WorldWideScience

Sample records for normal confocal conditions

  1. Fluorescence confocal microscopy for pathologists.

    Science.gov (United States)

    Ragazzi, Moira; Piana, Simonetta; Longo, Caterina; Castagnetti, Fabio; Foroni, Monica; Ferrari, Guglielmo; Gardini, Giorgio; Pellacani, Giovanni

    2014-03-01

    Confocal microscopy is a non-invasive method of optical imaging that may provide microscopic images of untreated tissue that correspond almost perfectly to hematoxylin- and eosin-stained slides. Nowadays, following two confocal imaging systems are available: (1) reflectance confocal microscopy, based on the natural differences in refractive indices of subcellular structures within the tissues; (2) fluorescence confocal microscopy, based on the use of fluorochromes, such as acridine orange, to increase the contrast epithelium-stroma. In clinical practice to date, confocal microscopy has been used with the goal of obviating the need for excision biopsies, thereby reducing the need for pathological examination. The aim of our study was to test fluorescence confocal microscopy on different types of surgical specimens, specifically breast, lymph node, thyroid, and colon. The confocal images were correlated to the corresponding histological sections in order to provide a morphologic parallel and to highlight current limitations and possible applications of this technology for surgical pathology practice. As a result, neoplastic tissues were easily distinguishable from normal structures and reactive processes such as fibrosis; the use of fluorescence enhanced contrast and image quality in confocal microscopy without compromising final histologic evaluation. Finally, the fluorescence confocal microscopy images of the adipose tissue were as accurate as those of conventional histology and were devoid of the frozen-section-related artefacts that can compromise intraoperative evaluation. Despite some limitations mainly related to black/white images, which require training in imaging interpretation, this study confirms that fluorescence confocal microscopy may represent an alternative to frozen sections in the assessment of margin status in selected settings or when the conservation of the specimen is crucial. This is the first study to employ fluorescent confocal microscopy on

  2. In vivo confocal microscopy for the oral cavity: Current state of the field and future potential.

    Science.gov (United States)

    Maher, N G; Collgros, H; Uribe, P; Ch'ng, S; Rajadhyaksha, M; Guitera, P

    2016-03-01

    Confocal microscopy (CM) has been shown to correlate with oral mucosal histopathology in vivo. The purposes of this review are to summarize what we know so far about in vivo CM applications for oral mucosal pathologies, to highlight some current developments with CM devices relevant for oral applications, and to formulate where in vivo CM could hold further application for oral mucosal diagnosis and management. Ovid Medline® and/or Google® searches were performed using the terms 'microscopy, confocal', 'mouth neoplasms', 'mouth mucosa', 'leukoplakia, oral', 'oral lichen planus', 'gingiva', 'cheilitis', 'taste', 'inflammatory oral confocal', 'mucosal confocal' and 'confocal squamous cell oral'. In summary, inclusion criteria were in vivo use of any type of CM for the human oral mucosa and studies on normal or pathological oral mucosa. Experimental studies attempting to identify proteins of interest and microorganisms were excluded. In total 25 relevant articles were found, covering 8 main topics, including normal oral mucosal features (n=15), oral dysplasia or neoplasia (n=7), inflamed oral mucosa (n=3), taste impairment (n=3), oral autoimmune conditions (n=2), pigmented oral pathology/melanoma (n=1), delayed type hypersensitivity (n=1), and cheilitis glandularis (n=1). The evidence for using in vivo CM in these conditions is poor, as it is limited to mainly small descriptive studies. Current device developments for oral CM include improved probe design. The authors propose that future applications for in vivo oral CM may include burning mouth syndrome, intra-operative mapping for cancer surgery, and monitoring and targeted biopsies within field cancerization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Comparison of stromal corneal nerves between normal and keratoconus patients using confocal microscopy.

    Science.gov (United States)

    Ramírez Fernández, M; Hernández Quintela, E; Naranjo Tackman, R

    2014-08-01

    To evaluate the differences in stromal corneal nerves between normal patients and keratoconus patients. A total of 140 eyes of 70 normal patients (group A) and 122 eyes of 87 keratoconus patients (group B) were examined with the confocal microscope, with a central scan of the total corneal thickness being taken. The morphology and thickness of the corneal stromal nerves were evaluated by using the Navis v. 3.5.0. software. Nerve thickness was obtained from the mean between the widest and the narrowest portions of each stromal nerve. Corneal stromal nerves were observed as irregular linear hyper-reflective structures with wide and narrow portions in all cases. Mean corneal stromal nerves thickness in group A was 5.7±1.7 (range from 3.3 to 10.4 μ), mean corneal stromal nerves thickness in group B was 7.2±1.9 (range from 3.5 to 12.0 μ). There was a statistical significant difference (P<.05) in stromal corneal nerves thickness between group A and group B. Stromal corneal nerves morphology was similar in both groups, but stromal nerves were thicker in keratoconus patients. Copyright © 2013 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  4. Intermittent Fluorescence Oscillations in Lipid Droplets in a Live Normal and Lung Cancer Cell: Time-Resolved Confocal Microscopy.

    Science.gov (United States)

    Chowdhury, Rajdeep; Amin, Md Asif; Bhattacharyya, Kankan

    2015-08-27

    Intermittent structural oscillation in the lipid droplets of live lung cells is monitored using time-resolved confocal microscopy. Significant differences are observed between the lung cancer cell (A549) and normal (nonmalignant) lung cell (WI38). For this study, the lipid droplets are covalently labeled with a fluorescent dye, coumarin maleimide (7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin, CPM). The number of lipid droplets in the cancer cell is found to be ∼20-fold higher than that in the normal (nonmalignant) cell. The fluctuation in the fluorescence intensity of the dye (CPM) is attributed to the red-ox processes and periodic formation/rupture of the S-CPM bond. The amount of reactive oxygen species (ROS) is much higher in a cancer cell. This is manifested in faster oscillations (0.9 ± 0.3 s) in cancer cells compared to that in the normal cells (2.8 ± 0.7 s). Solvation dynamics in the lipid droplets of cancer cells is slower compared to that in the normal cell.

  5. Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin

    Science.gov (United States)

    Archid, Rami; Patzelt, Alexa; Lange-Asschenfeldt, Bernhard; Ahmad, Sufian S.; Ulrich, Martina; Stockfleth, Eggert; Philipp, Sandra; Sterry, Wolfram; Lademann, Juergen

    2012-10-01

    An important and most likely active role in the pathogenesis of psoriasis has been attributed to changes in cutaneous blood vessels. The purpose of this study was to use confocal laser-scanning microscopy (CLSM) to investigate dermal capillaries in psoriatic and normal skin. The structures of the capillary loops in 5 healthy participants were compared with those in affected skin of 13 psoriasis patients. The diameters of the capillaries and papillae were measured for each group with CLSM. All investigated psoriasis patients showed elongated, widened, and tortuous microvessels in the papillary dermis, whereas all healthy controls showed a single capillary loop in each dermal papilla. The capillaries of the papillary loop and the dermal papilla were significantly enlarged in the psoriatic skin lesions (diameters 24.39±2.34 and 146.46±28.52 μm, respectively) in comparison to healthy skin (diameters 9.53±1.8 and 69.48±17.16 μm, respectively) (P<0.001). CLSM appears to represent a promising noninvasive technique for evaluating dermal capillaries in patients with psoriasis. The diameter of the vessels could be seen as a well-quantifiable indicator for the state of psoriatic skin. CLSM could be useful for therapeutic monitoring to delay possible recurrences.

  6. Quantification of confocal fluorescence microscopy for the detection of cervical intraepithelial neoplasia.

    Science.gov (United States)

    Sheikhzadeh, Fahime; Ward, Rabab K; Carraro, Anita; Chen, Zhao Yang; van Niekerk, Dirk; Miller, Dianne; Ehlen, Tom; MacAulay, Calum E; Follen, Michele; Lane, Pierre M; Guillaud, Martial

    2015-10-24

    Cervical cancer remains a major health problem, especially in developing countries. Colposcopic examination is used to detect high-grade lesions in patients with a history of abnormal pap smears. New technologies are needed to improve the sensitivity and specificity of this technique. We propose to test the potential of fluorescence confocal microscopy to identify high-grade lesions. We examined the quantification of ex vivo confocal fluorescence microscopy to differentiate among normal cervical tissue, low-grade Cervical Intraepithelial Neoplasia (CIN), and high-grade CIN. We sought to (1) quantify nuclear morphology and tissue architecture features by analyzing images of cervical biopsies; and (2) determine the accuracy of high-grade CIN detection via confocal microscopy relative to the accuracy of detection by colposcopic impression. Forty-six biopsies obtained from colposcopically normal and abnormal cervical sites were evaluated. Confocal images were acquired at different depths from the epithelial surface and histological images were analyzed using in-house software. The features calculated from the confocal images compared well with those features obtained from the histological images and histopathological reviews of the specimens (obtained by a gynecologic pathologist). The correlations between two of these features (the nuclear-cytoplasmic ratio and the average of three nearest Delaunay-neighbors distance) and the grade of dysplasia were higher than that of colposcopic impression. The sensitivity of detecting high-grade dysplasia by analysing images collected at the surface of the epithelium, and at 15 and 30 μm below the epithelial surface were respectively 100, 100, and 92 %. Quantitative analysis of confocal fluorescence images showed its capacity for discriminating high-grade CIN lesions vs. low-grade CIN lesions and normal tissues, at different depth of imaging. This approach could be used to help clinicians identify high-grade CIN in clinical

  7. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy

    Science.gov (United States)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films

  8. The relationship between corneal biomechanical properties and confocal microscopy findings in normal and keratoconic eyes.

    Science.gov (United States)

    Hurmeric, Volkan; Sahin, Afsun; Ozge, Gokhan; Bayer, Atilla

    2010-06-01

    To investigate the relationship between corneal biomechanical properties and confocal microscopy (CM) findings in normal and keratoconic eyes. The study consisted of 28 eyes of 28 healthy volunteers and 23 eyes of 15 patients with keratoconus. The diagnosis of keratoconus was made with corneal topography and clinical findings. The corneal hysteresis (CH) and corneal resistance factor (CRF) were measured by the ocular response analyzer. In vivo CM was performed with NIDEK Confoscan 3. CH and CRF were compared with corneal morphological findings (detailed cell counts of endothelial, stromal, and epithelial cells) in vivo. CH was 10.1 +/- 1.3 mm Hg in normal eyes and 7.4 +/- 1.5 mm Hg in keratoconic eyes (P < 0.0001). CRF was 10.1 +/- 1.8 mm Hg in normal eyes and 6.2 +/- 1.4 mm Hg in keratoconic eyes (P < 0.0001). CH and CRF were negatively correlated with full-thickness stromal keratocyte density (P < 0.01; r = -0.52 and P < 0.001; r = -0.67, respectively) in healthy eyes. Keratocyte density of the posterior half of the stroma was found to be significantly related with CRF in healthy eyes (beta = -0.404; P = 0.01). There was no significant relationship among CH, CRF, and CM findings in eyes with keratoconus. There is a significant relationship between CRF and keratocyte density of the posterior half of the stroma in healthy eyes. Our results suggest that corneal elasticity is related to not only stromal matrix but also cellular structure of the cornea.

  9. Fluorescence lifetime measurement with confocal endomicroscopy for direct analysis of tissue biochemistry in vivo

    Directory of Open Access Journals (Sweden)

    Youngjae Won

    2016-08-01

    Full Text Available Confocal endomicroscopy is a powerful tool for in vivo real-time imaging at cellular resolution inside a living body without tissue resection. Microscopic fluorescence lifetime measurement can provide information about localized biochemical conditions such as pH and the concentrations of oxygen and calcium. We hypothesized that combining these techniques could assist accurate cancer discrimination by providing both biochemical and morphological information. We designed a dual-mode experimental setup for confocal endomicroscopic imaging and fluorescence lifetime measurement and applied it to a mouse xenograft model of activated human pancreatic cancer generated by subcutaneous injection of AsPC-1 tumor cells. Using this method with pH-sensitive sodium fluorescein injection, we demonstrated discrimination between normal and cancerous tissues in a living mouse. With further development, this method may be useful for clinical cancer detection.

  10. Fluorescence (Multiwave) Confocal Microscopy.

    Science.gov (United States)

    Welzel, J; Kästle, Raphaela; Sattler, Elke C

    2016-10-01

    In addition to reflectance confocal microscopy, multiwave confocal microscopes with different laser wavelengths in combination with exogenous fluorophores allow fluorescence mode confocal microscopy in vivo and ex vivo. Fluorescence mode confocal microscopy improves the contrast between the epithelium and the surrounding soft tissue and allows the depiction of certain structures, like epithelial tumors, nerves, and glands. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Spectral confocal reflection microscopy using a white light source

    Science.gov (United States)

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  12. 10 CFR 71.71 - Normal conditions of transport.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Normal conditions of transport. 71.71 Section 71.71 Energy..., Special Form, and LSA-III Tests 2 § 71.71 Normal conditions of transport. (a) Evaluation. Evaluation of each package design under normal conditions of transport must include a determination of the effect on...

  13. Virtual pinhole confocal microscope

    Energy Technology Data Exchange (ETDEWEB)

    George, J.S.; Rector, D.M.; Ranken, D.M. [Los Alamos National Lab., NM (United States). Biophysics Group; Peterson, B. [SciLearn Inc. (United States); Kesteron, J. [VayTech Inc. (United States)

    1999-06-01

    Scanned confocal microscopes enhance imaging capabilities, providing improved contrast and image resolution in 3-D, but existing systems have significant technical shortcomings and are expensive. Researchers at Los Alamos National Laboratory have developed a novel approach--virtual pinhole confocal microscopy--that uses state of the art illumination, detection, and data processing technologies to produce an imager with a number of advantages: reduced cost, faster imaging, improved efficiency and sensitivity, improved reliability and much greater flexibility. Work at Los Alamos demonstrated proof of principle; prototype hardware and software have been used to demonstrate technical feasibility of several implementation strategies. The system uses high performance illumination, patterned in time and space. The authors have built functional confocal imagers using video display technologies (LCD or DLP) and novel scanner based on a micro-lens array. They have developed a prototype system for high performance data acquisition and processing, designed to support realtime confocal imaging. They have developed algorithms to reconstruct confocal images from a time series of spatially sub-sampled images; software development remains an area of active development. These advances allow the collection of high quality confocal images (in fluorescence, reflectance and transmission modes) with equipment that can inexpensively retrofit to existing microscopes. Planned future extensions to these technologies will significantly enhance capabilities for microscopic imaging in a variety of applications, including confocal endoscopy, and confocal spectral imaging.

  14. Analysis of cell-tissue grafts under weightless conditions using confocal fluorescence microscopy

    Science.gov (United States)

    Volova, L. T.; Milyakova, M. N.; Rossinskaya, V. V.; Boltovskaya, V. V.; Kulagina, L. N.; Kurganskaya, L. V.; Timchenko, P. E.; Timchenko, E. V.; Zherdeva Taskina, Larisa A.

    2015-03-01

    The research results of monitoring of viable cells in a cellular-tissue graft using confocal laser fluorescence microscopy at 488 nm and 561 nm with the use of fluorophore propidium iodide (propidium iodide, PI Sigma Aldrich USA) are presented. The processing of the received images was carried out using the software ANDOR. It is experimentally shown that the method of confocal fluorescence microscopy is one of the informational methods for detecting cells populated in a 3-D bio-carrier with a resolution of at least 400 nm. Analysis of the received micrographs suggests that the cells that were in a bio-carrier for 30 days in a synchronous ground-based experiment retained their viability compared to a similar space-based experiment in which the cells were hardly detected in a bio-carrier.

  15. Quantification of Multilayer Samples by Confocal μXRF

    International Nuclear Information System (INIS)

    Perez, R. Daniel; Sanchez, H. J.; Rubio, M.; Perez, C. A.

    2009-01-01

    The confocal setup consists of x-ray lenses in the excitation as well as in the detection channel. In this configuration, a micro volume defined by the overlap of the foci of both x-ray lenses is analyzed. Scanning this micro volume through the sample, 1-3 dimensional studies can be performed. For intermediate thin homogeneous layers a scanning in the normal direction to the surface sample provides information of its thickness and elemental composition. For multilayer samples it also provides the order of each layer in the stratified structure. For the confocal setup, we used a glass monocapillary in the excitation channel and a monolithic half polycapillary in the detection channel. The experiment was carried out at the D09B beamline of the LNLS using white beam. In the present work, a new algorithm was applied to analyze in detail by confocal μXRF a sample of three paint layers on a glass substrate. Using the proposed algorithm, information about thickness and elemental densities was obtained for each layer of these samples.

  16. Carbon Nanotubes Preserve Normal Phenotypes Under Cancer-Promoting Conditions

    Science.gov (United States)

    Wailes, Elizabeth; Levi-Polyachenko, Nicole

    2015-03-01

    Tumor-associated fibroblasts and cancer cells have long been known to create a feedback loop that further stimulates the cancer. While this has been explored from a molecular biology standpoint, little is known about the physical relationship of the cell types even though both sets of cells are known to be mechanosensitive. Indeed, for both fibroblasts and cancer, mechanical signals can make the difference between a normal or pathological cell. To evaluate this relationship and test if it can be manipulated to favor normal cells, atomic force microscopy (AFM) and confocal microscopy was performed on fibroblast and breast cancer cell co-cultures with a collagen gel matrix to simulate the extracellular matrix. Pathological behavior was encouraged through the addition of transforming growth factor beta (TGF- β) . In a separate group, this behavior was discouraged through the doping of the collagen gel with multi-walled carbon nanotubes (MWNT). Significant differences were observed both in the elastic moduli of each cell type and the cancer cells' propensity to migrate through the gel as a model for metastasis. These results shed new light on how cancer progresses and promote the further investigation of nano-mechanical solutions to cancer.

  17. Site-specific confocal fluorescence imaging of biological microstructures in a turbid medium

    International Nuclear Information System (INIS)

    Saloma, Caesar; Palmes-Saloma, Cynthia; Kondoh, Hisato

    1998-01-01

    Normally transparent biological structures in a turbid medium are imaged using a laser confocal microscope and multiwavelength site-specific fluorescence labelling. The spatial filtering capability of the detector pinhole in the confocal microscope limits the number of scattered fluorescent photons that reach the photodetector. Simultaneous application of different fluorescent markers on the same sample site minimizes photobleaching by reducing the excitation time for each marker. A high-contrast grey-level image is also produced by summing confocal images of the same site taken at different fluorescence wavelengths. Monte Carlo simulations are performed to obtain the quantitative behaviour of confocal fluorescence imaging in turbid media. Confocal images of the following samples were also obtained: (i) 15 μm diameter fluorescent spheres placed 1.16 mm deep beneath an aqueous suspension of 0.0823 μm diameter polystyrene latex spheres, and (ii) hindbrain of a whole-mount mouse embryo (age 10 days) that was stained to fluoresce at 515 nm and 580 nm peak wavelengths. Expression of RNA transcripts of a gene within the embryo hindbrain was detected by a fluorescence-based whole-mount in situ hybridization procedure that we recently tested. (author)

  18. Gastric Tissue Damage Analysis Generated by Ischemia: Bioimpedance, Confocal Endomicroscopy, and Light Microscopy

    Directory of Open Access Journals (Sweden)

    Nohra E. Beltran

    2013-01-01

    Full Text Available The gastric mucosa ischemic tissular damage plays an important role in critical care patients’ outcome, because it is the first damaged tissue by compensatory mechanism during shock. The aim of the study is to relate bioimpedance changes with tissular damage level generated by ischemia by means of confocal endomicroscopy and light microscopy. Bioimpedance of the gastric mucosa and confocal images were obtained from Wistar male rats during basal and ischemia conditions. They were anesthetized, and stain was applied (fluorescein and/or acriflavine. The impedance spectroscopy catheter was inserted and then confocal endomicroscopy probe. After basal measurements and biopsy, hepatic and gastric arteries clamping induced ischemia. Finally, pyloric antrum tissue was preserved in buffered formaldehyde (10% for histology processing using light microscopy. Confocal images were equalized, binarized, and boundary defined, and infiltrations were quantified. Impedance and infiltrations increased with ischemia showing significant changes between basal and ischemia conditions (. Light microscopy analysis allows detection of general alterations in cellular and tissular integrity, confirming gastric reactance and confocal images quantification increments obtained during ischemia.

  19. Clinical applications of corneal confocal microscopy

    Directory of Open Access Journals (Sweden)

    Mitra Tavakoli

    2008-06-01

    Full Text Available Mitra Tavakoli1, Parwez Hossain2, Rayaz A Malik11Division of Cardiovascular Medicine, University of Manchester and Manchester Royal Infirmary, Manchester, UK; 2University of Southampton, Southampton Eye Unit, Southampton General Hospital, Southampton, UKAbstract: Corneal confocal microscopy is a novel clinical technique for the study of corneal cellular structure. It provides images which are comparable to in-vitro histochemical techniques delineating corneal epithelium, Bowman’s layer, stroma, Descemet’s membrane and the corneal endothelium. Because, corneal confocal microscopy is a non invasive technique for in vivo imaging of the living cornea it has huge clinical potential to investigate numerous corneal diseases. Thus far it has been used in the detection and management of pathologic and infectious conditions, corneal dystrophies and ecstasies, monitoring contact lens induced corneal changes and for pre and post surgical evaluation (PRK, LASIK and LASEK, flap evaluations and Radial Keratotomy, and penetrating keratoplasty. Most recently it has been used as a surrogate for peripheral nerve damage in a variety of peripheral neuropathies and may have potential in acting as a surrogate marker for endothelial abnormalities.Keywords: corneal confocal microscopy, cornea, infective keratitis, corneal dystrophy, neuropathy

  20. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    International Nuclear Information System (INIS)

    Meakin, J.P.; Speight, J.D.; Sheridan, R.S.; Bradshaw, A.; Harris, I.R.; Williams, A.J.; Walton, A.

    2016-01-01

    Highlights: • Room temperature atmospheric oxidation behaviour of sintered NdFeB. • 3D laser confocal microscopy measurement of oxide phase growth. • Significant height increase of oxide phase only observed at triple points. • Raman spectroscopy identified oxide phase to be Nd 2 O 3 . • Diffusion coefficient determined to be 4 × 10 −13 cm 2 /s. - Abstract: Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.— computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd 2 O 3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10 −13 cm 2 /sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated

  1. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Meakin, J.P., E-mail: jxm764@bham.ac.uk; Speight, J.D.; Sheridan, R.S.; Bradshaw, A.; Harris, I.R.; Williams, A.J.; Walton, A.

    2016-08-15

    Highlights: • Room temperature atmospheric oxidation behaviour of sintered NdFeB. • 3D laser confocal microscopy measurement of oxide phase growth. • Significant height increase of oxide phase only observed at triple points. • Raman spectroscopy identified oxide phase to be Nd{sub 2}O{sub 3}. • Diffusion coefficient determined to be 4 × 10{sup −13} cm{sup 2}/s. - Abstract: Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.— computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd{sub 2}O{sub 3} and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10{sup −13} cm{sup 2}/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth

  2. Confocal microscopy as an early relapse marker for acanthamoeba keratitis.

    Science.gov (United States)

    Daas, Loay; Viestenz, Arne; Schnabel, Philipp Albert; Fries, Fabian N; Hager, Tobias; SzentmÁry, Nora; Seitz, Berthold

    2018-01-01

    Acanthameoba keratitis is a serious ophthalmological condition with a potentially vision-threatening prognosis. Early diagnosis and recognition of relapse, and the detection of persistent Acanthamoeba cysts, are essential for informing the prognosis and managing the condition. We suggest the use of in vivo confocal microscopy not only to identify the early signs of relapse after keratoplasty in patients with Acanthamoeba keratitis, but also as an additional follow-up tool after antimicrobial crosslinking. This study shows that in vivo confocal microscopy is, in experienced hands, a quick and reliable diagnostic tool. Clin. Anat. 31:60-63, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Research and application on imaging technology of line structure light based on confocal microscopy

    Science.gov (United States)

    Han, Wenfeng; Xiao, Zexin; Wang, Xiaofen

    2009-11-01

    In 2005, the theory of line structure light confocal microscopy was put forward firstly in China by Xingyu Gao and Zexin Xiao in the Institute of Opt-mechatronics of Guilin University of Electronic Technology. Though the lateral resolution of line confocal microscopy can only reach or approach the level of the traditional dot confocal microscopy. But compared with traditional dot confocal microscopy, it has two advantages: first, by substituting line scanning for dot scanning, plane imaging only performs one-dimensional scanning, with imaging velocity greatly improved and scanning mechanism simplified, second, transfer quantity of light is greatly improved by substituting detection hairline for detection pinhole, and low illumination CCD is used directly to collect images instead of photoelectric intensifier. In order to apply the line confocal microscopy to practical system, based on the further research on the theory of the line confocal microscopy, imaging technology of line structure light is put forward on condition of implementation of confocal microscopy. Its validity and reliability are also verified by experiments.

  4. Enhancement of fluorescence confocal scanning microscopy lateral resolution by use of structured illumination

    International Nuclear Information System (INIS)

    Kim, Taejoong; Gweon, DaeGab; Lee, Jun-Hee

    2009-01-01

    Confocal microscopy is an optical imaging technique used to reconstruct three-dimensional images without physical sectioning. As with other optical microscopes, the lateral resolution of the confocal microscope cannot surpass the diffraction limit. This paper presents a novel imaging system, structured illumination confocal scanning microscopy (SICSM), that uses structured illumination to improve the lateral resolution of the confocal microscope. The SICSM can easily be implemented by introducing a structured illumination generating optics to conventional line-scanning fluorescence confocal microscopy. In this paper, we report our analysis of the lateral and axial resolutions of the SICSM by use of mathematical imaging theory. Numerical simulation results show that the lateral resolution of the SICSM is 1.43-fold better than that of the confocal microscope. In the axial direction, however, the resolution of the SICSM is ∼15% poorer than that of the confocal microscope. This deterioration arises because of a decrease in the axial cut-off frequency caused by the process of generating structured illumination. We propose the use of imaging conditions under which a compromise between the axial and lateral resolutions is chosen. Finally, we show simulated images of diversely shaped test objects to demonstrate the lateral and axial resolution performance of the SICSM

  5. Estudio del endotelio corneal en el queratocono por microscopia confocal Study of the corneal endothelium confocal microscopy in keratoconus

    Directory of Open Access Journals (Sweden)

    María del Carmen Benítez Merino

    2011-12-01

    Full Text Available Objetivo: Describir los hallazgos morfométricos del endotelio corneal por microscopia confocal con CONFOSCAN S-4. Métodos: Estudio descriptivo transversal de 102 ojos con queratocono en el período de septiembre de 2008 a septiembre 2009. A estos pacientes se les realizó microscopia confocal con CosfoscanS-4 para el estudio del endotelio corneal atendiendo el grado de queratocono. Se analizó el comportamiento de la evolución del queratocono según edad y sexo. Las imágenes fueron analizadas y procesadas mediante un programa informático diseñado específicamente para esto. Resultados: Fueron semejantes las edades de los pacientes con queratocono grado I y II, (35,2 y 34,7 años, los grado III presentaron una edad promedio mayor (38,4 años, sin diferencias significativas (p= 0,279. El sexo femenino predominó en 80,4 % de los pacientes. El 100 % de los queratoconos grado III tuvieron endotelios patológicos. Los valores promedios de la densidad celular en los queratoconos grado III (2585,9 células/mm² resultó no significativo (p= 0,339. El polimegatismo en los queratoconos grado III para un 48,69 % fue significativo (p= 0,002. En el pleomorfismo resultó significativo las diferencias observadas entre los tres grados (p= 0,002. Conclusión: Predominó el queratocono grado II para las mujeres y el grado I para los hombres. Los hallazgos morfológicos se manifestaron en la forma y tamaño de las células endoteliales. En córneas con queratocono grado II y III confluyeron células de mediano y gran tamaño con pérdida de su hexagonalidad. La densidad celular se mantuvo dentro del rango de valores normales para cualquier grado de queratocono.Objective: To describe the morphometric findings of the corneal endothelium confocal microscopy with CONFOSCAN S-4 Methods: Descriptive cross-sectional study of 102 eyes with keratoconus performed from September 2008 to September 2009. The study patients had undergone confocal microscopy with

  6. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques.

    Science.gov (United States)

    Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer

    2013-12-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Morphological characteristics of the optic nerve evaluated by confocal laser tomography (HRT3) and laser polarimetry (GDx-VCC) in a normal population from the city of Barcelona.

    Science.gov (United States)

    Fallon, M; Pazos, M; Morilla, A; Sebastián, M A; Xancó, R; Mora, C; Calderón, B; Vega, Z; Antón, A

    2015-11-01

    To evaluate morphological parameters of optic disc and retinal nerve fiber layer (RNFL) examined with confocal laser tomography (HRT3) and laser polarimetry (GDx-VCC) in a normal population, and analyze correlations of these parameters with demographic variables. Cross-sectional study in the context of a glaucoma screening campaign in the primary care center of Barcelona. The individuals selected were non-hypertensive Mediterranean Caucasians with risk for glaucoma development (individuals≥60 years old or≥40 years old with family history of glaucoma or intraocular pressure or myopia>3diopter). All subjects underwent a complete ophthalmic examination, confocal laser tomography (HRT3) and scanning laser polarimetry (GDX-VCC), subjects with results within normal limits only being included. Structural parameters were analyzed along with age, refraction, and pachymetry based on the Spearman rank correlation test. A total of 224 subjects included, with a mean age of 63.4±11.1 years. Disc areas, excavation and ring area were 2.14±0.52mm(2), 0.44±0.34mm (2) and 1.69±0.38mm(2), respectively. The mean RNFL (GDX) was 55.9±6.9μm. Age was correlated with lower ring volume, highest rate of cup shape measure, largest mean and maximum cup depth, lower nerve fiber index (NFI) and RNFL (all p-values below .05). The mean values and distribution of several parameters of the papilla and the RNFL in normal Mediterranean Caucasians population are presented. A loss of thickness of the RNFL, ring thinning, and enlarged cup was observed with increased age. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  8. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    Science.gov (United States)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  9. Studies of porphyrin-containing specimens using an optical spectrometer connected to a confocal scanning laser microscope.

    Science.gov (United States)

    Trepte, O; Rokahr, I; Andersson-Engels, S; Carlsson, K

    1994-12-01

    A spectrometer has been developed for use with a confocal scanning laser microscope. With this unit, spectral information from a single point or a user-defined region within the microscope specimen can be recorded. A glass prism is used to disperse the spectral components of the recorded light over a linear CCD photodiode array with 256 elements. A regulated cooling unit keeps the detector at 277 K, thereby allowing integration times of up to 60 s. The spectral resolving power, lambda/delta lambda, ranges from 350 at lambda = 400 nm to 100 at lambda = 700 nm. Since the entrance aperture of the spectrometer has the same size as the detector pinhole used during normal confocal scanning, the three-dimensional spatial resolution is equivalent to that of normal confocal scanning. Light from the specimen is deflected to the spectrometer by a solenoid controlled mirror, allowing fast and easy switching between normal confocal scanning and spectrometer readings. With this equipment, studies of rodent liver specimens containing porphyrins have been made. The subcellular localization is of interest for the mechanisms of photodynamic therapy (PDT) of malignant tumours. Spectroscopic detection is necessary to distinguish the porphyrin signal from other fluorescent components in the specimen. Two different substances were administered to the tissue, Photofrin, a haematoporphyrin derivative (HPD) and delta-amino levulinic acid (ALA), a precursor to protoporphyrin IX and haem in the haem cycle. Both are substances under clinical trials for PDT of malignant tumours. Following administration of these compounds to the tissue, the potent photosensitizer and fluorescent compound Photofrin, or protoporphyrin IX, respectively, is accumulated.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Confocal Raman microscopy

    CERN Document Server

    Dieing, Thomas; Hollricher, Olaf

    2018-01-01

    This second edition provides a cutting-edge overview of physical, technical and scientific aspects related to the widely used analytical method of confocal Raman microscopy. The book includes expanded background information and adds insights into how confocal Raman microscopy, especially 3D Raman imaging, can be integrated with other methods to produce a variety of correlative microscopy combinations. The benefits are then demonstrated and supported by numerous examples from the fields of materials science, 2D materials, the life sciences, pharmaceutical research and development, as well as the geosciences.

  11. Confocal scanning microscopy

    DEFF Research Database (Denmark)

    Bariani, Paolo

    This report is based on a metrological investigation on confocal microscopy technique carried out by Uffe Rolf Arlø Theilade and Paolo Bariani. The purpose of the experimental activity was twofold a metrological instrument characterization and application to assessment of rough PP injection moulded...... replicated topography. Confocal microscopy is seen to be a promising technique in metrology of microstructures. Some limitations with respect to surface metrology were found during the experiments. The experiments were carried out using a Zeiss LSM 5 Pascal microscope owned by the Danish Polymer Centre...

  12. In vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta

    Directory of Open Access Journals (Sweden)

    Kobayashi A

    2014-02-01

    Full Text Available Akira Kobayashi, Tomomi Higashide, Hideaki Yokogawa, Natsuko Yamazaki, Toshinori Masaki, Kazuhisa Sugiyama Department of Ophthalmology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan Objective: To report the in vivo laser confocal microscopy findings of a cornea with osteogenesis imperfecta (OI with special attention to the abnormality of Bowman's layer and sub-Bowman's fibrous structures (K-structures. Patients and methods: Two patients (67-year-old male and his 26-year-old son with OI type I were included in this study. Slit lamp biomicroscopic and in vivo laser confocal microscopic examinations were performed for both patients. Central corneal thickness and central endothelial cell density were also measured. Results: Although the corneas looked clear with normal endothelial density for both eyes in both patients, they were quite thin (386 µm oculus dexter (OD (the right eye and 384 µm oculus sinister (OS (the left eye in the father and 430 µm OD and 425 µm OS in the son. In both patients, slit lamp biomicroscopic and in vivo laser confocal microscopic examination showed similar results. Anterior corneal mosaics produced by rubbing the eyelid under fluorescein were completely absent in both eyes. In vivo laser confocal microscopy revealed an absent or atrophic Bowman's layer; a trace of a presumed Bowman's layer and/or basement membrane was barely visible with high intensity. Additionally, K-structures were completely absent in both eyes. Conclusion: The absence of K-structures and fluorescein anterior corneal mosaics strongly suggested an abnormality of Bowman's layer in these OI patients. Keywords: osteogenesis imperfecta, K-structure, confocal microscopy, Bowman's layer

  13. Near-infrared-excited confocal Raman spectroscopy advances in vivo diagnosis of cervical precancer.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, Arunachalam; Huang, Zhiwei

    2013-06-01

    Raman spectroscopy is a unique optical technique that can probe the changes of vibrational modes of biomolecules associated with tissue premalignant transformation. This study evaluates the clinical utility of confocal Raman spectroscopy over near-infrared (NIR) autofluorescence (AF) spectroscopy and composite NIR AF/Raman spectroscopy for improving early diagnosis of cervical precancer in vivo at colposcopy. A rapid NIR Raman system coupled with a ball-lens fiber-optic confocal Raman probe was utilized for in vivo NIR AF/Raman spectral measurements of the cervix. A total of 1240 in vivo Raman spectra [normal (n=993), dysplasia (n=247)] were acquired from 84 cervical patients. Principal components analysis (PCA) and linear discriminant analysis (LDA) together with a leave-one-patient-out, cross-validation method were used to extract the diagnostic information associated with distinctive spectroscopic modalities. The diagnostic ability of confocal Raman spectroscopy was evaluated using the PCA-LDA model developed from the significant principal components (PCs) [i.e., PC4, 0.0023%; PC5, 0.00095%; PC8, 0.00022%, (p<0.05)], representing the primary tissue Raman features (e.g., 854, 937, 1095, 1253, 1311, 1445, and 1654 cm(-1)). Confocal Raman spectroscopy coupled with PCA-LDA modeling yielded the diagnostic accuracy of 84.1% (a sensitivity of 81.0% and a specificity of 87.1%) for in vivo discrimination of dysplastic cervix. The receiver operating characteristic curves further confirmed that the best classification was achieved using confocal Raman spectroscopy compared to the composite NIR AF/Raman spectroscopy or NIR AF spectroscopy alone. This study illustrates that confocal Raman spectroscopy has great potential to improve early diagnosis of cervical precancer in vivo during clinical colposcopy.

  14. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    de Luca, Giulia; Breedijk, Ronald; Hoebe, Ron; Stallinga, Sjoerd; Manders, Erik

    2017-01-01

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  15. Re-scan confocal microscopy (RCM) improves the resolution of confocal microscopy and increases the sensitivity

    NARCIS (Netherlands)

    De Luca, G.; Breedijk, R.; Hoebe, R.; Stallinga, S.; Manders, E.

    Re-scan confocal microscopy (RCM) is a new super-resolution technique based on a standard confocal microscope extended with a re-scan unit in the detection path that projects the emitted light onto a sensitive camera. In this paper the fundamental properties of RCM, lateral resolution, axial

  16. 4Pi-confocal microscopy of live cells

    Science.gov (United States)

    Bahlmann, Karsten; Jakobs, Stefan; Hell, Stefan W.

    2002-06-01

    By coherently adding the spherical wavefronts of two opposing lenses, two-photon excitation 4Pi-confocal fluorescence microscopy has achieved three-dimensional imaging with an axial resolution 3-7 times better than confocal microscopy. So far this improvement was possible only in glycerol-mounted, fixed cells. Here we report 4Pi-confocal microscopy of watery objects and its application to the imaging of live cells. Water immersion 4Pi-confocal microscopy of membrane stained live Escherichia coli bacteria attains a 4.3 fold better axial resolution as compared to the best water immersion confocal microscope. The resolution enhancement results into a vastly improved three-dimensional representation of the bacteria. The first images of live biological samples with an all-directional resolution in the 190-280 nm range are presented here, thus establishing a new resolution benchmark in live cell microscopy.

  17. Confocal scanning microscope for nuclear photoemulsion

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Kovalev, Yu.S.; Soroko, L.M.

    2005-01-01

    The application of the confocal scanning microscope to the objects in the nuclear photoemulsion is described. An array of 27 microtomograms of single silver grain is shown. The cross sections of the same particle track of diameter 1 μm, detected by means of the confocal scanning microscope with open and annular apertures, are presented. It was shown that the confocal scanning microscope opens indeed new opportunities for the nuclear photoemulsion technique to get previously inaccessible information for physics of the short-living particles

  18. In Vivo Confocal Microscopy and Anterior Segment Optic Coherence Tomography Findings in Ocular Ochronosis

    Directory of Open Access Journals (Sweden)

    Elif Demirkilinc Biler

    2015-01-01

    Full Text Available Purpose. To report clinical and in vivo confocal microscopy (IVCM findings of two patients with ocular ochronosis secondary due to alkaptonuria. Materials and Methods. Complete ophthalmologic examinations, including IVCM (HRT II/Rostock Cornea Module, Heidelberg, Germany, anterior segment optical coherence tomography (AS-OCT (Topcon 3D spectral-domain OCT 2000, Topcon Medical Systems, Paramus, NJ, USA, corneal topography (Pentacam, OCULUS Optikgeräte GmbH, Wetzlar, Germany, and anterior segment photography, were performed. Results. Biomicroscopic examination showed bilateral darkly pigmented lesions of the nasal and temporal conjunctiva and episclera in both patients. In vivo confocal microscopy of the lesions revealed prominent degenerative changes, including vacuoles and fragmentation of collagen fibers in the affected conjunctival lamina propria and episclera. Hyperreflective pigment granules in different shapes were demonstrated in the substantia propria beneath the basement membrane. AS-OCT of Case 1 demonstrated hyporeflective areas. Fundus examination was within normal limits in both patients, except tilted optic discs with peripapillary atrophy in one of the patients. Corneal topography, thickness, and macular OCT were normal bilaterally in both cases. Conclusion. The degenerative and anatomic changes due to ochronotic pigment deposition in alkaptonuria can be demonstrated in detail with IVCM and AS-OCT. Confocal microscopic analysis in ocular ochronosis may serve as a useful adjunct in diagnosis and monitoring of the disease progression.

  19. Real-time visualization of melanin granules in normal human skin using combined multiphoton and reflectance confocal microscopy.

    Science.gov (United States)

    Majdzadeh, Ali; Lee, Anthony M D; Wang, Hequn; Lui, Harvey; McLean, David I; Crawford, Richard I; Zloty, David; Zeng, Haishan

    2015-05-01

    Recent advances in biomedical optics have enabled dermal and epidermal components to be visualized at subcellular resolution and assessed noninvasively. Multiphoton microscopy (MPM) and reflectance confocal microscopy (RCM) are noninvasive imaging modalities that have demonstrated promising results in imaging skin micromorphology, and which provide complementary information regarding skin components. This study assesses whether combined MPM/RCM can visualize intracellular and extracellular melanin granules in the epidermis and dermis of normal human skin. We perform MPM and RCM imaging of in vivo and ex vivo skin in the infrared domain. The inherent three-dimensional optical sectioning capability of MPM/RCM is used to image high-contrast granular features across skin depths ranging from 50 to 90 μm. The optical images thus obtained were correlated with conventional histologic examination including melanin-specific staining of ex vivo specimens. MPM revealed highly fluorescent granular structures below the dermal-epidermal junction (DEJ) region. Histochemical staining also demonstrated melanin-containing granules that correlate well in size and location with the granular fluorescent structures observed in MPM. Furthermore, the MPM fluorescence excitation wavelength and RCM reflectance of cell culture-derived melanin were equivalent to those of the granules. This study suggests that MPM can noninvasively visualize and quantify subepidermal melanin in situ. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Microsphere imaging with confocal microscopy and two photon microscopy

    International Nuclear Information System (INIS)

    Chun, Hyung Su; An, Kyung Won; Lee, Jai Hyung

    2002-01-01

    We have acquired images of polystyrene and fused-silica microsphere by using conventional optical microscopy, confocal microscopy and two-photon microscopy, and performed comparative analysis of these images. Different from conventional optical microscopy, confocal and two-photon microscopy had good optical sectioning capability. In addition, confocal microscopy and two-photon microscopy had better lateral resolution than conventional optical microscopy. These results are attributed to confocality and nonlinearity of confocal microscopy and two photon microscopy, respectively.

  1. A low error reconstruction method for confocal holography to determine 3-dimensional properties

    Energy Technology Data Exchange (ETDEWEB)

    Jacquemin, P.B., E-mail: pbjacque@nps.edu [Mechanical Engineering, University of Victoria, EOW 548,800 Finnerty Road, Victoria, BC (Canada); Herring, R.A. [Mechanical Engineering, University of Victoria, EOW 548,800 Finnerty Road, Victoria, BC (Canada)

    2012-06-15

    A confocal holography microscope developed at the University of Victoria uniquely combines holography with a scanning confocal microscope to non-intrusively measure fluid temperatures in three-dimensions (Herring, 1997), (Abe and Iwasaki, 1999), (Jacquemin et al., 2005). The Confocal Scanning Laser Holography (CSLH) microscope was built and tested to verify the concept of 3D temperature reconstruction from scanned holograms. The CSLH microscope used a focused laser to non-intrusively probe a heated fluid specimen. The focused beam probed the specimen instead of a collimated beam in order to obtain different phase-shift data for each scan position. A collimated beam produced the same information for scanning along the optical propagation z-axis. No rotational scanning mechanisms were used in the CSLH microscope which restricted the scan angle to the cone angle of the probe beam. Limited viewing angle scanning from a single view point window produced a challenge for tomographic 3D reconstruction. The reconstruction matrices were either singular or ill-conditioned making reconstruction with significant error or impossible. Establishing boundary conditions with a particular scanning geometry resulted in a method of reconstruction with low error referred to as 'wily'. The wily reconstruction method can be applied to microscopy situations requiring 3D imaging where there is a single viewpoint window, a probe beam with high numerical aperture, and specified boundary conditions for the specimen. The issues and progress of the wily algorithm for the CSLH microscope are reported herein. -- Highlights: Black-Right-Pointing-Pointer Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. Black-Right-Pointing-Pointer Processing of multiple holograms containing the cumulative refractive index through the fluid. Black-Right-Pointing-Pointer Reconstruction issues due to restricting angular scanning to the numerical aperture of the

  2. A low error reconstruction method for confocal holography to determine 3-dimensional properties

    International Nuclear Information System (INIS)

    Jacquemin, P.B.; Herring, R.A.

    2012-01-01

    A confocal holography microscope developed at the University of Victoria uniquely combines holography with a scanning confocal microscope to non-intrusively measure fluid temperatures in three-dimensions (Herring, 1997), (Abe and Iwasaki, 1999), (Jacquemin et al., 2005). The Confocal Scanning Laser Holography (CSLH) microscope was built and tested to verify the concept of 3D temperature reconstruction from scanned holograms. The CSLH microscope used a focused laser to non-intrusively probe a heated fluid specimen. The focused beam probed the specimen instead of a collimated beam in order to obtain different phase-shift data for each scan position. A collimated beam produced the same information for scanning along the optical propagation z-axis. No rotational scanning mechanisms were used in the CSLH microscope which restricted the scan angle to the cone angle of the probe beam. Limited viewing angle scanning from a single view point window produced a challenge for tomographic 3D reconstruction. The reconstruction matrices were either singular or ill-conditioned making reconstruction with significant error or impossible. Establishing boundary conditions with a particular scanning geometry resulted in a method of reconstruction with low error referred to as “wily”. The wily reconstruction method can be applied to microscopy situations requiring 3D imaging where there is a single viewpoint window, a probe beam with high numerical aperture, and specified boundary conditions for the specimen. The issues and progress of the wily algorithm for the CSLH microscope are reported herein. -- Highlights: ► Evaluation of an optical confocal holography device to measure 3D temperature of a heated fluid. ► Processing of multiple holograms containing the cumulative refractive index through the fluid. ► Reconstruction issues due to restricting angular scanning to the numerical aperture of the beam. ► Minimizing tomographic reconstruction error by defining boundary

  3. Microscopia confocal en operados de queratoplastia perforante Confocal microscopy in patients operated from penetrating keratoplasty

    Directory of Open Access Journals (Sweden)

    Zulema Gómez Castillo

    2009-06-01

    Full Text Available La microscopia confocal es un examen exploratorio, práctico y poco invasivo que permite conocer las características microscópicas del tejido corneal después del trasplante, por lo que constituye una herramienta muy útil en el manejo de los pacientes operados de queratoplastia. El presente trabajo tiene como finalidad describir las características del tejido corneal en pacientes operados de este tipo de trasplante, mediante la microscopia confocal in vivo. MÉTODOS: Se realizó un estudio descriptivo, de corte transversal, en 40 ojos de 40 pacientes operados de queratoplastia perforante, en el Servicio de Córnea del Instituto Cubano de Oftalmología "Ramón Pando Ferrer", de marzo de 2006 a marzo de 2007. Se confeccionó una historia clínica oftalmológica y se les realizó a todos el examen de microscopia confocal en el injerto corneal con el microscopio confocal CONFOSCAN 4. RESULTADOS: La queratopatía bullosa pseudofáquica fue la afección más frecuente previa a la cirugía y estuvo presente en el 77,5 % de los pacientes. En el 72,5 % de los intervenidos se encontró una disminución del grosor corneal. El epitelio presentó alteraciones en el 62,5 % de los pacientes. Todos presentaron afectación de la forma y el tamaño celular endotelial. En el 82,5 % de los pacientes se observó ausencia de plexos nerviosos. CONCLUSIONES: La microscopia confocal como nueva ciencia en el campo de la oftalmología, favorece el seguimiento evolutivo de las queratoplastias perforantes y con esto no solo a prevenir la aparición de posibles complicaciones, sino además de garantizar el éxito de la cirugía y la función refractiva de la córnea.Confocal microscopy is a practical, exploratory and less invassive examination that allows finding out the microscopic characteristics of the corneal tissue after transplantation, so it is a very useful tool for the management of patients operated from keratoplasty. The present paper was aimed at describing

  4. In-vivo diagnosis and non-inasive monitoring of Imiquimod 5% cream for non-melanoma skin cancer using confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Dietterle, S; Lademann, J; Röwert-Huber, H-J; Stockfleth, E; Astner, S; Antoniou, C; Sterry, W

    2008-01-01

    Basal cell carcinoma (BCC) is the most common cutaneous malignancy with increasing incidence rates worldwide. A number of established treatments are available, including surgical excision. The emergence of new non-invasive treatment modalities has prompted the development of non-invasive optical devices for therapeutic monitoring and evaluating treatment efficacy. This study was aimed to evaluate the clinical applicability of a fluorescence confocal laser scanning microscope (CFLSM) for non-invasive therapeutic monitoring of basal cell carcinoma treated with Imiquimod (Aldara®) as topical immune-response modifier. Eight participants with a diagnosis of basal cell carcinoma (BCC) were enrolled in this investigation. Sequential evaluation during treatment with Imiquimod showed progressive normalization of the confocal histomorphologic parameters in correlation with normal skin. Confocal laser scanning microscopy was able to identify characteristic features of BCC and allowed the visualization of therapeutic effects over time. Thus our results indicate the clinical applicability of CFLSM imaging to evaluate treatment efficacy in vivo and non-invasively

  5. Confocal scanning microscopy with multiple optical probes for high speed measurements and better imaging

    Science.gov (United States)

    Chun, Wanhee; Lee, SeungWoo; Gweon, Dae-Gab

    2008-02-01

    Confocal scanning microscopy (CSM) needs a scanning mechanism because only one point information of specimen can be obtained. Therefore the speed of the confocal scanning microscopy is limited by the speed of the scanning tool. To overcome this limitation from scanning tool we propose another scanning mechanism. We make three optical probes in the specimen under confocal condition of each point. Three optical probes are moved by beam scanning mechanism with shared resonant scanning mirror (RM) and galvanometer driven mirror (GM). As each optical probe scan allocated region of the specimen, information from three points is obtained simultaneously and image acquisition time is reduced. Therefore confocal scanning microscopy with multiple optical probes is expected to have three times faster speed of the image acquisition than conventional one. And as another use, multiple optical probes to which different light wavelength is applied can scan whole same region respectively. It helps to obtain better contrast image in case of specimens having different optical characteristics for specific light wavelength. In conclusion confocal scanning microscopy with multiple optical probes is useful technique for views of image acquisition speed and image quality.

  6. Effect analysis of core barrel openings under CEFR normal condition

    International Nuclear Information System (INIS)

    Zhang Yabo; Yang Hongyi

    2008-01-01

    Openings on the bottom of core barrel are important part of the decay heat removal system of China Experimental Fast Reactor (CEFR), which are designed to discharge the decay heat from reactor under accident condition. This paper analyses the effect of the openings design on the normal operation condition using the famouse CFD code CFX. The result indicates that the decay heat can be discharged safely and at the same time the effect of core barrel openings on the normal operation condition is acceptable. (authors)

  7. Confocal Laser Endomicroscopy in Inflammatory Bowel Disease

    DEFF Research Database (Denmark)

    Rasmussen, Ditlev Nytoft; Karstensen, John Gásdal; Riis, Lene Buhl

    2015-01-01

    included. Next, eligible studies were analysed with respect to several parameters, such as technique and clinical aim and definitions of outcomes. RESULTS: Confocal laser endomicroscopy has been used for a wide range of purposes in inflammatory bowel disease, covering assessment of inflammatory severity...... of confocal laser endomicroscopy for inflammatory bowel disease. METHODS: Available literature was searched systematically for studies applying confocal laser endomicroscopy in Crohn's disease or ulcerative colitis. Relevant literature was reviewed and only studies reporting original clinical data were...... of histological features such as colonic crypts, epithelial gaps and epithelial leakiness to fluorescein. CONCLUSIONS: Confocal laser endomicroscopy remains an experimental but emerging tool for assessment of inflammatory bowel disease. It is the only method that enables in vivo functional assessment...

  8. Microscopia confocal en córneas de cien ojos sanos Confocal microscopy results of one hundred healthy eye corneas

    Directory of Open Access Journals (Sweden)

    Zulema Gómez Castillo

    2012-06-01

    Full Text Available Objetivo: Analizar las estructuras celulares por microscopia confocal, Confoscan 4, en córneas sanas en nuestro medio. Métodos: Se realizó un estudio prospectivo longitudinal a 100 ojos sanos de médicos que trabajan en nuestra institución, y pacientes que asistieron al servicio de córnea. Esta investigación fue desde mayo de 2007 a mayo 2008, en el Instituto Cubano de Oftalmología "Ramón Pando Ferrer", La Habana. En los médicos se examinaron ambos ojos y en los pacientes el ojo no afectado. Se recopilaron un total de 50 casos sin afección corneal. Resultados: De los 100 ojos estudiados, 64 tenían paquimetrías por encima del valor medio. Estuvieron presentes los tres tipos de células epiteliales en casi la totalidad de los pacientes; así como los queratocitos en las diferentes profundidades del estroma corneal. La mayoría de los ojos tenían un conteo celular endotelial por encima de 2 500, cifra comprendida dentro de los valores normales. Se encontraron fibras nerviosas en cada una de sus capas. Conclusiones: La microscopia confocal se presenta como una nueva herramienta que permite observar en vivo la histología corneal y complementar las observaciones de la biomicroscopia convencional. Esto constituye un reto para el mejor entendimiento de la histopatología corneal. De esta manera podemos actuar de forma profiláctica y terapéutica, en el seguimiento y evolución de patologías corneales.Objective: This paper is aimed at analyzing the corneal cellular structures through Confoscan S4-aided confocal microscopy in apparently healthy corneas. Methods: A prospective longitudinal study of 100 healthy eyes from practicing doctors, and from patients who had attended the corneal service at “Ramón Pando Ferrer” Cuban Institute of Ophthalmology in Havana since May 2007 was conducted. Both eyes of participating doctors were examined whereas the non-affected eye was examined in the patients. A total of 50 cases with no corneal

  9. Confocal microlaparoscope for imaging the fallopian tube

    Science.gov (United States)

    Wu, Tzu-Yu; Rouse, Andrew R.; Chambers, Setsuko K.; Hatch, Kenneth D.; Gmitro, Arthur F.

    2014-11-01

    Recent evidence suggests that ovarian cancer can originate in the fallopian tube. Unlike many other cancers, poor access to the ovary and fallopian tubes has limited the ability to study the progression of this deadly disease and to diagnosis it during the early stage when it is most amenable to therapy. A rigid confocal microlaparoscope system designed to image the epithelial surface of the ovary in vivo was previously reported. A new confocal microlaparoscope with an articulating distal tip has been developed to enable in vivo access to human fallopian tubes. The new microlaparoscope is compatible with 5-mm trocars and includes a 2.2-mm-diameter articulating distal tip consisting of a bare fiber bundle and an automated dye delivery system for fluorescence confocal imaging. This small articulating device should enable the confocal microlaparoscope to image early stage ovarian cancer arising inside the fallopian tube. Ex vivo images of animal tissue and human fallopian tube using the new articulating device are presented along with in vivo imaging results using the rigid confocal microlaparoscope system.

  10. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  11. Application of Confocal Laser Scanning Microscopy in Biology and Medicine

    OpenAIRE

    I. A. Volkov; N. V. Frigo; L. F. Znamenskaya; O. R. Katunina

    2014-01-01

    Fluorescence confocal laser scanning microscopy and reflectance confocal laser scanning microscopy are up-to-date highend study methods. Confocal microscopy is used in cell biology and medicine. By using confocal microscopy, it is possible to study bioplasts and localization of protein molecules and other compounds relative to cell or tissue structures, and to monitor dynamic cell processes. Confocal microscopes enable layer-by-layer scanning of test items to create demonstrable 3D models. As...

  12. Confocal Raman Microscopy

    CERN Document Server

    Dieing, Thomas; Toporski, Jan

    2011-01-01

    Confocal Raman Microscopy is a relatively new technique that allows chemical imaging without specific sample preparation. By integrating a sensitive Raman spectrometer within a state-of-the-art microscope, Raman microscopy with a spatial resolution down to 200nm laterally and 500nm vertically can be achieved using visible light excitation. Recent developments in detector and computer technology as well as optimized instrument design have reduced integration times of Raman spectra by orders of magnitude, so that complete images consisting of tens of thousands of Raman spectra can be acquired in seconds or minutes rather than hours, which used to be standard just one decade ago. The purpose of this book is to provide the reader a comprehensive overview of the rapidly developing field of Confocal Raman Microscopy and its applications.

