxidation of carbon occurs at a temperature of 470 °C (with iron) compared to 610 °C (without iron). Enhanced catalytic oxidation properties are also observed for model soot particles, Printex-U, when mixed with Fe/C-TiO2. With regards to Si–TiO2 nanoparticles, a uniform coating of 3 to 8 nm of silicon dioxide is observed around the TiO2 particles. This coating mainly occurs due to variance in the chemical reaction rates of the precursors. Finally, with regards to V–TiO2, vanadium is doped within the TiO2 nanoparticles as visualized by HRTEM and XPS further confirms the formation of

  4. Diffusion

    International Nuclear Information System (INIS)

    Kubaschewski, O.

    1983-01-01

    The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes

  5. Diffusion tensor imaging of idiopathic normal pressure hydrocephalus. A voxel-based fractional anisotropy study

    International Nuclear Information System (INIS)

    Koyama, Tetsuo; Ohmura, Takehisa; Miyake, Hiroji; Marumoto, Kohei; Domen, Kazuhisa

    2012-01-01

    Diffusion tensor imaging (DTI) using a 3.0 tesla magnetic resonance scanner was used to investigate white matter changes caused by idiopathic normal pressure hydrocephalus (INPH) in 10 patients diagnosed by clinical symptoms (gait disturbance, dementia, and/or urinary incontinence) and Evans index >0.3, and compared with findings for 10 age-matched controls (≥60 years). Then, using a computer-automated method, fractional anisotropy (FA) brain maps were generated and finally transformed into the standard space. Voxel-based FA values within two regions of interests (ROIs), the forceps minor and corticospinal tracts, were then separately evaluated. Within each ROI, statistical comparisons of results from the INPH and control groups were performed. In addition, for INPH patients, grading scores for clinical symptoms and FA values were correlated. The forceps minor mean FA value was much smaller for the INPH group (0.504) than for the control group (0.631). The corticospinal tract mean FA value was slightly smaller for the INPH group (0.588) than for the control group (0.632). Additional analyses indicated that lower FA values within the forceps minor tended to be associated with clinical symptoms such as urinary incontinence and gait disturbance. Our findings indicate FA values decreased in the forceps minor of INPH patients. We also found that lower values were associated with severer clinical symptoms, implying that DTI techniques may be developed for more accurate diagnosis. (author)

  6. Differential diagnosis of normal pressure hydrocephalus by MRI mean diffusivity histogram analysis.

    Science.gov (United States)

    Ivkovic, M; Liu, B; Ahmed, F; Moore, D; Huang, C; Raj, A; Kovanlikaya, I; Heier, L; Relkin, N

    2013-01-01

    Accurate diagnosis of normal pressure hydrocephalus is challenging because the clinical symptoms and radiographic appearance of NPH often overlap those of other conditions, including age-related neurodegenerative disorders such as Alzheimer and Parkinson diseases. We hypothesized that radiologic differences between NPH and AD/PD can be characterized by a robust and objective MR imaging DTI technique that does not require intersubject image registration or operator-defined regions of interest, thus avoiding many pitfalls common in DTI methods. We collected 3T DTI data from 15 patients with probable NPH and 25 controls with AD, PD, or dementia with Lewy bodies. We developed a parametric model for the shape of intracranial mean diffusivity histograms that separates brain and ventricular components from a third component composed mostly of partial volume voxels. To accurately fit the shape of the third component, we constructed a parametric function named the generalized Voss-Dyke function. We then examined the use of the fitting parameters for the differential diagnosis of NPH from AD, PD, and DLB. Using parameters for the MD histogram shape, we distinguished clinically probable NPH from the 3 other disorders with 86% sensitivity and 96% specificity. The technique yielded 86% sensitivity and 88% specificity when differentiating NPH from AD only. An adequate parametric model for the shape of intracranial MD histograms can distinguish NPH from AD, PD, or DLB with high sensitivity and specificity.

  7. Differences in supratentorial white matter diffusion after radiotherapy - New biomarker of normal brain tissue damage?

    Energy Technology Data Exchange (ETDEWEB)

    Ravn, Soeren; Jens Broendum Froekaer, Jens [Dept. of Radiology, Aalborg Univ. Hospital, Aalborg (Denmark)], e-mail: sorl@rn.dk; Holmberg, Mats [Dept. of Oncology, Aalborg Univ. Hospital, Aalborg (Denmark); Soerensen, Preben [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark); Carl, Jesper [Dept. of Neurosurgery, Aalborg Univ. Hospital, Aalborg (Denmark)

    2013-10-15

    Introduction: Therapy-induced injury to normal brain tissue is a concern in the treatment of all types of brain tumours. The purpose of this study was to investigate if magnetic resonance diffusion tensor imaging (DTI) could serve as a potential biomarker for the assessment of radiation-induced long-term white matter injury. Material and methods: DTI- and T1-weighted images of the brain were obtained in 19 former radiotherapy patients [nine men and 10 women diagnosed with astrocytoma (4), pituitary adenoma (6), meningioma (8) and craniopharyngioma (1), average age 57.8 (range 35-71) years]. Average time from radiotherapy to DTI scan was 4.6 (range 2.0-7.1) years. NordicICE software (NIC) was used to calculate apparent diffusion coefficient maps (ADC-maps). The co-registration between T1 images and ADC-maps were done using the auto function in NIC. The co-registration between the T1 images and the patient dose plans were done using the auto function in the treatment planning system Eclipse from Varian. Regions of interest were drawn on the T1-weighted images in NIC based on iso curves from Eclipse. Data was analysed by t-test. Estimates are given with 95 % CI. Results: A mean ADC difference of 4.6(0.3;8.9) X 10{sup -5} mm{sup 2}/s, p = 0.03 was found between paired white matter structures with a mean dose difference of 31.4 Gy. Comparing the ADC-values of the areas with highest dose from the paired data (dose > 33 Gy) with normal white matter (dose < 5 Gy) resulted in a mean dose difference of 44.1 Gy and a mean ADC difference of 7.87(3.15;12.60) X 10{sup -5} mm{sup 2}/s, p = 0.003. Following results were obtained when looking at differences between white matter mean ADC in average dose levels from 5 to 55 Gy in steps of 10 Gy with normal white matter mean ADC: 5 Gy; 1.91(-1.76;5.58) X 10{sup -5} mm{sup 2}/s, p = 0.29; 15 Gy; 5.81(1.53;10.11) X 10{sup -5} mm{sup 2}/s, p = 0.01; 25 Gy; 5.80(2.43;9.18) X 10{sup -5} mm{sup 2}/s, p = 0.002; 35 Gy; 5.93(2.89;8.97) X 10

  8. Age-related changes of the diffusion tensor imaging parameters of the normal cervical spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kun, E-mail: medsciwangkun@126.com [Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Song, Qingxin; Zhang, Fan; Chen, Zhi; Hou, Canglong; Tang, Yixing [Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Chen, Shiyue [Radiology Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Hao, Qiang, E-mail: haoqiang@189.cn [Radiology Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China); Shen, Hongxing, E-mail: shenhxgk@126.com [Orthopedics Department, Changhai Hospital Affiliated to Second Military Medical University, Shanghai (China)

    2014-12-15

    Highlights: • It is essential to determine the DTI parameters in the whole CSC. • To analyze DTI parameters in all intervertebral space levels of the CSC. • To study the impact of age on these parameters in healthy Chinese subjects. • Provide better insights in factors that could bias the diagnosis of CSC pathologies. - Abstract: Background: The diffusion tensor imaging (DTI) parameters of the cervical spinal cord (CSC) changes with age. However, previous studies only examined specific CSC areas. Objectives: To analyze the DTI parameters in all intervertebral space levels of the whole normal CSC and to study the impact of age on these parameters in a Chinese population. Methods: Thirty-six healthy subjects aged 20–77 years were recruited. DTI parameters were calculated for gray matter (GM) and white matter (WM) funiculi in all the CSC intervertebral spaces (C1/2-C6/7). Age-related changes of DTI parameters were analyzed for the GM and WM funiculi. Results: Fractional anisotropy (FA) and mean diffusivity (MD) were lower in GM than in WM. MD and FA values were lower in the WM in the lower CSC compared with the upper CSC (all P < 0.05), but no difference was observed in GM. In ventral funiculi, MD increased with age, while FA decreased (all P < 0.001). In lateral and dorsal funiculi, MD and FA decreased with age (all P < 0.001). In GM, MD and FA decreased with age (all P < 0.001). Significant age-related changes were observed in FA and MD from GM and WM funiculi. FA was correlated with age in all funiculi (ventral: r = −0.733; lateral: r = −0.468; dorsal: r = −0.607; GM: r = −0.724; all P < 0.01). Conclusion: Important changes in MD and FA were observed with advancing age at all levels of CSC in Chinese patients. DTI parameters may be useful to assess CSC pathology, but the influence of age and segments need to be taken into account in diagnosis.

  9. Age-related changes of the diffusion tensor imaging parameters of the normal cervical spinal cord

    International Nuclear Information System (INIS)

    Wang, Kun; Song, Qingxin; Zhang, Fan; Chen, Zhi; Hou, Canglong; Tang, Yixing; Chen, Shiyue; Hao, Qiang; Shen, Hongxing

    2014-01-01

    Highlights: • It is essential to determine the DTI parameters in the whole CSC. • To analyze DTI parameters in all intervertebral space levels of the CSC. • To study the impact of age on these parameters in healthy Chinese subjects. • Provide better insights in factors that could bias the diagnosis of CSC pathologies. - Abstract: Background: The diffusion tensor imaging (DTI) parameters of the cervical spinal cord (CSC) changes with age. However, previous studies only examined specific CSC areas. Objectives: To analyze the DTI parameters in all intervertebral space levels of the whole normal CSC and to study the impact of age on these parameters in a Chinese population. Methods: Thirty-six healthy subjects aged 20–77 years were recruited. DTI parameters were calculated for gray matter (GM) and white matter (WM) funiculi in all the CSC intervertebral spaces (C1/2-C6/7). Age-related changes of DTI parameters were analyzed for the GM and WM funiculi. Results: Fractional anisotropy (FA) and mean diffusivity (MD) were lower in GM than in WM. MD and FA values were lower in the WM in the lower CSC compared with the upper CSC (all P < 0.05), but no difference was observed in GM. In ventral funiculi, MD increased with age, while FA decreased (all P < 0.001). In lateral and dorsal funiculi, MD and FA decreased with age (all P < 0.001). In GM, MD and FA decreased with age (all P < 0.001). Significant age-related changes were observed in FA and MD from GM and WM funiculi. FA was correlated with age in all funiculi (ventral: r = −0.733; lateral: r = −0.468; dorsal: r = −0.607; GM: r = −0.724; all P < 0.01). Conclusion: Important changes in MD and FA were observed with advancing age at all levels of CSC in Chinese patients. DTI parameters may be useful to assess CSC pathology, but the influence of age and segments need to be taken into account in diagnosis

  10. Theory of charge transport in diffusive normal metal/conventional superconductor point contacts in the presence of magnetic impurity

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Inoue, J.; Asano, Y.

    2006-01-01

    Charge transport in the diffusive normal metal/insulator/s-wave superconductor junctions is studied in the presence of the magnetic impurity for various situations, where we have used the Usadel equation with Nazarov's generalized boundary condition. It is revealed that the magnetic impurity

  11. Radiation-Induced Changes in Normal-Appearing White Matter in Patients With Cerebral Tumors: A Diffusion Tensor Imaging Study

    International Nuclear Information System (INIS)

    Nagesh, Vijaya; Tsien, Christina I.; Chenevert, Thomas L.; Ross, Brian D.; Lawrence, Theodore S.; Junick, Larry; Cao Yue

    2008-01-01

    Purpose: To quantify the radiation-induced changes in normal-appearing white matter before, during, and after radiotherapy (RT) in cerebral tumor patients. Methods and Materials: Twenty-five patients with low-grade glioma, high-grade glioma, or benign tumor treated with RT were studied using diffusion tensor magnetic resonance imaging. The biologically corrected doses ranged from 50 to 81 Gy. The temporal changes were assessed before, during, and to 45 weeks after the start of RT. The mean diffusivity of water ( ), fractional anisotropy of diffusion, diffusivity perpendicular (λ perpendicular ) and parallel (λ parallel ) to white matter fibers were calculated in normal-appearing genu and splenium of the corpus callosum. Results: In the genu and splenium, fractional anisotropy decreased and , λ parallel , λ -perpendicular increased linearly and significantly with time (p -perpendicular had increased ∼30% in the genu and splenium, and λ parallel had increased 5% in the genu and 9% in the splenium, suggesting that demyelination is predominant. The increases in λ perpendicular and λ parallel were dose dependent, starting at 3 weeks and continuing to 32 weeks from the start of RT. The dose-dependent increase in λ perpendicular and λ parallel was not sustained after 32 weeks, indicating the transition from focal to diffuse effects. Conclusion: The acute and subacute changes in normal-appearing white matter fibers indicate radiation-induced demyelination and mild structural degradation of axonal fibers. The structural changes after RT are progressive, with early dose-dependent demyelination and subsequent diffuse dose-independent demyelination and mild axonal degradation. Diffusion tensor magnetic resonance imaging is potentially a biomarker for the assessment of radiation-induced white matter injury

  12. Extinction of corrugated hydrogen/air flames

    International Nuclear Information System (INIS)

    Mizomoto, M.; Asaka, Y.; Ikai, S.; Law, C.K.

    1982-01-01

    Recent studies on flammability limits reveal the importance of flow nonuniformity, flame curvature, and molecular and thermal diffusivities in determining the extinguishability and the associated limits of premixed fuel/air flames. In particular, it is found that conditions which favor extinction of a lean flame may cause intensification of a rich flame. In the present study the authors have experimentally determined the extinction characteristics and limits of highly curved hydrogen/air flames as represented by the opening of bunsen flame tips. Results show that the tip opens at a constant fuel equivalence ratio of phi = 1.15, regardless of the velocity and uniformity of the upstream flow. This critical mixture concentration, while being rich, is still on the lean side of that corresponding to the maximum burning velocity (phi = 1.8), implying that for highly diffusive systems, the relevant reference concentration is that for maximum burning velocity instead of stoichiometry

  13. Flame Length

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Flame length was modeled using FlamMap, an interagency fire behavior mapping and analysis program that computes potential fire behavior characteristics. The tool...

  14. Prediction of flame formation in highly preheated air combustion

    International Nuclear Information System (INIS)

    Yang, Jang Sik; Choi, Gyung Min; Kim, Duck Jool; Katsuki, Masashi

    2008-01-01

    Fundamental information about the ignition position and shape of a flame in highly preheated air combustion was obtained, and the suitability of the suggested reduced kinetic mechanism that reflects the characteristics of the highly preheated air combustion was demonstrated. Flame lift height and flame length with variations of premixed air temperature and oxygen concentration were measured by CH chemiluminescence intensity, and were computed with a reduced kinetic mechanism. Flame attached near a fuel nozzle started to lift when preheated air temperature became close to auto-ignition temperature and/or oxygen concentration reduced. The flame lift height increased but the flame length decreased with decreasing preheated air temperature and flame length reversed after a minimum value. Calculated results showed good agreement with those of experiment within tolerable error. Flame shape shifted from diffusion flame shape to partial premixed flame shape with increasing lift height and this tendency was also observed in the computation results

  15. Prediction of flame formation in highly preheated air combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jang Sik; Choi, Gyung Min; Kim, Duck Jool [Pusan National University, Busan (Korea, Republic of); Katsuki, Masashi [Osaka University, Osaka (Japan)

    2008-11-15

    Fundamental information about the ignition position and shape of a flame in highly preheated air combustion was obtained, and the suitability of the suggested reduced kinetic mechanism that reflects the characteristics of the highly preheated air combustion was demonstrated. Flame lift height and flame length with variations of premixed air temperature and oxygen concentration were measured by CH chemiluminescence intensity, and were computed with a reduced kinetic mechanism. Flame attached near a fuel nozzle started to lift when preheated air temperature became close to auto-ignition temperature and/or oxygen concentration reduced. The flame lift height increased but the flame length decreased with decreasing preheated air temperature and flame length reversed after a minimum value. Calculated results showed good agreement with those of experiment within tolerable error. Flame shape shifted from diffusion flame shape to partial premixed flame shape with increasing lift height and this tendency was also observed in the computation results

  16. Numerical Modelling of Soot Formation in Laminar Axisymmetric Ethylene-Air Coflow Flames at Atmospheric and Elevated Pressures

    KAUST Repository

    Rakha, Ihsan Allah

    2015-01-01

    The steady coflow diffusion flame is a widely used configuration for studying combustion kinetics, flame dynamics, and pollutant formation. In the current work, a set of diluted ethylene-air coflow flames are simulated to study the formation, growth

  17. Diffusion-tensor MR imaging of gray and white matter development during normal human brain maturation.

    Science.gov (United States)

    Mukherjee, Pratik; Miller, Jeffrey H; Shimony, Joshua S; Philip, Joseph V; Nehra, Deepika; Snyder, Abraham Z; Conturo, Thomas E; Neil, Jeffrey J; McKinstry, Robert C

    2002-10-01

    Conventional MR imaging findings of human brain development are thought to result from decreasing water content, increasing macromolecular concentration, and myelination. We use diffusion-tensor MR imaging to test theoretical models that incorporate hypotheses regarding how these maturational processes influence water diffusion in developing gray and white matter. Experimental data were derived from diffusion-tensor imaging of 167 participants, ages 31 gestational weeks to 11 postnatal years. An isotropic diffusion model was applied to the gray matter of the basal ganglia and thalamus. A model that assumes changes in the magnitude of diffusion while maintaining cylindrically symmetric anisotropy was applied to the white matter of the corpus callosum and internal capsule. Deviations of the diffusion tensor from the ideal model predictions, due to measurement noise, were estimated by using Monte Carlo simulations. Developing gray matter of the basal ganglia and developing white matter of the internal capsule and corpus callosum largely conformed to theory, with only small departures from model predictions in older children. However, data from the thalamus substantially diverged from predicted values, with progressively larger deviations from the model with increasing participant age. Changes in water diffusion during maturation of central gray and white matter structures can largely be explained by theoretical models incorporating simple assumptions regarding the influence of brain water content and myelination, although deviations from theory increase as the brain matures. Diffusion-tensor MR imaging is a powerful method for studying the process of brain development, with both scientific and clinical applications.

  18. Diffusion-weighted magnetic resonance imaging of the normal endometrium: temporal and spatial variations of the apparent diffusion coefficient

    International Nuclear Information System (INIS)

    Fornasa, Francesca; Montemezzi, Stefania

    2012-01-01

    Background: Diffusion-weighted magnetic resonance imaging (DWI) is increasingly used in the diagnosis of endometrial disease. No complete knowledge, however, exists yet of the influence of physiology on the endometrial apparent diffusion coefficient (ADC) values on which DWI is based. Purpose: To establish whether the ADC values measured with DWI in the endometrium of healthy reproductive-aged women significantly vary from the early proliferative to the periovulatory phase of the menstrual cycle and between the fundus and the isthmus of the uterus. Material and Methods: In 17 women the endometrial ADC values measured on the fifth menstrual day, both at the fundus and at the isthmus of the uterus, were compared to the values obtained on the 14th day before the subsequent cycle. In 81 women (menstrual day: fifth through 21st) the endometrial ADC values measured at the fundus were compared to the values obtained at the isthmus of the uterus. All examinations were performed with a 1.5 T magnet (b values: 0 and 800 mm/s 2 ). The results were analyzed by means of Student's t-test per paired data. Results: The endometrial ADC values measured on the fifth day of the menstrual cycle were lower than those obtained in the periovulatory phase both at the fundus (mean 0.923 vs. 1.256 x 10 - 3 mm 2 /s) and at the isthmus (mean 1.297 vs. 1.529 x 10 - 3 mm 2 /s) of the uterus. The endometrial ADC values measured at the fundus of the uterus were lower than those obtained at the isthmus (mean 1.132 vs. 1.420 x 10 - 3 mm 2 /s) through the menstrual cycle. All these differences were highly significant (P < 0.001) at statistical analysis. Conclusion: Physiological variations occurring in endometrial ADC values of healthy women should be considered by the radiologists when interpreting DWI examinations in patients with endometrial disease

  19. Time-averaged probability density functions of soot nanoparticles along the centerline of a piloted turbulent diffusion flame using a scanning mobility particle sizer

    KAUST Repository

    Chowdhury, Snehaunshu; Boyette, Wesley; Roberts, William L.

    2017-01-01

    In this study, we demonstrate the use of a scanning mobility particle sizer (SMPS) as an effective tool to measure the probability density functions (PDFs) of soot nanoparticles in turbulent flames. Time-averaged soot PDFs necessary for validating

  20. Time-averaged probability density functions of soot nanoparticles along the centerline of a piloted turbulent diffusion flame using a scanning mobility particle sizer

    KAUST Repository

    Chowdhury, Snehaunshu

    2017-01-23

    In this study, we demonstrate the use of a scanning mobility particle sizer (SMPS) as an effective tool to measure the probability density functions (PDFs) of soot nanoparticles in turbulent flames. Time-averaged soot PDFs necessary for validating existing soot models are reported at intervals of ∆x/D∆x/D = 5 along the centerline of turbulent, non-premixed, C2H4/N2 flames. The jet exit Reynolds numbers of the flames investigated were 10,000 and 20,000. A simplified burner geometry based on a published design was chosen to aid modelers. Soot was sampled directly from the flame using a sampling probe with a 0.5-mm diameter orifice and diluted with N2 by a two-stage dilution process. The overall dilution ratio was not evaluated. An SMPS system was used to analyze soot particle concentrations in the diluted samples. Sampling conditions were optimized over a wide range of dilution ratios to eliminate the effect of agglomeration in the sampling probe. Two differential mobility analyzers (DMAs) with different size ranges were used separately in the SMPS measurements to characterize the entire size range of particles. In both flames, the PDFs were found to be mono-modal in nature near the jet exit. Further downstream, the profiles were flatter with a fall-off at larger particle diameters. The geometric mean of the soot size distributions was less than 10 nm for all cases and increased monotonically with axial distance in both flames.

  1. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua

    2016-10-02

    Materials, such as electrical wire, used in spacecraft must pass stringent fire safety standards. Tests for such standards are typically performed under normal gravity conditions and then extended to applications under microgravity conditions. The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow (downward) speeds (0−25 cm/s) at several inclination angles (0−75°) under normal gravity conditions. The differences from those previously obtained under microgravity conditions were quantified and correlated to provide a reference for the development of fire safety test standards for electrical wires to be used in space exploration. It was found that as the opposed-flow speed increased for a specified inclination angle (except the horizontal case), LOC first increased, then decreased and finally increased again. The first local maximum of this LOC variation corresponded to a critical forced flow speed resulted from the change in flame spread pattern from concurrent to counter-current type. This critical forced flow speed correlated well with the buoyancy-induced flow speed component in the wire\\'s direction when the flame base width along the wire was used as a characteristic length scale. LOC was generally higher under the normal gravity than under the microgravity and the difference between the two decreased as the opposed-flow speed increases, following a reasonably linear trend at relatively higher flow speeds (over 10 cm/s). The decrease in the difference in LOC under normal- and microgravity conditions as the opposed-flow speed increases correlated well with the gravity acceleration component in the wire\\'s direction, providing a measure to extend LOC determined by the tests under normal gravity conditions (at various inclination angles and opposed

  2. Apparent diffusion coefficient of breast cancer and normal fibroglandular tissue in diffusion-weighted imaging: the effects of menstrual cycle and menopausal status.

    Science.gov (United States)

    Kim, Jin You; Suh, Hie Bum; Kang, Hyun Jung; Shin, Jong Ki; Choo, Ki Seok; Nam, Kyung Jin; Lee, Seok Won; Jung, Young Lae; Bae, Young Tae

    2016-05-01

    The purpose of this study was to investigate prospectively whether the apparent diffusion coefficients (ADCs) of both breast cancer and normal fibroglandular tissue vary with the menstrual cycle and menopausal status. Institutional review board approval was obtained, and informed consent was obtained from each participant. Fifty-seven women (29 premenopausal, 28 postmenopausal) with newly diagnosed breast cancer underwent diffusion-weighted imaging twice (interval 12-20 days) before surgery. Two radiologists independently measured ADC of breast cancer and normal contralateral breast tissue, and we quantified the differences according to the phases of menstrual cycle and menopausal status. With normal fibroglandular tissue, ADC was significantly lower in postmenopausal than in premenopausal women (P = 0.035). In premenopausal women, ADC did not differ significantly between proliferative and secretory phases in either breast cancer or normal fibroglandular tissue (P = 0.969 and P = 0.519, respectively). In postmenopausal women, no significant differences were found between ADCs measured at different time intervals in either breast cancer or normal fibroglandular tissue (P = 0.948 and P = 0.961, respectively). The within-subject variability of the ADC measurements was quantified using the coefficient of variation (CV) and was small: the mean CVs of tumor ADC were 2.90 % (premenopausal) and 3.43 % (postmenopausal), and those of fibroglandular tissue ADC were 4.37 % (premenopausal) and 2.55 % (postmenopausal). Both intra- and interobserver agreements were excellent for ADC measurements, with intraclass correlation coefficients in the range of 0.834-0.974. In conclusion, the measured ADCs of breast cancer and normal fibroglandular tissue were not affected significantly by menstrual cycle, and the measurements were highly reproducible both within and between observers.

  3. Rates of convergence and asymptotic normality of curve estimators for ergodic diffusion processes

    NARCIS (Netherlands)

    J.H. van Zanten (Harry)

    2000-01-01

    textabstractFor ergodic diffusion processes, we study kernel-type estimators for the invariant density, its derivatives and the drift function. We determine rates of convergence and find the joint asymptotic distribution of the estimators at different points.

  4. Gravitational Influences on Flame Propagation through Non-Uniform, Premixed Gas Systems

    Science.gov (United States)

    Miller, Fletcher J.; Easton, John; Ross, Howard D.; Marchese, Anthony; Perry, David; Kulis, Michael

    2001-01-01

    Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized previously, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our progress on furthering the knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread. We present experimental and numerical results for flame spread through propanol-air layers formed near the flash point temperature (25 C) or near the stoichiometric temperature (33 C). Both the model and experimental results show that the removal of gravity results in a faster spreading flame, by as much as 80% depending on conditions. This is exactly the opposite effect as that predicted by an earlier model reported. We also found that having a gallery lid results in faster flame spread, an effect more pronounced at normal gravity, demonstrating the importance of enclosure geometry. Also reported here is the beginning of our spectroscopic measurements of fuel vapor.

  5. Intra- and interhemispheric variations of diffusivity in subcortical white matter in normal human brain

    International Nuclear Information System (INIS)

    Yoshiura, Takashi; Noguchi, Tomoyuki; Hiwatashi, Akio; Togao, Osamu; Yamashita, Koji; Nagao, Eiki; Kamano, Hironori; Honda, Hiroshi

    2010-01-01

    Our purpose was to reveal potential regional variations in water molecular diffusivity within each cerebral hemisphere and across the right and left hemispheres. Diffusion-weighted images of 44 healthy right-handed adult male subjects were obtained using a diffusion tensor imaging sequence. Mean diffusivity (MD) values in subcortical white matter (WM) within 39 regions in each hemisphere were measured using an automated method. Intrahemispheric comparisons of MDs in subcortical WM were performed among six brain regions (frontal, parietal, occipital and temporal lobes and pre- and postcentral gyri). Interhemispheric comparisons of MDs were performed between the right and left counterparts of the 39 regions. In both hemispheres, diffusivity in the precentral gyrus was lower than those in other regions, while diffusivity in the parietal lobe was higher than others. MD asymmetry in which the left was lower than the right was found in the parietal lobe, middle occipital gyrus, and medial and orbital aspects of the frontal lobe. The converse asymmetry was revealed in the frontal operculum, supplementary motor cortex, temporal lobe, limbic cortices, precuneus and cuneus. Our results revealed significant intra- and interhemispheric regional variations in MD in subcortical WM, which may be related to different densities of axons and myelin sheaths. (orig.)

  6. Intra- and interhemispheric variations of diffusivity in subcortical white matter in normal human brain

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiura, Takashi; Noguchi, Tomoyuki; Hiwatashi, Akio; Togao, Osamu; Yamashita, Koji; Nagao, Eiki; Kamano, Hironori; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan)

    2010-01-15

    Our purpose was to reveal potential regional variations in water molecular diffusivity within each cerebral hemisphere and across the right and left hemispheres. Diffusion-weighted images of 44 healthy right-handed adult male subjects were obtained using a diffusion tensor imaging sequence. Mean diffusivity (MD) values in subcortical white matter (WM) within 39 regions in each hemisphere were measured using an automated method. Intrahemispheric comparisons of MDs in subcortical WM were performed among six brain regions (frontal, parietal, occipital and temporal lobes and pre- and postcentral gyri). Interhemispheric comparisons of MDs were performed between the right and left counterparts of the 39 regions. In both hemispheres, diffusivity in the precentral gyrus was lower than those in other regions, while diffusivity in the parietal lobe was higher than others. MD asymmetry in which the left was lower than the right was found in the parietal lobe, middle occipital gyrus, and medial and orbital aspects of the frontal lobe. The converse asymmetry was revealed in the frontal operculum, supplementary motor cortex, temporal lobe, limbic cortices, precuneus and cuneus. Our results revealed significant intra- and interhemispheric regional variations in MD in subcortical WM, which may be related to different densities of axons and myelin sheaths. (orig.)

  7. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.; Chaudhuri, Swetaprovo; Dave, Himanshu L.; Arias, Paul G.; Im, Hong G.

    2015-01-01

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  8. A flame particle tracking analysis of turbulence–chemistry interaction in hydrogen–air premixed flames

    KAUST Repository

    Uranakara, Harshavardhana A.

    2015-11-21

    Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen–air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen–air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (Sd) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in Sd is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description.

  9. Nonsuppressing normal thymus on chemical-shift MR imaging and anterior mediastinal lymphoma. Differentiation with diffusion-weighted MR imaging by using the apparent diffusion coefficient

    International Nuclear Information System (INIS)

    Priola, Adriano Massimiliano; Priola, Sandro Massimo; Gned, Dario; Veltri, Andrea; Giraudo, Maria Teresa

    2018-01-01

    To prospectively evaluate usefulness of the apparent diffusion coefficient (ADC) in differentiating anterior mediastinal lymphoma from nonsuppressing normal thymus on chemical-shift MR, and to look at the relationship between patient age and ADC. Seventy-three young subjects (25 men, 48 women; age range, 9-29 years), who underwent chemical-shift MR and diffusion-weighted MR were divided into a normal thymus group (group A, 40 subjects), and a lymphoma group (group B, 33 patients). For group A, all subjects had normal thymus with no suppression on opposed-phase chemical-shift MR. Two readers measured the signal intensity index (SII) and ADC. Differences in SII and ADC between groups were tested using t-test. ADC was correlated with age using Pearson correlation coefficient. Mean SII±standard deviation was 2.7±1.8% for group A and 2.2±2.4% for group B, with no significant difference between groups (P=.270). Mean ADC was 2.48±0.38 x 10 -3 mm 2 /s for group A and 1.24±0.23 x 10 -3 mm 2 /s for group B. A significant difference between groups was found (P<.001), with no overlap in range. Lastly, significant correlation was found between age and ADC (r=0.935, P<.001) in group A. ADC of diffusion-weighted MR is a noninvasive and accurate parameter for differentiating lymphoma from nonsuppressing thymus on chemical-shift MR in young subjects. (orig.)

  10. Subcortical White Matter Changes with Normal Aging Detected by Multi-Shot High Resolution Diffusion Tensor Imaging.

    Directory of Open Access Journals (Sweden)

    Sheng Xie

    Full Text Available Subcortical white matter builds neural connections between cortical and subcortical regions and constitutes the basis of neural networks. It plays a very important role in normal brain function. Various studies have shown that white matter deteriorates with aging. However, due to the limited spatial resolution provided by traditional diffusion imaging techniques, microstructural information from subcortical white matter with normal aging has not been comprehensively assessed. This study aims to investigate the deterioration effect with aging in the subcortical white matter and provide a baseline standard for pathological disorder diagnosis. We apply our newly developed multi-shot high resolution diffusion tensor imaging, using self-feeding multiplexed sensitivity-encoding, to measure subcortical white matter changes in regions of interest of healthy persons with a wide age range. Results show significant fractional anisotropy decline and radial diffusivity increasing with age, especially in the anterior part of the brain. We also find that subcortical white matter has more prominent changes than white matter close to the central brain. The observed changes in the subcortical white matter may be indicative of a mild demyelination and a loss of myelinated axons, which may contribute to normal age-related functional decline.

  11. Glucose diffusion in colorectal mucosa—a comparative study between normal and cancer tissues

    Science.gov (United States)

    Carvalho, Sónia; Gueiral, Nuno; Nogueira, Elisabete; Henrique, Rui; Oliveira, Luís; Tuchin, Valery V.

    2017-09-01

    Colorectal carcinoma is a major health concern worldwide and its high incidence and mortality require accurate screening methods. Following endoscopic examination, polyps must be removed for histopathological characterization. Aiming to contribute to the improvement of current endoscopy methods of colorectal carcinoma screening or even for future development of laser treatment procedures, we studied the diffusion properties of glucose and water in colorectal healthy and pathological mucosa. These parameters characterize the tissue dehydration and the refractive index matching mechanisms of optical clearing (OC). We used ex vivo tissues to measure the collimated transmittance spectra and thickness during treatments with OC solutions containing glucose in different concentrations. These time dependencies allowed for estimating the diffusion time and diffusion coefficient values of glucose and water in both types of tissues. The measured diffusion times for glucose in healthy and pathological mucosa samples were 299.2±4.7 s and 320.6±10.6 s for 40% and 35% glucose concentrations, respectively. Such a difference indicates a slower glucose diffusion in cancer tissues, which originate from their ability to trap far more glucose than healthy tissues. We have also found a higher free water content in cancerous tissue that is estimated as 64.4% instead of 59.4% for healthy mucosa.

  12. Upon delineation of normal thyroid from diffuse goiter by terminal thumb phalanx measurement and thyroid scintiscan

    International Nuclear Information System (INIS)

    Hoenle, R.

    1987-01-01

    In 265 euthyroid patients the terminal thumb phalanx was measured for estimation of a normal thyroid according to the WHO rules of a normal thyroid. The results show up that hitherto published values of a normal thyroid seem to be too high and should be re-evaluated. This is confirmed by comparison with thyroid scans of 28 patients who were normal by WHO criteria, as length and width of the thyroidal lobe as well as the calculated thyroid volume were below or in the lower range of the hitherto published data of a normal thyroid. For delineation of a normal thyroid the average size of the terminal thumb phalanx seems to be less valuable, as in one third of the cases there was no concordance with the WHO rule. The measurement of the terminal thumb phalanx by ruler as a reference value is simple and fast to be performed. (orig.) [de

  13. Dynamic contrast-enhanced MR imaging of the water fraction of normal bone marrow and diffuse bone marrow disease

    Energy Technology Data Exchange (ETDEWEB)

    Katsuya, Tomoo; Inoue, Tomio; Ishizaka, Hiroshi; Aoki, Jun; Endo, Keigo [Gunma Univ., Maebashi (Japan). School of Medicine

    2000-10-01

    To clarify the contrast-enhancement pattern of the normal hematopoietic element by isolating the signal of the water fraction in vertebral bone marrow and to investigate whether this approach can be used to characterize bone marrow pathology in several diffuse bone marrow diseases. Two groups were examined: 30 normal healthy volunteers and 19 patients with primary diffuse bone marrow disease (aplastic anemia [n=8], myelodysplastic syndrome (MDS) [n=5], chronic myelogenic leukemia (CML) [n=4], polycythemia vera [n=2]). Isolation of the signal of hematopoietic tissue was done by the chemical-shift misregistration effect. Twenty consecutive T1-weighted midsagittal lumber vertebral images were obtained immediately after the intravenous administration of Gd-DTPA of 0.1 mmol/kg body weight, and the pattern of the time-intensity curve, the peak contrast-enhancement (CE) ratio, and the washout rate (%/min) of bone marrow in normal volunteers were compared with those in patients suffering from primary diffuse bone marrow disease. The pattern of the time-intensity curve of patients with aplastic anemia showed a low peak value followed by a slow washout. However, the pattern of time-intensity curves in patients with MDS, CML, and polycythemia vera was similar to that of normal volunteers. The peak CE ratio of the water fraction in normal marrow ranged from 0.45 to 1.26 (mean {+-}S.D.: 0.87{+-}0.18). Patients with aplastic anemia showed an abnormally lower peak CE ratio of the water fraction (mean {+-}S.D.: 0.34{+-}0.19, p<0.0001). On the other hand, the peak CE ratio of the water fraction in patients with MDS was significantly higher than that of normal volunteers (mean {+-}S.D. 1.35{+-}0.39, p<0.05). In contrast, the peak CE ratio of patients with CML or polycythemia vera did not differ significantly from that of normal volunteers. The mean washout rate of patients with aplastic anemia was significantly lower than that of normal volunteers (mean {+-}S.D.: 3.50{+-}2.51 %/min

  14. Dynamic contrast-enhanced MR imaging of the water fraction of normal bone marrow and diffuse bone marrow disease

    International Nuclear Information System (INIS)

    Katsuya, Tomoo; Inoue, Tomio; Ishizaka, Hiroshi; Aoki, Jun; Endo, Keigo

    2000-01-01

    To clarify the contrast-enhancement pattern of the normal hematopoietic element by isolating the signal of the water fraction in vertebral bone marrow and to investigate whether this approach can be used to characterize bone marrow pathology in several diffuse bone marrow diseases. Two groups were examined: 30 normal healthy volunteers and 19 patients with primary diffuse bone marrow disease (aplastic anemia [n=8], myelodysplastic syndrome (MDS) [n=5], chronic myelogenic leukemia (CML) [n=4], polycythemia vera [n=2]). Isolation of the signal of hematopoietic tissue was done by the chemical-shift misregistration effect. Twenty consecutive T1-weighted midsagittal lumber vertebral images were obtained immediately after the intravenous administration of Gd-DTPA of 0.1 mmol/kg body weight, and the pattern of the time-intensity curve, the peak contrast-enhancement (CE) ratio, and the washout rate (%/min) of bone marrow in normal volunteers were compared with those in patients suffering from primary diffuse bone marrow disease. The pattern of the time-intensity curve of patients with aplastic anemia showed a low peak value followed by a slow washout. However, the pattern of time-intensity curves in patients with MDS, CML, and polycythemia vera was similar to that of normal volunteers. The peak CE ratio of the water fraction in normal marrow ranged from 0.45 to 1.26 (mean ±S.D.: 0.87±0.18). Patients with aplastic anemia showed an abnormally lower peak CE ratio of the water fraction (mean ±S.D.: 0.34±0.19, p<0.0001). On the other hand, the peak CE ratio of the water fraction in patients with MDS was significantly higher than that of normal volunteers (mean ±S.D. 1.35±0.39, p<0.05). In contrast, the peak CE ratio of patients with CML or polycythemia vera did not differ significantly from that of normal volunteers. The mean washout rate of patients with aplastic anemia was significantly lower than that of normal volunteers (mean ±S.D.: 3.50±2.51 %/min vs. 7.13±1

  15. Normal development of human brain white matter from infancy to early adulthood: a diffusion tensor imaging study.

    Science.gov (United States)

    Uda, Satoshi; Matsui, Mie; Tanaka, Chiaki; Uematsu, Akiko; Miura, Kayoko; Kawana, Izumi; Noguchi, Kyo

    2015-01-01

    Diffusion tensor imaging (DTI), which measures the magnitude of anisotropy of water diffusion in white matter, has recently been used to visualize and quantify parameters of neural tracts connecting brain regions. In order to investigate the developmental changes and sex and hemispheric differences of neural fibers in normal white matter, we used DTI to examine 52 healthy humans ranging in age from 2 months to 25 years. We extracted the following tracts of interest (TOIs) using the region of interest method: the corpus callosum (CC), cingulum hippocampus (CGH), inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF). We measured fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), and radial diffusivity (RD). Approximate values and changes in growth rates of all DTI parameters at each age were calculated and analyzed using LOESS (locally weighted scatterplot smoothing). We found that for all TOIs, FA increased with age, whereas ADC, AD and RD values decreased with age. The turning point of growth rates was at approximately 6 years. FA in the CC was greater than that in the SLF, ILF and CGH. Moreover, FA, ADC and AD of the splenium of the CC (sCC) were greater than in the genu of the CC (gCC), whereas the RD of the sCC was lower than the RD of the gCC. The FA of right-hemisphere TOIs was significantly greater than that of left-hemisphere TOIs. In infants, growth rates of both FA and RD were larger than those of AD. Our data show that developmental patterns differ by TOIs and myelination along with the development of white matter, which can be mainly expressed as an increase in FA together with a decrease in RD. These findings clarify the long-term normal developmental characteristics of white matter microstructure from infancy to early adulthood. © 2015 S. Karger AG, Basel.

  16. Normal and anomalous diffusion of non-interacting particles in linear nanopores

    NARCIS (Netherlands)

    Zschiegner, S.; Russ, S.; Valiullin, R.; Coppens, M.O.; Dammers, A.J.; Bunde, A.; Kärger, J.

    2008-01-01

    The diffusion of gas molecules in pores is determined by the collisions between the molecules as well as by the collisions of the molecules with the pore walls. In many applications the so-called Knudsen regime is of particular interest. In this regime the collisions of the molecules with the pore

  17. Multi-model Analysis of Diffusion-weighted Imaging of Normal Testes at 3.0 T: Preliminary Findings.

    Science.gov (United States)

    Min, Xiangde; Feng, Zhaoyan; Wang, Liang; Cai, Jie; Li, Basen; Ke, Zan; Zhang, Peipei; You, Huijuan; Yan, Xu

    2018-04-01

    This study aimed to establish diffusion quantitative parameters (apparent diffusion coefficient [ADC], DDC, α, D app , and K app ) in normal testes at 3.0 T. Sixty-four healthy volunteers in two age groups (A: 10-39 years; B: ≥ 40 years) underwent diffusion-weighted imaging scanning at 3.0 T. ADC 1000 , ADC 2000 , ADC 3000 , DDC, α, D app , and K app were calculated using the mono-exponential, stretched-exponential, and kurtosis models. The correlations between parameters and the age were analyzed. The parameters were compared between the age groups and between the right and the left testes. The average ADC 1000 , ADC 2000 , ADC 3000 , DDC, α, D app , and K app values did not significantly differ between the right and the left testes (P > .05 for all). The following significant correlations were found: positive correlations between age and testicular ADC 1000 , ADC 2000 , ADC 3000 , DDC, and D app (r = 0.516, 0.518, 0.518, 0.521, and 0.516, respectively; P < .01 for all) and negative correlations between age and testicular α and K app (r = -0.363, -0.427, respectively; P < .01 for both). Compared to group B, in group A, ADC 1000 , ADC 2000 , ADC 3000 , DDC, and D app were significantly lower (P < .05 for all), but α and K app were significantly higher (P < .05 for both). Our study demonstrated the applicability of the testicular mono-exponential, stretched-exponential, and kurtosis models. Our results can help establish a baseline for the normal testicular parameters in these diffusion models. The contralateral normal testis can serve as a suitable reference for evaluating the abnormalities of the other side. The effect of age on these parameters requires further attention. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Flame surface statistics of constant-pressure turbulent expanding premixed flames

    Science.gov (United States)

    Saha, Abhishek; Chaudhuri, Swetaprovo; Law, Chung K.

    2014-04-01

    In this paper we investigate the local flame surface statistics of constant-pressure turbulent expanding flames. First the statistics of local length ratio is experimentally determined from high-speed planar Mie scattering images of spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average radius of the flame. Assuming isotropic distribution of such flame segments we then convolute suitable forms of the length-ratio probability distribution functions (pdfs) to arrive at the corresponding area-ratio pdfs. It is found that both the length ratio and area ratio pdfs are near log-normally distributed and shows self-similar behavior with increasing radius. Near log-normality and rather intermittent behavior of the flame-length ratio suggests similarity with dissipation rate quantities which stimulates multifractal analysis.

  19. Diffusion imaging of reversible and irreversible microstructural changes within the corticospinal tract in idiopathic normal pressure hydrocephalus

    Directory of Open Access Journals (Sweden)

    Kouhei Kamiya

    2017-01-01

    Full Text Available The symptoms of idiopathic normal pressure hydrocephalus (iNPH can be improved by shunt surgery, but prediction of treatment outcome is not established. We investigated changes of the corticospinal tract (CST in iNPH before and after shunt surgery by using diffusion microstructural imaging, which infers more specific tissue properties than conventional diffusion tensor imaging. Two biophysical models were used: neurite orientation dispersion and density imaging (NODDI and white matter tract integrity (WMTI. In both methods, the orientational coherence within the CSTs was higher in patients than in controls, and some normalization occurred after the surgery in patients, indicating axon stretching and recovery. The estimated axon density was lower in patients than in controls but remained unchanged after the surgery, suggesting its potential as a marker for irreversible neuronal damage. In a Monte-Carlo simulation that represented model axons as undulating cylinders, both NODDI and WMTI separated the effects of axon density and undulation. Thus, diffusion MRI may distinguish between reversible and irreversible microstructural changes in iNPH. Our findings constitute a step towards a quantitative image biomarker that reflects pathological process and treatment outcomes of iNPH.

  20. Flames in vortices & tulip-flame inversion

    Science.gov (United States)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  1. Volume-controlled histographic analysis of pulmonary parenchyma in normal and diffuse parenchymal lung disease: a pilot study

    International Nuclear Information System (INIS)

    Park, Hyo Yong; Lee, Jongmin; Kim, Jong Seob; Won, Chyl Ho; Kang, Duk Sik; Kim, Myoung Nam

    2000-01-01

    located in an area of higher density. Using a home-made histographic analysis system which included a lung volume controller, patients with diffuse parenchymal lung disease could be distinguished from normal contros. The method may be useful for the diagnosis and follow up of diffuse parenchymal lung diseases. (author)

  2. Volume-controlled histographic analysis of pulmonary parenchyma in normal and diffuse parenchymal lung disease: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyo Yong; Lee, Jongmin; Kim, Jong Seob; Won, Chyl Ho; Kang, Duk Sik [School of Medicine, Kyungpook National University, Taegu (Korea, Republic of); Kim, Myoung Nam [The University of Iowa (United States)

    2000-06-01

    located in an area of higher density. Using a home-made histographic analysis system which included a lung volume controller, patients with diffuse parenchymal lung disease could be distinguished from normal contros. The method may be useful for the diagnosis and follow up of diffuse parenchymal lung diseases. (author)

  3. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    International Nuclear Information System (INIS)

    Moon, Hee Jang

    2009-01-01

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO 2 /H 2 O 2 should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  4. Analysis of flame shapes in turbulent hydrogen jet flames with coaxial air

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Hee Jang [Korea Aerospace University, Goyang (Korea, Republic of)

    2009-06-15

    This paper addresses the characteristics of flame shapes and flame length in three types of coaxial air flames realizable by varying coaxial air and/or fuel velocity. Forcing coaxial air into turbulent jet flames induces substantial changes in flame shapes and NOx emissions through the complex flow interferences that exist within the mixing region. Mixing enhancement driven by coaxial air results in flame volume decrease, and such a diminished flame volume finally reduces NOx emissions significantly by decreasing NOx formation zone where a fuel/air mixture burns. It is found that mixing in the vicinity of high temperature zone mainly results from the increase of diffusive flux than the convective flux, and that the increase of mass diffusion is amplified as coaxial air is increased. Besides, it is reaffirmed that nonequilibrium chemistry including HO{sub 2}/H{sub 2}O{sub 2} should be taken into account for NOx prediction and scaling analysis by comparing turbulent combustion models. In addition, it is found that coaxial air can break down the self-similarity law of flames by changing mixing mechanism, and that EINOx scaling parameters based on the self-similarity law of simple jet flames may not be eligible in coaxial air flames

  5. Durability predictions from rate of diffusion testing of normal portland cement, fly ash, and slag concrete

    International Nuclear Information System (INIS)

    Philipose, K.E.

    1991-09-01

    A waste repository for the belowground disposal of low-level radioactive waste, labelled IRUS (Intrusion Resistant Underground Structure), is planned at the Chalk River Laboratories. It relies greatly on the durability of concrete for a minimum of 500 years of service life. A research program based on laboratory testing to design a durable concrete and predict its useful engineered service life is in progress. The durability of concrete depends on its resistance to deterioration from both internal and external causes. Since the rate of degradation depends to a major extent on the rate of ingress of aggressive ions into concrete, laboratory testing is in progress to establish the diffusion rates of chlorides and sulphate ions. A total of 1000 concrete specimens and 500 paste specimens are being exposed at 22 degrees and 45 degrees C to twenty-five different combinations of corrosive agents, including CO 2 . Procedures to measure the ionic penetration profile and to determine the factors controlling diffusion of ions in the various concretes have been developed. The paper presents the initial results from the research program and the longevity predictions to qualify concretes for the IRUS waste repository, based on 16 months of diffusion testing on laboratory specimens

  6. Emphysematous changes and normal variation in smokers and COPD patients using diffusion 3He MRI

    International Nuclear Information System (INIS)

    Swift, Andrew J.; Wild, Jim M.; Fichele, Stan; Woodhouse, Neil; Fleming, Sally; Waterhouse, Judith; Lawson, Rod A.; Paley, Martyn N.J.; Van Beek, Edwin J.R.

    2005-01-01

    Introduction: This study aims to quantify global and regional changes of diffusive motion of 3 He gas within the lung, as determined by hyperpolarized 3 He MR apparent diffusion coefficient (ADC) measurement, in non-smokers, smokers and chronic obstructive pulmonary disease (COPD) patients. Methods: Age-matched groups of six healthy non-smokers, five healthy smokers and five patients with COPD. The experiments were performed with approval from the local Research Ethics Committee. Diffusion imaging was performed following hyperpolarized 3 He gas inhalation, producing ADC maps. Mean and standard deviation of the ADCs were used to compare the subject groups and assess regional variations within individuals. Results: The intra-individual standard deviation of ADC in the healthy smokers was significantly larger than that of the non-smoking group (P < 0.02). Compared to the non-smoking group, COPD patients had significantly higher mean and standard deviation of ADC (P < 0.01). The mean ADC in the anterior half of the chest was systematically higher than in the posterior half in the healthy non-smoking subject group. Discussion: This study suggests that there are regional trends in the ADC values of healthy volunteers that may have implications for the clinical interpretation of ADC values. Less homogeneous ADC values have been detected in asymptomatic smokers, indicative of damage to the distal air spaces

  7. Flame stability and emission characteristics of turbulent LPG IDF in a backstep burner

    Energy Technology Data Exchange (ETDEWEB)

    S. Mahesh; D.P. Mishra [Indian Institute of Technology, Kanpur (India). Combustion Laboratory, Department of Aerospace Engineering

    2008-09-15

    The stability characteristics and emissions from turbulent LPG inverse diffusion flame (IDF) in a backstep burner are reported in this paper. The blow-off velocity of turbulent LPG IDF is observed to increase monotonically with fuel jet velocity. In contrast to normal diffusion flames (NDF), the flame in the present IDF burner gets blown out without getting lifted-off from the burner surface. The soot free length fraction, SFLF, defined as the ratio of visible premixing length, H{sub p}, to visible flame length, H{sub f}, is used for qualitative estimation of soot reduction in this IDF burner. The SFLF is found to increase with central air jet velocity indicating the occurrence of extended premixing zone in the vicinity of flame base. Interestingly, the soot free length fraction (SFLF) is found to be correlated well with the newly devised parameter, global momentum ratio. The peak value of EINOX happens to occur closer to stoichiometric overall equivalence ratio. 16 refs., 9 figs.

  8. Stability and Behaviors of Methane/Propane and Hydrogen Micro Flames

    Science.gov (United States)

    Yoshimoto, Takamitsu; Kinoshita, Koichiro; Kitamura, Hideki; Tanigawa, Ryoichi

    The flame stability limits essentially define the fundamental operation of the combustion system. Recently the micro diffusion flame has been remarked. The critical conditions of the flame stability limit are highly dependent on nozzle diameter, species of fuel and so on. The micro diffusion flame of Methane/Propane and Hydrogen is formed by using the micro-scale nozzle of which inner diameter is less than 1mm. The configurations and behaviors of the flame are observed directly and visualized by the high speed video camera The criteria of stability limits are proposed for the micro diffusion flame. The objectives of the present study are to get further understanding of lifting/blow-off for the micro diffusion flame. The results obtained are as follows. (1) The behaviors of the flames are classified into some regions for each diffusion flame. (2) The micro diffusion flame of Methane/Propane cannot be sustained, when the nozzle diameter is less than 0.14 mm. (3) The diffusion flame cannot be sustained below the critical fuel flow rate. (4) The minimum flow which is formed does not depends on the average jet velocity, but on the fuel flow rate. (5) the micro flame is laminar. The flame length is decided by fuel flow rate.

  9. Evaluation of the normal-to-diseased apparent diffusion coefficient ratio as an indicator of prostate cancer aggressiveness.

    Science.gov (United States)

    Lebovici, Andrei; Sfrangeu, Silviu A; Feier, Diana; Caraiani, Cosmin; Lucan, Ciprian; Suciu, Mihai; Elec, Florin; Iacob, Gheorghita; Buruian, Mircea

    2014-05-10

    We tested the feasibility of a simple method for assessment of prostate cancer (PCa) aggressiveness using diffusion-weighted magnetic resonance imaging (MRI) to calculate apparent diffusion coefficient (ADC) ratios between prostate cancer and healthy prostatic tissue. The requirement for institutional review board approval was waived. A set of 20 standardized core transperineal saturation biopsy specimens served as the reference standard for placement of regions of interest on ADC maps in tumorous and normal prostatic tissue of 22 men with PCa (median Gleason score: 7; range, 6-9). A total of 128 positive sectors were included for evaluation. Two diagnostic ratios were computed between tumor ADCs and normal sector ADCs: the ADC peripheral ratio (the ratio between tumor ADC and normal peripheral zone tissue, ADC-PR), and the ADC central ratio (the ratio between tumor ADC and normal central zone tissue, ADC-CR). The performance of the two ratios in detecting high-risk tumor foci (Gleason 8 and 9) was assessed using the area under the receiver operating characteristic curve (AUC). Both ADC ratios presented significantly lower values in high-risk tumors (0.48 ± 0.13 for ADC-CR and 0.40 ± 0.09 for ADC-PR) compared with low-risk tumors (0.66 ± 0.17 for ADC-CR and 0.54 ± 0.09 for ADC-PR) (p performance (ADC-CR AUC = 0.77, sensitivity = 82.2%, specificity = 66.7% and ADC-PR AUC = 0.90, sensitivity = 93.7%, specificity = 80%) than stand-alone tumor ADCs (AUC of 0.75, sensitivity = 72.7%, specificity = 70.6%) for identifying high-risk lesions. The ADC ratio as an intrapatient-normalized diagnostic tool may be better in detecting high-grade lesions compared with analysis based on tumor ADCs alone, and may reduce the rate of biopsies.

  10. [Outstanding problems of normal and pathological morphology of the diffuse endocrine system].

    Science.gov (United States)

    Iaglov, V V; Iaglova, N V

    2011-01-01

    The diffuse endocrine system (DES)--a mosaic-cellular endoepithelial gland--is the biggest part of the human endocrine system. Scientists used to consider cells of DES as neuroectodermal. According to modem data cells of DES are different cytogenetic types because they develop from the different embryonic blastophyllum. So that any hormone-active tumors originated from DES of the digestive, respiratory and urogenital system shouldn't be considered as neuroendocrinal tumors. The basic problems of DES morphology and pathology are the creation of scientifically substantiated histogenetic classification of DES tumors.

  11. Normal diffusion-weighted imaging in cerebral air embolism complicating angiography

    Energy Technology Data Exchange (ETDEWEB)

    Sayama, T.; Inamura, T.; Fukui, M. [Dept. of Neurosurgery, Kyushu University Hospital, Fukuoka (Japan); Mitani, M.; Yagi, H. [Dept. of Neurosurgery, Yagi Hospital, Fukuoka (Japan)

    2000-03-01

    We report a case of cerebral air embolism resulting from accidental air infection during cerebral angiography. A 60-year-old man was accidentally injected with air via the left subclavian artery. Angiography demonstrated air within the basilar artery. The patient showed signs of posterior circulation ischaemia (confusion, blindness, gaze palsy and hemiparesis). However, MRI, including diffusion-weighted imaging, showed no abnormality 4 h later. The patient was treated with hyperbaric oxygen within 5 h of the embolism. All symptoms and signs resolved completely within a week. (orig.)

  12. Flame Dynamics and Chemistry in LRE Combustion Instability

    Science.gov (United States)

    2016-12-22

    negative temperature coefficient phenomenon and engine knock. In this work, the coupling of cool flame chemistry and convective– diffusive transport...note, practical engine conditions are highly turbulent, and the autoignition phenomenon depends on both chemistry and turbulent mixing. For example...negative temperature coefficient (NTC) phenomenon and engine knock. In this work, the coupling of cool flame chemistry and convective–diffusive

  13. Diffusion tensor trace mapping in normal adult brain using single-shot EPI technique: A methodological study of the aging brain

    International Nuclear Information System (INIS)

    Chen, Z.G.; Hindmarsh, T.; Li, T.Q.

    2001-01-01

    Purpose: To quantify age-related changes of the average diffusion coefficient value in normal adult brain using orientation-independent diffusion tensor trace mapping and to address the methodological influences on diffusion quantification. Material and Methods: Fifty-four normal subjects (aged 20-79 years) were studied on a 1.5-T whole-body MR medical unit using a diffusion-weighted single-shot echo-planar imaging technique. Orientation-independent diffusion tensor trace maps were constructed for each subject using diffusion-weighted MR measurements in four different directions using a tetrahedral gradient combination pattern. The global average (including cerebral spinal fluid) and the tissue average of diffusion coefficients in adult brains were determined by analyzing the diffusion coefficient distribution histogram for the entire brain. Methodological influences on the measured diffusion coefficient were also investigated by comparing the results obtained using different experimental settings. Results: Both global and tissue averages of the diffusion coefficient are significantly correlated with age (p<0.03). The global average of the diffusion coefficient increases 3% per decade after the age of 40, whereas the increase in the tissue average of diffusion coefficient is about 1% per decade. Experimental settings for self-diffusion measurements, such as data acquisition methods and number of b-values, can slightly influence the statistical distribution histogram of the diffusion tensor trace and its average value. Conclusion: Increased average diffusion coefficient in adult brains with aging are consistent with findings regarding structural changes in the brain that have been associated with aging. The study also demonstrates that it is desirable to use the same experimental parameters for diffusion coefficient quantification when comparing between different subjects and groups of interest

  14. White matter correlates of cognitive domains in normal aging with diffusion tensor imaging

    Directory of Open Access Journals (Sweden)

    Efrat eSasson

    2013-03-01

    Full Text Available The ability to perform complex as well as simple cognitive tasks engages a network of brain regions that is mediated by the white matter fiber bundles connecting them. Different cognitive tasks employ distinctive white matter fiber bundles. The temporal lobe and its projections subserve a variety of key functions known to deteriorate during aging. In a cohort of 52 healthy subjects (ages 25-82 years, we performed voxel-wise regression analysis correlating performance in higher-order cognitive domains (executive function, information processing speed, and memory with white matter integrity, as measured by diffusion tensor imaging (DTI fiber tracking in the temporal lobe projections (uncinate fasciculus (UF, fornix, cingulum, inferior longitudinal fasciculus (ILF, and superior longitudinal fasciculus (SLF. The fiber tracts were spatially registered and statistical parametric maps were produced to spatially localize the significant correlations. Results showed that performance in the executive function domain is correlated with DTI parameters in the left SLF and right UF; performance in the information processing speed domain is correlated with fractional anisotropy (FA in the left cingulum, left fornix, right and left ILF and SLF; and the memory domain shows significant correlations with DTI parameters in the right fornix, right cingulum, left ILF, left SLF and right UF. These findings suggest that DTI tractography enables anatomical definition of region of interest for correlation of behavioral parameters with diffusion indices, and functionality can be correlated with white matter integrity.

  15. Diffusion weighted imaging of the normal breast: reproducibility of apparent diffusion coefficient measurements and variation with menstrual cycle and menopausal status

    International Nuclear Information System (INIS)

    O'Flynn, Elizabeth A.M.; Morgan, Veronica A.; Giles, Sharon L.; de Souza, Nandita M.

    2012-01-01

    To establish the reproducibility of apparent diffusion coefficient (ADC) measurements in normal fibroglandular breast tissue and to assess variation in ADC values with phase of the menstrual cycle and menopausal status. Thirty-one volunteers (13 premenopausal, 18 postmenopausal) underwent magnetic resonance twice (interval 11-22 days) using diffusion-weighted MRI. ADC total and a perfusion-insensitive ADC high (omitting b = 0) were calculated. Reproducibility and inter-observer variability of mean ADC values were assessed. The difference in mean ADC values between the two phases of the menstrual cycle and the postmenopausal breast were evaluated. ADC total and ADC high showed good reproducibility (r% = 17.6, 22.4). ADC high showed very good inter-observer agreement (kappa = 0.83). The intraclass correlation coefficients (ICC) were 0.93 and 0.91. Mean ADC values were significantly lower in the postmenopausal breast (ADC total 1.46 ± 0.3 x 10 -3 mm 2 /s, ADC high 1.33 ± 0.3 x 10 -3 mm 2 /s) compared with the premenopausal breast (ADC total 1.84 ± 0.26 x 10 -3 mm 2 /s, ADC high 1.77 ± 0.26 x 10 -3 mm 2 /s; both P total P = 0.2, ADC high P = 0.24) or between postmenopausal women taking or not taking oestrogen supplements (ADC total P = 0.6, ADC high P = 0.46). ADC values in fibroglandular breast tissue are reproducible. Lower ADC values within the postmenopausal breast may reduce diffusion-weighted contrast and have implications for accurately detecting tumours. (orig.)