  13. Confocal filtering in cathodoluminescence microscopy of nanostructures

    Science.gov (United States)

    Narváez, Angela C.; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P.; Kruit, Pieter

    2014-06-01

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  14. Confocal filtering in cathodoluminescence microscopy of nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Narváez, Angela C., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Weppelman, I. Gerward C.; Moerland, Robert J.; Hoogenboom, Jacob P., E-mail: a.c.narvaez@tudelft.nl, E-mail: j.p.hoogenboom@tudelft.nl; Kruit, Pieter [Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628CJ Delft (Netherlands)

    2014-06-23

    Cathodoluminescence (CL) microscopy allows optical characterization of nanostructures at high spatial resolution. At the nanoscale, a main challenge of the technique is related to the background CL generated within the sample substrate. Here, we implement confocal detection of the CL signal to minimize the background contribution to the measurement. Nano-phosphors were used as point sources to evaluate the filtering capabilities of our confocal CL system, obtaining an axial intensity profile with 2.7 μm full width at half maximum for the central peak, in good correspondence with theoretical expectations. Considering the electron interaction volume, we found that the confocal filter becomes effective for electron energies above 20 keV, when using a 25 μm pinhole (0.86 Airy units). To illustrate our approach, we present confocal CL imaging of gold nanowires and triangular shaped plates deposited on an indium-tin oxide covered glass substrate, comparing the images with those obtained in standard unfiltered CL detection. The results show that confocal CL microscopy is a valuable tool for the investigation of nanostructures on highly cathodoluminescent substrates, widely used in biological and optical applications.

  15. Digital differential confocal microscopy based on spatial shift transformation.

    Science.gov (United States)

    Liu, J; Wang, Y; Liu, C; Wilson, T; Wang, H; Tan, J

    2014-11-01

    Differential confocal microscopy is a particularly powerful surface profilometry technique in industrial metrology due to its high axial sensitivity and insensitivity to noise. However, the practical implementation of the technique requires the accurate positioning of point detectors in three-dimensions. We describe a simple alternative based on spatial transformation of a through-focus series of images obtained from a homemade beam scanning confocal microscope. This digital differential confocal microscopy approach is described and compared with the traditional Differential confocal microscopy approach. The ease of use of the digital differential confocal microscopy system is illustrated by performing measurements on a 3D standard specimen. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  16. Confocal Raman Microscopy; applications in tissue engineering

    NARCIS (Netherlands)

    van Apeldoorn, Aart A.

    2005-01-01

    This dissertation describes the use of confocal Raman microscopy and spectroscopy in the field of tissue engineering. Moreover, it describes the combination of two already existing technologies, namely scanning electron microscopy and confocal Raman spectroscopy in one apparatus for the enhancement

  17. Simultaneous fingerprint and high-wavenumber confocal Raman spectroscopy enhances early detection of cervical precancer in vivo.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, A; Huang, Zhiwei

    2012-07-17

    Raman spectroscopy is a vibrational spectroscopic technique capable of nondestructively probing endogenous biomolecules and their changes associated with dysplastic transformation in the tissue. The main objectives of this study are (i) to develop a simultaneous fingerprint (FP) and high-wavenumber (HW) confocal Raman spectroscopy and (ii) to investigate its diagnostic utility for improving in vivo diagnosis of cervical precancer (dysplasia). We have successfully developed an integrated FP/HW confocal Raman diagnostic system with a ball-lens Raman probe for simultaneous acquistion of FP/HW Raman signals of the cervix in vivo within 1 s. A total of 476 in vivo FP/HW Raman spectra (356 normal and 120 precancer) are acquired from 44 patients at clinical colposcopy. The distinctive Raman spectral differences between normal and dysplastic cervical tissue are observed at ~854, 937, 1001, 1095, 1253, 1313, 1445, 1654, 2946, and 3400 cm(-1) mainly related to proteins, lipids, glycogen, nucleic acids and water content in tissue. Multivariate diagnostic algorithms developed based on partial least-squares-discriminant analysis (PLS-DA) together with the leave-one-patient-out, cross-validation yield the diagnostic sensitivities of 84.2%, 76.7%, and 85.0%, respectively; specificities of 78.9%, 73.3%, and 81.7%, respectively; and overall diagnostic accuracies of 80.3%, 74.2%, and 82.6%, respectively, using FP, HW, and integrated FP/HW Raman spectroscopic techniques for in vivo diagnosis of cervical precancer. Receiver operating characteristic (ROC) analysis further confirms the best performance of the integrated FP/HW confocal Raman technique, compared to FP or HW Raman spectroscopy alone. This work demonstrates, for the first time, that the simultaneous FP/HW confocal Raman spectroscopy has the potential to be a clinically powerful tool for improving early diagnosis and detection of cervical precancer in vivo during clinical colposcopic examination.

  18. Turbocharging Normalization in Highland Conditions

    Directory of Open Access Journals (Sweden)

    I. V. Filippov

    2017-01-01

    Full Text Available To ensure many production processes are used compressors of various types, including turbochargers, which produce compressed air. The actual performance values of turbochargers used in highlands are significantly different from the certified values, and parameters of compressed air do not always guarantee the smooth and efficient functioning for consumers.The paper presents research results of the turbochargers of 4CI 425MX4 type, a series of "CENTAC", manufactured by INGERSOL – RAND Company. The research has been conducted in industrial highland conditions in difficult climatic environment. There were almost no investigations of turbochargers running in highland conditions. The combination of low atmospheric pressure with high temperature of the intake air causes the abnormal operating conditions of a turbocharger. Only N. M. Barannikov in his paper shows the results of theoretical studies of such operating conditions, but as to the practical research, there is no information at all.To normalize the turbocharger operation an option of the mechanical pressurization in the suction pipe is adopted. As a result of theoretical research, a TurboMAX blower MAX500 was chosen as a supercharger. The next stage of theoretical research was to construct characteristics of the turbocharger 4CI 425MX4 with a mechanical supercharger in the suction pipe. The boost reduces to the minimum the time of using additional compressors when parameters of the intake air are changed and ensures the smooth and efficient functioning for consumers.To verify the results of theoretical studies, namely, the technique for recalculation of the turbocharger characteristics under the real conditions of suction, were carried out the experimental researches. The average error between experimental and theoretical data is 2,9783 %, which confirms the validity of the technique used for reduction of the turbocharger characteristics to those under the real conditions of suction.

  19. Diffractive elements performance in chromatic confocal microscopy

    International Nuclear Information System (INIS)

    Garzon, J; Duque, D; Alean, A; Toledo, M; Meneses, J; Gharbi, T

    2011-01-01

    The Confocal Laser Scanning Microscopy (CLSM) has been widely used in the semiconductor industry and biomedicine because of its depth discrimination capability. Subsequent to this technique has been developed in recent years Chromatic Confocal Microscopy. This method retains the same principle of confocal and offers the added advantage of removing the axial movement of the moving system. This advantage is usually accomplished with an optical element that generates a longitudinal chromatic aberration and a coding system that relates the axial position of each point of the sample with the wavelength that is focused on each. The present paper shows the performance of compact chromatic confocal microscope when some different diffractive elements are used for generation of longitudinal chromatic aberration. Diffractive elements, according to the process and manufacturing parameters, may have different diffraction efficiency and focus a specific wavelength in a specific focal position. The performance assessment is carried out with various light sources which exhibit an incoherent behaviour and a broad spectral width.

  20. Superresolution confocal technology for displacement measurements based on total internal reflection

    International Nuclear Information System (INIS)

    Kuang Cuifang; Hao Xiang; Wang Tingting; Liu Xu; Ali, M. Yakut

    2010-01-01

    In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.

  1. Superresolution confocal technology for displacement measurements based on total internal reflection.

    Science.gov (United States)

    Kuang, Cuifang; Ali, M Yakut; Hao, Xiang; Wang, Tingting; Liu, Xu

    2010-10-01

    In order to achieve a higher axial resolution for displacement measurement, a novel method is proposed based on total internal reflection filter and confocal microscope principle. A theoretical analysis of the basic measurement principles is presented. The analysis reveals that the proposed confocal detection scheme is effective in enhancing the resolution of nonlinearity of the reflectance curve greatly. In addition, a simple prototype system has been developed based on the theoretical analysis and a series of experiments have been performed under laboratory conditions to verify the system feasibility, accuracy, and stability. The experimental results demonstrate that the axial resolution in displacement measurements is better than 1 nm in a range of 200 nm which is threefold better than that can be achieved using the plane reflector.

  2. Confocal microscope is able to detect calcium metabolic in neuronal infection by toxoplasma gondii

    Science.gov (United States)

    Sensusiati, A. D.; Priya, T. K. S.; Dachlan, Y. P.

    2017-05-01

    Calcium metabolism plays a very important role in neurons infected by Toxoplasma. Detection of change of calcium metabolism of neuron infected by Toxoplasma and Toxoplasma requires the calculation both quantitative and qualitative method. Confocal microscope has the ability to capture the wave of the fluorescent emission of the fluorescent dyes used in the measurement of cell calcium. The purpose of this study was to prove the difference in calcium changes between infected and uninfected neurons using confocal microscopy. Neuronal culture of human-skin-derived neural stem cell were divided into 6 groups, consisting 3 uninfected groups and 3 infected groups. Among the 3 groups were 2 hours, 24 hours and 48 hours. The neuron Toxoplasma gondii ratio was 1:5. Observation of intracellular calcium of neuron and tachyzoite, evidence of necrosis, apoptosis and the expression of Hsp 70 of neuron were examined by confocal microscope. The normality of the data was analysed by Kolmogorov-Smirnov Test, differentiation test was checked by t2 Test, and ANOVAs, for correlation test was done by Pearson Correlation Test. The calcium intensity of cytosolic neuron and T. gondii was significantly different from control groups (pneurons both in quantitatively and qualitatively.

  3. Confocal microscope is able to detect calcium metabolic in neuronal infection by toxoplasma gondii

    International Nuclear Information System (INIS)

    Sensusiati, A D; Priya, T K S; Dachlan, Y P

    2017-01-01

    Calcium metabolism plays a very important role in neurons infected by Toxoplasma. Detection of change of calcium metabolism of neuron infected by Toxoplasma and Toxoplasma requires the calculation both quantitative and qualitative method. Confocal microscope has the ability to capture the wave of the fluorescent emission of the fluorescent dyes used in the measurement of cell calcium. The purpose of this study was to prove the difference in calcium changes between infected and uninfected neurons using confocal microscopy. Neuronal culture of human-skin-derived neural stem cell were divided into 6 groups, consisting 3 uninfected groups and 3 infected groups. Among the 3 groups were 2 hours, 24 hours and 48 hours. The neuron Toxoplasma gondii ratio was 1:5. Observation of intracellular calcium of neuron and tachyzoite, evidence of necrosis, apoptosis and the expression of Hsp 70 of neuron were examined by confocal microscope. The normality of the data was analysed by Kolmogorov-Smirnov Test, differentiation test was checked by t2 Test, and ANOVAs, for correlation test was done by Pearson Correlation Test. The calcium intensity of cytosolic neuron and T. gondii was significantly different from control groups (p<0.05). There was also significant correlation between calcium intensity with the evidence of necrosis and Hsp70 expression at 2 hours after infection. Apoptosis and necrosis were simultaneously shown with calcium contribution in this study. Confocal microscopy can be used to measure calcium changes in infected and uninfected neurons both in quantitatively and qualitatively. (paper)

  4. CCDiode: an optimal detector for laser confocal microscopes

    Science.gov (United States)

    Pawley, James B.; Blouke, Morley M.; Janesick, James R.

    1996-04-01

    The laser confocal microscope (LCM) is now an established research tool in biology and materials science. In biological applications, it is usually employed to detect the location of fluorescent market molecules and, under these conditions, signal levels from bright areas are often digitizer. To maintain the desired +/- 3 e noise level at the relatively high data rate of 1 MHz, our new device utilizes 64 separate readout amplifier/digitizer systems, operating in sequence. The resulting detector is more compact, efficient and reliable than the PMT it replaces but as its sensitive area is smaller than that of a PMT, it will require auxiliary optics when used with any LCM having a large (mm) pinhole. As the signal light is parallel, a simple lens mounted axially and with the CCDiode at its focus would suffice. Future versions may use 3 X 3 or 5 X 5 arrays of sensors to `track' the confocal spot as it is deflected by inhomogeneities of the specimen, change its effective size or shape or detect system misalignment.

  5. Confocal laser endomicroscopy

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Săftoiu, Adrian; Brynskov, Jørn

    2016-01-01

    BACKGROUND AND STUDY AIMS: Confocal laser endomicroscopy (CLE) has been shown to predict relapse in ulcerative colitis in remission, but little is currently known about its role in Crohn's disease. The aim of this study was to identify reproducible CLE features in patients with Crohn's disease...

  6. Insight into the Microbial Multicellular Lifestyle via Flow-Cell Technology and Confocal Microscopy

    DEFF Research Database (Denmark)

    Pamp, Sünje Johanna; Sternberg, Claus; Tolker-Nielsen, Tim

    2009-01-01

    , industry, and human health. Accordingly a number of biofilm model systems, molecular tools, microscopic techniques, and image analysis programs have been employed for the study of biofilms under controlled and reproducible conditions. Studies using confocal laser scanning microscopy (CLSM) of biofilms...

  7. Conversion efficiency of implanted ions by confocal micro-luminescence mapping

    International Nuclear Information System (INIS)

    Deshko, Y.; Huang, Mengbing; Gorokhovsky, A.A.

    2013-01-01

    We report on the further development of the statistical approach to determine the conversion efficiency of implanted ions into emitting centers and present the measurement method based on the confocal micro-luminescence mapping. It involves the micro-luminescence mapping with a narrow-open confocal aperture, followed by the statistical analysis of the photoluminescence signal from an ensemble of emitting centers. The confocal mapping method has two important advantages compared to the recently discussed aperture-free method (J. Lumin. 131 (2011) 489): it is less sensitive to errors in the laser spot size and has a well defined useful area. The confocal mapping has been applied to the Xe center in diamond. The conversion efficiency has been found to be about 0.28, which is in good agreement with the results of the aperture-free method. - Highlights: ► Conversion efficiency of implanted ions into emitting centers – statistical approach. ► Micro-luminescence mapping with open and narrow confocal aperture – comparison. ► Advantages of the confocal micro-luminescence mapping. ► Confocal micro-luminescence mapping has been applied to the Xe center in diamond. ► The conversion efficiency has been found to be about 0.28.

  8. Dual filtered backprojection for micro-rotation confocal microscopy

    International Nuclear Information System (INIS)

    Laksameethanasan, Danai; Brandt, Sami S; Renaud, Olivier; Shorte, Spencer L

    2009-01-01

    Micro-rotation confocal microscopy is a novel optical imaging technique which employs dielectric fields to trap and rotate individual cells to facilitate 3D fluorescence imaging using a confocal microscope. In contrast to computed tomography (CT) where an image can be modelled as parallel projection of an object, the ideal confocal image is recorded as a central slice of the object corresponding to the focal plane. In CT, the projection images and the 3D object are related by the Fourier slice theorem which states that the Fourier transform of a CT image is equal to the central slice of the Fourier transform of the 3D object. In the micro-rotation application, we have a dual form of this setting, i.e. the Fourier transform of the confocal image equals the parallel projection of the Fourier transform of the 3D object. Based on the observed duality, we present here the dual of the classical filtered back projection (FBP) algorithm and apply it in micro-rotation confocal imaging. Our experiments on real data demonstrate that the proposed method is a fast and reliable algorithm for the micro-rotation application, as FBP is for CT application

  9. Confocal Raman microscopy for in depth analysis in the field of cultural heritage

    Science.gov (United States)

    Lorenzetti, G.; Striova, J.; Zoppi, A.; Castellucci, E. M.

    2011-05-01

    In the field of cultural heritage, the main concern when a sample is analyzed is its safeguard, and this means that non-destructive techniques are required. In this work, we show how confocal Raman microscopy (CRM) may be successfully applied in the study of works of art as a valuable alternative to other well established techniques. CRM with a metallurgical objective was tested for the in depth study of thin samples that are of interest in the field of cultural heritage. The sensitivity of the instrumentation was first evaluated by analyzing single layers of pure polyethylene terephthalate (PET) films having a thickness of 12, 25, and 50 μm, respectively, and a multilayer sample of polypropylene (PP) and polyethylene (PE). Subsequently, the technique was applied to the analysis of historical dyed cotton yarns in order to check whether it was possible to achieve a better discrimination of the fibres' signals for an easier identification. A substantial improvement of the signal to noise ratio was found in the confocal arrangement with respect to the non-confocal one, suggesting the use of this technique for this kind of analysis in the field of cultural heritage. Furthermore, Raman spectroscopy in confocal configuration was exploited in the evaluation of cleaning performed on the mural painting specimens, treated with acrylic resin (Paraloid B72). Confocal Raman experiments were performed before and after laser cleaning (at different conditions) in order to monitor the presence and to approximate the polymer thickness: the method proved to be a valid comparative tool in assessment of cleaning efficiencies.

  10. Sub-Airy Confocal Adaptive Optics Scanning Ophthalmoscopy.

    Science.gov (United States)

    Sredar, Nripun; Fagbemi, Oladipo E; Dubra, Alfredo

    2018-04-01

    To demonstrate the viability of improving transverse image resolution in reflectance scanning adaptive optics ophthalmoscopy using sub-Airy disk confocal detection. The foveal cone mosaic was imaged in five human subjects free of known eye disease using two custom adaptive optics scanning light ophthalmoscopes (AOSLOs) in reflectance with 7.75 and 4.30 mm pupil diameters. Confocal pinholes of 0.5, 0.6, 0.8, and 1.0 Airy disk diameters (ADDs) were used in a retinal conjugate plane before the light detector. Average cone photoreceptor intensity profile width and power spectrum were calculated for the resulting images. Detected energy using a model eye was recorded for each pinhole size. The cone photoreceptor mosaic is better resolved with decreasing confocal pinhole size, with the high spatial frequency content of the images enhanced in both the large- and small-pupil AOSLOs. The average cone intensity profile width was reduced by ∼15% with the use of a 0.5 ADD pinhole when compared to a 1.0 ADD, with an accompanying reduction in signal greater than a factor of four. The use of sub-Airy disk confocal pinhole detection without increasing retinal light exposure results in a substantial improvement in image resolution at the cost of larger than predicted signal reduction. Improvement in transverse resolution using sub-Airy disk confocal detection is a practical and low-cost approach that is applicable to all point- and line-scanning ophthalmoscopes, including optical coherence tomographers.

  11. Preliminary identification of unicellular algal genus by using combined confocal resonance Raman spectroscopy with PCA and DPLS analysis

    Science.gov (United States)

    He, Shixuan; Xie, Wanyi; Zhang, Ping; Fang, Shaoxi; Li, Zhe; Tang, Peng; Gao, Xia; Guo, Jinsong; Tlili, Chaker; Wang, Deqiang

    2018-02-01

    The analysis of algae and dominant alga plays important roles in ecological and environmental fields since it can be used to forecast water bloom and control its potential deleterious effects. Herein, we combine in vivo confocal resonance Raman spectroscopy with multivariate analysis methods to preliminary identify the three algal genera in water blooms at unicellular scale. Statistical analysis of characteristic Raman peaks demonstrates that certain shifts and different normalized intensities, resulting from composition of different carotenoids, exist in Raman spectra of three algal cells. Principal component analysis (PCA) scores and corresponding loading weights show some differences from Raman spectral characteristics which are caused by vibrations of carotenoids in unicellular algae. Then, discriminant partial least squares (DPLS) classification method is used to verify the effectiveness of algal identification with confocal resonance Raman spectroscopy. Our results show that confocal resonance Raman spectroscopy combined with PCA and DPLS could handle the preliminary identification of dominant alga for forecasting and controlling of water blooms.

  12. Experimental program on fuel rod behaviour under off-normal conditions

    International Nuclear Information System (INIS)

    Languille, A.; Cecchi, P.

    1985-01-01

    During LMFBR plant operation, fuel developments are primarily concerned with the fuel pin irradiation behaviour under steady-state conditions up to high burn-up levels. But additional studies under off-normal conditions are necessary in order to assess fuel pin performance and to define operational limits. (author)

  13. Re-scan confocal microscopy: scanning twice for better resolution.

    Science.gov (United States)

    De Luca, Giulia M R; Breedijk, Ronald M P; Brandt, Rick A J; Zeelenberg, Christiaan H C; de Jong, Babette E; Timmermans, Wendy; Azar, Leila Nahidi; Hoebe, Ron A; Stallinga, Sjoerd; Manders, Erik M M

    2013-01-01

    We present a new super-resolution technique, Re-scan Confocal Microscopy (RCM), based on standard confocal microscopy extended with an optical (re-scanning) unit that projects the image directly on a CCD-camera. This new microscope has improved lateral resolution and strongly improved sensitivity while maintaining the sectioning capability of a standard confocal microscope. This simple technology is typically useful for biological applications where the combination high-resolution and high-sensitivity is required.

  14. Reactor internals design/analysis for normal, upset, and faulted conditions

    International Nuclear Information System (INIS)

    Burke, F.R.

    1977-06-01

    The analytical procedures used by Babcock and Wilcox to demonstrate the structural integrity of the 205-FA reactor internals are described. Analytical results are presented and compared to ASME Code allowable limits for Normal, Upset, and Faulted conditions. The particular faulted condition considered is a simultaneous loss-of-coolant accident and safe shutdown earthquake. The operating basis earthquake is addressed as an Upset condition

  15. Smartphone confocal microscopy for imaging cellular structures in human skin in vivo.

    Science.gov (United States)

    Freeman, Esther E; Semeere, Aggrey; Osman, Hany; Peterson, Gary; Rajadhyaksha, Milind; González, Salvador; Martin, Jeffery N; Anderson, R Rox; Tearney, Guillermo J; Kang, Dongkyun

    2018-04-01

    We report development of a low-cost smartphone confocal microscope and its first demonstration of in vivo human skin imaging. The smartphone confocal microscope uses a slit aperture and diffraction grating to conduct two-dimensional confocal imaging without using any beam scanning devices. Lateral and axial resolutions of the smartphone confocal microscope were measured as 2 and 5 µm, respectively. In vivo confocal images of human skin revealed characteristic cellular structures, including spinous and basal keratinocytes and papillary dermis. Results suggest that the smartphone confocal microscope has a potential to examine cellular details in vivo and may help disease diagnosis in resource-poor settings, where conducting standard histopathologic analysis is challenging.

  16. Confocal laser endomicroscopy in ulcerative colitis

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Săftoiu, Adrian; Brynskov, Jørn

    2016-01-01

    BACKGROUND AND AIMS: Confocal laser endomicroscopy enables real-time in vivo microscopy during endoscopy and can predict relapse in patients with inflammatory bowel disease in remission. However, little is known about how endomicroscopic features change with time. The aim of this longitudinal study...... was to correlate colonic confocal laser endomicroscopy (CLE) in ulcerative colitis with histopathology and macroscopic appearance before and after intensification of medical treatment. METHODS: Twenty-two patients with ulcerative colitis in clinical relapse and 7 control subjects referred for colonoscopy were...

  17. Corneal Confocal Microscopy – A Novel, Noninvasive Method to Assess Diabetic Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Inceu Georgeta

    2014-12-01

    Full Text Available Background and aims. This article aims to compare corneal confocal microscopy (CCM with acknowledged tests of diabetic peripheral neuropathy (DPN, to assess corneal nerve morphology using CCM in diabetic patients, and to underline possible correlations between clinical and biological parameters, diabetes duration and DPN severity. Material and methods. A total of 90 patients with type 2 diabetes were included in the study for whom we measured anthropometric parameters and we performed laboratory measurements (tests. The patients were assessed for diabetic peripheral neuropathy using Semmes-Weinstein Monofilament Testing (SWMT, Rapid-Current Perception Threshold (R-CPT measurements using the Neurometer®, and CCM. We stratified the patients according to DPN severity, based on four parameters extracted after image analysis. Results. A higher percentage of patients were diagnosed with DPN using CCM (88.8%, compared with SWMT and R-CPT measurement (17.8% and 40% respectively. The incidence of DPN detected with CCM was considerable in patients with normal protective sensation and with normal R-CPT values. Conclusions. Our study showed that corneal confocal microscopy is a useful noninvasive method for diabetic neuropathy assessement in early stages. It was proven to directly quantify small fiber pathology, and to stratify neuropathic severity, and therefore can be used as a new, reliable tool in the diagnosis, clinical evaluation, and follow-up of peripheral diabetic neuropathy.

  18. Localizing Proteins in Fixed Giardia lamblia and Live Cultured Mammalian Cells by Confocal Fluorescence Microscopy.

    Science.gov (United States)

    Nyindodo-Ogari, Lilian; Schwartzbach, Steven D; Skalli, Omar; Estraño, Carlos E

    2016-01-01

    Confocal fluorescence microscopy and electron microscopy (EM) are complementary methods for studying the intracellular localization of proteins. Confocal fluorescence microscopy provides a rapid and technically simple method to identify the organelle in which a protein localizes but only EM can identify the suborganellular compartment in which that protein is present. Confocal fluorescence microscopy, however, can provide information not obtainable by EM but required to understand the dynamics and interactions of specific proteins. In addition, confocal fluorescence microscopy of cells transfected with a construct encoding a protein of interest fused to a fluorescent protein tag allows live cell studies of the subcellular localization of that protein and the monitoring in real time of its trafficking. Immunostaining methods for confocal fluorescence microscopy are also faster and less involved than those for EM allowing rapid optimization of the antibody dilution needed and a determination of whether protein antigenicity is maintained under fixation conditions used for EM immunogold labeling. This chapter details a method to determine by confocal fluorescence microscopy the intracellular localization of a protein by transfecting the organism of interest, in this case Giardia lamblia, with the cDNA encoding the protein of interest and then processing these organisms for double label immunofluorescence staining after chemical fixation. Also presented is a method to identify the organelle targeting information in the presequence of a precursor protein, in this case the presequence of the precursor to the Euglena light harvesting chlorophyll a/b binding protein of photosystem II precursor (pLHCPII), using live cell imaging of mammalian COS7 cells transiently transfected with a plasmid encoding a pLHCPII presequence fluorescent protein fusion and stained with organelle-specific fluorescent dyes.

  19. Aorta Fluorescence Imaging by Using Confocal Microscopy

    OpenAIRE

    Wang, Chun-Yang; Tsai, Jui-che; Chuang, Ching-Cheng; Hsieh, Yao-Sheng; Sun, Chia-Wei

    2011-01-01

    The activated leukocyte attacked the vascular endothelium and the associated increase in VEcadherin number was observed in experiments. The confocal microscopic system with a prism-based wavelength filter was used for multiwavelength fluorescence measurement. Multiwavelength fluorescence imaging based on the VEcadherin within the aorta segment of a rat was achieved. The confocal microscopic system capable of fluorescence detection of cardiovascular tissue is a useful tool for measuring the bi...

  20. Fused oblique incidence reflectometry and confocal fluorescence microscopy

    Science.gov (United States)

    Risi, Matthew D.; Rouse, Andrew R.; Gmitro, Arthur F.

    2011-03-01

    Confocal microendoscopy provides real-time high resolution cellular level images via a minimally invasive procedure, but relies on exogenous fluorophores, has a relatively limited penetration depth (100 μm) and field of view (700 μm), and produces a high rate of detailed information to the user. A new catheter based multi-modal system has been designed that combines confocal imaging and oblique incidence reflectometry (OIR), which is a non-invasive method capable of rapidly extracting tissue absorption, μa, and reduced scattering, μ's, spectra from tissue. The system builds on previous developments of a custom slit-scan multi-spectral confocal microendoscope and is designed to rapidly switch between diffuse spectroscopy and confocal fluorescence imaging modes of operation. An experimental proof-of-principle catheter has been developed that consists of a fiber bundle for traditional confocal fluorescence imaging and a single OIR source fiber which is manually redirected at +/- 26 degrees. Diffusely scattered light from each orientation of the source fiber is collected via the fiber bundle, with a frame of data representing spectra collected at a range of distances from the OIR source point. Initial results with intralipid phantoms show good agreement to published data over the 550-650 nm spectral range. We successfully imaged and measured the optical properties of rodent cardiac muscle.

  1. A Simple Model for Nonlinear Confocal Ultrasonic Beams

    Science.gov (United States)

    Zhang, Dong; Zhou, Lin; Si, Li-Sheng; Gong, Xiu-Fen

    2007-01-01

    A confocally and coaxially arranged pair of focused transmitter and receiver represents one of the best geometries for medical ultrasonic imaging and non-invasive detection. We develop a simple theoretical model for describing the nonlinear propagation of a confocal ultrasonic beam in biological tissues. On the basis of the parabolic approximation and quasi-linear approximation, the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation is solved by using the angular spectrum approach. Gaussian superposition technique is applied to simplify the solution, and an analytical solution for the second harmonics in the confocal ultrasonic beam is presented. Measurements are performed to examine the validity of the theoretical model. This model provides a preliminary model for acoustic nonlinear microscopy.

  2. 3D Imaging of Porous Media Using Laser Scanning Confocal Microscopy with Application to Microscale Transport Processes

    Energy Technology Data Exchange (ETDEWEB)

    Fredrich, J.T.

    1999-02-10

    We present advances in the application of laser scanning confocal microscopy (LSCM) to image, reconstruct, and characterize statistically the microgeometry of porous geologic and engineering materials. We discuss technical and practical aspects of this imaging technique, including both its advantages and limitations. Confocal imaging can be used to optically section a material, with sub-micron resolution possible in the lateral and axial planes. The resultant volumetric image data, consisting of fluorescence intensities for typically {approximately}50 million voxels in XYZ space, can be used to reconstruct the three-dimensional structure of the two-phase medium. We present several examples of this application, including studying pore geometry in sandstone, characterizing brittle failure processes in low-porosity rock deformed under triaxial loading conditions in the laboratory, and analyzing the microstructure of porous ceramic insulations. We then describe approaches to extract statistical microgeometric descriptions from volumetric image data, and present results derived from confocal volumetric data sets. Finally, we develop the use of confocal image data to automatically generate a three-dimensional mesh for numerical pore-scale flow simulations.

  3. Confocal Raman microspectroscopy

    International Nuclear Information System (INIS)

    Puppels, G.J.

    1991-01-01

    Raman spectroscopy is a technique that provides detailed structural information about molecules studied. In the field of molecular biophysics it has been extensively used for characterization of nucleic acids and proteins and for investigation of interactions between these molecules. It was felt that this technique would have great potential if it could be applied for in situ study of these molecules and their interactions, at the level of single living cell or a chromosome. To make this possible a highly sensitive confocal Raman microspectrometer (CRM) was developed. The instrument is described in detail in this thesis. It incorporates a number of recent technological developments. First, it employs a liquid nitrogen cooled CCD-camera. This type of detector, first used in astronomy, is the ultimate detector for Raman spectroscopy because it combines high quantum efficiency light detection with photon-noise limited operation. Second, an important factor in obtaining a high signal throughput of the spectrometer was the development of a new type of Raman notch filter. In the third place, the confocal detection principle was applied in the CRM. This limits the effective measuring volume to 3 . (author). 279 refs., 48 figs., 11 tabs

  4. Fluorescence confocal endomicroscopy in biological imaging

    Science.gov (United States)

    Delaney, Peter; Thomas, Steven; Allen, John; McLaren, Wendy; Murr, Elise; Harris, Martin

    2007-02-01

    resolution. In rodent disease models, in vivo endomicroscopy with appropriate fluorescent agents allowed examination of thrombosis formation, tumour microvasculature and liver metastases, diagnosis and staging of ulcerative colitis, liver necrosis and glomerulonephritis. Miniaturised confocal endomicroscopy allows rapid in vivo molecular and subsurface microscopy of normal and pathologic tissue at high resolution in small and large whole animal models. Fluorescein endomicroscopy has recently been introduced into the medical device market as a clinical imaging tool in GI endoscopy and is undergoing clinical evaluation in laparoscopic surgery. This medical usage is encouraging in-situ endomicroscopy as an important pre-clinical research tool to observe microscopic and molecular system biologic events in vivo in animal models for various human diseases.

  5. Premixed Flames Under Microgravity and Normal Gravity Conditions

    Science.gov (United States)

    Krikunova, Anastasia I.; Son, Eduard E.

    2018-03-01

    Premixed conical CH4-air flames were studied experimentally and numerically under normal straight, reversed gravity conditions and microgravity. Low-gravity experiments were performed in Drop tower. Classical Bunsen-type burner was used to find out features of gravity influence on the combustion processes. Mixture equivalence ratio was varied from 0.8 to 1.3. Wide range of flow velocity allows to study both laminar and weakly turbulized flames. High-speed flame chemoluminescence video-recording was used as diagnostic. The investigations were performed at atmospheric pressure. As results normalized flame height, laminar flame speed were measured, also features of flame instabilities were shown. Low- and high-frequency flame-instabilities (oscillations) have a various nature as velocity fluctuations, preferential diffusion instability, hydrodynamic and Rayleigh-Taylor ones etc., that was explored and demonstrated.

  6. 2-regularity and 2-normality conditions for systems with impulsive controls

    Directory of Open Access Journals (Sweden)

    Pavlova Natal'ya

    2007-01-01

    Full Text Available In this paper a controlled system with impulsive controls in the neighborhood of an abnormal point is investigated. The set of pairs (u,μ is considered as a class of admissible controls, where u is a measurable essentially bounded function and μ is a finite-dimensional Borel measure, such that for any Borel set B, μ(B is a subset of the given convex closed pointed cone. In this article the concepts of 2-regularity and 2-normality for the abstract mapping Ф, operating from the given Banach space into a finite-dimensional space, are introduced. The concepts of 2-regularity and 2-normality play a great role in the course of derivation of the first and the second order necessary conditions for the optimal control problem, consisting of the minimization of a certain functional on the set of the admissible processes. These concepts are also important for obtaining the sufficient conditions for the local controllability of the nonlinear systems. The convenient criterion for 2-regularity along the prescribed direction and necessary conditions for 2-normality of systems, linear in control, are introduced in this article as well.

  7. Real time diagnosis of bladder cancer with probe-based confocal laser endomicroscopy

    Science.gov (United States)

    Liu, Jen-Jane; Wu, Katherine; Adams, Winifred; Hsiao, Shelly T.; Mach, Kathleen E.; Beck, Andrew H.; Jensen, Kristin C.; Liao, Joseph C.

    2011-02-01

    Probe-based confocal laser endomicroscopy (pCLE) is an emerging technology for in vivo optical imaging of the urinary tract. Particularly for bladder cancer, real time optical biopsy of suspected lesions will likely lead to improved management of bladder cancer. With pCLE, micron scale resolution is achieved with sterilizable imaging probes (1.4 or 2.6 mm diameter), which are compatible with standard cystoscopes and resectoscopes. Based on our initial experience to date (n = 66 patients), we have demonstrated the safety profile of intravesical fluorescein administration and established objective diagnostic criteria to differentiate between normal, benign, and neoplastic urothelium. Confocal images of normal bladder showed organized layers of umbrella cells, intermediate cells, and lamina propria. Low grade bladder cancer is characterized by densely packed monomorphic cells with central fibrovascular cores, whereas high grade cancer consists of highly disorganized microarchitecture and pleomorphic cells with indistinct cell borders. Currently, we are conducting a diagnostic accuracy study of pCLE for bladder cancer diagnosis. Patients scheduled to undergo transurethral resection of bladder tumor are recruited. Patients undergo first white light cystocopy (WLC), followed by pCLE, and finally histologic confirmation of the resected tissues. The diagnostic accuracy is determined both in real time by the operative surgeon and offline after additional image processing. Using histology as the standard, the sensitivity, specificity, positive and negative predictive value of WLC and WLC + pCLE are calculated. With additional validation, pCLE may prove to be a valuable adjunct to WLC for real time diagnosis of bladder cancer.

  8. Imaging theory of nonlinear second harmonic and third harmonic generations in confocal microscopy

    Institute of Scientific and Technical Information of China (English)

    TANG Zhilie; XING Da; LIU Songhao

    2004-01-01

    The imaging theory of nonlinear second harmonic generation (SHG) and third harmonic generation (THG) in confocal microscopy is presented in this paper. The nonlinear effect of SHG and THG on the imaging properties of confocal microscopy has been analyzed in detail by the imaging theory. It is proved that the imaging process of SHG and THG in confocal microscopy, which is different from conventional coherent imaging or incoherent imaging, can be divided into two different processes of coherent imaging. The three-dimensional point spread functions (3D-PSF) of SHG and THG confocal microscopy are derived based on the nonlinear principles of SHG and THG. The imaging properties of SHG and THG confocal microscopy are discussed in detail according to its 3D-PSF. It is shown that the resolution of SHG and THG confocal microscopy is higher than that of single-and two-photon confocal microscopy.

  9. A near-infrared confocal scanner

    International Nuclear Information System (INIS)

    Lee, Seungwoo; Yoo, Hongki

    2014-01-01

    In the semiconductor industry, manufacturing of three-dimensional (3D) packages or 3D integrated circuits is a high-performance technique that requires combining several functions in a small volume. Through-silicon vias, which are vertical electrical connections extending through a wafer, can be used to direct signals between stacked chips, thus increasing areal density by stacking and connecting multiple patterned chips. While defect detection is essential in the semiconductor manufacturing process, it is difficult to identify defects within a wafer or to monitor the bonding results between bonded surfaces because silicon and many other semiconductor materials are opaque to visible wavelengths. In this context, near-infrared (NIR) imaging is a promising non-destructive method to detect defects within silicon chips, to inspect bonding between chips and to monitor the chip alignment since NIR transmits through silicon. In addition, a confocal scanner provides high-contrast, optically-sectioned images of the specimen due to its ability to reject out-of-focus noise. In this study, we report an NIR confocal scanner that rapidly acquires high-resolution images with a large field of view through silicon. Two orthogonal line-scanning images can be acquired without rotating the system or the specimen by utilizing two orthogonally configured resonant scanning mirrors. This NIR confocal scanner can be efficiently used as an in-line inspection system when manufacturing semiconductor devices by rapidly detecting defects on and beneath the surface. (paper)

  10. Model wavefront sensor for adaptive confocal microscopy

    Science.gov (United States)

    Booth, Martin J.; Neil, Mark A. A.; Wilson, Tony

    2000-05-01

    A confocal microscope permits 3D imaging of volume objects by the inclusion of a pinhole in the detector path which eliminates out of focus light. This configuration is however very sensitive to aberrations induced by the specimen or the optical system and would therefore benefit from an adaptive optics approach. We present a wavefront sensor capable of measuring directly the Zernike components of an aberrated wavefront and show that it is particularly applicable to the confocal microscope since only those wavefronts originating in the focal region contribute to the measured aberration.

  11. Simplified calculation method for radiation dose under normal condition of transport

    International Nuclear Information System (INIS)

    Watabe, N.; Ozaki, S.; Sato, K.; Sugahara, A.

    1993-01-01

    In order to estimate radiation dose during transportation of radioactive materials, the following computer codes are available: RADTRAN, INTERTRAN, J-TRAN. Because these codes consist of functions for estimating doses not only under normal conditions but also in the case of accidents, when nuclei may leak and spread into the environment by air diffusion, the user needs to have special knowledge and experience. In this presentation, we describe how, with a view to preparing a method by which a person in charge of transportation can calculate doses in normal conditions, the main parameters upon which the value of doses depends were extracted and the dose for a unit of transportation was estimated. (J.P.N.)

  12. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY

    Science.gov (United States)

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  13. Estimation of value at risk and conditional value at risk using normal mixture distributions model

    Science.gov (United States)

    Kamaruzzaman, Zetty Ain; Isa, Zaidi

    2013-04-01

    Normal mixture distributions model has been successfully applied in financial time series analysis. In this paper, we estimate the return distribution, value at risk (VaR) and conditional value at risk (CVaR) for monthly and weekly rates of returns for FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI) from July 1990 until July 2010 using the two component univariate normal mixture distributions model. First, we present the application of normal mixture distributions model in empirical finance where we fit our real data. Second, we present the application of normal mixture distributions model in risk analysis where we apply the normal mixture distributions model to evaluate the value at risk (VaR) and conditional value at risk (CVaR) with model validation for both risk measures. The empirical results provide evidence that using the two components normal mixture distributions model can fit the data well and can perform better in estimating value at risk (VaR) and conditional value at risk (CVaR) where it can capture the stylized facts of non-normality and leptokurtosis in returns distribution.

  14. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    OpenAIRE

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2014-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy.

  15. Methods for studying biofilm formation: flow cells and confocal laser scanning microscopy

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim; Sternberg, Claus

    2014-01-01

    In this chapter methods for growing and analyzing biofilms under hydrodynamic conditions in flow cells are described. Use of flow cells allows for direct microscopic investigation of biofilm formation. The flow in these chambers is essentially laminar, which means that the biofilms can be grown u......, inoculation of the flow cells, running of the system, confocal laser scanning microscopy and image analysis, and disassembly and cleaning of the system....

  16. Evaluation and purchase of confocal microscopes: Numerous factors to consider

    Science.gov (United States)

    The purchase of a confocal microscope can be a complex and difficult decision for an individual scientist, group or evaluation committee. This is true even for scientists that have used confocal technology for many years. The task of reaching the optimal decision becomes almost i...

  17. Optical sectioning using a digital Fresnel incoherent-holography-based confocal imaging system

    Science.gov (United States)

    Kelner, Roy; Katz, Barak; Rosen, Joseph

    2015-01-01

    We propose a new type of confocal microscope using Fresnel incoherent correlation holography (FINCH). Presented here is a confocal configuration of FINCH using a phase pinhole and point illumination that is able to suppress out-of-focus information from the recorded hologram and hence combine the super-resolution capabilities of FINCH with the sectioning capabilities of confocal microscopy. PMID:26413560

  18. Exponential model normalization for electrical capacitance tomography with external electrodes under gap permittivity conditions

    International Nuclear Information System (INIS)

    Baidillah, Marlin R; Takei, Masahiro

    2017-01-01

    A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution. (paper)

  19. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    International Nuclear Information System (INIS)

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary

  20. Spectral imaging technique for retinal perfusion detection using confocal scanning laser ophthalmoscopy

    Science.gov (United States)

    Rasta, Seyed Hossein; Manivannan, Ayyakkannu; Sharp, Peter F.

    2012-11-01

    To evaluate retinal perfusion in the human eye, a dual-wavelength confocal scanning laser ophthalmoscope (cSLO) was developed that provides spectral imaging of the fundus using a combination of red (670 nm) and near-infrared (810 nm) wavelengths. The image of the ocular fundus was analyzed to find out if quantitative measurements of the reflectivity of tissue permit assessment of the oxygen perfusion of tissue. We explored problems that affect the reproducibility of patient measurements such as non-uniformity errors on the image. For the first time, an image processing technique was designed and used to minimize the errors of oxygen saturation measurements by illumination correction in retina wide field by increasing SNR. Retinal images were taken from healthy and diabetic retinopathy eyes using the cSLO with a confocal aperture of 100 μm. The ratio image (RI) of red/IR, as oxygen saturation (SO2) index, was calculated for normal eyes. The image correction technique improved the reproducibility of the measurements. Average RI intensity variation of healthy retina tissue was determined within a range of about 5.5%. The capability of the new technique to discriminate oxygenation levels of retinal artery and vein was successfully demonstrated and showed good promise in the diagnosis of the perfused retina.

  1. Spinning-disk confocal microscopy: present technology and future trends.

    Science.gov (United States)

    Oreopoulos, John; Berman, Richard; Browne, Mark

    2014-01-01

    Live-cell imaging requires not only high temporal resolution but also illumination powers low enough to minimize photodamage. Traditional single-point laser scanning confocal microscopy (LSCM) is generally limited by both the relatively slow speed at which it can acquire optical sections by serial raster scanning (a few Hz) and the higher potential for phototoxicity. These limitations have driven the development of rapid, parallel forms of confocal microscopy, the most popular of which is the spinning-disk confocal microscope (SDCM). Here, we briefly introduce the SDCM technique, discuss its strengths and weaknesses against LSCM, and update the reader on some recent developments in SDCM technology that improve its performance and expand its utility for life science research now and in the future. © 2014 Elsevier Inc. All rights reserved.

  2. Fabry-Perot confocal resonator optical associative memory

    Science.gov (United States)

    Burns, Thomas J.; Rogers, Steven K.; Vogel, George A.

    1993-03-01

    A unique optical associative memory architecture is presented that combines the optical processing environment of a Fabry-Perot confocal resonator with the dynamic storage and recall properties of volume holograms. The confocal resonator reduces the size and complexity of previous associative memory architectures by folding a large number of discrete optical components into an integrated, compact optical processing environment. Experimental results demonstrate the system is capable of recalling a complete object from memory when presented with partial information about the object. A Fourier optics model of the system's operation shows it implements a spatially continuous version of a discrete, binary Hopfield neural network associative memory.

  3. Physics of collisionless scrape-off-layer plasma during normal and off-normal Tokamak operating conditions

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1999-01-01

    The structure of a collisionless scrape-off-layer (SOL) plasma in tokamak reactors is being studied to define the electron distribution function and the corresponding sheath potential between the divertor plate and the edge plasma. The collisionless model is shown to be valid during the thermal phase of a plasma disruption, as well as during the newly desired low-recycling normal phase of operation with low-density, high-temperature, edge plasma conditions. An analytical solution is developed by solving the Fokker-Planck equation for electron distribution and balance in the SOL. The solution is in good agreement with numerical studies using Monte-Carlo methods. The analytical solutions provide an insight to the role of different physical and geometrical processes in a collisionless SOL during disruptions and during the enhanced phase of normal operation over a wide range of parameters

  4. A New Multichannel Spectral Imaging Laser Scanning Confocal Microscope

    Directory of Open Access Journals (Sweden)

    Yunhai Zhang

    2013-01-01

    Full Text Available We have developed a new multichannel spectral imaging laser scanning confocal microscope for effective detection of multiple fluorescent labeling in the research of biological tissues. In this paper, the design and key technologies of the system are introduced. Representative results on confocal imaging, 3-dimensional sectioning imaging, and spectral imaging are demonstrated. The results indicated that the system is applicable to multiple fluorescent labeling in biological experiments.

  5. MISTRAL V1.1.1: assessing doses from atmospheric releases in normal and off-normal conditions

    International Nuclear Information System (INIS)

    David Kerouanton; Patrick Devin; Malvina Rennesson

    2006-01-01

    Protecting the environment and the public from radioactive and chemical hazards has always been a top priority for all companies operating in the nuclear domain. In this scope, SGN provides all the services the nuclear industry needs in environmental studies especially in relation to the impact assessment in normal operating conditions and risk assessment in off-normal conditions. In order to quantify dose impact on members of the public due to atmospheric releases, COGEMA and SGN developed MISTRAL V1.1.1 code. Dose impact depends strongly on dispersion of radionuclides in atmosphere. The main parameters involved in dispersion characterization are wind velocity and direction, rain, diffusion conditions, coordinates of the point of observation and stack elevation. MISTRAL code implements DOURY and PASQUILL Gaussian plume models which are widely used in the scientific community. These models, applicable for distances of transfer ranging from 100 m up to 30 km, are used to calculate atmospheric concentration and deposit at different distances from the point of release. MISTRAL allows the use of different dose regulations or dose coefficient databases such as: - ICRP30 and ICPR71 for internal doses (inhalation, ingestion) - Despres/Kocher database or US-EPA Federal Guidance no.12 (ICPR72 for noble gases) for external exposure (from plume or ground). The initial instant of the release can be considered as the origin of time or a date format can be specified (could be useful in a crisis context). While the context is specified, the user define the meteorological conditions of the release. In normal operating mode (routine releases), the user gives the annual meteorological scheme. The data can be recorded in the MISTRAL meteorological database. In off-normal conditions mode, MISTRAL V1.1 allows the use of successive release stages for which the user gives the duration, the meteorological conditions, that is to say stability class, wind speed and direction and rainfall

  6. Nano-displacement measurement based on virtual pinhole confocal method

    International Nuclear Information System (INIS)

    Li, Long; Kuang, Cuifang; Xue, Yi; Liu, Xu

    2013-01-01

    A virtual pinhole confocal system based on charge-coupled device (CCD) detection and image processing techniques is built to measure axial displacement with 10 nm resolution, preeminent flexibility and excellent robustness when facing spot drifting. Axial displacement of the sample surface is determined by capturing the confocal laser spot using a CCD detector and quantifying the energy collected by programmable virtual pinholes. Experiments indicate an applicable measuring range of 1000 nm (Gaussian fitting r = 0.9902) with a highly linear range of 500 nm (linear fitting r = 0.9993). A concentric subtraction algorithm is introduced to further enhance resolution. Factors affecting measuring precision, sensitivity and signal-to-noise ratio are discussed using theoretical deductions and diffraction simulations. The virtual pinhole technique has promising applications in surface profiling and confocal imaging applications which require easily-customizable pinhole configurations. (paper)

  7. Numerical study of a confocal ultrasonic setup for creation of cavitation

    Energy Technology Data Exchange (ETDEWEB)

    Lafond, Maxime, E-mail: maxime.lafond@inserm.fr; Chavrier, Françoise; Prieur, Fabrice [Inserm, U1032, LabTau, Lyon, F-69003 (France); Université de Lyon, Lyon, F-69003 (France); Université Lyon 1, Lyon, F-69003 (France); Mestas, Jean-Louis; Lafon, Cyril [Inserm, U1032, LabTau, Lyon, F-69003 (France); Université de Lyon, Lyon, F-69003 (France); Université Lyon 1, Lyon, F-69003 (France); Caviskills SAS, Vaulx-En-Velin, F-69120 (France)

    2015-10-28

    Acoustic cavitation is used for various therapeutic applications such as local enhancement of drug delivery, histotripsy or hyperthermia. One of the utmost important parameter for cavitation creation is the rarefaction pressure. The typical magnitude of the rarefaction pressure required to initiate cavitation from gas dissolved in tissue is beyond the range of the megapascal. Because nonlinear effects need to be taken into account, a numerical simulator based on the Westervelt equation was used to study the pressure waveform and the acoustic field generated by a setup for creation of cavitation consisting of two high intensity focused ultrasound transducers mounted confocally. At constant acoustic power, simulations with only one and both transducers from the confocal setup showed that the distortion of the pressure waveform due to the combined effects of nonlinearity and diffraction is less pronounced when both confocal transducers are used. Consequently, the confocal setup generates a greater peak negative pressure at focus which is more favorable for cavitation initiation. Comparison between the confocal setup and a single transducer with the same total emitting surface puts in evidence the role of the spatial separation of the two beams. Furthermore, it has been previously shown that the location of the peak negative pressure created by a single transducer shifts from focus towards the transducers in the presence of nonlinear effects. The simulator was used to study a configuration where the acoustical axes of transducers intersect on the peak negative pressure instead of the geometrical focus. For a representative confocal setup, namely moderate nonlinear effects, a 2% increase of the peak negative pressure and 8% decrease of the peak positive pressure resulted from this configuration. These differences tend to increase by increasing nonlinear effects. Although the optimal position of the transducers varies with the nonlinear regimen, the intersection point

  8. Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.

    Science.gov (United States)

    Lee, Dong-Ryoung; Kim, Young-Duk; Gweon, Dae-Gab; Yoo, Hongki

    2013-07-29

    We propose a new method for high-speed, three-dimensional (3-D) fluorescence imaging, which we refer to as dual-detection confocal fluorescence microscopy (DDCFM). In contrast to conventional beam-scanning confocal fluorescence microscopy, where the focal spot must be scanned either optically or mechanically over a sample volume to reconstruct a 3-D image, DDCFM can obtain the depth of a fluorescent emitter without depth scanning. DDCFM comprises two photodetectors, each with a pinhole of different size, in the confocal detection system. Axial information on fluorescent emitters can be measured by the axial response curve through the ratio of intensity signals. DDCFM can rapidly acquire a 3-D fluorescent image from a single two-dimensional scan with less phototoxicity and photobleaching than confocal fluorescence microscopy because no mechanical depth scans are needed. We demonstrated the feasibility of the proposed method by phantom studies.

  9. Ex Vivo (Fluorescence) Confocal Microscopy in Surgical Pathology: State of the Art.

    Science.gov (United States)

    Ragazzi, Moira; Longo, Caterina; Piana, Simonetta

    2016-05-01

    First developed in 1957, confocal microscopy is a powerful imaging tool that can be used to obtain near real-time reflected light images of untreated human tissue with nearly histologic resolution. Besides its research applications, in the last decades, confocal microscopy technology has been proposed as a useful device to improve clinical diagnosis, especially in ophthalmology, dermatology, and endomicroscopy settings, thanks to advances in instrument development. Compared with the wider use of the in vivo tissue assessment, ex vivo applications of confocal microscopy are not fully explored. A comprehensive review of the current literature was performed here, focusing on the reliable applications of ex vivo confocal microscopy in surgical pathology and on some potential evolutions of this new technique from pathologists' viewpoint.

  10. Confocal laser endomicroscopy for diagnosis and histomorphologic imaging of brain tumors in vivo.

    Directory of Open Access Journals (Sweden)

    Sebastian Foersch

    Full Text Available Early detection and evaluation of brain tumors during surgery is crucial for accurate resection. Currently cryosections during surgery are regularly performed. Confocal laser endomicroscopy (CLE is a novel technique permitting in vivo histologic imaging with miniaturized endoscopic probes at excellent resolution. Aim of the current study was to evaluate CLE for in vivo diagnosis in different types and models of intracranial neoplasia. In vivo histomorphology of healthy brains and two different C6 glioma cell line allografts was evaluated in rats. One cell line expressed EYFP, the other cell line was used for staining with fluorescent dyes (fluorescein, acriflavine, FITC-dextran and Indocyanine green. To evaluate future application in patients, fresh surgical resection specimen of human intracranial tumors (n = 15 were examined (glioblastoma multiforme, meningioma, craniopharyngioma, acoustic neurinoma, brain metastasis, medulloblastoma, epidermoid tumor. Healthy brain tissue adjacent to the samples served as control. CLE yielded high-quality histomorphology of normal brain tissue and tumors. Different fluorescent agents revealed distinct aspects of tissue and cell structure (nuclear pattern, axonal pathways, hemorrhages. CLE discrimination of neoplastic from healthy brain tissue was easy to perform based on tissue and cellular architecture and resemblance with histopathology was excellent. Confocal laser endomicroscopy allows immediate in vivo imaging of normal and neoplastic brain tissue at high resolution. The technology might be transferred to scientific and clinical application in neurosurgery and neuropathology. It may become helpful to screen for tumor free margins and to improve the surgical resection of malignant brain tumors, and opens the door to in vivo molecular imaging of tumors and other neurologic disorders.