  16. Diffusion weighted imaging of the normal breast: reproducibility of apparent diffusion coefficient measurements and variation with menstrual cycle and menopausal status

    Energy Technology Data Exchange (ETDEWEB)

    O' Flynn, Elizabeth A.M.; Morgan, Veronica A.; Giles, Sharon L. [Cancer Research UK and ESPSRC Cancer Imaging Centre, Clinical Magnetic Resonance Group, Surrey (United Kingdom); deSouza, Nandita M. [Royal Marsden NHS Foundation Trust, Clinical Magnetic Resonance Group, Institute of Cancer Research, Surrey (United Kingdom)

    2012-07-15

    To establish the reproducibility of apparent diffusion coefficient (ADC) measurements in normal fibroglandular breast tissue and to assess variation in ADC values with phase of the menstrual cycle and menopausal status. Thirty-one volunteers (13 premenopausal, 18 postmenopausal) underwent magnetic resonance twice (interval 11-22 days) using diffusion-weighted MRI. ADC{sub total} and a perfusion-insensitive ADC{sub high} (omitting b = 0) were calculated. Reproducibility and inter-observer variability of mean ADC values were assessed. The difference in mean ADC values between the two phases of the menstrual cycle and the postmenopausal breast were evaluated. ADC{sub total} and ADC{sub high} showed good reproducibility (r% = 17.6, 22.4). ADC{sub high} showed very good inter-observer agreement (kappa = 0.83). The intraclass correlation coefficients (ICC) were 0.93 and 0.91. Mean ADC values were significantly lower in the postmenopausal breast (ADC{sub total} 1.46 {+-} 0.3 x 10{sup -3} mm{sup 2}/s, ADC{sub high} 1.33 {+-} 0.3 x 10{sup -3} mm{sup 2}/s) compared with the premenopausal breast (ADC{sub total} 1.84 {+-} 0.26 x 10{sup -3} mm{sup 2}/s, ADC{sub high} 1.77 {+-} 0.26 x 10{sup -3} mm{sup 2}/s; both P < 0.001). No significant difference was seen in ADC values in relation to menstrual cycle (ADC{sub total} P = 0.2, ADC{sub high} P = 0.24) or between postmenopausal women taking or not taking oestrogen supplements (ADC{sub total} P = 0.6, ADC{sub high} P = 0.46). ADC values in fibroglandular breast tissue are reproducible. Lower ADC values within the postmenopausal breast may reduce diffusion-weighted contrast and have implications for accurately detecting tumours. (orig.)

  17. Culture of normal human blood cells in a diffusion chamber system II. Lymphocyte and plasma cell kinetics

    International Nuclear Information System (INIS)

    Chikkappa, G.; Carsten, A.L.; Chanana, A.D.; Cronkite, E.P.

    1979-01-01

    Normal human blood leukocytes were cultured in Millipore diffusion chambers implanted into the peritoneal cavities of irradiated mice. The evaluation of survival and proliferation kinetics of cells in lymphyocytic series suggested that the lymphoid cells are formed from transition of small and/or large lymphocytes, and the lymphoblasts from the lymphoid cells. There was also evidence indicating that some of the cells in these two compartments are formed by proliferation. The evaluation of plasmacytic series suggested that the plasma cells are formed from plasmacytoid-lymphocytes by transition, and the latter from the transition of lymphocytes. In addition, relatively a small fraction of cells in these two compartments are formed by proliferation. mature plasma cells do not and immature plasma cells do proliferate. Estimation of magnitude of plasma cells formed in the cultures at day 18 indicated that at least one plasma cell is formed for every 6 normal human blood lymphocytes introduced into the culture

  18. Quantitative evaluation of normal lumbosacral plexus nerve by using diffusion tensor imaging

    International Nuclear Information System (INIS)

    Shi Yin; Wang Chuanbing; Liu Wei; Zong Min; Sa Rina; Shi Haibin; Wang Dehang

    2014-01-01

    Objective: To observe the lumbosacral plexus nerves by diffusion tensor tractography (DTT) and quantitatively evaluate them by using diffusion tensor imaging (DTI) in healthy volunteers. Methods: A total of 60 healthy volunteers (30 males and 30 females) underwent DTI scanning. Mean FA values of the lumbosacral plexus nerves (both sides of lumbar roots L3 to S1, proximal and distal to the lumbar foraminal zone) were quantified. Differences among various segments of lumbar nerve roots were compared with ANOVA test and SNK test. Differences between two sides of the lumbar nerve roots at the same lumbar segment were compared with paired-samples t test. Differences between the proximal and the distal nerve to the the lumbar foraminal zone at the same lumbar segment were compared with paired-samples t test. The lumbosacral plexus nerve was visualized with tractography. Results: (1) The lumbosacral plexus nerve was clearly visualized with tractography. (2) Mean FA values of the lumbar nerve roots L3 to S1 were as followings: proximal to the left lumbar foraminal zone 0.202 ± 0.021, 0.201 ± 0.026, 0.201 ± 0.027, 0.191 ±0.016, distal to the left lumbar foraminal zone 0.222 ± 0.034, 0.250 ± 0.028, 0.203 ± 0.026, 0.183 ± 0.020, proximal to the right lumbar foraminal zone 0.200 ± 0.023, 0.202 ± 0.023, 0.205 ± 0.027, 0.191 ± 0.017, distal to the right lumbar foraminal zone 0.225 ± 0.032, 0.247 ± 0.027, 0.205 ± 0.033, 0.183 ± 0.021. Mean FA values were significantly different between the proximal nerve to the distal nerve in lumbar nerve roots L3, L4, S1 (t=-9.114-2.366, P<0.05), but not significantly different in L5 (P>0.05). Differences were not found between the right and left side nerves at the same lumbar segment (P>0.05). (3) The whole length of the lumbar roots nerve L3 to S1 can be visualized clearly by using DTT. Conclusions: Diffusion tensor imaging and tractography can show and provide quantitative information of human lumbosacral plexus nerves. DTI

  19. High b-value diffusion-weighted MR imaging of normal brain at 3 T

    International Nuclear Information System (INIS)

    Cihangiroglu, Mutlu; Ulug, Aziz Muefit; Firat, Zeynep; Bayram, Ali; Kovanlikaya, Arzu; Kovanlikaya, Ilhami

    2009-01-01

    Introduction: The purpose of this study was to determine the normative apparent diffusion coefficient (ADC) values at 3 T using high b-value (3000 s/mm 2 ) diffusion-weighted images (DWI) and compare the signal characteristics of the high b value with standard b-value (1000 s/mm 2 ) DWI. Methods: Institutional review board approval was obtained for this prospective study which included 20 volunteers (10 M, 10 F, mean age: 38.7 ± 14.9) without any known clinical disease or radiological findings. All brain examinations were performed with 3 T MR by using similar parameters of b1000 and b3000 DWI sequences. DWI and ADC maps were obtained. Signal intensity, noise, signal to noise ratio (SNR), contrast to noise (CNR), contrast ratio (CR), and ADC values of bilateral posterior limb of internal capsule, frontal white matter, parietal gray matter, pons, thalamus, splenium of corpus callosum were measured on b1000 and b3000 DW images. Results: In all anatomic locations, MR signal intensity, SNR and ADC values of b3000 images were significantly lower than MR signal intensity, SNR and ADC values of b1000 images (p < 0.001). The CNR and CR values at the posterior limb of internal capsule and pons were significantly increased on b3000 images (p < 0.001) and decreased in the other regions measured. Conclusion: The ADC values calculated from standard b-value DWI were significantly higher than those calculated from high b-value DWI. These results agree with the previous studies. In the regions where CNR values increase with high b value, b3000 DWI images may provide additional clinical information.

  20. Microstructural changes of the corticospinal tract in idiopathic normal pressure hydrocephalus: a comparison of diffusion tensor and diffusional kurtosis imaging

    International Nuclear Information System (INIS)

    Nakanishi, Atsushi; Hori, Masaaki; Aoki, Shigeki; Fukunaga, Issei; Masutani, Yoshitaka; Takaaki, Hattori; Miyajima, Masakazu

    2013-01-01

    The goals of this study were to examine the usefulness of diffusional kurtosis imaging (DKI) for assessing microstructural changes in the compressed corticospinal tract (CST) among patients with idiopathic normal pressure hydrocephalus (iNPH). Eleven patients with iNPH (mean age: 73.6 years, range: 65-84), who underwent 3-T magnetic resonance imaging, including DKI before surgery, were recruited. Six age-matched, healthy subjects (mean age: 69.8 years, range: 60-75) served as the control group. DKI and diffusion tensor imaging parameters were calculated and compared between the iNPH and the control groups using tract-specific analysis of the CST at the level of the lateral ventricle. Mean diffusional kurtosis (DK) and axial diffusion kurtosis were significantly lower in iNPH patients. However, apparent diffusion coefficient, fractional anisotropy, and axial eigenvalue (λ 1 ) were significantly higher in the iNPH group than in the control group. The mechanical pressure caused by ventricular enlargement in iNPH patients might induce formation of well-aligned fiber tracts and increased fiber density in the CST, resulting in decreased DK. DKI is able to depict both the altered microstructure and water molecule movement within neural axons and intra- or extracellular space. In addition, the investigated DKI parameters provide different information about white matter relative to conventional diffusional metrics for iNPH. (orig.)

  1. Microstructural changes of the corticospinal tract in idiopathic normal pressure hydrocephalus: a comparison of diffusion tensor and diffusional kurtosis imaging

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Atsushi; Hori, Masaaki; Aoki, Shigeki [Juntendo University, Department of Radiology, School of Medicine, Bunkyo-ku, Tokyo (Japan); Fukunaga, Issei [Juntendo University, Department of Radiology, School of Medicine, Bunkyo-ku, Tokyo (Japan); Tokyo Metropolitan University, Department of Health Science, Graduate School of Human Health Sciences, Arakawa, Tokyo (Japan); Masutani, Yoshitaka [The University of Tokyo, Division of Radiology and Biomedical Engineering, Graduate School of Medicine, Bunkyo-ku, Tokyo (Japan); Takaaki, Hattori [Tokyo Medical and Dental University, Department of Neurology and Neurological Science, Graduate School, Bunkyo-ku, Tokyo (Japan); Miyajima, Masakazu [Juntendo University, Department of Neurosurgery, School of Medicine, Bunkyo-ku, Tokyo (Japan)

    2013-08-15

    The goals of this study were to examine the usefulness of diffusional kurtosis imaging (DKI) for assessing microstructural changes in the compressed corticospinal tract (CST) among patients with idiopathic normal pressure hydrocephalus (iNPH). Eleven patients with iNPH (mean age: 73.6 years, range: 65-84), who underwent 3-T magnetic resonance imaging, including DKI before surgery, were recruited. Six age-matched, healthy subjects (mean age: 69.8 years, range: 60-75) served as the control group. DKI and diffusion tensor imaging parameters were calculated and compared between the iNPH and the control groups using tract-specific analysis of the CST at the level of the lateral ventricle. Mean diffusional kurtosis (DK) and axial diffusion kurtosis were significantly lower in iNPH patients. However, apparent diffusion coefficient, fractional anisotropy, and axial eigenvalue ({lambda} {sub 1}) were significantly higher in the iNPH group than in the control group. The mechanical pressure caused by ventricular enlargement in iNPH patients might induce formation of well-aligned fiber tracts and increased fiber density in the CST, resulting in decreased DK. DKI is able to depict both the altered microstructure and water molecule movement within neural axons and intra- or extracellular space. In addition, the investigated DKI parameters provide different information about white matter relative to conventional diffusional metrics for iNPH. (orig.)

  2. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline

    International Nuclear Information System (INIS)

    Loh, K.B.; Ramli, N.; Tan, L.K.; Roziah, M.; Rahmat, K.; Ariffin, H.

    2012-01-01

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. (orig.)

  3. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Loh, K.B.; Ramli, N.; Tan, L.K.; Roziah, M. [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Faculty of Medicine, Kuala Lumpur (Malaysia); Rahmat, K. [University of Malaya, Department of Biomedical Imaging, University Malaya Research Imaging Centre (UMRIC), Faculty of Medicine, Kuala Lumpur (Malaysia); University Malaya, Biomedical Imaging Department, Kuala Lumpur (Malaysia); Ariffin, H. [University of Malaya, Department of Paediatrics, Faculty of Medicine, Kuala Lumpur (Malaysia)

    2012-07-15

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. (orig.)

  4. Computational and Experimental Study of the Structure of Diffusion Flames of Jet Fuel and Its Surrogates at Pressures up to 40 ATM

    Science.gov (United States)

    2012-11-21

    examination of some of the aromatics show that the model captures well benzene from toluene decomposition in BF, but underpredicts styrene and ethylbenzene ...critical toluene pyrolysis products and stable soot precursors were compared with computational models using two semi-detailed chemical mechanisms... ethylbenzene , which at least one of the mechanisms reproduces quite well. The largest measured species in the incipiently sooting flame is indene, whose

  5. Analysis of the diffusion tensor imaging parameters of a normal cervical spinal cord in a healthy population.

    Science.gov (United States)

    Wei, Liang-Feng; Wang, Shou-Sen; Zheng, Zhao-Cong; Tian, Jun; Xue, Liang

    2017-05-01

    Diffusion tensor imaging (DTI) shows great advantage in the diagnosis of brain diseases, including cervical spinal cord (CSC) disease. This study aims to obtain the normal values of the DTI parameters for a healthy population and to establish a baseline for CSC disease diagnosis using DTI. A total of 36 healthy adults were subjected to magnetic resonance imaging (MRI) for the entire CSC using the Siemens 3.0 T MR System. Sagittal DTI acquisition was carried out with a single-shot spin-echo echo-planar imaging (EPI) sequence along 12 non-collinear directions. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were determined at different cervical levels using a region of interest (ROI) method, following which they were correlated with parameters, like age and sex. Further, diffusion tensor tracking (DTT) was carried out to reconstruct the white matter fiber bundles of the CSC. The full and complete fiber bundle structure of a normal CSC was confirmed in both the T2-weighted and DTI images. The FA and ADC values were significantly negatively correlated with each other and showed strongly negative and positive correlations with age, respectively, but not with sex. Additionally, there was no significant difference between the FA and the ADC values at different cervical levels. The DTI technique can act as an important supplement to the conventional MRI technique for CSC observation. Moreover, the FA and ADC values can be used as sensitive parameters in the DTI study on the CSC by taking the effects of age into consideration.

  6. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline.

    Science.gov (United States)

    Loh, K B; Ramli, N; Tan, L K; Roziah, M; Rahmat, K; Ariffin, H

    2012-07-01

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. Diffusion tensor imaging outperforms conventional MRI in depicting white matter maturation. • DTI will become an important clinical tool for diagnosing paediatric neurological diseases. • DTI appears especially helpful for developmental abnormalities, tumours and white matter disease. • An automated processing pipeline assists quantitative analysis of high throughput DTI data.

  7. Brain Tumor Therapy-Induced Changes in Normal-Appearing Brainstem Measured With Longitudinal Diffusion Tensor Imaging

    International Nuclear Information System (INIS)

    Hua Chiaho; Merchant, Thomas E.; Gajjar, Amar; Broniscer, Alberto; Zhang, Yong; Li Yimei; Glenn, George R.; Kun, Larry E.; Ogg, Robert J.

    2012-01-01

    Purpose: To characterize therapy-induced changes in normal-appearing brainstems of childhood brain tumor patients by serial diffusion tensor imaging (DTI). Methods and Materials: We analyzed 109 DTI studies from 20 brain tumor patients, aged 4 to 23 years, with normal-appearing brainstems included in the treatment fields. Those with medulloblastomas, supratentorial primitive neuroectodermal tumors, and atypical teratoid rhabdoid tumors (n = 10) received postoperative craniospinal irradiation (23.4–39.6 Gy) and a cumulative dose of 55.8 Gy to the primary site, followed by four cycles of high-dose chemotherapy. Patients with high-grade gliomas (n = 10) received erlotinib during and after irradiation (54–59.4 Gy). Parametric maps of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were computed and spatially registered to three-dimensional radiation dose data. Volumes of interest included corticospinal tracts, medial lemnisci, and the pons. Serving as an age-related benchmark for comparison, 37 DTI studies from 20 healthy volunteers, aged 6 to 25 years, were included in the analysis. Results: The median DTI follow-up time was 3.5 years (range, 1.6–5.0 years). The median mean dose to the pons was 56 Gy (range, 7–59 Gy). Three patterns were seen in longitudinal FA and apparent diffusion coefficient changes: (1) a stable or normal developing time trend, (2) initial deviation from normal with subsequent recovery, and (3) progressive deviation without evidence of complete recovery. The maximal decline in FA often occurred 1.5 to 3.5 years after the start of radiation therapy. A full recovery time trend could be observed within 4 years. Patients with incomplete recovery often had a larger decline in FA within the first year. Radiation dose alone did not predict long-term recovery patterns. Conclusions: Variations existed among individual patients after therapy in longitudinal evolution of brainstem white matter injury and recovery. Early response

  8. Numerical study of laminar nonpremixed methane flames in coflow jets: Autoignited lifted flames with tribrachial edges and MILD combustion at elevated temperatures

    KAUST Repository

    M. Al-Noman, Saeed

    2016-07-07

    Autoignition characteristics of laminar nonpremixed methane jet flames in high-temperature coflow air are studied numerically. Several flame configurations are investigated by varying the initial temperature and fuel mole fraction. At a relatively low initial temperature, a non-autoignited nozzle-attached flame is simulated at relatively low jet velocity. When the initial temperature is higher than that required for autoignition, two regimes are investigated: an autoignited lifted flame with tribrachial edge structure and an autoignited lifted flame with Mild combustion. The autoignited lifted flame with tribrachial edge exhibited three branches: lean and rich premixed flame wings and a trailing diffusion flame. Characteristics of kinetic structure for autoignited lifted flames are discussed based on the kinetic structures of homogeneous autoignition and flame propagation of stoichiometric mixture. Results showed that a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. The autoignited lifted flame with Mild combustion occurs when methane fuel is highly diluted with nitrogen. The kinetic structure analysis shows that the characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to nozzle-attached flame was investigated by increasing the fuel mole fraction. As the maximum flame temperature increases with decreasing liftoff height, the kinetic structure showed a transition behavior from autoignition to flame propagation of a lean premixed flame. © 2016 The Combustion Institute

  9. Optic radiation structure and anatomy in the normally developing brain determined using diffusion MRI and tractography.

    Science.gov (United States)

    Dayan, Michael; Munoz, Monica; Jentschke, Sebastian; Chadwick, Martin J; Cooper, Janine M; Riney, Kate; Vargha-Khadem, Faraneh; Clark, Chris A

    2015-01-01

    The optic radiation (OR) is a component of the visual system known to be myelin mature very early in life. Diffusion tensor imaging (DTI) and its unique ability to reconstruct the OR in vivo were used to study structural maturation through analysis of DTI metrics in a cohort of 90 children aged 5-18 years. As the OR is at risk of damage during epilepsy surgery, we measured its position relative to characteristic anatomical landmarks. Anatomical distances, DTI metrics and volume of the OR were investigated for age, gender and hemisphere effects. We observed changes in DTI metrics with age comparable to known trajectories in other white matter tracts. Left lateralization of DTI metrics was observed that showed a gender effect in lateralization. Sexual dimorphism of DTI metrics in the right hemisphere was also found. With respect to OR dimensions, volume was shown to be right lateralised and sexual dimorphism demonstrated for the extent of the left OR. The anatomical results presented for the OR have potentially important applications for neurosurgical planning.

  10. Mean-squared displacements for normal and anomalous diffusion of grains

    International Nuclear Information System (INIS)

    Trigger, S A; Heijst, G J F van; Schram, P P J M

    2005-01-01

    The problem of normal and anomalous space difiusion is formulated on the basis of the integral equations with various type of the probability transition functions for difiusion (PTD functions). For the cases of stationary and time-independent PTD functions the method of fractional differentiation is avoided to construct the correct probability distributions for arbitrary distances, what is important for applications to different stochastic problems. A new general integral equation for the particle distribution, which contains the time-dependent PTD function with one or, for more complicated physical situations, with two times, is formulated and discussed. On this basis fractional differentiation in time is also avoided and a wide class of time dependent PTD functions can be investigated. Calculations of the mean-squared displacements for the various cases are performed on the basis of formulated approach. The particular problems for the PTD functions, dependable from one and for two times, are solved

  11. Evaluation of the normal-to-diseased apparent diffusion coefficient ratio as an indicator of prostate cancer aggressiveness

    International Nuclear Information System (INIS)

    Lebovici, Andrei; Sfrangeu, Silviu A; Feier, Diana; Caraiani, Cosmin; Lucan, Ciprian; Suciu, Mihai; Elec, Florin; Iacob, Gheorghita; Buruian, Mircea

    2014-01-01

    We tested the feasibility of a simple method for assessment of prostate cancer (PCa) aggressiveness using diffusion-weighted magnetic resonance imaging (MRI) to calculate apparent diffusion coefficient (ADC) ratios between prostate cancer and healthy prostatic tissue. The requirement for institutional review board approval was waived. A set of 20 standardized core transperineal saturation biopsy specimens served as the reference standard for placement of regions of interest on ADC maps in tumorous and normal prostatic tissue of 22 men with PCa (median Gleason score: 7; range, 6–9). A total of 128 positive sectors were included for evaluation. Two diagnostic ratios were computed between tumor ADCs and normal sector ADCs: the ADC peripheral ratio (the ratio between tumor ADC and normal peripheral zone tissue, ADC-PR), and the ADC central ratio (the ratio between tumor ADC and normal central zone tissue, ADC-CR). The performance of the two ratios in detecting high-risk tumor foci (Gleason 8 and 9) was assessed using the area under the receiver operating characteristic curve (AUC). Both ADC ratios presented significantly lower values in high-risk tumors (0.48 ± 0.13 for ADC-CR and 0.40 ± 0.09 for ADC-PR) compared with low-risk tumors (0.66 ± 0.17 for ADC-CR and 0.54 ± 0.09 for ADC-PR) (p < 0.001) and had better diagnostic performance (ADC-CR AUC = 0.77, sensitivity = 82.2%, specificity = 66.7% and ADC-PR AUC = 0.90, sensitivity = 93.7%, specificity = 80%) than stand-alone tumor ADCs (AUC of 0.75, sensitivity = 72.7%, specificity = 70.6%) for identifying high-risk lesions. The ADC ratio as an intrapatient-normalized diagnostic tool may be better in detecting high-grade lesions compared with analysis based on tumor ADCs alone, and may reduce the rate of biopsies

  12. Diffusion-weighted MR imaging of the normal pancreas: reproducibility and variations of apparent diffusion coefficient measurement at 1.5- and 3.0-Tesla.

    Science.gov (United States)

    Barral, M; Soyer, P; Ben Hassen, W; Gayat, E; Aout, M; Chiaradia, M; Rahmouni, A; Luciani, A

    2013-04-01

    To evaluate reproducibility and variations in apparent diffusion coefficient (ADC) measurement in normal pancreatic parenchyma at 1.5- and 3.0-Tesla and determine if differences may exist between the four pancreatic segments. Diffusion-weighted MR imaging of the pancreas was performed at 1.5-Tesla in 20 patients and at 3.0-Tesla in other 20 patients strictly matched for gender and age using the same b values (0, 400 and 800s/mm(2)). Two independent observers placed regions of interest within the four pancreatic segments to measure ADC at both fields. Intra- and inter-observer agreement in ADC measurement was assessed using Bland-Altman analysis and comparison between ADC values obtained at both fields using non-parametrical tests. There were no significant differences in ADC between repeated measurements and between ADC obtained at 1.5-Tesla and those at 3.0-Tesla. The 95% limits of intra-observer agreement between ADC were 2.3%-22.7% at 1.5-Tesla and 1%-24.2% at 3.0-Tesla and those for inter-observer agreement between 1.9%-14% at 1.5-Tesla and 8%-25% at 3.0-Tesla. ADC values were similar in all pancreatic segments at 3.0-T whereas the tail had lower ADC at 1.5-Tesla. ADC measurement conveys high degrees of intra- and inter-observer reproducibility. ADC have homogeneous distribution among the four pancreatic segments at 3.0-Tesla. Copyright © 2012 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  13. Case report of a young stroke patient showing interim normalization of the MRI diffusion-weighted imaging lesion

    International Nuclear Information System (INIS)

    Ostwaldt, Ann-Christin; Usnich, Tatiana; Nolte, Christian H.; Villringer, Kersten; Fiebach, Jochen B.

    2015-01-01

    In acute ischemic stroke, diffusion weighted imaging (DWI) shows hyperintensities and is considered to indicate irreversibly damaged tissue. We present the case of a young stroke patient with unusual variability in the development of signal intensities within the same vessel territory. A 35-year-old patient presented with symptoms of global aphasia and hypesthesia of the left hand. MRI demonstrated a scattered lesion in the MCA territory. After rtPA therapy the patient received further MRI examination, three times on day 1, and once on day 2, 3, 5 and 43. The posterior part of the lesion showed the usual pattern with increasing DWI hyperintensity and decreased ADC, as well as delayed FLAIR positivity. However, the anterior part of the lesion, which was clearly visible in the first examination completely normalized on the first day and only reappeared on day 2. This was accompanied by a normalization of the ADC as well as an even further delayed FLAIR positivity. We showed that interim normalization of DWI and ADC in the acute phase can not only be found in rodent models of stroke, but also in humans. We propose that DWI lesion development might be more variable during the first 24 h after stroke than previously assumed

  14. Acoustic excitation of diffusion flames with coherent structure in a plane shear layer. ; Application of active combustion control to two-dimensional phase-locked arranging measurements. Soshiki kozo wo tomonau heimen sendai kakusan kaen no onkyo reiki. ; Nijigen iso heikin bunpu sokutei eno active nensho seigyo no oyo

    Energy Technology Data Exchange (ETDEWEB)

    Ishino, Y.; Kojima, T.; Oiwa, N.; Yamaguchi, S. (Nagoya Institute of Technology, Nagoya (Japan))

    1993-11-25

    The acoustic excitation of a plane diffusion flame enhances the periodicity of organized eddy controlled combustion. In this study, to clarify an effectiveness of application of active combustion control, phase characteristics of the excited eddy flames with high periodicity have been examined. A computer-aided phase-locked averaging method was employed to obtain graphical two-dimensional contour maps of the instantaneous profiles of temperature and CH emission. Both maps consisting of eight consecutive phases indicated clearly not only the periodic behavior of the organized eddy flame, but also the gas dynamic properties peculiar to those flames with coherent structure. In addition, the profiles of local contribution of the sound field to the combustion process were examined by calculating the two-dimensional distribution of the local Rayleigh index. Calculation results of the two-dimensional distribution of the local Rayleigh index indicated that the organized eddy flames have high sensitivity to sound, and play an important role in an interaction of sound and flame. 6 refs., 9 figs.

  15. Formation of Frenkel pairs and diffusion of self-interstitial in Si under normal and hydrostatic pressure: Quantumchemical simulation

    International Nuclear Information System (INIS)

    Gusakov, Vasilii; Belko, Victor; Dorozhkin, Nikolai

    2009-01-01

    A theoretical modeling of the formation of Frenkel pairs and the diffusion of a self-interstitial atom in silicon crystals at normal and high (hydrostatic) pressures has been performed using quantum-chemical (NDDO-PM5), methods. It is shown that, in a silicon crystal, the most stable configuration of a self-interstitial atom in the neutral charge state (I 0 ) is the split configuration . The tetrahedral configuration is not stable, an interstitial atom being shifted from T position in a new position T 1 on a distance Δd=0.2 A. The hexagonal configuration is not stable in NDDO approximation. The split interstitial configuration remains the more stable configuration under hydrostatic pressure (P a ( →T 1 )=0.59 eV, E a (T 1 →neighboring T 1 )=0.1 eV and E a (T 1 → )=0.23 eV. The hydrostatic pressure (P<80 kbar) increases the activation barrier for diffusion of self-interstitial atoms in silicon crystals. The energies of the formation of a separate Frenkel pair, a self-interstitial atom, and a vacancy are determined. It is demonstrated that the hydrostatic pressure decreases the energy of the formation of Frenkel pairs.

  16. Intravoxel Incoherent Motion in Normal Pituitary Gland: Initial Study with Turbo Spin-Echo Diffusion-Weighted Imaging.

    Science.gov (United States)

    Kamimura, K; Nakajo, M; Fukukura, Y; Iwanaga, T; Saito, T; Sasaki, M; Fujisaki, T; Takemura, A; Okuaki, T; Yoshiura, T

    2016-12-01

    DWI with conventional single-shot EPI of the pituitary gland is hampered by strong susceptibility artifacts. Our purpose was to evaluate the feasibility of intravoxel incoherent motion assessment by using DWI based on TSE of the normal anterior pituitary lobe. The intravoxel incoherent motion parameters, including the true diffusion coefficient (D), the perfusion fraction (f), and the pseudo-diffusion coefficient (D*), were obtained with TSE-DWI in 5 brain regions (the pons, the WM and GM of the vermis, and the genu and splenium of the corpus callosum) in 8 healthy volunteers, and their agreement with those obtained with EPI-DWI was evaluated by using the intraclass correlation coefficient. The 3 intravoxel incoherent motion parameters in the anterior pituitary lobe were compared with those in the brain regions by using the Dunnett test. The agreement between TSE-DWI and EPI-DWI was moderate (intraclass correlation coefficient = 0.571) for D, substantial (0.699) for f', but fair (0.405) for D*. D in the anterior pituitary lobe was significantly higher than in the 5 brain regions (P anterior pituitary lobe was significantly higher than in the 5 brain regions (P pituitary D* was not significantly different from that in the 5 brain regions. Our results demonstrated the feasibility of intravoxel incoherent motion assessment of the normal anterior pituitary lobe by using TSE-DWI. High D and f values in the anterior pituitary lobe were thought to reflect its microstructural and perfusion characteristics. © 2016 by American Journal of Neuroradiology.

  17. Diffusion tensor tractography of normal and compressed spinal cord: a preliminary study at 3.0 T MR

    International Nuclear Information System (INIS)

    Wang Wei; Chang Shixin; Hao Nanxin; Du Yushan; Wang Yibin; Zong Genlin; Cao Kaiming; Lu Jianping; Zhao Cheng; Qin Wen

    2007-01-01

    Objective: To study the feasibility and clinical values of diffusion tensor tractography (DTT) in the spinal cord at 3.0 T MR. Methods: Forty patients with spinal cord compression including cervical cord herniation and cervical spondylosis (30 cases), tumors in spinal canal (9 cases) and old injury in cervical vertebrae (1 cases) and 20 healthy volunteers participated in this study. Single-shot spin- echo echo-planar diffusion tensor sequence for tractography of the spinal cord was performed. The fibers of spinal cord were visualized by using fiber tracking software. Results: On the DTT maps, the normal spinal cord was depicted as a fiber tract showing color-encoded cephalocaudally, which indicated anisotropy in the cephalocaudal direction. By setting two ROI, the main spinal cord fiber tracts, such as corticospinal or spinothalamic tract, were visualized. The tracts from two sides of the brain did not completely cross. It was asymmetric in the number of tracts on the two sides in most normal subjects (8/10). The tracts of all patients with cord compression were seen oppressed or damaged in different degrees. The DTT in patients with cervical spondylosis and extramedullary-intradural neurolemmoma demonstrated that tracts were oppressed but not damaged. The DTT in one ependymoma showed that tract was markedly compressed and slightly damaged. Conclusion: DTT is a promising tool for demonstrating the spinal cord tracts and abnormalities, can provide useful information for the localization of compression and evaluation of the impairment extent on the white matter tracts of the spinal cord. (authors)

  18. Structure and Dissipation Characteristics of an Electron Diffusion Region Observed by MMS During a Rapid, Normal-Incidence Magnetopause Crossing

    Science.gov (United States)

    Torbert, R. B.; Burch, J. L.; Argall, M. R.; Alm, L.; Farrugia, C. J.; Forbes, T. G.; Giles, B. L.; Rager, A.; Dorelli, J.; Strangeway, R. J.; Ergun, R. E.; Wilder, F. D.; Ahmadi, N.; Lindqvist, P.-A.; Khotyaintsev, Y.