  11. Confocal Microscopy of Unfixed Breast Needle Core Biopsies: A Comparison to Fixed and Stained Sections

    Directory of Open Access Journals (Sweden)

    Zavislan James M

    2009-08-01

    Full Text Available Abstract Background Needle core biopsy, often in conjunction with ultrasonic or stereotactic guided techniques, is frequently used to diagnose breast carcinoma in women. Confocal scanning laser microscopy (CSLM is a technology that provides real-time digital images of tissues with cellular resolution. This paper reports the progress in developing techniques to rapidly screen needle core breast biopsy and surgical specimens at the point of care. CSLM requires minimal tissue processing and has the potential to reduce the time from excision to diagnosis. Following imaging, specimens can still be submitted for standard histopathological preparation. Methods Needle core breast specimens from 49 patients were imaged at the time of biopsy. These lesions had been characterized under the Breast Imaging Reporting And Data System (BI-RADS as category 3, 4 or 5. The core biopsies were imaged with the CSLM before fixation. Samples were treated with 5% citric acid and glycerin USP to enhance nuclear visibility in the reflectance confocal images. Immediately following imaging, the specimens were fixed in buffered formalin and submitted for histological processing and pathological diagnosis. CSLM images were then compared to the standard histology. Results The pathologic diagnoses by standard histology were 7 invasive ductal carcinomas, 2 invasive lobular carcinomas, 3 ductal carcinomas in-situ (CIS, 21 fibrocystic changes/proliferative conditions, 9 fibroadenomas, and 5 other/benign; two were excluded due to imaging difficulties. Morphologic and cellular features of benign and cancerous lesions were identified in the confocal images and were comparable to standard histologic sections of the same tissue. Conclusion CSLM is a technique with the potential to screen needle core biopsy specimens in real-time. The confocal images contained sufficient information to identify stromal reactions such as fibrosis and cellular proliferations such as intra-ductal and

  12. Confocal Microscopy of Unfixed Breast Needle Core Biopsies: A Comparison to Fixed and Stained Sections

    Science.gov (United States)

    2009-01-01

    Background Needle core biopsy, often in conjunction with ultrasonic or stereotactic guided techniques, is frequently used to diagnose breast carcinoma in women. Confocal scanning laser microscopy (CSLM) is a technology that provides real-time digital images of tissues with cellular resolution. This paper reports the progress in developing techniques to rapidly screen needle core breast biopsy and surgical specimens at the point of care. CSLM requires minimal tissue processing and has the potential to reduce the time from excision to diagnosis. Following imaging, specimens can still be submitted for standard histopathological preparation. Methods Needle core breast specimens from 49 patients were imaged at the time of biopsy. These lesions had been characterized under the Breast Imaging Reporting And Data System (BI-RADS) as category 3, 4 or 5. The core biopsies were imaged with the CSLM before fixation. Samples were treated with 5% citric acid and glycerin USP to enhance nuclear visibility in the reflectance confocal images. Immediately following imaging, the specimens were fixed in buffered formalin and submitted for histological processing and pathological diagnosis. CSLM images were then compared to the standard histology. Results The pathologic diagnoses by standard histology were 7 invasive ductal carcinomas, 2 invasive lobular carcinomas, 3 ductal carcinomas in-situ (CIS), 21 fibrocystic changes/proliferative conditions, 9 fibroadenomas, and 5 other/benign; two were excluded due to imaging difficulties. Morphologic and cellular features of benign and cancerous lesions were identified in the confocal images and were comparable to standard histologic sections of the same tissue. Conclusion CSLM is a technique with the potential to screen needle core biopsy specimens in real-time. The confocal images contained sufficient information to identify stromal reactions such as fibrosis and cellular proliferations such as intra-ductal and infiltrating carcinoma, and

  13. Development of an add-on kit for scanning confocal microscopy (Conference Presentation)

    Science.gov (United States)

    Guo, Kaikai; Zheng, Guoan

    2017-03-01

    Scanning confocal microscopy is a standard choice for many fluorescence imaging applications in basic biomedical research. It is able to produce optically sectioned images and provide acquisition versatility to address many samples and application demands. However, scanning a focused point across the specimen limits the speed of image acquisition. As a result, scanning confocal microscope only works well with stationary samples. Researchers have performed parallel confocal scanning using digital-micromirror-device (DMD), which was used to project a scanning multi-point pattern across the sample. The DMD based parallel confocal systems increase the imaging speed while maintaining the optical sectioning ability. In this paper, we report the development of an add-on kit for high-speed and low-cost confocal microscopy. By adapting this add-on kit to an existing regular microscope, one can convert it into a confocal microscope without significant hardware modifications. Compared with current DMD-based implementations, the reported approach is able to recover multiple layers along the z axis simultaneously. It may find applications in wafer inspection and 3D metrology of semiconductor circuit. The dissemination of the proposed add-on kit under $1000 budget could also lead to new types of experimental designs for biological research labs, e.g., cytology analysis in cell culture experiments, genetic studies on multicellular organisms, pharmaceutical drug profiling, RNA interference studies, investigation of microbial communities in environmental systems, and etc.

  14. Condition monitoring with wind turbine SCADA data using Neuro-Fuzzy normal behavior models

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar

    2012-01-01

    System (ANFIS) models are employed to learn the normal behavior in a training phase, where the component condition can be considered healthy. In the application phase the trained models are applied to predict the target signals, e.g. temperatures, pressures, currents, power output, etc. The behavior......This paper presents the latest research results of a project that focuses on normal behavior models for condition monitoring of wind turbines and their components, via ordinary Supervisory Control And Data Acquisition (SCADA) data. In this machine learning approach Adaptive Neuro-Fuzzy Interference...... of the prediction error is used as an indicator for normal and abnormal behavior, with respect to the learned behavior. The advantage of this approach is that the prediction error is widely decoupled from the typical fluctuations of the SCADA data caused by the different turbine operational modes. To classify...

  15. Using Photoshop with images created by a confocal system.

    Science.gov (United States)

    Sedgewick, Jerry

    2014-01-01

    Many pure colors and grayscales tones that result from confocal imaging are not reproducible to output devices, such as printing presses, laptop projectors, and laser jet printers. Part of the difficulty in predicting the colors and tones that will reproduce lies in both the computer display, and in the display of unreproducible colors chosen for fluorophores. The use of a grayscale display for confocal channels and a LUT display to show saturated (clipped) tonal values aids visualization in the former instance and image integrity in the latter. Computer monitors used for post-processing in order to conform the image to the output device can be placed in darkened rooms, and the gamma for the display can be set to create darker shadow regions, and to control the display of color. These conditions aid in visualization of images so that blacks are set to grayer values that are more amenable to faithful reproduction. Preferences can be set in Photoshop for consistent display of colors, along with other settings to optimize use of memory. The Info window is opened so that tonal information can be shown via readouts. Images that are saved as indexed color are converted to grayscale or RGB Color, 16-bit is converted to 8-bit when desired, and colorized images from confocal software is returned to grayscale and re-colorized according to presented methods so that reproducible colors are made. Images may also be sharpened and noise may be reduced, or more than one image layered to show colocalization according to specific methods. Images are then converted to CMYK (Cyan, Magenta, Yellow and Black) for consequent assignment of pigment percentages for printing presses. Changes to single images and multiple images from image stacks are automated for efficient and consistent image processing changes. Some additional changes are done to those images destined for 3D visualization to better separate regions of interest from background. Files are returned to image stacks, saved and

  16. Characterization of wear debris from metal-on-metal hip implants during normal wear versus edge-loading conditions.

    Science.gov (United States)

    Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L

    2018-04-01

    Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (edge-loading conditions generated particles that ranged from Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.

  17. Confocal microscopy patterns in nonmelanoma skin cancer and clinical applications.

    Science.gov (United States)

    González, S; Sánchez, V; González-Rodríguez, A; Parrado, C; Ullrich, M

    2014-06-01

    Reflectance confocal microscopy is currently the most promising noninvasive diagnostic tool for studying cutaneous structures between the stratum corneum and the superficial reticular dermis. This tool gives real-time images parallel to the skin surface; the microscopic resolution is similar to that of conventional histology. Numerous studies have identified the main confocal features of various inflammatory skin diseases and tumors, demonstrating the good correlation of these features with certain dermatoscopic patterns and histologic findings. Confocal patterns and diagnostic algorithms have been shown to have high sensitivity and specificity in melanoma and nonmelanoma skin cancer. Possible present and future applications of this noninvasive technology are wide ranging and reach beyond its use in noninvasive diagnosis. This tool can also be used, for example, to evaluate dynamic skin processes that occur after UV exposure or to assess tumor response to noninvasive treatments such as photodynamic therapy. We explain the characteristic confocal features found in the main nonmelanoma skin tumors and discuss possible applications for this novel diagnostic technique in routine dermatology practice. Copyright © 2012 Elsevier España, S.L. and AEDV. All rights reserved.

  18. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.

    Science.gov (United States)

    Kinoshita, Haruyuki; Kaneda, Shohei; Fujii, Teruo; Oshima, Marie

    2007-03-01

    This paper presents a micro-flow diagnostic technique, 'high-speed confocal micro-particle image velocimetry (PIV)', and its application to the internal flow measurement of a droplet passing through a microchannel. A confocal micro-PIV system has been successfully constructed wherein a high-speed confocal scanner is combined with the conventional micro-PIV technique. The confocal micro-PIV system enables us to obtain a sequence of sharp and high-contrast cross-sectional particle images at 2000 frames s(-1). This study investigates the confocal depth, which is a significant parameter to determine the out-of-plane measurement resolution in confocal micro-PIV. Using the present confocal micro-PIV system, we can measure velocity distributions of micro-flows in a 228 microm x 171 microm region with a confocal depth of 1.88 microm. We also propose a three-dimensional velocity measurement method based on the confocal micro-PIV and the equation of continuity. This method enables us to measure three velocity components in a three-dimensional domain of micro flows. The confocal micro-PIV system is applied to the internal flow measurement of a droplet. We have measured three-dimensional distributions of three-component velocities of a droplet traveling in a 100 microm (width) x 58 microm (depth) channel. A volumetric velocity distribution inside a droplet is obtained by the confocal micro-PIV and the three-dimensional flow structure inside the droplet is investigated. The measurement results suggest that a three-dimensional and complex circulating flow is formed inside the droplet.

  19. Reflectance Confocal Microscopy in Lentigo Maligna.

    Science.gov (United States)

    Gamo, R; Pampín, A; Floristán, U

    2016-12-01

    Lentigo maligna is the most common type of facial melanoma. Diagnosis is complicated, however, as it shares clinical and dermoscopic characteristics with other cutaneous lesions of the face. Reflectance confocal microscopy is an imaging technique that permits the visualization of characteristic features of lentigo maligna. These include a disrupted honeycomb pattern and pagetoid cells with a tendency to show folliculotropism. These cells typically have a dendritic morphology, although they may also appear as round cells measuring over 20μm with atypical nuclei. Poorly defined dermal papillae and atypical cells may be seen at the dermal-epidermal junction and can form bridges resembling mitochondrial structures. Other characteristic findings include junctional swelling with atypical cells located around the follicles, resembling caput medusae. Reflectance confocal microscopy is a very useful tool for diagnosing lentigo maligna. Copyright © 2016 AEDV. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Intravital Confocal and Two-photon Imaging of Dual-color Cells and Extracellular Matrix Mimics

    Science.gov (United States)

    Bal, Ufuk; Andresen, Volker; Baggett, Brenda; Utzinger, Urs

    2013-01-01

    To optimize imaging of cells in three dimensional culture we studied confocal backscattering, Second Harmonic Generation (SHG) and autofluorescence as source of contrast in extracellular matrix (ECM) mimics and evaluated the attenuation as well as bleaching of endogenous cellular fluorescence signals. All common ECM mimics exhibit contrast observable with confocal reflectance microscopy. SHG imaging on collagen I based hydrogels provides high contrast and good optical penetration depth. Agarose is a useful embedding medium because it allows for large optical penetration and exhibits minimal autofluorescence while still providing good reflectance to detect voids in the embedding medium. We labeled breast cancer cells’ outline with DsRed2 and nucleus with eGFP. DsRed2 can be excited with confocal imaging at 568nm, and with two photon excitation (TPE) in the red and longer NIR. eGFP was excited at 488nm for confocal and in the NIR for TPE. While there is small difference in the bleaching rate for eGFP between confocal and TPE we observed significant difference for DsRed2 where bleaching is strongest during TPE in the red wavelengths and smallest during confocal imaging. After a few hundred microns depth in a collagen I hydrogel, TPE fluorescence becomes twice as strong compared to confocal imaging. PMID:23380006

  1. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications

    NARCIS (Netherlands)

    de Luca, G. M. R.; Desclos, E.; Breedijk, R. M. P.; Dolz-Edo, L.; Smits, G. J.; Bielefeld, P.; Picavet, L.; Fitzsimons, C. P.; Hoebe, R.; Manders, E. M. M.

    2017-01-01

    The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The

  2. Configurations of the Re-scan Confocal Microscope (RCM) for biomedical applications

    NARCIS (Netherlands)

    De Luca, G.M.R.; Desclos, E.; Breedijk, R.M.P.; Dolz-Edo, L.; Smits, G.J.; Nahidiazar, L.; Bielefeld, P.; Picavet, L.; Fitzsimons, C.P.; Hoebe, R.; Manders, E.M.M.

    The new high-sensitive and high-resolution technique, Re-scan Confocal Microscopy (RCM), is based on a standard confocal microscope extended with a re-scan detection unit. The re-scan unit includes a pair of re-scanning mirrors that project the emission light onto a camera in a scanning manner. The

  3. Parallel detection experiment of fluorescence confocal microscopy using DMD.

    Science.gov (United States)

    Wang, Qingqing; Zheng, Jihong; Wang, Kangni; Gui, Kun; Guo, Hanming; Zhuang, Songlin

    2016-05-01

    Parallel detection of fluorescence confocal microscopy (PDFCM) system based on Digital Micromirror Device (DMD) is reported in this paper in order to realize simultaneous multi-channel imaging and improve detection speed. DMD is added into PDFCM system, working to take replace of the single traditional pinhole in the confocal system, which divides the laser source into multiple excitation beams. The PDFCM imaging system based on DMD is experimentally set up. The multi-channel image of fluorescence signal of potato cells sample is detected by parallel lateral scanning in order to verify the feasibility of introducing the DMD into fluorescence confocal microscope. In addition, for the purpose of characterizing the microscope, the depth response curve is also acquired. The experimental result shows that in contrast to conventional microscopy, the DMD-based PDFCM system has higher axial resolution and faster detection speed, which may bring some potential benefits in the biology and medicine analysis. SCANNING 38:234-239, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  4. Multi-spectral confocal microendoscope for in-vivo imaging

    Science.gov (United States)

    Rouse, Andrew Robert

    The concept of in-vivo multi-spectral confocal microscopy is introduced. A slit-scanning multi-spectral confocal microendoscope (MCME) was built to demonstrate the technique. The MCME employs a flexible fiber-optic catheter coupled to a custom built slit-scan confocal microscope fitted with a custom built imaging spectrometer. The catheter consists of a fiber-optic imaging bundle linked to a miniature objective and focus assembly. The design and performance of the miniature objective and focus assembly are discussed. The 3mm diameter catheter may be used on its own or routed though the instrument channel of a commercial endoscope. The confocal nature of the system provides optical sectioning with 3mum lateral resolution and 30mum axial resolution. The prism based multi-spectral detection assembly is typically configured to collect 30 spectral samples over the visible chromatic range. The spectral sampling rate varies from 4nm/pixel at 490nm to 8nm/pixel at 660nm and the minimum resolvable wavelength difference varies from 7nm to 18nm over the same spectral range. Each of these characteristics are primarily dictated by the dispersive power of the prism. The MCME is designed to examine cellular structures during optical biopsy and to exploit the diagnostic information contained within the spectral domain. The primary applications for the system include diagnosis of disease in the gastro-intestinal tract and female reproductive system. Recent data from the grayscale imaging mode are presented. Preliminary multi-spectral results from phantoms, cell cultures, and excised human tissue are presented to demonstrate the potential of in-vivo multi-spectral imaging.

  5. Non-invasive analysis of hormonal variations and effect of postmenopausal Vagifem treatment on women using in vivo high wavenumber confocal Raman spectroscopy.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, A; Huang, Zhiwei

    2013-07-21

    This study aims to evaluate the feasibility of applying high wavenumber (HW) confocal Raman spectroscopy for non-invasive assessment of menopause-related hormonal changes in the cervix as well as for determining the effect of Vagifem(®) treatment on postmenopausal women with atrophic cervix. A rapid HW confocal Raman spectroscopy system coupled with a ball lens fiber-optic Raman probe was utilized for in vivo cervical tissue Raman measurements at 785 nm excitation. A total of 164 in vivo HW Raman spectra (premenopausal (n = 104), postmenopausal-prevagifem (n = 34), postmenopausal-postvagifem (n = 26)) were measured from the normal cervix of 26 patients undergoing colposcopy. We established the biochemical basis of premenopausal, postmenopausal-prevagifem and postmenopausal-postvagifem cervix using semiquantitative biomolecular modeling derived from Raman-active biochemicals (i.e., lipids, proteins and water) that play a critical role in HW Raman spectral changes associated with the menopausal process. The diagnostic algorithms developed based on partial least squares-discriminant analysis (PLS-DA) together with leave-one patient-out, cross-validation yielded the diagnostic sensitivities of 88.5%, 91.2% and 88.5%, and specificities of 91.7%, 90.8% and 99.3%, respectively, for non-invasive in vivo discrimination among premenopausal, postmenopausal-prevagifem and postmenopausal-postvagifem cervix. This work demonstrates for the first time that HW confocal Raman spectroscopy in conjunction with biomolecular modeling can be a powerful diagnostic tool for identifying hormone/menopause-related variations in the native squamous epithelium of normal cervix, as well as for assessing the effect of Vagifem treatment on postmenopausal atrophic cervix in vivo during clinical colposcopic inspections.

  6. The application of confocal technology based on polycapillary X-ray optics in surface topography

    International Nuclear Information System (INIS)

    Zhao, Guangcui; Sun, Tianxi; Liu, Zhiguo; Yuan, Hao; Li, Yude; Liu, Hehe; Zhao, Weigang; Zhang, Ruixia; Min, Qin; Peng, Song

    2013-01-01

    A confocal micro-X-ray fluorescence (MXRF) technology based on polycapillary X-ray optics was proposed for determining surface topography. This confocal topography method involves elemental sensitivity and can be used to classify the objects according to their elemental composition while obtaining their surface topography. To improve the spatial resolution of this confocal topography technology, the center of the confocal micro-volume was overlapped with the output focal spot of the polycapillary X-ray, focusing the lens in the excitation channel. The input focal spot of the X-ray lens parallel to the detection channel was used to determine the surface position of the sample. The corresponding surface adaptive algorithm was designed to obtain the surface topography. The surface topography of a ceramic chip was obtained. This confocal MXRF surface topography method could find application in the materials sciences

  7. Speckle-illuminated fluorescence confocal microscopy, using a digital micro-mirror device

    International Nuclear Information System (INIS)

    Jiang, Shi-Hong; Walker, John G

    2009-01-01

    An implementation of a speckle-illuminated fluorescence confocal microscope using a digital micro-mirror device (DMD) is described. The DMD not only projects a sequence of imaged binary speckle patterns onto the specimen at a very high frame rate but also operates as a spatial light modulator to perform real-time optical data processing. Frame averaging is accomplished by CCD charge accumulation during a single exposure. The recorded time-averaged image is a confocal image plus an unwanted non-confocal image which can be removed by recording a separate image. Experimental results with image acquisition within a fraction of a second are shown. Images of a thin biological sample are also shown to demonstrate practical application of the technique

  8. Molecular confocal laser endomicroscopy

    DEFF Research Database (Denmark)

    Karstensen, John Gásdal; Klausen, Pia Helene; Saftoiu, Adrian

    2014-01-01

    While flexible endoscopy is essential for macroscopic evaluation, confocal laser endomicroscopy (CLE) has recently emerged as an endoscopic method enabling visualization at a cellular level. Two systems are currently available, one based on miniprobes that can be inserted via a conventional...... during on-going endoscopy), a novel world of molecular evaluation opens up. The method of molecular CLE could potentially be used for estimating the expression of important receptors in carcinomas, subsequently resulting in immediate individualization of treatment regimens, but also for improving...

  9. Fungal keratitis - improving diagnostics by confocal microscopy

    DEFF Research Database (Denmark)

    Nielsen, Esben; Heegaard, S; Prause, J U

    2013-01-01

    Purpose: Introducing a simple image grading system to support the interpretation of in vivo confocal microscopy (IVCM) images in filamentous fungal keratitis. Setting: Clinical and confocal studies took place at the Department of Ophthalmology, Aarhus University Hospital, Denmark. Histopathological...... analysis was performed at the Eye Pathology Institute, Department of Neuroscience and Pharmacology, University of Copenhagen, Denmark. Methods: A recent series of consecutive patients with filamentous fungal keratitis is presented to demonstrate the results from in-house IVCM. Based upon our experience...... with IVCM and previously published images, we composed a grading system for interpreting IVCM images of filamentous fungal keratitis. Results: A recent case series of filamentous fungal keratitis from 2011 to 2012 was examined. There were 3 male and 3 female patients. Mean age was 44.5 years (range 12...

  10. Microscopia confocal in vivo na cistinose: relato de caso

    Directory of Open Access Journals (Sweden)

    Victor Gustavo

    2004-01-01

    Full Text Available A cistinose é doença autossômica recessiva rara caracterizada pelo acúmulo do aminoácido cistina livre dentro dos lisossomos e geralmente é fatal na primeira década de vida na ausência de transplante renal. O presente estudo tem por objetivo relatar os achados da microscopia confocal in vivo em paciente adulto com cistinose infantil. O exame de microscopia confocal in vivo revelou que há diferenças quanto à intensidade de acometimento, tamanho e forma dos depósitos nas diversas camadas corneanas.

  11. Fluorescence confocal polarizing microscopy: Three-dimensional ...

    Indian Academy of Sciences (India)

    journal of. August 2003 physics pp. 373–384. Fluorescence confocal polarizing ... and focal conic domains in flat samples of lamellar LCs are practically indistinguishable. ... or less) LC layer confined between two transparent plates. ... in studies of electro-optic effects such as the Frederiks effect, defects, surface anchoring,.

  12. Lateral resolution testing of a novel developed confocal microscopic imaging system

    Science.gov (United States)

    Zhang, Xin; Zhang, Yunhai; Chang, Jian; Huang, Wei; Xue, Xiaojun; Xiao, Yun

    2015-10-01

    Laser scanning confocal microscope has been widely used in biology, medicine and material science owing to its advantages of high resolution and tomographic imaging. Based on a set of confirmatory experiments and system design, a novel confocal microscopic imaging system is developed. The system is composed of a conventional fluorescence microscope and a confocal scanning unit. In the scanning unit a laser beam coupling module provides four different wavelengths 405nm 488nm 561nm and 638nm which can excite a variety of dyes. The system works in spot-to-spot scanning mode with a two-dimensional galvanometer. A 50 microns pinhole is used to guarantee that stray light is blocked and only the fluorescence signal from the focal point can be received . The three-channel spectral splitter is used to perform fluorescence imaging at three different working wavelengths simultaneously. The rat kidney tissue slice is imaged using the developed confocal microscopic imaging system. Nucleues labeled by DAPI and kidney spherule curved pipe labeled by Alexa Fluor 488 can be imaged clearly and respectively, realizing the distinction between the different components of mouse kidney tissue. The three-dimensional tomographic imaging of mouse kidney tissue is reconstructed by several two-dimensional images obtained in different depths. At last the resolution of the confocal microscopic imaging system is tested quantitatively. The experimental result shows that the system can achieve lateral resolution priority to 230nm.

  13. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    International Nuclear Information System (INIS)

    Späth, Andreas; Raabe, Jörg; Fink, Rainer H.

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed

  14. Confocal soft X-ray scanning transmission microscopy: setup, alignment procedure and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Späth, Andreas [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Raabe, Jörg [Paul Scherrer Institut, 5232 Villigen (Switzerland); Fink, Rainer H., E-mail: rainer.fink@fau.de [Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany); Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, 91058 Erlangen (Germany)

    2015-01-01

    A conventional STXM setup has been upgraded with a second micro zone plate and aligned to confocal geometry. Two confocal geometries (in-line and off-axis) have been evaluated and a discussion on prospects and limitations is presented. Zone-plate-based scanning transmission soft X-ray microspectroscopy (STXM) is a well established technique for high-contrast imaging of sufficiently transparent specimens (e.g. ultrathin biological tissues, polymer materials, archaeometric specimens or magnetic thin films) with spatial resolutions in the regime of 20 nm and high spectroscopic or chemical sensitivity. However, due to the relatively large depth of focus of zone plates, the resolution of STXM along the optical axis so far stays unambiguously behind for thicker X-ray transparent specimens. This challenge can be addressed by the implementation of a second zone plate in the detection pathway of the beam, resulting in a confocal arrangement. Within this paper a first proof-of-principle study for a confocal STXM (cSTXM) and an elaborate alignment procedure in transmission and fluorescence geometry are presented. Based on first confocal soft X-ray micrographs of well known specimens, the advantage and limitation of cSTXM as well as further development potentials for future applications are discussed.

  15. Calcitonin serum levels in normal and in pathological conditions

    International Nuclear Information System (INIS)

    Ziliotto, D.; Luisetto, G.; Zanatta, G.P.; Cataldi, F.; Zangari, M.; Gangemi, M.; Melanotte, P.L.; Caira, S.

    1985-01-01

    Radioimmunoassay of calcitonin (CT) gives variable results because of differences in sensitivity and specificity of antibody preparations and because of the known immunoheterogeneity of circulating CT. The difficulties in interpretation of data has hindered our understanding of normal and abnormal CT physiology. The authors separated the biologically active CT monomer (CTm) from the higher molecular weight biologically inactive forms before RIA. It makes it possible to re-evaluate the behaviour of CT in physiological conditions and to study its changes in diseases in which bone and mineral metabolism are in some way compromised. (Auth.)

  16. Histopathological confirmation of similar intramucosal distribution of fluorescein in both intravenous administration and local mucosal application for probe-based confocal laser endomicroscopy of the normal stomach.

    Science.gov (United States)

    Nonaka, Kouichi; Ohata, Ken; Ban, Shinichi; Ichihara, Shin; Takasugi, Rumi; Minato, Yohei; Tashima, Tomoaki; Matsuyama, Yasushi; Takita, Maiko; Matsuhashi, Nobuyuki; Neumann, Helmut

    2015-12-16

    Probe-based confocal laser endomicroscopy (pCLE) is capable of acquiring in vivo magnified cross-section images of the gastric mucosa. Intravenous injection of fluorescein sodium is used for confocal imaging. However, it is still under debate if local administration of the dye to the mucosa is also effective for confocal imaging as it is not yet clear if topical application also reveals the intramucosal distribution of fluorescein. The objective of this study was to evaluate the intramucosal distribution of fluorescein sodium after topical application and to compare the distribution to the conventional intravenous injection used for confocal imaging. pCLE of the stomach uninfected with Helicobacter pylori was performed in a healthy male employing intravenous administration and local mucosal application of fluorescein. The mucosa of the lower gastric body was biopsied 1 min and 5 min after intravenous administration or local mucosal application of fluorescein, and the distribution of fluorescein in the biopsy samples was examined histologically. Green fluorescence was already observed in the cytoplasm of fundic glandular cells in the biopsied deep mucosa 1 min after local mucosal application of fluorescein. It was also observed in the foveolar lumen and inter-foveolar lamina propria, although it was noted at only a few sites. In the tissue biopsied 5 min after the local mucosal application of fluorescein, green fluorescence was more frequently noted in the cytoplasm of fundic glandular cells than in that 1 min after the local mucosal application of fluorescein, although obvious green fluorescence was not identified in the foveolar lumen or inter-foveolar lamina propria. The distribution of intravenously administered fluorescein in the cytoplasm of fundic glandular cells was also clearly observed similarly to that after local mucosal application of fluorescein. Green fluorescence in more cells was observed in many cells 5 min after intravenous administration compared

  17. Comparative study; physiological and biochemical parameters of normal and induced dehydrated condition of rabbits

    International Nuclear Information System (INIS)

    Bashir, S.; Bukhari, I.

    2008-01-01

    Biochemical and physiological parameters like body weight, blood pH. Blood glucose, total lipids total protein, globulin, albumin and albumin/globulin ratio were determined in twelve rabbits each normal and after the induction of diseased condition i.e. dehydration. Statistically significant differences were identified when the comparison made between normal rabbits and their respective dehydrated group. Blood glucose total lipid packed cell. Volume and globulin increased significantly where where as body weight, albumin and albumin/globulin ratio decreased significantly. These differences in the physiological and biochemical parameters in disease induced condition require the necessity for analyzing this condition for the changes in the pharmacokinetics parameter like, absorption distribution metabolism and excretion leading to alteration in the pharmacokinetics of drug. (author)

  18. Quantitative comparison of X-ray fluorescence microtomography setups: Standard and confocal collimator apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Chukalina, M. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail: marina@ipmt-hpm.ac.ru; Simionovici, A. [Laboratoire de Geophysique Interne et Tectonophysique, University of Grenoble, BP 53, 38041, Grenoble (France)], E-mail: alexandre.simionovici@ujf-grenoble.fr; Zaitsev, S. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail: zaitsev@ipmt-hpm.ac.ru; Vanegas, C.J. [Institute of Microelectronics Technology RAS, 142432, Chernogolovka, Moscow District (Russian Federation)], E-mail: vanegas@ipmt-hpm.ac.ru

    2007-07-15

    Recently, there has been a renewed interest for fluorescence spectroscopy, as provided by modern setups which allow 2D and 3D imaging of elemental distributions. Two directions are currently under development: the SR-based fluorescence tomography in polar scanning geometry, provided by the new generation of X-ray microprobes and the confocal scanning geometry, which can be fielded in both SR and laboratory environments. The new probes bring forth a new age in fluorescence spectrometry: high resolution, high intensity and high sensitivity which allow 3D elemental mapping of volumes. The major task now is the development of these complex tools into fully quantitative probes, reproducible and straightforward for general use. In this work we analyze two X-ray fluorescence microtomography techniques: an apparatus tomography using a confocal collimator for the data collection and a standard first generation Computed Tomography (CT) in the parallel scanning scheme. We calculate the deposited dose (amount of energy deposited and distributed in the sample during the data collection time) and find the conditions for the choice of the tomography scheme.

  19. Actin restructuring during Salmonella typhimurium infection investigated by confocal and super-resolution microscopy

    Science.gov (United States)

    Han, Jason J.; Kunde, Yuliya A.; Hong-Geller, Elizabeth; Werner, James H.

    2014-01-01

    We have used super-resolution optical microscopy and confocal microscopy to visualize the cytoskeletal restructuring of HeLa cells that accompanies and enables Salmonella typhimurium internalization. Herein, we report the use of confocal microscopy to verify and explore infection conditions that would be compatible with super-resolution optical microscopy, using Alexa-488 labeled phalloidin to stain the actin cytoskeletal network. While it is well known that actin restructuring and cytoskeletal rearrangements often accompany and assist in bacterial infection, most studies have employed conventional diffraction-limited fluorescence microscopy to explore these changes. Here we show that the superior spatial resolution provided by single-molecule localization methods (such as direct stochastic optical reconstruction microscopy) enables more precise visualization of the nanoscale changes in the actin cytoskeleton that accompany bacterial infection. In particular, we found that a thin (100-nm) ring of actin often surrounds an invading bacteria 10 to 20 min postinfection, with this ring being transitory in nature. We estimate that a few hundred monofilaments of actin surround the S. typhimurium in this heretofore unreported bacterial internalization intermediate.

  20. Postnatal development of the hippocampal dentate gyrus under normal and experimental conditions

    International Nuclear Information System (INIS)

    Altman, J.; Bayer, S.

    Studies on postnatal maturation of the dentate gyrus are reviewed. Some topics discussed are: normal development of the dentate gyrus, cytogenesis, morphogenesis, synaptogenesis, gleogenesis, myelogenesis, development of the gyrus under experimental conditions, and effects of x radiation on cytogenesis and morphogenesis

  1. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions

    Directory of Open Access Journals (Sweden)

    Dong Joo Yang

    2016-07-01

    Full Text Available Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK, c-Jun N-terminal kinases (JNK, and extracellular signal-regulated kinases (Erk, underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.

  2. Classifying distinct basal cell carcinoma subtype by means of dermatoscopy and reflectance confocal microscopy.

    Science.gov (United States)

    Longo, Caterina; Lallas, Aimilios; Kyrgidis, Athanassios; Rabinovitz, Harold; Moscarella, Elvira; Ciardo, Silvana; Zalaudek, Iris; Oliviero, Margaret; Losi, Amanda; Gonzalez, Salvador; Guitera, Pascale; Piana, Simonetta; Argenziano, Giuseppe; Pellacani, Giovanni

    2014-10-01

    The current guidelines for the management of basal cell carcinoma (BCC) suggest a different therapeutic approach according to histopathologic subtype. Although dermatoscopic and confocal criteria of BCC have been investigated, no specific studies were performed to evaluate the distinct reflectance confocal microscopy (RCM) aspects of BCC subtypes. To define the specific dermatoscopic and confocal criteria for delineating different BCC subtypes. Dermatoscopic and confocal images of histopathologically confirmed BCCs were retrospectively evaluated for the presence of predefined criteria. Frequencies of dermatoscopic and confocal parameters are provided. Univariate and adjusted odds ratios were calculated. Discriminant analyses were performed to define the independent confocal criteria for distinct BCC subtypes. Eighty-eight BCCs were included. Dermatoscopically, superficial BCCs (n=44) were primarily typified by the presence of fine telangiectasia, multiple erosions, leaf-like structures, and revealed cords connected to the epidermis and epidermal streaming upon RCM. Nodular BCCs (n=22) featured the classic dermatoscopic features and well outlined large basaloid islands upon RCM. Infiltrative BCCs (n=22) featured structureless, shiny red areas, fine telangiectasia, and arborizing vessels on dermatoscopy and dark silhouettes upon RCM. The retrospective design. Dermatoscopy and confocal microscopy can reliably classify different BCC subtypes. Copyright © 2014 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Confocal endomicroscopy: Is it time to move on?

    Science.gov (United States)

    Robles-Medranda, Carlos

    2016-01-10

    Confocal laser endomicroscopy permits in-vivo microscopy evaluation during endoscopy procedures. It can be used in all the parts of the gastrointestinal tract and includes: Esophagus, stomach, small bowel, colon, biliary tract through and endoscopic retrograde cholangiopancreatography and pancreas through needles during endoscopic ultrasound procedures. Many researches demonstrated a high correlation of results between confocal laser endomicroscopy and histopathology in the diagnosis of gastrointestinal lesions; with accuracy in about 86% to 96%. Moreover, in spite that histopathology remains the gold-standard technique for final diagnosis of any diseases; a considerable number of misdiagnosis rate could be present due to many factors such as interpretation mistakes, biopsy site inaccuracy, or number of biopsies. Theoretically; with the diagnostic accuracy rates of confocal laser endomicroscopy could help in a daily practice to improve diagnosis and treatment management of the patients. However, it is still not routinely used in the clinical practice due to many factors such as cost of the procedure, lack of codification and reimbursement in some countries, absence of standard of care indications, availability, physician image-interpretation training, medico-legal problems, and the role of the pathologist. These limitations are relative, and solutions could be found based on new researches focused to solve these barriers.

  4. Bright-field scanning confocal electron microscopy using a double aberration-corrected transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng; Behan, Gavin; Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Nellist, Peter D., E-mail: peter.nellist@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Cosgriff, Eireann C.; D' Alfonso, Adrian J.; Morgan, Andrew J.; Allen, Leslie J. [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Hashimoto, Ayako [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Takeguchi, Masaki [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Mitsuishi, Kazutaka [Advanced Nano-characterization Center, National Institute for Materials Science (NIMS), 3-13 Sakura, Tsukuba 305-0003 (Japan); Quantum Dot Research Center, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Shimojo, Masayuki [High Voltage Electron Microscopy Station, NIMS, 3-13 Sakura, Tsukuba 305-0003 (Japan); Advanced Science Research Laboratory, Saitama Institute of Technology, 1690 Fusaiji, Fukaya 369-0293 (Japan)

    2011-06-15

    Scanning confocal electron microscopy (SCEM) offers a mechanism for three-dimensional imaging of materials, which makes use of the reduced depth of field in an aberration-corrected transmission electron microscope. The simplest configuration of SCEM is the bright-field mode. In this paper we present experimental data and simulations showing the form of bright-field SCEM images. We show that the depth dependence of the three-dimensional image can be explained in terms of two-dimensional images formed in the detector plane. For a crystalline sample, this so-called probe image is shown to be similar to a conventional diffraction pattern. Experimental results and simulations show how the diffracted probes in this image are elongated in thicker crystals and the use of this elongation to estimate sample thickness is explored. -- Research Highlights: {yields} The confocal probe image in a scanning confocal electron microscopy image reveals information about the thickness and height of the crystalline layer. {yields} The form of the contrast in a three-dimensional bright-field scanning confocal electron microscopy image can be explained in terms of the confocal probe image. {yields} Despite the complicated form of the contrast in bright-field scanning confocal electron microscopy, we see that depth information is transferred on a 10 nm scale.

  5. Latest developments and opportunities for 3D analysis of biological samples by confocal μ-XRF

    International Nuclear Information System (INIS)

    Perez, Roberto D.; Sanchez, Hector J.; Perez, Carlos A.; Rubio, Marcelo

    2010-01-01

    X-ray fluorescence analysis performed with a primary radiation focused in the micrometer range is known as micro-X-ray fluorescence (μ-XRF). It is characterized by a penetration depth higher than other micro-analytical methods, reaching hundreds of micrometers in biological samples. This characteristic of the X-ray beam can be employed in 3D analysis. An innovative method to perform 3D analysis by μ-XRF is the so-called confocal setup. The confocal setup consists of X-ray lenses in the excitation as well as in the detection channel. In this configuration, a micro-volume defined by the overlap of the foci of both X-ray lenses is analyzed. Scanning this micro-volume through the sample can be used to perform a study in three dimensions. At present, X-ray lenses used in confocal μ-XRF experiments are mainly glass capillaries and polycapillaries. Glass capillaries are used in the excitation channel with sources of high photon flux like synchrotron radiation. Half polycapillaries or conical polycapillary concentrators are used almost exclusively in the detection channel. Spatial resolution of the confocal μ-XRF depends on the dimensions of the foci of both X-ray lenses. The overlap of these foci forms an ellipsoid which is the probing volume of the confocal setup. The axis length of the probing volume reported in confocal μ-XRF experiments are of order of few tens of micrometer. In our confocal setup, we used a commercial glass monocapillary in the excitation channel and a monolithic half polycapillary in the detection channel. The polycapillary was home-made by means of drawing of multibundles of glass capillaries in a heating furnace. The experiment was carried out at the beamline D09B-XRF of the Synchrotron Light National Laboratory (Laboratorio Nacional de Luz Sincrotron, LNLS) using white beam. A model for the theoretical description of X-ray fluorescence intensity registered by confocal μ-XRF was introduced by Malzer and Kanngieβer [2005. A model for the

  6. Confocal laser endomicroscopy for diagnosis of Barrett´s esophagus

    Directory of Open Access Journals (Sweden)

    Helmut eNeumann

    2012-05-01

    Full Text Available Barrett´s esophagus (BE is established as a premalignant condition in the distal esophagus. Current surveillance guidelines recommend random biopsies every 1-2 cm at intervals of 3-5 years. Advanced endoscopic imaging of BE underwent several technical revolutions within the last decade including broad-field (red-flag techniques (e.g. chromoendoscopy and small-field techniques with confocal laser endomicroscopy (CLE at the forefront. In this review we will focus on advanced endoscopic imaging using CLE for the diagnosis and characterization of BE and associated neoplasia. In addition, we will critically discuss the technique of CLE and provide some tricks and hints for the daily routine practice of CLE for diagnosis of BE.

  7. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: LASER POWER MEASUREMENTS

    Science.gov (United States)

    Laser power abstract The reliability of the confocal laser-scanning microscope (CLSM) to obtain intensity measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. The laser power test appears to be one ...

  8. Confocal Microscopy

    Science.gov (United States)

    Liu, Jian; Tan, Jiubin

    2016-12-01

    The confocal microscope is appropriate for imaging cells or the measurement of industrial artefacts. However, junior researchers and instrument users sometimes misuse imaging concepts and metrological characteristics, such as position resolution in industrial metrology and scale resolution in bio-imaging. And, metrological characteristics or influence factors in 3D measurement such as height assessment error caused by 3D coupling effect are so far not yet identified. In this book, the authors outline their practices by the working experiences on standardization and system design. This book assumes little previous knowledge of optics, but rich experience in engineering of industrial measurements, in particular with profile metrology or areal surface topography will be very helpful to understand the theoretical concerns and value of the technological advances. It should be useful for graduate students or researchers as extended reading material, as well as microscope users alongside their handbook.

  9. Transient gels in colloid-polymer mixtures studied with fluorescence confocal scanning laser microscopy

    NARCIS (Netherlands)

    Verhaegh, N.A.M.; Asnaghi, D.; Lekkerkerker, H.N.W.

    1999-01-01

    We study the structure and the time evolution of transient gels formed in colloid-polymer mixtures, by means of uorescence Confocal Scanning Laser Microscopy (CSLM). This technique is used in conjunction with novel colloidal silica particles containing a uorescent core. The confocal micrographs

  10. 3D image restoration for confocal microscopy: toward a wavelet deconvolution for the study of complex biological structures

    Science.gov (United States)

    Boutet de Monvel, Jacques; Le Calvez, Sophie; Ulfendahl, Mats

    2000-05-01

    Image restoration algorithms provide efficient tools for recovering part of the information lost in the imaging process of a microscope. We describe recent progress in the application of deconvolution to confocal microscopy. The point spread function of a Biorad-MRC1024 confocal microscope was measured under various imaging conditions, and used to process 3D-confocal images acquired in an intact preparation of the inner ear developed at Karolinska Institutet. Using these experiments we investigate the application of denoising methods based on wavelet analysis as a natural regularization of the deconvolution process. Within the Bayesian approach to image restoration, we compare wavelet denoising with the use of a maximum entropy constraint as another natural regularization method. Numerical experiments performed with test images show a clear advantage of the wavelet denoising approach, allowing to `cool down' the image with respect to the signal, while suppressing much of the fine-scale artifacts appearing during deconvolution due to the presence of noise, incomplete knowledge of the point spread function, or undersampling problems. We further describe a natural development of this approach, which consists of performing the Bayesian inference directly in the wavelet domain.

  11. EUS-Guided Needle-Based Confocal Laser Endomicroscopy

    DEFF Research Database (Denmark)

    Bhutani, Manoop S; Koduru, Pramoda; Joshi, Virendra

    2015-01-01

    Endoscopic ultrasound (EUS) has emerged as an excellent tool for imaging the gastrointestinal tract, as well as surrounding structures. EUS-guided fine-needle aspiration (EUS-FNA) has become the standard of care for the tissue sampling of a variety of masses and lymph nodes within and around...... the gut, providing further diagnostic and staging information. Confocal laser endomicroscopy (CLE) is a novel endoscopic method that enables imaging at a subcellular level of resolution during endoscopy, allowing up to 1000-fold magnification of tissue and providing an optical biopsy. A new procedure...... that has been developed in the past few years is needle-based confocal laser endomicroscopy (nCLE), which involves a mini-CLE probe that can be passed through a 1 9-gauge needle during EUS-FNA. This enables the real-time visualization of tissue at a microscopic level, with the potential to further improve...

  12. Characterization of the main error sources of chromatic confocal probes for dimensional measurement

    International Nuclear Information System (INIS)

    Nouira, H; El-Hayek, N; Yuan, X; Anwer, N

    2014-01-01

    Chromatic confocal probes are increasingly used in high-precision dimensional metrology applications such as roughness, form, thickness and surface profile measurements; however, their measurement behaviour is not well understood and must be characterized at a nanometre level. This paper provides a calibration bench for the characterization of two chromatic confocal probes of 20 and 350 µm travel ranges. The metrology loop that includes the chromatic confocal probe is stable and enables measurement repeatability at the nanometer level. With the proposed system, the major error sources, such as the relative axial and radial motions of the probe with respect to the sample, the material, colour and roughness of the measured sample, the relative deviation/tilt of the probe and the scanning speed are identified. Experimental test results show that the chromatic confocal probes are sensitive to these errors and that their measurement behaviour is highly dependent on them. (paper)

  13. Observation of regenerated fungiform taste buds after severing the chorda tympani nerve using confocal laser scanning microscopy in vivo.

    Science.gov (United States)

    Saito, Takehisa; Ito, Tetsufumi; Kato, Yuji; Yamada, Takechiyo; Manabe, Yasuhiro; Narita, Norihiko

    2014-03-01

    To evaluate whether regenerated fungiform taste buds after severing the chorda tympani nerve can be detected by confocal laser scanning microscopy in vivo. Retrospective study. University hospital. Six patients with a normal gustatory function (Group 1), 9 patients with taste function recovery after severing the CTN (Group 2), and 5 patients without taste function recovery (Group 3) were included. In Groups 2 and 3, canal wall up (closed) tympanoplasty or canal wall down with canal reconstruction tympanoplasty was performed in all patients. Diagnostic. The severed nerves were readapted or approximated on the temporalis muscle fascia used to reconstruct the eardrum during surgery. Preoperative and postoperative gustatory functions were assessed using electrogustometry. Twelve to 260 months after severing the CTN, the surface of the midlateral region of the tongue was observed with a confocal laser microscope. EGM thresholds showed no response 1 month after surgery in all patients of Groups 2 and 3. In Group 2, EGM thresholds showed recovery 1 to 2 years after surgery and before confocal microscopy (-1.3 ± 6.5 dB). There was a significant difference between Group 1 (-5.7 ± 2.0 dB; p taste buds were observed in each FP, and 55 (79.7%) of 69 FP contained at least 1 taste bud. The mean number of taste bud per papilla was 3.7 ± 3.6. In patients with a recovered taste function (Group 2), 0 to 8 taste buds were observed in each FP. In this group, 54 (56.2%) of 94 FP contained at least 1 taste bud. The mean number of taste bud per papilla was 2.0 ± 2.2 (p taste bud was observed. Regenerated fungiform taste bud could be observed in vivo using confocal laser scanning microscopy, indicating that regenerated taste bud can be detected without biopsy.

  14. Intraoperative confocal microscopy in the visualization of 5-aminolevulinic acid fluorescence in low-grade gliomas.

    Science.gov (United States)

    Sanai, Nader; Snyder, Laura A; Honea, Norissa J; Coons, Stephen W; Eschbacher, Jennifer M; Smith, Kris A; Spetzler, Robert F

    2011-10-01

    Greater extent of resection (EOR) for patients with low-grade glioma (LGG) corresponds with improved clinical outcome, yet remains a central challenge to the neurosurgical oncologist. Although 5-aminolevulinic acid (5-ALA)-induced tumor fluorescence is a strategy that can improve EOR in gliomas, only glioblastomas routinely fluoresce following 5-ALA administration. Intraoperative confocal microscopy adapts conventional confocal technology to a handheld probe that provides real-time fluorescent imaging at up to 1000× magnification. The authors report a combined approach in which intraoperative confocal microscopy is used to visualize 5-ALA tumor fluorescence in LGGs during the course of microsurgical resection. Following 5-ALA administration, patients with newly diagnosed LGG underwent microsurgical resection. Intraoperative confocal microscopy was conducted at the following points: 1) initial encounter with the tumor; 2) the midpoint of tumor resection; and 3) the presumed brain-tumor interface. Histopathological analysis of these sites correlated tumor infiltration with intraoperative cellular tumor fluorescence. Ten consecutive patients with WHO Grades I and II gliomas underwent microsurgical resection with 5-ALA and intraoperative confocal microscopy. Macroscopic tumor fluorescence was not evident in any patient. However, in each case, intraoperative confocal microscopy identified tumor fluorescence at a cellular level, a finding that corresponded to tumor infiltration on matched histological analyses. Intraoperative confocal microscopy can visualize cellular 5-ALA-induced tumor fluorescence within LGGs and at the brain-tumor interface. To assess the clinical value of 5-ALA for high-grade gliomas in conjunction with neuronavigation, and for LGGs in combination with intraoperative confocal microscopy and neuronavigation, a Phase IIIa randomized placebo-controlled trial (BALANCE) is underway at the authors' institution.

  15. Application of the laser scanning confocal microscope in fluorescent film sensor research

    Science.gov (United States)

    Zhang, Hongyan; Liu, Wei-Min; Zhao, Wen-Wen; Dai, Qing; Wang, Peng-Fei

    2010-10-01

    Confocal microscopy offers several advantages over conventional optical microscopy; we show an experimental investigation laser scanning confocal microscope as a tool to be used in cubic boron nitride (cBN) film-based fluorescent sensor research. Cubic boron nitride cBN film sensors are modified with dansyl chloride and rhodamine B isothiocyanate respectively. Fluorescent modification quality on the cubic boron nitride film is clearly express and the sensor ability to Hg2+ cations and pH are investigated in detail. We evidence the rhodamine B isothiocyanate modified quality on cBN surface is much better than that of dansyl chloride. And laser scanning confocal microscope has potential application lighttight fundus film fluorescent sensor research.

  16. Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging.

    Science.gov (United States)

    Zhao, Ming; Li, Yu; Peng, Leilei

    2014-05-05

    We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

  17. 3D Image Analysis of Geomaterials using Confocal Microscopy

    Science.gov (United States)

    Mulukutla, G.; Proussevitch, A.; Sahagian, D.

    2009-05-01

    Confocal microscopy is one of the most significant advances in optical microscopy of the last century. It is widely used in biological sciences but its application to geomaterials lingers due to a number of technical problems. Potentially the technique can perform non-invasive testing on a laser illuminated sample that fluoresces using a unique optical sectioning capability that rejects out-of-focus light reaching the confocal aperture. Fluorescence in geomaterials is commonly induced using epoxy doped with a fluorochrome that is impregnated into the sample to enable discrimination of various features such as void space or material boundaries. However, for many geomaterials, this method cannot be used because they do not naturally fluoresce and because epoxy cannot be impregnated into inaccessible parts of the sample due to lack of permeability. As a result, the confocal images of most geomaterials that have not been pre-processed with extensive sample preparation techniques are of poor quality and lack the necessary image and edge contrast necessary to apply any commonly used segmentation techniques to conduct any quantitative study of its features such as vesicularity, internal structure, etc. In our present work, we are developing a methodology to conduct a quantitative 3D analysis of images of geomaterials collected using a confocal microscope with minimal amount of prior sample preparation and no addition of fluorescence. Two sample geomaterials, a volcanic melt sample and a crystal chip containing fluid inclusions are used to assess the feasibility of the method. A step-by-step process of image analysis includes application of image filtration to enhance the edges or material interfaces and is based on two segmentation techniques: geodesic active contours and region competition. Both techniques have been applied extensively to the analysis of medical MRI images to segment anatomical structures. Preliminary analysis suggests that there is distortion in the

  18. Reflectance confocal microscopy features of thin versus thick melanomas.

    Science.gov (United States)

    Kardynal, Agnieszka; Olszewska, Małgorzata; de Carvalho, Nathalie; Walecka, Irena; Pellacani, Giovanni; Rudnicka, Lidia

    2018-01-24

    In vivo reflectance confocal microscopy (RCM) plays an increasingly important role in differential diagnosis of melanoma. The aim of the study was to assess typical confocal features of thin (≤1mm according to Breslow index) versus thick (>1mm) melanomas. 30 patients with histopathologically confirmed cutaneous melanoma were included in the study. Reflectance confocal microscopy was performed with Vivascope equipment prior to excision. Fifteen melanomas were thin (Breslow thickness ≤ 1mm) and 15 were thick melanomas (Breslow thickness >1mm). In the RCM examination, the following features were more frequently observed in thin compared to thick melanomas: edged papillae (26.7% vs 0%, p=0.032) and areas with honeycomb or cobblestone pattern (33.3% vs 6.7%, p=0.068). Both features are present in benign melanocytic lesions, so in melanoma are good prognostic factors. The group of thick melanomas compared to the group of thin melanomas in the RCM images presented with greater frequency of roundish cells (100% vs 40%, p=0.001), non-edged papillae (100% vs 60%, p=0.006), numerous pagetoid cells (73.3% vs 33.3%, p=0.028), numerous atypical cells at dermal-epidermal junction (53.3% vs 20%, p=0.058) and epidermal disarray (93.3% vs 66.7%, p=0.068). Non-invasive imaging methods helps in deepening of knowledge about the evolution and biology of melanoma. The most characteristic features for thin melanomas in confocal examination are: fragments of cobblestone or honeycomb pattern and edged papillae (as good prognostic factors). The features of thick melanomas in RCM examination are: roundish cells, non-edged papillae, numerous pagetoid cells at dermal-epidermal junction and epidermal disarray.

  19. Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions.

    Directory of Open Access Journals (Sweden)

    Valéria Mafra

    Full Text Available Real-time reverse transcription PCR (RT-qPCR has emerged as an accurate and widely used technique for expression profiling of selected genes. However, obtaining reliable measurements depends on the selection of appropriate reference genes for gene expression normalization. The aim of this work was to assess the expression stability of 15 candidate genes to determine which set of reference genes is best suited for transcript normalization in citrus in different tissues and organs and leaves challenged with five pathogens (Alternaria alternata, Phytophthora parasitica, Xylella fastidiosa and Candidatus Liberibacter asiaticus. We tested traditional genes used for transcript normalization in citrus and orthologs of Arabidopsis thaliana genes described as superior reference genes based on transcriptome data. geNorm and NormFinder algorithms were used to find the best reference genes to normalize all samples and conditions tested. Additionally, each biotic stress was individually analyzed by geNorm. In general, FBOX (encoding a member of the F-box family and GAPC2 (GAPDH was the most stable candidate gene set assessed under the different conditions and subsets tested, while CYP (cyclophilin, TUB (tubulin and CtP (cathepsin were the least stably expressed genes found. Validation of the best suitable reference genes for normalizing the expression level of the WRKY70 transcription factor in leaves infected with Candidatus Liberibacter asiaticus showed that arbitrary use of reference genes without previous testing could lead to misinterpretation of data. Our results revealed FBOX, SAND (a SAND family protein, GAPC2 and UPL7 (ubiquitin protein ligase 7 to be superior reference genes, and we recommend their use in studies of gene expression in citrus species and relatives. This work constitutes the first systematic analysis for the selection of superior reference genes for transcript normalization in different citrus organs and under biotic stress.

  20. Superresolution upgrade for confocal spinning disk systems using image scanning microscopy (Conference Presentation)

    Science.gov (United States)

    Isbaner, Sebastian; Hähnel, Dirk; Gregor, Ingo; Enderlein, Jörg

    2017-02-01

    Confocal Spinning Disk Systems are widely used for 3D cell imaging because they offer the advantage of optical sectioning at high framerates and are easy to use. However, as in confocal microscopy, the imaging resolution is diffraction limited, which can be theoretically improved by a factor of 2 using the principle of Image Scanning Microscopy (ISM) [1]. ISM with a Confocal Spinning Disk setup (CSDISM) has been shown to improve contrast as well as lateral resolution (FWHM) from 201 +/- 20 nm to 130 +/- 10 nm at 488 nm excitation. A minimum total acquisition time of one second per ISM image makes this method highly suitable for 3D live cell imaging [2]. Here, we present a multicolor implementation of CSDISM for the popular Micro-Manager Open Source Microscopy platform. Since changes in the optical path are not necessary, this will allow any researcher to easily upgrade their standard Confocal Spinning Disk system at remarkable low cost ( 5000 USD) with an ISM superresolution option. [1]. Müller, C.B. and Enderlein, J. Image Scanning Microscopy. Physical Review Letters 104, (2010). [2]. Schulz, O. et al. Resolution doubling in fluorescence microscopy with confocal spinning-disk image scanning microscopy. Proceedings of the National Academy of Sciences of the United States of America 110, 21000-5 (2013).

  1. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment

    Science.gov (United States)

    Nimchuk, Zachary L.; Perdue, Tony D.

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory. PMID:28579995

  2. Live Imaging of Shoot Meristems on an Inverted Confocal Microscope Using an Objective Lens Inverter Attachment.

    Science.gov (United States)

    Nimchuk, Zachary L; Perdue, Tony D

    2017-01-01

    Live imaging of above ground meristems can lead to new insights in plant development not possible from static imaging of fixed tissue. The use of an upright confocal microscope offers several technical and biological advantages for live imaging floral or shoot meristems. However, many departments and core facilities possess only inverted confocal microscopes and lack the funding for an additional upright confocal microscope. Here we show that imaging of living apical meristems can be performed on existing inverted confocal microscopes with the use of an affordable and detachable InverterScope accessory.

  3. Microscopia confocal de la córnea en facoemulsificación Confocal microscopy of the cornea on phacoemulsification

    Directory of Open Access Journals (Sweden)

    Juan Raúl Hernández Silva

    2011-12-01

    Full Text Available Objetivo: Determinar los cambios estructurales de la córnea en la cirugía de catarata por facoemulsificación sin complicaciones. Métodos: Se realizó un estudio prospectivo de pacientes operados de catarata por facoemulsificación coaxial por la técnica de pre chop sin complicaciones. A estos se les realizó microscopia confocal de la córnea con el CONFOSCAN 4 (Nidek Technologies con el objetivo de 40x y adaptador Z-Ring. Se realizó el estudio en el preoperatorio y en el posoperatorio (a las 24 horas, después de una semana, de un mes y a los tres meses. Resultados: Se demostraron cambios estructurales en la córnea como células epiteliales con núcleos hiperreflectivos alargadas en ocasiones y áreas de hiperreflectividad anómala a las 24 horas del posoperatorio. Persistieron queratocitos activados y la disminución de la hiperreflectividad de la matriz extracelular que desapareció al mes. Conclusiones: Aunque por biomicroscopia no se observen alteraciones corneales en el posoperatorio de la cirugía de catarata por facoemulsificación, sí se pueden demostrar por microscopia confocal de la córnea. Estas variaciones no influyen en la recuperación visual óptima de los pacientes.Objective: To determine the structural changes in the cornea in the cataract surgery using phacoemulsification without complications. Methods: A prospective study of patients operated on from cataract using the coaxial phacoemulsification (Pre Chop technique without complications was carried out. These patients also underwent confocal microscopy of the cornea with Confoscan4 (Nidek Technologies with 40x target and Z - Ring adapter. The study was performed in the preoperative period and postoperative period for 24 hours, one week, one month and three months after surgery. Results: Structural changes were observed in the cornea such as epithelial cells with hypereflectivity nucleus, occasionally elongated, , areas of anomalous hypereflectivity 24 hours after

  4. An invertebrate embryologist's guide to routine processing of confocal images.

    Science.gov (United States)

    von Dassow, George

    2014-01-01

    It is almost impossible to use a confocal microscope without encountering the need to transform the raw data through image processing. Adherence to a set of straightforward guidelines will help ensure that image manipulations are both credible and repeatable. Meanwhile, attention to optimal data collection parameters will greatly simplify image processing, not only for convenience but for quality and credibility as well. Here I describe how to conduct routine confocal image processing tasks, including creating 3D animations or stereo images, false coloring or merging channels, background suppression, and compressing movie files for display.

  5. Confocal Endomicroscopy of Colorectal Polyps

    Directory of Open Access Journals (Sweden)

    Vivian M. Ussui

    2012-01-01

    Full Text Available Confocal laser endomicroscopy (CLE is one of several novel methods that provide real-time, high-resolution imaging at a micron scale via endoscopes. CLE has the potential to be a disruptive technology in that it can change the current algorithms that depend on biopsy to perform surveillance of high-risk conditions. Furthermore, it allows on-table decision making that has the potential to guide therapy in real time and reduce the need for repeated procedures. CLE and related technologies are often termed “virtual biopsy” as they simulate the images seen in traditional histology. However, the imaging of living tissue allows more than just pragmatic convenience; it also allows imaging of living tissue such as active capillary circulation, cellular death, and vascular and endothelial translocation, thus extending beyond what is capable in traditional biopsy. Immediate potential applications of CLE are to guide biopsy sampling in Barrett's esophagus and inflammatory bowel disease surveillance, evaluation of colorectal polyps, and intraductal imaging of the pancreas and bile duct. Data on these applications is rapidly emerging, and more is needed to clearly demonstrate the optimal applications of CLE. In this paper, we will focus on the role of CLE as applied to colorectal polyps detected during colonoscopy.

  6. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Greg John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelhardt, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  7. Total Internal Reflection Fluorescence Microscopy Imaging-Guided Confocal Single-Molecule Fluorescence Spectroscopy

    OpenAIRE

    Zheng, Desheng; Kaldaras, Leonora; Lu, H. Peter

    2013-01-01

    We have developed an integrated spectroscopy system combining total internal reflection fluorescence microscopy imaging with confocal single-molecule fluorescence spectroscopy for two-dimensional interfaces. This spectroscopy approach is capable of both multiple molecules simultaneously sampling and in situ confocal fluorescence dynamics analyses of individual molecules of interest. We have demonstrated the calibration with fluorescent microspheres, and carried out single-molecule spectroscop...

  8. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-01-01

    Highlights: → Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. → The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. → Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  9. Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions

    Science.gov (United States)

    Handschuh, Robert F.

    2015-01-01

    Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 hertz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take data during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 revolutions per minute).

  10. Performances for confocal X-ray diffraction technology based on polycapillary slightly focusing X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hehe; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stxbeijing@163.com [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Sun, Weiyuan; Li, Yude; Lin, Xiaoyan; Zhao, Weigang; Zhao, Guangcui; Luo, Ping; Pan, Qiuli; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2013-09-21

    The confocal X-ray diffraction (XRD) technology based on a polycapillary slightly focusing X-ray lens (PSFXRL) in excitation channel and a polycapillary parallel X-ray lens (PPXRL) with a long input focal distance in detection channel was developed. The output focal spot of the PSFXRL and the input focal spot of the PPXRL were adjusted in confocal configuration, and only the X-rays from the volume overlapped by these foci could be accordingly detected. This confocal configuration was helpful in decreasing background. The convergence of the beam focused by the PSFXRL and divergence of the beam which could be collected by the PPXRL with a long input focal distance were both about 9 mrad at 8 keV. This was helpful in improving the resolution of lattice spacing of this confocal XRD technology. The gain in power density of such PSFXRL and PPXRL was about 120 and 7 at 11 keV, respectively, which was helpful in using the low power source to perform XRD analysis efficiently. The performances of this confocal XRD technology were provided, and some common plastics were analyzed. The experimental results demonstrated that the confocal diffraction technology base on polycapillary slightly focusing X-ray optics had wide potential applications.

  11. Confocal fluorescence microscopy for rapid evaluation of invasive tumor cellularity of inflammatory breast carcinoma core needle biopsies.

    Science.gov (United States)

    Dobbs, Jessica; Krishnamurthy, Savitri; Kyrish, Matthew; Benveniste, Ana Paula; Yang, Wei; Richards-Kortum, Rebecca

    2015-01-01

    Tissue sampling is a problematic issue for inflammatory breast carcinoma, and immediate evaluation following core needle biopsy is needed to evaluate specimen adequacy. We sought to determine if confocal fluorescence microscopy provides sufficient resolution to evaluate specimen adequacy by comparing invasive tumor cellularity estimated from standard histologic images to invasive tumor cellularity estimated from confocal images of breast core needle biopsy specimens. Grayscale confocal fluorescence images of breast core needle biopsy specimens were acquired following proflavine application. A breast-dedicated pathologist evaluated invasive tumor cellularity in histologic images with hematoxylin and eosin staining and in grayscale and false-colored confocal images of cores. Agreement between cellularity estimates was quantified using a kappa coefficient. 23 cores from 23 patients with suspected inflammatory breast carcinoma were imaged. Confocal images were acquired in an average of less than 2 min per core. Invasive tumor cellularity estimated from histologic and grayscale confocal images showed moderate agreement by kappa coefficient: κ = 0.48 ± 0.09 (p confocal images require less than 2 min for acquisition and allow for evaluation of invasive tumor cellularity in breast core needle biopsy specimens with moderate agreement to histologic images. We show that confocal fluorescence microscopy can be performed immediately following specimen acquisition and could indicate the need for additional biopsies at the initial visit.

  12. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Greg John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelhardt, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-12

    This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  13. Three-dimensional imaging of porous media using confocal laser scanning microscopy.

    Science.gov (United States)

    Shah, S M; Crawshaw, J P; Boek, E S

    2017-02-01

    In the last decade, imaging techniques capable of reconstructing three-dimensional (3-D) pore-scale model have played a pivotal role in the study of fluid flow through complex porous media. In this study, we present advances in the application of confocal laser scanning microscopy (CLSM) to image, reconstruct and characterize complex porous geological materials with hydrocarbon reservoir and CO 2 storage potential. CLSM has a unique capability of producing 3-D thin optical sections of a material, with a wide field of view and submicron resolution in the lateral and axial planes. However, CLSM is limited in the depth (z-dimension) that can be imaged in porous materials. In this study, we introduce a 'grind and slice' technique to overcome this limitation. We discuss the practical and technical aspects of the confocal imaging technique with application to complex rock samples including Mt. Gambier and Ketton carbonates. We then describe the complete workflow of image processing to filtering and segmenting the raw 3-D confocal volumetric data into pores and grains. Finally, we use the resulting 3-D pore-scale binarized confocal data obtained to quantitatively determine petrophysical pore-scale properties such as total porosity, macro- and microporosity and single-phase permeability using lattice Boltzmann (LB) simulations, validated by experiments. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  14. In situ protein expression in tumour spheres: development of an immunostaining protocol for confocal microscopy

    International Nuclear Information System (INIS)

    Weiswald, Louis-Bastien; Guinebretière, Jean-Marc; Richon, Sophie; Bellet, Dominique; Saubaméa, Bruno; Dangles-Marie, Virginie

    2010-01-01

    Multicellular tumour sphere models have been shown to closely mimic phenotype characteristics of in vivo solid tumours, or to allow in vitro propagation of cancer stem cells (CSCs). CSCs are usually characterized by the expression of specific membrane markers using flow cytometry (FC) after enzymatic dissociation. Consequently, the spatial location of positive cells within spheres is not documented. Confocal microscopy is the best technique for the imaging of thick biological specimens after multi-labelling but suffers from poor antibody penetration. Thus, we describe here a new protocol for in situ confocal imaging of protein expression in intact spheroids. Protein expression in whole spheroids (150 μm in diameter) from two human colon cancer cell lines, HT29 and CT320X6, has been investigated with confocal immunostaining, then compared with profiles obtained through paraffin immunohistochemistry (pIHC) and FC. Target antigens, relevant for colon cancer and with different expression patterns, have been studied. We first demonstrate that our procedure overcomes the well-known problem of antibody penetration in compact structures by performing immunostaining of EpCAM, a membrane protein expressed by all cells within our spheroids. EpCAM expression is detected in all cells, even the deepest ones. Likewise, antibody access is confirmed with CK20 and CD44 immunostaining. Confocal imaging shows that 100% of cells express β-catenin, mainly present in the plasma membrane with also cytoplasmic and nuclear staining, in agreement with FC and pIHC data. pIHC and confocal imaging show similar CA 19-9 cytoplasmic and membranar expression profile in a cell subpopulation. CA 19-9 + cell count confirms confocal imaging as a highly sensitive method (75%, 62% and 51%, for FC, confocal imaging and pIHC, respectively). Finally, confocal imaging reveals that the weak expression of CD133, a putative colon CSC marker, is restricted to the luminal cell surface of colorectal cancer acini

  15. Mechanical stress analysis for a fuel rod under normal operating conditions

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Giovedi, Claudia; Serra, Andre da Silva; Abe, Alfredo Y.

    2013-01-01

    Nuclear reactor fuel elements consist mainly in a system of a nuclear fuel encapsulated by a cladding material subject to high fluxes of energetic neutrons, high operating temperatures, pressure systems, thermal gradients, heat fluxes and with chemical compatibility with the reactor coolant. The design of a nuclear reactor requires, among a set of activities, the evaluation of the structural integrity of the fuel rod submitted to different loads acting on the fuel rod and the specific properties (dimensions and mechanical and thermal properties) of the cladding material and coolant, including thermal and pressure gradients produced inside the rod due to the fuel burnup. In this work were evaluated the structural mechanical stresses of a fuel rod using stainless steel as cladding material and UO 2 with a low degree of enrichment as fuel pellet on a PWR (pressurized water reactor) under normal operating conditions. In this sense, tangential, radial and axial stress on internal and external cladding surfaces considering the orientations of 0 deg, 90 deg and 180 deg were considered. The obtained values were compared with the limit values for stress to the studied material. From the obtained results, it was possible to conclude that, under the expected normal reactor operation conditions, the integrity of the fuel rod can be maintained. (author)

  16. Integrated Photoacoustic and Fluorescence Confocal Microscopy

    OpenAIRE

    Wang, Yu; Maslov, Konstantin; Kim, Chulhong; Hu, Song; Wang, Lihong V.

    2010-01-01

    We have developed a dual-modality imaging system by integrating optical-resolution photoacoustic microscopy and fluorescence confocal microscopy to provide optical absorption and fluorescence contrasts simultaneously. By sharing the same laser source and objective lens, intrinsically registered photoacoustic and fluorescence images are acquired in a single scan. The micrometer resolution allows imaging of both blood and lymphatic vessels down to the capillary level. Simultaneous photoacoustic...

  17. Confocal Raman microscopy for identification of bacterial species in biofilms

    Science.gov (United States)

    Beier, Brooke D.; Quivey, Robert G.; Berger, Andrew J.

    2011-03-01

    Implemented through a confocal microscope, Raman spectroscopy has been used to distinguish between biofilm samples of two common oral bacteria species, Streptococcus sanguinis and mutans, which are associated with healthy and cariogenic plaque, respectively. Biofilms of these species are studied as a model of dental plaque. A prediction model has been calibrated and validated using pure biofilms. This model has been used to identify the species of transferred and dehydrated samples (much like a plaque scraping) as well as hydrated biofilms in situ. Preliminary results of confocal Raman mapping of species in an intact two-species biofilm will be shown.

  18. Usefulness of confocal microscopy in distinguishing between basal cell carcinoma and intradermal melanocytic nevus on the face.

    Science.gov (United States)

    Gamo, R; Floristan, U; Pampín, A; Caro, D; Pinedo, F; López-Estebaranz, J L

    2015-10-01

    The clinical distinction between basal cell carcinoma (BCC) and intradermal melanocytic nevus lesions on the face can be difficult, particularly in young patients or patients with multiple nevi. Dermoscopy is a useful tool for analyzing characteristic dermoscopic features of BCC, such as cartwheel structures, maple leaf-like areas, blue-gray nests and dots, and ulceration. It also reveals arborizing telangiectatic vessels and prominent curved vessels, which are typical of BCC, and comma vessels, which are typical of intradermal melanocytic nevi. It is, however, not always easy to distinguish between these 2 conditions, even when dermoscopy is used. We describe 2 facial lesions that posed a clinical and dermoscopic challenge in two 38-year-old patients; confocal microscopy showed separation between tumor nests and stroma and polarized nuclei, which are confocal microscopy features of basal cell carcinoma. Copyright © 2014 Elsevier España, S.L.U. y AEDV. All rights reserved.

  19. Improved axial resolution of FINCH fluorescence microscopy when combined with spinning disk confocal microscopy.

    Science.gov (United States)

    Siegel, Nisan; Brooker, Gary

    2014-09-22

    FINCH holographic fluorescence microscopy creates super-resolved images with enhanced depth of focus. Addition of a Nipkow disk real-time confocal image scanner is shown to reduce the FINCH depth of focus while improving transverse confocal resolution in a combined method called "CINCH".

  20. A comparison of image restoration approaches applied to three-dimensional confocal and wide-field fluorescence microscopy.

    Science.gov (United States)

    Verveer, P. J; Gemkow, M. J; Jovin, T. M

    1999-01-01

    We have compared different image restoration approaches for fluorescence microscopy. The most widely used algorithms were classified with a Bayesian theory according to the assumed noise model and the type of regularization imposed. We considered both Gaussian and Poisson models for the noise in combination with Tikhonov regularization, entropy regularization, Good's roughness and without regularization (maximum likelihood estimation). Simulations of fluorescence confocal imaging were used to examine the different noise models and regularization approaches using the mean squared error criterion. The assumption of a Gaussian noise model yielded only slightly higher errors than the Poisson model. Good's roughness was the best choice for the regularization. Furthermore, we compared simulated confocal and wide-field data. In general, restored confocal data are superior to restored wide-field data, but given sufficient higher signal level for the wide-field data the restoration result may rival confocal data in quality. Finally, a visual comparison of experimental confocal and wide-field data is presented.

  1. Real-Time Demonstration of Split Skin Graft Inosculation and Integra Dermal Matrix Neovascularization Using Confocal Laser Scanning Microscopy

    Science.gov (United States)

    Greenwood, John; Amjadi, Mahyar; Dearman, Bronwyn; Mackie, Ian

    2009-01-01

    Objectives: During the first 48 hours after placement, an autograft “drinks” nutrients and dissolved oxygen from fluid exuding from the underlying recipient bed (“plasmatic imbibition”). The theory of inosculation (that skin grafts subsequently obtain nourishment via blood vessel “anastomosis” between new vessels invading from the wound bed and existing graft vessels) was hotly debated from the late 19th to mid-20th century. This study aimed to noninvasively observe blood flow in split skin grafts and Integra™ dermal regeneration matrix to provide further proof of inosculation and to contrast the structure of vascularization in both materials, reflecting mechanism. Methods: Observations were made both clinically and using confocal microscopy on normal skin, split skin graft, and Integra™. The VivaScope™ allows noninvasive, real-time, in vivo images of tissue to be obtained. Results: Observations of blood flow and tissue architecture in autologous skin graft and Integra™ suggest that 2 very different processes are occurring in the establishment of circulation in each case. Inosculation provides rapid circulatory return to skin grafts whereas slower neovascularization creates an unusual initial Integra™ circulation. Conclusions: The advent of confocal laser microscopy like the VivaScope 1500™, together with “virtual” journals such as ePlasty, enables us to provide exciting images and distribute them widely to a “reading” audience. The development of the early Integra™ vasculature by neovascularization results in a large-vessel, high-volume, rapid flow circulation contrasting markedly from the inosculatory process in skin grafts and the capillary circulation in normal skin and merits further (planned) investigation. PMID:19787028

  2. An interactive visualization tool for multi-channel confocal microscopy data in neurobiology research

    KAUST Repository

    Yong Wan,

    2009-11-01

    Confocal microscopy is widely used in neurobiology for studying the three-dimensional structure of the nervous system. Confocal image data are often multi-channel, with each channel resulting from a different fluorescent dye or fluorescent protein; one channel may have dense data, while another has sparse; and there are often structures at several spatial scales: subneuronal domains, neurons, and large groups of neurons (brain regions). Even qualitative analysis can therefore require visualization using techniques and parameters fine-tuned to a particular dataset. Despite the plethora of volume rendering techniques that have been available for many years, the techniques standardly used in neurobiological research are somewhat rudimentary, such as looking at image slices or maximal intensity projections. Thus there is a real demand from neurobiologists, and biologists in general, for a flexible visualization tool that allows interactive visualization of multi-channel confocal data, with rapid fine-tuning of parameters to reveal the three-dimensional relationships of structures of interest. Together with neurobiologists, we have designed such a tool, choosing visualization methods to suit the characteristics of confocal data and a typical biologist\\'s workflow. We use interactive volume rendering with intuitive settings for multidimensional transfer functions, multiple render modes and multi-views for multi-channel volume data, and embedding of polygon data into volume data for rendering and editing. As an example, we apply this tool to visualize confocal microscopy datasets of the developing zebrafish visual system.

  3. Identification of nodal tissue in the living heart using rapid scanning fiber-optics confocal microscopy and extracellular fluorophores.

    Science.gov (United States)

    Huang, Chao; Kaza, Aditya K; Hitchcock, Robert W; Sachse, Frank B

    2013-09-01

    Risks associated with pediatric reconstructive heart surgery include injury of the sinoatrial node (SAN) and atrioventricular node (AVN), requiring cardiac rhythm management using implantable pacemakers. These injuries are the result of difficulties in identifying nodal tissues intraoperatively. Here we describe an approach based on confocal microscopy and extracellular fluorophores to quantify tissue microstructure and identify nodal tissue. Using conventional 3-dimensional confocal microscopy we investigated the microstructural arrangement of SAN, AVN, and atrial working myocardium (AWM) in fixed rat heart. AWM exhibited a regular striated arrangement of the extracellular space. In contrast, SAN and AVN had an irregular, reticulated arrangement. AWM, SAN, and AVN tissues were beneath a thin surface layer of tissue that did not obstruct confocal microscopic imaging. Subsequently, we imaged tissues in living rat hearts with real-time fiber-optics confocal microscopy. Fiber-optics confocal microscopy images resembled images acquired with conventional confocal microscopy. We investigated spatial regularity of tissue microstructure from Fourier analysis and second-order image moments. Fourier analysis of fiber-optics confocal microscopy images showed that the spatial regularity of AWM was greater than that of nodal tissues (37.5 ± 5.0% versus 24.3 ± 3.9% for SAN and 23.8 ± 3.7% for AVN; Pfiber-optics confocal microscopy. Application of the approach in pediatric reconstructive heart surgery may reduce risks of injuring nodal tissues.

  4. Multiparametric magnetic resonance imaging characteristics of normal, benign and malignant conditions in the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Visschere, Pieter J.L. de; Pattyn, Eva; Villeirs, Geert M. [Ghent University Hospital, Department of Radiology, Ghent (Belgium); Vral, Anne [Ghent University Hospital, Department of Basic Medical Sciences, Ghent (Belgium); Perletti, Gianpaolo [Ghent University Hospital, Department of Basic Medical Sciences, Ghent (Belgium); University of Insubria, Clinical Pharmacology, Medical and Surgical Sciences Section, Department of Biotechnology and Life Sciences, Varese (Italy); Praet, Marleen [Ghent University Hospital, Department of Pathology, Ghent (Belgium); Magri, Vittorio [Instituti Clinici di Perfezionamento, Urology Clinic, Milano (Italy)

    2017-05-15

    To identify the multiparametric magnetic resonance imaging (mpMRI) characteristics of normal, benign and malignant conditions in the prostate. Fifty-six histopathological whole-mount radical prostatectomy specimens from ten randomly selected patients with prostate cancer (PC) were matched with corresponding transverse mpMRI slices. The mpMRI was performed prior to biopsy and consisted of T2-weighted imaging (T2-WI), diffusion-weighted imaging (DWI), dynamic contrast-enhanced imaging (DCE) and magnetic resonance spectroscopic imaging (MRSI). In each prostate specimen, a wide range of histopathological conditions were observed. They showed consistent but overlapping characteristics on mpMRI. Normal glands in the transition zone showed lower signal intensity (SI) on T2-WI, lower ADC values and lower citrate peaks on MRSI as compared to the peripheral zone (PZ) due to sparser glandular elements and more prominent collagenous fibres. In the PZ, normal glands were iso-intense on T2-WI, while high SI areas represented cystic atrophy. Mimickers of well-differentiated PC on mpMRI were inflammation, adenosis, HG-PIN and post-atrophic hyperplasia. Each prostate is a unique mix of normal, benign and/or malignant areas that vary in extent and distribution resulting in very heterogeneous characteristics on mpMRI. Understanding the main concepts of this mpMRI-histopathological correlation may increase the diagnostic confidence in reporting mpMRI. (orig.)

  5. Ti-6Al-4V electron beam weld qualification using laser scanning confocal microscopy

    International Nuclear Information System (INIS)

    Wanjara, P.; Brochu, M.; Jahazi, M.

    2005-01-01

    Processing conditions for manufacturing Ti-6Al-4V components by welding using an electron beam source are known to influence the transformation microstructure in the narrow fusion and heat-affected zones of the weld region. This work examined the effect of multiple-sequence welding on the characteristics of the transformed beta microstructure, using laser scanning confocal microscopy to resolve the Widmanstaetten alpha-beta structure in the fusion zone. The evolution in the alpha interlamellar spacing and plate thickness with processing was then related to microhardness measurements in the weld region

  6. Confocal arthroscopy-based patient-specific constitutive models of cartilaginous tissues - II: prediction of reaction force history of meniscal cartilage specimens.

    Science.gov (United States)

    Taylor, Zeike A; Kirk, Thomas B; Miller, Karol

    2007-10-01

    The theoretical framework developed in a companion paper (Part I) is used to derive estimates of mechanical response of two meniscal cartilage specimens. The previously developed framework consisted of a constitutive model capable of incorporating confocal image-derived tissue microstructural data. In the present paper (Part II) fibre and matrix constitutive parameters are first estimated from mechanical testing of a batch of specimens similar to, but independent from those under consideration. Image analysis techniques which allow estimation of tissue microstructural parameters form confocal images are presented. The constitutive model and image-derived structural parameters are then used to predict the reaction force history of the two meniscal specimens subjected to partially confined compression. The predictions are made on the basis of the specimens' individual structural condition as assessed by confocal microscopy and involve no tuning of material parameters. Although the model does not reproduce all features of the experimental curves, as an unfitted estimate of mechanical response the prediction is quite accurate. In light of the obtained results it is judged that more general non-invasive estimation of tissue mechanical properties is possible using the developed framework.

  7. Improved signal model for confocal sensors accounting for object depending artifacts.

    Science.gov (United States)

    Mauch, Florian; Lyda, Wolfram; Gronle, Marc; Osten, Wolfgang

    2012-08-27

    The conventional signal model of confocal sensors is well established and has proven to be exceptionally robust especially when measuring rough surfaces. Its physical derivation however is explicitly based on plane surfaces or point like objects, respectively. Here we show experimental results of a confocal point sensor measurement of a surface standard. The results illustrate the rise of severe artifacts when measuring curved surfaces. On this basis, we present a systematic extension of the conventional signal model that is proven to be capable of qualitatively explaining these artifacts.

  8. Association between dermoscopic and reflectance confocal microscopy features of cutaneous melanoma with BRAF mutational status.

    Science.gov (United States)

    Bombonato, C; Ribero, S; Pozzobon, F C; Puig-Butille, J A; Badenas, C; Carrera, C; Malvehy, J; Moscarella, E; Lallas, A; Piana, S; Puig, S; Argenziano, G; Longo, C

    2017-04-01

    Melanomas harbouring common genetic mutations might share certain morphological features detectable with dermoscopy and reflectance confocal microscopy. BRAF mutational status is crucial for the management of metastatic melanoma. To correlate the dermoscopic characteristics of primary cutaneous melanomas with BRAF mutational status. Furthermore, a subset of tumours has also been analysed for the presence of possible confocal features that might be linked with BRAF status. Retrospectively acquired dermoscopic and confocal images of patients with melanoma in tertiary referral academic centres: Skin Cancer Unit in Reggio Emilia and at the Melanoma Unit in Barcelona. Kruskal-Wallis test, logistic regressions, univariate and multivariate analyses have been performed to find dermoscopic and confocal features significantly correlated with BRAF mutational status. Dermoscopically, the presence of irregular peripheral streaks and ulceration were positive predictors of BRAF-mutated melanomas with a statistically significance value, while dotted vessels were more represented in wild-type melanomas. None of the evaluated reflectance confocal microscopy features were correlated with genetic profiling. Ulceration and irregular peripheral streaks represent dermoscopic feature indicative for BRAF-mutated melanoma, while dotted vessels are suggestive for wild-type melanoma. © 2016 European Academy of Dermatology and Venereology.

  9. Confocal fluorescence microscopy to evaluate changes in adipocytes in the tumor microenvironment associated with invasive ductal carcinoma and ductal carcinoma in situ.

    Science.gov (United States)

    Dobbs, Jessica L; Shin, Dongsuk; Krishnamurthy, Savitri; Kuerer, Henry; Yang, Wei; Richards-Kortum, Rebecca

    2016-09-01

    Adipose tissue is a dynamic organ that provides endocrine, inflammatory and angiogenic factors, which can assist breast carcinoma cells with invasion and metastasis. Previous studies have shown that adipocytes adjacent to carcinoma, known as cancer-associated adipocytes, undergo extensive changes that correspond to an "activated phenotype," such as reduced size relative to adipocytes in non-neoplastic breast tissue. Optical imaging provides a tool that can be used to characterize adipocyte morphology and other features of the tumor microenvironment. In this study, we used confocal fluorescence microscopy to acquire images of freshly excised breast tissue stained topically with proflavine. We developed a computerized algorithm to identify and quantitatively measure phenotypic properties of adipocytes located adjacent to and far from normal collagen, ductal carcinoma in situ and invasive ductal carcinoma. Adipocytes were measured in confocal fluorescence images of fresh breast tissue collected from 22 patients. Results show that adipocytes adjacent to neoplastic tissue margins have significantly smaller area compared to adipocytes far from the margins of neoplastic lesions and compared to adipocytes adjacent to non-neoplastic collagenous stroma. These findings suggest that confocal microscopic images can be utilized to evaluate phenotypic properties of adipocytes in breast stroma which may be useful in defining alterations in microenvironment that may aid in the development and progression of neoplastic lesions. © 2016 UICC.

  10. Confocal microscopy imaging of the biofilm matrix

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke L

    2017-01-01

    The extracellular matrix is an integral part of microbial biofilms and an important field of research. Confocal laser scanning microscopy is a valuable tool for the study of biofilms, and in particular of the biofilm matrix, as it allows real-time visualization of fully hydrated, living specimens...... the concentration of solutes and the diffusive properties of the biofilm matrix....

  11. Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions.

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhu

    Full Text Available Real-time reverse transcription PCR (RT-qPCR is a preferred method for rapid and accurate quantification of gene expression studies. Appropriate application of RT-qPCR requires accurate normalization though the use of reference genes. As no single reference gene is universally suitable for all experiments, thus reference gene(s validation under different experimental conditions is crucial for RT-qPCR analysis. To date, only a few studies on reference genes have been done in other plants but none in papaya. In the present work, we selected 21 candidate reference genes, and evaluated their expression stability in 246 papaya fruit samples using three algorithms, geNorm, NormFinder and RefFinder. The samples consisted of 13 sets collected under different experimental conditions, including various tissues, different storage temperatures, different cultivars, developmental stages, postharvest ripening, modified atmosphere packaging, 1-methylcyclopropene (1-MCP treatment, hot water treatment, biotic stress and hormone treatment. Our results demonstrated that expression stability varied greatly between reference genes and that different suitable reference gene(s or combination of reference genes for normalization should be validated according to the experimental conditions. In general, the internal reference genes EIF (Eukaryotic initiation factor 4A, TBP1 (TATA binding protein 1 and TBP2 (TATA binding protein 2 genes had a good performance under most experimental conditions, whereas the most widely present used reference genes, ACTIN (Actin 2, 18S rRNA (18S ribosomal RNA and GAPDH (Glyceraldehyde-3-phosphate dehydrogenase were not suitable in many experimental conditions. In addition, two commonly used programs, geNorm and Normfinder, were proved sufficient for the validation. This work provides the first systematic analysis for the selection of superior reference genes for accurate transcript normalization in papaya under different experimental

  12. Assessment of nerve ultrastructure by fibre-optic confocal microscopy.

    Science.gov (United States)

    Cushway, T R; Lanzetta, M; Cox, G; Trickett, R; Owen, E R

    1996-01-01

    Fibre-optic technology combined with confocality produces a microscope capable of optical thin sectioning. In this original study, tibial nerves have been stained in a rat model with a vital dye, 4-(4-diethylaminostyryl)-N-methylpyridinium iodide, and analysed by fibre-optic confocal microscopy to produce detailed images of nerve ultrastructure. Schwann cells, nodes of Ranvier and longitudinal myelinated sheaths enclosing axons were clearly visible. Single axons appeared as brightly staining longitudinal structures. This allowed easy tracing of multiple signal axons within the nerve tissue. An accurate measurement of internodal lengths was easily accomplished. This technique is comparable to current histological techniques, but does not require biopsy, thin sectioning or tissue fixing. This study offers a standard for further in vivo microscopy, including the possibility of monitoring the progression of nerve regeneration following microsurgical neurorraphy.

  13. Measurement of chemical and geometrical surface changes in a wear track by a confocal height sensor and confocal Raman spectroscopy

    NARCIS (Netherlands)

    Winogrodzka, A.; Valefi, Mahdiar; de Rooij, Matthias B.; Schipper, Dirk J.

    2014-01-01

    Geometrical and chemical changes in the wear track can cause a drift in friction level. In this paper, chemical and geometrical surface changes in wear tracks are analyzed. For this, a setup with a confocal height sensor was developed to measure the local height changes on the wear track, combined

  14. Comparison of Static Balance among Blind, Deaf and Normal Children in Different Conditions

    Directory of Open Access Journals (Sweden)

    Aidin Vali-Zadeh

    2014-01-01

    Full Text Available Objective: Sensory systems including proprioceptive, vestibular and visual network play an important role in motor control. Loss of information from each sensory channel can cause body sway on static positions. Materials & Methods: Seventeen blind children (9 girls, 8 boys and 30 deaf children (14 girls, 16 boys participated as the sample groups in Ardabil city. Sixteen normal children (30 girls and 30 boys also selected as the control group. One leg standing and tandem stance tests (reliability=0.87-0.99 in two condition (eyes open and closed was used for static balance evaluation. One-Way ANOVA and LSD post hoc test was used to compare groups, and independent t-test was used for comparing sexes in each group by using SPSS (16 version software. Results: results showed there is no significant difference between blind, deaf and normal girls in any of the balance tasks (p>0.05. While the balance function of deaf and normal boys was better than blind boys in all balance tasks except for tandem stance with eyes closed (p=0.507. Blind girls were better than blind boys in all balance tasks (p=0.05, p=0.02, p=0.02. Deaf boys were better than girls with deafness in one leg stance and tandem stance (eyes open tasks (p=0.04, p=0.02, p=0.04 but there was no significant different between deaf boys and girls in any other tasks (p=0.63, p=0.29, p=0.89. Normal boys have better performance than girls and only in tandem stance (eyes closed (p=0.21 and one leg stance (left foot eyes open (p=0.99 there was no significant difference between normal boys and girls. Conclusion: findings showed that static balance in deaf and normal children were better than the blinds. Since persons with blindness are not able to compensate the visual loss for postural stability, they show decreased postural stability in static conditions. Inclusive identifying effective factors on balance and its weakness and problems in appropriate time, attention to this factors in training

  15. Confocal detection of Rayleigh scattering for residual stress measurement in chemically tempered glass

    Energy Technology Data Exchange (ETDEWEB)

    Hödemann, S., E-mail: siim.hodemann@ut.ee; Möls, P.; Kiisk, V.; Saar, R.; Kikas, J. [Institute of Physics, University of Tartu, Wilhelm Ostwald st., Tartu 50411 (Estonia); Murata, T. [Nippon Electric Glass Co., 7-1 Seiran 2-chome, Otsu-shi, Shiga 520-8639 (Japan)

    2015-12-28

    A new optical method is presented for evaluation of the stress profile in chemically tempered (chemically strengthened) glass based on confocal detection of scattered laser beam. Theoretically, a lateral resolution of 0.2 μm and a depth resolution of 0.6 μm could be achieved by using a confocal microscope with high-NA immersion objective. The stress profile in the 250 μm thick surface layer of chemically tempered lithium aluminosilicate glass was measured with a high spatial resolution to illustrate the capability of the method. The confocal method is validated using transmission photoelastic and Na{sup +} ion concentration profile measurement. Compositional influence on the stress-optic coefficient is calculated and discussed. Our method opens up new possibilities for three-dimensional scattered light tomography of mechanical imaging in birefringent materials.

  16. Performance verification of focus variation and confocal microscopes measuring tilted ultra-fine surfaces

    DEFF Research Database (Denmark)

    Quagliotti, Danilo; Baruffi, Federico; Tosello, Guido

    2016-01-01

    The behaviour of two optical instruments, scilicet a laser scanning confocal microscope and a focus-variation microscope, was investigated considering measurements of tilted surfaces. The measured samples were twelve steel artefacts for mould surface finish reference, covering Sa roughness...... parameter in the range (101—103) nm. The 3D surface texture parameters considered were Sa, Sq and Sdq. The small working distance of the confocal microscope objectives influenced the measurement setup, preventing from selecting a high tilting angle. The investigation was carried out comparing measurements...... of flat surfaces (0° tilt) with measurements of 12.5° tilted surfaces. The confocal microscope results showed a high sensitivity to tilting due to the laser beam reflection on the metal surfaces. The focus variation microscope results were more robust with respect to the considered angular variation...

  17. Confocal Imaging of porous media

    Science.gov (United States)

    Shah, S.; Crawshaw, D.; Boek, D.

    2012-12-01

    Carbonate rocks, which hold approximately 50% of the world's oil and gas reserves, have a very complicated and heterogeneous structure in comparison with sandstone reservoir rock. We present advances with different techniques to image, reconstruct, and characterize statistically the micro-geometry of carbonate pores. The main goal here is to develop a technique to obtain two dimensional and three dimensional images using Confocal Laser Scanning Microscopy. CLSM is used in epi-fluorescent imaging mode, allowing for the very high optical resolution of features well below 1μm size. Images of pore structures were captured using CLSM imaging where spaces in the carbonate samples were impregnated with a fluorescent, dyed epoxy-resin, and scanned in the x-y plane by a laser probe. We discuss the sample preparation in detail for Confocal Imaging to obtain sub-micron resolution images of heterogeneous carbonate rocks. We also discuss the technical and practical aspects of this imaging technique, including its advantages and limitation. We present several examples of this application, including studying pore geometry in carbonates, characterizing sub-resolution porosity in two dimensional images. We then describe approaches to extract statistical information about porosity using image processing and spatial correlation function. We have managed to obtain very low depth information in z -axis (~ 50μm) to develop three dimensional images of carbonate rocks with the current capabilities and limitation of CLSM technique. Hence, we have planned a novel technique to obtain higher depth information to obtain high three dimensional images with sub-micron resolution possible in the lateral and axial planes.

  18. [Contribution of confocal microscopy and anterior chamber OCT to the study of corneal endothelial pathologies].

    Science.gov (United States)

    Fayol, N; Labbé, A; Dupont-Monod, S; Dupas, B; Baudouin, C

    2007-04-01

    To describe the appearance of various endothelial diseases with in vivo confocal microscopy and anterior chamber optical coherence tomography (AC OCT). In this study, ten patients with five different corneal endothelial pathologies were evaluated. Three patients had cornea guttata, three had corneal endothelial precipitates, two had irido-corneo-endothelial (ICE) syndrome, one had endothelial folds, and one had breaks in the Descemet membrane. All patients had bilateral ophthalmologic examinations, in vivo confocal microscopy, and AC OCT analysis. In cases of cornea guttata, AC OCT showed a finely embossed line corresponding to the empty intercellular cavities found with in vivo confocal microscopy. Corneal endothelium precipitates had the aspect of round formations suspended with the endothelium. Iris atrophy and irido-corneal synechiae resulting from ICE syndrome were precisely visualized with the AC OCT. High-resolution images of the anterior segment could be obtained using the AC OCT. Associated with in vivo confocal microscopy, these two new imaging techniques provide a precise evaluation of endothelial pathologies.

  19. Confocal Microscope Alignment of Nanocrystals for Coherent Diffraction Imaging

    International Nuclear Information System (INIS)

    Beitra, Loren; Watari, Moyu; Matsuura, Takashi; Shimamoto, Naonobu; Harder, Ross; Robinson, Ian

    2010-01-01

    We have installed and tested an Olympus LEXT confocal microscope at the 34-ID-C beamline of the Advanced Photon Source (APS). The beamline is for Coherent X-ray Diffraction (CXD) experiments in which a nanometre-sized crystal is aligned inside a focussed X-ray beam. The microscope was required for three-dimensional (3D) sample alignment to get around sphere-of-confusion issues when locating Bragg peaks in reciprocal space. In this way, and by use of strategic sample preparations, we have succeeded in measuring six Bragg peaks from a single 200 nm gold crystal and obtained six projections of its internal displacement field. This enables the clear identification of stacking-fault bands within the crystal. The confocal alignment method will allow a full determination of the strain tensor provided three or more Bragg reflections from the same crystal are found.

  20. Spent fuel transport cask thermal evaluation under normal and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Lo Frano, R., E-mail: rosa.lofrano@ing.unipi.i [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy)

    2010-06-15

    The casks used for transport of nuclear materials, especially the spent fuel element (SPE), must be designed according to rigorous acceptance criteria and standards requirements, e.g. the International Atomic Energy Agency ones, in order to provide protection to people and environment against radiation exposure particularly in a severe accident scenario. The aim of this work was the evaluation of the integrity of a spent fuel cask under both normal and accident scenarios transport conditions, such as impact and rigorous fire events, in according to the IAEA accident test requirements. The thermal behaviour and the temperatures distribution of a Light Water Reactor (LWR) spent fuel transport cask are presented in this paper, especially with reference to the Italian cask designed by AGN, which was characterized by a cylindrical body, with water or air inside the internal cavity, and two lateral shock absorbers. Using the finite element code ANSYS a series of thermal analyses (steady-state and transient thermal analyses) were carried out in order to obtain the maximum fuel temperature and the temperatures field in the body of the cask, both in normal and in accidents scenario, considering all the heat transfer modes between the cask and the external environment (fire in the test or air in the normal conditions) as well as inside the cask itself. In order to follow the standards requirements, the thermal analyses in accidents scenarios were also performed adopting a deformed shape of the shock absorbers to simulate the mechanical effects of a previous IAEA 9 m drop test event. Impact tests on scale models of the shock absorbers have already been conducted in the past at the Department of Mechanical, Nuclear and Production Engineering, University of Pisa, in the '80s. The obtained results, used for possible new licensing approval purposes by the Italian competent Authority of the cask for PWR spent fuel cask transport by the Italian competent Authority, are

  1. Mathematical model and computer code for coated particles performance at normal operating conditions

    International Nuclear Information System (INIS)

    Golubev, I.; Kadarmetov, I.; Makarov, V.

    2002-01-01

    Computer modeling of thermo-mechanical behavior of coated particles during operating both at normal and off-normal conditions has a very significant role particularly on a stage of new reactors development. In Russia a big experience has been accumulated on fabrication and reactor tests of CP and fuel elements with UO 2 kernels. However, this experience cannot be using in full volume for development of a new reactor installation GT-MHR. This is due to very deep burn-up of the fuel based on plutonium oxide (up to 70% fima). Therefore the mathematical modeling of CP thermal-mechanical behavior and failure prediction becomes particularly important. The authors have a clean understanding that serviceability of fuel with high burn-ups are defined not only by thermo-mechanics, but also by structured changes in coating materials, thermodynamics of chemical processes, 'amoeba-effect', formation CO etc. In the report the first steps of development of integrate code for numerical modeling of coated particles behavior and some calculating results concerning the influence of various design parameters on fuel coated particles endurance for GT-MHR normal operating conditions are submitted. A failure model is developed to predict the fraction of TRISO-coated particles. In this model it is assumed that the failure of CP depends not only on probability of SiC-layer fracture but also on the PyC-layers damage. The coated particle is considered as a uniform design. (author)

  2. Adipocyte size and cellular expression of caveolar proteins analyzed by confocal microscopy

    DEFF Research Database (Denmark)

    Hulstrøm, Veronica; Prats Gavalda, Clara; Vinten, Jørgen

    2013-01-01

    Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1 and caveo......Caveolae are abundant in adipocytes and are involved in the regulation of lipid accumulation, which is the main volume determinant of these cells. We have developed and applied a confocal microscopic technique for measuring individual cellular expression of the caveolar proteins cavin-1...

  3. Spectrally encoded confocal microscopy (SECM) for rapid assessment of breast excision specimens (Conference Presentation)

    Science.gov (United States)

    Brachtel, Elena F.; Johnson, Nicole B.; Huck, Amelia E.; Rice-Stitt, Travis L.; Vangel, Mark G.; Smith, Barbara L.; Tearney, Guillermo J.; Kang, DongKyun

    2016-03-01

    Unacceptably large percentage (20-40%) of breast cancer lumpectomy patients are required to undergo multiple surgeries when positive margins are found upon post-operative histologic assessment. If the margin status can be determined during surgery, surgeon can resect additional tissues to achieve tumor-free margin, which will reduce the need for additional surgeries. Spectrally encoded confocal microscopy (SECM) is a high-speed reflectance confocal microscopy technology that has a potential to image the entire surgical margin within a short procedural time. Previously, SECM was shown to rapidly image a large area (10 mm by 10 mm) of human esophageal tissue within a short procedural time (15 seconds). When used in lumpectomy, SECM will be able to image the entire margin surface of ~30 cm2 in around 7.5 minutes. SECM images will then be used to determine margin status intra-operatively. In this paper, we present results from a study of testing accuracy of SECM for diagnosing malignant breast tissues. We have imaged freshly-excised breast specimens (N=46) with SECM. SECM images clearly visualized histomorphologic features associated with normal/benign and malignant breast tissues in a similar manner to histologic images. Diagnostic accuracy was tested by comparing SECM diagnoses made by three junior pathologists with corresponding histologic diagnoses made by a senior pathologist. SECM sensitivity and specificity were high, 0.91 and 0.93, respectively. Intra-observer agreement and inter-observer agreement were also high, 0.87 and 0.84, respectively. Results from this study showed that SECM has a potential to accurately determine margin status during breast cancer lumpectomy.

  4. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: SPECTROSCOPY AND FOUNDATIONS FOR QUANTITATION

    Science.gov (United States)

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The reliability of the CLSM to obtain specific measurements and quantify fluorescence data is dependent on using a correctly aligned machine that contains a stable laser power. For man...

  5. The challenge of diagnosing seborrheic keratosis by reflectance confocal microscopy.

    Science.gov (United States)

    Guo, A; Chen, J; Yang, C; Ding, Y; Zeng, Q; Tan, L

    2018-05-24

    Seborrheic keratosis (SK) is one of the most common skin tumors seen by dermatologists. It should be differentiated with many diseases, especially skin tumors. Reflectance confocal microscopy (RCM) has been applied for evaluation of SK. There are a few studies that describe the RCM of SK. The aim of the study was to find the challenge of diagnosing seborrheic keratosis by reflectance confocal microscopy. A total of 390 patients with a clinical suspicious diagnosis of seborrheic keratosis were enrolled in this study, and lesions from each patient were imaged with RCM. Thirty-seven of these patients performed a biopsy in order to be given a histological diagnosis. We retrospectively analyzed the outcomes of RCM diagnosis and histological diagnosis, and then found the RCM characteristics of biopsy-proven lesions. According to RCM images, 258 of 390 (66.2%) patients were diagnosed with SK, 97 of 390 (24.9%) patients could not be diagnosed by the dermatologist according to RCM. Of all 37 biopsied lesions, 23 were SK, 6 were actinic keratosis, 2 were basal cell carcinoma, and 2 were squamous cell carcinoma. It is challenge to diagnose seborrheic keratosis by reflectance confocal microscopy. It may due to the variable clinical and RCM appearances of SK, and limited depth of RCM. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Ex vivo confocal microscopy: a new diagnostic technique for mucormycosis.

    Science.gov (United States)

    Leclercq, A; Cinotti, E; Labeille, B; Perrot, J L; Cambazard, F

    2016-05-01

    Skin-dedicated ex vivo confocal microscopy (EVCM) has so far mainly been employed to identify cutaneous tumours on freshly excised samples. We present two cases where EVCM has been used to diagnose cutaneous mucormycosis. The skin biopsies were evaluated by the skin-dedicated ex vivo confocal microscope VivaScope 2500(®) (MAVIG GmbH, Munich Germany) under both reflectance and fluorescence mode. Conventional direct optical examination on skin scraping and histological examination were later performed. Mucormycetes observed by EVCM presented as hyper-reflective elongated 20 μm in diameter structures with perpendicular ramifications. Fungi were found both under reflectance and fluorescence mode and were better visible with acridine orange under fluorescence EVCM. Conventional direct optical examination on skin scraping and histological examination found the same elongated and branching structures confirming the presence of Mucormycetes. Ex vivo confocal microscopy has both the advantages of being fast as the direct optical examination, and to be able to show the localisation of the fungi in the tissue like the histological examination. In our cases, EVCM allowed to rapidly confirm the clinical diagnosis of mucormycosis, which is essential for the treatment of this fungal infection. Further studies are needed to compare the performance of EVCM with the findings of conventional histological and mycological examinations. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. In vivo confocal Raman spectroscopy of the human cornea.

    Science.gov (United States)

    Bauer, N J; Hendrikse, F; March, W F

    1999-07-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noninvasive assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea by using a microscope objective lens (x25 magnification, NA = 0.5, f = 10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array detector for rapid spectral data acquisition over a range from 2,890 to 3,590/cm(-1). Raman spectra were recorded from the anterior 100-150 microm of the cornea over a period before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400/cm(-1) (OH-vibrational mode of water) and 2,940/cm(-1) (CH-vibrational mode of proteins) was used as a measure for corneal hydration. High signal-to-noise ratio (SNR = 25) Raman spectra were obtained from the human corneas by using 15 mJ of laser light energy. Qualitative changes in the hydration of the anteriormost part of the corneas could be observed as a result of the dehydrating agent. With adequate improvements in system safety, confocal Raman spectroscopy could potentially be applied clinically as a noninvasive tool for the assessment of corneal hydration in vivo.

  8. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Apedo, K.L., E-mail: apedo@unistra.fr [ICube, Université de Strasbourg, CNRS, 2 rue Boussingault, 67000 Strasbourg (France); Munzer, C.; He, H. [ICube, INSA de Strasbourg, CNRS, 24 Bld de la Victoire, 67084 Strasbourg (France); Montgomery, P. [ICube, Université de Strasbourg, CNRS, 23 rue du Loess, 67037 Strasbourg (France); Serres, N. [ICube, INSA de Strasbourg, CNRS, 24 Bld de la Victoire, 67084 Strasbourg (France); Fond, C. [ICube, Université de Strasbourg, CNRS, 2 rue Boussingault, 67000 Strasbourg (France); Feugeas, F. [ICube, INSA de Strasbourg, CNRS, 24 Bld de la Victoire, 67084 Strasbourg (France)

    2015-02-15

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are compared with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied.

  9. Cement paste surface roughness analysis using coherence scanning interferometry and confocal microscopy

    International Nuclear Information System (INIS)

    Apedo, K.L.; Munzer, C.; He, H.; Montgomery, P.; Serres, N.; Fond, C.; Feugeas, F.

    2015-01-01

    Scanning electron microscopy and scanning probe microscopy have been used for several decades to better understand the microstructure of cementitious materials. Very limited work has been performed to date to study the roughness of cementitious materials by optical microscopy such as coherence scanning interferometry (CSI) and chromatic confocal sensing (CCS). The objective of this paper is to better understand how CSI can be used as a tool to analyze surface roughness and topography of cement pastes. Observations from a series of images acquired using this technique on both polished and unpolished samples are described. The results from CSI are compared with those from a STIL confocal microscopy technique (SCM). Comparison between both optical techniques demonstrates the ability of CSI to measure both polished and unpolished cement pastes. - Highlights: • Coherence scanning interferometry (CSI) was used to analyze cement paste surfaces. • The results from the CSI were compared with those from a confocal microscopy. • 3D roughness parameters were obtained using the window resizing method. • Polished and unpolished cement pastes were studied

  10. Confocal Microscopy for Process Monitoring and Wide-Area Height Determination of Vertically-Aligned Carbon Nanotube Forests

    Directory of Open Access Journals (Sweden)

    Markus Piwko

    2015-08-01

    Full Text Available Confocal microscopy is introduced as a new and generally applicable method for the characterization of the vertically-aligned carbon nanotubes (VACNT forest height. With this technique process control is significantly intensified. The topography of the substrate and VACNT can be mapped with a height resolution down to 15 nm. The advantages of confocal microscopy, compared to scanning electron microscopy (SEM, are demonstrated by investigating the growth kinetics of VACNT using Al2O3 buffer layers with varying thicknesses. A process optimization using confocal microscopy for fast VACNT forest height evaluation is presented.

  11. Characterization of Protein-Excipient Microheterogeneity in Biopharmaceutical Solid-State Formulations by Confocal Fluorescence Microscopy.

    Science.gov (United States)

    Koshari, Stijn H S; Ross, Jean L; Nayak, Purnendu K; Zarraga, Isidro E; Rajagopal, Karthikan; Wagner, Norman J; Lenhoff, Abraham M

    2017-02-06

    Protein-stabilizer microheterogeneity is believed to influence long-term protein stability in solid-state biopharmaceutical formulations and its characterization is therefore essential for the rational design of stable formulations. However, the spatial distribution of the protein and the stabilizer in a solid-state formulation is, in general, difficult to characterize because of the lack of a functional, simple, and reliable characterization technique. We demonstrate the use of confocal fluorescence microscopy with fluorescently labeled monoclonal antibodies (mAbs) and antibody fragments (Fabs) to directly visualize three-dimensional particle morphologies and protein distributions in dried biopharmaceutical formulations, without restrictions on processing conditions or the need for extensive data analysis. While industrially relevant lyophilization procedures of a model IgG1 mAb generally lead to uniform protein-excipient distribution, the method shows that specific spray-drying conditions lead to distinct protein-excipient segregation. Therefore, this method can enable more definitive optimization of formulation conditions than has previously been possible.

  12. Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

    Directory of Open Access Journals (Sweden)

    M. Bashirpour

    2016-09-01

    Full Text Available Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC in a speech emotion recognition system. We investigate its performance in emotion recognition using clean and noisy speech materials and compare it with the performances of the well-known MFCC, LPCC, RASTA-PLP, and also TEMFCC features. Speech samples are extracted from the Berlin emotional speech database (Emo DB and Persian emotional speech database (Persian ESD which are corrupted with 4 different noise types under various SNR levels. The experiments are conducted in clean train/noisy test scenarios to simulate practical conditions with noise sources. Simulation results show that higher recognition rates are achieved for PNCC as compared with the conventional features under noisy conditions.

  13. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    Science.gov (United States)

    Wang, Youmin; Raj, Milan; McGuff, H. Stan; Bhave, Gauri; Yang, Bin; Shen, Ting; Zhang, Xiaojing

    2012-06-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE VR® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment.

  14. Portable oral cancer detection using a miniature confocal imaging probe with a large field of view

    International Nuclear Information System (INIS)

    Wang, Youmin; Raj, Milan; Bhave, Gauri; Yang, Bin; Zhang, Xiaojing; McGuff, H. Stan; Shen, Ting

    2012-01-01

    We demonstrate a MEMS micromirror enabled handheld confocal imaging probe for portable oral cancer detection, where a comparatively large field of view (FOV) was generated through the programmable Lissajous scanning pattern of the MEMS micromirror. Miniaturized handheld MEMS confocal imaging probe was developed, and further compared with the desktop confocal prototype under clinical setting. For the handheld confocal imaging system, optical design simulations using CODE V R® shows the lateral and axial resolution to be 0.98 µm and 4.2 µm, where experimental values were determined to be 3 µm and 5.8 µm, respectively, with a FOV of 280 µm×300 µm. Fast Lissajous imaging speed up to 2 fps was realized with improved Labview and Java based real-time imaging software. Properties such as 3D imaging through autofocusing and mosaic imaging for extended lateral view (6 mm × 8 mm) were examined for carcinoma real-time pathology. Neoplastic lesion tissues of giant cell fibroma and peripheral ossifying fibroma, the fibroma inside the paraffin box and ex vivo gross tissues were imaged by the bench-top and handheld imaging modalities, and further compared with commercial microscope imaging results. The MEMS scanner-based handheld confocal imaging probe shows great promise as a potential clinical tool for oral cancer diagnosis and treatment. (paper)

  15. Nonlinear Image Restoration in Confocal Microscopy : Stability under Noise

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1995-01-01

    In this paper we study the noise stability of iterative algorithms developed for attenuation correction in Fluorescence Confocal Microscopy using FT methods. In each iteration the convolution of the previous estimate is computed. It turns out that the estimators are robust to noise perturbation.

  16. Sequential path analysis for determining interrelationships between yield and related traits in tobacco (Nicotiana tabacum L. under normal and abiotic stress conditions

    Directory of Open Access Journals (Sweden)

    Bayat Mahdi

    2014-01-01

    Full Text Available In the present work the relationships between yield and its related traits were investigated in tobacco genotypes under normal and abiotic stress conditions (Orobanche aegyptiaca weed at Urmia Tobacco Research Centre, Iran, during 2006-2009 cropping seasons. The experimental design was a randomized complete block design (RCBD with three replications in each condition every year. Analysis of variance revealed extent genetic variability among the genotypes for most of the traits studied. In comparison with normal condition, the mean value of studied traits decreased in stress condition. LAI and FD showed the maximum and minimum diminution in the mean values under stress condition compared to normal one so known as more sensitive and more tolerant traits, respectively. Based on CV values, the traits FD and DLYP showed the minimum and maximum variation among traits in both normal and stress conditions. Correlation analysis revealed significant and positive correlations between DLYP with all studied traits in both normal and stress conditions. Path analysis detected the traits including biomass, APDW and DWR as the first-order variables at normal condition and biomass, APDW, DWR and harvest index as the first-order variables under abiotic stress condition. Based on results, the traits such as biomass, APDW, DWR detected as more important factors in both conditions can be used in tobacco breeding programs for increasing yield. Abbreviation: aerial part fresh weight without leaves weight (APFW, aerial part dry weight without leaves weight (APDW, biomass (BIO, coefficient of variation (CV, dry weight of root (DWR, flowering date (FD, fresh weight of leaf (FWL, fresh weight of root (FWR, harvest index (HI, leaf area index (LAI, dry leaf yield per plant (DLYP, number of leaf (NL, plant height (PH, randomized complete block design (RCBD, standard deviation (Std.