    2017-12-01

    On 22 October 2016, the Magnetospheric Multiscale (MMS) spacecraft encountered the electron diffusion region (EDR) when the magnetosheath field was southward, and there were signatures of fast reconnection, including flow jets, Hall fields, and large power dissipation. One rapid, normal-incidence crossing, during which the EDR structure was almost stationary in the boundary frame, provided an opportunity to observe the spatial structure for the zero guide field case of magnetic reconnection. The reconnection electric field was determined unambiguously to be 2-3 mV/m. There were clear signals of fluctuating parallel electric fields, up to 6 mV/m on the magnetosphere side of the diffusion region, associated with a Hall-like parallel current feature on the electron scale. The width of the main EDR structure was determined to be 2 km (1.8 de). Although the MMS spacecraft were in their closest tetrahedral separation of 8 km, the divergences and curls for these thin current structures could therefore not be computed in the usual manner. A method is developed to determine these quantities on a much smaller scale and applied to compute the normal component of terms in the generalized Ohm's law for the positions of each individual spacecraft (not a barocentric average). Although the gradient pressure term has a qualitative dependence that follows the observed variation of E + Ve × B, the quantitative magnitude of these terms differs by more than a factor of 2, which is shown to be greater than the respective errors. Thus, future research is required to find the manner in which Ohm's law is balanced.

  19. Experiment and Simulation of Autoignition in Jet Flames and its Relevance to Flame Stabilization and Structure

    KAUST Repository

    Al-Noman, Saeed M.

    2016-06-01

    mainly between the fuel nozzle and the lifted flame edge. On the other hand, they were formed just prior to the flame edge for the non-autoignited lifted flames. The effect of fuel pyrolysis and partial oxidation were found to be important in explaining autoignited liftoff heights, especially in the Mild combustion regime. Flame structures of autoignited flames were investigated numerically for syngas (CO/H2) and methane fuels. The simulations of syngas fuel accounting for the differential diffusion have been performed by adopting several kinetic mechanisms to test the models ability in predicting the flame behaviors observed previously. The results agreed well with the observed nozzle-attached flame characteristics in case of non-autoignited flames. For autoignited lifted flames in high temperature regime, a unique autoignition behavior can be predicted having HO2 and H2O2 radicals in a broad region between the nozzle and stabilized lifted flame edge. Autoignition characteristics of laminar nonpremixed methane jet flames in high- temperature coflow air were studied numerically. Several flame configurations were investigated by varying the initial temperature and fuel mole fraction. Characteristics of chemical kinetics structures for autoignited lifted flames were discussed based on the kinetic structures of homogeneous autoignition and flame propagation of premixed mixtures. Results showed that for autoignited lifted flame with tribrachial structure, a transition from autoignition to flame propagation modes occurs for reasonably stoichiometric mixtures. Characteristics of Mild combustion can be treated as an autoignited lean premixed lifted flame. Transition behavior from Mild combustion to a nozzle-attached flame was also investigated by increasing the fuel mole fraction.

  20. Direct numerical simulations of non-premixed ethylene-air flames: Local flame extinction criterion

    KAUST Repository

    Lecoustre, Vivien R.

    2014-11-01

    Direct Numerical Simulations (DNS) of ethylene/air diffusion flame extinctions in decaying two-dimensional turbulence were performed. A Damköhler-number-based flame extinction criterion as provided by classical large activation energy asymptotic (AEA) theory is assessed for its validity in predicting flame extinction and compared to one based on Chemical Explosive Mode Analysis (CEMA) of the detailed chemistry. The DNS code solves compressible flow conservation equations using high order finite difference and explicit time integration schemes. The ethylene/air chemistry is simulated with a reduced mechanism that is generated based on the directed relation graph (DRG) based methods along with stiffness removal. The numerical configuration is an ethylene fuel strip embedded in ambient air and exposed to a prescribed decaying turbulent flow field. The emphasis of this study is on the several flame extinction events observed in contrived parametric simulations. A modified viscosity and changing pressure (MVCP) scheme was adopted in order to artificially manipulate the probability of flame extinction. Using MVCP, pressure was changed from the baseline case of 1 atm to 0.1 and 10 atm. In the high pressure MVCP case, the simulated flame is extinction-free, whereas in the low pressure MVCP case, the simulated flame features frequent extinction events and is close to global extinction. Results show that, despite its relative simplicity and provided that the global flame activation temperature is correctly calibrated, the AEA-based flame extinction criterion can accurately predict the simulated flame extinction events. It is also found that the AEA-based criterion provides predictions of flame extinction that are consistent with those provided by a CEMA-based criterion. This study supports the validity of a simple Damköhler-number-based criterion to predict flame extinction in engineering-level CFD models. © 2014 The Combustion Institute.

  1. Analysis of normal-appearing white matter of multiple sclerosis by tensor-based two-compartment model of water diffusion

    International Nuclear Information System (INIS)

    Tachibana, Yasuhiko; Obata, Takayuki; Yoshida, Mariko; Hori, Masaaki; Kamagata, Koji; Suzuki, Michimasa; Fukunaga, Issei; Kamiya, Kouhei; Aoki, Shigeki; Yokoyama, Kazumasa; Hattori, Nobutaka; Inoue, Tomio

    2015-01-01

    To compare the significance of the two-compartment model, considering diffusional anisotropy with conventional diffusion analyzing methods regarding the detection of occult changes in normal-appearing white matter (NAWM) of multiple sclerosis (MS). Diffusion-weighted images (nine b-values with six directions) were acquired from 12 healthy female volunteers (22-52 years old, median 33 years) and 13 female MS patients (24-48 years old, median 37 years). Diffusion parameters based on the two-compartment model of water diffusion considering diffusional anisotropy was calculated by a proposed method. Other parameters including diffusion tensor imaging and conventional apparent diffusion coefficient (ADC) were also obtained. They were compared statistically between the control and MS groups. Diffusion of the slow diffusion compartment in the radial direction of neuron fibers was elevated in MS patients (0.121 x 10 -3 mm 2 /s) in comparison to control (0.100 x 10 -3 mm 2 /s), the difference being significant (P = 0.001). The difference between the groups was not significant in other comparisons, including conventional ADC and fractional anisotropy (FA) of diffusion tensor imaging. The proposed method was applicable to clinically acceptable small data. The parameters obtained by this method improved the detectability of occult changes in NAWM compared to the conventional methods. (orig.)

  2. Analysis of normal-appearing white matter of multiple sclerosis by tensor-based two-compartment model of water diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Yasuhiko [National Institute of Radiological Sciences, Research Center for Charged Particle Therapy, Chiba (Japan); Yokohama City University Graduate School of Medicine, Department of Radiology, Yokohama (Japan); Juntendo University School of Medicine, Department of Radiology, Tokyo (Japan); Obata, Takayuki [National Institute of Radiological Sciences, Research Center for Charged Particle Therapy, Chiba (Japan); Yoshida, Mariko; Hori, Masaaki; Kamagata, Koji; Suzuki, Michimasa; Fukunaga, Issei; Kamiya, Kouhei; Aoki, Shigeki [Juntendo University School of Medicine, Department of Radiology, Tokyo (Japan); Yokoyama, Kazumasa; Hattori, Nobutaka [Juntendo University School of Medicine, Department of Neurology, Tokyo (Japan); Inoue, Tomio [Yokohama City University Graduate School of Medicine, Department of Radiology, Yokohama (Japan)

    2015-06-01

    To compare the significance of the two-compartment model, considering diffusional anisotropy with conventional diffusion analyzing methods regarding the detection of occult changes in normal-appearing white matter (NAWM) of multiple sclerosis (MS). Diffusion-weighted images (nine b-values with six directions) were acquired from 12 healthy female volunteers (22-52 years old, median 33 years) and 13 female MS patients (24-48 years old, median 37 years). Diffusion parameters based on the two-compartment model of water diffusion considering diffusional anisotropy was calculated by a proposed method. Other parameters including diffusion tensor imaging and conventional apparent diffusion coefficient (ADC) were also obtained. They were compared statistically between the control and MS groups. Diffusion of the slow diffusion compartment in the radial direction of neuron fibers was elevated in MS patients (0.121 x 10{sup -3} mm{sup 2}/s) in comparison to control (0.100 x 10{sup -3} mm{sup 2}/s), the difference being significant (P = 0.001). The difference between the groups was not significant in other comparisons, including conventional ADC and fractional anisotropy (FA) of diffusion tensor imaging. The proposed method was applicable to clinically acceptable small data. The parameters obtained by this method improved the detectability of occult changes in NAWM compared to the conventional methods. (orig.)

  3. Aerodynamic features of flames in premixed gases

    Science.gov (United States)

    Oppenheim, A. K.

    1984-01-01

    A variety of experimentally established flame phenomena in premixed gases are interpreted by relating them to basic aerodynamic properties of the flow field. On this basis the essential mechanism of some well known characteristic features of flames stabilized in the wake of a bluff-body or propagating in ducts are revealed. Elementary components of the flame propagation process are shown to be: rotary motion, self-advancement, and expansion. Their consequences are analyzed under a most strict set of idealizations that permit the flow field to be treated as potential in character, while the flame is modelled as a Stefan-like interface capable of exerting a feed-back effect upon the flow field. The results provide an insight into the fundamental fluid-mechanical reasons for the experimentally observed distortions of the flame front, rationalizing in particular its ability to sustain relatively high flow velocities at amazingly low normal burning speeds.

  4. Culture of normal human blood cells in diffusion chamber systems. I. Granulocyte survival and proliferation. [X radiation, mice

    Energy Technology Data Exchange (ETDEWEB)

    Chikkappa, G.; Carsten, A.L.; Chanana, A.D.; Cronkite, E.P.

    1978-01-01

    Blood cells from four normal volunteers were cultured in diffusion chambers (DC), made of Millipore (MDC) or Nuclepore (NDC) filters, in the peritoneal cavities of whole body X-irradiated (700 rad) mice. The total nucleated cell recovery from the two types of DC over 18 days indicates that the cells in DC persist and proliferate. The mature neutrophilic cells, metamyelocytes (M/sub 5/) + band forms (M/sub 6/) + segmented forms (M/sub 7/), survived with T/sup 1///sub 2/ of 29 and 34 h in MDC and NDC, respectively. The reduction of the cells in the DC was surmised to be due to degeneration and death of the M/sub 7/. The /sup 3/H-diisopropylfluorophosphate (/sup 3/HDFP) labeled M/sub /sub 6/+/sub 7// survival in MDC was slightly shorter than that of unlabeled cells, which may be explained on the basis of the loss of /sup 3/HDFP (5.1%/day) from the cells. The eosinophils survived with an average T/sup 1///sub 2/ of 7.2 days (range 4.8 to 9.6), and the results were comparable in both types of DC. Formation of myeloblasts, promyelocytes, and neutrophilic, eosinophilic and basophilic myelocytes, occasional megakaryocytes and rare normoblasts in DC indicated that the normal human blood contains progenitors (pluripotent and/or committed stem cells) of hemopoietic cells. The neutrophilic cell recovery pattern was similar from both types of DC, but the total number recovered was always greater from NDC than from MDC.

  5. Normal white matter microstructure in women long-term recovered from anorexia nervosa: A diffusion tensor imaging study.

    Science.gov (United States)

    Bang, Lasse; Rø, Øyvind; Endestad, Tor

    2018-01-01

    Studies point to white matter (WM) microstructure alterations in both adolescent and adult patients with anorexia nervosa (AN). These include reduced fractional anisotropy in several WM fiber tracts, suggesting reduced WM integrity. The extent to which these alterations are reversible with recovery from AN is unclear. There is a paucity of research investigating the presence of WM microstructure alterations in recovered AN patients, and results are inconsistent. This study aimed to investigate the presence of WM microstructure alterations in women long-term recovered from AN. Twenty-one adult women who were recovered from AN for at least 1 year were compared to 21 adult comparison women. Participants were recruited via user-organizations for eating disorders, local advertisements, and online forums. Diffusion tensor imaging was used to compare WM microstructure between groups. Correlations between WM microstructure and clinical characteristics were also explored. There were no statistically significant between-group differences in WM microstructure. These null findings remained when employing liberal alpha level thresholds. Furthermore, there were no statistically significant correlations between WM microstructure and clinical characteristics. Our findings showed normal WM microstructure in long-term recovered patients, indicating the alterations observed during the acute phase are reversible. Given the paucity of research and inconsistent findings, future studies are warranted to determine the presence of WM microstructure alterations following recovery from AN. © 2017 Wiley Periodicals, Inc.

  6. Normalized STEAM-based diffusion tensor imaging provides a robust assessment of muscle tears in football players: preliminary results of a new approach to evaluate muscle injuries.

    Science.gov (United States)

    Giraudo, Chiara; Motyka, Stanislav; Weber, Michael; Karner, Manuela; Resinger, Christoph; Feiweier, Thorsten; Trattnig, Siegfried; Bogner, Wolfgang

    2018-02-08

    To assess acute muscle tears in professional football players by diffusion tensor imaging (DTI) and evaluate the impact of normalization of data. Eight football players with acute lower limb muscle tears were examined. DTI metrics of the injured muscle and corresponding healthy contralateral muscle and of ROIs drawn in muscle tears (ROI tear ) in the corresponding healthy contralateral muscle (ROI hc_t ) in a healthy area ipsilateral to the injury (ROI hi ) and in a corresponding contralateral area (ROI hc_i ) were compared. The same comparison was performed for ratios of the injured (ROI tear /ROI hi ) and contralateral sides (ROI hc_t /ROI hc_i ). ANOVA, Bonferroni-corrected post-hoc and Student's t-tests were used. Analyses of the entire muscle did not show any differences (p>0.05 each) except for axial diffusivity (AD; p=0.048). ROI tear showed higher mean diffusivity (MD) and AD than ROI hc_t (ptear than in ROI hi and ROI hc_t (ptear than in any other ROI (pmuscle tears in athletes especially after normalization to healthy muscle tissue. • STEAM-based DTI allows the investigation of muscle tears affecting professional football players. • Fractional anisotropy and mean diffusivity differ between injured and healthy muscle areas. • Only normalized data show differences of fibre tracking metrics in muscle tears. • The normalization of DTI-metrics enables a more robust characterization of muscle tears.

  7. Quasiparticle Green's function theory of the Josephson effect in chiral p-wave superconductor/diffusive normal metal/chiral p-wave superconductor junctions

    NARCIS (Netherlands)

    Sawa, Y.; Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We study the Josephson effect in chiral p-wave superconductor/diffusive normal metal (DN)/chiral p-wave superconductor (CP/DN/CP) junctions using quasiclassical Green's function formalism with proper boundary conditions. The px+ipy-wave symmetry of superconducting order parameter is chosen which is

  8. Theory of Josephson effect in Sr2RuO4/diffusive normal metal/Sr2RuO4 junctions

    NARCIS (Netherlands)

    Sawa, Y.; Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We derive a generalized Nazarov’s boundary condition for diffusive normal metal (DN)/chiral p-wave superconductor (CP) interface including the macroscopic phase of the superconductor. The Josephson effect is studied in CP/DN/CP junctions solving the Usadel equations under the above boundary

  9. Diffusion tensor magnetic resonance imaging may show abnormalities in the normal-appearing cervical spinal cord from patients with multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Fernanda Miraldi

    2013-09-01

    Full Text Available Objective This study aims to evaluate “in vivo” the integrity of the normal-appearing spinal cord (NASC in patients with multiple sclerosis (MS compared to controls, using diffusion tensor MR imaging. Methods We studied 32 patients with MS and 17 without any neurologic disorder. Fractional anisotropy (FA, axial diffusivity (AD, radial diffusivity (RD and mean diffusivity (MD were calculated within regions of interest at C2 and C7 levels in the four columns of the spinal cord. Results At C2, FA value was decreased in MS patients. Besides, RD value was higher in MS than in controls. At C7, MD values were increased in MS. Conclusion The NASC in the right column of the cervical spinal cord showed abnormal FA, RD and MD values, which is possibly related to demyelination, since the FA abnormality was related to the RD and not to the AD.

  10. Global diffusion tensor imaging derived metrics differentiate glioblastoma multiforme vs. normal brains by using discriminant analysis: introduction of a novel whole-brain approach.

    Science.gov (United States)

    Roldan-Valadez, Ernesto; Rios, Camilo; Cortez-Conradis, David; Favila, Rafael; Moreno-Jimenez, Sergio

    2014-06-01

    Histological behavior of glioblastoma multiforme suggests it would benefit more from a global rather than regional evaluation. A global (whole-brain) calculation of diffusion tensor imaging (DTI) derived tensor metrics offers a valid method to detect the integrity of white matter structures without missing infiltrated brain areas not seen in conventional sequences. In this study we calculated a predictive model of brain infiltration in patients with glioblastoma using global tensor metrics. Retrospective, case and control study; 11 global DTI-derived tensor metrics were calculated in 27 patients with glioblastoma multiforme and 34 controls: mean diffusivity, fractional anisotropy, pure isotropic diffusion, pure anisotropic diffusion, the total magnitude of the diffusion tensor, linear tensor, planar tensor, spherical tensor, relative anisotropy, axial diffusivity and radial diffusivity. The multivariate discriminant analysis of these variables (including age) with a diagnostic test evaluation was performed. The simultaneous analysis of 732 measures from 12 continuous variables in 61 subjects revealed one discriminant model that significantly differentiated normal brains and brains with glioblastoma: Wilks' λ = 0.324, χ(2) (3) = 38.907, p tensor and linear tensor. These metrics might be clinically applied for diagnosis, follow-up, and the study of other neurological diseases.

  11. Analysis of lift-off height and structure of n-heptane tribrachial flames in laminar jet configuration

    KAUST Repository

    Luca, Stefano; Bisetti, Fabrizio

    2015-01-01

    A set of lifted tribrachial n-heptane flames in a laminar jet configuration are simulated. The simulations are performed using finite rate chemistry and detailed transport, and aim at investigating the propagation of tribrachial flames. Varying the inlet velocity of the fuel, different stabilization heights are obtained, and the dependence of the stabilization height in the inlet velocity is compared with experimental data. A detailed analysis of the flame geometry is performed by comparingthe flame structure to that of unstretched premixed flames. Issues related to differential diffusion effects, flame stretch, and transport of heat and mass from the burnt gases to the flame front are discussed.

  12. Analysis of lift-off height and structure of n-heptane tribrachial flames in laminar jet configuration

    KAUST Repository

    Luca, Stefano

    2015-03-30

    A set of lifted tribrachial n-heptane flames in a laminar jet configuration are simulated. The simulations are performed using finite rate chemistry and detailed transport, and aim at investigating the propagation of tribrachial flames. Varying the inlet velocity of the fuel, different stabilization heights are obtained, and the dependence of the stabilization height in the inlet velocity is compared with experimental data. A detailed analysis of the flame geometry is performed by comparingthe flame structure to that of unstretched premixed flames. Issues related to differential diffusion effects, flame stretch, and transport of heat and mass from the burnt gases to the flame front are discussed.

  13. Autoignited lifted flames of dimethyl ether in heated coflow air

    KAUST Repository

    Al-Noman, Saeed M.

    2018-05-16

    Autoignited lifted flames of dimethyl ether (DME) in laminar nonpremixed jets with high-temperature coflow air have been studied experimentally. When the initial temperature was elevated to over 860 K, an autoignition occurred without requiring an external ignition source. A planar laser-induced fluorescence (PLIF) technique for formaldehyde (CH2O) visualized qualitatively the zone of low temperature kinetics in a premixed flame. Two flame configurations were investigated; (1) autoignited lifted flames with tribrachial edge having three distinct branches of a lean and a rich premixed flame wings with a trailing diffusion flame and (2) autoignited lifted flames with mild combustion when the fuel was highly diluted. For the autoignited tribrachial edge flames at critical autoignition conditions, exhibiting repetitive extinction and re-ignition phenomena near a blowout condition, the characteristic flow time (liftoff height scaled with jet velocity) was correlated with the square of the ignition delay time of the stoichiometric mixture. The liftoff heights were also correlated as a function of jet velocity times the square of ignition delay time. Formaldehydes were observed between the fuel nozzle and the lifted flame edge, emphasizing a low-temperature kinetics for autoignited lifted flames, while for a non-autoignited lifted flame, formaldehydes were observed near a thin luminous flame zone.For the autoignited lifted flames with mild combustion, especially at a high temperature, a unique non-monotonic liftoff height behavior was observed; decreasing and then increasing liftoff height with jet velocity. This behavior was similar to the binary mixture fuels of CH4/H2 and CO/H2 observed previously. A transient homogeneous autoignition analysis suggested that such decreasing behavior with jet velocity can be attributed to partial oxidation characteristics of DME in producing appreciable amounts of CH4/CO/H2 ahead of the edge flame region.

  14. Autoignited lifted flames of dimethyl ether in heated coflow air

    KAUST Repository

    Al-Noman, Saeed M.; Choi, Byung Chul; Chung, Suk-Ho

    2018-01-01

    Autoignited lifted flames of dimethyl ether (DME) in laminar nonpremixed jets with high-temperature coflow air have been studied experimentally. When the initial temperature was elevated to over 860 K, an autoignition occurred without requiring an external ignition source. A planar laser-induced fluorescence (PLIF) technique for formaldehyde (CH2O) visualized qualitatively the zone of low temperature kinetics in a premixed flame. Two flame configurations were investigated; (1) autoignited lifted flames with tribrachial edge having three distinct branches of a lean and a rich premixed flame wings with a trailing diffusion flame and (2) autoignited lifted flames with mild combustion when the fuel was highly diluted. For the autoignited tribrachial edge flames at critical autoignition conditions, exhibiting repetitive extinction and re-ignition phenomena near a blowout condition, the characteristic flow time (liftoff height scaled with jet velocity) was correlated with the square of the ignition delay time of the stoichiometric mixture. The liftoff heights were also correlated as a function of jet velocity times the square of ignition delay time. Formaldehydes were observed between the fuel nozzle and the lifted flame edge, emphasizing a low-temperature kinetics for autoignited lifted flames, while for a non-autoignited lifted flame, formaldehydes were observed near a thin luminous flame zone.For the autoignited lifted flames with mild combustion, especially at a high temperature, a unique non-monotonic liftoff height behavior was observed; decreasing and then increasing liftoff height with jet velocity. This behavior was similar to the binary mixture fuels of CH4/H2 and CO/H2 observed previously. A transient homogeneous autoignition analysis suggested that such decreasing behavior with jet velocity can be attributed to partial oxidation characteristics of DME in producing appreciable amounts of CH4/CO/H2 ahead of the edge flame region.

  15. An Optical Study of Processes in Hydrogen Flame in a Tube

    Science.gov (United States)

    2002-07-01

    growth of the hydrogen- flame length with the hydrogen flow rate was observed, whereas for a turbulent hydrogen jet (Reynolds number Re > 104 [5]), the... flame length remained almost constant and varied only weakly with the flow rate of hydrogen. For a subsonic jet flow, flame images display an...There are some data in the literature which show how the diffusive- flame length varies with the rate of hydrogen flow [4, 7]. The length of a

  16. On the Flame Height Definition for Upward Flame Spread

    OpenAIRE

    Consalvi, Jean L; Pizzo, Yannick; Porterie, Bernard; Torero, Jose L

    2007-01-01

    Flame height is defined by the experimentalists as the average position of the luminous flame and, consequently is not directly linked with a quantitative value of a physical parameter. To determine flame heights from both numerical and theoretical results, a more quantifiable criterion is needed to define flame heights and must be in agreement with the experiments to allow comparisons. For wall flames, steady wall flame experiments revealed that flame height may be define...

  17. The clinical utility of MR diffusion tensor imaging and spatially normalized PET to evaluate traumatic brain injury patients with memory and cognitive impairments

    International Nuclear Information System (INIS)

    Okumura, Ayumi; Yasokawa, Yuuto; Nakayama, Noriyuki; Miwa, Kazuhiro; Shinoda, Jun; Iwama, Toru

    2005-01-01

    We detected and compared abnormal brain areas using both MR diffusion tensor imaging (DTI) and easy Z score imaging system (eZIS) of fluorodeoxyglucose (FDG)-PET for traumatic brain injury patients with memory and cognitive impairments. Twenty normal subjects and eighteen diffuse axonal injury patients with memory and cognitive impairments were studied with DTI and eZIS of 18 F-FDG-PET. DTI contained fractional anisotorophy (FA) analysis and the tractography for the corpus callosum. After PET imaging was performed, statistical analysis using eZIS was undergone with followed processing steps, including smoothing, normalization and z transformation with respect to normal database. Z score map was superimposed on 3D MRI brain. Group analysis was performed using statistical parametric mapping (SPM). In diffuse axonal injury patients, the decline of FA was observed around the corpus callosum in comparison with normal subjects and the reduction of glucose metabolism was shown in the cingulated association. These results suggest that the reduction of metabolism within the cingulated cortex indicated deprived neuronal activation caused by the impaired neuronal connectivity that was revealed with DTI. Furthermore, the metabolic abnormalities within the cingulated cortex may be responsible for memory and cognitive impairments. DTI and spatially normalized PET have a role in neuroimaging interpretation for patients with memory and cognition impairments be cause its 3D better visualization allows objective and systematic investigation. (author)

  18. Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame

    Science.gov (United States)

    Wang, Haiou; Hawkes, Evatt R.; Chen, Jacqueline H.

    2016-09-01

    In the present work, direct numerical simulation (DNS) of a laboratory premixed turbulent jet flame was performed to study turbulence-flame interactions. The turbulent flame features moderate Reynolds number and high Karlovitz number (Ka). The orientations of the flame normal vector n, the vorticity vector ω and the principal strain rate eigenvectors ei are examined. The in-plane and out-of-plane angles are introduced to quantify the vector orientations, which also measure the flame geometry and the vortical structures. A general observation is that the distributions of these angles are more isotropic downstream as the flame and the flow become more developed. The out-of-plane angle of the flame normal vector, β, is a key parameter in developing the correction of 2D measurements to estimate the corresponding 3D quantities. The DNS results show that the correction factor is unity at the inlet and approaches its theoretical value of an isotropic distribution downstream. The alignment characteristics of n, ω and ei, which reflect the interactions of turbulence and flame, are also studied. Similar to a passive scalar gradient in non-reacting flows, the flame normal has a tendency to align with the most compressive strain rate, e3, in the flame, indicating that turbulence contributes to the production of scalar gradient. The vorticity dynamics are examined via the vortex stretching term, which was found to be the predominant source of vorticity generation balanced by dissipation, in the enstrophy transport equation. It is found that although the vorticity preferentially aligns with the intermediate strain rate, e2, the contribution of the most extensive strain rate, e1, to vortex stretching is comparable with that of the intermediate strain rate, e2. This is because the eigenvalue of the most extensive strain rate, λ1, is always large and positive. It is confirmed that the vorticity vector is preferentially positioned along the flame tangential plane, contributing

  19. Fundamental Flame Velocities of Pure Hydrocarbons I : Alkanes, Alkenes, Alkynes Benzene, and Cyclohexane

    Science.gov (United States)

    Gerstein, Melvin; Levine, Oscar; Wong, Edgar L

    1950-01-01

    The flame velocities of 37 pure hydrocarbons including normal and branched alkanes, alkenes, and alkynes; as well as benzene and cyclohexane, together with the experimental technique employed are presented. The normal alkanes have about the same flame velocity from ethane through heptane with methane being about 16 percent lower. Unsaturation increases the flame velocity in the order of alkanes, alkenes, and alkynes. Branching reduces the flame velocity.

  20. Diffusion model for iontophoresis measured by laser-Doppler perfusion flowmetry, applied to normal and preeclamptic pregnancies

    NARCIS (Netherlands)

    de Mul, Frits F. M.; Blaauw, Judith; Smit, Andries J.; Rakhorst, Gerhard

    2007-01-01

    We present a physical model to describe iontophoresis time recordings. The model is a combination of monodimensional material diffusion and decay, probably due to transport by blood flow. It has four adjustable parameters, the diffusion coefficient, the decay constant, the height of the response,

  1. Structure of Unsteady Partially Premixed Flames and the Existence of State Relationships

    Directory of Open Access Journals (Sweden)

    Suresh K. Aggarwal

    2009-09-01

    Full Text Available In this study, we examine the structure and existence of state relationships in unsteady partially premixed flames (PPFs subjected to buoyancy-induced and external perturbations. A detailed numerical model is employed to simulate the steady and unsteady two-dimensional PPFs established using a slot burner under normal and zero-gravity conditions. The coflow velocity is parametrically varied. The methane-air chemistry is modeled using a fairly detailed mechanism that contains 81 elementary reactions and 24 species. Validation of the computational model is provided through comparisons of predictions with nonintrusive measurements. The combustion proceeds in two reaction zones, one a rich premixed zone and the other a nonpremixed zone. These reaction zones are spatially separated, but involve strong interactions between them due to thermochemistry and scalar transport. The fuel is mostly consumed in the premixed zone to produce CO and H2, which are transported to and consumed in the nonpremixed zone. The nonpremixed zone in turn provides heat and H-atoms to the premixed zone. For the range of conditions investigated, the zero-g partially premixed flames exhibit a stable behavior and a remarkably strong resistance to perturbations. In contrast, the corresponding normal-gravity flames exhibit oscillatory behavior at low coflow velocities but a stable behavior at high coflow velocities, and the behavior can be explained in terms of a global and convective instabilities. The effects of coflow and gravity on the flames are characterized through a parameter VR, defined as the ratio of coflow velocity to jet velocity. For VR ≤ 1 (low coflow velocity regime, the structures of both 0- and 1-g flames are strongly sensitive to changes in VR, while they are only mildly affected by coflow in the high coflow velocity regime (VR > 1. In addition, the spatio-temporal characteristics of the 0- and 1-g flames are markedly different in the first regime, but are

  2. Alterations of diffusion tensor MRI parameters in the brains of patients with Parkinson's disease compared with normal brains: possible diagnostic use

    International Nuclear Information System (INIS)

    Lu, Chin-Song; Weng, Yi-Hsin; Lin, Wey-Yil; Ng, Shu-Hang; Cheng, Jur-Shan; Wai, Yau-Yau; Chen, Yao-Liang; Wang, Jiun-Jie

    2016-01-01

    To investigate the diagnostic performance of diffusion tensor imaging in patients with Parkinson's disease (PD). We examined a total of 126 PD patients (68 males/58 females, mean age: 62.0 ±7.6 years) and 91 healthy controls (43 males/48 females, mean age: 59.8 ±7.2 years). Images were acquired on a 3 Tesla magnetic resonance scanner. The Camino software was used to normalize and parcellate diffusion-weighted images into 90 cerebral regions based on the automatic anatomical labelling template. The minimum, median, and maximum values of the mean/radial/axial diffusivity/fractional anisotropy were determined. The diagnostic performance was assessed by receiver operating characteristic analysis. The associations of imaging parameters with disease severity were tested using Pearson's correlation coefficients after adjustment for disease duration. Compared with healthy controls, PD patients showed increased diffusivity in multiple cortical regions that extended beyond the basal ganglia. An area under curve of 85 % was identified for the maximum values of mean diffusivity in the ipsilateral middle temporal gyrus. The most significant intergroup difference was 26.8 % for the ipsilateral inferior parietal gyrus. The measurement of water diffusion from the parcellated cortex may be clinically useful for the assessment of PD patients. (orig.)