  17. Laser confocal microscope for analysis of 3013 inner container closure weld region

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Rodriguez, M. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-26

    As part of the protocol to investigate the corrosion in the inner container closure weld region (ICCWR) a laser confocal microscope (LCM) was used to perform close visual examination of the surface and measurements of corrosion features on the surface. However, initial analysis of selected destructively evaluated (DE) containers using the LCM revealed several challenges for acquiring, processing and interpreting the data. These challenges include topography of the ICCWR sample, surface features, and the amount of surface area for collecting data at high magnification conditions. In FY17, the LCM parameters were investigated to identify the appropriate parameter values for data acquisition and identification of regions of interest. Using these parameter values, selected DE containers were analyzed to determine the extent of the ICCWR to be examined.

  18. Study on the abnormal data rejection and normal condition evaluation applied in wind turbine farm

    Science.gov (United States)

    Zhang, Ying; Qian, Zheng; Tian, Shuangshu

    2016-01-01

    The condition detection of wind turbine is always an important issue which attract more and more attentions because of the rapid development of wind farm. And the on-line data analysis is also difficult since a lot of measured data is collected. In this paper, the abnormal data rejection and normal condition evaluation of wind turbine is processed. At first, since there are large amounts of abnormal data in the normal operation of wind turbine, which is probably caused by fault, maintenance downtime, power-limited operation and failure of wind speed sensor, a novel method is proposed to reject abnormal data in order to make more accurate analysis for the wind turbine condition. The core principle of this method is to fit the wind power curves by using the scatter diagram. The data outside the area covered by wind power curves is the abnormal data. The calculation shows that the abnormal data is rejected effectively. After the rejection, the vibration signals of wind turbine bearing which is a critical component are analyzed and the relationship between the vibration characteristic value and the operating condition of wind turbine is discussed. It will provide powerful support for the accurate fault analysis of wind turbine.

  19. Laser confocal measurement system for curvature radius of lenses based on grating ruler

    Science.gov (United States)

    Tian, Jiwei; Wang, Yun; Zhou, Nan; Zhao, Weirui; Zhao, Weiqian

    2015-02-01

    In the modern optical measurement field, the radius of curvature (ROC) is one of the fundamental parameters of optical lens. Its measurement accuracy directly affects the other optical parameters, such as focal length, aberration and so on, which significantly affect the overall performance of the optical system. To meet the demand of measurement instruments for radius of curvature (ROC) with high accuracy in the market, we develop a laser confocal radius measurement system with grating ruler. The system uses the peak point of the confocal intensity curve to precisely identify the cat-eye and confocal positions and then measure the distance between these two positions by using the grating ruler, thereby achieving the high-precision measurement for the ROC. The system has advantages of high focusing sensitivity and anti-environment disturbance ability. And the preliminary theoretical analysis and experiments show that the measuring repeatability can be up to 0.8 um, which can provide an effective way for the accurate measurement of ROC.

  20. Imaging subsurface damage of grinded fused silica optics by confocal fluorescence microscopy

    International Nuclear Information System (INIS)

    Neauport, J.; Cormont, P.; Destribats, J.; Legros, P.; Ambard, C.

    2009-01-01

    We report an experimental investigation of fluorescence confocal microscopy as a tool to measure subsurface damage on grinded fused silica optics. Confocal fluorescence microscopy was performed with an excitation at the wavelength of 405 nm on fixed abrasive diamond grinded fused silica samples. We detail the measured fluorescence spectrums and compare them to those of oil based coolants and grinding slurries. We evidence that oil based coolant used in diamond grinding induces a fluorescence that marks the subsurface damages and eases its observation. Such residual traces might also be involved in the laser damage process. (authors)

  1. Optomechatronics Design and Control for Confocal Laser Scanning Microscopy

    NARCIS (Netherlands)

    Yoo, H.W.

    2015-01-01

    Confocal laser scanning microscopy (CLSM) is considered as one of the major advancements in microscopy in the last century and is widely accepted as a 3D fluorescence imaging tool for biological studies. For the emerging biological questions CLSM requires fast imaging to detect rapid biological

  2. How the confocal laser scanning microscope entered biological research.

    Science.gov (United States)

    Amos, W B; White, J G

    2003-09-01

    A history of the early development of the confocal laser scanning microscope in the MRC Laboratory of Molecular Biology in Cambridge is presented. The rapid uptake of this technology is explained by the wide use of fluorescence in the 80s. The key innovations were the scanning of the light beam over the specimen rather than vice-versa and a high magnification at the level of the detector, allowing the use of a macroscopic iris. These were followed by an achromatic all-reflective relay system, a non-confocal transmission detector and novel software for control and basic image processing. This design was commercialized successfully and has been produced and developed over 17 years, surviving challenges from alternative technologies, including solid-state scanning systems. Lessons are pointed out from the unusual nature of the original funding and research environment. Attention is drawn to the slow adoption of the instrument in diagnostic medicine, despite promising applications.

  3. Inverted follicular keratosis: dermoscopic and reflectance confocal microscopic features.

    Science.gov (United States)

    Armengot-Carbo, M; Abrego, A; Gonzalez, T; Alarcon, I; Alos, L; Carrera, C; Malvehy, J; Puig, S

    2013-01-01

    Inverted follicular keratosis (IFK) is a rare benign tumor which usually appears as a firm papule on the face. The diagnosis is generally made by histopathology because the clinical appearance is difficult to differentiate from other lesions. Dermoscopic features of IFK have not been established to date. Herein we describe the dermoscopic findings of 4 cases of IFK. Radial peripheral hairpin vessels surrounded by a whitish halo arranged around a central white-yellowish amorphous area were observed in 3 cases, and glomerular vessels were present in the central area of one of them. The fourth case also presented a central white amorphous area but showed arborizing vessels. Reflectance confocal microscopy (available in 1 case) revealed a broadened honeycomb pattern, epidermal projections and hairpin and glomerular vessels. To our knowledge this is the first case series describing the dermoscopic features of inverted follicular keratosis and the first confocal microscopy description of this entity.

  4. Design considerations of a real-time clinical confocal microscope

    Science.gov (United States)

    Masters, Barry R.

    1991-06-01

    A real-time clinical confocal light microscope provides the ophthalmologist with a new tool for the observation of the cornea and the ocular lens. In addition, the ciliary body, the iris, and the sclera can be observed. The real-time light microscopic images have high contrast and resolution. The transverse resolution is about one half micron and the range resolution is one micron. The following observations were made with visible light: corneal epithelial cells, wing cells, basal cells, Bowman's membrane, nerve fibers, basal lamina, fibroblast nuclei, Descemet's membrane, endothelial cells. Observation of the in situ ocular lens showed lens capsule, lens epithelium, lens fibrils, the interior of lens fibrils. The applications of the confocal microscope include: eye banking, laser refractive surgery, observation of wound healing, observation of the iris, the sciera, the ciliary body, the ocular lens, and the intraocular lens. Digital image processing can produce three-dimensional reconstructions of the cornea and the ocular lens.

  5. Detection of UV-induced pigmentary and epidermal changes over time using in vivo reflectance confocal microscopy

    NARCIS (Netherlands)

    Middelkamp-Hup, Maritza A.; Park, H.-Y.; Lee, Jin; Gilchrest, Barbara A.; Gonzalez, Salvador

    2006-01-01

    In vivo reflectance confocal microscopy (RCM) provides high-resolution optical sections of the skin in its native state, without needing to fix or section the tissue. Melanin provides an excellent contrast for RCM, giving a bright signal in the confocal images. The pigmented guinea-pig is a common

  6. Confocal Laser Endomicroscopy in Neurosurgery: A New Technique with Much Potential

    Directory of Open Access Journals (Sweden)

    David Breuskin

    2013-01-01

    Full Text Available Technical innovations in brain tumour diagnostic and therapy have led to significant improvements of patient outcome and recurrence free interval. The use of technical devices such as surgical microscopes as well as neuronavigational systems have helped localising tumours as much as fluorescent agents, such as 5-aminolaevulinic acid, have helped visualizing pathologically altered tissue. Nonetheless, intraoperative instantaneous frozen sections and histological diagnosis remain the only method of gaining certainty of the nature of the resected tissue. This technique is time consuming and does not provide close-to-real-time information. In gastroenterology, confocal endoscopy closed the gap between tissue resection and histological examination, providing an almost real-time histological diagnosis. The potential of this technique using a confocal laser endoscope EndoMAG1 by Karl Storz Company was evaluated by our group on pig brains, tumour tissue cell cultures, and fresh human tumour specimen. Here, the authors report for the first time on the results of applying this new technique and provide first confocal endoscopic images of various brain and tumour structures. In all, the technique harbours a very promising potential to provide almost real-time intraoperative diagnosis, but further studies are needed to provide evidence for the technique’s potential.

  7. High resolution 3D confocal microscope imaging of volcanic ash particles.

    Science.gov (United States)

    Wertheim, David; Gillmore, Gavin; Gill, Ian; Petford, Nick

    2017-07-15

    We present initial results from a novel high resolution confocal microscopy study of the 3D surface structure of volcanic ash particles from two recent explosive basaltic eruptions, Eyjafjallajökull (2010) and Grimsvötn (2011), in Iceland. The majority of particles imaged are less than 100μm in size and include PM 10 s, known to be harmful to humans if inhaled. Previous studies have mainly used 2D microscopy to examine volcanic particles. The aim of this study was to test the potential of 3D laser scanning confocal microscopy as a reliable analysis tool for these materials and if so to what degree high resolution surface and volume data could be obtained that would further aid in their classification. First results obtained using an Olympus LEXT scanning confocal microscope with a ×50 and ×100 objective lens are highly encouraging. They reveal a range of discrete particle types characterised by sharp or concave edges consistent with explosive formation and sudden rupture of magma. Initial surface area/volume ratios are given that may prove useful in subsequent modelling of damage to aircraft engines and human tissue where inhalation has occurred. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    Science.gov (United States)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  9. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics.

    Science.gov (United States)

    Hayashi, Shinichi; Okada, Yasushi

    2015-05-01

    Most current superresolution (SR) microscope techniques surpass the diffraction limit at the expense of temporal resolution, compromising their applications to live-cell imaging. Here we describe a new SR fluorescence microscope based on confocal microscope optics, which we name the spinning disk superresolution microscope (SDSRM). Theoretically, the SDSRM is equivalent to a structured illumination microscope (SIM) and achieves a spatial resolution of 120 nm, double that of the diffraction limit of wide-field fluorescence microscopy. However, the SDSRM is 10 times faster than a conventional SIM because SR signals are recovered by optical demodulation through the stripe pattern of the disk. Therefore a single SR image requires only a single averaged image through the rotating disk. On the basis of this theory, we modified a commercial spinning disk confocal microscope. The improved resolution around 120 nm was confirmed with biological samples. The rapid dynamics of micro-tubules, mitochondria, lysosomes, and endosomes were observed with temporal resolutions of 30-100 frames/s. Because our method requires only small optical modifications, it will enable an easy upgrade from an existing spinning disk confocal to a SR microscope for live-cell imaging. © 2015 Hayashi and Okada. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. QUANTITATIVE CONFOCAL LASER SCANNING MICROSCOPY

    Directory of Open Access Journals (Sweden)

    Merete Krog Raarup

    2011-05-01

    Full Text Available This paper discusses recent advances in confocal laser scanning microscopy (CLSM for imaging of 3D structure as well as quantitative characterization of biomolecular interactions and diffusion behaviour by means of one- and two-photon excitation. The use of CLSM for improved stereological length estimation in thick (up to 0.5 mm tissue is proposed. The techniques of FRET (Fluorescence Resonance Energy Transfer, FLIM (Fluorescence Lifetime Imaging Microscopy, FCS (Fluorescence Correlation Spectroscopy and FRAP (Fluorescence Recovery After Photobleaching are introduced and their applicability for quantitative imaging of biomolecular (co-localization and trafficking in live cells described. The advantage of two-photon versus one-photon excitation in relation to these techniques is discussed.

  11. Confocal imaging of butterfly tissue.

    Science.gov (United States)

    Brunetti, Craig R

    2014-01-01

    To understand the molecular events responsible for morphological change requires the ability to examine gene expression in a wide range of organisms in addition to model systems to determine how the differences in gene expression correlate with phenotypic differences. There are approximately 12,000 species of butterflies, most, with distinct patterns on their wings. The most important tool for studying gene expression in butterflies is confocal imaging of butterfly tissue by indirect immunofluorescence using either cross-reactive antibodies from closely related species such as Drosophila or developing butterfly-specific antibodies. In this report, we describe how indirect immunofluorescence protocols can be used to visualize protein expression patterns on the butterfly wing imaginal disc and butterfly embryo.

  12. Confocal microscopy and electrophysiological study of single patient corneal endothelium cell cultures

    Science.gov (United States)

    Tatini, Francesca; Rossi, Francesca; Coppi, Elisabetta; Magni, Giada; Fusco, Irene; Menabuoni, Luca; Pedata, Felicita; Pugliese, Anna Maria; Pini, Roberto

    2016-04-01

    The characterization of the ion channels in corneal endothelial cells and the elucidation of their involvement in corneal pathologies would lead to the identification of new molecular target for pharmacological treatments and to the clarification of corneal physiology. The corneal endothelium is an amitotic cell monolayer with a major role in preserving corneal transparency and in regulating the water and solute flux across the posterior surface of the cornea. Although endothelial cells are non-excitable, they express a range of ion channels, such as voltage-dependent Na+ channels and K+ channels, L-type Ca2 channels and many others. Interestingly, purinergic receptors have been linked to a variety of conditions within the eye but their presence in the endothelium and their role in its pathophysiology is still uncertain. In this study, we were able to extract endothelial cells from single human corneas, thus obtaining primary cultures that represent the peculiarity of each donor. Corneas were from tissues not suitable for transplant in patients. We characterized the endothelial cells by confocal microscopy, both within the intact cornea and in the primary endothelial cells cultures. We also studied the functional role of the purinergic system (adenosine, ATP and their receptors) by means of electrophysiological recordings. The experiments were performed by patch clamp recordings and confocal time-lapse microscopy and our results indicate that the application of purinergic compounds modulates the amplitude of outward currents in the isolated endothelial cells. These findings may lead to the proposal of new therapies for endothelium-related corneal diseases.

  13. Evaluation of some advanced wheat lines (F7 in normal and drought stress conditions

    Directory of Open Access Journals (Sweden)

    R. Nikseresht

    2016-05-01

    Full Text Available For assessment of drought stress effects on agro characteristics of 30 lines and 6 wheat cultivars and for introducing of drought tolerant and susceptible ones one trial were established using split plot base of randomized complete block design with two replications, main plots were stress and non-stress condition and sub plots contain 30 lines and six wheat cultivars in the check trial, irrigation the farm was done with the normal regime, but in stress trial for germination of seeds and one irrigation in Isfand to the end of rooting the farm was irrigated. Within and end of growth season we measured some agronomic and morphological characters such as yield and its component, height, peduncle length, and etc. Responses of cultivars under stress and non-stress conditions were' different, for example drought stress reduced yield. In spite of this general yield reducing, we found some line, such as 2, 29, 23 had relatively high yield (in tree levels. In order to final evaluate using Factor Analysis, Principal Component, Cluster Analysis .Factor Analysis indicated that four important factors accounted for about 80.245 and 79.624 percent of the total variation among traits in normal and drought stress conditions. With cluster analysis of 36 lines and cultivar using Ward procedure based on Euclidean distance were grouped in 4 distance cluster.

  14. Improvement in volume estimation from confocal sections after image deconvolution

    Czech Academy of Sciences Publication Activity Database

    Difato, Francesco; Mazzone, F.; Scaglione, S.; Fato, M.; Beltrame, F.; Kubínová, Lucie; Janáček, Jiří; Ramoino, P.; Vicidomini, G.; Diaspro, A.

    2004-01-01

    Roč. 64, č. 2 (2004), s. 151-155 ISSN 1059-910X Institutional research plan: CEZ:AV0Z5011922 Keywords : confocal microscopy * image deconvolution * point spread function Subject RIV: EA - Cell Biology Impact factor: 2.609, year: 2004

  15. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR CALIBRATION, QUANTITATION AND SPECTROSCOPY

    Science.gov (United States)

    The confocal laser-scanning microscope (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of emitted signals. The accuracy of these measurements demands that...

  16. Wind turbine condition monitoring based on SCADA data using normal behavior models

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar; Achiche, Sofiane

    2013-01-01

    This paper proposes a system for wind turbine condition monitoring using Adaptive Neuro-Fuzzy Interference Systems (ANFIS). For this purpose: (1) ANFIS normal behavior models for common Supervisory Control And Data Acquisition (SCADA) data are developed in order to detect abnormal behavior...... the applicability of ANFIS models for monitoring wind turbine SCADA signals. The computational time needed for model training is compared to Neural Network (NN) models showing the strength of ANFIS in training speed. (2) For automation of fault diagnosis Fuzzy Interference Systems (FIS) are used to analyze...

  17. Confocal stereology and image analysis: methods for estimating geometrical characteristics of cells and tissues from three-dimensional confocal images

    Czech Academy of Sciences Publication Activity Database

    Kubínová, Lucie; Janáček, Jiří; Karen, Petr; Radochová, Barbora; Difato, Francesco; Krekule, Ivan

    2004-01-01

    Roč. 53, Suppl.1 (2004), s. S47-S55 ISSN 0862-8408 R&D Projects: GA ČR GA304/01/0257; GA ČR GA310/02/1470; GA AV ČR KJB6011309; GA AV ČR KJB5039302 Grant - others:SI - CZ(CZ) KONTAKT 001/2001 Institutional research plan: CEZ:AV0Z5011922 Keywords : confocal microscopy * image analysis * stereology Subject RIV: EA - Cell Biology Impact factor: 1.140, year: 2004

  18. Monomeric adiponectin increases cell viability in porcine aortic endothelial cells cultured in normal and high glucose conditions: Data on kinases activation

    Directory of Open Access Journals (Sweden)

    Elena Grossini

    2016-09-01

    Full Text Available We found that monomeric adiponectin was able to increase cell viability in porcine aortic endothelial cells (PAE cultured both in normal and high glucose condition. Moreover, in normal glucose condition monomeric adiponectin increased p38MAPK, Akt, ERK1/2 and eNOS phosphorylation in a dose- and time-dependent way. Also in high glucose condition monomeric adiponectin increased eNOS and above kinases phosphorylation with similar patterns but at lower extent. For interpretation of the data presented in this article, please see the research article “Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions” (Grossini et al., in press [1].

  19. CINCH (confocal incoherent correlation holography) super resolution fluorescence microscopy based upon FINCH (Fresnel incoherent correlation holography).

    Science.gov (United States)

    Siegel, Nisan; Storrie, Brian; Bruce, Marc; Brooker, Gary

    2015-02-07

    FINCH holographic fluorescence microscopy creates high resolution super-resolved images with enhanced depth of focus. The simple addition of a real-time Nipkow disk confocal image scanner in a conjugate plane of this incoherent holographic system is shown to reduce the depth of focus, and the combination of both techniques provides a simple way to enhance the axial resolution of FINCH in a combined method called "CINCH". An important feature of the combined system allows for the simultaneous real-time image capture of widefield and holographic images or confocal and confocal holographic images for ready comparison of each method on the exact same field of view. Additional GPU based complex deconvolution processing of the images further enhances resolution.

  20. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy

    Science.gov (United States)

    Wirth, Dennis; Smith, Thomas W.; Moser, Richard; Yaroslavsky, Anna N.

    2015-04-01

    Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml-1 aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors.

  1. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy

    International Nuclear Information System (INIS)

    Wirth, Dennis; Yaroslavsky, Anna N; Smith, Thomas W; Moser, Richard

    2015-01-01

    Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml −1 aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors. (paper)

  2. 3D Volumetric Analysis of Fluid Inclusions Using Confocal Microscopy

    Science.gov (United States)

    Proussevitch, A.; Mulukutla, G.; Sahagian, D.; Bodnar, B.

    2009-05-01

    Fluid inclusions preserve valuable information regarding hydrothermal, metamorphic, and magmatic processes. The molar quantities of liquid and gaseous components in the inclusions can be estimated from their volumetric measurements at room temperatures combined with knowledge of the PVTX properties of the fluid and homogenization temperatures. Thus, accurate measurements of inclusion volumes and their two phase components are critical. One of the greatest advantages of the Laser Scanning Confocal Microscopy (LSCM) in application to fluid inclsion analsyis is that it is affordable for large numbers of samples, given the appropriate software analysis tools and methodology. Our present work is directed toward developing those tools and methods. For the last decade LSCM has been considered as a potential method for inclusion volume measurements. Nevertheless, the adequate and accurate measurement by LSCM has not yet been successful for fluid inclusions containing non-fluorescing fluids due to many technical challenges in image analysis despite the fact that the cost of collecting raw LSCM imagery has dramatically decreased in recent years. These problems mostly relate to image analysis methodology and software tools that are needed for pre-processing and image segmentation, which enable solid, liquid and gaseous components to be delineated. Other challenges involve image quality and contrast, which is controlled by fluorescence of the material (most aqueous fluid inclusions do not fluoresce at the appropriate laser wavelengths), material optical properties, and application of transmitted and/or reflected confocal illumination. In this work we have identified the key problems of image analysis and propose some potential solutions. For instance, we found that better contrast of pseudo-confocal transmitted light images could be overlayed with poor-contrast true-confocal reflected light images within the same stack of z-ordered slices. This approach allows one to narrow

  3. Development of confocal 3D micro-XRF spectrometer with dual Cr-Mo excitation

    International Nuclear Information System (INIS)

    Kouichi Tsuji; Kazuhiko Nakano

    2007-01-01

    A new 3D micro-XRF instrument based on a confocal setup using two independent poly-capillary x-ray lenses and two x-ray sources (Cr and Mo targets) was developed. A full poly-capillary x-ray lens was attached to each x-ray tube. Another half poly-capillary lens was attached to a silicon drift x-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The depth resolutions that were evaluated by use of a 10-μm thick Au foil were approximately 90 μm for the x-ray energy of Au Lα. The effects of the dual Cr-Mo x-ray beam excitation were investigated. It was confirmed that the XRF intensity of light elements was increased by applying the Cr-target x-ray tube in a confocal configuration. In the proposed confocal configuration, 3D elemental mapping of the major elements of an amaranth seed was performed nondestructively at ambient air pressure. Each element of the seed showed different mapping images in the different depth layers. (authors)

  4. Development of confocal 3D micro-XRF spectrometer with dual Cr-Mo excitation

    Energy Technology Data Exchange (ETDEWEB)

    Kouichi Tsuji [Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 (Japan); PRESTO-JST - Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan); Kazuhiko Nakano [Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 (Japan)

    2007-05-15

    A new 3D micro-XRF instrument based on a confocal setup using two independent poly-capillary x-ray lenses and two x-ray sources (Cr and Mo targets) was developed. A full poly-capillary x-ray lens was attached to each x-ray tube. Another half poly-capillary lens was attached to a silicon drift x-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The depth resolutions that were evaluated by use of a 10-{mu}m thick Au foil were approximately 90 {mu}m for the x-ray energy of Au L{alpha}. The effects of the dual Cr-Mo x-ray beam excitation were investigated. It was confirmed that the XRF intensity of light elements was increased by applying the Cr-target x-ray tube in a confocal configuration. In the proposed confocal configuration, 3D elemental mapping of the major elements of an amaranth seed was performed nondestructively at ambient air pressure. Each element of the seed showed different mapping images in the different depth layers. (authors)

  5. Evaluation and purchase of confocal microscopes: numerous factors to consider.

    Science.gov (United States)

    Zucker, Robert M; Chua, Michael

    2010-10-01

    The purchase of a confocal microscope is a difficult decision. Many factors need to be considered, which include hardware, software, company, support, service, and price. These issues are discussed to help guide the purchasing process. © 2010 by John Wiley & Sons, Inc.

  6. Analysis of endoplasmic reticulum of tobacco cells using confocal microscopy

    Czech Academy of Sciences Publication Activity Database

    Radochová, Barbora; Janáček, Jiří; Schwarzerová, K.; Demjénová, E.; Tomori, Z.; Karen, Petr; Kubínová, Lucie

    2005-01-01

    Roč. 24, č. 11 (2005), s. 181-185 ISSN 1580-3139 R&D Projects: GA AV ČR(CZ) KJB6011309 Institutional research plan: CEZ:AV0Z50110509 Keywords : confocal microscopy * endoplasmic reticulum * image analysis Subject RIV: EA - Cell Biology

  7. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR MEASUREMENTS, QUANTITATION AND SPECTROSCOPY

    Science.gov (United States)

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  8. Confocal pore size measurement based on super-resolution image restoration.

    Science.gov (United States)

    Liu, Dali; Wang, Yun; Qiu, Lirong; Mao, Xinyue; Zhao, Weiqian

    2014-09-01

    A confocal pore size measurement based on super-resolution image restoration is proposed to obtain a fast and accurate measurement for submicrometer pore size of nuclear track-etched membranes (NTEMs). This method facilitates the online inspection of the pore size evolution during etching. Combining confocal microscopy with super-resolution image restoration significantly improves the lateral resolution of the NTEM image, yields a reasonable circle edge-setting criterion of 0.2408, and achieves precise pore edge detection. Theoretical analysis shows that the minimum measuring diameter can reach 0.19 μm, and the root mean square of the residuals is only 1.4 nm. Edge response simulation and experiment reveal that the edge response of the proposed method is better than 80 nm. The NTEM pore size measurement results obtained by the proposed method agree well with that obtained by scanning electron microscopy.

  9. Extended Field Laser Confocal Microscopy (EFLCM): Combining automated Gigapixel image capture with in silico virtual microscopy

    International Nuclear Information System (INIS)

    Flaberg, Emilie; Sabelström, Per; Strandh, Christer; Szekely, Laszlo

    2008-01-01

    Confocal laser scanning microscopy has revolutionized cell biology. However, the technique has major limitations in speed and sensitivity due to the fact that a single laser beam scans the sample, allowing only a few microseconds signal collection for each pixel. This limitation has been overcome by the introduction of parallel beam illumination techniques in combination with cold CCD camera based image capture. Using the combination of microlens enhanced Nipkow spinning disc confocal illumination together with fully automated image capture and large scale in silico image processing we have developed a system allowing the acquisition, presentation and analysis of maximum resolution confocal panorama images of several Gigapixel size. We call the method Extended Field Laser Confocal Microscopy (EFLCM). We show using the EFLCM technique that it is possible to create a continuous confocal multi-colour mosaic from thousands of individually captured images. EFLCM can digitize and analyze histological slides, sections of entire rodent organ and full size embryos. It can also record hundreds of thousands cultured cells at multiple wavelength in single event or time-lapse fashion on fixed slides, in live cell imaging chambers or microtiter plates. The observer independent image capture of EFLCM allows quantitative measurements of fluorescence intensities and morphological parameters on a large number of cells. EFLCM therefore bridges the gap between the mainly illustrative fluorescence microscopy and purely quantitative flow cytometry. EFLCM can also be used as high content analysis (HCA) instrument for automated screening processes

  10. Post-PRK corneal scatter measurements with a scanning confocal slit photon counter

    Science.gov (United States)

    Taboada, John; Gaines, David; Perez, Mary A.; Waller, Steve G.; Ivan, Douglas J.; Baldwin, J. Bruce; LoRusso, Frank; Tutt, Ronald C.; Perez, Jose; Tredici, Thomas; Johnson, Dan A.

    2000-06-01

    Increased corneal light scatter or 'haze' has been associated with excimer laser photorefractive surgery of the cornea. The increased scatter can affect visual performance; however, topical steroid treatment post surgery substantially reduces the post PRK scatter. For the treatment and monitoring of the scattering characteristics of the cornea, various methods have been developed to objectively measure the magnitude of the scatter. These methods generally can measure scatter associated with clinically observable levels of haze. For patients with moderate to low PRK corrections receiving steroid treatment, measurement becomes fairly difficult as the haze clinical rating is non observable. The goal of this development was to realize an objective, non-invasive physical measurement that could produce a significant reading for any level including the background present in a normal cornea. As back-scatter is the only readily accessible observable, the instrument is based on this measurement. To achieve this end required the use of a confocal method to bias out the background light that would normally confound conventional methods. A number of subjects with nominal refractive errors in an Air Force study have undergone PRK surgery. A measurable increase in corneal scatter has been observed in these subjects whereas clinical ratings of the haze were noted as level zero. Other favorable aspects of this back-scatter based instrument include an optical capability to perform what is equivalent to an optical A-scan of the anterior chamber. Lens scatter can also be measured.

  11. [In vivo reflectance confocal microscopy in dermatology: a proposal concerning French terminology].

    Science.gov (United States)

    Kanitakis, J; Bahadoran, P; Braun, R; Debarbieux, S; Labeille, B; Perrot, J-L; Vabres, P

    2013-11-01

    Reflectance confocal microscopy (RCM) is a recently introduced non-invasive imaging technique allowing real-time examination of the skin in vivo. Whereas a substantial literature concerning RCM exists in English, so far there is no official terminology in French, despite the fact that an ever-growing number of French-speaking dermatologists now use this new imaging technique. The aim of the present study is to propose a French terminology for RCM in order to allow French-speaking dermatologists to communicate in a precise and homogeneous language on this topic. A group of French-speaking dermatologists with solid experience of RCM, members of the Non-invasive Cutaneous Imaging group of the French Society of Dermatology, endeavored to suggest terms in French concerning RCM. Each group member dealt with a specific paragraph. The members exchanged comments via email and the terminology was finalized during a meeting of the group members in Paris in June 2012. Descriptive terms referring to the RCM aspects of normal and diseased skin were proposed. Some of these already existed, being used in routine dermatopathology, while other specific terms were created or adapted from the English terminology. This terminology will allow French-speaking dermatologists using RCM to communicate their findings in a homogeneous language. It may be enriched in the future by the introduction of additional terms describing new aspects of both normal and, especially, diseased skin. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  12. A novel method for enhancing the lateral resolution and image SNR in confocal microscopy

    Science.gov (United States)

    Chen, Youhua; Zhu, Dazhao; Fang, Yue; Kuang, Cuifang; Liu, Xu

    2017-12-01

    There is always a tradeoff between the resolution and the signal-to-noise ratio (SNR) in confocal microscopy. In particular, the pinhole size is very important for maintaining a balance between them. In this paper, we propose a method for improving the lateral resolution and image SNR in confocal microscopy without making any changes to the hardware. By using the fluorescence emission difference (FED) approach, we divide the images acquired by different pinhole sizes into one image acquired by the central pinhole and several images acquired by ring-shaped pinholes. Then, they are added together with the deconvolution method. Simulation and experimental results for fluorescent particles and cells show that our method can achieve a far better resolution than a large pinhole and a higher SNR than a small pinhole. Moreover, our method can improve the performance of classic confocal laser scanning microscopy (CLSM) to a certain extent, especially CLSM with a continuously variable pinhole.

  13. Normalization of informatisation parameter on airfield light-signal bar at flights in complex meteorological conditions

    Directory of Open Access Journals (Sweden)

    П.В. Попов

    2005-03-01

    Full Text Available  The technique of maintenance of the set level of flights safetivness is developed by normalization of informatisation parameters functional groups of light-signal lightings at technological stages of interaction of crew of the airplane with the airfield light-signals bar at flights in a complex weathercast conditions.

  14. Assessment of skin pigmentation by confocal microscopy: Influence of solar exposure and protection habits on cutaneous hyperchromias.

    Science.gov (United States)

    Martini, Ana Paula M; Mercurio, Daiane G; Maia Campos, Patrícia M B G

    2017-09-01

    Cutaneous hyperchromias are disorders of skin pigmentation involving an increase of melanin production and its irregular accumulation in skin cells. It is known that the use of sunscreens helps to prevent changes in the skin pigmentation pattern, but the structural and morphological alterations that occur in the different types of hyperpigmentations need better elucidation. To assess the influence of solar exposure and protection habits on the pattern of skin pigmentation using reflectance confocal microscopy (RCM). Forty volunteers aged 18-39 years with skin hyperpigmentation participated in the study. Skin characterization was performed by imaging techniques and by assessing the habits of solar exposure and protection by applying questionnaires to the volunteers. RCM was used to record sequences of confocal sections at areas of interest and to examine cell shape and brightness in the basal cell layer of the lesion and in normal perilesional skin. Furthermore, high-resolution images were obtained for analysis of the spots. Sunlight influences the number and location of spots as the face of volunteers with higher solar exposure was covered with spots, whereas volunteers with less exposure had fewer spots located in the nose and cheeks region due to greater exposure of these areas to the sun. The data showed the importance of sun protection for preventing changes in the pattern of skin pigmentation, and RCM proved to be an important tool for skin characterization. © 2017 Wiley Periodicals, Inc.

  15. Comparison between optical techniques and confocal microscopy for defect detection on thin wires

    International Nuclear Information System (INIS)

    Siegmann, Philip; Sanchez-Brea, Luis Miguel; Martinez-Anton, Juan Carlos; Bernabeu, Eusebio

    2004-01-01

    Conventional microscopy techniques, such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and confocal microscopy (CM) are not suitable for on-line surface inspection of fine metallic wires. In the recent years, some optical techniques have been developed to be used for those tasks. However, they need a rigorous validation. In this work, we have used confocal microscopy to obtain the topography z(x,y) of wires with longitudinal defects, such as dielines. The topography has been used to predict the light scattered by the wire. These simulations have been compared with experimental results, showing a good agreement

  16. [Structure of maxillary sinus mucous membrane under normal conditions and in odontogenic perforative sinusitis].

    Science.gov (United States)

    Baĭdik, O D; Logvinov, S V; Zubarev, S G; Sysoliatin, P G; Gurin, A A

    2011-01-01

    Methods of light, electron microscopy and immunohistochemistry were used to study the samples of maxillary sinus (MS) mucous membrane (MM) under normal conditions and in odontogenic sinusitis. To study the normal structure, the samples were obtained at autopsy from 26 human corpses 12-24 hours after death. Electron microscopic and immunohistochemical study was performed on biopsies of grossly morphologically unchanged MS MM, obtained during the operations for retention cysts in 6 patients. MS MM in perforative sinusitis was studied using the biopsies obtained from 43 patients. The material is broken into 4 groups depending on perforative sinusitis duration. Under normal conditions, MS MM is lined with a pseudostratified columnar ciliated epithelium. Degenerative changes of ciliated epithelial cells were already detected at short time intervals after MS perforations and become apparent due to reduction of specific volume of mitochondria and, rough endoplasmic reticulum, and increase of nuclear-cytoplasmic ratio. In the globlet cells, the reduction of nuclear-cytoplasmic ratio was associated with the disturbance of the secretory product release. At time intervals exceeding 3 months, epithelium underwent metaplasia into simple cuboidal and stratified squamous keratinized, while in MS MM lamina propria, cellular infiltration was increased. CD4+ cell content in sinus MM gradually increased, while at late periods after perforation occurrence it decreased. Low CD4+ cell count within the epithelium and the absence of muromidase on the surface of MS MM was detected. With the increase of the time interval since MS perforation, the number of CD8+ and CD20+ cells in MS MM was found to increase.

  17. In vivo integrated photoacoustic and confocal microscopy of hemoglobin oxygen saturation and oxygen partial pressure.

    Science.gov (United States)

    Wang, Yu; Hu, Song; Maslov, Konstantin; Zhang, Yu; Xia, Younan; Wang, Lihong V

    2011-04-01

    We developed dual-modality microscope integrating photoacoustic microscopy (PAM) and fluorescence confocal microscopy (FCM) to noninvasively image hemoglobin oxygen saturation (sO₂) and oxygen partial pressure (pO₂) in vivo in single blood vessels with high spatial resolution. While PAM measures sO₂ by imaging hemoglobin optical absorption at two wavelengths, FCM quantifies pO₂ using phosphorescence quenching. The variations of sO₂ and pO₂ values in multiple orders of vessel branches under hyperoxic (100% oxygen) and normoxic (21% oxygen) conditions correlate well with the oxygen-hemoglobin dissociation curve. In addition, the total concentration of hemoglobin is imaged by PAM at an isosbestic wavelength.

  18. French Contribution to the Specialists' Meeting on Demonstration of Structural Integrity under Normal and Fault Conditions

    International Nuclear Information System (INIS)

    Soulat, P.; Tavassoli, A.

    1981-01-01

    The following is a summary of a few selected programmes in France on the structural integrity of fast reactor components under normal and faulted conditions. The scope of the programmes selected is limited to that suggested by the specialists Meeting organisers

  19. A multi-axis confocal rheoscope for studying shear flow of structured fluids

    KAUST Repository

    Lin, Neil Y. C.

    2014-03-01

    We present a new design for a confocal rheoscope that enables uniform uniaxial or biaxial shear. The design consists of two precisely positioned parallel plates with a gap that can be adjusted down to 2 ±0.1 μm, allowing for the exploration of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material three-dimensional structure. We illustrate the importance of the instrument capabilities by discussing the applications of this instrument in current and future research topics in colloidal suspensions. © 2014 AIP Publishing LLC.

  20. Effects of preheated combustion air on laminar coflow diffusion flames under normal and microgravity conditions

    Science.gov (United States)

    Ghaderi Yeganeh, Mohammad

    Global energy consumption has been increasing around the world, owing to the rapid growth of industrialization and improvements in the standard of living. As a result, more carbon dioxide and nitrogen oxide are being released into the environment. Therefore, techniques for achieving combustion at reduced carbon dioxide and nitric oxide emission levels have drawn increased attention. Combustion with a highly preheated air and low-oxygen concentration has been shown to provide significant energy savings, reduce pollution and equipment size, and uniform thermal characteristics within the combustion chamber. However, the fundamental understanding of this technique is limited. The motivation of the present study is to identify the effects of preheated combustion air on laminar coflow diffusion flames. Combustion characteristics of laminar coflow diffusion flames are evaluated for the effects of preheated combustion air temperature under normal and low-gravity conditions. Experimental measurements are conducted using direct flame photography, particle image velocimetry (PIV) and optical emission spectroscopy diagnostics. Laminar coflow diffusion flames are examined under four experimental conditions: normal-temperature/normal-gravity (case I), preheated-temperature/normal gravity (case II), normal-temperature/low-gravity (case III), and preheated-temperature/low-gravity (case IV). Comparisons between these four cases yield significant insights. In our studies, increasing the combustion air temperature by 400 K (from 300 K to 700 K), causes a 37.1% reduction in the flame length and about a 25% increase in peak flame temperature. The results also show that a 400 K increase in the preheated air temperature increases CH concentration of the flame by about 83.3% (CH is a marker for the rate of chemical reaction), and also increases the C2 concentration by about 60% (C2 is a marker for the soot precursor). It can therefore be concluded that preheating the combustion air

  1. 3-D reconstruction of neurons from multichannel confocal laser scanning image series.

    Science.gov (United States)

    Wouterlood, Floris G

    2014-04-10

    A confocal laser scanning microscope (CLSM) collects information from a thin, focal plane and ignores out-of-focus information. Scanning of a specimen, with stepwise axial (Z-) movement of the stage in between each scan, produces Z-series of confocal images of a tissue volume, which then can be used to 3-D reconstruct structures of interest. The operator first configures separate channels (e.g., laser, filters, and detector settings) for each applied fluorochrome and then acquires Z-series of confocal images: one series per channel. Channel signal separation is extremely important. Measures to avoid bleaching are vital. Post-acquisition deconvolution of the image series is often performed to increase resolution before 3-D reconstruction takes place. In the 3-D reconstruction programs described in this unit, reconstructions can be inspected in real time from any viewing angle. By altering viewing angles and by switching channels off and on, the spatial relationships of 3-D-reconstructed structures with respect to structures visualized in other channels can be studied. Since each brand of CLSM, computer program, and 3-D reconstruction package has its own proprietary set of procedures, a general approach is provided in this protocol wherever possible. Copyright © 2014 John Wiley & Sons, Inc.

  2. Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing.

    Science.gov (United States)

    Thong, Patricia S P; Tandjung, Stephanus S; Movania, Muhammad Mobeen; Chiew, Wei-Ming; Olivo, Malini; Bhuvaneswari, Ramaswamy; Seah, Hock-Soon; Lin, Feng; Qian, Kemao; Soo, Khee-Chee

    2012-05-01

    Oral lesions are conventionally diagnosed using white light endoscopy and histopathology. This can pose a challenge because the lesions may be difficult to visualise under white light illumination. Confocal laser endomicroscopy can be used for confocal fluorescence imaging of surface and subsurface cellular and tissue structures. To move toward real-time "virtual" biopsy of oral lesions, we interfaced an embedded computing system to a confocal laser endomicroscope to achieve a prototype three-dimensional (3-D) fluorescence imaging system. A field-programmable gated array computing platform was programmed to enable synchronization of cross-sectional image grabbing and Z-depth scanning, automate the acquisition of confocal image stacks and perform volume rendering. Fluorescence imaging of the human and murine oral cavities was carried out using the fluorescent dyes fluorescein sodium and hypericin. Volume rendering of cellular and tissue structures from the oral cavity demonstrate the potential of the system for 3-D fluorescence visualization of the oral cavity in real-time. We aim toward achieving a real-time virtual biopsy technique that can complement current diagnostic techniques and aid in targeted biopsy for better clinical outcomes.

  3. The confocal plane grating spectrometer at BESSY II

    International Nuclear Information System (INIS)

    Könnecke, R.; Follath, R.; Pontius, N.; Schlappa, J.; Eggenstein, F.; Zeschke, T.; Bischoff, P.; Schmidt, J.-S.; Noll, T.

    2013-01-01

    Highlights: ► At the electron storage ring BESSY II a confocal plane grating RIXS endstation with a spot size of 4 μm × 1 μm is presently being installed. ► A resolving power above 10,000 is expected for low energy excitations below 500 eV. ► The sample will be excited with a photon flux up to 10 15 photons/(s 300 mA 0.1%bandwidth). ► Sample environments for solid, gaseous and liquid samples will be provided. ► A fast detecting system is being set up for future pump-probe experiments. -- Abstract: At BESSY II a confocal plane grating spectrometer for resonant inelastic X-ray scattering (RIXS) is currently under commissioning. The new endstation operates with a source size of 4 × 1 μm 2 provided by its dedicated beamline. The RIXS-spectrometer covers an energy range from 50 eV to 1000 eV, providing a resolving power E/ΔE of 5000–15,000. The beamline allows full polarization control and gives a photon flux of up to 7 × 10 14 photons/s/0.1 A/0.1%bandwidth by offering a resolving power E/ΔE of 4000–12,000

  4. A novel platelet activating factor receptor antagonist reduces cell infiltration and expression of inflammatory mediators in mice exposed to desiccating conditions after PRK.

    Science.gov (United States)

    Esquenazi, Salomon; He, Jiucheng; Li, Na; Bazan, Nicolas G; Esquenazi, Isi; Bazan, Haydee E P

    2009-01-01

    To study the contribution of a novel PAF receptor antagonist LAU-0901 in the modulation of the increased inflammatory response in mice exposed to dessicating conditions (DE) after PRK. Eighty 13-14 week old female Balb/C mice were used. They were divided into two groups: One group was treated with LAU-0901 topical drops. The other group was treated with vehicle. In each group ten mice served as controls and ten were placed in DE. The other twenty mice underwent bilateral PRK and were divided in two additional groups: ten mice remained under normal conditions (NC) and the other ten were exposed to DE. After 1 week all animals underwent in vivo confocal microscopy, immunostaining and western blotting analysis. Confocal microscopy showed an increased number of reflective structures in the corneal epithelium after PRK and exposure to DE in eyes treated with vehicle as compared to eyes treated with LAU-090). Significant decrease of COX-2 and Arginase I expression and reduced alpha SMA cells was observed after PRK and exposure to DE in eyes treated with LAU-0901. Exposure of mice to a DE after PRK increases the epithelial turnover rate. PAF is involved in the inflammatory cell infiltration and expression of inflammatory cytokines that follow PRK under DE.

  5. Results of tests under normal and abnormal operating conditions concerning LMFBR fuel element behaviour

    International Nuclear Information System (INIS)

    Languille, A.; Bergeonneau, P.; Essig, C.; Guerin, Y.

    1985-04-01

    The objective of this paper is to improve the knowledge on LMFBR fuel element behaviour during protected and unprotected transients in RAPSODIE and PHENIX reactors in order to evaluate its reliability. The range of the tests performed in these reactors is sufficiently large to cover normal and also extreme off normal conditions such as fuel melting. Results of such tests allow to better establish transient design limits for reactor structural components in particular for fuel pin cladding which play a lead role in controlling the accident sequence. Three main topics are emphasized in this paper: fuel melting during slow over-power excursions; influence of the fuel element geometrical evolution on reactivity feedback effects and reactor dynamic behaviour; clad damage evaluation during a transient (essentially very severe loss of flow)

  6. Development of confocal X-ray fluorescence (XRF) microscopy at the Cornell high energy synchrotron source

    International Nuclear Information System (INIS)

    Woll, A.R.; Huang, R.; Mass, J.; Bisulca, C.; Bilderback, D.H.; Gruner, S.; Gao, N.

    2006-01-01

    A confocal X-ray fluorescence microscope was built at the Cornell High Energy Synchrotron Source (CHESS) to obtain compositional depth profiles of historic paintings. The microscope consists of a single-bounce, borosilicate monocapillary optic to focus the incident beam onto the painting and a commercial borosilicate polycapillary lens to collect the fluorescent X-rays. The resolution of the microscope was measured by scanning a variety of thin metal films through this confocal volume while monitoring the fluorescence signal. The capabilities of the technique were then probed using test paint microstructures with up to four distinct layers, each having a thickness in the range of 10-80 microns. Results from confocal XRF were compared with those from stand-alone XRF and visible light microscopy of the paint cross-sections. A large area, high-resolution scanner is currently being built to perform 3D scans on moderately sized paintings. (orig.)

  7. Confocal stereology: an efficient tool for measurement of microscopic structures

    Czech Academy of Sciences Publication Activity Database

    Kubínová, Lucie; Janáček, Jiří

    2015-01-01

    Roč. 360, č. 1 (2015), s. 13-28 ISSN 0302-766X R&D Projects: GA MŠk(CZ) LH13028 Institutional support: RVO:67985823 Keywords : 3-D images * confocal microscopy * geometrical characteristics * spatial probes * stereology Subject RIV: EA - Cell Biology Impact factor: 2.948, year: 2015

  8. Fibered Confocal Fluorescence Microscopy for the Noninvasive Imaging of Langerhans Cells in Macaques.

    Science.gov (United States)

    Todorova, Biliana; Salabert, Nina; Tricot, Sabine; Boisgard, Raphaël; Rathaux, Mélanie; Le Grand, Roger; Chapon, Catherine

    2017-01-01

    We developed a new approach to visualize skin Langerhans cells by in vivo fluorescence imaging in nonhuman primates. Macaques were intradermally injected with a monoclonal, fluorescently labeled antibody against HLA-DR molecule and were imaged for up to 5 days by fibered confocal microscopy (FCFM). The network of skin Langerhans cells was visualized by in vivo fibered confocal fluorescence microscopy. Quantification of Langerhans cells revealed no changes to cell density with time. Ex vivo experiments confirmed that injected fluorescent HLA-DR antibody specifically targeted Langerhans cells in the epidermis. This study demonstrates the feasibility of single-cell, in vivo imaging as a noninvasive technique to track Langerhans cells in nontransgenic animals.

  9. Recommended parameters for effect assessment of radioactive airborne effluents under normal condition of nuclear facilities

    International Nuclear Information System (INIS)

    Li Hong; Fang Dong; Sun Chengzhi; Xiao Naihong

    2003-01-01

    A set of models and default parameters are recommended for effect assessment of radioactive airborne effluents under normal condition of nuclear facilities in order to standardize the environmental effect assessment of nuclear facilities, and to simplify the observation and investigation in early phase. The paper introduces the input data and default parameters used in the model

  10. Selective Bioparticle Retention and Characterization in a Chip-Integrated Confocal Ultrasonic Cavity

    DEFF Research Database (Denmark)

    Svennebring, J.; Manneberg, O.; Skafte-Pedersen, Peder

    2009-01-01

    We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field at the c......We demonstrate selective retention and positioning of cells or other bioparticles by ultrasonic manipulation in a microfluidic expansion chamber during microfluidic perfusion. The chamber is designed as a confocal ultrasonic resonator for maximum confinement of the ultrasonic force field...... sample feeding, a set of several manipulation functions performed in series is demonstrated: sample bypass-injection-aggregation and retention-positioning. Finally, we demonstrate transillumination microscopy imaging Of Ultrasonically trapped COS-7 cell aggregates. Biotechnol. Bioeng. 2009;103: 323-328....

  11. Ignition and combustion of bulk metals under elevated, normal and reduced gravity conditions

    Science.gov (United States)

    Abbud-Madrid, Angel; Branch, Melvyn C.; Daily, John W.

    1995-01-01

    This research effort is aimed at providing further insight into this multi-variable dependent phenomena by looking at the effects of gravity on the ignition and combustion behavior of metals. Since spacecraft are subjected to higher-than-1g gravity loads during launch and reentry and to zero-gravity environments while in orbit, the study of ignition and combustion of bulk metals at different gravitational potentials is of great practical concern. From the scientific standpoint, studies conducted under microgravity conditions provide simplified boundary conditions since buoyancy is removed, and make possible the identification of fundamental ignition mechanisms. The effect of microgravity on the combustion of bulk metals has been investigated by Steinberg, et al. on a drop tower simulator. However, no detailed quantitative work has been done on ignition phenomena of bulk metals at lower or higher-than-normal gravitational fields or on the combustion characteristics of metals at elevated gravity. The primary objective of this investigation is the development of an experimental system capable of providing fundamental physical and chemical information on the ignition of bulk metals under different gravity levels. The metals used in the study, iron (Fe), titanium (Ti), zirconium (Zr), magnesium (Mg), zinc (Zn), and copper (Cu) were selected because of their importance as elements of structural metals and their simple chemical composition (pure metals instead of multi-component alloys to avoid complication in morphology and spectroscopic studies). These samples were also chosen to study the two different combustion modes experienced by metals: heterogeneous or surface oxidation, and homogeneous or gas-phase reaction. The experimental approach provides surface temperature profiles, spectroscopic measurements, surface morphology, x-ray spectrometry of metals specimens and their combustion products, and high-speed cinematography of the heating, ignition and combustion

  12. Measurement of grain size of polycrystalline materials with confocal energy dispersive micro-X-ray diffraction technology based on polycapillary X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Weiyuan; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Peng, Song [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Li, Fangzuo; Sun, Xuepeng; Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2014-11-11

    The confocal energy dispersive micro-X-ray diffraction (EDMXRD) based on polycapillary X-ray optics was used to determine the grain size of polycrystalline materials. The grain size of a metallographic specimen of nickel base alloy was measured by using the confocal EDMXRD. The experimental results demonstrated that the confocal EDMXRD had potential applications in measuring large grain size.

  13. Characterization of tissue autofluorescence in Barrett's esophagus by confocal fluorescence microscopy

    NARCIS (Netherlands)

    Kara, M. A.; DaCosta, R. S.; Streutker, C. J.; Marcon, N. E.; Bergman, J. J. G. H. M.; Wilson, B. C.

    2007-01-01

    High grade dysplasia and early cancer in Barrett's esophagus can be distinguished in vivo by endoscopic autofluorescence point spectroscopy and imaging from non-dysplastic Barrett's mucosa. We used confocal fluorescence microscopy for ex vivo comparison of autofluorescence in non-dysplastic and

  14. RELIABILITY OF CONFOCAL MICROSCOPY SPECTRAL IMAGING SYSTEMS: USE OF MULTISPECTRAL BEADS

    Science.gov (United States)

    Background: There is a need for a standardized, impartial calibration, and validation protocol on confocal spectral imaging (CSI) microscope systems. To achieve this goal, it is necessary to have testing tools to provide a reproducible way to evaluate instrument performance. ...

  15. Normalized performance and load data for the deepwind demonstrator in controlled conditions

    DEFF Research Database (Denmark)

    Battisti, L.; Benini, E.; Brighenti, A.

    2016-01-01

    , derived from real scale measurements on a three-bladed Troposkien vertical-axis wind turbine, are manipulated in a convenient form to be easily compared with the typical outputs provided by simulation codes. The here proposed data complement and support the measurements already presented in "Wind Tunnel......Performance and load normalized coefficients, deriving from an experimental campaign of measurements conducted at the large scale wind tunnel of the Politecnico di Milano (Italy), are presented with the aim of providing useful benchmark data for the validation of numerical codes. Rough data...... Testing of the DeepWind Demonstrator in Design and Tilted Operating Conditions" (Battisti et al., 2016) [1]....

  16. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1993-01-01

    This paper addresses spent fuel and high level waste transportation history and prospects, discusses accident histories of radioactive material transport, discusses emergency responder needs and provides a general description of the Transportation Intelligent Monitoring System (TRANSIMS) design. The key objectives of the monitoring system are twofold: (1) to facilitate effective emergency response to accidents involving a radioactive waste transportation package, while minimizing risk to the public and emergency first-response personnel, and (2) to allow remote monitoring of transportation vehicle and payload conditions to enable research into radioactive material transportation for normal and accident conditions. (J.P.N.)

  17. Characterization of LiF-based soft X-ray imaging detectors by confocal fluorescence microscopy

    International Nuclear Information System (INIS)

    Bonfigli, F; Gaudio, P; Lupelli, I; Nichelatti, E; Richetta, M; Vincenti, M A; Montereali, R M

    2010-01-01

    X-ray microscopy represents a powerful tool to obtain images of samples with very high spatial resolution. The main limitation of this technique is represented by the poor spatial resolution of standard imaging detectors. We proposed an innovative high-performance X-ray imaging detector based on the visible photoluminescence of colour centres in lithium fluoride. In this work, a confocal microscope in fluorescence mode was used to characterize LiF-based imaging detectors measuring CC integrated visible fluorescence signals of LiF crystals and films (grown on several kinds of substrates) irradiated by soft X-rays produced by a laser plasma source in different exposure conditions. The results are compared with the CC photoluminescence spectra measured on the same samples and discussed.

  18. Confocal fluorescence microscopy in a murine model of microdissection testicular sperm extraction to improve sperm retrieval.

    Science.gov (United States)

    Smith, Ryan P; Lowe, Greg J; Kavoussi, Parviz K; Steers, William D; Costabile, Raymond A; Herr, John C; Shetty, Jagathpala; Lysiak, Jeffrey J

    2012-05-01

    Microdissection testicular sperm extraction markedly improves the sperm retrieval rates in men with nonobstructive azoospermia. However, localizing sperm foci can be time-consuming and it is not always successful. Fiberoptic confocal fluorescent microscopy offers the advantage of rapid in vivo detection of fluorescently labeled sperm in the seminiferous tubules. After establishing the feasibility of fiberoptic confocal fluorescent microscopy to identify antibody labeled sperm in vivo C57/B6 mice underwent intraperitoneal injection of busulfan to induce azoospermia. During spermatogenesis reestablishment at approximately 16 weeks the mice were anesthetized and the testes were delivered through a low midline incision. Fluorescein isothiocyanate labeled antibody to intra-acrosomal protein Hs-14 was injected retrograde into a single murine rete testis. The testes were imaged in vivo with fiberoptic confocal fluorescent microscopy and sperm foci were detected. The respective seminiferous tubules were excised and squash prepared for immunofluorescence microscopy. Sperm foci were identified in the testis injected with fluorescently tagged antibody by in vivo fiberoptic confocal fluorescence microscopy. The contralateral control testis of each mouse showed no specific signal. Immunofluorescence microscopy of the excised tubules provided morphological confirmation of the presence of labeled sperm with an absence in controls. Findings were consistent in the feasibility portion of the study and in the busulfan model of nonobstructive azoospermia. Fiberoptic confocal fluorescent microscopy was feasible during microdissection testicular sperm extraction in an azoospermic mouse model to identify fluorescently labeled sperm in vivo. Translation to the clinical setting could decrease operative time and improve the sperm harvest rate. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Line-scanning confocal microscopy for high-resolution imaging of upconverting rare-earth-based contrast agents

    Science.gov (United States)

    Higgins, Laura M.; Zevon, Margot; Ganapathy, Vidya; Sheng, Yang; Tan, Mei Chee; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.; Pierce, Mark C.

    2015-01-01

    Abstract. Rare-earth (RE) doped nanocomposites emit visible luminescence when illuminated with continuous wave near-infrared light, making them appealing candidates for use as contrast agents in biomedical imaging. However, the emission lifetime of these materials is much longer than the pixel dwell times used in scanning intravital microscopy. To overcome this limitation, we have developed a line-scanning confocal microscope for high-resolution, optically sectioned imaging of samples labeled with RE-based nanomaterials. Instrument performance is quantified using calibrated test objects. NaYF4:Er,Yb nanocomposites are imaged in vitro, and in ex vivo tissue specimens, with direct comparison to point-scanning confocal microscopy. We demonstrate that the extended pixel dwell time of line-scanning confocal microscopy enables subcellular-level imaging of these nanomaterials while maintaining optical sectioning. The line-scanning approach thus enables microscopic imaging of this emerging class of contrast agents for preclinical studies, with the potential to be adapted for real-time in vivo imaging in the clinic. PMID:26603495

  20. In vivo detection of basal cell carcinoma: comparison of a reflectance confocal microscope and a multiphoton tomograph

    Science.gov (United States)

    Ulrich, Martina; Klemp, Marisa; Darvin, Maxim E.; König, Karsten; Lademann, Jürgen; Meinke, Martina C.

    2013-06-01

    The standard diagnostic procedure for basal cell carcinoma (BCC) is invasive tissue biopsy with time-consuming histological examination. To reduce the number of biopsies, noninvasive optical methods have been developed providing high-resolution skin examination. We present direct comparison of a reflectance confocal microscope (RLSM) and a multiphoton tomograph (MPT) for BCC diagnosis. Both systems are applied to nine patients prior to surgery, and the results are analyzed, including histological results. Both systems prove suitable for detecting typical characteristics of BCC in various stages. The RLSM allows large horizontal overview images to be obtained, enabling the investigator to find the regions of interest quickly, e.g., BCC nests. Elongated cells and palisading structures are easily recognized using both methods. Due to the higher resolution, changes in nucleus diameter or cytoplasm could be visualized with the MPT. Therefore, the nucleus diameter, nucleus/cytoplasm ratio, and cell density are estimated for normal and BCC cells using the MPT. The nucleus of elongated BCC cells is significantly longer than other measured normal skin cells, whereas the cell density and nucleus/cytoplasm ratio of BCC cannot be significantly distinguished from granular cells.

  1. Normalized modes at selected points without normalization

    Science.gov (United States)

    Kausel, Eduardo

    2018-04-01

    As every textbook on linear algebra demonstrates, the eigenvectors for the general eigenvalue problem | K - λM | = 0 involving two real, symmetric, positive definite matrices K , M satisfy some well-defined orthogonality conditions. Equally well-known is the fact that those eigenvectors can be normalized so that their modal mass μ =ϕT Mϕ is unity: it suffices to divide each unscaled mode by the square root of the modal mass. Thus, the normalization is the result of an explicit calculation applied to the modes after they were obtained by some means. However, we show herein that the normalized modes are not merely convenient forms of scaling, but that they are actually intrinsic properties of the pair of matrices K , M, that is, the matrices already "know" about normalization even before the modes have been obtained. This means that we can obtain individual components of the normalized modes directly from the eigenvalue problem, and without needing to obtain either all of the modes or for that matter, any one complete mode. These results are achieved by means of the residue theorem of operational calculus, a finding that is rather remarkable inasmuch as the residues themselves do not make use of any orthogonality conditions or normalization in the first place. It appears that this obscure property connecting the general eigenvalue problem of modal analysis with the residue theorem of operational calculus may have been overlooked up until now, but which has in turn interesting theoretical implications.Á

  2. Experimental loop for fast neutron fuels under normal, abnormal, transient and emergency conditions

    International Nuclear Information System (INIS)

    Bauge, M.; Colomez, G.; Marfaing, R.J.; Mourain, M.

    1976-01-01

    Within the scope of safety experiments on power reactor fuels, an experimental loop is described which can, by reduction of the flow, flush the sodium joint of vented mixed carbide fuel elements and allow the study of the resulting phenomena. With the help of the annex laboratories at OSIRIS, the control test can be analyzed and followed, with special attention to the study of the migration of fission products inside and outside the fuel. This apparatus can, of course, also be used for testing the fuels under normal and abnormal working conditions [fr

  3. Subnuclear localization, rates and effectiveness of UVC-induced unscheduled DNA synthesis visualized by fluorescence widefield, confocal and super-resolution microscopy.

    Science.gov (United States)

    Pierzyńska-Mach, Agnieszka; Szczurek, Aleksander; Cella Zanacchi, Francesca; Pennacchietti, Francesca; Drukała, Justyna; Diaspro, Alberto; Cremer, Christoph; Darzynkiewicz, Zbigniew; Dobrucki, Jurek W

    2016-01-01

    Unscheduled DNA synthesis (UDS) is the final stage of the process of repair of DNA lesions induced by UVC. We detected UDS using a DNA precursor, 5-ethynyl-2'-deoxyuridine (EdU). Using wide-field, confocal and super-resolution fluorescence microscopy and normal human fibroblasts, derived from healthy subjects, we demonstrate that the sub-nuclear pattern of UDS detected via incorporation of EdU is different from that when BrdU is used as DNA precursor. EdU incorporation occurs evenly throughout chromatin, as opposed to just a few small and large repair foci detected by BrdU. We attribute this difference to the fact that BrdU antibody is of much larger size than EdU, and its accessibility to the incorporated precursor requires the presence of denatured sections of DNA. It appears that under the standard conditions of immunocytochemical detection of BrdU only fragments of DNA of various length are being denatured. We argue that, compared with BrdU, the UDS pattern visualized by EdU constitutes a more faithful representation of sub-nuclear distribution of the final stage of nucleotide excision repair induced by UVC. Using the optimized integrated EdU detection procedure we also measured the relative amount of the DNA precursor incorporated by cells during UDS following exposure to various doses of UVC. Also described is the high degree of heterogeneity in terms of the UVC-induced EdU incorporation per cell, presumably reflecting various DNA repair efficiencies or differences in the level of endogenous dT competing with EdU within a population of normal human fibroblasts.

  4. Radiation Dose Estimates in Indian Adults in Normal and Pathological Conditions due to 99Tcm-Labelled Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Tyagi, K.; Jain, S.C.; Jain, P.C.

    2001-01-01

    ICRP Publications 53, 62 and 80 give organ dose coefficients and effective doses to ICRP Reference Man and Child from established nuclear medicine procedures. However, an average Indian adult differs significantly from the ICRP Reference Man as regards anatomical, physiological and metabolic characteristics, and is also considered to have different tissue weighting factors (called here risk factors). The masses of total body and most organs are significantly lower for the Indian adult than for his ICRP counterpart (e.g. body mass 52 and 70 kg respectively). Similarly, the risk factors are lower by 20-30% for 8 out of the 13 organs and 30-60% higher for 3 organs. In the present study, available anatomical data of Indians and their risk factors have been utilised to estimate the radiation doses from administration of commonly used 99 Tc m -labelled radiopharmaceuticals under normal and certain pathological conditions. The following pathological conditions have been considered for phosphates/phosphonates - high bone uptake and severely impaired kidney function; IDA - parenchymal liver disease, occlusion of cystic duct, and occlusion of bile duct; DTPA - abnormal renal function; large colloids - early to intermediate diffuse parenchymal liver disease, intermediate to advanced parenchymal liver disease; small colloids - early to intermediate parenchymal liver disease, intermediate to advanced parenchymal liver disease; and MAG3 - abnormal renal function, acute unilateral renal blockage. The estimated 'effective doses' to Indian adults are 14-21% greater than the ICRP value from administration of the same activity of radiopharmaceutical under normal physiological conditions based on anatomical considerations alone, because of the smaller organ masses for the Indian; for some pathological conditions the effective doses are 11-22% more. When tissue risk factors are considered in addition to anatomical considerations, the estimated effective doses are still found to be

  5. Chromatic confocal microscopy for multi-depth imaging of epithelial tissue

    Science.gov (United States)

    Olsovsky, Cory; Shelton, Ryan; Carrasco-Zevallos, Oscar; Applegate, Brian E.; Maitland, Kristen C.

    2013-01-01

    We present a novel chromatic confocal microscope capable of volumetric reflectance imaging of microstructure in non-transparent tissue. Our design takes advantage of the chromatic aberration of aspheric lenses that are otherwise well corrected. Strong chromatic aberration, generated by multiple aspheres, longitudinally disperses supercontinuum light onto the sample. The backscattered light detected with a spectrometer is therefore wavelength encoded and each spectrum corresponds to a line image. This approach obviates the need for traditional axial mechanical scanning techniques that are difficult to implement for endoscopy and susceptible to motion artifact. A wavelength range of 590-775 nm yielded a >150 µm imaging depth with ~3 µm axial resolution. The system was further demonstrated by capturing volumetric images of buccal mucosa. We believe these represent the first microstructural images in non-transparent biological tissue using chromatic confocal microscopy that exhibit long imaging depth while maintaining acceptable resolution for resolving cell morphology. Miniaturization of this optical system could bring enhanced speed and accuracy to endomicroscopic in vivo volumetric imaging of epithelial tissue. PMID:23667789

  6. Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells.

    Science.gov (United States)

    Landerer, Eduardo; Villegas, Jaime; Burzio, Veronica A; Oliveira, Luciana; Villota, Claudio; Lopez, Constanza; Restovic, Franko; Martinez, Ronny; Castillo, Octavio; Burzio, Luis O

    2011-08-01

    We have previously shown a differential expression of a family of mitochondrial ncRNAs in normal and cancer cells. Normal proliferating cells and cancer cells express the sense mitochondrial ncRNA (SncmtRNA). In addition, while normal proliferating cells express two antisense mitochondrial ncRNAs (ASncmtRNAs-1 and -2), these transcripts seem to be universally down-regulated in cancer cells. In situ hybridization (ISH) of some normal and cancer tissues reveals nuclear localization of these transcripts suggesting that they are exported from mitochondria. FISH and confocal microscopy, in situ digestion with RNase previous to ISH and electron microscopy ISH was employed to confirm the extra-mitochondrial localization of the SncmtRNA and the ASncmtRNAs in normal proliferating and cancer cells of human and mouse. In normal human kidney and mouse testis the SncmtRNA and the ASncmtRNAs were found outside the organelle and especially localized in the nucleus associated to heterochromatin. In cancer cells, only the SncmtRNA was expressed and was found associated to heterochromatin and nucleoli. The ubiquitous localization of these mitochondrial transcripts in the nucleus suggests that they are new players in the mitochondrial-nuclear communication pathway or retrograde signaling. Down regulation of the ASncmtRNAs seems to be an important step on neoplastic transformation and cancer progression.

  7. A Clinical and Confocal Microscopic Comparison of Transepithelial PRK and LASEK for Myopia

    Directory of Open Access Journals (Sweden)

    Safak Korkmaz

    2014-01-01

    Full Text Available Purpose. To compare the clinical and confocal microscopic results of transepithelial PRK versus LASEK for correction of myopia. Materials and Methods. Twelve patients with myopia received transepithelial PRK in one eye and LASEK in the other. In transepithelial PRK-treated eyes, the corneal epithelium was removed with 40 microns of excimer laser ablation and in LASEK-treated eyes with 25-second application of 18% ethanol. Time to epithelial healing, ocular discomfort, uncorrected and best corrected visual acuities, manifest refraction, haze, greyscale value, and keratocyte apoptosis in confocal microscopy were recorded. Results. The mean time to epithelial healing was significantly longer after LASEK (4.00 ± 0.43 versus 3.17 ± 0.6 days. On day 1, ocular discomfort was significantly higher after transepithelial PRK. The grade of haze, keratocyte apoptosis, and greyscale value in confocal microscopy were significantly higher in transepithelial PRK-treated eyes at 1 month. All transepithelial PRK- and LASEK-treated eyes achieved 20/25 or better UCVA and were within ±1.00 D of emmetropia at final visits. Conclusions. Both transepithelial PRK and LASEK offer effective correction of myopia at 1 year. However, LASEK appeared to induce less discomfort and less intense wound healing in the early postoperative period.

  8. A Clinical and Confocal Microscopic Comparison of Transepithelial PRK and LASEK for Myopia.

    Science.gov (United States)

    Korkmaz, Safak; Bilgihan, Kamil; Sul, Sabahattin; Hondur, Ahmet

    2014-01-01

    Purpose. To compare the clinical and confocal microscopic results of transepithelial PRK versus LASEK for correction of myopia. Materials and Methods. Twelve patients with myopia received transepithelial PRK in one eye and LASEK in the other. In transepithelial PRK-treated eyes, the corneal epithelium was removed with 40 microns of excimer laser ablation and in LASEK-treated eyes with 25-second application of 18% ethanol. Time to epithelial healing, ocular discomfort, uncorrected and best corrected visual acuities, manifest refraction, haze, greyscale value, and keratocyte apoptosis in confocal microscopy were recorded. Results. The mean time to epithelial healing was significantly longer after LASEK (4.00 ± 0.43 versus 3.17 ± 0.6 days). On day 1, ocular discomfort was significantly higher after transepithelial PRK. The grade of haze, keratocyte apoptosis, and greyscale value in confocal microscopy were significantly higher in transepithelial PRK-treated eyes at 1 month. All transepithelial PRK- and LASEK-treated eyes achieved 20/25 or better UCVA and were within ±1.00 D of emmetropia at final visits. Conclusions. Both transepithelial PRK and LASEK offer effective correction of myopia at 1 year. However, LASEK appeared to induce less discomfort and less intense wound healing in the early postoperative period.

  9. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport- Demonstration of Approach and Results on Used Fuel Performance Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geelhood, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flores, Gregg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Jy-An [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sanborn, Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spears, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klymyshyn, Nick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    This document addresses Oak Ridge National Laboratory milestone M2FT-13OR0822015 Demonstration of Approach and Results on Used Nuclear Fuel Performance Characterization. This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies that have been performed. Finally, discussion on the long-term goals and objectives of this initiative are provided.

  10. Autonomous monitoring of control hardware to predict off-normal conditions using NIF automatic alignment systems

    International Nuclear Information System (INIS)

    Awwal, Abdul A.S.; Wilhelmsen, Karl; Leach, Richard R.; Miller-Kamm, Vicki; Burkhart, Scott; Lowe-Webb, Roger; Cohen, Simon

    2012-01-01

    Highlights: ► An automatic alignment system was developed to process images of the laser beams. ► System uses processing to adjust a series of control loops until alignment criteria are satisfied. ► Monitored conditions are compared against nominal values with an off-normal alert. ► Automated health monitoring system trends off-normals with a large image history. - Abstract: The National Ignition Facility (NIF) is a high power laser system capable of supporting high-energy-density experimentation as a user facility for the next 30 years. In order to maximize the facility availability, preventive maintenance enhancements are being introduced into the system. An example of such an enhancement is a camera-based health monitoring system, integrated into the automated alignment system, which provides an opportunity to monitor trends in measurements such as average beam intensity, size of the beam, and pixel saturation. The monitoring system will generate alerts based on observed trends in measurements to allow scheduled pro-active maintenance before routine off-normal detection stops system operations requiring unscheduled intervention.

  11. Autonomous monitoring of control hardware to predict off-normal conditions using NIF automatic alignment systems

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, Abdul A.S., E-mail: awwal1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Wilhelmsen, Karl; Leach, Richard R.; Miller-Kamm, Vicki; Burkhart, Scott; Lowe-Webb, Roger; Cohen, Simon [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer An automatic alignment system was developed to process images of the laser beams. Black-Right-Pointing-Pointer System uses processing to adjust a series of control loops until alignment criteria are satisfied. Black-Right-Pointing-Pointer Monitored conditions are compared against nominal values with an off-normal alert. Black-Right-Pointing-Pointer Automated health monitoring system trends off-normals with a large image history. - Abstract: The National Ignition Facility (NIF) is a high power laser system capable of supporting high-energy-density experimentation as a user facility for the next 30 years. In order to maximize the facility availability, preventive maintenance enhancements are being introduced into the system. An example of such an enhancement is a camera-based health monitoring system, integrated into the automated alignment system, which provides an opportunity to monitor trends in measurements such as average beam intensity, size of the beam, and pixel saturation. The monitoring system will generate alerts based on observed trends in measurements to allow scheduled pro-active maintenance before routine off-normal detection stops system operations requiring unscheduled intervention.

  12. Microscopia confocal en córneas de cien ojos sanos Confocal microscopy results of one hundred healthy eye corneas

    OpenAIRE

    Zulema Gómez Castillo; Keyly Fernández García; Alain Pérez Tejeda; Susana Márquez Villalón; Madelyn Jareño Ochoa; Judith Cuevas Ruiz

    2012-01-01

    Objetivo: Analizar las estructuras celulares por microscopia confocal, Confoscan 4, en córneas sanas en nuestro medio. Métodos: Se realizó un estudio prospectivo longitudinal a 100 ojos sanos de médicos que trabajan en nuestra institución, y pacientes que asistieron al servicio de córnea. Esta investigación fue desde mayo de 2007 a mayo 2008, en el Instituto Cubano de Oftalmología "Ramón Pando Ferrer", La Habana. En los médicos se examinaron ambos ojos y en los pacientes el ojo no afectado. S...

  13. Laser scanning confocal microscope with programmable amplitude, phase, and polarization of the illumination beam.

    Science.gov (United States)

    Boruah, B R; Neil, M A A

    2009-01-01

    We describe the design and construction of a laser scanning confocal microscope with programmable beam forming optics. The amplitude, phase, and polarization of the laser beam used in the microscope can be controlled in real time with the help of a liquid crystal spatial light modulator, acting as a computer generated hologram, in conjunction with a polarizing beam splitter and two right angled prisms assembly. Two scan mirrors, comprising an on-axis fast moving scan mirror for line scanning and an off-axis slow moving scan mirror for frame scanning, configured in a way to minimize the movement of the scanned beam over the pupil plane of the microscope objective, form the XY scan unit. The confocal system, that incorporates the programmable beam forming unit and the scan unit, has been implemented to image in both reflected and fluorescence light from the specimen. Efficiency of the system to programmably generate custom defined vector beams has been demonstrated by generating a bottle structured focal volume, which in fact is the overlap of two cross polarized beams, that can simultaneously improve both the lateral and axial resolutions if used as the de-excitation beam in a stimulated emission depletion confocal microscope.

  14. Complex microcirculation patterns detected by confocal indocyanine green angiography predict time to growth of small choroidal melanocytic tumors: MuSIC Report II.

    Science.gov (United States)

    Mueller, Arthur J; Freeman, William R; Schaller, Ulrich C; Kampik, Anselm; Folberg, Robert

    2002-12-01

    Multiple independent laboratories have confirmed the histologic observation that some tumor microcirculation patterns (MCPs) in uveal melanomas are associated strongly with death resulting from metastatic disease. Because these patterns are imageable with confocal indocyanine green angiography (ICG), we designed a prospective study to evaluate whether these angiographically detectable MCPs predict time to tumor growth. Observational case series, prospective, non-randomized. Ninety-eight patients with unilateral, small, choroidal melanocytic tumors. The following information and tumor characteristics were recorded for each patient: demographic parameters, best-corrected visual acuity, intraocular pressure, related visual symptoms, location and dimension of tumor, pigmentation, orange pigment, drusen, tumor-associated hemorrhage, subretinal fluid, and confocal ICG angiographically determined microcirculation patterns-silent (avascularity), normal (preexisting normal choroidal vessels within the tumor), straight vessels, parallel without and with cross-linking, arcs without and with branching, loops, and networks. Time to growth of the tumor, with growth defined as an increase in the maximal apical tumor height of 0.5 mm measured by standardized A-scan ultrasonography, photographic documentation of an increase of the largest basal diameter of at least 1.5 mm, advancement of one tumor border of at least 0.75 mm, or a combination thereof. Twenty-eight of the 98 tumors in this study (29%) met the predetermined criteria for tumor growth. The median time to growth was 127 days (range, 51-625 days). The following tumor characteristics were significantly associated with time to tumor growth: flashes (P = 0.0224), orange pigment (P = 0.012), subretinal fluid (P < 0.001), maximum basal tumor diameter at initial examination (P = 0.015), maximum apical tumor height (P < 0.001), parallel with cross-linking MCP (P < 0.001), arcs with branching MCP (P = 0.006), loops (P < 0

  15. Submillimeter Confocal Imaging Active Module

    Science.gov (United States)

    Hong, John; Mehdi, Imran; Siegel, Peter; Chattopadhyay, Goutam; Cwik, Thomas; Rowell, Mark; Hacker, John

    2009-01-01

    The term submillimeter confocal imaging active module (SCIAM) denotes a proposed airborne coherent imaging radar system that would be suitable for use in reconnaissance, surveillance, and navigation. The development of the SCIAM would include utilization and extension of recent achievements in monolithic microwave integrated circuits capable of operating at frequencies up to and beyond a nominal radio frequency of 340 GHz. Because the SCIAM would be primarily down-looking (in contradistinction to primarily side-looking), it could be useful for imaging shorter objects located between taller ones (for example, objects on streets between buildings). The SCIAM would utilize a confocal geometry to obtain high cross-track resolution, and would be amenable to synthetic-aperture processing of its output to obtain high along-track resolution. The SCIAM (see figure) would include multiple (two in the initial version) antenna apertures, separated from each other by a cross-track baseline of suitable length (e.g., 1.6 m). These apertures would both transmit the illuminating radar pulses and receive the returns. A common reference oscillator would generate a signal at a controllable frequency of (340 GHz + (Delta)f)/N, where (Delta)f is an instantaneous swept frequency difference and N is an integer. The output of this oscillator would be fed to a frequency- multiplier-and-power-amplifier module to obtain a signal, at 340 GHz + (Delta)f, that would serve as both the carrier signal for generating the transmitted pulses and a local-oscillator (LO) signal for a receiver associated with each antenna aperture. Because duplexers in the form of circulators or transmit/receive (T/R) switches would be lossy and extremely difficult to implement, the antenna apertures would be designed according to a spatial-diplexing scheme, in which signals would be coupled in and out via separate, adjacent transmitting and receiving feed horns. This scheme would cause the transmitted and received beams

  16. Comparison between particulate matter and ultrafine particle emission by electronic and normal cigarettes in real-life conditions.

    Science.gov (United States)

    Ruprecht, Ario Alberto; De Marco, Cinzia; Pozzi, Paolo; Munarini, Elena; Mazza, Roberto; Angellotti, Giorgia; Turla, Francesca; Boffi, Roberto

    2014-01-01

    Electronic cigarettes may be safer than conventional cigarettes as they generate less indoor pollution in terms of particulate matter (PM); however, recent findings in experimental conditions demonstrated that secondhand exposure to PM may be expected from e-cigarette smoking. The aim of the present study was to investigate the emission of PM generated by e-cigarettes and normal cigarettes under real-life conditions. Real-time measurement and comparison of PM and ultrafine particles (UFP) generated by electronic cigarettes with and without nicotine and by normal cigarettes in a 50 m3 office of an Italian comprehensive cancer center was performed. PM mass as PM1, PM2.5, PM7, PM10, total suspended particles (TSP) in μg/m³ and UFP in number of particles per cubic centimeter from 10 to 1,000 nanometers were measured. Outdoor concentrations were measured contemporaneously to compensate for urban background changes. Regardless of their nicotine content, e-cigarettes generated lower PM levels than conventional cigarettes. Notably, nicotine-enriched e-cigarettes produced lower PM levels than their nicotine-free counterparts. E-cigarettes appear to generate less indoor pollution than normal cigarettes and may therefore be safer. Further studies are required to investigate the long-term health-related effects of secondhand e-cigarette exposure.

  17. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells.

    Science.gov (United States)

    Okuno, Masanari; Hamaguchi, Hiro-o

    2010-12-15

    We have developed a multifocus confocal Raman microspectroscopic system for the fast multimode vibrational imaging of living cells. It consists of an inverted microscope equipped with a microlens array, a pinhole array, a fiber bundle, and a multichannel Raman spectrometer. Forty-eight Raman spectra from 48 foci under the microscope are simultaneously obtained by using multifocus excitation and image-compression techniques. The multifocus confocal configuration suppresses the background generated from the cover glass and the cell culturing medium so that high-contrast images are obtainable with a short accumulation time. The system enables us to obtain multimode (10 different vibrational modes) vibrational images of living cells in tens of seconds with only 1 mW laser power at one focal point. This image acquisition time is more than 10 times faster than that in conventional single-focus Raman microspectroscopy.

  18. A confocal optical microscope for detection of single impurities in a bulk crystal at cryogenic temperatures.

    Science.gov (United States)

    Karlsson, Jenny; Rippe, Lars; Kröll, Stefan

    2016-03-01

    A compact sample-scanning confocal optical microscope for detection of single impurities below the surface of a bulk crystal at cryogenic temperatures is described. The sample, lens, and scanners are mounted inside a helium bath cryostat and have a footprint of only 19 × 19 mm. Wide field imaging and confocal imaging using a Blu-ray lens immersed in liquid helium are demonstrated with excitation at 370 nm. A spatial resolution of 300 nm and a detection efficiency of 1.6% were achieved.

  19. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo

    Science.gov (United States)

    Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.

    2012-05-01

    We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.

  20. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  1. Quantitative detection of caffeine in human skin by confocal Raman spectroscopy--A systematic in vitro validation study.

    Science.gov (United States)

    Franzen, Lutz; Anderski, Juliane; Windbergs, Maike

    2015-09-01

    For rational development and evaluation of dermal drug delivery, the knowledge of rate and extent of substance penetration into the human skin is essential. However, current analytical procedures are destructive, labor intense and lack a defined spatial resolution. In this context, confocal Raman microscopy bares the potential to overcome current limitations in drug depth profiling. Confocal Raman microscopy already proved its suitability for the acquisition of qualitative penetration profiles, but a comprehensive investigation regarding its suitability for quantitative measurements inside the human skin is still missing. In this work, we present a systematic validation study to deploy confocal Raman microscopy for quantitative drug depth profiling in human skin. After we validated our Raman microscopic setup, we successfully established an experimental procedure that allows correlating the Raman signal of a model drug with its controlled concentration in human skin. To overcome current drawbacks in drug depth profiling, we evaluated different modes of peak correlation for quantitative Raman measurements and offer a suitable operating procedure for quantitative drug depth profiling in human skin. In conclusion, we successfully demonstrate the potential of confocal Raman microscopy for quantitative drug depth profiling in human skin as valuable alternative to destructive state-of-the-art techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Design and analysis of a cross-type structured-illumination confocal microscope for high speed and high resolution

    International Nuclear Information System (INIS)

    Kim, Young-Duk; Ahn, MyoungKi; Kim, Taejoong; Gweon, DaeGab; Yoo, Hongki

    2012-01-01

    There have been many studies about a super resolution microscope for many years. A super resolution microscope can detect the physical phenomena or morphology of a biological sample more precisely than conventional microscopes. The structured-illumination microscope (SIM) is one of the technologies that demonstrate super resolution. However, the conventional SIM requires more time to obtain one resolution-enhanced image than other super resolution microscopes. More specifically, the conventional SIM uses three images with a 120° phase difference for each direction and three different directions are image-processed to make one resolution enhancement by increasing the optical transfer function in three directions. In this paper, we present a novel cross structured-illumination confocal microscope (CSICM) that takes the advantage of the technology of both SIM and the confocal microscope. The CSICM uses only two directions with three phase difference images, for a total of six images. By reducing the number of images that must be obtained, the total image acquisition time and image reconstruction time in obtaining the final output images can be decreased, and the confocal microscope provides axial information of the sample automatically. We demonstrate our method of cross illumination and evaluate the performance of the CSICM and compare it to the conventional SIM and the confocal microscope. (paper)

  3. Simultaneous Confocal Scanning Laser Ophthalmoscopy Combined with High-Resolution Spectral-Domain Optical Coherence Tomography: A Review

    Directory of Open Access Journals (Sweden)

    Verônica Castro Lima

    2011-01-01

    Full Text Available We aimed to evaluate technical aspects and the clinical relevance of a simultaneous confocal scanning laser ophthalmoscope and a high-speed, high-resolution, spectral-domain optical coherence tomography (SDOCT device for retinal imaging. The principle of confocal scanning laser imaging provides a high resolution of retinal and choroidal vasculature with low light exposure. Enhanced contrast, details, and image sharpness are generated using confocality. The real-time SDOCT provides a new level of accuracy for assessment of the angiographic and morphological correlation. The combined system allows for simultaneous recordings of topographic and tomographic images with accurate correlation between them. Also it can provide simultaneous multimodal imaging of retinal pathologies, such as fluorescein and indocyanine green angiographies, infrared and blue reflectance (red-free images, fundus autofluorescence images, and OCT scans (Spectralis HRA + OCT; Heidelberg Engineering, Heidelberg, Germany. The combination of various macular diagnostic tools can lead to a better understanding and improved knowledge of macular diseases.

  4. Phenological Variation and its Relation with Yield in several Wheat (Triticum aestivum L. Cultivars under Normal and Late Sowing Mediated Heat Stress Condition

    Directory of Open Access Journals (Sweden)

    Kamrun NAHAR

    2010-09-01

    Full Text Available Phenological performance in relation to yield of five modern varieties of wheat Sourav, Pradip, Sufi, Shatabdi and Bijoy were evaluated under two growing environments; one is normal growing environment (sowing at November 30 and the other is post anthesis heat stressed environment (sowing at December 30. In case of late seeding, the varieties phased a significant level of high temperature stress that also significantly affected the required days to germination, booting, anthesis, maturity of all varieties including the yield as compared to normal sowing treatment. The temperature during the grain filling or grain maturing period was near 23C in case of normal seeding and it was near about 28C to 30C and sometimes reached above this range in the later period of late seeded treatment. In the normal sowing treatment the germination period was lower than the late sowing treatment as during that time the temperature was higher as compared to late sowing condition where temperature was lower. Days to anthesis and booting decreased due to late sown heat stress condition regardless the cultivars. These phenological characteristics under heat stressed condition led the wheat cultivars to significantly lower the grain yield as compared to normal condition. Due to heat stress, the yield reduction was 69.53% in Sourav, 58.41% in Pradip, 73.01% in Sufi, 55.46% in Shatabdi and 53.42% in Bijoy.

  5. Smooth quantile normalization.

    Science.gov (United States)

    Hicks, Stephanie C; Okrah, Kwame; Paulson, Joseph N; Quackenbush, John; Irizarry, Rafael A; Bravo, Héctor Corrada

    2018-04-01

    Between-sample normalization is a critical step in genomic data analysis to remove systematic bias and unwanted technical variation in high-throughput data. Global normalization methods are based on the assumption that observed variability in global properties is due to technical reasons and are unrelated to the biology of interest. For example, some methods correct for differences in sequencing read counts by scaling features to have similar median values across samples, but these fail to reduce other forms of unwanted technical variation. Methods such as quantile normalization transform the statistical distributions across samples to be the same and assume global differences in the distribution are induced by only technical variation. However, it remains unclear how to proceed with normalization if these assumptions are violated, for example, if there are global differences in the statistical distributions between biological conditions or groups, and external information, such as negative or control features, is not available. Here, we introduce a generalization of quantile normalization, referred to as smooth quantile normalization (qsmooth), which is based on the assumption that the statistical distribution of each sample should be the same (or have the same distributional shape) within biological groups or conditions, but allowing that they may differ between groups. We illustrate the advantages of our method on several high-throughput datasets with global differences in distributions corresponding to different biological conditions. We also perform a Monte Carlo simulation study to illustrate the bias-variance tradeoff and root mean squared error of qsmooth compared to other global normalization methods. A software implementation is available from https://github.com/stephaniehicks/qsmooth.

  6. A multi-axis confocal rheoscope for studying shear flow of structured fluids

    KAUST Repository

    Lin, Neil Y. C.; McCoy, Jonathan H.; Cheng, Xiang; Leahy, Brian; Israelachvili, Jacob N.; Cohen, Itai

    2014-01-01

    of confinement effects. By using our shear cell in conjunction with a biaxial force measurement device and a high-speed confocal microscope, we are able to measure the real-time biaxial stress while simultaneously imaging the material three-dimensional structure

  7. Super-resolution for everybody: An image processing workflow to obtain high-resolution images with a standard confocal microscope.

    Science.gov (United States)

    Lam, France; Cladière, Damien; Guillaume, Cyndélia; Wassmann, Katja; Bolte, Susanne

    2017-02-15

    In the presented work we aimed at improving confocal imaging to obtain highest possible resolution in thick biological samples, such as the mouse oocyte. We therefore developed an image processing workflow that allows improving the lateral and axial resolution of a standard confocal microscope. Our workflow comprises refractive index matching, the optimization of microscope hardware parameters and image restoration by deconvolution. We compare two different deconvolution algorithms, evaluate the necessity of denoising and establish the optimal image restoration procedure. We validate our workflow by imaging sub resolution fluorescent beads and measuring the maximum lateral and axial resolution of the confocal system. Subsequently, we apply the parameters to the imaging and data restoration of fluorescently labelled meiotic spindles of mouse oocytes. We measure a resolution increase of approximately 2-fold in the lateral and 3-fold in the axial direction throughout a depth of 60μm. This demonstrates that with our optimized workflow we reach a resolution that is comparable to 3D-SIM-imaging, but with better depth penetration for confocal images of beads and the biological sample. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    Directory of Open Access Journals (Sweden)

    Marco Antonio Botelho

    2014-02-01

    Full Text Available OBJECTIVE: To determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10% combined with estriol (0.1% + estradiol (0.25% for relieving postmenopausal symptoms. METHODS: A total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. RESULTS: An improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05 after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04±4.9 to 57.12±4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. CONCLUSION: The nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women.

  9. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    International Nuclear Information System (INIS)

    Botelho, Marco Antonio; Queiroz, Dinalva Brito; Barros, Gisele; Guerreiro, Stela; Umbelino, Sonia; Lyra, Arao; Borges, Boniek; Freitas, Allan; Almeida, Jackson Guedes; Quintans Junior, Lucindo

    2014-01-01

    Objective:to determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10%) combined with estriol (0.1%) + estradiol (0.25%) for relieving postmenopausal symptoms. Methods: a total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. Results: an improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05) after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04 ± 4.9 to 57.12 ± 4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. Conclusion: the nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women. (author)

  10. Nanostructured transdermal hormone replacement therapy for relieving menopausal symptoms: a confocal Raman spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Marco Antonio; Queiroz, Dinalva Brito; Barros, Gisele; Guerreiro, Stela; Umbelino, Sonia; Lyra, Arao; Borges, Boniek; Freitas, Allan, E-mail: marcobotelho@pq.cnpq.br [Universidade Potiguar, Natal, RN (Brazil). Lab. de Nanotecnologia; Fechine, Pierre [Universidade Federal do Ceara (GQMAT/UFCE), Fortaleza, CE (Brazil). Dept. de Quimica Analitica. Grupo Avancado de Biomateriais em Quimica; Queiroz, Danilo Caldas de [Instituto Federal de Ciencia e Tecnologia (IFCT), Fortaleza, CE (Brazil). Lab. de Biotecnologia; Ruela, Ronaldo [Instituto de Biotecnologia Aplicada (INBIOS), Fortaleza, CE (Brazil); Almeida, Jackson Guedes [Universidade Federal do Vale de Sao Francisco (UNIVALE), Petrolina, PE (Brazil). Fac. de Ciencias Farmaceuticas; Quintans Junior, Lucindo [Universidade Federal de Sergipe (UFSE), Sao Cristovao, SE (Brazil). Dept. de Fisiologia

    2014-06-01

    Objective:to determine the safety and efficacy of a transdermal nanostructured formulation of progesterone (10%) combined with estriol (0.1%) + estradiol (0.25%) for relieving postmenopausal symptoms. Methods: a total of 66 postmenopausal Brazilian women with climacteric symptoms of natural menopause received transdermal nanostructured formulations of progesterone and estrogens in the forearm daily for 60 months to mimic the normal ovarian secretory pattern. Confocal Raman spectroscopy of hormones in skin layers was performed. Clinical parameters, serum concentrations of estradiol and follicle-stimulating hormone, blood pressure, BI-RADS classification from bilateral mammography, and symptomatic relief were compared between baseline and 60 months post-treatment. Clinicaltrials.gov: NCT02033512. Results: an improvement in climacteric symptoms was reported in 92.5% of women evaluated before and after 60 months of treatment. The serum concentrations of estradiol and follicle-stimulating hormone changed significantly (p<0.05) after treatment; the values of serum follicle-stimulating hormone decreased after 60 months from 82.04 ± 4.9 to 57.12 ± 4.1 IU/mL. A bilateral mammography assessment of the breasts revealed normal results in all women. No adverse health-related events were attributed to this hormone replacement therapy protocol. Conclusion: the nanostructured formulation is safe and effective in re-establishing optimal serum levels of estradiol and follicle-stimulating hormone and relieving the symptoms of menopause. This transdermal hormone replacement therapy may alleviate climacteric symptoms in postmenopausal women. (author)

  11. An FFT-based Method for Attenuation Correction in Fluorescence Confocal Microscopy

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.; Bakker, M.

    1993-01-01

    A problem in three-dimensional imaging by a confocal scanning laser microscope (CSLM) in the (epi)fluorescence mode is the darkening of the deeper layers due to absorption and scattering of both the excitation and the fluorescence light. In this paper we propose a new method to correct for these

  12. Spent nuclear fuel system dynamic stability under normal conditions of transportation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao; Wang, Jy-An John, E-mail: wangja@ornl.gov

    2016-12-15

    Highlights: • A conformational potential effect of fuel assembly contact interaction induced transient shock. • Complex vibration modes and vibration load intensity were observed from fuel assembly system. • The project was able to link the periodic transient shock to spent fuel fatigue strength reduction. - Abstract: In a horizontal layout of a spent nuclear fuel (SNF) assembly under normal conditions of transportation (NCT), the fuel assembly’s skeleton formed by guide tubes and spacer grids is the primary load bearing structure for carrying and transferring the vibration loads within an SNF assembly. Therefore, the integrity of guide tubes and spacer grids will dictate the vibration amplitude/intensity of the fuel assembly during transport, and must be considered when designing multipurpose purpose canister (MPC) for safe SNF transport. This paper investigates the SNF assembly deformation dynamics during normal vibration mode, as well as the transient shock mode inside the cask during NCT. Dynamic analyses were performed in the frequency domain to study frequency characteristic of the fuel assembly system and in the time domain to simulate the transient dynamic response of the fuel assembly. To further evaluate the intensity of contact interaction induced by the local contacts’ impact loading at the spacer grid, detailed models of the actual spring and dimples of the spacer grids were created. The impacts between the fuel rod and springs and dimples were simulated with a 20 g transient shock load. The associated contact interaction intensities, in terms of reaction forces, were estimated from the finite element analyses (FEA) results. The bending moment estimated from the resultant stress on the clad under 20 g transient shock can be used to define the loading in cyclic integrated reversible-bending fatigue tester (CIRFT) vibration testing for the equivalent condition. To estimate the damage potential of the transient shock to the SNF vibration

  13. 'En face' ex vivo reflectance confocal microscopy to help the surgery of basal cell carcinoma of the eyelid.

    Science.gov (United States)

    Espinasse, Marine; Cinotti, Elisa; Grivet, Damien; Labeille, Bruno; Prade, Virginie; Douchet, Catherine; Cambazard, Frédéric; Thuret, Gilles; Gain, Philippe; Perrot, Jean Luc

    2017-07-01

    Ex vivo confocal microscopy is a recent imaging technique for the perioperative control of skin tumour margins. Up to date, it has been used in the fluorescence mode and with vertical sections of the specimen margins. The aim of this study was to evaluate its use in the reflectance mode and with a horizontal ('en face') scanning of the surgical specimen in a series of basal cell carcinoma of the eyelid. Prospective consecutive cohort study was performed at the University Hospital of Saint-Etienne, France. Forty-one patients with 42 basal cell carcinoma of the eyelid participated in this study. Basal cell carcinomas were excised with a 2-mm-wide clinically safe margin. The surgical specimens were analysed under ex vivo confocal microscopy in the reflectance mode and with an en face scanning in order to control at a microscopic level if the margins were free from tumour invasion. Histopathogical examination was later performed in order to compare the results. Sensitivity and specificity of ex vivo confocal microscopy for the presence of tumour-free margins. Ex vivo confocal microscopy results were consistent with histopathology in all cases (tumour-free margins in 40 out of 42 samples; sensitivity and specificity of 100%). Ex vivo confocal microscopy in the reflectance mode with an 'en face' scanning can control tumour margins of eyelid basal cell carcinomas and optimize their surgical management. This procedure has the advantage on the fluorescent mode of not needing any contrast agent to examine the samples. © 2016 Royal Australian and New Zealand College of Ophthalmologists.

  14. Comparison of confocal microscopy and two-photon microscopy in mouse cornea in vivo.

    Science.gov (United States)

    Lee, Jun Ho; Lee, Seunghun; Gho, Yong Song; Song, In Seok; Tchah, Hungwon; Kim, Myoung Joon; Kim, Ki Hean

    2015-03-01

    High-resolution imaging of the cornea is important for studying corneal diseases at cellular levels. Confocal microscopy (CM) has been widely used in the clinic, and two-photon microscopy (TPM) has recently been introduced in various pre-clinical studies. We compared the performance of CM and TPM in normal mouse corneas and neovascularized mouse corneas induced by suturing. Balb/C mice and C57BL/6 mice expressing green fluorescent protein (GFP) were used to compare modalities based on intrinsic contrast and extrinsic fluorescence contrast. CM based on reflection (CMR), CM based on fluorescence (CMF), and TPM based on intrinsic/extrinsic fluorescence and second harmonic generation (SHG) were compared by imaging the same sections of mouse corneas sequentially in vivo. In normal mouse corneas, CMR visualized corneal cell morphologies with some background noise, and CMF visualized GFP expressing corneal cells clearly. TPM visualized corneal cells and collagen in the stroma based on fluorescence and SHG, respectively. However, in neovascularized mouse corneas, CMR could not resolve cells deep inside the cornea due to high background noise from the effects of increased structural irregularity induced by suturing. CMF and TPM visualized cells and induced vasculature better than CMR because both collect signals from fluorescent cells only. Both CMF and TPM had signal decays with depth due to the structural irregularity, with CMF having faster signal decay than TPM. CMR, CMF, and TPM showed different degrees of image degradation in neovascularized mouse corneas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Confocal microscopy studies of morphology and apoptosis: ovaries, limbs, embryos and insects

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) is a technique that is capable of generating serial sections of whole-mount tissue and then reassembling the computer-stored images as a virtual 3-dimensional structure. In many ways CLSM offers an alternative to traditional sectioning ap...

  16. CONFOCAL MICROSCOPY SYSTEM PERFORMANCE: FOUNDATIONS FOR QUANTIFYING CYTOMETRIC APPLICATIONS WITH SPECTROSCOPIC INSTRUMENTS

    Science.gov (United States)

    The confocal laser-scanning microscopy (CLSM) has enormous potential in many biological fields. The goal of a CLSM is to acquire and quantify fluorescence and in some instruments acquire spectral characterization of the emitted signal. The accuracy of these measurements demands t...

  17. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    Science.gov (United States)

    Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared with a value approximating normal resting Po2. Dihydrofluorescein was loaded into single frog (Xenopus) fibers, and fluorescence was used to monitor ROS using confocal microscopy. Myofibers were exposed to two maximal tetanic contractile periods (1 contraction/3 s for 2 min, separated by a 60-min rest period), each consisting of one of the following treatments: high Po2 (30 Torr), low Po2 (3–5 Torr), high Po2 with ebselen (antioxidant), or low Po2 with ebselen. Ebselen (10 μM) was administered before the designated contractile period. ROS formation during low Po2 treatment was greater than during high Po2 treatment, and ebselen decreased ROS generation in both low- and high-Po2 conditions (P Po2. Force was reduced >30% for each condition except low Po2 with ebselen, which only decreased ∼15%. We concluded that single myofibers under low Po2 conditions develop accelerated and more oxidative stress than at Po2 = 30 Torr (normal human resting Po2). Ebselen decreases ROS formation in both low and high Po2, but only mitigates skeletal muscle fatigue during reduced Po2 conditions. PMID:23576612

  18. Seasonal variations of the particle flux in the Peru-Chile current at 30°S under `normal' and El Niño conditions

    Science.gov (United States)

    Hebbeln, Dierk; Marchant, Margarita; Wefer, Gerold

    Time-series sediment traps were deployed 180 km off the Chilean coast at 30°S in the Peru-Chile Current during the El Niño period 1991/1992 (6 months) and during the 'normal' period 1993/1994 (12 months). Under normal conditions in 1993/1994 the particle fluxes display a pronounced seasonal cycle marked by a settling phytoplankton bloom in September, intermediate fluxes until January, and low fluxes between January and July. This seasonal pattern is also reflected in stable isotope data, measured on the planktic foraminifera species Neogloboquadrina pachyderma (dex.) and Globigerina bulloides, which indicate persistent upwelling conditions between August and February followed by a stratified water column between March and July. The total flux under normal conditions amounts to 65.1 g m -2 a-1, with the main flux constituents contributing 47.6% (carbonate), 26.4% (lithogenic matter), 17.4% (biogenic opal), and 8.6% (organic matter), respectively. Based on these particle flux data the export production has been estimated to be 42 gC m -2 a-1. Although the main flux event in September was not sampled in the El Niño period 1991/1992, the available record from November 1991 to April 1992 allows an interesting comparison with the fluxes of the normal year. The total amount of fluxes and the timing of minor flux events are very similar under normal and under El Niño conditions. However, increased proportions of organic carbon and lithogenic matter under El Niño conditions are interpreted to reflect faster sedimentation and preferred scavenging of organic matter by elevated lithogenic fluxes rather than increased productivity. The higher lithogenic fluxes under El Niño conditions are probably due to increased precipitation and terrestial runoff in the arid to semiarid northern part of Chile.

  19. Confocal Raman Microspectroscopy of Oral Streptococci

    Science.gov (United States)

    Beier, Brooke D.

    Raman spectroscopy has been used in a variety of applications throughout the field of biomedical optics. It has the ability to acquire chemically-specific information in a non-invasive manner, without the need for exogenous markers. This makes it useful in the identification of bacterial species, as well as in the study of tissues and other cells. In this work, a species identification model has been created in order to discriminate between the oral bacterial species Streptococcus sanguinis and Streptococcus mutans. These are two of the most prevalent species within the human mouth and their relative concentrations can be an indicator of a patient's oral health and risk of tooth decay. They are predominantly found within plaque on the tooth's surface. To study a simplified model for dental plaque, we have examined S. sanguinis and S. mutans grown in biofilm forms. Raman spectroscopy has been implemented here through a confocal microscope. The optical system has been equipped with computationally controlled stages to allow for automated scanning, including autofocusing to probe a consistent depth within a sample. A spectrum has been acquired from each position within a scan and sent for spectral preprocessing before being submitted for species identification. This preprocessing includes an algorithm that has been developed to remove fluorescence features from known contaminants within the confocal volume, to include signal from a fluorescent substrate. Species classification has been accomplished using a principal component score-fed logistic regression model constructed from a variety of biofilm samples that have been transferred and allowed to dry, as might occur with the study of plaque samples. This binary classification model has been validated on other samples with identical preparations. The model has also been transferred to determine the species of hydrated biofilms studied in situ. Artificially mixed biofilms have been examined to test the spatial

  20. Tissue clearing for confocal imaging of native and bio-artificial skeletal muscle.

    Science.gov (United States)

    Decroix, L; Van Muylder, V; Desender, L; Sampaolesi, M; Thorrez, L

    2015-01-01

    Novel clearing techniques have revolutionized three-dimensional confocal imaging of the brain without the need for physical tissue sectioning. We evaluated three clearing methods, ScaleA2, Clear(T2), and 3DISCO for visualizing native and tissue engineered muscle by confocal microscopy. We found that Clear(T2) treatment improved the depth of visualization of immunohistochemical staining slightly, but did not improve depth of visualization of endogenous green fluorescent protein (GFP). ScaleA2 preserved endogenous GFP signal better and permitted significantly deeper GFP imaging, but it was incompatible with tropomyosin immunohistochemical staining. 3DISCO treatment preserved both endogenous GFP and immunohistochemical staining, and permitted significantly deeper imaging. Clearing time for the 3DISCO procedure is short compared to ScaleA2 and Clear(T2). We suggest that 3DISCO is the preferable clearing method for native and tissue engineered skeletal muscle tissue.

  1. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  2. Development of confocal micro X-ray fluorescence instrument using two X-ray beams

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Nakano, Kazuhiko; Ding Xunliang

    2007-01-01

    A new confocal micro X-ray fluorescence instrument was developed. This instrument has two independent micro X-ray tubes with Mo targets. A full polycapillary X-ray lens was attached to each X-ray tube. Another half polycapillary lens was attached to a silicon drift X-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The effects of the excitation of two X-ray beams were investigated. The instrument enabled highly sensitive three-dimensional X-ray fluorescence analysis. We confirmed that the X-ray fluorescence intensity from the sample increased by applying the two independent X-ray tubes in confocal configuration. Elemental depth profiling of black wheat was demonstrated with the result that each element in the surface coat of a wheat grain showed unique distribution

  3. Visualization of carbon nanotubes dispersion in composite by using confocal laser scanning microscopy

    Czech Academy of Sciences Publication Activity Database

    Ilčíková, M.; Danko, M.; Doroshenko, M.; Best, A.; Mrlík, M.; Csomorová, K.; Šlouf, Miroslav; Chorvát Jr., D.; Koynov, K.; Mosnáček, J.

    2016-01-01

    Roč. 79, June (2016), s. 187-197 ISSN 0014-3057 Institutional support: RVO:61389013 Keywords : confocal laser scanning microscopy * composites * carbon nanotubes dispersion Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.531, year: 2016

  4. Evaluation of the therapeutic results of actinic keratosis treated with topical 5% fluorouracil by reflectance confocal laser microscopy: preliminary study*

    Science.gov (United States)

    Ishioka, Priscila; Maia, Marcus; Rodrigues, Sarita Bartholomei; Marta, Alessandra Cristina; Hirata, Sérgio Henrique

    2015-01-01

    Topical treatment for actinic keratosis with 5% fluorouracil has a recurrence rate of 54% in 12 months of follow-up. This study analyzed thirteen actinic keratoses on the upper limbs through confocal microscopy, at the time of clinical diagnosis and after 4 weeks of treatment with fluorouracil. After the treatment was established and evidence of clinical cure was achieved, in two of the nine actinic keratoses, confocal microscopy enabled visualization of focal areas of atypical honeycomb pattern in the epidermis indicating therapeutic failure. Preliminary data suggest the use of confocal microscopy as a tool for diagnosis and therapeutic control of actinic keratosis. PMID:26131881

  5. EEG Oscillatory States: Universality, Uniqueness and Specificity across Healthy-Normal, Altered and Pathological Brain Conditions

    Science.gov (United States)

    Fingelkurts, Alexander A.; Fingelkurts, Andrew A.

    2014-01-01

    For the first time the dynamic repertoires and oscillatory types of local EEG states in 13 diverse conditions (examined over 9 studies) that covered healthy-normal, altered and pathological brain states were quantified within the same methodological and conceptual framework. EEG oscillatory states were assessed by the probability-classification analysis of short-term EEG spectral patterns. The results demonstrated that brain activity consists of a limited repertoire of local EEG states in any of the examined conditions. The size of the state repertoires was associated with changes in cognition and vigilance or neuropsychopathologic conditions. Additionally universal, optional and unique EEG states across 13 diverse conditions were observed. It was demonstrated also that EEG oscillations which constituted EEG states were characteristic for different groups of conditions in accordance to oscillations’ functional significance. The results suggested that (a) there is a limit in the number of local states available to the cortex and many ways in which these local states can rearrange themselves and still produce the same global state and (b) EEG individuality is determined by varying proportions of universal, optional and unique oscillatory states. The results enriched our understanding about dynamic microstructure of EEG-signal. PMID:24505292

  6. Phenological Variation and its Relation with Yield in several Wheat (Triticum aestivum L. Cultivars under Normal and Late Sowing Mediated Heat Stress Condition

    Directory of Open Access Journals (Sweden)

    Kamrun NAHAR

    2010-09-01

    Full Text Available Phenological performance in relation to yield of five modern varieties of wheat �Sourav�, �Pradip�, �Sufi�, �Shatabdi� and �Bijoy� were evaluated under two growing environments; one is normal growing environment (sowing at November 30 and the other is post anthesis heat stressed environment (sowing at December 30. In case of late seeding, the varieties phased a significant level of high temperature stress that also significantly affected the required days to germination, booting, anthesis, maturity of all varieties including the yield as compared to normal sowing treatment. The temperature during the grain filling or grain maturing period was near 23�C in case of normal seeding and it was near about 28�C to 30�C and sometimes reached above this range in the later period of late seeded treatment. In the normal sowing treatment the germination period was lower than the late sowing treatment as during that time the temperature was higher as compared to late sowing condition where temperature was lower. Days to anthesis and booting decreased due to late sown heat stress condition regardless the cultivars. These phenological characteristics under heat stressed condition led the wheat cultivars to significantly lower the grain yield as compared to normal condition. Due to heat stress, the yield reduction was 69.53% in �Sourav�, 58.41% in �Pradip�, 73.01% in �Sufi�, 55.46% in �Shatabdi� and 53.42% in �Bijoy�.

  7. In vivo Diagnosis of Basal Cell Carcinoma Subtype by Reflectance Confocal Microscopy

    NARCIS (Netherlands)

    Peppelman, M.; Wolberink, E.A.W.; Blokx, W.A.M.; Kerkhof, P.C.M. van de; Erp, P.E.J. van; Gerritsen, M.J.P.

    2013-01-01

    Background: Reflectance confocal microscopy (RCM) is a noninvasive imaging technique. Currently, RCM is mainly used for the diagnosis of melanoma and nonmelanoma skin cancer including basal cell carcinoma (BCC). Until now, it has not been possible to distinguish between subtypes of BCC using RCM.