  3. Alterations of diffusion tensor MRI parameters in the brains of patients with Parkinson's disease compared with normal brains: possible diagnostic use

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chin-Song; Weng, Yi-Hsin; Lin, Wey-Yil [Chang Gung Memorial Hospital, Division of Movement Disorders,Department of Neurology, Taoyuan (China); Chang Gung Memorial Hospital, Neuroscience Research Center, Taoyuan (China); Chang Gung University, School of Traditional Chinese Medicine, Taoyuan (China); Ng, Shu-Hang [Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Linkou (China); Chang Gung University, Department of Medical Imaging and Radiological Sciences, Taoyuan County (China); Cheng, Jur-Shan [Chang Gung University, Clinical Informatics and Medical Statistics Research Center,College of Medicine, Taoyuan (China); Wai, Yau-Yau [Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Keelung (China); Chen, Yao-Liang [Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Linkou (China); Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Keelung (China); Wang, Jiun-Jie [Chang Gung Memorial Hospital, Neuroscience Research Center, Taoyuan (China); Chang Gung Memorial Hospital, Department of Medical Imaging and Intervention, Linkou (China); Chang Gung University, Department of Medical Imaging and Radiological Sciences, Taoyuan County (China); Chang Gung University / Chang Gung Memorial Hospital, Linkou, Medical Imaging Research Center, Institute for Radiological Research, Taoyuan (China)

    2016-11-15

    To investigate the diagnostic performance of diffusion tensor imaging in patients with Parkinson's disease (PD). We examined a total of 126 PD patients (68 males/58 females, mean age: 62.0 ±7.6 years) and 91 healthy controls (43 males/48 females, mean age: 59.8 ±7.2 years). Images were acquired on a 3 Tesla magnetic resonance scanner. The Camino software was used to normalize and parcellate diffusion-weighted images into 90 cerebral regions based on the automatic anatomical labelling template. The minimum, median, and maximum values of the mean/radial/axial diffusivity/fractional anisotropy were determined. The diagnostic performance was assessed by receiver operating characteristic analysis. The associations of imaging parameters with disease severity were tested using Pearson's correlation coefficients after adjustment for disease duration. Compared with healthy controls, PD patients showed increased diffusivity in multiple cortical regions that extended beyond the basal ganglia. An area under curve of 85 % was identified for the maximum values of mean diffusivity in the ipsilateral middle temporal gyrus. The most significant intergroup difference was 26.8 % for the ipsilateral inferior parietal gyrus. The measurement of water diffusion from the parcellated cortex may be clinically useful for the assessment of PD patients. (orig.)

  4. Effectiveness of diffusion tensor imaging in differentiating early-stage subcortical ischemic vascular disease, Alzheimer's disease and normal ageing.

    Directory of Open Access Journals (Sweden)

    Min-Chien Tu

    Full Text Available To describe and compare diffusion tensor imaging (DTI parameters between patients with subcortical ischemic vascular disease (SIVD and Alzheimer's disease (AD diagnosed using structuralized neuropsychiatric assessments, and investigate potential neuronal substrates related to cognitive performance.Thirty-five patients with SIVD, 40 patients with AD, and 33 cognitively normal control (NC subjects matched by age and education level were consecutively recruited and underwent cognitive function assessments and DTI examinations. Comparisons among these three subgroups with regards to cognitive performance and DTI parameters including fractional anisotropy (FA and mean diffusivity (MD values were performed. Partial correlation analysis after controlling for age and education was used to evaluate associations between cognitive performance and DTI parameters.With regards to cognitive performance, the patients with SIVD had lower total scores in frontal assessment battery (FAB compared to those with AD (p < 0.05 in the context of comparable Mini-Mental Status Examination and Cognitive Abilities Screening Instrument scores. With regards to DTI parameters, there were more regions of significant differences in FA among these three subgroups compared with MD. Compared with NC group, the patients with SIVD had significant global reductions in FA (p < 0.001 ~ 0.05, while significant reductions in FA among the patients with AD were regionally confined within the left superior longitudinal fasciculus, genu and splenium of the corpus callosum, and bilateral forceps major, and the anterior thalamic radiation, uncinate fasciculus, and cingulum of the left side (p < 0.01 ~ 0.05. Analysis of FA values within the left forceps major, left anterior thalamic radiation, and genu of the corpus callosum revealed a 71.8% overall correct classification (p < 0.001 with sensitivity of 69.4%, specificity of 73.8%, positive predictive value of 69.4%, and negative predictive value

  5. Normal hepatic parenchyma visibility and ADC quantification on diffusion-weighted MRI at 3 T: influence of age, gender, and iron content

    Energy Technology Data Exchange (ETDEWEB)

    Metens, Thierry [MRI Clinics, Department of Radiology, Hopital Erasme, Bruxelles (Belgium); Universite Libre de Bruxelles, Magnetic Resonance Imaging Clinics, Department of Radiology, Hopital Erasme, Bruxelles (Belgium); Ferraresi, Kellen Fanstone; Farchione, Alessandra; Bali, Maria Antonietta; Matos, Celso [MRI Clinics, Department of Radiology, Hopital Erasme, Bruxelles (Belgium); Moreno, Christophe [Universite Libre de Bruxelles, Department of Gastroenterology, Hepatopancreatology, and Digestive Oncology, Hopital Erasme, Bruxelles (Belgium)

    2014-12-15

    To investigate how normal liver parenchyma visibility on 3 T diffusion-weighted images (DWI) and apparent diffusion coefficient (ADC) quantification are influenced by age, gender, and iron content. Between February 2011 and April 2013, 86 patients (52 women) with normal livers who underwent respiratory-triggered abdominal 3 T DWI (b = 0, 150, 600, 1,000 s/mm{sup 2}) were retrospectively included. Normal liver and spleen parenchyma visibility was scored independently by two readers. Correlations between visibility scores or ADC with age, gender, T2*, or recent serum ferritin (SF) were investigated. Liver visibility scores in b = 1,000 s/mm{sup 2} images correlated with the age (Spearman R = -0.56 in women, -0.45 in men), T2* (R = 0.75) and SF (R = -0.64) and were significantly higher in women (P < 0.01). SF and T2* were within normal values (T2*: 13 - 31 ms, SF: 14 - 230 μg/L). Liver ADC correlated with visibility scores (R = 0.69) and T2* (R = 0.64) and was age- and gender-dependent. ADC ROI standard deviation negatively correlated with visibility scores (R = -0.65) and T2* (R = -0.62). The spleen visibility did not depend on age or gender. Normal liver parenchyma visibility in DWI is age- and gender-dependent, according to the iron content. Visibility scores and iron content significantly affect ADC quantification in the normal liver. (orig.)

  6. Normal hepatic parenchyma visibility and ADC quantification on diffusion-weighted MRI at 3 T: influence of age, gender, and iron content

    International Nuclear Information System (INIS)

    Metens, Thierry; Ferraresi, Kellen Fanstone; Farchione, Alessandra; Bali, Maria Antonietta; Matos, Celso; Moreno, Christophe

    2014-01-01

    To investigate how normal liver parenchyma visibility on 3 T diffusion-weighted images (DWI) and apparent diffusion coefficient (ADC) quantification are influenced by age, gender, and iron content. Between February 2011 and April 2013, 86 patients (52 women) with normal livers who underwent respiratory-triggered abdominal 3 T DWI (b = 0, 150, 600, 1,000 s/mm 2 ) were retrospectively included. Normal liver and spleen parenchyma visibility was scored independently by two readers. Correlations between visibility scores or ADC with age, gender, T2*, or recent serum ferritin (SF) were investigated. Liver visibility scores in b = 1,000 s/mm 2 images correlated with the age (Spearman R = -0.56 in women, -0.45 in men), T2* (R = 0.75) and SF (R = -0.64) and were significantly higher in women (P < 0.01). SF and T2* were within normal values (T2*: 13 - 31 ms, SF: 14 - 230 μg/L). Liver ADC correlated with visibility scores (R = 0.69) and T2* (R = 0.64) and was age- and gender-dependent. ADC ROI standard deviation negatively correlated with visibility scores (R = -0.65) and T2* (R = -0.62). The spleen visibility did not depend on age or gender. Normal liver parenchyma visibility in DWI is age- and gender-dependent, according to the iron content. Visibility scores and iron content significantly affect ADC quantification in the normal liver. (orig.)

  7. Chaotic radiation/turbulence interactions in flames

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.; McDonough, J.M.

    1998-11-01

    In this paper, the authors present a review of their recent efforts to model chaotic radiation-turbulence interactions in flames. The main focus is to characterize soot volume fraction fluctuations in turbulent diffusion flames, as they strongly contribute to these interaction. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames are deterministic in nature, rather than random. The authors first discuss the theoretical details and then they briefly outline the experiments conducted to measure the scattered light signals from fluctuating soot particles along the axis of an ethylene-air diffusion flame. They compare the power spectra and time series obtained from experiments against the ad-hoc and rigorous models derived using a series of logistic maps. These logistic maps can be used in simulation of the fluctuations in these type of flames, without extensive computational effort or sacrifice of physical detail. Availability of accurate models of these kinds allows investigation of radiation-turbulence interactions at a more fundamental level than it was previously possible.

  8. Early structure of LPG partially premixed conically stabilized flames

    KAUST Repository

    Elbaz, Ayman M.

    2013-01-01

    This paper presents experimental investigation of LPG partially premixed turbulent flames stabilized within a conical nozzle burner under constant degree of partial premixing. The stability limits and mean flame structure are presented based on the mean gas temperature and the concentration of CO, O 2, NO, and HC at the flame early region of reaction. The investigation covered the influence of the nozzle cone angle, the jet exit velocity and the jet equivalence ratio. The stability results show that the flames with cone are more stable than those without cone. For conical stabilized flames, the stability results exhibit three different sensitivity regions between the jet velocity and equivalence ratio. The inflame measurements prove that the flame stability could be attributed to the triple flame structure at the flame leading edge. The data show that the triple flame structure is influenced by cone angle, the jet velocity and the equivalence ratio. The flame is believed to be controlled by the recirculation flow inside the cone. Increasing the cone angle induced higher air entrainment to the reaction zone as depicted by a higher O 2 concentration within the flame leading edge. Increasing the jet velocity to a certain limit enhances the intensity of combustion at the flame leading edge, while excessive increase in jet velocity reduces this intensity. At a fixed jet velocity the higher the equivalence ratio, the higher the amount of fuel diffused and engulfed to the reaction zone, the more delay of the combustion completion and the higher the emission concentrations of the flame. © 2012 Elsevier Inc.

  9. Interpatient variation in normal peripheral zone apparent diffusion coefficient: effect on the prediction of prostate cancer aggressiveness

    NARCIS (Netherlands)

    Litjens, G.J.S.; Hambrock, T.; Hulsbergen-van de Kaa, C.A.; Barentsz, J.O.; Huisman, H.J.

    2012-01-01

    Purpose: To determine the interpatient variability of prostate peripheral zone (PZ) apparent diffusion coefficient (ADC) and its effect on the assessment of prostate cancer aggressiveness. Materials and Methods: The requirement for institutional review board approval was waived. Intra- and

  10. Diffusion Tensor Imaging of Normal-Appearing White Matter as Biomarker for Radiation-Induced Late Delayed Cognitive Decline

    International Nuclear Information System (INIS)

    Chapman, Christopher H.; Nagesh, Vijaya; Sundgren, Pia C.; Buchtel, Henry; Chenevert, Thomas L.; Junck, Larry; Lawrence, Theodore S.; Tsien, Christina I.; Cao, Yue

    2012-01-01

    Purpose: To determine whether early assessment of cerebral white matter degradation can predict late delayed cognitive decline after radiotherapy (RT). Methods and Materials: Ten patients undergoing conformal fractionated brain RT participated in a prospective diffusion tensor magnetic resonance imaging study. Magnetic resonance imaging studies were acquired before RT, at 3 and 6 weeks during RT, and 10, 30, and 78 weeks after starting RT. The diffusivity variables in the parahippocampal cingulum bundle and temporal lobe white matter were computed. A quality-of-life survey and neurocognitive function tests were administered before and after RT at the magnetic resonance imaging follow-up visits. Results: In both structures, longitudinal diffusivity (λ ‖ ) decreased and perpendicular diffusivity (λ ⊥ ) increased after RT, with early changes correlating to later changes (p ⊥ at 3 weeks, and patients with >50% of cingula volume receiving >12 Gy had a greater increase in λ ⊥ at 3 and 6 weeks (p ‖ (30 weeks, p ‖ changes predicted for post-RT changes in verbal recall scores (3 and 6 weeks, p < .05). The neurocognitive test scores correlated significantly with the quality-of-life survey results. Conclusions: The correlation between early diffusivity changes in the parahippocampal cingulum and the late decline in verbal recall suggests that diffusion tensor imaging might be useful as a biomarker for predicting late delayed cognitive decline.

  11. On the role of radiation and dimensionality in predicting flow opposed flame spread over thin fuels

    Science.gov (United States)

    Kumar, Chenthil; Kumar, Amit

    2012-06-01

    In this work a flame-spread model is formulated in three dimensions to simulate opposed flow flame spread over thin solid fuels. The flame-spread model is coupled to a three-dimensional gas radiation model. The experiments [1] on downward spread and zero gravity quiescent spread over finite width thin fuel are simulated by flame-spread models in both two and three dimensions to assess the role of radiation and effect of dimensionality on the prediction of the flame-spread phenomena. It is observed that while radiation plays only a minor role in normal gravity downward spread, in zero gravity quiescent spread surface radiation loss holds the key to correct prediction of low oxygen flame spread rate and quenching limit. The present three-dimensional simulations show that even in zero gravity gas radiation affects flame spread rate only moderately (as much as 20% at 100% oxygen) as the heat feedback effect exceeds the radiation loss effect only moderately. However, the two-dimensional model with the gas radiation model badly over-predicts the zero gravity flame spread rate due to under estimation of gas radiation loss to the ambient surrounding. The two-dimensional model was also found to be inadequate for predicting the zero gravity flame attributes, like the flame length and the flame width, correctly. The need for a three-dimensional model was found to be indispensable for consistently describing the zero gravity flame-spread experiments [1] (including flame spread rate and flame size) especially at high oxygen levels (>30%). On the other hand it was observed that for the normal gravity downward flame spread for oxygen levels up to 60%, the two-dimensional model was sufficient to predict flame spread rate and flame size reasonably well. Gas radiation is seen to increase the three-dimensional effect especially at elevated oxygen levels (>30% for zero gravity and >60% for normal gravity flames).

  12. 1H-MR spectroscopy and diffusion tensor imaging of normal-appearing temporal white matter in patients with nasopharyngeal carcinoma after irradiation: initial experience.

    Science.gov (United States)

    Xiong, Wei Feng; Qiu, Shi Jun; Wang, Hong Zhuo; Lv, Xiao Fei

    2013-01-01

    To detect radiation-induced changes of temporal lobe normal-appearing white mater (NAWM) following radiation therapy (RT) for nasopharyngeal carcinoma (NPC). Seventy-five H(1)-MR spectroscopy and diffusion-tensor imaging (DTI) examinations were performed in 55 patients before and after receiving fractionated radiation therapy (total dose; 66-75GY). We divided the dataset into six groups, a pre-RT control group and five other groups based on time after completion of RT. N-acetylaspartic acid (NAA)/choline (Cho), NAA/creatine (Cr), Cho/Cr, mean diffusibility (MD), functional anisotropy (FA), radial diffusibility (λ(⊥)), and axial diffusibility (λ(||)) were calculated. NAA/Cho and NAA/Cr decreased and λ(⊥) increased significantly within 1 year after RT compared with pre-RT. After 1 year, NAA/Cho, NAA/Cr, and λ(⊥) were not significantly different from pre-RT. In all post-RT groups, FA decreased significantly. λ(||) decreased within 9 months after RT compared with pre-RT, but was not significantly different from pre-RT more than 9 months after RT. DTI and H(1)-MR spectroscopy can be used to detect early radiation-induced changes of temporal lobe NAWM following radiation therapy for NPC. Metabolic alterations and water diffusion characteristics of temporal lobe NAWM in patients with NPC after RT were dynamic and transient. Copyright © 2012 Wiley Periodicals, Inc.

  13. Lifted Turbulent Jet Flames

    Science.gov (United States)

    1993-04-14

    flame length L simultaneously with h, and measuring the visible radiation I simultaneously with h. L(t) was found to be nearly uncorrelated with h(t...variation of 7i/2 /76 with ýh. These experiments included measuring the flame length L simultaneously with h, and measuring the visible radiation I...Measurements of Liftoff Height and Flame Length ... 66 4.5 Simultaneous Measurements of Liftoff Height and Radiation ....... 71 4.6 D scussion

  14. An Experimental Study of Turbulent Nonpremixed Jet Flames in Crossflow Under Low-Gravity Conditions

    Science.gov (United States)

    Boxx, Isaac G.; Idicheria, Cherian A.; Clemens, Noel T.

    2002-11-01

    We will present results of a study of turbulent nonpremixed jet flames in crossflow under normal and low gravity conditions. This enables us to experimentally separate the competing influences of initial jet-to-crossflow momentum ratio and buoyancy effects on the flame structure. The low gravity conditions (10-30 milli-g) are achieved by dropping a self-contained jet flame rig in the University of Texas 1.25-second drop tower facility. This rig uses a small blow-through wind tunnel to create the crossflow. The jet flames issue from an orifice that is flush with the wall. High-speed CCD imaging of jet flame luminosity is the primary diagnostic. We present results for hydrocarbon jet flames with initial jet-to-crossflow momentum ratios of 10-20. Results such as flame trajectory, flame length, large scale structure and flame tip dynamics will be presented.

  15. Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, MI (United States); Ceccio, Steven L. [University of Michigan, Department of Mechanical Engineering, Ann Arbor, MI (United States)

    2008-06-15

    A new experimental method is described that provides high-speed movies of turbulent premixed flame wrinkling dynamics and the associated vorticity fields. This method employs cinema stereoscopic particle image velocimetry and has been applied to a turbulent slot Bunsen flame. Three-component velocity fields were measured with high temporal and spatial resolutions of 0.9 ms and 140{mu}m, respectively. The flame-front location was determined using a new multi-step method based on particle image gradients, which is described. Comparisons are made between flame fronts found with this method and simultaneous CH-PLIF images. These show that the flame contour determined corresponds well to the true location of maximum gas density gradient. Time histories of typical eddy-flame interactions are reported and several important phenomena identified. Outwardly rotating eddy pairs wrinkle the flame and are attenuated at they pass through the flamelet. Significant flame-generated vorticity is produced downstream of the wrinkled tip. Similar wrinkles are caused by larger groups of outwardly rotating eddies. Inwardly rotating pairs cause significant convex wrinkles that grow as the flame propagates. These wrinkles encounter other eddies that alter their behavior. The effects of the hydrodynamic and diffusive instabilities are observed and found to be significant contributors to the formation and propagation of wrinkles. (orig.)

  16. Diffuse pulmonary gallium accumulation with a normal chest radiogram in a homosexual man with pneumocystis carinii pneumonia. A case report

    International Nuclear Information System (INIS)

    Moses, S.C.; Baker, S.R.; Seldin, M.F.

    1983-01-01

    A homosexual man with A.I.D.S. (acquired immunologic deficiency syndrome) and pneumocystis infestation was found to have diffuse Ga-67 uptake in the lungs with a coincident negative chest x-ray. While Ga-67 accumulates diffusely in the lungs in a variety of conditions, the present case is the first described in a patient with A.I.D.S. in which Ga-67 was positive before roentgenographic abnormalities were demonstrated. Thus, the use of Ga-67 scan, when A.I.D.S. is suspected, could help establish a diagnosis more promptly

  17. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    International Nuclear Information System (INIS)

    Lockett, R D

    2006-01-01

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio φ > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks

  18. Instabilities and soot formation in spherically expanding, high pressure, rich, iso-octane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Lockett, R D [School of Engineering and Mathematical Sciences, City University, Northampton Square, London EC1V OHB (United Kingdom)

    2006-07-15

    Flame instabilities, cellular structures and soot formed in high pressure, rich, spherically expanding iso-octane-air flames have been studied experimentally using high speed Schlieren cinematography, OH fluorescence, Mie scattering and laser induced incandescence. Cellular structures with two wavelength ranges developed on the flame surface. The larger wavelength cellular structure was produced by the Landau-Darrieus hydrodynamic instability, while the short wavelength cellular structure was produced by the thermal-diffusive instability. Large negative curvature in the short wavelength cusps caused local flame quenching and fracture of the flame surface. In rich flames with equivalence ratio {phi} > 1.8, soot was formed in a honeycomb-like structure behind flame cracks associated with the large wavelength cellular structure induced by the hydrodynamic instability. The formation of soot precursors through low temperature pyrolysis was suggested as a suitable mechanism for the initiation of soot formation behind the large wavelength flame cracks.

  19. Fractional Diffusion Equations and Anomalous Diffusion

    Science.gov (United States)

    Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin

    2018-01-01

    Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.

  20. Numerical simulation of nitrogen oxide formation in lean premixed turbulent H2/O2/N2 flames

    DEFF Research Database (Denmark)

    Day, Marc S.; Bell, John B.; Gao, Xinfeng

    2011-01-01

    Lean premixed hydrogen flames are thermodiffusively unstable and burn in cellular structures. Within these cellular structures the flame is locally enriched by preferential diffusion of hydrogen, leading to local hotspots that burn more intensely than an idealized flat steady flame at comparable ...

  1. Assessment of Microcirculatory Hemoglobin Levels in Normal and Diabetic Subjects using Diffuse Reflectance Spectroscopy in the Visible Region — a Pilot Study

    Science.gov (United States)

    Sujatha, N.; Anand, B. S. Suresh; Nivetha, K. Bala; Narayanamurthy, V. B.; Seshadri, V.; Poddar, R.

    2015-07-01

    Light-based diagnostic techniques provide a minimally invasive way for selective biomarker estimation when tissues transform from a normal to a malignant state. Spectroscopic techniques based on diffuse reflectance characterize the changes in tissue hemoglobin/oxygenation levels during the tissue transformation process. Recent clinical investigations have shown that changes in tissue oxygenation and microcirculation are observed in diabetic subjects in the initial and progressive stages. In this pilot study, we discuss the potential of diffuse reflectance spectroscopy (DRS) in the visible (Vis) range to differentiate the skin microcirculatory hemoglobin levels between normal and advanced diabetic subjects with and without neuropathy. Average concentration of hemoglobin as well as hemoglobin oxygen saturation within the probed tissue volume is estimated for a total of four different sites in the foot sole. The results indicate a statistically significant decrease in average total hemoglobin and increase in hemoglobin oxygen saturation levels for diabetic foot compared with a normal foot. The present study demonstrates the ability of reflectance spectroscopy in the Vis range to determine and differentiate the changes in tissue hemoglobin and hemoglobin oxygen saturation levels in normal and diabetic subjects.

  2. Aerothermodynamic properties of stretched flames in enclosures

    Science.gov (United States)

    Rotman, D. A.; Oppenheim, A. K.

    Flames are stretched by being pulled along their frontal surface by the flow field in which they reside. Their trajectories tend to approach particle paths, acquiring eventually the role of contact boundaries, -interfaces between the burnt and unburnt medium that may broaden solely as a consequence of diffusion. Fundamental properties of flow fields governing such flames are determined here on the basis of the zero Mach number model, providng a rational method of approach to the computational analysis of combustion fields in enclosures where, besides the aerodynamic properties flow, the thermodynamic process of compression must be taken into account. To illustrate its application, the method is used to reveal the mechanism of formation of a tulip-shape flame in a rectangular enclosure under nonturbulent flow conditions.

  3. Stabilization and structure of n-heptane tribrachial flames in axisymmetric laminar jets

    KAUST Repository

    Bisetti, Fabrizio

    2015-01-01

    A set of tribrachial flames of n-heptane/air is simulated with finite rate chemistry and detailed transport in a realistic laminar jet configuration for which experimental data are available. The flames differ by the temperature of the unburnt mixture and stabilization height, which controls the mixture fraction gradient ahead of the flame front. The simulations reproduce the lift-off heights in the experiments, showing that the flame stabilizes further downstream as the unburnt temperature decreases. For the lowest unburnt temperature, resulting in a weak mixture fraction gradient at the tribrachial point, positive stretch along the rich premixed wing leads to an increase in the rate of chemical reaction in the whole flame. The tribrachial flame burning velocity exceeds that in the unstretched, one-dimensional flame. For the highest temperature, the flame stabilizes closest to the nozzle. Large flame tilt, large mixture fraction gradient, and small radius of curvature lead to a reduction in the heat release rate and the flame propagates slower than its one-dimensional counterpart. The observed behavior is explained with a detailed analysis of the flame geometry, differential diffusion effects, flame stretch, and transport of heat and mass from the burnt gases to the flame front. © 2014 The Combustion Institute.

  4. Signal intensity changes of normal brain at varying high b-value diffusion-weighted images using 3.0T MR scanner

    International Nuclear Information System (INIS)

    Lee, Jin Hee; Sohn, Chul Ho; Choi, Jin Soo

    2003-01-01

    Using diffusion-weighted MR imaging (DWI), to evaluate the signal intensity characteristics of normal adult brain as diffusion gradient strength (b value) increases from 1,000 to 3,000 s/mm 2 . Twenty-one healthy volunteers with neither neurologic symptoms nor pathologic findings at axial and sagittal T2-weighted MR imaging were involved in this study. All images were obtained with a 3.0T MR scanner. Six sets of spin-echo echo-planar images were acquired in the axial plane using progressively increasing strengths of diffusion-sensitizing gradients (corresponding to b values of 0, 1,000, 1,500, 2,000, 2,500, and 3,000 s/mm 2 ). All imaging parameters other than TE remained constant. Changes in normal white-gray matter signal intensity observed at variable b-value DWI were qualitatively analysed, and the signal-to-noise ratios (SNRs) in six anatomic regions (frontal and parietal white matter, genu and splenium corporis callosi, the posterior limb of the internal capsule, and the thalamus) quantitatively, and the ratios were averaged and compared with the average SNR of 1,000 s/mm DWI. As gradient strength increased from 1,000 to 3,000 s/mm 2 , both gray-and white-matter structures diminished in signal intensity, and images obtained at a b value of 3,000 s/mm 2 appeared very noisy. White matter became progressively hyperintense to gray matter as the diffusion sensitizing gradient increased, especially at the centrum semiovale, the posterior limb of the internal capsule, and the splenium corporis callosi, but the genu corporis callosi; showed exceptional intermediate low signal intensity. At quantitative assessment, the signal-to-noise ratio decreased as the diffusion sensitizing gradient increased. Relative to the images obtained at a b value of 1,000 s/mm 2 , average SNRs were 0.71 (b=1,500 s/mm 2 ), 0.52 (b=2,000 s/mm 2 ), 0.41 (b=2,500 s/mm 2 ), 0.33 (b=3,000 s/mm 2 ). As the diffusion sensitizing gradient increased, the signal-to-noise ratio of brain structures

  5. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D [M.D. Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  6. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    International Nuclear Information System (INIS)

    Hou, P; Park, P; Li, H; Zhu, X; Mahajan, A; Grosshans, D

    2015-01-01

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted

  7. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  8. Effect of Lewis number on ball-like lean limit flames

    KAUST Repository

    Zhou, Zhen

    2017-10-13

    The lean limit flames for three different fuel compositions premixed with air, representing three different mixture Lewis numbers, stabilized inside a tube in a downward flow are examined by experiments and numerical simulations. The CH* chemiluminescence distribution in CH4–air and CH4–H2–air flames and the OH* chemiluminescence distribution in H2–air flames are recorded in the experiments. Cell-like flames are observed for the CH4–air mixture for all tested equivalence ratios. However, for CH4–H2–air and H2–air flames, ball-like lean limit flames are observed. Flame temperature fields are measured using Rayleigh scattering. The experimentally observed lean limit flames are predicted qualitatively by numerical simulation with the mixture-averaged transport model and skeletal mechanism of CH4. The results of the simulations show that the entire lean limit flames of CH4–H2–air and H2–air mixtures are located inside a recirculation zone. However, for the lean limit CH4–air flame, only the leading edge is located inside the recirculation zone. A flame structure with negative flame displacement speed is observed for the leading edges of the predicted lean limit flames with all three different fuel compositions. As compared with 1D planar flames, the fuel transport caused by convection is less significant in the present 2D lean limit flames for the three different fuel compositions. For the trailing edges of the three predicted lean limit flames, a diffusion dominated flame structure is observed.

  9. Quantification of extinction mechanism in counterflow premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sang Kyu [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Cho, Eun Seong [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of); Chung, Suk Ho [Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2014-09-15

    The extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH{sub 4}, C{sub 3}H{sub 8}, H{sub 2}, CO and for the mixture fuels of CH{sub 4}+H{sub 2} and CO+H{sub 2} by adopting symmetric double premixed flames in a counterflow configuration. The local equilibrium temperature concept was used as a measure of energy loss or gain in order to quantify the extinction mechanism by preferential diffusion and/or incomplete reaction. The energy loss ratio from preferential diffusion arising from non-unity Lewis number and the loss ratio from incomplete reaction were calculated at various equivalence ratios near flame extinction. The results showed that the extinction of lean H{sub 2} , CH{sub 4}, CH{sub 4}+H{sub 2}, CO+H{sub 2}, and rich C{sub 3}H{sub 8} premixed flames was caused by incomplete reaction due to insufficient reaction time, indicating that the effective Lewis number was smaller than unity, while the effect of preferential diffusion resulted in energy gain. However, the extinction of rich H{sub 2}, CH{sub 4}, CH{sub 4}+H{sub 2}, CO+H{sub 2}, and lean C{sub 3}H{sub 8} premixed flames was affected by the combined effects of preferential diffusion and incomplete reaction indicating that the effective Lewis number was larger than unity. In CO premixed flames, incomplete reaction was dominant in both lean and rich cases due to the effective Lewis number close to unity. The effect of H{sub 2} mixing to CO is found to be quite significant as compared to CH{sub 4}+H{sub 2} cases, which can alter the flame behavior of CO flames to that of H{sub 2}.

  10. Quantification of extinction mechanism in counterflow premixed flames

    International Nuclear Information System (INIS)

    Choi, Sang Kyu; Cho, Eun Seong; Chung, Suk Ho

    2014-01-01

    The extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH 4 , C 3 H 8 , H 2 , CO and for the mixture fuels of CH 4 +H 2 and CO+H 2 by adopting symmetric double premixed flames in a counterflow configuration. The local equilibrium temperature concept was used as a measure of energy loss or gain in order to quantify the extinction mechanism by preferential diffusion and/or incomplete reaction. The energy loss ratio from preferential diffusion arising from non-unity Lewis number and the loss ratio from incomplete reaction were calculated at various equivalence ratios near flame extinction. The results showed that the extinction of lean H 2 , CH 4 , CH 4 +H 2 , CO+H 2 , and rich C 3 H 8 premixed flames was caused by incomplete reaction due to insufficient reaction time, indicating that the effective Lewis number was smaller than unity, while the effect of preferential diffusion resulted in energy gain. However, the extinction of rich H 2 , CH 4 , CH 4 +H 2 , CO+H 2 , and lean C 3 H 8 premixed flames was affected by the combined effects of preferential diffusion and incomplete reaction indicating that the effective Lewis number was larger than unity. In CO premixed flames, incomplete reaction was dominant in both lean and rich cases due to the effective Lewis number close to unity. The effect of H 2 mixing to CO is found to be quite significant as compared to CH 4 +H 2 cases, which can alter the flame behavior of CO flames to that of H 2 .

  11. Quantification of extinction mechanism in counterflow premixed flames

    KAUST Repository

    Choi, Sangkyu

    2014-09-01

    The extinction mechanisms of stretched premixed flames have been investigated numerically for the fuels of CH4, C3H8, H2, CO and for the mixture fuels of CH4+H2 and CO+H2 by adopting symmetric double premixed flames in a counterflow configuration. The local equilibrium temperature concept was used as a measure of energy loss or gain in order to quantify the extinction mechanism by preferential diffusion and/or incomplete reaction. The energy loss ratio from preferential diffusion arising from non-unity Lewis number and the loss ratio from incomplete reaction were calculated at various equivalence ratios near flame extinction. The results showed that the extinction of lean H2, CH4, CH4+H2, CO+H2, and rich C3H8 premixed flames was caused by incomplete reaction due to insufficient reaction time, indicating that the effective Lewis number was smaller than unity, while the effect of preferential diffusion resulted in energy gain. However, the extinction of rich H2, CH4, CH4+H2, CO+H2, and lean C3H8 premixed flames was affected by the combined effects of preferential diffusion and incomplete reaction indicating that the effective Lewis number was larger than unity. In CO premixed flames, incomplete reaction was dominant in both lean and rich cases due to the effective Lewis number close to unity. The effect of H2 mixing to CO is found to be quite significant as compared to CH4+H2 cases, which can alter the flame behavior of CO flames to that of H2.

  12. Structural aspects of coaxial oxy-fuel flames

    Science.gov (United States)

    Ditaranto, M.; Sautet, J. C.; Samaniego, J. M.

    Oxy-fuel combustion has been proven to increase thermal efficiency and to have a potential for NOx emission reduction. The study of 25-kW turbulent diffusion flames of natural gas with pure oxygen is undertaken on a coaxial burner with quarl. The structural properties are analysed by imaging the instantaneous reaction zone by OH* chemiluminescence and measuring scalar and velocity profiles. The interaction between the flame front and the shear layers present in the coaxial jets depends on the momentum ratio which dictates the turbulent structure development. Flame length and NOx emission sensitivity to air leaks in the combustion chamber are also investigated.

  13. The assessment of four different correction models applied to the diffuse radiation measured with a shadow ring using global and normal beam radiation measurements for Beer Sheva, Israel

    Energy Technology Data Exchange (ETDEWEB)

    Kudish, Avraham I.; Evseev, Efim G. [Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, E D Bergmann Campus, Beer Sheva 84105 (Israel)

    2008-02-15

    The measurement of the diffuse radiation incident on a horizontal surface, a priori a straightforward task, is fraught with difficulties. It is possible to measure the diffuse radiation by three different techniques: two of which measure it directly and the third indirectly. The most accurate is the indirect one, which is based upon the concurrent measurements of the horizontal global and the normal incidence beam radiation. The disadvantage of this being the relatively expensive tracking system required for measuring the latter. The diffuse radiation can be measured directly with a pyranometer outfitted with either an occulting disk or shadow ring, which prevent the beam radiation from impinging on the pyranometer sensor. The occulting disk can provide accurate measurements of the diffuse radiation but it requires a relatively expensive sun tracking system in the east-west axis. The shadow ring is a stationary device with regard to the east-west axis and blocks the beam radiation component by creating a permanent shadow on the pyranometer sensor. The major disadvantage of the shadow ring is that it also blocks that portion of the diffuse radiation obscured by the shadow ring. This introduces a measurement error that must be corrected to account for that portion of the sky obscured by the shadow band. In addition to this geometric correction factor there is a need to correct for anisotropic sky conditions. Four correction models have been applied to the data for Beer Sheva, Israel and the results have been evaluated both graphically and statistically. An attempt has been made to score the relative performance of the models under different sky conditions. (author)

  14. Unsteady Flame Embedding (UFE) Subgrid Model for Turbulent Premixed Combustion Simulations

    KAUST Repository

    El-Asrag, Hossam

    2010-01-04

    We present a formulation for an unsteady subgrid model for premixed combustion in the flamelet regime. Since chemistry occurs at the unresolvable scales, it is necessary to introduce a subgrid model that accounts for the multi-scale nature of the problem using the information available on the resolved scales. Most of the current models are based on the laminar flamelet concept, and often neglect the unsteady effects. The proposed model\\'s primary objective is to encompass many of the flame/turbulence interactions unsteady features and history effects. In addition it provides a dynamic and accurate approach for computing the subgrid flame propagation velocity. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames. A set of elemental one dimensional flames is used to describe the turbulent flame structure at the subgrid level. The stretched flame calculations are performed on the stagnation line of a strained flame using the unsteady filtered strain rate computed from the resolved- grid. The flame iso-surface is tracked using an accurate high-order level set formulation to propagate the flame interface at the coarse resolution with minimum numerical diffusion. In this paper the solver and the model components are introduced and used to investigate two unsteady flames with different Lewis numbers in the thin reaction zone regime. The results show that the UFE model captures the unsteady flame-turbulence interactions and the flame propagation speed reasonably well. Higher propagation speed is observed for the lower than unity Lewis number flame because of the impact of differential diffusion.

  15. Analyse d'un problème viscoélastique avec compliance normale, frottement et diffusion d'usure

    Science.gov (United States)

    Shillor, Meir; Sofonea, Mircea; Telega, J. Joachim

    2003-06-01

    We consider a quasistatic problem of frictional contact between a viscoelastic body and a moving foundation. The contact is with wear and is modeled by normal compliance and a law of dry friction. The novelty in the model is that it allows for the diffusion of the wear debris over the potential contact surface. Such kind of phenomena arise in orthopaedic biomechanics and influence the properties of joint prosthesis. We derive a weak formulation of the problem and state that, under a smallness assumption on the problem data, there exists a unique weak solution for the model. To cite this article: M. Shillor et al., C. R. Mecanique 331 (2003).

  16. Flame oscillations in tubes with nonslip at the walls

    Energy Technology Data Exchange (ETDEWEB)

    Akkerman, V' yacheslav; Bychkov, Vitaly; Petchenko, Arkady [Institute of Physics, Umeaa University, SE-901 87 Umeaa (Sweden); Eriksson, Lars-Erik [Department of Applied Mechanics, Chalmers University of Technology, 412 96 Goeteborg (Sweden)

    2006-06-15

    A laminar premixed flame front propagating in a two-dimensional tube is considered with nonslip at the walls and with both ends open. The problem of flame propagation is solved using direct numerical simulations of the complete set of hydrodynamic equations including thermal conduction, diffusion, viscosity, and chemical kinetics. As a result, it is shown that flame interaction with the walls leads to the oscillating regime of burning. The oscillations involve variations of the curved flame shape and the velocity of flame propagation. The oscillation parameters depend on the characteristic tube width, which controls the Reynolds number of the flow. In narrow tubes the oscillations are rather weak, while in wider tubes they become stronger with well-pronounced nonlinear effects. The period of oscillations increases for wider tubes, while the average flame length scaled by the tube diameter decreases only slightly with increasing tube width. The average flame length calculated in the present work is in agreement with that obtained in the experiments. Numerical results reduce the gap between the theory of turbulent flames and the experiments on turbulent combustion in tubes. (author)

  17. Limiting oxygen concentration for extinction of upward spreading flames over inclined thin polyethylene-insulated NiCr electrical wires with opposed-flow under normal- and micro-gravity

    KAUST Repository

    Hu, Longhua; Lu, Yong; Yoshioka, Kosuke; Zhang, Yangshu; Fernandez-Pello, Carlos; Chung, Suk-Ho; Fujita, Osamu

    2016-01-01

    . The experiments reported here used polyethylene (PE)-insulated (thickness of 0.15 mm) Nichrome (NiCr)-core (diameter of 0.5 mm) electrical wires. Limiting oxygen concentrations (LOC) at extinction were measured for upward spreading flame at various forced opposed-flow

  18. Numerical modelling of swirling diffusive flames

    Directory of Open Access Journals (Sweden)

    Parra-Santos Teresa

    2016-01-01

    Full Text Available Computational Fluid Dynamics has been used to study the mixing and combustion of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model solves 3D transient Navier Stokes for turbulent and reactive flows. Averaged velocity profiles using RNG swirl dominated k-epsilon model have been validated with experimental measurements from other sources for the non reactive case. The combustion model is Probability Density Function. Bearing in mind the annular jet has swirl number over 0.5, a vortex breakdown appears in the axis of the burner. Besides, the sudden expansion with a ratio of 2 in diameter between nozzle exits and the test chamber produces the boundary layer separation with the corresponding torus shape recirculation. Contrasting the mixing and combustion models, the last one produces the reduction of the vortex breakdown.

  19. Effect of unequal fuel and oxidizer Lewis numbers on flame dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Tariq [Department of Mechanical Engineering, The University of Michigan-Dearborn, Dearborn, MI 48128-1491 (United States)

    2006-12-15

    The interaction of non-unity Lewis number (due to preferential diffusion and/or unequal rates of heat and mass transfer) with the coupled effect of radiation, chemistry and unsteadiness alters several characteristics of a flame. The present study numerically investigates this interaction with a particular emphasis on the effect of unequal and non-unity fuel and oxidizer Lewis numbers in a transient diffusion flame. The unsteadiness is simulated by considering the flame subjected to modulations in reactant concentration. Flames with different Lewis numbers (ranging from 0.5 to 2) and subjected to different modulating frequencies are considered. The results show that the coupled effect of Lewis number and unsteadiness strongly influences the flame dynamics. The impact is stronger at high modulating frequencies and strain rates, particularly for large values of Lewis numbers. Compared to the oxidizer side Lewis number, the fuel side Lewis number has greater influence on flame dynamics. (author)

  20. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.; Ghoniem, Ahmed F.

    2011-01-01

    simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re

  1. Numerical modelling of ion transport in flames

    KAUST Repository

    Han, Jie

    2015-10-20

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.

  2. Correlations between Diffusion Tensor Imaging (DTI and Magnetic Resonance Spectroscopy (1H MRS in schizophrenic patients and normal controls

    Directory of Open Access Journals (Sweden)

    Ng Johnny

    2007-06-01

    Full Text Available Abstract Background Evidence suggests that white matter integrity may play an underlying pathophysiological role in schizophrenia. N-acetylaspartate (NAA, as measured by Magnetic Resonance Spectroscopy (MRS, is a neuronal marker and is decreased in white matter lesions and regions of axonal loss. It has also been found to be reduced in the prefrontal and temporal regions in patients with schizophrenia. Diffusion Tensor Imaging (DTI allows one to measure the orientations of axonal tracts as well as the coherence of axonal bundles. DTI is thus sensitive to demyelination and other structural abnormalities. DTI has also shown abnormalities in these regions. Methods MRS and DTI were obtained on 42 healthy subjects and 40 subjects with schizophrenia. The data was analyzed using regions of interests in the Dorso-Lateral Prefrontal white matter, Medial Temporal white matter and Occipital white matter using both imaging modalities. Results NAA was significantly reduced in the patient population in the Medial Temporal regions. DTI anisotropy indices were also reduced in the same Medial Temporal regions. NAA and DTI-anisotropy indices were also correlated in the left medial temporal region. Conclusion Our results implicate defects in the medial temporal white matter in patients with schizophrenia. Moreover, MRS and DTI are complementary modalities for the study of white matter disruptions in patients with schizophrenia.

  3. Recovery of normal esophageal function in a kitten with diffuse megaesophagus and an occult lower esophageal stricture.

    Science.gov (United States)

    Schneider, Jaycie; Ames, Marisa; DiCicco, Michael; Savage, Mason; Atkins, Clarke; Wood, Michael; Gookin, Jody L

    2015-06-01

    An 8-week-old male domestic shorthair was presented to the Internal Medicine Service at North Carolina State University for regurgitation. Radiographic diagnosis of generalized esophageal dilation and failure of esophageal peristalsis were compatible with diagnosis of congenital megaesophagus. Endoscopic examination of the esophagus revealed a fibrous stricture just orad to the lower esophageal sphincter. Conservative management to increase the body condition and size of the kitten consisted of feeding through a gastrostomy tube, during which time the esophagus regained normal peristaltic function, the stricture orifice widened in size and successful balloon dilatation of the stricture was performed. Esophageal endoscopy should be considered to rule out a stricture near the lower esophageal sphincter in kittens with radiographic findings suggestive of congenital megaesophagus. Management of such kittens by means of gastrostomy tube feeding may be associated with a return of normal esophageal motility and widening of the esophageal stricture, and facilitate subsequent success of interventional dilation of the esophageal stricture. © ISFM and AAFP 2014.

  4. Behavioral Characteristics of the Non-Premixed Methane-Air Flame Oppositely Injected in a Narrow Channel

    International Nuclear Information System (INIS)

    Yun, Young Min; Lee, Min Jung; Cho, Sang Moon; Kim, Nam Il

    2009-01-01

    Characteristics of a counter flowing diffusion flame, which is formulated by an oppositely-injected methane-jet flow in a narrow channel of a uniform air flow. The location of the flame fronts and the flame lengths were compared by changing the flow rates of fuel. To distinguish the effects of the narrow channel on the diffusion flame, a numerical simulation for an ideal two-dimensional flame was conducted. Overall trends of the flame behavior were similar in both numerical and experimental results. With the increase of the ratio of jet velocity to air velocity flame front moved farther upstream. It is thought that the flow re-direction in the channel suppresses fuel momentum more significantly due to the higher temperature and increased viscosity of burned gas. Actual flames in a narrow channel suffer heat loss to the ambient and it has finite length of diffusion flame in contrast to the numerical results of infinite flame length. Thus a convective heat loss was additionally employed in numerical simulation and closer results were obtained. These results can be used as basic data in development of a small combustor of a nonpremixed flame

  5. Behavioral Characteristics of the Non-Premixed Methane-Air Flame Oppositely Injected in a Narrow Channel

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Young Min; Lee, Min Jung; Cho, Sang Moon; Kim, Nam Il [Chungang University, Seoul (Korea, Republic of)

    2009-04-15

    Characteristics of a counter flowing diffusion flame, which is formulated by an oppositely-injected methane-jet flow in a narrow channel of a uniform air flow. The location of the flame fronts and the flame lengths were compared by changing the flow rates of fuel. To distinguish the effects of the narrow channel on the diffusion flame, a numerical simulation for an ideal two-dimensional flame was conducted. Overall trends of the flame behavior were similar in both numerical and experimental results. With the increase of the ratio of jet velocity to air velocity flame front moved farther upstream. It is thought that the flow re-direction in the channel suppresses fuel momentum more significantly due to the higher temperature and increased viscosity of burned gas. Actual flames in a narrow channel suffer heat loss to the ambient and it has finite length of diffusion flame in contrast to the numerical results of infinite flame length. Thus a convective heat loss was additionally employed in numerical simulation and closer results were obtained. These results can be used as basic data in development of a small combustor of a nonpremixed flame.

  6. Soot Formation in Freely-Propagating Laminar Premixed Flames

    Science.gov (United States)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  7. Design and construction of gas-fed burners for laboratory studies of flame structure

    Science.gov (United States)

    Dan Jimenez; Mark A. Finney; Jack Cohen

    2010-01-01

    The study of buoyant convection for diffusion flames in wildland fires is critical to understanding heating and cooling dynamics related to particle ignition. Studies based on solid biomass fuels are made difficult by short flame residence time associated with fine fuels. An alternative is to use artificial fuel gas rather than relying on pyrolysis of solid fuels to...

  8. Microstructural callosal abnormalities in normal-appearing brain of children with developmental delay detected with diffusion tensor imaging

    International Nuclear Information System (INIS)

    Ding, Xiao-Qi; Sun, Yimeng; Illies, Till; Zeumer, Hermann; Fiehler, Jens; Kruse, Bernd; Lanfermann, Heinrich

    2009-01-01

    Callosal fibres play an important role in psychomotor and cognitive functions. The purpose of this study was to investigate possible microstructural abnormalities of the corpus callosum in children with developmental delay, who have normal conventional brain MR imaging results. Seventeen pediatric patients (aged 1-9 years) with developmental delay were studied. Quantitative T2 and fractional anisotropy (FA) values were measured at the genu and splenium of the corpus callosum (CC). Fibre tracking, volumetric determination, as well as fibre density calculations of the CC were also carried out. The results were compared with those of the age-matched healthy subjects. A general elevation of T2 relaxation times (105 ms in patients vs. 95 ms in controls) and reduction of the FA values (0.66 in patients vs. 0.74 in controls) at the genu of the CC were found in patients. Reductions of the fibre numbers (5,464 in patients vs. 8,886 in controls) and volumes (3,415 ml in patients vs. 5,235 ml in controls) of the CC were found only in patients older than 5 years. The study indicates that despite their inconspicuous findings in conventional MRI microstructural brain abnormalities are evident in these pediatric patients suffering from developmental delay. (orig.)

  9. [Experimental studies on the diffusion of excitation on the right ventricular surface in the dog, during normal and stimulated beats].

    Science.gov (United States)

    Arisi, G; Macchi, E; Baruffi, S; Musso, E; Spaggiari, S; Stilli, D; Taccardi, B

    1982-01-01

    Previous work on the spread of excitation on the dog's ventricular surface enabled us to locate up to 30 breakthrough points (BKTPs) where excitation reaches the ventricular surface. In particular the equipotential contour maps enabled us to detect 3 to 5 BKTPs on the anterior right ventricular surface, near the a-v groove when a large part of ventricular surface was still at rest. With a view to investigating the mechanism underlying the early excitation of these basal regions, we stimulated the heart at several right ventricular BKTPs and in other points located at a distance from the BKTPs. The instantaneous equipotential maps showed that after stimulation most right ventricular BKTPs remained in the same position as observed the normal beats. The early appearance of epicardial wavefronts in the basal region and generally in other areas of the right ventricle was attributed to the rapid propagation of excitation waves through the Purkinje network, probably associated to a short transmural crossing time, due to a local thinness of the ventricular wall.

  10. Magnetic resonance imaging and diffusion-weighted imaging of normal-appearing white matter in children and young adults with tuberous sclerosis complex

    International Nuclear Information System (INIS)

    Arulrajah, Sahayini; Ertan, Gulhan; Tekes, Aylin; Huisman, Thierry A.G.M.; Jordan, Lori; Khaykin, Elizabeth; Izbudak, Izlem

    2009-01-01

    Patients with tuberous sclerosis complex (TSC) frequently present with neurocognitive deficits which may be related to impaired white matter maturation. The purposes of our study were (a) to evaluate the white matter maturation in children and young adults with TSC by comparing the apparent diffusion coefficient (ADC) values of normal-appearing white matter (NAWM) with age-matched healthy controls and (b) to determine the association of NAWM-ADC values with the severity of neurological symptoms in TSC patients. Twenty-three TSC patients who underwent magnetic resonance imaging/diffusion-weighted imaging between January 2000 and January 2009 were studied. ADC values of NAWM were measured in the frontal, parietal, occipital lobes, and in the pons. ADC data were compared with age-matched normative data derived from healthy controls. Patients were neurologically scored by a pediatric neurologist. Two-sample t tests and linear regression were conducted using STATA software. ADC values of NAWM were higher in TSC patients compared with healthy controls; the increase, however, only reached statistical significance in the frontal white matter and pons in the age group between 96 and 144 months and in the right parietal and occipital white matter in the age group above 144 months. There was no significant change in neurological severity score per unit increase in ADC measurement. ADC values of NAWM appear increased in TSC patients. The abnormal ADC values suggest that myelination may be delayed/impaired in TSC patients, which could explain global neurocognitive deficits. Larger prospective studies, including diffusion tensor imaging, are necessary to validate our results. (orig.)

  11. Magnetic resonance imaging and diffusion-weighted imaging of normal-appearing white matter in children and young adults with tuberous sclerosis complex

    Energy Technology Data Exchange (ETDEWEB)

    Arulrajah, Sahayini; Ertan, Gulhan; Tekes, Aylin; Huisman, Thierry A.G.M. [Johns Hopkins Hospital, Division of Pediatric Radiology, Department of Radiology and Radiological Science, Baltimore, MD (United States); Jordan, Lori [Johns Hopkins School of Public Health, Division of Pediatric Neurology, Baltimore, MD (United States); Khaykin, Elizabeth [Johns Hopkins School of Public Health, Department of Mental Health, Baltimore, MD (United States); Izbudak, Izlem [Johns Hopkins Hospital, Division of Neuroradiology, Department of Radiology and Radiological Science, Baltimore, MD (United States)

    2009-11-15

    Patients with tuberous sclerosis complex (TSC) frequently present with neurocognitive deficits which may be related to impaired white matter maturation. The purposes of our study were (a) to evaluate the white matter maturation in children and young adults with TSC by comparing the apparent diffusion coefficient (ADC) values of normal-appearing white matter (NAWM) with age-matched healthy controls and (b) to determine the association of NAWM-ADC values with the severity of neurological symptoms in TSC patients. Twenty-three TSC patients who underwent magnetic resonance imaging/diffusion-weighted imaging between January 2000 and January 2009 were studied. ADC values of NAWM were measured in the frontal, parietal, occipital lobes, and in the pons. ADC data were compared with age-matched normative data derived from healthy controls. Patients were neurologically scored by a pediatric neurologist. Two-sample t tests and linear regression were conducted using STATA software. ADC values of NAWM were higher in TSC patients compared with healthy controls; the increase, however, only reached statistical significance in the frontal white matter and pons in the age group between 96 and 144 months and in the right parietal and occipital white matter in the age group above 144 months. There was no significant change in neurological severity score per unit increase in ADC measurement. ADC values of NAWM appear increased in TSC patients. The abnormal ADC values suggest that myelination may be delayed/impaired in TSC patients, which could explain global neurocognitive deficits. Larger prospective studies, including diffusion tensor imaging, are necessary to validate our results. (orig.)

  12. Apparent diffusion coefficient in the analysis of prostate cancer: determination of optimal b-value pair to differentiate normal from malignant tissue.

    Science.gov (United States)

    Adubeiro, Nuno; Nogueira, Maria Luísa; Nunes, Rita G; Ferreira, Hugo Alexandre; Ribeiro, Eduardo; La Fuente, José Maria Ferreira

    Determining optimal b-value pair for differentiation between normal and prostate cancer (PCa) tissues. Forty-three patients with diagnosis or PCa symptoms were included. Apparent diffusion coefficient (ADC) was estimated using minimum and maximum b-values of 0, 50, 100, 150, 200, 500s/mm2 and 500, 800, 1100, 1400, 1700 and 2000s/mm2, respectively. Diagnostic performances were evaluated when Area-under-the-curve (AUC)>95%. 15 of the 35 b-values pair surpassed this AUC threshold. The pair (50, 2000s/mm2) provided the highest AUC (96%) with ADC cutoff 0.89×10- 3 mm 2 /s, sensitivity 95.5%, specificity 93.2% and accuracy 94.4%. The best b-value pair was b=50, 2000s/mm2. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Diffuse traumatic axonal injury in mice induces complex behavioural alterations that are normalized by neutralization of interleukin-1β.

    Science.gov (United States)

    Ekmark-Lewén, Sara; Flygt, Johanna; Fridgeirsdottir, Gudrun A; Kiwanuka, Olivia; Hånell, Anders; Meyerson, Bengt J; Mir, Anis K; Gram, Hermann; Lewén, Anders; Clausen, Fredrik; Hillered, Lars; Marklund, Niklas

    2016-04-01

    Widespread traumatic axonal injury (TAI) results in brain network dysfunction, which commonly leads to persisting cognitive and behavioural impairments following traumatic brain injury (TBI). TBI induces a complex neuroinflammatory response, frequently located at sites of axonal pathology. The role of the pro-inflammatory cytokine interleukin (IL)-1β has not been established in TAI. An IL-1β-neutralizing or a control antibody was administered intraperitoneally at 30 min following central fluid percussion injury (cFPI), a mouse model of widespread TAI. Mice subjected to moderate cFPI (n = 41) were compared with sham-injured controls (n = 20) and untreated, naive mice (n = 9). The anti-IL-1β antibody reached the target brain regions in adequate therapeutic concentrations (up to ~30 μg/brain tissue) at 24 h post-injury in both cFPI (n = 5) and sham-injured (n = 3) mice, with lower concentrations at 72 h post-injury (up to ~18 μg/g brain tissue in three cFPI mice). Functional outcome was analysed with the multivariate concentric square field (MCSF) test at 2 and 9 days post-injury, and the Morris water maze (MWM) at 14-21 days post-injury. Following TAI, the IL-1β-neutralizing antibody resulted in an improved behavioural outcome, including normalized behavioural profiles in the MCSF test. The performance in the MWM probe (memory) trial was improved, although not in the learning trials. The IL-1β-neutralizing treatment did not influence cerebral ventricle size or the number of microglia/macrophages. These findings support the hypothesis that IL-1β is an important contributor to the processes causing complex cognitive and behavioural disturbances following TAI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate

    KAUST Repository

    Kedia, Kushal S.

    2012-03-01

    The objective of this work is to investigate the flame stabilization mechanism and the conditions leading to the blowoff of a laminar premixed flame anchored downstream of a heat-conducting perforated-plate/multi-hole burner, with overall nearly adiabatic conditions. We use unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. Results show a bell-shaped flame stabilizing above the burner plate hole, with a U-shaped section anchored between neighboring holes. The base of the positively curved U-shaped section of the flame is positioned near the stagnation point, at a location where the flame displacement speed is equal to the flow speed. This location is determined by the combined effect of heat loss and flame stretch on the flame displacement speed. As the mass flow rate of the reactants is increased, the flame displacement speed at this location varies non-monotonically. As the inlet velocity is increased, the recirculation zone grows slowly, the flame moves downstream, and the heat loss to the burner decreases, strengthening the flame and increasing its displacement speed. As the inlet velocity is raised, the stagnation point moves downstream, and the flame length grows to accommodate the reactants mass flow. Concomitantly, the radius of curvature of the flame base decreases until it reaches an almost constant value, comparable to the flame thickness. While the heat loss decreases, the higher flame curvature dominates thereby reducing the displacement speed of the flame base. For a stable flame, the gradient of the flame base displacement speed normal to the flame is higher than the gradient of the flow speed along the same direction, leading to dynamic stability. As inlet velocity is raised further, the former decreases while the latter increases until the stability condition is violated, leading to blowoff. The flame speed during blow off is determined by the feedback between the

  15. Strained flamelets for turbulent premixed flames II: Laboratory flame results

    Energy Technology Data Exchange (ETDEWEB)

    Kolla, H.; Swaminathan, N. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2010-07-15

    The predictive ability of strained flamelets model for turbulent premixed flames is assessed using Reynolds Averaged Navier Stokes (RANS) calculations of laboratory flames covering a wide range of conditions. Reactant-to-product (RtP) opposed flow laminar flames parametrised using the scalar dissipation rate of reaction progress variable are used as strained flamelets. Two turbulent flames: a rod stabilised V-flame studied by Robin et al. [Combust. Flame 153 (2008) 288-315] and a set of pilot stabilised Bunsen flames studied by Chen et al. [Combust. Flame 107 (1996) 223-244] are calculated using a single set of model parameters. The V-flame corresponds to the corrugated flamelets regime. The strained flamelet model and an unstrained flamelet model yield similar predictions which are in good agreement with experimental measurements for this flame. On the other hand, for the Bunsen flames which are in the thin reaction zones regime, the unstrained flamelet model predicts a smaller flame brush compared to experiment. The predictions of the strained flamelets model allowing for fluid-dynamics stretch induced attenuation of the chemical reaction are in good agreement with the experimental data. This model predictions of major and minor species are also in good agreement with experimental data. The results demonstrate that the strained flamelets model using the scalar dissipation rate can be used across the combustion regimes. (author)

  16. Migration of Organophosphate Flame Retardants from Closed Cell Foam to Settled Dust

    Science.gov (United States)

    Many industrial and consumer products, such as electrical and electronic products, furniture, plastics, textile, and building materials are manufactured with organophosphorus flame retardants (OPFRs). OPFRs can leach or diffuse out of the products and are released to the surround...

  17. Migration of Organophorus Flame Retardants From Closed cell form to Settled Dust

    Science.gov (United States)

    Many industrial and consumer products, such as electrical and electronic products, furniture, plastics, textile, and building materials are manufactured with organophosphorus flame retardants (OPFRs). OPFRs can leach or diffuse out of the products and are released to the surround...

  18. Experimental study of flame characteristics during the combustion of certain types of liquid hydrocarbon fuels

    Science.gov (United States)

    Loboda, E. L.; Anufriev, I. S.; Agafontsev, M. V.; Kop'yev, E. P.; Reyno, Vladimir

    2017-11-01

    The paper represents experimental studying the scales of turbulent vortices in diffusion flames by using the measurements of thermodynamic characteristics obtained by thermography and the aerodynamic characteristics obtained by the PIV method.

  19. Numerical and Experimental Study on Negative Buoyance Induced Vortices in N-Butane Jet Flames

    KAUST Repository

    Xiong, Yuan; Cha, Min; Chung, Suk-Ho

    2015-01-01

    Near nozzle flow field in flickering n-butane diffusion jet flames was investigated with a special focus on transient flow patterns of negative buoyance induced vortices. The flow structures were obtained through Mie scattering imaging with seed

  20. Flaming on YouTube

    NARCIS (Netherlands)

    Moor, Peter J.; Heuvelman, A.; Verleur, R.

    2010-01-01

    In this explorative study, flaming on YouTube was studied using surveys of YouTube users. Flaming is defined as displaying hostility by insulting, swearing or using otherwise offensive language. Three general conclusions were drawn. First, although many users said that they themselves do not flame,

  1. Pulsating Instability of Turbulent Thermonuclear Flames in Type Ia Supernovae

    Science.gov (United States)

    Poludnenko, Alexei Y.