  8. Confocal Raman spectrocopy for the analysis of nail polish evidence.

    Science.gov (United States)

    López-López, Maria; Vaz, Joana; García-Ruiz, Carmen

    2015-06-01

    Nail polishes are cosmetic paints that may be susceptible of forensic analysis offering useful information to assist in a crime reconstruction. Although the nail polish appearance could allow a quick visual identification of the sample, this analysis is subjected to the perception and subjective interpretation of the forensic examiner. The chemical analysis of the nail polishes offers great deal of information not subjected to analyst interpretation. Confocal Raman spectroscopy is a well-suited technique for the analysis of paints due to its non-invasive and non-destructive nature and its ability to supply information about the organic and inorganic components of the sample. In this work, 77 regular and gel nail polishes were analyzed with confocal Raman spectroscopy using two laser wavelengths (532 and 780 nm). The sample behavior under the two laser wavelengths and the differences in the spectra taken at different points of the sample were studied for each nail polish. Additionally, the spectra obtained for all the nail polishes were visually compared. The results concluded that the longer laser wavelength prevents sample burning and fluorescence effects; the similarity among the spectra collected within the sample is not directly related with the presence of glitter particles; and 64% of the samples analyzed showed a characteristic spectrum. Additionally, the use of confocal Raman spectroscopy for the forensic analysis of nail polishes evidence in the form of flakes or smudges on different surfaces were studied. The results showed that both types of evidence can be analyzed by the technique. Also, two non-invasive sampling methods for the collection of the evidence from the nails of the suspect or the victim were proposed: (i) to use acetone-soaked cotton swabs to remove the nail varnishes and (ii) to scrape the nail polish from the nail with a blade. Both approaches, each exhibiting advantages and drawbacks in terms of transport and handling were appropriate

  9. Computer Aided Diagnosis for Confocal Laser Endomicroscopy in Advanced Colorectal Adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Daniela Ştefănescu

    Full Text Available Confocal laser endomicroscopy (CLE is becoming a popular method for optical biopsy of digestive mucosa for both diagnostic and therapeutic procedures. Computer aided diagnosis of CLE images, using image processing and fractal analysis can be used to quantify the histological structures in the CLE generated images. The aim of this study is to develop an automatic diagnosis algorithm of colorectal cancer (CRC, based on fractal analysis and neural network modeling of the CLE-generated colon mucosa images.We retrospectively analyzed a series of 1035 artifact-free endomicroscopy images, obtained during CLE examinations from normal mucosa (356 images and tumor regions (679 images. The images were processed using a computer aided diagnosis (CAD medical imaging system in order to obtain an automatic diagnosis. The CAD application includes image reading and processing functions, a module for fractal analysis, grey-level co-occurrence matrix (GLCM computation module, and a feature identification module based on the Marching Squares and linear interpolation methods. A two-layer neural network was trained to automatically interpret the imaging data and diagnose the pathological samples based on the fractal dimension and the characteristic features of the biological tissues.Normal colon mucosa is characterized by regular polyhedral crypt structures whereas malignant colon mucosa is characterized by irregular and interrupted crypts, which can be diagnosed by CAD. For this purpose, seven geometric parameters were defined for each image: fractal dimension, lacunarity, contrast correlation, energy, homogeneity, and feature number. Of the seven parameters only contrast, homogeneity and feature number were significantly different between normal and cancer samples. Next, a two-layer feed forward neural network was used to train and automatically diagnose the malignant samples, based on the seven parameters tested. The neural network operations were cross

  10. Quantification of Confocal Images Using LabVIEW for Tissue Engineering Applications.

    Science.gov (United States)

    Sfakis, Lauren; Kamaldinov, Tim; Larsen, Melinda; Castracane, James; Khmaladze, Alexander

    2016-11-01

    Quantifying confocal images to enable location of specific proteins of interest in three-dimensional (3D) is important for many tissue engineering (TE) applications. Quantification of protein localization is essential for evaluation of specific scaffold constructs for cell growth and differentiation for application in TE and tissue regeneration strategies. Although obtaining information regarding protein expression levels is important, the location of proteins within cells grown on scaffolds is often the key to evaluating scaffold efficacy. Functional epithelial cell monolayers must be organized with apicobasal polarity with proteins specifically localized to the apical or basolateral regions of cells in many organs. In this work, a customized program was developed using the LabVIEW platform to quantify protein positions in Z-stacks of confocal images of epithelial cell monolayers. The program's functionality is demonstrated through salivary gland TE, since functional salivary epithelial cells must correctly orient many proteins on the apical and basolateral membranes. Bio-LabVIEW Image Matrix Evaluation (Bio-LIME) takes 3D information collected from confocal Z-stack images and processes the fluorescence at each pixel to determine cell heights, nuclei heights, nuclei widths, protein localization, and cell count. As a demonstration of its utility, Bio-LIME was used to quantify the 3D location of the Zonula occludens-1 protein contained within tight junctions and its change in 3D position in response to chemical modification of the scaffold with laminin. Additionally, Bio-LIME was used to demonstrate that there is no advantage of sub-100 nm poly lactic-co-glycolic acid nanofibers over 250 nm fibers for epithelial apicobasal polarization. Bio-LIME will be broadly applicable for quantification of proteins in 3D that are grown in many different contexts.

  11. Fluorescent ligands for studying neuropeptide receptors by confocal microscopy

    Directory of Open Access Journals (Sweden)

    A. Beaudet

    1998-11-01

    Full Text Available This paper reviews the use of confocal microscopy as it pertains to the identification of G-protein coupled receptors and the study of their dynamic properties in cell cultures and in mammalian brain following their tagging with specific fluorescent ligands. Principles that should guide the choice of suitable ligands and fluorophores are discussed. Examples are provided from the work carried out in the authors' laboratory using custom synthetized fluoresceinylated or BODIPY-tagged bioactive peptides. The results show that confocal microscopic detection of specifically bound fluorescent ligands permits high resolution appraisal of neuropeptide receptor distribution both in cell culture and in brain sections. Within the framework of time course experiments, it also allows for a dynamic assessment of the internalization and subsequent intracellular trafficking of bound fluorescent molecules. Thus, it was found that neurotensin, somatostatin and mu- and delta-selective opioid peptides are internalized in a receptor-dependent fashion and according to receptor-specific patterns into their target cells. In the case of neurotensin, this internalization process was found to be clathrin-mediated, to proceed through classical endosomal pathways and, in neurons, to result in a mobilization of newly formed endosomes from neural processes to nerve cell bodies and from the periphery of cell bodies towards the perinuclear zone. These mechanisms are likely to play an important role for ligand inactivation, receptor regulation and perhaps also transmembrane signaling.

  12. Combining ability studies on yield related traits in wheat under normal and water stress conditions

    International Nuclear Information System (INIS)

    Saeed, A.; Khan, A.S.; Khaliq, I.

    2010-01-01

    Six diverse wheat cultivars/lines viz; Baviacore, Nesser, 9247, 9252, 9258 and 9267 were crossed in a complete diallel fashion to develop 30 F1 crosses, which were tested along with their parents under normal and water stress conditions. Numerical analysis was made for spike density, number of grains per spike, 100-grain weight, biological yield, grain yield and harvest index. Significant differences among genotypic mean were observed in all of the traits under both conditions. GCA and SCA differences were significant for all the traits under study except spike density and 100-grain weight in both conditions. Wheat variety Nesser showed maximum general combining ability value for spike density under water stress conditions and maximum GCA value for biological yield and grain yield under irrigated condition. The variety Baviacore proved best general combiner for number of grains per spike and harvest index under both conditions while biological yield and grain yield under water stress condition. Variety 9252 found best general combiner for 100-grain weight under both condition. The cross 9252 x Nesser showed maximum specific combining ability value for spike density and biological yield under irrigated while for 100-grain weight under water stress condition. 9258 x 9252 exhibited maximum SCA for number of grains per spike under irrigated while 9258 x Nesser under water stress condition. 9267 x Nesser showed maximum SCA for 100-grain weight under irrigated condition while spike density under water stress condition. 9258 x 9247 was proved best combiner for grain yield and harvest index irrigated while 9267 x 9258 for biological yield, grain yield and harvest index under water stress condition. (author)

  13. LHC Beam Dump Design Study - Part III : Off-normal operating conditions

    CERN Document Server

    Bruno, L; Ross, M; Sala, P

    2000-01-01

    The LHC beam dump design study has been preliminarily substantiated by energy deposition simulations (Part I) and heat transfer analyses (Part II). The present report is devoted to the abnormal operating conditions induced by a malfunction of the beam diluters. A general approach to the analysis of off-normal operation is presented, which is derived from standard design norms adopted in the nuclear industry. Attention is focused mainly on the carbon core, which is longitudinally split into segments of different density in order to better distribute the deposited energy. The maximum energy density it absorbs decreases by at least 33%, compared to a uniform standard density carbon core. This structure may sustain any partial sweep failure without major damage, up to the ultimate beam intensity and energy. To minimise the risks inherent in a fully unswept beam, a sacrificial graphite mandrel will be placed on the core axis, surrounded by a thick high strength carbon-carbon composite tube. With this arrangement, ...

  14. Atomic force microscopy and confocal laser scanning microscopy on the cytoskeleton of permeabilised and embedded cells

    International Nuclear Information System (INIS)

    Meller, Karl; Theiss, Carsten

    2006-01-01

    We describe a technical method of cell permeabilisation and embedding to study the organisation and distribution of intracellular proteins with aid of atomic force microscopy and confocal laser scanning microscopy in identical areas. While confocal laser scanning microscopy is useful for the identification of certain proteins subsequent labelling with markers or antibodies, atomic force microscopy allows the observation of macromolecular structures in fixed and living cells. To demonstrate the field of application of this preparatory technique, cells were permeabilised, fixed, and the actin cytoskeleton was stained with phalloidin-rhodamine. Confocal laser scanning microscopy was used to show the organisation of these microfilaments, e.g. geodesic dome structures. Thereafter, cells were embedded in Durcupan water-soluble resin, followed by UV-polymerisation of resin at 4 o C. This procedure allowed intracellular visualisation of the cell nucleus or cytoskeletal elements by atomic force microscopy, for instance to analyse the globular organisation of actin filaments. Therefore, this method offers a great potential to combine both microscopy techniques in order to understand and interpret intracellular protein relations, for example, the biochemical and morphological interaction of the cytoskeleton

  15. Demonstration of a High-Order Mode Input Coupler for a 220-GHz Confocal Gyrotron Traveling Wave Tube

    Science.gov (United States)

    Guan, Xiaotong; Fu, Wenjie; Yan, Yang

    2018-02-01

    A design of high-order mode input coupler for 220-GHz confocal gyrotron travelling wave tube is proposed, simulated, and demonstrated by experimental tests. This input coupler is designed to excite confocal TE 06 mode from rectangle waveguide TE 10 mode over a broadband frequency range. Simulation results predict that the optimized conversion loss is about 2.72 dB with a mode purity excess of 99%. Considering of the gyrotron interaction theory, an effective bandwidth of 5 GHz is obtained, in which the beam-wave coupling efficiency is higher than half of maximum. The field pattern under low power demonstrates that TE 06 mode is successfully excited in confocal waveguide at 220 GHz. Cold test results from the vector network analyzer perform good agreements with simulation results. Both simulation and experimental results illustrate that the reflection at input port S11 is sensitive to the perpendicular separation of two mirrors. It provides an engineering possibility for estimating the assembly precision.

  16. Volume visualization of biological tissue specimens using confocal microscopy

    Czech Academy of Sciences Publication Activity Database

    Čapek, Martin; Janáček, Jiří; Kubínová, Lucie; Smrčka, P.; Hána, K.

    2006-01-01

    Roč. 36, č. 2 (2006), s. 240-244 ISSN 0301-5491. [Biomedical Engineering Conference of Young Biomedical Engineers and Researchers /2./. Kladno, 19.07.2006-21.07.2006] R&D Projects: GA MŠk(CZ) LC06063; GA AV ČR(CZ) IAA100110502; GA AV ČR(CZ) IAA500200510; GA ČR(CZ) GA304/05/0153 Institutional research plan: CEZ:AV0Z50110509 Keywords : 3D reconstruction * confocal microscopy Subject RIV: JC - Computer Hardware ; Software

  17. Liftoff characteristics of partially premixed flames under normal and microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lock, Andrew J.; Briones, Alejandro M.; Aggarwal, Suresh K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Qin, Xiao [Department of Mechanical & amp; Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Puri, Ishwar K. [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Hegde, Uday [National Center for Microgravity Research, Cleveland, OH 44135 (United States)

    2005-11-01

    An experimental and computational investigation on the liftoff characteristics of laminar partially premixed flames (PPFs) under normal (1-g) and microgravity ({mu}-g) conditions is presented. Lifted methane-air PPFs were established in axisymmetric coflowing jets using nitrogen dilution and various levels of partial premixing. The {mu}-g experiments were conducted in the 2.2-s drop tower at the NASA Glenn Research Center. A time-accurate, implicit algorithm that uses a detailed description of the chemistry and includes radiation effects is used for the simulations. The predictions are validated through a comparison of the flame reaction zone topologies, liftoff heights, lengths, and oscillation frequencies. The effects of equivalence ratio, gravity, jet velocity, and radiation on flame topology, liftoff height, flame length, base structure, and oscillation frequency are characterized. Both the simulations and measurements indicate that under identical conditions, a lifted {mu}-g PPF is stabilized closer to the burner compared with the 1-g flame, and that the liftoff heights of both 1-g and {mu}-g flames decrease with increasing equivalence ratio and approach their respective nonpremixed flame limits. The liftoff height also increases as the jet velocity is increased. In addition, the flame base structure transitions from a triple- to a double-flame structure as the flame liftoff height decreases. A modified flame index is developed to distinguish between the rich premixed, lean premixed, and nonpremixed reaction zones near the flame base. The 1-g lifted flames exhibit well-organized oscillations due to buoyancy-induced instability, while the corresponding {mu}-g flames exhibit steady-state behavior. The effect of thermal radiation is to slightly decrease the liftoff heights of both 1-g and {mu}-g flames under coflow conditions.

  18. In vitro confocal imaging of the rabbit cornea.

    Science.gov (United States)

    Masters, B R; Paddock, S

    1990-05-01

    We were able to observe in vitro the fine structure of the rabbit cornea using a laser scanning confocal microscope, especially in the regions between Descemet's membrane and the epithelial basal lamina. We observed submicrometre filaments throughout the stroma with high concentrations adjacent to Descemet's membrane, and found extensive interconnecting processes between stromal keratocytes. There are numerous regions containing nerve plexuses in the stroma. We found a deeply convoluted basal lamina adjacent to the epithelium, and observed regions containing junctions between endothelial cells in fluorescent images of rabbit corneas stained with the actin-specific compound fluorescein phalloidin.

  19. Changes in working conditions and major weight gain among normal- and overweight midlife employees.

    Science.gov (United States)

    Niskanen, Riikka; Holstila, Ansku; Rahkonen, Ossi; Lallukka, Tea

    2017-11-01

    Objectives We aimed to examine the association between changes in psychosocial working conditions and major weight gain among midlife women and men. Furthermore, we examined the associations separately among normal- and overweight participants. Methods We used survey data among employees of the City of Helsinki, Finland, from 2000-2002 (phase 1, N=8960), 2007 (phase 2, N=7332), and 2012 (phase 3, N=6814), with a final study sample of 4369 participants. We examined changes in job strain, job demands, and job control from phase 1 to 2. We defined major weight gain as ≥10% weight gain between phases 1 and 3 based on self-reported weight (kg). We performed logistic regression analysis adjusting for baseline age, marital status, and occupational class, stratifying by gender and by baseline body mass index. Results Job demands among both genders and job strain among women was associated with major weight gain. Furthermore, increased job demands [odds ratio (OR) 1.52, 95% CI 1.05-2.20] or increased job strain (OR 1.53, 95% CI 1.11-2.11) was associated with major weight gain among overweight women. Normal-weight men reporting decreased job demands (OR 4.11, 95% CI 1.48-11.40) and overweight men reporting increasing job demands (OR 2.93, 95% CI 1.26-6.82) exhibited higher odds of major weight gain. Conclusions Associations between working conditions and weight gain appeared primarily weak. Our study suggests that overweight individuals might be at a higher risk of weight gain when facing psychosocial strain in the workplace.

  20. A four-phase strategy for the implementation of reflectance confocal microscopy in dermatology

    NARCIS (Netherlands)

    Hoogedoorn, L.; Gerritsen, M.J.P.; Wolberink, E.A.W.; Peppelman, M.; Kerkhof, P.C.M. van de; Erp, P.E.J. van

    2016-01-01

    BACKGROUND: Reflectance confocal microscopy (RCM) is gradually implemented in dermatology. Strategies for further implementation and practical 'hands on' guidelines are lacking. OBJECTIVE: The primary outcome was to conduct a general strategy for further implementation of RCM. The secondary outcome

  1. Confocal fluorescence techniques in industrial application

    Science.gov (United States)

    Eggeling, Christian; Gall, Karsten; Palo, Kaupo; Kask, Peet; Brand, Leif

    2003-06-01

    The FCS+plus family of evaluation tools for confocal fluorescence spectroscopy, which was developed during recent years, offers a comprehensive view to a series of fluorescence properties. Originating in fluorescence correlation spectroscopy (FCS) and using similar experimental equipment, a system of signal processing methods such as fluorescence intensity distribution analysis (FIDA) was created to analyze in detail the fluctuation behavior of fluorescent particles within a small area of detection. Giving simultaneous access to molecular parameters like concentration, translational and rotational diffusion, molecular brightness, and multicolor coincidence, this portfolio was enhanced by more traditional techniques of fluorescence lifetime as well as time-resolved anisotropy determination. The cornerstones of the FCS+plus methodology will be shortly described. The inhibition of a phosphatase enzyme activity gives a comprehensive industrial application that demonstrates FCS+plus' versatility and its potential for pharmaceutical drug discovery.

  2. Analysis of radionuclide dispersion at normal condition for AEC 1000 MW reactor power

    International Nuclear Information System (INIS)

    Sri Kuntjoro

    2010-01-01

    Analysis for radionuclide dispersion for the Atomic Energy Agency (AEC) 3,568 MWth Power Reactor, equal to the 1,000 MWe at normal condition has been done. Analysis was done for two piles that is separated by 500 m distance and angle of 90° one to other. Initial pace in doing the analysis is to determine reactors source term using ORIGEN2 and EMERALD NORMAL. computer code program. ORIGEN2 applied to determine radionuclide inventory emerged in the reactor. Hereinafter, by using Emerald Normal Computer code is calculated source term reaching the reactor stack. To analyze dose received by population is done by using PC-CREAM computer code. Calculation done for one and two PLTN attached in site candidate of plants. The result showed is that the highest radionuclide release for one PLTN is at 1 km distance and to 9 th zone toward ( 19.25° ) and for two PLTN is at 1 km distance and to 10 th zone toward (21.75° ). Radionuclide which up to population through two pathways that are foodstuff and inhalation. To foodstuff comes from radionuclide I 131 , and the biggest passed from milk product with 53.40 % for one and also two PLTN For inhalation pathway the highest radionuclide contribution come from Kr 85m is about 53.80 %. The highest total dose received by population is at 1 Km distance received by baby that is 4.10 µSi and 11.26 µSi for one and two PLTN respectively. Those result are very small compared to the maximum permission dose to population issued by regulatory body that is equal to 1 mSi. (author)

  3. Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro

    Directory of Open Access Journals (Sweden)

    Zou Y

    2017-10-01

    Full Text Available Ying Zou,1,2,* Anna Celli,2,3,* Hanjiang Zhu,2,* Akram Elmahdy,2 Yachao Cao,2 Xiaoying Hui,2 Howard Maibach2 1Skin & Cosmetic Research Department, Shanghai Skin Disease Hospital, Shanghai, People’s Republic of China; 2Department of Dermatology, School of Medicine, University of California San Francisco, San Francisco, CA, USA; 3San Francisco Veterans Medical Center, San Francisco, CA, USA *These authors contributed equally to this work Objective: With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration.Methods: Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy.Results: NPs were localized in the stratum corneum (SC and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not.Conclusion: Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. Keywords: nanoparticles, skin penetration, stratum corneum, confocal laser scanning microscopy, tape stripping

  4. Sensitivity and Specificity of Cardiac Tissue Discrimination Using Fiber-Optics Confocal Microscopy.

    Science.gov (United States)

    Huang, Chao; Sachse, Frank B; Hitchcock, Robert W; Kaza, Aditya K

    2016-01-01

    Disturbances of the cardiac conduction system constitute a major risk after surgical repair of complex cases of congenital heart disease. Intraoperative identification of the conduction system may reduce the incidence of these disturbances. We previously developed an approach to identify cardiac tissue types using fiber-optics confocal microscopy and extracellular fluorophores. Here, we applied this approach to investigate sensitivity and specificity of human and automated classification in discriminating images of atrial working myocardium and specialized tissue of the conduction system. Two-dimensional image sequences from atrial working myocardium and nodal tissue of isolated perfused rodent hearts were acquired using a fiber-optics confocal microscope (Leica FCM1000). We compared two methods for local application of extracellular fluorophores: topical via pipette and with a dye carrier. Eight blinded examiners evaluated 162 randomly selected images of atrial working myocardium (n = 81) and nodal tissue (n = 81). In addition, we evaluated the images using automated classification. Blinded examiners achieved a sensitivity and specificity of 99.2 ± 0.3% and 98.0 ± 0.7%, respectively, with the dye carrier method of dye application. Sensitivity and specificity was similar for dye application via a pipette (99.2 ± 0.3% and 94.0 ± 2.4%, respectively). Sensitivity and specificity for automated methods of tissue discrimination were similarly high. Human and automated classification achieved high sensitivity and specificity in discriminating atrial working myocardium and nodal tissue. We suggest that our findings facilitate clinical translation of fiber-optics confocal microscopy as an intraoperative imaging modality to reduce the incidence of conduction disturbances during surgical correction of congenital heart disease.

  5. Confocal microscopy of thick tissue sections: 3D visualizaiton of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  6. Confocal Microscopy of thick tissue sections: 3D Visualization of rat kidney glomeruli

    Science.gov (United States)

    Confocal laser scanning microscopy (CLSM) as a technique capable of generating serial sections of whole-mount tissue and then reassembling the computer-acquired images as a virtual 3-dimentional structure. In many ways CLSM offers an alternative to traditional sectioning approac...

  7. Musculature of Notholca acuminata (Rotifera : Ploima : Brachionidae) revealed by confocal scanning laser microscopy

    DEFF Research Database (Denmark)

    Sørensen, M.V.; Funch, P.; Hooge, M.

    2003-01-01

    The body-wall and visceral musculature of Notholca acuminata was visualized using phalloidin-linked fluorescent dye under confocal laser scanning microscopy. The body-wall musculature includes dorsal, lateral, and ventral pairs of longitudinally oriented body retractor muscles, two pairs of head...

  8. In vivo subsurface morphological and functional cellular and subcellular imaging of the gastrointestinal tract with confocal mini-microscopy

    Institute of Scientific and Technical Information of China (English)

    Martin Goetz; Beena Memadathil; Stefan Biesterfeld; Constantin Schneider; Sebastian Gregor; Peter R Galle; Markus F Neurath; Ralf Kiesslich

    2007-01-01

    AIM: To evaluate a newly developed hand-held confocal probe for in vivo microscopic imaging of the complete gastrointestinal tract in rodents.METHODS: A novel rigid confocal probe (diameter 7 mm) was designed with optical features similar to the flexible endomicroscopy system for use in humans using a 488 nm single line laser for fluorophore excitation.Light emission was detected at 505 to 750 nm. The field of view was 475 μm × 475 μm. Optical slice thickness was 7 μm with a lateral resolution of 0.7 μm. Subsurface serial images at different depths (surface to 250 μm)were generated in real time at 1024 × 1024 pixels (0.8 frames/s) by placing the probe onto the tissue in gentle,stable contact. Tissue specimens were sampled for histopathological correlation.RESULTS: The esophagus, stomach, small and large intestine and meso, liver, pancreas and gall bladder were visualised in vivo at high resolution in n = 48 mice.Real time microscopic imaging with the confocal minimicroscopy probe was easy to achieve. The different staining protocols (fluorescein, acriflavine, FITC-labelled dextran and L. esculentum lectin) each highlighted specific aspects of the tissue, and in vivo imaging correlated excellently with conventional histology. In vivo blood flow monitoring added a functional quality to morphologic imaging.CONCLUSION: Confocal microscopy is feasible in vivo allowing the visualisation of the complete GI tract at high resolution even of subsurface tissue structures.The new confocal probe design evaluated in this study is compatible with laparoscopy and significantly expands the field of possible applications to intra-abdominal organs. It allows immediate testing of new in vivo staining and application options and therefore permits rapid transfer from animal studies to clinical use in patients.

  9. The normal development of Platynereis dumerilii (Nereididae, Annelida

    Directory of Open Access Journals (Sweden)

    Henrich Thorsten

    2010-12-01

    Full Text Available Abstract Background The polychaete annelid Platynereis dumerilii is an emerging model organism for the study of molecular developmental processes, evolution, neurobiology and marine biology. Annelids belong to the Lophotrochozoa, the so far understudied third major branch of bilaterian animals besides deuterostomes and ecdysozoans. P. dumerilii has proven highly relevant to explore ancient bilaterian conditions via comparison to the deuterostomes, because it has accumulated less evolutionary change than conventional ecdysozoan models. Previous staging was mainly referring to hours post fertilization but did not allow matching stages between studies performed at (even slightly different temperatures. To overcome this, and to provide a first comprehensive description of P. dumerilii normal development, a temperature-independent staging system is needed. Results Platynereis dumerilii normal development is subdivided into 16 stages, starting with the zygote and ending with the death of the mature worms after delivering their gametes. The stages described can be easily identified by conventional light microscopy or even by dissecting scope. Developmental landmarks such as the beginning of phototaxis, the visibility of the stomodeal opening and of the chaetae, the first occurrence of the ciliary bands, the formation of the parapodia, the extension of antennae and cirri, the onset of feeding and other characteristics are used to define different developmental stages. The morphology of all larval stages as well as of juveniles and adults is documented by light microscopy. We also provide an overview of important steps in the development of the nervous system and of the musculature, using fluorescent labeling techniques and confocal laser-scanning microscopy. Timing of each developmental stage refers to hours post fertilization at 18 ± 0.1°C. For comparison, we determined the pace of development of larvae raised at 14°C, 16°C, 20°C, 25°C, 28°C and

  10. Simulation with Python on transverse modes of the symmetric confocal resonator

    Science.gov (United States)

    Wang, Qing Hua; Qi, Jing; Ji, Yun Jing; Song, Yang; Li, Zhenhua

    2017-08-01

    Python is a popular open-source programming language that can be used to simulate various optical phenomena. We have developed a suite of programs to help teach the course of laser principle. The complicated transverse modes of the symmetric confocal resonator can be visualized in personal computers, which is significant to help the students understand the pattern distribution of laser resonator.

  11. Analysis of WWER-440 fuel performance under normal operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, Oe; Koese, S; Akbas, T [Atomenerjisi Komisyonu, Ankara (Turkey); Colak, Ue [Ankara Nuclear Research and Training Center (Turkey)

    1994-12-31

    FRAPCON-2 code originally developed for LWR fuel behaviour simulation is used to analyse the WWER-440 fuel rod behaviour at normal operational conditions. The code is capable of utilizing different models for mechanical analysis and gas release calculations. Heat transfer calculations are accomplished through a collocation technique by the method of weighted residuals. Temperature and burnup element properties are evaluated using MATPRO package. As the material properties of Zr-1%Nb used as cladding in WWER-440s are not provided in the code, Zircaloy-4 is used as a substitute for Zr-1%Nb. Mac-Donald-Weisman model is used for gas release calculation. FRACAS-1 and FRACAS-2 models are used in the mechanical calculations. It is assumed that the reactor was operated for 920 days (three consecutive cycles), the burnup being 42000 Mwd/t U. Results of the fuel rod behaviour analysis are given for three axial nodes: bottom node, central node and top node. The variations of the following characteristic fuel rod parameters are studied through the prescribed power history: unmoved gap thickness, gap heat transfer coefficient, fuel axial elongation, cladding axial elongation, fuel centerline temperature and ZrO-thickness at cladding surface. The value of each parameter is calculated as a function of the effective power days for the three nodes by using FRACAS-1 and FRACAS-2 codes for comparison.The results show that calculations with deformable pellet approximation with FRACAS-II model could provide better information for the behaviour of a typical fuel rod. Calculations indicate that fuel rod failure is not observed during the operation. All fuel rod parameters investigated are found to be within the safety limits. It is concluded, however, that for better assessment of reactor safety these calculations should be extended for transient conditions such as LOCA. 1 tab., 10 figs., 4 refs.

  12. Reflectance confocal microscopy: an effective tool for monitoring ultraviolet B phototherapy in psoriasis.

    NARCIS (Netherlands)

    Wolberink, E.A.W.; Erp, P.E.J. van; Boer-van Huizen, R.T. de; Kerkhof, P.C.M. van de; Gerritsen, M.J.P.

    2012-01-01

    Background In vivo reflectance confocal microscopy (RCM) is a novel, noninvasive imaging technique which enables imaging of skin at a cellular resolution comparable to conventional microscopy. Objectives We performed a pilot study to evaluate RCM as a noninvasive tool for monitoring ultraviolet (UV)

  13. Investigation of phosphatidylcholine enhancing FITC-insulin across buccal mucosa by confocal laser scanning microscopy

    Science.gov (United States)

    Tian, Weiqun; Su, Li; Zeng, Shaoqun; Luo, Qingming; Gao, Qiuhua; Xu, Huibi

    2002-04-01

    The aim was to characterize the transport of fluorescein isothiocyanate (FITC)-labeled dextran and insulin with different resoluble compounds for peptides and proteins through buccal mucosa. The penetration rate of insulin molecules through porcine buccal mucosa (a nonkeratinized epithelium, comparable to human buccal mucosa) was investigated by measuring transbuccal fluxes and by analyzing the distribution of the fluorescent probe in the rabbit buccal mucosa epithelium, using confocal laser scanning microscopy for visualizing permeation pathways. The confocal images of the distribution pattern of FITC-dextran and FITC-insulin showed that the paracellular route is the major pathway of FITC-dextran through buccal mucosa epithelium, the intra-cellular route is the major pathway of FITC-insulin through buccal mucosa epithelium. The permeation rate can be increased by co-administration of soybean phosphatidylcholine (SPC).

  14. Confocal Raman microscopy to monitor extracellular matrix during dental pulp stem cells differentiation

    Science.gov (United States)

    Salehi, Hamideh; Collart-Dutilleul, Pierre-Yves; Gergely, Csilla; Cuisinier, Frédéric J. G.

    2015-07-01

    Regenerative medicine brings promising applications for mesenchymal stem cells, such as dental pulp stem cells (DPSCs). Confocal Raman microscopy, a noninvasive technique, is used to study osteogenic differentiation of DPSCs. Integrated Raman intensities in the 2800 to 3000 cm-1 region (C-H stretching) and the 960 cm-1 peak (ν1 PO43-) were collected (to image cells and phosphate, respectively), and the ratio of two peaks 1660 over 1690 cm-1 (amide I bands) to measure the collagen cross-linking has been calculated. Raman spectra of DPSCs after 21 days differentiation reveal several phosphate peaks: ν1 (first stretching mode) at 960 cm-1, ν2 at 430 cm-1, and ν4 at 585 cm-1 and collagen cross-linking can also be calculated. Confocal Raman microscopy enables monitoring osteogenic differentiation in vitro and can be a credible tool for clinical stem cell based research.

  15. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy.

    Science.gov (United States)

    Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D

    2015-01-27

    Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.

  16. Selection and Validation of Reference Genes for Quantitative Real-Time PCR Normalization Under Ethanol Stress Conditions in Oenococcus oeni SD-2a

    Directory of Open Access Journals (Sweden)

    Shuai Peng

    2018-05-01

    Full Text Available The powerful Quantitative real-time PCR (RT-qPCR was widely used to assess gene expression levels, which requires the optimal reference genes used for normalization. Oenococcus oeni (O. oeni, as the one of most important microorganisms in wine industry and the most resistant lactic acid bacteria (LAB species to ethanol, has not been investigated regarding the selection of stable reference genes for RT-qPCR normalization under ethanol stress conditions. In this study, nine candidate reference genes (proC, dnaG, rpoA, ldhD, ddlA, rrs, gyrA, gyrB, and dpoIII were analyzed to determine the most stable reference genes for RT-qPCR in O. oeni SD-2a under different ethanol stress conditions (8, 12, and 16% (v/v ethanol. The transcript stabilities of these genes were evaluated using the algorithms geNorm, NormFinder, and BestKeeper. The results showed that dnaG and dpoIII were selected as the best reference genes across all experimental ethanol conditions. Considering single stress experimental modes, dpoIII and dnaG would be suitable to normalize expression level for 8% ethanol shock treatment, while the combination of gyrA, gyrB, and rrs would be suitable for 12% ethanol shock treatment. proC and gyrB revealed the most stable expression in 16% ethanol shock treatment. This study selected and validated for the first time the reference genes for RT-qPCR normalization in O. oeni SD-2a under ethanol stress conditions.

  17. Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms.

    Science.gov (United States)

    Steinbach, Gábor; Kaňa, Radek

    2016-04-01

    Photosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (through Time Controller offered by Olympus or Experiment Designer offered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with the Cell⊕Finder software was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) the Cell⊕Finder software with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser. Cell⊕Finder can be downloaded from http://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity in Synechocystis sp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.

  18. Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions.

    Science.gov (United States)

    Grossini, Elena; Farruggio, Serena; Qoqaiche, Fatima; Raina, Giulia; Camillo, Lara; Sigaudo, Lorenzo; Mary, David; Surico, Nicola; Surico, Daniela

    2016-09-15

    Perivascular adipose tissue can be involved in the process of cardiovascular pathology through the release of adipokines, namely adiponectins. Monomeric adiponectin has been shown to increase coronary blood flow in anesthetized pigs through increased nitric oxide (NO) release and the involvement of adiponectin receptor 1 (AdipoR1). The present study was therefore planned to examine the effects of monomeric adiponectin on NO release and Ca(2+) transients in porcine aortic endothelial cells (PAEs) in normal/high glucose conditions and the related mechanisms. PAEs were treated with monomeric adiponectin alone or in the presence of intracellular kinases blocker, AdipoR1 and Ca(2+)-ATPase pump inhibitors. The role of Na(+)/Ca(2+) exchanger was examined in experiments performed in zero Na(+) medium. NO release and intracellular Ca(2+) were measured through specific probes. In PAE cultured in normal glucose conditions, monomeric adiponectin elevated NO production and [Ca(2+)]c. Similar effects were observed in high glucose conditions, although the response was lower and not transient. The Ca(2+) mobilized by monomeric adiponectin originated from an intracellular pool thapsigargin- and ATP-sensitive and from the extracellular space. Moreover, the effects of monomeric adiponectin were prevented by kinase blockers and AdipoR1 inhibitor. Finally, in normal glucose condition, a role for Na(+)/Ca(2+) exchanger and Ca(2+)-ATPase pump in restoring Ca(2+) was found. Our results add new information about the control of endothelial function elicited by monomeric adiponectin, which would be achieved by modulation of NO release and Ca(2+) transients. A signalling related to Akt, ERK1/2 and p38MAPK downstream AdipoR1 would be involved. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Comparison of the corrosion potential for stainless steel measured in-plant and in laboratory during BWR normal water chemistry conditions

    International Nuclear Information System (INIS)

    Molander, A.; Pein, K.; Tarkpea, P.; Takagi, Junichi; Karlberg, G.; Gott, K.

    1998-01-01

    To obtain reliable crack growth rate date for stainless steel in BWR environments careful laboratory simulation of the environmental conditions is necessary. In the plant the BWR normal water chemistry environment contains hydrogen peroxide, oxygen and hydrogen. However, in crack growth rate experiments in laboratories, the environment is normally simulated by adding 200 ppb oxygen to the high temperature water. Thus, as hydrogen peroxide is a more powerful oxidant than oxygen, it is to be expected that a lower corrosion potential will be measured in the laboratory than in the plant. To resolve this issue this work has been performed. In-plant and laboratory measurements have often been performed with somewhat different equipment, due to the special requirements concerning in-plant measurements. In this work such differences have been avoided and two identical sets of equipment for electrochemical measurements were built and used for measurements in-plant in a Swedish BWR and in high purity water in the laboratory. The host plant was Barsebaeck 1. Corrosion potential monitoring in-plant was performed under both NWC (Normal Water Chemistry) and HWC (Hydrogen Water Chemistry) conditions. This paper is, however, focused on NWC conditions. This is due to the fact, that the total crack growth obtained during a reactor cycle, can be determined by NWC conditions, even for plants running with HWC due to periodic stops in the hydrogen addition for turbine inspections or failure of the dosage or hydrogen production equipment. Thus, crack growth data for NWC is of great importance both for BWRs operating with HWC and NWC. Measurements in-plant and in the laboratory were performed during additions of oxygen and hydrogen peroxide to the autoclave systems. The corrosion potentials were compared for various conditions in the autoclaves, as well as versus in-plant in-pipe corrosion potentials. (J.P.N.)

  20. Study and Optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent

    International Nuclear Information System (INIS)

    Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2012-01-01

    Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA–grafted NWPE (GMA–g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA–g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h −1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.

  1. Study and Optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent

    Science.gov (United States)

    Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2012-07-01

    Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA-grafted NWPE (GMA-g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA-g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h-1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.

  2. Reflectance confocal microscopy: non-invasive distinction between actinic keratosis and squamous cell carcinoma

    NARCIS (Netherlands)

    Peppelman, M.; Nguyen, K.P.; Hoogedoorn, L.; Erp, P.E.J. van; Gerritsen, M.J.P.

    2015-01-01

    BACKGROUND: Early recognition of squamous cell carcinoma (SCC) is difficult. Non-invasive reflectance confocal microscopic (RCM) imaging of the skin is a promising diagnostic technique. Although several RCM features for SCC and AK have been described, it is not determined whether RCM has the ability

  3. Confocal laser feedback tomography for skin cancer detection.

    Science.gov (United States)

    Mowla, Alireza; Du, Benjamin Wensheng; Taimre, Thomas; Bertling, Karl; Wilson, Stephen; Soyer, H Peter; Rakić, Aleksandar D

    2017-09-01

    Tomographic imaging of soft tissue such as skin has a potential role in cancer detection. The penetration of infrared wavelengths makes a confocal approach based on laser feedback interferometry feasible. We present a compact system using a semiconductor laser as both transmitter and receiver. Numerical and physical models based on the known optical properties of keratinocyte cancers were developed. We validated the technique on three phantoms containing macro-structural changes in optical properties. Experimental results were in agreement with numerical simulations and structural changes were evident which would permit discrimination of healthy tissue and tumour. Furthermore, cancer type discrimination was also able to be visualized using this imaging technique.

  4. Extending the application range of a fuel performance code from normal operating to design basis accident conditions

    International Nuclear Information System (INIS)

    Van Uffelen, P.; Gyori, C.; Schubert, A.; Laar, J. van de; Hozer, Z.; Spykman, G.

    2008-01-01

    Two types of fuel performance codes are generally being applied, corresponding to the normal operating conditions and the design basis accident conditions, respectively. In order to simplify the code management and the interface between the codes, and to take advantage of the hardware progress it is favourable to generate a code that can cope with both conditions. In the first part of the present paper, we discuss the needs for creating such a code. The second part of the paper describes an example of model developments carried out by various members of the TRANSURANUS user group for coping with a loss of coolant accident (LOCA). In the third part, the validation of the extended fuel performance code is presented for LOCA conditions, whereas the last section summarises the present status and indicates needs for further developments to enable the code to deal with reactivity initiated accident (RIA) events

  5. Design report on the guide box-reactivity and safety control plates for MPR reactor under normal operation conditions

    International Nuclear Information System (INIS)

    Markiewicz, M.

    1999-01-01

    The reactivity control system for the MPR reactor (Multi Purpose Reactor) is a critical component regarding safety, it must ensure a fast shut down, maintaining the reactor in subcritical condition under normal or accidental operation condition. For this purpose, this core component must be designed to maintain its operating capacity during all the residence time and under any foreseen operation condition. The mechanical design of control plates and guide boxes must comply with structural integrity, maintaining its geometric and dimensional stability within the pre-established limits to prevent interferences with other core components. For this, the heat generation effect, mechanical loads and environment and irradiation effects were evaluated during the mechanical design. The reactivity control system is composed of guide boxes, manufactured from Aluminium alloy, located between the fuel elements, and control absorber plates of Ag-In-Cd alloy hermetically enclosed by a cladding of stainless steel sliding inside de guide boxes. The upward-downward movement is transmitted by a rod from the motion device located at the reactor lower part. The design requirements, criteria and limits were established to fulfill with the normal and abnormal operation conditions. The design verifications were performed by analytical method, estimating the guide box and control plates residence time. The result of the analysis performed, shows that the design of the reactivity control system and the material selected, are appropriate to fulfill the functional requirements, with no failures attributed to the mechanical design. (author)

  6. Modeling of Fibrin Gels Based on Confocal Microscopy and Light-Scattering Data

    Science.gov (United States)

    Magatti, Davide; Molteni, Matteo; Cardinali, Barbara; Rocco, Mattia; Ferri, Fabio

    2013-01-01

    Fibrin gels are biological networks that play a fundamental role in blood coagulation and other patho/physiological processes, such as thrombosis and cancer. Electron and confocal microscopies show a collection of fibers that are relatively monodisperse in diameter, not uniformly distributed, and connected at nodal points with a branching order of ∼3–4. Although in the confocal images the hydrated fibers appear to be quite straight (mass fractal dimension Dm = 1), for the overall system 1confocal images, we developed a method to generate three-dimensional (3D) in silico gels made of cylindrical sticks of diameter d, density ρ, and average length 〈L〉, joined at randomly distributed nodal points. The resulting 3D network strikingly resembles real fibrin gels and can be sketched as an assembly of densely packed fractal blobs, i.e., regions of size ξ, where the fiber concentration is higher than average. The blobs are placed at a distance ξ0 between their centers of mass so that they are overlapped by a factor η = ξ/ξ0 and have Dm ∼1.2–1.6. The in silico gels’ structure is quantitatively analyzed by its 3D spatial correlation function g3D(r) and corresponding power spectrum I(q) = FFT3D[g3D(r)], from which ρ, d, Dm, η, and ξ0 can be extracted. In particular, ξ0 provides an excellent estimate of the gel mesh size. The in silico gels’ I(q) compares quite well with real gels’ elastic light-scattering measurements. We then derived an analytical form factor for accurately fitting the scattering data, which allowed us to directly recover the gels’ structural parameters. PMID:23473498

  7. Mitochondrial behavior during oogenesis in zebrafish: a confocal microscopy analysis.

    Science.gov (United States)

    Zhang, Yong-Zhong; Ouyang, Ying-Chun; Hou, Yi; Schatten, Heide; Chen, Da-Yuan; Sun, Qing-Yuan

    2008-03-01

    The behavior of mitochondria during early oogenesis remains largely unknown in zebrafish. We used three mitochondrial probes (Mito Tracker Red CMXRos, Mito Tracker Green FM, and JC-1) to stain early zebrafish oocyte mitochondria, and confocal microscopy to analyze mitochondrial aggregation and distribution. By using fluorescence recovery after photobleaching (FRAP), we traced mitochondrial movement. The microtubule assembly inhibitor nocodazole and microfilament inhibitor cytochalasin B (CB) were used to analyze the role of microtubules and microfilaments on mitochondrial movement. By using the dual emission probe, JC-1, and oxidative phosphorylation uncoupler, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), we determined the distribution of active and inactive (low-active) mitochondria. Green/red fluorescence ratios of different sublocations in different oocyte groups stained by JC-1 were detected in merged (green and red) images. Our results showed that mitochondria exhibited a unique distribution pattern in early zebrafish oocytes. They tended to aggregate into large clusters in early stage I oocytes, but in a threadlike state in latter stage I oocytes. We detected a lower density mitochondrial area and a higher density mitochondrial area on opposite sides of the germinal vesicle. The green/red fluorescence ratios in different sublocations in normal oocytes were about 1:1. This implies that active mitochondria were distributed in all sublocations. FCCP treatment caused significant increases in the ratios. CB and nocodazole treatment caused an increase of the ratios in clusters and mitochondrial cloud, but not in dispersed areas. Mitochondria in different sublocations underwent fast dynamic movement. Inhibition or disruption of microtubules or microfilaments resulted in even faster mitochondrial free movement.

  8. Proton MR spectroscopic features of the human liver: in-vivo application to the normal condition

    International Nuclear Information System (INIS)

    Cho, Soon Gu; Kim, Mi Young; Kim, Young Soo; Choi, Won; Shin, Seok Hwan; Ok, Chul Soo; Suh, Chang Hae

    1999-01-01

    To determine the feasibility of MR spectroscopy in the living human liver, and to evaluate the corresponding proton MR spectroscopic features. In fifteen normal volunteers with neither previous nor present liver disease, the proton MR spectroscopic findings were reviewed. Twelve subjects were male and three were female ; they were aged between 28 and 32 (mean, 30) years. MR spectroscopy involved the use of a 1.5T GE Signa Horizon system with body coil(GE Medical System, Milwaukee, U.S.A). We used STEAM (Stimulated Echo-Acquisition Mode) with 3000/30 msec of TR/TE for signal acquisition, and the prone position without respiratory interruption. Mean and standard deviation of the ratios of glutamate+glutamine/lipids, phosphomonoesters/lipids, and glycogen+glucose/lipids were calculated from the area of their peaks. The proton MR spectroscopic findings of normal human livers showed four distinctive peaks, i.e. lipids, glutamate and glutamine complex, phosphomonoesters, and glycogen and glucose complex. The mean and standard deviation of the ratios of glutamate+glutamine/lipids, phosphomonoesters/lipids, and glycogen+glucose/lipids were 0.02±0.01, 0.01±0.01, and 0.04±0.03, respectively. In living normal human livers, MR spectroscopy can be successfully applied. When applied to a liver whose condition is pathologic, the findings can be used as a standard

  9. Confocal laser scanning microscopy to estimate nanoparticles' human skin penetration in vitro.

    Science.gov (United States)

    Zou, Ying; Celli, Anna; Zhu, Hanjiang; Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human "viable" epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested.

  10. Lithographically-fabricated channel arrays for confocal x-ray fluorescence microscopy and XAFS

    International Nuclear Information System (INIS)

    Woll, Arthur R; Agyeman-Budu, David; Choudhury, Sanjukta; Coulthard, Ian; Hallin, Emil; Finnefrock, Adam C; Gordon, Robert; Mass, Jennifer

    2014-01-01

    Confocal X-ray Fluorescence Microscopy (CXRF) employs overlapping focal regions of two x-ray optics—a condenser and collector—to directly probe a 3D volume. The minimum-achievable size of this probe volume is limited by the collector, for which polycapillaries are generally the optic of choice. Recently, we demonstrated an alternative collection optic for CXRF, consisting of an array of micron-scale collimating channels, etched in silicon, and arranged like spokes of a wheel directed towards a single source position. The optic, while successful, had a working distance of only 0.2 mm and exhibited relatively low total collection efficiency, limiting its practical application. Here, we describe a new design in which the collimating channels are formed by a staggered array of pillars whose side-walls taper away from the channel axis. This approach improves both collection efficiency and working distance, while maintaining excellent spatial resolution. We illustrate these improvements with confocal XRF data obtained at the Cornell High Energy Synchrotron Source (CHESS) and the Advanced Photon Source (APS) beamline 20-ID-B.

  11. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    Science.gov (United States)

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  12. Ex vivo fluorescence confocal microscopy for fast evaluation of tumour margins during Mohs surgery.

    Science.gov (United States)

    Bennàssar, A; Vilata, A; Puig, S; Malvehy, J

    2014-02-01

    Ex vivo fluorescence confocal microscopy (FCM) enables real-time imaging of skin morphology directly in freshly excised tissue. FCM displays wide field-of-view mosaics with cellular resolution, thus enabling a rapid bedside pathology. An application of interest is rapid detection of residual basal cell carcinoma (BCC) in skin excisions during Mohs surgery. We sought to evaluate the sensitivity and specificity of ex vivo imaging with FCM for the detection of residual BCC in Mohs tissue excisions, and to calculate the time invested up to the diagnosis for both FCM and frozen sections. Eighty consecutive BCCs were prospectively collected and the margins scanned with ex vivo FCM, including excisions with and without residual BCC of all major subtypes. Each mosaic was divided into two or four, resulting in 480 submosaics for study. Every confocal submosaic was assessed for the presence or absence of BCC and compared with standard frozen sections as the gold standard. Furthermore, the time spent for each technique was calculated and compared. The overall sensitivity and specificity of detecting residual BCC were 88% and 99%, respectively. Moreover, the new technique reduced by almost two-thirds the time invested when compared with the processing of a frozen section (P confocal mosaicing microscopy in fresh tissue for rapid surgical pathology, potentially to expedite and guide Mohs surgery with high accuracy. This observation is an important step towards the goal of using real-time surgical pathology for skin tumours. © 2013 British Association of Dermatologists.

  13. Progress in reflectance confocal microscopy for imaging oral tissues in vivo

    Science.gov (United States)

    Peterson, Gary; Zanoni, Daniella K.; Migliacci, Jocelyn; Cordova, Miguel; Rajadhyaksha, Milind; Patel, Snehal

    2016-02-01

    We report progress in development and feasibility testing of reflectance confocal microscopy (RCM) for imaging in the oral cavity of humans. We adapted a small rigid relay telescope (120mm long x 14mm diameter) and a small water immersion objective lens (12mm diameter, NA 0.7) to a commercial handheld RCM scanner (Vivascope 3000, Caliber ID, Rochester NY). This scanner is designed for imaging skin but we adapted the front end (the objective lens and the stepper motor that axially translates) for intra-oral use. This adaption required a new approach to address the loss of the automated stepper motor for acquisition of images in depth. A helical spring-like cap (with a coverslip to contact tissue) was designed for approximately 150 um of travel. Additionally other methods for focusing optics were designed and evaluated. The relay telescope optics is being tested in a clinical setting. With the capture of video and "video-mosaicing", extended areas can be imaged. The feasibility of imaging oral tissues was initially investigated in volunteers. RCM imaging in buccal mucosa in vivo shows nuclear and cellular detail in the epithelium and epithelial junction, and connective tissue and blood flow in the underlying lamina propria. Similar detail, including filiform and fungiform papillae, can be seen on the tongue in vivo. Clinical testing during head and neck surgery is now in progress and patients are being imaged for both normal tissue and cancerous margins in lip and tongue mucosa.

  14. Fibred confocal fluorescence microscopy in the diagnosis of interstitial lung diseases.

    Science.gov (United States)

    Meng, Peng; Tan, Gan Liang; Low, Su Ying; Takano, Angela; Ng, Yuen Li; Anantham, Devanand

    2016-12-01

    Accurate diagnosis is critical to both therapeutic decisions and prognostication in interstitial lung diseases (ILD). However, surgical lung biopsies carry high complication rates. Fibred confocal fluorescence microscopy (FCFM) offers an alternative as it can visualize lung tissue in vivo at the cellular level with minimal adverse events. We wanted to investigate the diagnostic utility, and safety of using FCFM for patients with ILD. In patients with suspected ILD, FCFM images were obtained from multiple bronchopulmonary segments using a miniprobe inserted through the working channel of a flexible bronchoscope. The procedure was performed under moderate sedation in an outpatient setting. Morphometric measurements and fibre pattern analyses were co-related with computed tomography (CT) findings and patients' final diagnoses based on multi-disciplinary consensus. One hundred and eighty four segments were imaged in 27 patients (18 males) with a median age of 67 years (range, 24-79 years). They were grouped into chronic fibrosing interstitial pneumonia (16 patients) and other ILDs. Six distinct FCFM patterns were observed: normal, increased fibres, densely packed fibres, hypercellular, thickened fibres and others/non-specific. The pattern resembling densely packed fibres was seen in at least one segment in 68.8% patients with chronic fibrosing interstitial pneumonia, but only 36.4% in other ILD (P=0.097). An association between inflammatory patterns on CT and a hypercellular pattern on FCFM was also found (P<0.001). Our study shows the potential of FCFM in classifying ILD, but its role in further diagnosis remains limited.

  15. Assessment of radiation doses in normal operation, upset accident conditions at the Olkiluoto nuclear waste facility

    International Nuclear Information System (INIS)

    Rossi, J.; Raiko, H.; Suolanen, V.

    2009-09-01

    Radiation doses for workers of the facility, for inhabitants in the environment and for terrestrial ecosystem possibly caused by the encapsulation and disposal facility to be built at Olkiluoto during its operation were considered in the study. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical abnormal fault and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that on average one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling space and to some degree to the atmosphere through the ventilation stack equipped with redundant filters. The critical group is conservatively assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. The dose value to a member of the critical group was calculated on the basis of the weather data in such a way that greater dose than obtained here is caused only in 0.5 percent of dispersion conditions. The results obtained indicate that during normal operation the doses to workers remain small and the dose to the member of the critical group is less than 0,001 mSv per year. In the case of hypothetical fault and accident releases the offsite doses do not exceed either the limit values set by the safety authority. The highest dose rates to the reference organisms of the terrestrial ecosystem with conservative assumptions from the largest release were estimated to be of the order of 100 μ Gy/h at the distance of 200 m. As a chronic exposure this dose rate is expected to bring up detrimental

  16. Embryonic Heart Morphogenesis from Confocal Microscopy Imaging and Automatic Segmentation

    Directory of Open Access Journals (Sweden)

    Hongda Mao

    2013-01-01

    Full Text Available Embryonic heart morphogenesis (EHM is a complex and dynamic process where the heart transforms from a single tube into a four-chambered pump. This process is of great biological and clinical interest but is still poorly understood for two main reasons. On the one hand, the existing imaging modalities for investigating EHM suffered from either limited penetration depth or limited spatial resolution. On the other hand, current works typically adopted manual segmentation, which was tedious, subjective, and time consuming considering the complexity of developing heart geometry and the large size of images. In this paper, we propose to utilize confocal microscopy imaging with tissue optical immersion clearing technique to image the heart at different stages of development for EHM study. The imaging method is able to produce high spatial resolution images and achieve large penetration depth at the same time. Furthermore, we propose a novel convex active contour model for automatic image segmentation. The model has the ability to deal with intensity fall-off in depth which is characterized by confocal microscopy images. We acquired the images of embryonic quail hearts from day 6 to day 14 of incubation for EHM study. The experimental results were promising and provided us with an insight view of early heart growth pattern and also paved the road for data-driven heart growth modeling.

  17. Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique

    Directory of Open Access Journals (Sweden)

    Zheng Ming H

    2008-07-01

    Full Text Available Abstract Introduction The collagen structure in the superficial zone of articular cartilage is critical to the tissue's durability. Early osteoarthritis is often characterized with fissures on the articular surface. This is closely related to the disruption of the collagen network. However, the traditional histology can not offer visualization of the collagen structure in articular cartilage because it uses conventional optical microscopy that does not have insufficient imaging resolution to resolve collagen from proteoglycans in hyaline articular cartilage. This study examines the 3D collagen network of articular cartilage scored from 0 to 2 in the scoring system of International Cartilage Repair Society, and aims to develop a 3D histology for assessing early osteoarthritis. Methods Articular cartilage was visually classified into five physiological groups: normal cartilage, aged cartilage, cartilage with artificial and natural surface disruption, and fibrillated. The 3D collagen matrix of the cartilage was acquired using a 3D imaging technique developed previously. Traditional histology was followed to grade the physiological status of the cartilage in the scoring system of International Cartilage Repair Society. Results Normal articular cartilage contains interwoven collagen bundles near the articular surface, approximately within the lamina splendens. However, its collagen fibres in the superficial zone orient predominantly in a direction spatially oblique to the articular surface. With age and disruption of the articular surface, the interwoven collagen bundles are gradually disappeared, and obliquely oriented collagen fibres change to align predominantly in a direction spatially perpendicular to the articular surface. Disruption of the articular surface is well related to the disappearance of the interwoven collagen bundles. Conclusion A 3D histology has been developed to supplement the traditional histology and study the subtle changes in

  18. MPPT Schemes for PV System under Normal and Partial Shading Condition: A Review

    Directory of Open Access Journals (Sweden)

    Malik Sameeullah

    2016-08-01

    Full Text Available The photovoltaic system is one of the renewable energy device, which directly converts solar radiation into electricity. The I-V characteristics of PV system are nonlinear in nature and under variable Irradiance and temperature, PV system has a single operating point where the power output is maximum, known as Maximum Power Point (MPP and the point varies on changes in atmospheric conditions and electrical load. Maximum Power Point Tracker (MPPT is used to track MPP of solar PV system for maximum efficiency operation. The various MPPT techniques together with implementation are reported in literature. In order to choose the best technique based upon the requirements, comprehensive and comparative study should be available. The aim of this paper is to present a comprehensive review of various MPPT techniques for uniform insolation and partial shading conditions. Furthermore, the comparison of practically accepted and widely used techniques has been made based on features, such as control strategy, type of circuitry, number of control variables and cost. This review work provides a quick analysis and design help for PV systems. Article History: Received March 14, 2016; Received in revised form June 26th 2016; Accepted July 1st 2016; Available online How to Cite This Article: Sameeullah, M. and Swarup, A. (2016. MPPT Schemes for PV System under Normal and Partial Shading Condition: A Review. Int. Journal of Renewable Energy Development, 5(2, 79-94. http://dx.doi.org/10.14710/ijred.5.2.79-94 

  19. Review of the Effects of Normal Conditions of Transport on Spent Fuel Integrity in Transportation Casks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junggoo; Yoo, Youngik; Lee, Seongki; Lim, Chaejoon [Korea Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2014-10-15

    Spent fuel(SF) storage capacity of each domestic nuclear power plant will reach a saturated state in the near future. Although there are several methods of SF disposal, interim storage is suggested as the most realistic and promising alternative. SF integrity evaluation is a regulatory requirement that is described in Part 71 of Code of Federal Regulations, Title 10 of the U..S. NRC licensing requirement. In this paper, the report is reviewed written by EPRI in US and it is helpful to a development of domestic SF integrity evaluation technology. EPRI report about integrity evaluation method on normal conditions of high burn-up spent fuel transport is reviewed. First, dynamic forces occurred in one-foot side drop are calculated. And deformation patterns and fuel rods responses by dynamic forces calculated from spent fuel and cask model are analyzed. It is shown that the damage of fuel rods is not occurred by the dynamic forces on normal conditions. Assembly distortion is not predicted, by virtue of the facts that the spacer grids do not experience significant permanent deformation. Axial forces, bending moments and pinch forces of fuel rods are calculated and compared with the results under the hypothetical accident conditions. No occurrence of transverse tearing mode that is the most serious damage mode in side drop case is predicted. Till now, in Korea, regulatory requirements related with structural integrity of spent fuel are not specified such as 10CFR71. To establish own regulation standards, producing and analyzing sufficient experimental data must be performed preferentially. Based on this, failure analysis and criteria establishment are necessary through modeling and analyzing of spent fuel.