    2014-01-01

    Presently, one of the main explosion scenarios of type Ia supernovae (SNIa), aimed at explaining both "normal" and subluminous events, is the thermonuclear incineration of a white-dwarf in a single-degenerate system. The underlying engine of such explosions is the turbulent thermonuclear flame. Modern, large-scale, multidimensional simulations of SNIa cannot resolve the internal flame structure, and instead must include a subgrid-scale prescription for the turbulent-flame properties. As a result, development of robust, parameter-free, large-scale models of SNIa crucially relies on the detailed understanding of the turbulent flame properties during each stage of the flame evolution. Due to the complexity of the flame dynamics, such understanding must be validated by the first-principles direct numerical simulations (DNS). In our previous work, we showed that sufficiently fast turbulent flames are inherently susceptible to the development of detonations, which may provide the mechanism for the deflagration-to-detonation transition (DDT) in the delayed-detonation model of SNIa. Here we extend this study by performing detailed analysis of the turbulent flame properties at turbulent intensities below the critical threshold for DDT. We carried out a suite of 3D DNS of turbulent flames for a broad range of turbulent intensities and system sizes using a simplified, single-step, Arrhenius-type reaction kinetics. Our results show that at the later stages of the explosion, as the turbulence intensity increases prior to the possible onset of DDT, the flame front will become violently unstable. We find that the burning rate exhibits periodic pulsations with the energy release rate varying by almost an order of magnitude. Furthermore, such flame pulsations can produce pressure waves and shocks as the flame speed approaches the critical Chapman-Jouguet deflagration speed. Finally, in contrast with the current theoretical understanding, such fast turbulent flames can propagate at

  2. The role of diffusion tensor imaging and fractional anisotropy in the evaluation of patients with idiopathic normal pressure hydrocephalus: a literature review.

    Science.gov (United States)

    Siasios, Ioannis; Kapsalaki, Eftychia Z; Fountas, Kostas N; Fotiadou, Aggeliki; Dorsch, Alexander; Vakharia, Kunal; Pollina, John; Dimopoulos, Vassilios

    2016-09-01

    OBJECTIVE Diffusion tensor imaging (DTI) for the assessment of fractional anisotropy (FA) and involving measurements of mean diffusivity (MD) and apparent diffusion coefficient (ADC) represents a novel, MRI-based, noninvasive technique that may delineate microstructural changes in cerebral white matter (WM). For example, DTI may be used for the diagnosis and differentiation of idiopathic normal pressure hydrocephalus (iNPH) from other neurodegenerative diseases with similar imaging findings and clinical symptoms and signs. The goal of the current study was to identify and analyze recently published series on the use of DTI as a diagnostic tool. Moreover, the authors also explored the utility of DTI in identifying patients with iNPH who could be managed by surgical intervention. METHODS The authors performed a literature search of the PubMed database by using any possible combinations of the following terms: "Alzheimer's disease," "brain," "cerebrospinal fluid," "CSF," "diffusion tensor imaging," "DTI," "hydrocephalus," "idiopathic," "magnetic resonance imaging," "normal pressure," "Parkinson's disease," and "shunting." Moreover, all reference lists from the retrieved articles were reviewed to identify any additional pertinent articles. RESULTS The literature search retrieved 19 studies in which DTI was used for the identification and differentiation of iNPH from other neurodegenerative diseases. The DTI protocols involved different approaches, such as region of interest (ROI) methods, tract-based spatial statistics, voxel-based analysis, and delta-ADC analysis. The most studied anatomical regions were the periventricular WM areas, such as the internal capsule (IC), the corticospinal tract (CST), and the corpus callosum (CC). Patients with iNPH had significantly higher MD in the periventricular WM areas of the CST and the CC than had healthy controls. In addition, FA and ADCs were significantly higher in the CST of iNPH patients than in any other patients with other

  3. Biofuel effect on flame propagation and soot formation in a DISI engine

    Science.gov (United States)

    Irimescu, A.; Merola, S. S.; Di Iorio, S.; Vaglieco, B. M.

    2017-10-01

    The use of biofuels, especially in transportation and industrial processes, is seen as one of the most effective solutions to promote the reduction of greenhouse gases and pollutant emissions, as well as to lighten the dependence from petro-fuel producers. Biofuels are defined as a wide range of energy sources derived from biomass. In this category, alcohols produced through fermentation, such as ethanol and butanol, are considered some of the most suitable alternatives for transportation purposes. The benefits of bio-ethanol addition to gasoline have always been recognized for practical reasons. Apart from the variety of sources which it can be produced from, ethanol can raise the octane rating, given its improved anti-knock characteristics, allowing the use of higher compression ratios and higher thermal efficiency. However, ethanol’s high latent heat of vaporization can cause problems during cold-start due to poor evaporation. On the other hand, in hot climates ethanol fuelling can result in adverse effects such as vapour lock. Butanol can be considered as an emergent alternative fuel. Normal butanol has several well-known advantages when compared to ethanol, including increased energy content, greater miscibility with transportation fuels, and lower propensity for water absorption. Despite of these pros, the costs of n-butanol production are higher due to lower yields compared to ethanol. Moreover, vaporization remains a critical aspect of this biofuel. Understanding the effect of biofuels on in-cylinder combustion processes is a key-point for the optimization of fuel flexibility and achieving lower CO2 emissions. To this aim, a combined thermodynamic and optical investigation was performed on a direct injection spark ignition engine fuelled with ethanol, butanol and gasoline. Fuels were compared by fixing the injection and spark ignition strategies. Thermodynamic measurements were coupled with optical investigations based on cycle resolved flame

  4. Stratified turbulent Bunsen flames : flame surface analysis and flame surface density modelling

    NARCIS (Netherlands)

    Ramaekers, W.J.S.; Oijen, van J.A.; Goey, de L.P.H.

    2012-01-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold

  5. A two-dimensional analytical model of laminar flame in lycopodium dust particles

    Energy Technology Data Exchange (ETDEWEB)

    Rahbari, Alireza [Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of); Shakibi, Ashkan [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Bidabadi, Mehdi [Combustion Research Laboratory, Narmak, Tehran (Iran, Islamic Republic of)

    2015-09-15

    A two-dimensional analytical model is presented to determine the flame speed and temperature distribution of micro-sized lycopodium dust particles. This model is based on the assumptions that the particle burning rate in the flame front is controlled by the process of oxygen diffusion and the flame structure consists of preheat, reaction and post flame zones. In the first step, the energy conservation equations for fuel-lean condition are expressed in two dimensions, and then these differential equations are solved using the required boundary condition and matching the temperature and heat flux at the interfacial boundaries. Consequently, the obtained flame temperature and flame speed distributions in terms of different particle diameters and equivalence ratio for lean mixture are compared with the corresponding experimental data for lycopodium dust particles. Consequently, it is shown that this two-dimensional model demonstrates better agreement with the experimental results compared to the previous models.

  6. A two-dimensional analytical model of laminar flame in lycopodium dust particles

    International Nuclear Information System (INIS)

    Rahbari, Alireza; Shakibi, Ashkan; Bidabadi, Mehdi

    2015-01-01

    A two-dimensional analytical model is presented to determine the flame speed and temperature distribution of micro-sized lycopodium dust particles. This model is based on the assumptions that the particle burning rate in the flame front is controlled by the process of oxygen diffusion and the flame structure consists of preheat, reaction and post flame zones. In the first step, the energy conservation equations for fuel-lean condition are expressed in two dimensions, and then these differential equations are solved using the required boundary condition and matching the temperature and heat flux at the interfacial boundaries. Consequently, the obtained flame temperature and flame speed distributions in terms of different particle diameters and equivalence ratio for lean mixture are compared with the corresponding experimental data for lycopodium dust particles. Consequently, it is shown that this two-dimensional model demonstrates better agreement with the experimental results compared to the previous models.

  7. Dynamics of premixed flames in a narrow channel with a step-wise wall temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kurdyumov, Vadim N. [Department of Energy, CIEMAT, Avda. Complutense 22, 28040 Madrid (Spain); Pizza, Gianmarco [Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich CH-8092 (Switzerland); Combustion Research, Paul Scherrer Institute, Villigen CH-5232 (Switzerland); Frouzakis, Christos E. [Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, Zurich CH-8092 (Switzerland); Mantzaras, John [Combustion Research, Paul Scherrer Institute, Villigen CH-5232 (Switzerland)

    2009-11-15

    The effect of channel height, inflow velocity and wall temperature on the dynamics and stability of unity Lewis number premixed flames in channels with specified wall temperature is investigated with steady and transient numerical simulations using a two-dimensional thermo-diffusive model. The simplified model is capable of capturing many of the transitions and the combustion modes observed experimentally and in direct numerical simulations in micro- and meso-scale channels, and indicates that the thermal flame/wall interaction is the mechanism leading to the observed flame instabilities. Finally, an ad-hoc one-dimensional model based on the flame-sheet approximation is tested in its capacity to reproduce some of the flame dynamics of the two-dimensional thermo-diffusive model. (author)

  8. The FLAME project in Atomki

    International Nuclear Information System (INIS)

    Hunyadi, M.; Iski, N.

    2011-01-01

    Complete text of publication follows. Eleven regions of eight Central European countries have launched the FLAME Project in 2010 (Future Laboratory for the diffusion and Application of innovation in Material Sciences and Engineering) to start and manage a new initiative of a network for innovation activities in the MS and E sector. The project aimed at supporting actors in the field of materials science and exploiting their research and commercial potentials. FLAME partners encourage trans-regional cooperation between R and D centres, universities, start-ups and SMEs by helping companies to distribute their innovations and supporting research in transferring results to the market. The project will implement a new cooperation model: the 'Future Lab', where duly trained 'regional facilitation coaches' will assist SMEs in accessing the whole Central European MS and E market and research potential. Each Future Lab will be specialized on thematic fields and help to make efficient use of local and regional potentials. The three Future Labs will be hosted by the Austrian, Italian and Slovenian partner organizations. Figure 1. Competence and innovation landscape on the FLAME website. Source: http://www.flameurope.eu/mse-actors-145.html As the first step of project implementation in 2011 the competence and innovation maps within the participating regions were elaborated in order to list the relevant actors in the MS and E sector (Figure 1). In 2011, each project partner delegated two regional professionals as facilitation coaches to attend four training weeks across Europe. The facilitation coaches play an active role in the exchange of information and in motivating collaboration between research institutions and enterprises on technology based projects. The training sessions were located at four of the project partners: Kapfenberg/Austria (lead partner - Area m Styria); Warsaw/Poland (PP2 - Warsaw University of Technology); Debrecen/Hungary (PP5 - Atomki); Milan/Italy (PP

  9. Direct Flame Impingement

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-01

    During the DFI process, high velocity flame jets impinge upon the material being heated, creating a high heat transfer rate. As a result, refractory walls and exhaust gases are cooler, which increases thermal efficiency and lowers NOx emissions. Because the jet nozzles are located a few inches from the load, furnace size can be reduced significantly.

  10. Buoyant Unstable Behavior of Initially Spherical Lean Hydrogen-Air Premixed Flames

    Directory of Open Access Journals (Sweden)

    Zuo-Yu Sun

    2014-07-01

    Full Text Available Buoyant unstable behavior in initially spherical lean hydrogen-air premixed flames within a center-ignited combustion vessel have been studied experimentally under a wide range of pressures (including reduced, normal, and elevated pressures. The experimental observations show that the flame front of lean hydrogen-air premixed flames will not give rise to the phenomenon of cellular instability when the equivalence ratio has been reduced to a certain value, which is totally different from the traditional understanding of the instability characteristics of lean hydrogen premixed flames. Accompanied by the smoothened flame front, the propagation mode of lean hydrogen premixed flames transitions from initially spherical outwardly towards upwardly when the flames expand to certain sizes. To quantitatively investigate such buoyant instability behaviors, two parameters, “float rate (ψ” and “critical flame radius (Rcr”, have been proposed in the present article. The quantitative results demonstrate that the influences of initial pressure (Pint on buoyant unstable behaviors are different. Based on the effects of variation of density difference and stretch rate on the flame front, the mechanism of such buoyant unstable behaviors has been explained by the competition between the stretch force and the results of gravity and buoyancy, and lean hydrogen premixed flames will display buoyant unstable behavior when the stretch effects on the flame front are weaker than the effects of gravity and buoyancy.

  11. Streamline segment statistics of premixed flames with nonunity Lewis numbers

    Science.gov (United States)

    Chakraborty, Nilanjan; Wang, Lipo; Klein, Markus

    2014-03-01

    The interaction of flame and surrounding fluid motion is of central importance in the fundamental understanding of turbulent combustion. It is demonstrated here that this interaction can be represented using streamline segment analysis, which was previously applied in nonreactive turbulence. The present work focuses on the effects of the global Lewis number (Le) on streamline segment statistics in premixed flames in the thin-reaction-zones regime. A direct numerical simulation database of freely propagating thin-reaction-zones regime flames with Le ranging from 0.34 to 1.2 is used to demonstrate that Le has significant influences on the characteristic features of the streamline segment, such as the curve length, the difference in the velocity magnitude at two extremal points, and their correlations with the local flame curvature. The strengthenings of the dilatation rate, flame normal acceleration, and flame-generated turbulence with decreasing Le are principally responsible for these observed effects. An expression for the probability density function (pdf) of the streamline segment length, originally developed for nonreacting turbulent flows, captures the qualitative behavior for turbulent premixed flames in the thin-reaction-zones regime for a wide range of Le values. The joint pdfs between the streamline length and the difference in the velocity magnitude at two extremal points for both unweighted and density-weighted velocity vectors are analyzed and compared. Detailed explanations are provided for the observed differences in the topological behaviors of the streamline segment in response to the global Le.

  12. Flame visualization in power stations

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Thus, A W; Verhage, A J.L. [KEMA - Fossil Power Plants, Arnhem (Netherlands)

    1993-01-01

    The shapes and temperature of flames in power stations, fired with powder coal and gas, have been measured optically. Spectral information in the visible and near infrared is used. Coal flames are visualized in the blue part of the spectrum, natural gas flames are viewed in the light of CH-emission. Temperatures of flames are derived from the best fit of the Planck-curve to the thermal radiation spectrum of coal and char, or to that of soot in the case of gas flames. A measuring method for the velocity distribution inside a gas flame is presented, employing pulsed alkali salt injection. It has been tested on a 100 kW natural gas flame. 3 refs., 9 figs.

  13. Differentiating between Glioblastoma and Primary CNS Lymphoma Using Combined Whole-tumor Histogram Analysis of the Normalized Cerebral Blood Volume and the Apparent Diffusion Coefficient.

    Science.gov (United States)

    Bao, Shixing; Watanabe, Yoshiyuki; Takahashi, Hiroto; Tanaka, Hisashi; Arisawa, Atsuko; Matsuo, Chisato; Wu, Rongli; Fujimoto, Yasunori; Tomiyama, Noriyuki

    2018-05-31

    This study aimed to determine whether whole-tumor histogram analysis of normalized cerebral blood volume (nCBV) and apparent diffusion coefficient (ADC) for contrast-enhancing lesions can be used to differentiate between glioblastoma (GBM) and primary central nervous system lymphoma (PCNSL). From 20 patients, 9 with PCNSL and 11 with GBM without any hemorrhagic lesions, underwent MRI, including diffusion-weighted imaging and dynamic susceptibility contrast perfusion-weighted imaging before surgery. Histogram analysis of nCBV and ADC from whole-tumor voxels in contrast-enhancing lesions was performed. An unpaired t-test was used to compare the mean values for each type of tumor. A multivariate logistic regression model (LRM) was performed to classify GBM and PCNSL using the best parameters of ADC and nCBV. All nCBV histogram parameters of GBMs were larger than those of PCNSLs, but only average nCBV was statistically significant after Bonferroni correction. Meanwhile, ADC histogram parameters were also larger in GBM compared to those in PCNSL, but these differences were not statistically significant. According to receiver operating characteristic curve analysis, the nCBV average and ADC 25th percentile demonstrated the largest area under the curve with values of 0.869 and 0.838, respectively. The LRM combining these two parameters differentiated between GBM and PCNSL with a higher area under the curve value (Logit (P) = -21.12 + 10.00 × ADC 25th percentile (10 -3 mm 2 /s) + 5.420 × nCBV mean, P histogram analysis of nCBV and ADC combined can be a valuable objective diagnostic method for differentiating between GBM and PCNSL.

  14. Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI.

    Science.gov (United States)

    Ferradal, Silvina L; Eggebrecht, Adam T; Hassanpour, Mahlega; Snyder, Abraham Z; Culver, Joseph P

    2014-01-15

    Diffuse optical imaging (DOI) is increasingly becoming a valuable neuroimaging tool when fMRI is precluded. Recent developments in high-density diffuse optical tomography (HD-DOT) overcome previous limitations of sparse DOI systems, providing improved image quality and brain specificity. These improvements in instrumentation prompt the need for advancements in both i) realistic forward light modeling for accurate HD-DOT image reconstruction, and ii) spatial normalization for voxel-wise comparisons across subjects. Individualized forward light models derived from subject-specific anatomical images provide the optimal inverse solutions, but such modeling may not be feasible in all situations. In the absence of subject-specific anatomical images, atlas-based head models registered to the subject's head using cranial fiducials provide an alternative solution. In addition, a standard atlas is attractive because it defines a common coordinate space in which to compare results across subjects. The question therefore arises as to whether atlas-based forward light modeling ensures adequate HD-DOT image quality at the individual and group level. Herein, we demonstrate the feasibility of using atlas-based forward light modeling and spatial normalization methods. Both techniques are validated using subject-matched HD-DOT and fMRI data sets for visual evoked responses measured in five healthy adult subjects. HD-DOT reconstructions obtained with the registered atlas anatomy (i.e. atlas DOT) had an average localization error of 2.7mm relative to reconstructions obtained with the subject-specific anatomical images (i.e. subject-MRI DOT), and 6.6mm relative to fMRI data. At the group level, the localization error of atlas DOT reconstruction was 4.2mm relative to subject-MRI DOT reconstruction, and 6.1mm relative to fMRI. These results show that atlas-based image reconstruction provides a viable approach to individual head modeling for HD-DOT when anatomical imaging is not available

  15. Ethanol flame synthesis of carbon nanotubes in deficient oxygen environments

    Science.gov (United States)

    Hu, Wei-Chieh; Lin, Ta-Hui

    2016-04-01

    In this study, carbon nanotubes (CNTs) were synthesized using ethanol diffusion flames in a stagnation-flow system composed of an upper oxidizer duct and a lower liquid pool. In the experiments, a gaseous mixture of oxygen and nitrogen flowed from the upper oxidizer duct, and then impinged onto the vertically aligned ethanol pool to generate a planar and steady diffusion flame in a deficient oxygen environment. A nascent nickel mesh was used as the catalytic metal substrate to collect deposited materials. The effect of low oxygen concentration on the formation of CNTs was explored. The oxygen concentration significantly influenced the flame environment and thus the synthesized carbon products. Lowering the oxygen concentration increased the yield, diameter, and uniformity of CNTs. The optimal operating conditions for CNT synthesis were an oxygen concentration in the range of 15%-19%, a flame temperature in the range of 460 °C-870 °C, and a sampling position of 0.5-1 mm below the upper edge of the blue flame front. It is noteworthy that the concentration gradient of C2 species and CO governed the CNT growth directly. CNTs were successfully fabricated in regions with uniform C2 species and CO distributions.

  16. Expression of cellular prion protein in the frontal and occipital lobe in Alzheimer's disease, diffuse Lewy body disease, and in normal brain: an immunohistochemical study.

    Science.gov (United States)

    Rezaie, Payam; Pontikis, Charlie C; Hudson, Lance; Cairns, Nigel J; Lantos, Peter L

    2005-08-01

    Cellular prion protein (PrP(c)) is a glycoprotein expressed at low to moderate levels within the nervous system. Recent studies suggest that PrP(c) may possess neuroprotective functions and that its expression is upregulated in certain neurodegenerative disorders. We investigated whether PrP(c) expression is altered in the frontal and occipital cortex in two well-characterized neurodegenerative disorders--Alzheimer's disease (AD) and diffuse Lewy body disease (DLBD)--compared with that in normal human brain using immunohistochemistry and computerized image analysis. The distribution of PrP(c) was further tested for correlation with glial reactivity. We found that PrP(c) was localized mainly in the gray matter (predominantly in neurons) and expressed at higher levels within the occipital cortex in the normal human brain. Image analysis revealed no significant variability in PrP(c) expression between DLBD and control cases. However, blood vessels within the white matter of DLBD cases showed immunoreactivity to PrP(c). By contrast, this protein was differentially expressed in the frontal and occipital cortex of AD cases; it was markedly overexpressed in the former and significantly reduced in the latter. Epitope specificity of antibodies appeared important when detecting PrP(c). The distribution of PrP(c) did not correlate with glial immunoreactivity. In conclusion, this study supports the proposal that regional changes in expression of PrP(c) may occur in certain neurodegenerative disorders such as AD, but not in other disorders such as DLBD.

  17. Structure analysis of low velocity reactive flows on a flat plate: the case of the laminar diffusion flame in a low gravity environment; Analyse de la structure des ecoulements reactifs a faible vitesse sur une plaque plane: cas de la flamme de diffusion laminaire sous un environnement de gravite reduite

    Energy Technology Data Exchange (ETDEWEB)

    Joulain, P.

    2003-09-01

    The combustion of a flat plate in a boundary layer under microgravity conditions, which was first described by Emmons, is studied using a gaseous burner. Magnitude of injection and blowing velocities are chosen to be characteristic of pyrolyzing velocity of solid fuels and of ventilation systems in space stations. These velocities are about 10 cm/s for oxidizer flow and 0.4 cm/s for fuel flow. In this configuration, flame layout results from a coupled interaction between oxidizer flow, fuel flow and thermal expansion. Influences of these parameters are studied by means of flame length and standoff distance measurements using CH* chemiluminescence's and visible emission of the flame. Flow was also studied with Particle Image Velocimetry (PIV). At first with inert flows, with and without injection to identify burner effects on it, and then with a reacting flow in a microgravity environment. Thermal expansion effects have been shown by means of the acceleration of oxidizer flow. Three dimensional effects, which are strongly marked for high injection velocities did not were studied, but three dimensional tools adaptability (wavelength and polarizing coding laser tomography) to parabolic flights particular conditions were investigate. Flame sensitivity to g-jitters was studied using a local modified Richardson number introduced by Torero and g-jitters effect on flame were investigated according to g-jitters frequency and range involved by parabolic flights. (author)

  18. Effects of Buoyancy on Laminar and Turbulent Premixed V-Flame

    Science.gov (United States)

    Cheng, Robert K.; Bedat, Benoit

    1997-01-01

    characterize microgravity (micro g) premixed flames. The results are used to derive appropriate scaling parameters for guiding the development of theoretical models to include the effects of buoyancy. Knowledge gain from the analysis will also contribute to further understanding of the elliptical nature of premixed flames. Our current emphasis is to examine the momentum limit above which the effects of buoyancy would become insignificant. This is accomplished by comparing the flowfields and the mean properties of normal gravity flames (+g), and reversed gravity flames (-g, up-side-down flames) at different flow velocities and turbulence intensities. Microgravity (micro g) flames experiments provide the key reference data to reconcile the differences between flames in +g and -g. As flame configuration has significant impact on premixed flames characteristics we have studied axi-symmetric conical flames and plane-symmetric rod-stabilized v-flames. The two configurations produce distinct features that dictates how the flames couple with buoyancy. In a conical flame, the hot products plume completely envelopes the flame cone and shields the flame from direct interaction with the ambient air. The plume originates at the burner rim and generates a divergent flowfield. In comparison, the products region of v-flames forms between the twin flame sheets and it is convergent towards the center-plane. Interaction with ambient air is limited to the two end regions of the stabilized rod and beyond the flame sheets.

  19. The blow-off mechanism of a bluff-body stabilized laminar premixed flame

    KAUST Repository

    Kedia, Kushal S.

    2015-04-01

    © 2014 The Combustion Institute. The objective of this work is to investigate the dynamics leading to blow-off of a laminar premixed flame stabilized on a confined bluff-body using high fidelity numerical simulations. We used unsteady, fully resolved, two-dimensional simulations with detailed chemical kinetics and species transport for methane-air combustion. The flame-wall interaction between the hot reactants and the heat conducting bluff-body was accurately captured by incorporating the conjugate heat exchange between them. Simulations showed a shear-layer stabilized flame just downstream of the bluff-body, with a recirculation zone formed by the products of combustion. The flame was negatively stretched along its entire length, primarily dominated by the normal component of the strain. Blow-off was approached by decreasing the mixture equivalence ratio, at a fixed Reynolds number, of the incoming flow. A flame is stable (does not undergo blow-off) when (1) flame displacement speed is equal to the flow speed and (2) the gradient of the flame displacement speed normal to its surface is higher than the gradient of the flow speed along the same direction. As the equivalence ratio is reduced, the difference between the former and the latter shrinks until the dynamic stability condition (2) is violated, leading to blow-off. Blow-off initiates at a location where this is first violated along the flame. Our results showed that this location was far downstream from the flame anchoring zone, near the end of the recirculation zone. Blow-off started by flame pinching separating the flame into an upstream moving (carried within the recirculation zone) and a downstream convecting (detached from the recirculation zone) flame piece. Within the range of operating conditions investigated, the conjugate heat exchange with the bluff-body had no impact on the flame blow-off.

  20. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  1. Antimony: a flame fighter

    Science.gov (United States)

    Wintzer, Niki E.; Guberman, David E.

    2015-01-01

    Antimony is a brittle, silvery-white semimetal that conducts heat poorly. The chemical compound antimony trioxide (Sb2O3) is widely used in plastics, rubbers, paints, and textiles, including industrial safety suits and some children’s clothing, to make them resistant to the spread of flames. Also, sodium antimonate (NaSbO3) is used during manufacturing of high-quality glass, which is found in cellular phones.

  2. Flame-Resistant Composite Materials For Structural Members

    Science.gov (United States)

    Spears, Richard K.

    1995-01-01

    Matrix-fiber composite materials developed for structural members occasionally exposed to hot, corrosive gases. Integral ceramic fabric surface layer essential for resistance to flames and chemicals. Endures high temperature, impedes flame from penetrating to interior, inhibits diffusion of oxygen to interior where it degrades matrix resin, resists attack by chemicals, helps resist erosion, and provides additional strength. In original intended application, composite members replace steel structural members of rocket-launching structures that deteriorate under combined influences of atmosphere, spilled propellants, and rocket exhaust. Composites also attractive for other applications in which corrosion- and fire-resistant structural members needed.

  3. Effect of pressure on the lean limit flames of H2-CH4-air mixture in tubes

    KAUST Repository

    Zhou, Zhen; Shoshin, Yuriy; Hernandez Perez, Francisco; van Oijen, Jeroen A.; de Goey, Laurentius P.H.

    2017-01-01

    The lean limit flames of H2-CH4-air mixtures stabilized inside tubes in a downward flow are experimentally and numerically investigated at elevated pressures ranging from 2 to 5 bar. For the shapes of lean limit flames, a change from ball-like flame to cap-like flame is experimentally observed with the increase of pressure. This experimentally observed phenomenon is qualitatively predicted by numerical simulations. The structure of ball-like and cap-like lean limit flames at all tested pressures is analysed in detail based on the numerical predictions. The results show that the lean limit flames are located inside a recirculation zone at all tested pressures. For the leading edges of the lean limit flames at all tested pressures, the fuel transport is controlled by both convection and diffusion. For the trailing edge of the ball-like lean limit flame at 2 bar, the fuel transport is dominated by diffusion. However, with increasing pressure, the transport contribution caused by convection in the trailing edges of the lean limit flames increases. Finally, the influence of transport and chemistry on the predicted ultra lean flames and lean flammability limit is analysed at elevated pressures.

  4. Effect of pressure on the lean limit flames of H2-CH4-air mixture in tubes

    KAUST Repository

    Zhou, Zhen

    2017-05-25

    The lean limit flames of H2-CH4-air mixtures stabilized inside tubes in a downward flow are experimentally and numerically investigated at elevated pressures ranging from 2 to 5 bar. For the shapes of lean limit flames, a change from ball-like flame to cap-like flame is experimentally observed with the increase of pressure. This experimentally observed phenomenon is qualitatively predicted by numerical simulations. The structure of ball-like and cap-like lean limit flames at all tested pressures is analysed in detail based on the numerical predictions. The results show that the lean limit flames are located inside a recirculation zone at all tested pressures. For the leading edges of the lean limit flames at all tested pressures, the fuel transport is controlled by both convection and diffusion. For the trailing edge of the ball-like lean limit flame at 2 bar, the fuel transport is dominated by diffusion. However, with increasing pressure, the transport contribution caused by convection in the trailing edges of the lean limit flames increases. Finally, the influence of transport and chemistry on the predicted ultra lean flames and lean flammability limit is analysed at elevated pressures.

  5. True progression versus pseudoprogression in the treatment of glioblastomas: a comparison study of normalized cerebral blood volume and apparent diffusion coefficient by histogram analysis.

    Science.gov (United States)

    Song, Yong Sub; Choi, Seung Hong; Park, Chul-Kee; Yi, Kyung Sik; Lee, Woong Jae; Yun, Tae Jin; Kim, Tae Min; Lee, Se-Hoon; Kim, Ji-Hoon; Sohn, Chul-Ho; Park, Sung-Hye; Kim, Il Han; Jahng, Geon-Ho; Chang, Kee-Hyun

    2013-01-01

    The purpose of this study was to differentiate true progression from pseudoprogression of glioblastomas treated with concurrent chemoradiotherapy (CCRT) with temozolomide (TMZ) by using histogram analysis of apparent diffusion coefficient (ADC) and normalized cerebral blood volume (nCBV) maps. Twenty patients with histopathologically proven glioblastoma who had received CCRT with TMZ underwent perfusion-weighted imaging and diffusion-weighted imaging (b = 0, 1000 sec/mm(2)). The corresponding nCBV and ADC maps for the newly visible, entirely enhancing lesions were calculated after the completion of CCRT with TMZ. Two observers independently measured the histogram parameters of the nCBV and ADC maps. The histogram parameters between the true progression group (n = 10) and the pseudoprogression group (n = 10) were compared by use of an unpaired Student's t test and subsequent multivariable stepwise logistic regression analysis to determine the best predictors for the differential diagnosis between the two groups. Receiver operating characteristic analysis was employed to determine the best cutoff values for the histogram parameters that proved to be significant predictors for differentiating true progression from pseudoprogression. Intraclass correlation coefficient was used to determine the level of inter-observer reliability for the histogram parameters. The 5th percentile value (C5) of the cumulative ADC histograms was a significant predictor for the differential diagnosis between true progression and pseudoprogression (p = 0.044 for observer 1; p = 0.011 for observer 2). Optimal cutoff values of 892 × 10(-6) mm(2)/sec for observer 1 and 907 × 10(-6) mm(2)/sec for observer 2 could help differentiate between the two groups with a sensitivity of 90% and 80%, respectively, a specificity of 90% and 80%, respectively, and an area under the curve of 0.880 and 0.840, respectively. There was no other significant differentiating parameter on the nCBV histograms. Inter

  6. Subwoofer and nanotube butterfly acoustic flame extinction

    NARCIS (Netherlands)

    Aliev, Ali E.; Mayo, Nathanael K.; Baughman, Ray H.; Mills, Brent T.; Habtour, Ed

    2017-01-01

    Nonchemical flame control using acoustic waves from a subwoofer and a lightweight carbon nanotube thermoacoustic projector was demonstrated. The intent was to manipulate flame intensity, direction and propagation. The mechanisms of flame suppression using low frequency acoustic waves were discussed.

  7. Gas concentration and temperature in acoustically excited Delft turbulent jet flames

    Energy Technology Data Exchange (ETDEWEB)

    Ana Maura A. Rocha; Joao A. Carvalho Jr.; Pedro T. Lacava [Sao Paulo State University, Guaratingueta (Brazil)

    2008-11-15

    This paper shows the experimental results for changes in the flame structure when acoustic fields are applied in natural gas Delft turbulent diffusion flames. The acoustic field (pulsating combustion) generates zones of intense mixture of reactants in the flame region, promoting a more complete combustion and, consequently, lower pollutant emissions, increase in convective heat transfer rates, and lower fuel consumption. The results show that the presence of the acoustic field changes drastically the flame structure, mainly in the burner natural frequencies. However, for higher acoustic amplitudes, or acoustic pressures, a hydrogen pilot flame is necessary in order to keep the main flame anchored. In the flame regions where the acoustic field is more intense, premixed flame characteristics were observed. Besides, the pulsating regime modifies the axial and radial combustion structure, which could be verified by the radial distribution of concentrations of O{sub 2}, CO, CO{sub 2}, and NOx, and by the temperature profile. The experiments also presented the reduction of flame length with the increase of acoustic amplitude. 30 refs., 15 figs., 3 tabs.

  8. On the theory of turbulent flame velocity

    OpenAIRE

    Bychkov, Vitaly; Akkerman, Vyacheslav; Petchenko, Arkady

    2012-01-01

    The renormalization ideas of self-similar dynamics of a strongly turbulent flame front are applied to the case of a flame with realistically large thermal expansion of the burning matter. In that case a flame front is corrugated both by external turbulence and the intrinsic flame instability. The analytical formulas for the velocity of flame propagation are obtained. It is demonstrated that the flame instability is of principal importance when the integral turbulent length scale is much large...

  9. Investigation of a flame holder geometry effect on flame structure in non-premixed combustion

    International Nuclear Information System (INIS)

    Hashemi, S. A.; Hajialigol, N.; Fattahi, A.; Heydari, R.; Mazaheri, K.

    2013-01-01

    In this paper the effect of flame holder geometry on flame structure is studied. The obtained numerical results using realizable k-ε and β-PDF models show a good agreement with experimental data. The results show that increasing in flame holder length decreases flame length and increases flame temperature. Additionally, it is observed that flame lengths decrease by increasing in flame holder radius and increase for larger radii. Furthermore in various radii, the flame temperature is higher for smaller flame lengths. It was found that behavior of flame structure is mainly affected by the mass flow rate of hot gases that come near the reactant by the recirculation zone.

  10. Investigation of a flame holder geometry effect on flame structure in non-premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hashemi, S. A.; Hajialigol, N.; Fattahi, A.; Heydari, R. [University of Kashan, Kashan (Iran, Islamic Republic of); Mazaheri, K. [University of Tarbiat Moddares, Tehran (Iran, Islamic Republic of)

    2013-11-15

    In this paper the effect of flame holder geometry on flame structure is studied. The obtained numerical results using realizable k-ε and β-PDF models show a good agreement with experimental data. The results show that increasing in flame holder length decreases flame length and increases flame temperature. Additionally, it is observed that flame lengths decrease by increasing in flame holder radius and increase for larger radii. Furthermore in various radii, the flame temperature is higher for smaller flame lengths. It was found that behavior of flame structure is mainly affected by the mass flow rate of hot gases that come near the reactant by the recirculation zone.

  11. Cellular structure of lean hydrogen flames in microgravity

    Science.gov (United States)

    Patnaik, G.; Kailasanath, K.

    1990-01-01

    Detailed, time-dependent, two-dimensional numerical simulations of premixed laminar flames have been used to study the initiation and subsequent development of cellular structures in lean hydrogen-air flames. The model includes detailed hydrogen-oxygen combustion with 24 elementary reactions of eight reactive species and a nitrogen diluent, molecular diffusion of all species, thermal conduction, viscosity, and convection. This model has been used to study the nonlinear evolution of cellular flame structure and shows that cell splitting, as observed in experiments, can be predicted numerically for sufficiently reactive mixtures. The structures that evolved also resembled the cellular structures observed in experiments. The present study shows that the 'cell-split limit' postulated from experimental observations is an intrinsic property of the mixture and that external factors such as heat losses are not necessary to cause this limit.

  12. Quantitative assessment of the hepatic metabolic volume product in patients with diffuse hepatic steatosis and normal controls through use of FDG-PET and MR imaging: a novel concept.

    Science.gov (United States)

    Bural, Gonca G; Torigian, Drew A; Burke, Anne; Houseni, Mohamed; Alkhawaldeh, Khaled; Cucchiara, Andrew; Basu, Sandip; Alavi, Abass

    2010-06-01

    The aim of this study was to compare hepatic standardized uptake values (SUVs) and hepatic metabolic volumetric products (HMVP) between patients of diffuse hepatic steatosis and control subjects with normal livers. Twenty-seven subjects were included in the study (13 men and 14 women; age range, 34-72 years). All had 18F-2-fluoro-2-D-deoxyglucose-positron emission tomography (FDG-PET) and magnetic resonance imaging (MRI) scans with an interscan interval of 0-5 months. Twelve of 27 subjects had diffuse hepatic steatosis on MRI. The remaining 15 were selected as age-matched controls based on normal liver parenchyma on MRI. Mean and maximum hepatic SUVs were calculated for both patient groups on FDG-PET images. Hepatic volumes were measured from MRI. HMVP in each subject was subsequently calculated by multiplication of hepatic volume by mean hepatic SUV. HMVPs as well as mean and maximum hepatic SUVs were compared between the two study groups. HMVPs, mean hepatic SUVs, and maximum hepatic SUVs were greater (statistically significant, p < 0.05) in subjects with diffuse hepatic steatosis compared to those in the control group. The increase in HMVP is the result of increased hepatic metabolic activity likely related to the diffuse hepatic steatosis. The active inflammatory process related to the diffuse hepatic steatosis is the probable explanation for the increase in hepatic metabolic activity on FDG-PET study.

  13. Experimental quantification of transient stretch effects from vortices interacting with premixed flames

    Science.gov (United States)

    Danby, Sean James

    The understanding of complex premixed combustion reactions is paramount to the development of new concepts and devices used to increase the overall usefulness and capabilities of current technology. The complex interactions which occur within any modern practical combustion device were studied by isolating a single turbulent scale of the turbulence-chemistry interaction. Methane-air flame equivalence ratios (φ = 0.64, 0.90, and 1.13) were chosen to observe the mild affects of thermo-diffusive stability on the methane-air flame. Nitrogen was used as a diluent to retard the flame speeds of the φ = 0.90, and 1.13 mixtures so that the undisturbed outwardly propagating spherical flame kernel propagation rates, drf/dt, were approximately equal. Five primary propane equivalence ratios were utilized for investigation: φ = 0.69, 0.87, 1.08, 1.32, and 1.49. The choice of equivalence ratio was strategically made so that the φ = 0.69/1.49 and φ = 0.87/1.32 mixtures have the same undiluted flame propagation rate, drf/dt. Therefore, in the undiluted case, there are three flame speeds (in laboratory coordinates, not to be confused with burning velocity) represented by these mixtures. Three vortices were selected to be used in this investigation. The vortex rotational velocities were measured to be 77 cm/s, 266 cm/s and 398 cm/s for the "weak", "medium" and "strong" vortices, respectively. Ignition of the flame occurred in two ways: (1) spark-ignition or (2) laser ignition using an Nd:YAG laser at its second harmonic (lambda = 532 nm) in order to quantify the effect of electrode interference. Accompanying high-speed chemiluminescence imaging measurements, instantaneous pressure measurements were obtained to give a more detailed understanding of the effect of vortex strength on the overall flame speed and heat release rate over an extended time scale and to explore the use of a simple measurement to describe turbulent mixing. Further local flame-vortex interface analysis was

  14. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  15. Self Induced Buoyant Blow Off in Upward Flame Spread on Thin Solid Fuels

    Science.gov (United States)

    Johnston, Michael C.; T'ien, James S.; Muff, Derek E.; Olson, Sandra L.; Ferkul, Paul V.

    2013-01-01

    ) is as follows: The observed one-sided extinction is a blow- off induced by buoyant entrainment. It is known that the flammable diffusion flame regime is bounded by quenching and blow ]off limits when varying incoming air velocity. The narrowest samples tested (between 2 and 5 cm) begin within the flammable range, but as the flame grows, the buoyancy driven air velocity increases at the neighborhood of the flame base. The initially stable flame crosses the extinguishment boundary resulting in a flame blow-off. When one-side of the flame extinguishes, the remaining side shrinks due to the reduced heat transfer to the solid. This reduces the induced velocity and the flame becomes stable. It is proposed that this may have implications to upward flame growth beyond this experiment.

  16. Excitable dynamics in high-Lewis number premixed gas combustion at normal and microgravity

    Science.gov (United States)

    Pearlman, Howard

    1995-01-01

    Freely-propagating, premixed gas flames in high-Lewis (Le) number, quiescent mixtures are studied experimentally in tubes of various diameter at normal (lg) and microgravity (mu g). A premixture of lean butane and oxygen diluted with helium, argon, neon, nitrogen or a mixture of multiple diluents is examined such that the thermal diffusivity of the mixture (and to a lesser extent, the mass diffusivity of the rate-limiting component) is systematically varied. In effect, different diluents allow variation of the Le without changing the chemistry. The flames are recorded with high speed cinematography and their stability is visually assessed. Different modes of propagation were observed depending on the diameter of the tubes (different conductive heat loss), the composition of the mixture and the g-level. At 1g, four modes of propagation were observed in small and intermediate diameter tubes (large conductive heat loss): (1) steadily propagating flames, (2) radial and longitudinal pulsating flames, (3) 'wavering' flames, and (4) rotating spiral flames. As the diameter of the tube increases, the radial modes become more pronounced while the longitudinal modes systematically disappear. Also, multiple, simultaneous, spatially-separated 'pacemaker' sites are observed in intermediate and large diameter tubes. Each site starts as a small region of high luminosity and develops into a flamelet which assumes the form of one of the fore mentioned modes. These flamelets eventually interact, annihilate each other in their regions of intersection and merge at their newly created free-ends. For very large tubes, radially-propagating wave-trains (believed to be 'trigger waves') are observed. These are analogous to the radial pulsations observed in the smaller diameter tubes. At mu g, three modes of propagation have been observed: (1) steadily propagating flames, (2) radial and longitudinal pulsating flames, and (3) multi-armed, rotating flames. Since the pulsating mode exists at mu

  17. Methane Formation by Flame-Generated Hydrogen Atoms in the Flame Ionization Detector

    DEFF Research Database (Denmark)

    Holm, Torkil; Madsen, Jørgen Øgaard

    1996-01-01

    , and conceivably all hydrocarbons are quantitatively converted into methane at temperatures below 600 C, that is, before the proper combustion has started. The splitting of the C-C bonds is preceded by hydrogenation of double and triple bonds and aromatic rings. The reactions, no doubt, are caused by hydrogen...... atoms, which are formed in the burning hydrogen and which diffuse into the inner core of the flame. The quantitative formation of methane appears to explain the "equal per carbon" rule for the detector response of hydrocarbons, since all carbons are "exchanged" for methane molecules....

  18. UV Raman spectroscopy of H2-air flames excited with a narrowband KrF laser

    Science.gov (United States)

    Shirley, John A.

    1990-01-01

    Raman spectra of H2 and H2O in flames excited by a narrowband KrF excimer laser are reported. Observations are made over a porous-plug, flat-flame burner reacting H2 in air, fuel-rich with nitrogen dilution to control the temperature, and with an H2 diffusion flame. Measurements made from UV Raman spectra show good agreement with measurements made by other means, both for gas temperature and relative major species concentrations. Laser-induced fluorescence interferences arising from OH and O2 are observed in emission near the Raman spectra. These interferences do not preclude Raman measurements, however.

  19. Mechanistic aspects of ionic reactions in flames

    DEFF Research Database (Denmark)

    Egsgaard, H.; Carlsen, L.

    1993-01-01

    Some fundamentals of the ion chemistry of flames are summarized. Mechanistic aspects of ionic reactions in flames have been studied using a VG PlasmaQuad, the ICP-system being substituted by a simple quartz burner. Simple hydrocarbon flames as well as sulfur-containing flames have been investigated...

  20. Role of the outer-edge flame on flame extinction in nitrogen-diluted non-premixed counterflow flames with finite burner diameters

    KAUST Repository

    Chung, Yong Ho; Park, Daegeun; Park, Jeong; Kwon, Oh Boong; Yun, Jin Han; Keel, Sang In

    2013-01-01

    This study of nitrogen-diluted non-premixed counterflow flames with finite burner diameters investigates the important role of the outer-edge flame on flame extinction through experimental and numerical analyses. It explores flame stability diagrams

  1. Inter-individual, inter-vendor comparison of diffusion-weighted MR imaging of upper abdominal organs at 3.0 tesla with an emphasis on the value of normalization with the spleen

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ji Soo; Hwang, Seung Bae; Chung, Gyung Ho; Jin, Gong Yong [Dept. of Radiology, Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of)

    2016-04-15

    To compare the apparent diffusion coefficient (ADC) values of upper abdominal organs with 2 different 3.0 tesla MR systems and to investigate the usefulness of normalization using the spleen. Forty-one patients were enrolled in this prospective study, of which, 35 patients (M:F, 27:8; mean age ± standard deviation, 62.3 ± 12.3 years) were finally analyzed. In addition to the routine liver MR protocol, single-shot spin-echo echo-planar diffusion-weighted imaging using b values of 0, 50, 400, and 800 s/mm{sup 2} in 2 different MR systems was performed. ADC values of the liver, spleen, pancreas, kidney and liver lesion (if present) were measured and analyzed. ADC values of the spleen were used for normalization. The Pearson correlation, Spearman correlation, paired sample t test, Wilcoxon signed rank test and Bland-Altman method were used for statistical analysis. For all anatomical regions and liver lesions, both non-normalized and normalized ADC values from 2 different MR systems showed significant correlations (r = 0.5196-0.8488). Non-normalized ADC values of both MR systems differed significantly in all anatomical regions and liver lesions (p < 0.001). However, the normalized ADC of all anatomical regions and liver lesions did not differ significantly (p = 0.065-0.661), with significantly lower coefficient of variance than that of non-normalized ADC (p < 0.009). Normalization of the abdominal ADC values using the spleen as a reference organ reduces differences between different MR systems, and could facilitate consistent use of ADC as an imaging biomarker for multi-center or longitudinal studies.

  2. Flame spraying of polymers

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-01-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs

  3. Physical and Chemical Processes in Turbulent Flames

    Science.gov (United States)

    2015-06-23

    equiangular sectors, defined as the ratio of the actual flame length to the length of a circular-arc of radius equal to the average flame radius. Assuming... flame length ratio obtained directly from the experiments, without any assumption. As explained earlier (Eq. 2.8) the length ratio, (LR=dl(G0)/dl0) is...spherically expanding flames, with the length ratio on the measurement plane, at predefined equiangular sectors, defined as the ratio of the actual flame length to

  4. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-04-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received attention recently, since it could modulate flames appreciably even for the cases when direct current (DC) has minimal effects. In this study, the effect of AC electric fields on small coflow diffusion flames is focused with applications of various laser diagnostic techniques. Flow characteristics of baseline diffusion flames, which corresponds to stationary small coflow diffusion flames when electric field is not applied, were firstly investigated with a particular focus on the flow field in near-nozzle region with the buoyancy force exerted on fuels due to density differences among fuel, ambient air, and burnt gas. The result showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle exit. Nozzle heating effect influenced this near-nozzle flow-field particularly among lighter fuels. Numerical simulations were also conducted and the results showed that a fuel inlet boundary condition with a fully developed velocity profile for cases with long fuel tubes should be specified inside the fuel tube to obtain satisfactory agreement in both the flow and temperature fields with those from experiment. With sub-critical AC applied to the baseline flames, particle image velocimetry (PIV), light scattering, laser-induced incandescence (LII), and laser-induced fluores- cence (LIF) techniques were adopted to identify the flow field and the structures of OH, polycyclic aromatic hydrocarbons (PAHs), soot zone. Under certain AC condi- tions of applied voltage and frequency, the distribution of PAHs and the flow field near the nozzle exit were drastically altered from the

  5. Neurotoxicity of brominated flame retardants

    Science.gov (United States)

    Polybrominated diphenyl ethers (PBDEs) have been commonly used as commercial flame retardants in a variety of products including plastics and textiles. Despite their decreasing usage worldwide, congeners continue to accumulate in the environment, including soil, dust, food, anima...

  6. Extinction of laminar partially premixed flames

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, Suresh K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Room 2039, MC-251, Chicago, IL 60607-7022 (United States)

    2009-12-15

    Flame extinction represents one of the classical phenomena in combustion science. It is important to a variety of combustion systems in transportation and power generation applications. Flame extinguishment studies are also motivated from the consideration of fire safety and suppression. Such studies have generally considered non-premixed and premixed flames, although fires can often originate in a partially premixed mode, i.e., fuel and oxidizer are partially premixed as they are transported to the reaction zone. Several recent investigations have considered this scenario and focused on the extinction of partially premixed flames (PPFs). Such flames have been described as hybrid flames possessing characteristics of both premixed and non-premixed flames. This paper provides a review of studies dealing with the extinction of PPFs, which represent a broad family of flames, including double, triple (tribrachial), and edge flames. Theoretical, numerical and experimental studies dealing with the extinction of such flames in coflow and counterflow configurations are discussed. Since these flames contain both premixed and non-premixed burning zones, a brief review of the dilution-induced extinction of premixed and non-premixed flames is also provided. For the coflow configuration, processes associated with flame liftoff and blowout are described. Since lifted non-premixed jet flames often contain a partially premixed or an edge-flame structure prior to blowout, the review also considers such flames. While the perspective of this review is broad focusing on the fundamental aspects of flame extinction and blowout, results mostly consider flame extinction caused by the addition of a flame suppressant, with relevance to fire suppression on earth and in space environment. With respect to the latter, the effect of gravity on the extinction of PPFs is discussed. Future research needs are identified. (author)

  7. Shades of white : diffusion properties of T1- and FLAIR-defined white matter signal abnormalities differ in stages from cognitively normal to dementia

    NARCIS (Netherlands)

    Riphagen, Joost M.; Gronenschild, Ed HBM; Salat, David H.; Freeze, Whitney M.; Ivanov, Dimo; Clerx, Lies; Verhey, Frans R. J.; Aalten, Pauline; Jacobs, Heidi I. L.

    The underlying pathology of white matter signal abnormalities (WMSAs) is heterogeneous and may vary dependent on the magnetic resonance imaging contrast used to define them. We investigated differences in white matter diffusivity as an indicator for white matter integrity underlying WMSA based on

  8. New optical method for heat flux measurements in stagnation point laminar methane/air flames and hydrogen/methane/air flames using thermographic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Elmnefi, Mohamed Salem

    2010-11-24

    In the present study, a new optical method was implemented to study the heat transfer from flat stagnation point flames which can be regarded as one-dimensional in the central part. Premixed methane-air flames and hydrogen-methane-air flames were investigated. The effects of burner-to-plate distance and the fresh gas mixture velocity on heat transfer were examined. Experiments were performed using light induced phosphorescence from thermographic phosphors to study the wall temperatures and heat fluxes of nearly one-dimensional flat premixed flames impinging upward normally on a horizontal water cooled circular flat plate. The investigated flames were stoichiometric, lean and rich laminar methane/air flames with different equivalence ratios of {phi} =1, {phi} = 0.75 and {phi} = 1.25 and stoichiometric laminar hydrogen/methane/air flames. Mixtures of air with 10, 25, 50 and 75 % hydrogen in methane (CH{sub 4}) as well as a pure hydrogen flames at ambient pressure were investigated. The central part of this plate was an alumina ceramic plate coated from both sides with chromium doped alumina (ruby) and excited with a Nd:YAG laser or a green light emitting diode (LED) array to measure the wall temperature from both sides and thus the heat flux rate from the flame. The outlet velocity of the gases was varied from 0.1 m/s to 1.2 m/s. The burner to plate distance ranged from 0.5 to 2 times the burner exit diameter (d = 30 mm).The accuracy of the method was evaluated. The measured heat flux indicate the change of the flame stabilization mechanism from a burner stabilized to a stagnation plate stabilized flame. The results were compared to modeling results of a one dimensional stagnation point flow, with a detailed reaction mechanism. In order to prove the model, also measured gas phase temperatures by OH LIF for a stoichiometric stagnation point flame were discussed. It turns out that the flame stabilization mechanism and with it the heat fluxes change from low to high

  9. Flame analysis using image processing techniques

    Science.gov (United States)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  10. Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling

    Science.gov (United States)

    Ramaekers, W. J. S.; van Oijen, J. A.; de Goey, L. P. H.

    2012-12-01

    In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1⩽φ⩽1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1⩽φ⩽1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4⩽φ⩽1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1⩽φ⩽1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data

  11. Reduction of nitrogen oxides (NO{sub x}) production in a liquid fuel-oil diffusion flame by acoustic excitation; Reduction de la production des oxydes d`azote (NO{sub x}) dans une flamme de diffusion a fioul liquide par excitation acoustique

    Energy Technology Data Exchange (ETDEWEB)

    Delabroy, O.; Haile, E.; Veynante, D.; Lacas, F.; Candel, S. [Ecole Centrale de Paris, Laboratoire EM2C. CNRS, 92 - Chatenay-Malabry (France)

    1996-12-31

    The control of nitrogen oxides (NO{sub x}) emissions will become a major challenge in the forthcoming years, in the domain of automotive industry or industrial burners. Pulsed combustion offers an imaginative solution which does not affect the combustion efficiency. In this paper, the efficiency of this method is demonstrated using the burner of a 20 kW domestic boiler. The actuator is simply installed on the air intake. Two types of actuators have been tested successfully: a loudspeaker and a rotative valve. Both can produce 100 to 1000 Hz frequencies and can lead to a reduction of 20% of NO{sub x} emissions. The feasibility of the concept is also demonstrated on a 840 kW liquid fuel-oil burner. The mechanisms involved during an excitation are explained using the CH{sup *} radical imaging. Results show an important reorganization of the flow and of the flame structure. During each excitation cycle, an annular swirl occurs at the leading edge of the flame catching and develops during downflow convection. These results give precious information on this new concept of nitrogen oxides reduction using acoustic excitation. (J.S.) 18 refs.

  12. The Effects of Buoyancy on Characteristics of Turbulent Nonpremixed Jet Flames

    Science.gov (United States)

    Idicheria, Cherian; Boxx, Isaac; Clemens, Noel

    2002-11-01

    This work addresses the influence of buoyant forces on the underlying structure of turbulent nonpremixed jet flames. Buoyancy effects are investigated by studying transitional and turbulent propane and ethylene flames (Re_D=2500-10500) at normal, low and microgravity conditions. The reduced gravity experiments are conducted by dropping a combustion rig in the University of Texas 1.25-second drop tower and the NASA Glenn 2.2-second drop tower. The diagnostic employed is high-speed luminosity imaging using a CCD camera. The images obtained are used to compare flame length, mean, RMS and flame tip oscillation characteristics The results showed that, in contrast to previous studies, the high Reynolds number flames at all gravity levels were essentially identical. Furthermore, the parameter ξL (Becker and Yamazaki, 1978) is sufficient for quantifying the effects of buoyancy on the flame characteristics. The large-scale structure and flame tip dynamics are essentially identical to those of purely momentum driven flames provided ξL is less than approximately 3.

  13. Simulations of Flame Acceleration and DDT in Mixture Composition Gradients

    Science.gov (United States)

    Zheng, Weilin; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine

    2017-11-01

    Unsteady, multidimensional, fully compressible numerical simulations of methane-air in an obstructed channel with spatial gradients in equivalence ratios have been carried to determine the effects of the gradients on flame acceleration and transition to detonation. Results for gradients perpendicular to the propagation direction were considered here. A calibrated, optimized chemical-diffusive model that reproduces correct flame and detonation properties for methane-air over a range of equivalence ratios was derived from a combination of a genetic algorithm with a Nelder-Mead optimization scheme. Inhomogeneous mixtures of methane-air resulted in slower flame acceleration and longer distance to DDT. Detonations were more likely to decouple into a flame and a shock under sharper concentration gradients. Detailed analyses of temperature and equivalence ratio illustrated that vertical gradients can greatly affect the formation of hot spots that initiate detonation by changing the strength of leading shock wave and local equivalence ratio near the base of obstacles. This work is supported by the Alpha Foundation (Grant No. AFC215-20).

  14. Effects of soot formation on shape of a nonpremixed laminar flame established in a shear boundary layer in microgravity

    International Nuclear Information System (INIS)

    Wang, H Y; Merino, J L Florenciano; Dagaut, P

    2011-01-01

    A numerical study was performed to give a quantitative description of a heavily sooting, nonpremixed laminar flame established in a shear boundary layer in microgravity. Controlling mechanisms of three dimensional flow, combustion, soot and radiation are coupled. Soot volume fraction were predicted by using three approaches, referred respectively to as the fuel, acetylene and PAH inception models. It is found that the PAH inception model, which is based on the formation of two and three-ringed aromatic species, reproduces correctly the experimental data from a laminar ethylene diffusion flame. The PAH inception model serves later to better understand flame quenching, flame stand-off distance and soot formation as a function of the dimensionless volume coefficient, defined as C q = V F /V ox where V F is the fuel injection velocity, and V ox air stream velocity. The present experiments showed that a blue unstable flame, negligible radiative feedback, may change to a yellow stable flame, significant radiative loss with an increase of C q ; this experimental trend was numerically reproduced. The flame quenching occurs at the trailing edge due to radiative heat loss which is significantly amplified by increasing V F or decreasing V ox , favouring soot formation. Along a semi-infinite fuel zone, the ratio, d f /d b , where d f is the flame standoff distance, and d b the boundary layer thickness, converges towards a constant value of 1.2, while soot resides always within the boundary layer far away from the flame sheet.

  15. Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003

    Science.gov (United States)

    Holdeman, James D. (Technical Monitor); Cabra, Ricardo

    2004-01-01

    Examined is the vitiated coflow flame, an experimental condition that decouples the combustion processes of flows found in practical combustors from the associated recirculating fluid mechanics. The configuration consists of a 4.57 mm diameter fuel jet into a coaxial flow of hot combustion products from a lean premixed flame. The 210 mm diameter coflow isolates the jet flame from the cool ambient, providing a hot environment similar to the operating conditions of advanced combustors; this important high temperature element is lacking in the traditional laboratory experiments of jet flames into cool (room) air. A family of flows of increasing complexity is presented: 1) nonreacting flow, 2) all hydrogen flame (fuel jet and premixed coflow), and 3) set of methane flames. This sequence of experiments provides a convenient ordering of validation data for combustion models. Laser Raman-Rayleigh-LIF diagnostics at the Turbulent Diffusion Flame laboratory of Sandia National Laboratories produced instantaneous multiscalar point measurements. These results attest to the attractive features of the vitiated coflow burner and the well-defined boundary conditions provided by the coflow. The coflow is uniform and steady, isolating the jet flame from the laboratory air for a downstream distance ranging from z/d = 50-70. The statistical results show that differential diffusion effects in this highly turbulent flow are negligible. Complementing the comprehensive set of multiscalar measurements is a parametric study of lifted methane flames that was conducted to analyze flame sensitivity to jet and coflow velocity, as well as coflow temperature. The linear relationship found between the lift-off height and the jet velocity is consistent with previous experiments. New linear sensitivities were found correlating the lift-off height to coflow velocity and temperature. A blow-off study revealed that the methane flame blows off at a common coflow temperature (1260 K), regardless of

  16. Characteristics of autoignited laminar lifted flames in heated coflow jets of carbon monoxide/hydrogen mixtures

    KAUST Repository

    Choi, Byungchul

    2012-06-01

    The characteristics of autoignited lifted flames in laminar jets of carbon monoxide/hydrogen fuels have been investigated experimentally in heated coflow air. In result, as the jet velocity increased, the blowoff was directly occurred from the nozzle-attached flame without experiencing a stabilized lifted flame, in the non-autoignited regime. In the autoignited regime, the autoignited lifted flame of carbon monoxide diluted by nitrogen was affected by the water vapor content in the compressed air oxidizer, as evidenced by the variation of the ignition delay time estimated by numerical calculation. In particular, in the autoignition regime at low temperatures with added hydrogen, the liftoff height of the autoignited lifted flames decreased and then increased as the jet velocity increased. Based on the mechanism in which the autoignited laminar lifted flame is stabilized by ignition delay time, the liftoff height can be influenced not only by the heat loss, but also by the preferential diffusion between momentum and mass diffusion in fuel jets during the autoignition process. © 2012 The Korean Society of Mechanical Engineers.

  17. Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions

    Science.gov (United States)

    Massa, L.; Jha, P.

    2012-05-01

    Shock-flame interactions enhance supersonic mixing and detonation formation. Therefore, their analysis is important to explosion safety, internal combustion engine performance, and supersonic combustor design. The fundamental process at the basis of the interaction is the Richtmyer-Meshkov instability supported by the density difference between burnt and fresh mixtures. In the present study we analyze the effect of reactivity on the Richtmyer-Meshkov instability with particular emphasis on combustion lengths that typify the scaling between perturbation growth and induction. The results of the present linear analysis study show that reactivity changes the perturbation growth rate by developing a pressure gradient at the flame surface. The baroclinic torque based on the density gradient across the flame acts to slow down the instability growth of high wave-number perturbations. A gasdynamic flame representation leads to the definition of a Peclet number representing the scaling between perturbation and thermal diffusion lengths within the flame. Peclet number effects on perturbation growth are observed to be marginal. The gasdynamic model also considers a finite flame Mach number that supports a separation between flame and contact discontinuity. Such a separation destabilizes the interface growth by augmenting the tangential shear.

  18. Development and application of a computer model for large-scale flame acceleration experiments

    International Nuclear Information System (INIS)

    Marx, K.D.

    1987-07-01

    A new computational model for large-scale premixed flames is developed and applied to the simulation of flame acceleration experiments. The primary objective is to circumvent the necessity for resolving turbulent flame fronts; this is imperative because of the relatively coarse computational grids which must be used in engineering calculations. The essence of the model is to artificially thicken the flame by increasing the appropriate diffusivities and decreasing the combustion rate, but to do this in such a way that the burn velocity varies with pressure, temperature, and turbulence intensity according to prespecified phenomenological characteristics. The model is particularly aimed at implementation in computer codes which simulate compressible flows. To this end, it is applied to the two-dimensional simulation of hydrogen-air flame acceleration experiments in which the flame speeds and gas flow velocities attain or exceed the speed of sound in the gas. It is shown that many of the features of the flame trajectories and pressure histories in the experiments are simulated quite well by the model. Using the comparison of experimental and computational re