  20. Using corneal confocal microscopy to track changes in the corneal layers of dry eye patients after autologous serum treatment.

    Science.gov (United States)

    Mahelkova, Gabriela; Jirsova, Katerina; Seidler Stangova, Petra; Palos, Michalis; Vesela, Viera; Fales, Ivan; Jiraskova, Nada; Dotrelova, Dagmar

    2017-05-01

    In vivo corneal confocal microscopy allows the examination of each layer of the cornea in detail and the identification of pathological changes at the cellular level. The purpose of this study was to identify the possible effects of a three-month treatment with autologous serum eye-drops in different corneal layers of patients with severe dry eye disease using corneal confocal microscopy. Twenty-six patients with dry eye disease were included in the study. Corneal fluorescein staining was performed. The corneas of the right eyes were examined using in vivo corneal confocal microscopy before and after a three-month treatment with autologous serum drops. The densities of superficial and basal epithelial cells, Langerhans cells, the keratocytes and activated keratocytes, the density of endothelial cells and the status of the sub-basal nerve plexus fibres were evaluated. A significant decrease in corneal fluorescein staining was found after the three-month autologous serum treatment (p = 0.0006). The basal epithelial cell density decreased significantly (p = 0.001), while the density of superficial epithelial cells did not change significantly (p = 0.473) nor did the number of Langerhans cells or activated keratocytes (p = 0.223; p = 0.307, respectively). There were no differences in the other corneal cell layers or in the status of the nerve fibres. The results demonstrate the ability of corneal confocal microscopy to evaluate an improvement in the basal epithelial cell layer of the cornea after autologous serum treatment in patients with dry eye disease. More studies with longer follow-up periods are needed to elucidate the suitability of corneal confocal microscopy to follow the effect of autologous serum treatment on nerve fibres or other corneal layers in dry eye disease patients. © 2016 Optometry Australia.

  1. Three dimensional subsurface elemental identification of minerals using confocal micro-X-ray fluorescence and micro-X-ray computed tomography

    International Nuclear Information System (INIS)

    Cordes, Nikolaus L.; Seshadri, Srivatsan; Havrilla, George J.; Yuan, Xiaoli; Feser, Michael; Patterson, Brian M.

    2015-01-01

    Current non-destructive elemental characterization methods, such as scanning electron microscopy-based energy dispersive spectroscopy (SEM–EDS) and micro-X-ray fluorescence spectroscopy (MXRF), are limited to either elemental identification at the surface (SEM–EDS) or suffer from an inability to discriminate between surface or depth information (MXRF). Thus, a non-destructive elemental characterization of individual embedded particles beneath the surface is impossible with either of these techniques. This limitation can be overcome by using laboratory-based 3D confocal micro-X-ray fluorescence spectroscopy (confocal MXRF). This technique utilizes focusing optics on the X-ray source and detector which allows for spatial discrimination in all three dimensions. However, the voxel-by-voxel serial acquisition of a 3D elemental scan can be very time-intensive (~ 1 to 4 weeks) if it is necessary to locate individual embedded particles of interest. As an example, if each point takes a 5 s measurement time, a small volume of 50 × 50 × 50 pixels leads to an acquisition time of approximately 174 h, not including sample stage movement time. Initially screening the samples for particles of interest using micro-X-ray computed tomography (micro-CT) can significantly reduce the time required to spatially locate these particles. Once located, these individual particles can be elementally characterized with confocal MXRF. Herein, we report the elemental identification of high atomic number surface and subsurface particles embedded in a mineralogical matrix by coupling micro-CT and confocal MXRF. Synergistically, these two X-ray based techniques first rapidly locate and then elementally identify individual subsurface particles. - Highlights: • Coupling of confocal X-ray fluorescence spectroscopy and X-ray computed tomography • Qualitative elemental identification of surface and subsurface mineral particles • Non-destructive particle size measurements • Utilization of

  2. Three dimensional subsurface elemental identification of minerals using confocal micro-X-ray fluorescence and micro-X-ray computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, Nikolaus L., E-mail: ncordes@lanl.gov [Polymers and Coatings Group, Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Seshadri, Srivatsan, E-mail: srivatsan.seshadri@zeiss.com [Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA 94588 (United States); Havrilla, George J. [Chemical Diagnostics and Engineering, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Yuan, Xiaoli [Julius Kruttschnitt Mineral Research Centre, University of Queensland, Indooroopilly, Brisbane, QLD 4068 (Australia); Feser, Michael [Carl Zeiss X-ray Microscopy, Inc., Pleasanton, CA 94588 (United States); Patterson, Brian M. [Polymers and Coatings Group, Material Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2015-01-01

    Current non-destructive elemental characterization methods, such as scanning electron microscopy-based energy dispersive spectroscopy (SEM–EDS) and micro-X-ray fluorescence spectroscopy (MXRF), are limited to either elemental identification at the surface (SEM–EDS) or suffer from an inability to discriminate between surface or depth information (MXRF). Thus, a non-destructive elemental characterization of individual embedded particles beneath the surface is impossible with either of these techniques. This limitation can be overcome by using laboratory-based 3D confocal micro-X-ray fluorescence spectroscopy (confocal MXRF). This technique utilizes focusing optics on the X-ray source and detector which allows for spatial discrimination in all three dimensions. However, the voxel-by-voxel serial acquisition of a 3D elemental scan can be very time-intensive (~ 1 to 4 weeks) if it is necessary to locate individual embedded particles of interest. As an example, if each point takes a 5 s measurement time, a small volume of 50 × 50 × 50 pixels leads to an acquisition time of approximately 174 h, not including sample stage movement time. Initially screening the samples for particles of interest using micro-X-ray computed tomography (micro-CT) can significantly reduce the time required to spatially locate these particles. Once located, these individual particles can be elementally characterized with confocal MXRF. Herein, we report the elemental identification of high atomic number surface and subsurface particles embedded in a mineralogical matrix by coupling micro-CT and confocal MXRF. Synergistically, these two X-ray based techniques first rapidly locate and then elementally identify individual subsurface particles. - Highlights: • Coupling of confocal X-ray fluorescence spectroscopy and X-ray computed tomography • Qualitative elemental identification of surface and subsurface mineral particles • Non-destructive particle size measurements • Utilization of

  3. Fibroblast-matrix interplay: Nintedanib and pirfenidone modulate the effect of IPF fibroblast-conditioned matrix on normal fibroblast phenotype.

    Science.gov (United States)

    Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David

    2018-03-12

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.

  4. Structural performance of a multipurpose canister shell for HLNW under normal handling conditions

    International Nuclear Information System (INIS)

    Ladkany, S.G.; Rajagopalan, R.

    1994-01-01

    A Multipurpose Canister (MPC) is analyzed for critical stresses that occur during normal handling conditions and accidental scenarios. Linear and Non-linear Finite Element Analysis is performed and the stresses at various critical locations in the MPC and its weldments are studied extensively. Progressive failure analysis of the MPC's groove and fillet welds, is presented. The structural response of the MPC to dynamic lifting loads, to loads resulting from an accidental slippage of a crane cable carrying the MPC, and from the impact between two canisters, is evaluated. Nonlinear structural analysis is used in the evaluation of the local buckling and the ultimate failure phenomena in the shell when the steel is in the strain hardening state during impact. Results make a case for increasing the thickness of the shell and all the welds

  5. In vivo confocal microscopy in dermatology: from research to clinical application

    Science.gov (United States)

    Ulrich, Martina; Lange-Asschenfeldt, Susanne

    2013-06-01

    Confocal laser scanning microscopy (CLSM) represents an emerging technique for the noninvasive histomorphological analysis of skin in vivo and has shown its applicability for dermatological research as well as its value as an adjunct tool in the clinical management of skin cancer patients. Herein, we aim to give an overview on the current clinical indications for CLSM in dermatology and also highlight the diverse applications of CLSM in dermatological research.

  6. On the transition to the normal phase for superconductors surrounded by normal conductors

    DEFF Research Database (Denmark)

    Fournais, Søren; Kachmar, Ayman

    2009-01-01

    For a cylindrical superconductor surrounded by a normal material, we discuss transition to the normal phase of stable, locally stable and critical configurations. Associated with those phase transitions, we define critical magnetic fields and we provide a sufficient condition for which those...

  7. Confocal microscopy findings in deep anterior lamellar keratoplasty performed after Descemet's stripping automated endothelial keratoplasty

    Directory of Open Access Journals (Sweden)

    Pang A

    2014-01-01

    Full Text Available Audrey Pang,1,2 Karim Mohamed-Noriega,1 Anita S Chan,1,3–5 Jodbhir S Mehta1,3 1Singapore National Eye Centre, 2Department of Ophthalmology, Tan Tock Seng Hospital, 3Singapore Eye Research Institute, 4Department of Histopathology, Pathology, Singapore General Hospital, 5Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore Background: This study describes the in vivo confocal microscopy findings in two patients who had deep anterior lamellar keratoplasty (DALK following Descemet's stripping automated endothelial keratoplasty (DSAEK. Methods: The study reviewed the cases of two patients who first underwent DSAEK followed by DALK when their vision failed to improve due to residual stromal scarring. In the first case, a DSAEK was performed for a patient with pseudophakic bullous keratopathy. After surgery, the patient's vision failed to improve satisfactorily due to residual anterior stromal opacity and irregularity. Subsequently, the patient underwent a DALK. The same two consecutive operations were performed for a second patient with keratoconus whose previous penetrating keratoplasty had failed and had secondary graft ectasia. In vivo confocal microscopy was performed 2 months after the DALK surgery in both cases. Results: At 3 months after DALK, the best-corrected visual acuity was 6/30 in case 1 and 6/24 in case 2. In vivo confocal microscopy in both cases revealed the presence of quiescent keratocytes in the stroma layers of the DSAEK and DALK grafts, which was similar in the central and peripheral cornea. There was no activated keratocytes or haze noted in the interface between the grafts. Conclusion: Our short-term results show that performing a DALK after a DSAEK is an effective way of restoring cornea clarity in patients with residual anterior stromal opacity. In vivo confocal microscopy showed that there were no activated keratocytes seen in the interface of the grafts, which suggests

  8. Water reactor fuel behaviour and fission products release in off-normal and accident conditions

    International Nuclear Information System (INIS)

    1987-09-01

    The present meeting was scheduled by the International Atomic Energy Agency upon the proposal of the Members of the International Working Group on Water Reactor Fuel Performance and Technology and held at the IAEA Headquarters in Vienna from 10 to 13 November 1986. Thirty participants from 17 countries and an international organization attended the meeting. Eighteen papers were presented from 13 countries and one international organization. The meeting was composed of four sessions and covered subjects related to: physico-chemical properties of core materials under off-normal conditions, and their interactions up to and after melt-down (5 papers); core materials deformation, relocation and core coolability under (severe) accident conditions (4 papers); fission products release: including experience, mechanisms and modelling (5 papers); power plant experience (4 papers). A separate abstract was prepared for each of these 18 papers. Four working groups covering the above-mentioned topics were held to discuss the present status of the knowledge and to develop recommendations for future activities in this field. Refs, figs and tabs

  9. Automatic segmentation of cell nuclei from confocal laser scanning microscopy images

    International Nuclear Information System (INIS)

    Kelemen, A.; Reist, H.W.

    1997-01-01

    A newly developed experimental method combines the possibility of irradiating more than a thousand cells simultaneous with an efficient colony-forming ability and with the capability of localizing a particle track through a cell nucleus together with the assessment of the energy transfer by digital superposition of the image containing the track with that of the cells. To assess the amount of energy deposition by particles traversing the cell nucleus the intersection lengths of the particle tracks have to be known. Intersection lengths can be obtained by determining the 3D surface contours of the irradiated cell nuclei. Confocal laser scanning microscopy using specific DNA fluorescent dye offers a possible way for the determination of the 3D shape of individual nuclei. Unfortunately, such experiments cannot be performed on living cells. One solution to this problem can be provided by building a statistical model of the shape of the nuclei of the exposed cells. In order to build such a statistical model, a large number of cell nuclei have to be identified and segmented from confocal laser scanning microscopy images. The present paper describes a method to perform this 3D segmentation in an automatic manner in order to create a solid basis for the statistical model. (author) 2 figs., 4 refs

  10. Pigmented Nodular Basal Cell Carcinomas in Differential Diagnosis with Nodular Melanomas: Confocal Microscopy as a Reliable Tool for In Vivo Histologic Diagnosis

    International Nuclear Information System (INIS)

    Casari, A.; Pellacani, G.; Seidenari, S.; Pepe, P.; Longo, C.; Cesinaro, A. M.; Beretti, F.

    2011-01-01

    Nodular basal cell carcinoma, especially when pigmented, can be in differential diagnosis with nodular melanomas, clinically and dermoscopically. Reflectance confocal microscopy is a relatively new imaging technique that permits to evaluate in vivo skin tumors with a nearly histological resolution. Here, we present four cases of challenging nodular lesions where confocal microscopy was able to clarify the diagnosis.

  11. Confocal Laser Endomicroscopy in the Study of Colonic Mucosa in IBD Patients: A Review

    Directory of Open Access Journals (Sweden)

    Francesca Salvatori

    2012-01-01

    Full Text Available Confocal laser endomicroscopy (CLE is one of several novel methods that provide real-time, high-resolution imaging at a micronscale via endoscopes. CLE and related technologies are often termed “virtual biopsy” as they simulate the images seen in traditional histology. Recently, the use of CLE was reported in the study of colonic mucosa in patients with inflammatory bowel diseases and in particular in patients affected by ulcerative colitis. CLE has the potential to have an important role in management of IBD patients as it can be used to assess the grading of colitis and in detection of microscopic colitis in endoscopically silent segments. Moreover, CLE can be used in surveillance programs especially in high-risk patients. This report aims to evaluate the current data on the application of confocal endomicroscopy in clinical gastroenterology and particularly in the study of colonic mucosa in UC patients.

  12. Channel normalization technique for speech recognition in mismatched conditions

    CSIR Research Space (South Africa)

    Kleynhans, N

    2008-11-01

    Full Text Available , where one wishes to use any available training data for a variety of purposes. Research into a new channel normalization (CN) technique for channel mismatched speech recognition is presented. A process of inverse linear filtering is used in order...

  13. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines.

    Science.gov (United States)

    Peterson, Brittni M; Mermelstein, Paul G; Meisel, Robert L

    2015-03-15

    Structural plasticity, such as changes in dendritic spine morphology and density, reflect changes in synaptic connectivity and circuitry. Procedural variables used in different methods for labeling dendritic spines have been quantitatively evaluated for their impact on the ability to resolve individual spines in confocal microscopic analyses. In contrast, there have been discussions, though no quantitative analyses, of the potential effects of choosing specific mounting media and immersion oils on dendritic spine resolution. Here we provide quantitative data measuring the impact of these variables on resolving dendritic spines in 3D confocal analyses. Medium spiny neurons from the rat striatum and nucleus accumbens are used as examples. Both choice of mounting media and immersion oil affected the visualization of dendritic spines, with choosing the appropriate immersion oil as being more imperative. These biologic data are supported by quantitative measures of the 3D diffraction pattern (i.e. point spread function) of a point source of light under the same mounting medium and immersion oil combinations. Although not a new method, this manuscript provides quantitative data demonstrating that different mounting media and immersion oils can impact the ability to resolve dendritic spines. These findings highlight the importance of reporting which mounting medium and immersion oil are used in preparations for confocal analyses, especially when comparing published results from different laboratories. Collectively, these data suggest that choosing the appropriate immersion oil and mounting media is critical for obtaining the best resolution, and consequently more accurate measures of dendritic spine densities. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Theoretical investigation of confocal microscopy using an elliptically polarized cylindrical vector laser beam: Visualization of quantum emitters near interfaces

    Science.gov (United States)

    Boichenko, Stepan

    2018-04-01

    We theoretically study laser-scanning confocal fluorescence microscopy using elliptically polarized cylindrical vector excitation light as a tool for visualization of arbitrarily oriented single quantum dipole emitters located (1) near planar surfaces enhancing fluorescence, (2) in a thin supported polymer film, (3) in a freestanding polymer film, and (4) in a dielectric planar microcavity. It is shown analytically that by using a tightly focused azimuthally polarized beam, it is possible to exclude completely the orientational dependence of the image intensity maximum of a quantum emitter that absorbs light as a pair of incoherent independent linear dipoles. For linear dipole quantum emitters, the orientational independence degree higher than 0.9 can normally be achieved (this quantity equal to 1 corresponds to completely excluded orientational dependence) if the collection efficiency of the microscope objective and the emitter's total quantum yield are not strongly orientationally dependent. Thus, the visualization of arbitrarily oriented single quantum emitters by means of the studied technique can be performed quite efficiently.

  15. Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro

    Science.gov (United States)

    Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard

    2017-01-01

    Objective With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Methods Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. Results NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Conclusion Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. PMID:29184403

  16. Aqueous Colloid + Polymer Depletion System for Confocal Microscopy and Rheology

    Science.gov (United States)

    Park, Nayoung; Umanzor, Esmeralda J.; Conrad, Jacinta C.

    2018-05-01

    We developed a model depletion system with colloidal particles that were refractive index- and density-matched to 80 (w/w)% glycerol in water, and characterized the effect of interparticle interactions on the structure and dynamics of non-equilibrium phases. 2,2,2-trifluoroethyl methacrylate-co-tert-butyl methacrylate copolymer particles were synthesized following Kodger et al. (Sci. Rep. 5, 14635 (2015)). Particles were dispersed in glycerol/water solutions to generate colloidal suspensions with good control over electrostatic interactions and a moderately high background viscosity of 55 mPa-s. To probe the effects of charge screening and depletion attractions on the suspension phase behavior, we added NaCl and polyacrylamide (M_w = 186 kDa) at various concentrations to particle suspensions formulated at volume fractions of phi = 0.05 and 0.3 and imaged the suspensions using confocal microscopy. The particles were nearly hard spheres at a NaCl concentration of 20 mM, but aggregated when the concentration of NaCl was further increased. Changes in the particle structure and dynamics with increasing concentration of the depletant polyacrylamide followed the trends expected from earlier experiments on depletion-driven gelation. Additionally, we measured the viscosity and corrected first normal stress difference of suspensions formulated at phi = 0.4 with and without added polymer. The solvent viscosity was suitable for rheology measurements without the onset of instabilities such as secondary flows or edge fracture. These results validate this system as an alternative to one common model system, suspensions of poly(methyl methacrylate) particles and polystyrene depletants in organic solvents, for investigating phase behavior and flow properties in attractive colloidal suspensions.

  17. Semi-automated scoring of triple-probe FISH in human sperm using confocal microscopy.

    Science.gov (United States)

    Branch, Francesca; Nguyen, GiaLinh; Porter, Nicholas; Young, Heather A; Martenies, Sheena E; McCray, Nathan; Deloid, Glen; Popratiloff, Anastas; Perry, Melissa J

    2017-09-01

    Structural and numerical sperm chromosomal aberrations result from abnormal meiosis and are directly linked to infertility. Any live births that arise from aneuploid conceptuses can result in syndromes such as Kleinfelter, Turners, XYY and Edwards. Multi-probe fluorescence in situ hybridization (FISH) is commonly used to study sperm aneuploidy, however manual FISH scoring in sperm samples is labor-intensive and introduces errors. Automated scoring methods are continuously evolving. One challenging aspect for optimizing automated sperm FISH scoring has been the overlap in excitation and emission of the fluorescent probes used to enumerate the chromosomes of interest. Our objective was to demonstrate the feasibility of combining confocal microscopy and spectral imaging with high-throughput methods for accurately measuring sperm aneuploidy. Our approach used confocal microscopy to analyze numerical chromosomal abnormalities in human sperm using enhanced slide preparation and rigorous semi-automated scoring methods. FISH for chromosomes X, Y, and 18 was conducted to determine sex chromosome disomy in sperm nuclei. Application of online spectral linear unmixing was used for effective separation of four fluorochromes while decreasing data acquisition time. Semi-automated image processing, segmentation, classification, and scoring were performed on 10 slides using custom image processing and analysis software and results were compared with manual methods. No significant differences in disomy frequencies were seen between the semi automated and manual methods. Samples treated with pepsin were observed to have reduced background autofluorescence and more uniform distribution of cells. These results demonstrate that semi-automated methods using spectral imaging on a confocal platform are a feasible approach for analyzing numerical chromosomal aberrations in sperm, and are comparable to manual methods. © 2017 International Society for Advancement of Cytometry. © 2017

  18. [Revealing the chemical changes of tea cell wall induced by anthracnose with confocal Raman microscopy].

    Science.gov (United States)

    Li, Xiao-li; Luo, Liu-bin; Hu, Xiao-qian; Lou, Bing-gan; He, Yong

    2014-06-01

    Healthy tea and tea infected by anthracnose were first studied by confocal Raman microscopy to illustrate chemical changes of cell wall in the present paper. Firstly, Raman spectra of both healthy and infected sample tissues were collected with spatial resolution at micron-level, and ultrastructure of healthy and infected tea cells was got from scanning electron microscope. These results showed that there were significant changes in Raman shift and Raman intensity between healthy and infected cell walls, indicating that great differences occurred in chemical compositions of cell walls between healthy and infected samples. In details, intensities at many Raman bands which were closely associated with cellulose, pectin, esters were reduced after infection, revealing that the content of chemical compounds such as cellulose, pectin, esters was decreased after infection. Subsequently, chemical imaging of both healthy and infected tea cell walls were realized based on Raman fingerprint spectra of cellulose and microscopic spatial structure. It was found that not only the content of cellulose was reduced greatly after infection, but also the ordered structure of cellulose was destroyed by anthracnose infection. Thus, confocal Raman microscopy was shown to be a powerful tool to detect the chemical changes in cell wall of tea caused by anthracnose without any chemical treatment or staining. This research firstly applied confocal Raman microscopy in phytopathology for the study of interactive relationship between host and pathogen, and it will also open a new way for intensive study of host-pathogen at cellular level.

  19. Metabolic changes of cultured DRG neurons induced by adenosine using confocal microscopy imaging

    Science.gov (United States)

    Zheng, Liqin; Huang, Yimei; Chen, Jiangxu; Wang, Yuhua; Yang, Hongqin; Zhang, Yanding; Xie, Shusen

    2012-12-01

    Adenosine exerts multiple effects on pain transmission in the peripheral nervous system. This study was performed to use confocal microscopy to evaluate whether adenosine could affect dorsal root ganglia (DRG) neurons in vitro and test which adenosine receptor mediates the effect of adenosine on DRG neurons. After adding adenosine with different concentration, we compared the metabolic changes by the real time imaging of calcium and mitochondria membrane potential using confocal microscopy. The results showed that the effect of 500 μM adenosine on the metabolic changes of DRG neurons was more significant than others. Furthermore, four different adenosine receptor antagonists were used to study which receptor mediated the influences of adenosine on the cultured DRG neurons. All adenosine receptor antagonists especially A1 receptor antagonist (DPCPX) had effect on the Ca2+ and mitochondria membrane potential dynamics of DRG neurons. The above studies demonstrated that the effect of adenosine which may be involved in the signal transmission on the sensory neurons was dose-dependent, and all the four adenosine receptors especially the A1R may mediate the transmission.

  20. Fast evaluation of 69 basal cell carcinomas with ex vivo fluorescence confocal microscopy: criteria description, histopathological correlation, and interobserver agreement.

    Science.gov (United States)

    Bennàssar, Antoni; Carrera, Cristina; Puig, Susana; Vilalta, Antoni; Malvehy, Josep

    2013-07-01

    Fluorescence confocal microscopy (FCM) represents a first step toward a rapid "bedside pathology" in the Mohs surgery setting and in other fields of general pathology. To describe and validate FCM criteria for the main basal cell carcinoma (BCC) subtypes and to demonstrate the overall agreement with classic pathologic analysis of hematoxylin-eosin-stained samples. DESIGN A total of 69 BCCs from 66 patients were prospectively imaged using ex vivo FCM. Confocal mosaics were evaluated in real time and compared with classic pathologic analysis. Department of Dermatology, Hospital Clínic of Barcelona, Barcelona, Spain, between November 2010 and July 2011. Patients with BCC attending the Mohs Surgery Unit. Presence or absence of BCC and histological subtype (superficial, nodular, and infiltrating) in the confocal mosaics. Eight criteria for BCC were described, evaluated, and validated. Although there were minor differences among BCC subtypes, the most BCC-defining criteria were peripheral palisading, clefting, nuclear pleomorphism, and presence of stroma. These criteria were validated with independent observers (κ values >0.7 [corrected] for most criteria). We herein propose, describe, and validate FCM criteria for BCC diagnosis. Fluorescence confocal microscopy is an attractive alternative to histopathologic analysis of frozen sections during Mohs surgery because large areas of freshly excised tissue can be assessed in real time without the need for tissue processing while minimizing labor and costs.

  1. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    Science.gov (United States)

    Steinbach, G.; Pawlak, K.; Pomozi, I.; Tóth, E. A.; Molnár, A.; Matkó, J.; Garab, G.

    2014-03-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316-25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM.

  2. Mapping microscopic order in plant and mammalian cells and tissues: novel differential polarization attachment for new generation confocal microscopes (DP-LSM)

    International Nuclear Information System (INIS)

    Steinbach, G; Pawlak, K; Garab, G; Pomozi, I; Tóth, E A; Molnár, A; Matkó, J

    2014-01-01

    Elucidation of the molecular architecture of complex, highly organized molecular macro-assemblies is an important, basic task for biology. Differential polarization (DP) measurements, such as linear (LD) and circular dichroism (CD) or the anisotropy of the fluorescence emission (r), which can be carried out in a dichrograph or spectrofluorimeter, respectively, carry unique, spatially averaged information about the molecular organization of the sample. For inhomogeneous samples—e.g. cells and tissues—measurements on macroscopic scale are not satisfactory, and in some cases not feasible, thus microscopic techniques must be applied. The microscopic DP-imaging technique, when based on confocal laser scanning microscope (LSM), allows the pixel by pixel mapping of anisotropy of a sample in 2D and 3D. The first DP-LSM configuration, which, in fluorescence mode, allowed confocal imaging of different DP quantities in real-time, without interfering with the ‘conventional’ imaging, was built on a Zeiss LSM410. It was demonstrated to be capable of determining non-confocally the linear birefringence (LB) or LD of a sample and, confocally, its FDLD (fluorescence detected LD), the degree of polarization (P) and the anisotropy of the fluorescence emission (r), following polarized and non-polarized excitation, respectively (Steinbach et al 2009 Acta Histochem.111 316–25). This DP-LSM configuration, however, cannot simply be adopted to new generation microscopes with considerably more compact structures. As shown here, for an Olympus FV500, we designed an easy-to-install DP attachment to determine LB, LD, FDLD and r, in new-generation confocal microscopes, which, in principle, can be complemented with a P-imaging unit, but specifically to the brand and type of LSM. (paper)

  3. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.

    Science.gov (United States)

    Lima, Rui; Wada, Shigeo; Tanaka, Shuji; Takeda, Motohiro; Ishikawa, Takuji; Tsubota, Ken-ichi; Imai, Yohsuke; Yamaguchi, Takami

    2008-04-01

    Progress in microfabricated technologies has attracted the attention of researchers in several areas, including microcirculation. Microfluidic devices are expected to provide powerful tools not only to better understand the biophysical behavior of blood flow in microvessels, but also for disease diagnosis. Such microfluidic devices for biomedical applications must be compatible with state-of-the-art flow measuring techniques, such as confocal microparticle image velocimetry (PIV). This confocal system has the ability to not only quantify flow patterns inside microchannels with high spatial and temporal resolution, but can also be used to obtain velocity measurements for several optically sectioned images along the depth of the microchannel. In this study, we investigated the ability to obtain velocity measurements using physiological saline (PS) and in vitro blood in a rectangular polydimethysiloxane (PDMS) microchannel (300 microm wide, 45 microm deep) using a confocal micro-PIV system. Applying this combination, measurements of trace particles seeded in the flow were performed for both fluids at a constant flow rate (Re = 0.02). Velocity profiles were acquired by successive measurements at different depth positions to obtain three-dimensional (3-D) information on the behavior of both fluid flows. Generally, the velocity profiles were found to be markedly blunt in the central region, mainly due to the low aspect ratio (h/w = 0.15) of the rectangular microchannel. Predictions using a theoretical model for the rectangular microchannel corresponded quite well with the experimental micro-PIV results for the PS fluid. However, for the in vitro blood with 20% hematocrit, small fluctuations were found in the velocity profiles. The present study clearly shows that confocal micro-PIV can be effectively integrated with a PDMS microchannel and used to obtain blood velocity profiles along the full depth of the microchannel because of its unique 3-D optical sectioning ability

  4. Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans.

    Science.gov (United States)

    Makihara, Yukiko; Segal, Richard L; Wolpaw, Jonathan R; Thompson, Aiko K

    2014-09-15

    In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion. Copyright © 2014 the American Physiological Society.

  5. Effect of the menstrual cycle on the optic nerve head in diabetes: analysis by confocal scanning laser ophthalmoscopy.

    Science.gov (United States)

    Akar, Munire Erman; Yucel, Iclal; Erdem, Uzeyir; Taskin, Omur; Ozel, Alper; Akar, Yusuf

    2005-04-01

    The purpose of this study was to examine and compare menstrual-cycle-dependent topographic changes in the optic nerve head of normally menstruating women with different grades of type 2 diabetes mellitus. We studied the right eyes of 123 normally menstruating women (36 with severe nonproliferative diabetic retinopathy [NPDR], 42 with mild NPDR and 45 healthy subjects). All subjects underwent a complete ocular examination at baseline. At 4 hormonally distinct phases of the menstrual cycle (early follicular, late follicular, mid-luteal and late luteal), we analysed the topography of the optic nerve head, using a confocal scanning laser ophthalmoscope, and measured the serum levels of estradiol, progesterone and luteinizing hormone. We excluded from analysis the data for 8 patients with severe NPDR, 10 patients with mild NPDR and 15 control subjects who were lost to follow-up examinations during the menstrual cycle. The mean age and optic disc area did not differ significantly among the 3 groups. The duration of diabetes was significantly longer in the patients with severe NPDR than in those with mild NPDR (p cup-shape measure, linear cup/disc ratio, cup/disc area ratio and cup area in the late luteal phase compared with the other phases of the menstrual cycle (p menstrual cycle. Severe NPDR is associated with significant topographic changes in the rim and cup of the optic nerve head during the menstrual cycle. This must be considered in the evaluation of women with both diabetes and glaucoma. The normal fluctuations in serum sex hormone levels during the menstrual cycle of diabetic women seem to affect the optic nerve head more when the disease is advanced.

  6. A non-parametric conditional bivariate reference region with an application to height/weight measurements on normal girls

    DEFF Research Database (Denmark)

    Petersen, Jørgen Holm

    2009-01-01

    A conceptually simple two-dimensional conditional reference curve is described. The curve gives a decision basis for determining whether a bivariate response from an individual is "normal" or "abnormal" when taking into account that a third (conditioning) variable may influence the bivariate...... response. The reference curve is not only characterized analytically but also by geometric properties that are easily communicated to medical doctors - the users of such curves. The reference curve estimator is completely non-parametric, so no distributional assumptions are needed about the two......-dimensional response. An example that will serve to motivate and illustrate the reference is the study of the height/weight distribution of 7-8-year-old Danish school girls born in 1930, 1950, or 1970....

  7. Plurihormonal cells of normal anterior pituitary: Facts and conclusions.

    Science.gov (United States)

    Mitrofanova, Lubov B; Konovalov, Petr V; Krylova, Julia S; Polyakova, Victoria O; Kvetnoy, Igor M

    2017-04-25

    plurihormonality of pituitary adenomas is an ability of adenoma cells to produce more than one hormone. After the immunohistochemical analysis had become a routine part of the morphological study, a great number of adenomas appeared to be multihormonal in actual practice. We hypothesize that the same cells of a normal pituitary gland releases several hormones simultaneously. To analyse a possible co-expression of hormones by the cells of the normal anterior pituitary of adult humans in autopsy material. We studied 10 pituitary glands of 4 women and 6 men with cardiovascular and oncological diseases. Double staining immunohistochemistry using 11 hormone combinations was performed in all the cases. These combinations were: prolactin/thyroid-stimulating hormone (TSH), prolactin/luteinizing hormone (LH), prolactin/follicle-stimulating hormone (FSH), prolactin/adrenocorticotropic hormone (ACTH), growth hormone (GH)/TSH, GH/LH, GH/FSH, GH/ACTH, TSH/LH, TSH/FSH, TSH/ACTH. Laser Confocal Scanning Microscopy with a mixture of primary antibodies was performed in 2 cases. These mixtures were ACTH/prolactin, FSH/prolactin, TSH/prolactin, ACTH/GH, and FSH/GH. We found that the same cells of the normal adenohypophysis can co-express prolactin with ACTH, TSH, FSH, LH; GH with ACTH, TSH, FSH, LH, and TSH with ACTH, FSH, LH. The comparison of the average co-expression coefficients of prolactin, GH and TSH with other hormones showed that the TSH co-expression coefficient was significantly the least (9,5±6,9%; 9,6±7,8%; 1,0±1,3% correspondingly). Plurihormonality of normal adenohypophysis is an actually existing phenomenon. Identification of different hormones in pituitary adenomas enables to find new ways to improve both diagnostic process and targeted treatment.

  8. 3D confocal imaging in CUBIC-cleared mouse heart

    Energy Technology Data Exchange (ETDEWEB)

    Nehrhoff, I.; Bocancea, D.; Vaquero, J.; Vaquero, J.J.; Lorrio, M.T.; Ripoll, J.; Desco, M.; Gomez-Gaviro, M.V.

    2016-07-01

    Acquiring high resolution 3D images of the heart enables the ability to study heart diseases more in detail. Here, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was adapted for thick mouse heart sections to increase the penetration depth of the confocal microscope lasers into the tissue. The adapted CUBIC clearing of the heart lets the antibody penetrate deeper into the tissue by a factor of five. The here shown protocol enables deep 3D highresolution image acquisition in the heart. This allows a much more accurate assessment of the cellular and structural changes that underlie heart diseases. (Author)

  9. 3D confocal imaging in CUBIC-cleared mouse heart

    International Nuclear Information System (INIS)

    Nehrhoff, I.; Bocancea, D.; Vaquero, J.; Vaquero, J.J.; Lorrio, M.T.; Ripoll, J.; Desco, M.; Gomez-Gaviro, M.V.

    2016-01-01

    Acquiring high resolution 3D images of the heart enables the ability to study heart diseases more in detail. Here, the CUBIC (clear, unobstructed brain imaging cocktails and computational analysis) clearing protocol was adapted for thick mouse heart sections to increase the penetration depth of the confocal microscope lasers into the tissue. The adapted CUBIC clearing of the heart lets the antibody penetrate deeper into the tissue by a factor of five. The here shown protocol enables deep 3D highresolution image acquisition in the heart. This allows a much more accurate assessment of the cellular and structural changes that underlie heart diseases. (Author)

  10. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Longtao; Qin, Min; Wang, Kai; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo [Beijing Normal University, College of Nuclear Science and Technology, Beijing (China); Lin, Xue [Northwest University, School of Cultural Heritage, Xi' an (China)

    2016-09-15

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces. (orig.)

  11. The three-dimensional elemental distribution based on the surface topography by confocal 3D-XRF analysis

    International Nuclear Information System (INIS)

    Yi, Longtao; Qin, Min; Wang, Kai; Peng, Shiqi; Sun, Tianxi; Liu, Zhiguo; Lin, Xue

    2016-01-01

    Confocal three-dimensional micro-X-ray fluorescence (3D-XRF) is a good surface analysis technology widely used to analyse elements and elemental distributions. However, it has rarely been applied to analyse surface topography and 3D elemental mapping in surface morphology. In this study, a surface adaptive algorithm using the progressive approximation method was designed to obtain surface topography. A series of 3D elemental mapping analyses in surface morphology were performed in laboratories to analyse painted pottery fragments from the Majiayao Culture (3300-2900 BC). To the best of our knowledge, for the first time, sample surface topography and 3D elemental mapping were simultaneously obtained. Besides, component and depth analyses were also performed using synchrotron radiation confocal 3D-XRF and tabletop confocal 3D-XRF, respectively. The depth profiles showed that the sample has a layered structure. The 3D elemental mapping showed that the red pigment, black pigment, and pottery coat contain a large amount of Fe, Mn, and Ca, respectively. From the 3D elemental mapping analyses at different depths, a 3D rendering was obtained, clearly showing the 3D distributions of the red pigment, black pigment, and pottery coat. Compared with conventional 3D scanning, this method is time-efficient for analysing 3D elemental distributions and hence especially suitable for samples with non-flat surfaces. (orig.)

  12. Correcting the axial shrinkage of skeletal muscle thick sections visualized by confocal microscopy

    Czech Academy of Sciences Publication Activity Database

    Janáček, Jiří; Kreft, M.; Čebašek, V.; Eržen, I.

    2012-01-01

    Roč. 246, č. 2 (2012), s. 107-112 ISSN 0022-2720 R&D Projects: GA MŠk(CZ) MEB090910; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z50110509 Keywords : capillaries * confocal microscopy * sample deformation * shrinkage * skeletal muscle * 3D Subject RIV: FH - Neurology Impact factor: 1.633, year: 2012

  13. A comparison of cytokine responses during prolonged cycling in normal and hot environmental conditions

    Directory of Open Access Journals (Sweden)

    Ludmila M Cosio-Lima

    2011-01-01

    Full Text Available Ludmila M Cosio-Lima, Bhargav V Desai, Petra B Schuler, Lesley Keck, Logan ScheelerDepartment of Health, Leisure, and Exercise Science, University of West Florida, Pensacola, FL, USAPurpose: Components of immune function are affected by physical activity in an adverse environment. The purpose of this study was to compare plasma differences in inflammatory cytokines including tumor necrosis factor α (TNF-α and interleukin 6 (IL-6, in addition to the stress hormone cortisol, during prolonged cycling under normal and hot environmental conditions in elite cyclists.Methods and design: Six trained elite male cyclists (27 ± 8 years; 75.5 ± 4 kg; maximum oxygen uptake [VO2max] = 66 ± 6 mL/kg/min, mean ± SD. The cyclists biked for 2.5 h at their prescribed 60% maximum exercise workload (Wmax or 75% VO2max either in an environmental chamber set at 15°C and 40% relative humidity (NEUTRAL or at 35°C and 40% relative humidity (HOT. The cyclists were given 4 mL of water/kg body weight every 15 min under both conditions.Results: Total cortisol concentrations were elevated (P < 0.05 immediately postexercise and 12 h postexercise in both the NEUTRAL and HOT conditions. TNF-α concentrations were only significantly (P = 0.045 elevated postexercise in HOT conditions. During the HOT conditions, a significant (P = 0.006 and 0.007, respectively difference in IL-6 was seen immediately after and 12 h postexercise. During the NEUTRAL condition, IL-6 was only significantly elevated postexercise (P < 0.05.Conclusions: Heat exposure during a long bout of exercise is sufficient to elicit stress response in elite cyclists. However, the degree of release of anti-inflammatory and proinflammatory cytokines might be related to several factors that include the athlete’s fitness level, hydration status, exercise intensity, and length of exposure to hot environments.Keywords: cytokines, inflammation, heat, exercise, performance 

  14. Real time detection of antibody-antigen interaction using a laser scanning confocal imaging-surface plasmon resonance system

    International Nuclear Information System (INIS)

    Zhang Hong-Yan; Yang Li-Quan; Ning Ting-Yin; Liu Wei-Min; Sun Jia-Yu; Wang Peng-Fei; Meng Lan; Nie Jia-Cai

    2012-01-01

    A laser scanning confocal imaging-surface plasmon resonance (LSCI-SPR) instrument integrated with a wavelength-dependent surface plasmon resonance (SPR) sensor and a laser scanning confocal microscopy (LSCM) is built to detect the bonding process of human IgG and fluorescent-labeled affinity purified antibodies in real time. The shifts of resonant wavelength at different reaction time stages are obtained by SPR, corresponding well with the changes of the fluorescence intensity collected by using LSCM. The instrument shows the merits of the combination and complementation of the SPR and LSCM, with such advantages as quantificational analysis, high spatial resolution and real time monitor, which are of great importance for practical applications in biosensor and life science. (general)

  15. Dioxins from medical waste incineration: Normal operation and transient conditions.

    Science.gov (United States)

    Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons

    2015-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.

  16. Femtosecond laser subsurface scleral treatment in cadaver human sclera and evaluation using two-photon and confocal microscopy

    Science.gov (United States)

    Sun, Hui; Fan, Zhongwei; Yan, Ying; Lian, Fuqiang; Kurtz, Ron; Juhasz, Tibor

    2016-03-01

    Glaucoma is the second-leading cause of blindness worldwide and is often associated with elevated intraocular pressure (IOP). Partial-thickness drainage channels can be created with femtosecond laser in the translucent sclera for the potential treatment of glaucoma. We demonstrate the creation of partial-thickness subsurface drainage channels with the femtosecond laser in the cadaver human eyeballs and describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. A femtosecond laser operating at a wavelength of 1700 nm was scanned along a rectangular raster pattern to create the partial thickness subsurface drainage channels in the sclera of cadaver human eyes. Analysis of the dimensions and location of these channels is important in understanding their effects. We describe the application of two-photon microscopy and confocal microscopy for noninvasive imaging of the femtosecond laser created partial-thickness scleral channels in cadaver human eyes. High-resolution images, hundreds of microns deep in the sclera, were obtained to allow determination of the shape and dimension of such partial thickness subsurface scleral channels. Our studies suggest that the confocal and two-photon microscopy can be used to investigate femtosecond-laser created partial-thickness drainage channels in the sclera of cadaver human eyes.

  17. Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells.

    Science.gov (United States)

    Zhang, Yuejin; Wei, Fuxiang; Poh, Yeh-Chuin; Jia, Qiong; Chen, Junjian; Chen, Junwei; Luo, Junyu; Yao, Wenting; Zhou, Wenwen; Huang, Wei; Yang, Fang; Zhang, Yao; Wang, Ning

    2017-07-01

    Cells and tissues can undergo a variety of biological and structural changes in response to mechanical forces. Only a few existing techniques are available for quantification of structural changes at high resolution in response to forces applied along different directions. 3D-magnetic twisting cytometry (3D-MTC) is a technique for applying local mechanical stresses to living cells. Here we describe a protocol for interfacing 3D-MTC with confocal fluorescence microscopy. In 3D-MTC, ferromagnetic beads are bound to the cell surface via surface receptors, followed by their magnetization in any desired direction. A magnetic twisting field in a different direction is then applied to generate rotational shear stresses in any desired direction. This protocol describes how to combine magnetic-field-induced mechanical stimulation with confocal fluorescence microscopy and provides an optional extension for super-resolution imaging using stimulated emission depletion (STED) nanoscopy. This technology allows for rapid real-time acquisition of a living cell's mechanical responses to forces via specific receptors and for quantifying structural and biochemical changes in the same cell using confocal fluorescence microscopy or STED. The integrated 3D-MTC-microscopy platform takes ∼20 d to construct, and the experimental procedures require ∼4 d when carried out by a life sciences graduate student.

  18. Confocal microscopy of corneal stroma and endothelium after LASIK and PRK.

    Science.gov (United States)

    Amoozadeh, Javad; Aliakbari, Soheil; Behesht-Nejad, Amir-Houshang; Seyedian, Mohammad-Amin; Rezvan, Bijan; Hashemi, Hassan

    2009-10-01

    To compare with confocal microscopy the changes in stromal keratocyte density and endothelial cell count due to photorefractive keratectomy (PRK) and LASIK. In this prospective study, 32 eyes (16 myopic patients) were examined with the NIDEK Confoscan 3 confocal microscope before and 6 months after PRK and LASIK. The preoperative mean myopia was -2.85+/-0.99 diopters (D) (range: -1.00 to -4.00 D) in 24 eyes that underwent PRK and -2.94+/-0.96 D (range: -2.00 to -4.25 D) in 8 eyes that underwent LASIK. Keratocyte density in the anterior and posterior stroma and the endothelial cell count were measured. Statistically significant changes were assessed using the t test. PPRK group. Postoperatively, the percentages were 52.96+/-7.55 and 53.34+/-10.2, respectively. Six months postoperatively, keratocyte density changed by 367.12+/-103.35 cells/mm(2) (34.7% reduction) in the anterior stroma (P.05) for the LASIK group. In the PRK group, these values were 319.71+/-83.45 cells/mm(2) (31.13% reduction) in the anterior stroma (P.05). The changes in keratocyte densities were not statistically significant between groups (P>.05). The mean number of keratocytes decreased by 37.2% in the retroablation zone of the LASIK group (PPRK groups (P>.05). Copyright 2009, SLACK Incorporated.

  19. A deep view in cultural heritage - confocal micro X-ray spectroscopy for depth resolved elemental analysis

    International Nuclear Information System (INIS)

    Kanngiesser, B.; Malzer, W.; Mantouvalou, I.; Sokaras, D.; Karydas, A.G.

    2012-01-01

    Quantitative X-ray fluorescence (XRF) and particle induced X-ray emission (PIXE) techniques have been developed mostly for the elemental analysis of homogeneous bulk or very simple layered materials. Further on, the microprobe version of both techniques is applied for 2D elemental mapping of surface heterogeneities. At typical XRF/PIXE fixed geometries and exciting energies (15-25 keV and 2-3 MeV, respectively), the analytical signal (characteristic X-ray radiation) emanates from a variable but rather extended depth within the analyzed material, according to the exciting probe energy, set-up geometry, specimen matrix composition and analyte. Consequently, the in-depth resolution offered by XRF and PIXE techniques is rather limited for the characterization of materials with micrometer-scale stratigraphy or 3D heterogeneous structures. This difficulty has been over-passed to some extent in the case of an X-ray or charged particle microprobe by creating the so-called confocal geometry. The field of view of the X-ray spectrometer is spatially restricted by a polycapillary X-ray lens within a sensitive microvolume formed by the two inter-sectioned focal regions. The precise scanning of the analyzed specimen through the confocal microvolume results in depth-sensitive measurements, whereas the additional 2D scanning microprobe possibilities render to element-specific 3D spatial resolution (3D micro-XRF and 3D micro-PIXE). These developments have contributed since 2003 to a variety of fields of applications in environmental, material and life sciences. In contrast to other elemental imaging methods, no size restriction of the objects investigated and the non-destructive character of analysis have been found indispensable for cultural heritage (CH) related applications. The review presents a summary of the experimental set-up developments at synchrotron radiation beamlines, particle accelerators and desktop spectrometers that have driven methodological developments and

  20. Development of High Heat Input Welding Offshore Steel as Normalized Condition

    Science.gov (United States)

    Deng, Wei; Qin, Xiaomei

    The heavy plate used for offshore structure is one of the important strategic products. In recent years, there is an increasing demand for heavy shipbuilding steel plate with excellent weldability in high heat input welding. During the thermal cycle, the microstructure of the heat affected zone (HAZ) of plates was damaged, and this markedly reduced toughness of HAZ. So, how to improve the toughness of HAZ has been a key subject in the fields of steel research. Oxide metallurgy is considered as an effective way to improve toughness of HAZ, because it could be used to retard grain growth by fine particles, which are stable at the high temperature.The high strength steel plate, which satisfies the low temperature specification, has been applied to offshore structure. Excellent properties of the plates and welded joints were obtained by oxide metallurgy technology, latest controlled rolling and accelerated cooling technology using Ultra-Fast Cooling (an on-line accelerated cooling system). The 355MPa-grade high strength steel plates with normalizing condition were obtained, and the steels have excellent weldability with heat input energy of 79 287kJ/cm, and the nil ductility transition (NDT) temperature was -70°C, which can satisfy the construction of offshore structure in cold regions.

  1. Development of a Josephson vortex two-state system based on a confocal annular Josephson junction

    DEFF Research Database (Denmark)

    Monaco, Roberto; Mygind, Jesper; Koshelets, Valery P.

    2018-01-01

    We report theoretical and experimental work on the development of a Josephson vortex two-state system based on a confocal annular Josephson tunnel junction (CAJTJ). The key ingredient of this geometrical configuration is a periodically variable width that generates a spatial vortex potential...

  2. Lateral Brightness Correction in Confocal Microscopy Images Using Mathematical Morphology Filters

    Czech Academy of Sciences Publication Activity Database

    Michálek, Jan; Čapek, M.; Mao, X. W.; Kubínová, Lucie

    2010-01-01

    Roč. 16, Suppl.2 (2010), s. 758-759 ISSN 1431-9276. [Microscopy and Microanalysis 2010. Portland, 01.08.2010-05.08.2010] R&D Projects: GA MŠk(CZ) LC06063; GA MŠk(CZ) ME09010; GA ČR(CZ) GA102/08/0691; GA ČR(CZ) GA304/09/0733 Institutional research plan: CEZ:AV0Z50110509 Keywords : Lipschitz cover * lateral intensity correction * confocal microscopy Subject RIV: JD - Computer Applications, Robotics Impact factor: 2.179, year: 2010

  3. Cellular features of psoriatic skin: imaging and quantification using in vivo reflectance confocal microscopy

    NARCIS (Netherlands)

    Wolberink, E.A.W.; Erp, P.E.J. van; Teussink, M.M.; Kerkhof, P.C.M. van de; Gerritsen, M.J.P.

    2011-01-01

    BACKGROUND: In vivo reflectance confocal microscopy (RCM) is a novel, exciting imaging technique. It provides images of cell-and tissue structures and dynamics in situ, in real time, without the need for ex vivo tissue samples. RCM visualizes the superficial part of human skin up to a depth of 250

  4. Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging.

    Science.gov (United States)

    Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul

    2012-10-17

    There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  5. Analysis of the in vivo confocal Raman spectral variability in human skin

    Science.gov (United States)

    Mogilevych, Borys; dos Santos, Laurita; Rangel, Joao L.; Grancianinov, Karen J. S.; Sousa, Mariane P.; Martin, Airton A.

    2015-06-01

    Biochemical composition of the skin changes in each layer and, therefore, the skin spectral profile vary with the depth. In this work, in vivo Confocal Raman spectroscopy studies were performed at different skin regions and depth profile (from the surface down to 10 μm) of the stratum corneum, to verify the variability and reproducibility of the intra- and interindividual Raman data. The Raman spectra were collected from seven healthy female study participants using a confocal Raman system from Rivers Diagnostic, with 785 nm excitation line and a CCD detector. Measurements were performed in the volar forearm region, at three different points at different depth, with the step of 2 μm. For each depth point, three spectra were acquired. Data analysis included the descriptive statistics (mean, standard deviation and residual) and Pearson's correlation coefficient calculation. Our results show that inter-individual variability is higher than intraindividual variability, and variability inside the SC is higher than on the skin surface. In all these cases we obtained r values, higher than 0.94, which correspond to high correlation between Raman spectra. It reinforces the possibility of the data reproducibility and direct comparison of in vivo results obtained with different study participants of the same age group and phototype.

  6. Characterization of particle deformation during compression measured by confocal laser scanning microscopy.

    Science.gov (United States)

    Guo, H X; Heinämäki, J; Yliruusi, J

    1999-09-20

    Direct compression of riboflavin sodium phosphate tablets was studied by confocal laser scanning microscopy (CLSM). The technique is non-invasive and generates three-dimensional (3D) images. Tablets of 1% riboflavin sodium phosphate with two grades of microcrystalline cellulose (MCC) were individually compressed at compression forces of 1.0 and 26.8 kN. The behaviour and deformation of drug particles on the upper and lower surfaces of the tablets were studied under compression forces. Even at the lower compression force, distinct recrystallized areas in the riboflavin sodium phosphate particles were observed in both Avicel PH-101 and Avicel PH-102 tablets. At the higher compression force, the recrystallization of riboflavin sodium phosphate was more extensive on the upper surface of the Avicel PH-102 tablet than the Avicel PH-101 tablet. The plastic deformation properties of both MCC grades reduced the fragmentation of riboflavin sodium phosphate particles. When compressed with MCC, riboflavin sodium phosphate behaved as a plastic material. The riboflavin sodium phosphate particles were more tightly bound on the upper surface of the tablet than on the lower surface, and this could also be clearly distinguished by CLSM. Drug deformation could not be visualized by other techniques. Confocal laser scanning microscopy provides valuable information on the internal mechanisms of direct compression of tablets.

  7. Corneal confocal microscopy and dry eye findings in contact lens discomfort patients.

    Science.gov (United States)

    Dogan, Aysun Sanal; Gurdal, Canan; Arslan, Nese

    2018-02-01

    To evaluate the corneal confocal microscopy and dry eye findings in patients with contact lens discomfort. The study included 3 groups of participants: Contact lens wearers using silicone hydrogel soft contact lenses who are symptomatic (CLD, n=15) or asymptomatic (ACL, n=11) and non-wearers as controls (n=14). Duration of contact lens wear, Ocular Surface Disease Index (OSDI) questionnaire responses, fluorescein tear break-uptime (FBUT), and corneal confocal microscopy findings were recorded. Mean age was 25.7±8.2 years and male/female ratio was 7/33. Demographic findings were similar regarding the groups. CLD patients had a longer lens use history than ACL (median 5 vs 2 years, pCLD group than ACL or controls (pCLD group, compared to controls and ACL (pCLD group compared to controls but similar to ACL (pCLD group than the ACL (p=0.014). Patients with CLD had been wearing contact lenses for longer than those without symptoms. OSDI and FBUT scores were worse in CLD patients. In contact lens discomfort patients, there were increased dendritiform cells, indicating intensified inflammatory status of the cornea. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  8. SSYST, a code-system for analysing transient LWR fuel rod behaviour under off-normal conditions

    International Nuclear Information System (INIS)

    Borgwaldt, H.; Gulden, W.

    1983-01-01

    SSYST is a code-system for analysing transient fuel rod behaviour under off-normal conditions, developed conjointly by the Institut fuer Kernenergetik und Energiesysteme (IKE), Stuttgart, and Kernforschungszentrum Karlsruhe (KfK) under contract of Projek Nukleare Sicherheit (PNS) at KfK. The main differences between SSYST and similar codes are (1) an open-ended modular code organisation, and (2) a preference for simple models, wherever possible. While the first feature makes SSYST a very flexible tool, easily adapted to changing requirements, the second feature leads to short execution times. The analysis of transient rod behaviour under LOCA boundary conditions takes 2 min cpu-time (IBM-3033), so that extensive parametric studies become possible. This paper gives an outline of the overall code organisation and a general overview of the physical models implemented. Besides explaining the routine application of SSYST in the analysis of loss-of-coolant accidents, examples are given of special applications which have led to a satisfactory understanding of the decisive influence of deviations from rotational symmetry on the fuel rod perimeter. (author)

  9. Assessment of Radionuclides Release from Inshas LILW Disposal Facility Under Normal and Unusual Operational Conditions

    International Nuclear Information System (INIS)

    Zaki, A.A.

    2008-01-01

    Disposing of low and intermediate radioactive waste (LILW) is a big concern for Egypt due to the accumulated waste as a result of past fifty years of peaceful nuclear applications. Assessment of radionuclides release from Inshas LILW disposal facility under normal and unusual operational conditions is very important in order to apply for operation license of the facility. Aqueous release of radionuclides from this disposal facility is controlled by water flow, access of the water to the wasteform, release of the radionuclides from the wasteform, and transport to the disposal facility boundary. In this work, the release of 137 Cs , 6C o, and 90 Sr radionuclides from the Inshas disposal facility was studied under the change of operational conditions. The release of these radio contaminants from the source term to the unsaturated and saturated zones , to groundwater were studied. It was found that the concentration of radionuclides in a groundwater well located 150 m away from the Inshas disposal facility is less than the maximum permissible concentration in groundwater in both cases

  10. SSYST: A code-system for analyzing transient LWR fuel rod behaviour under off-normal conditions

    International Nuclear Information System (INIS)

    Borgwaldt, H.; Gulden, W.

    1983-01-01

    SSYST is a code-system for analyzing transient fuel rod behaviour under off-normal conditions, developed conjointly by the Institut fur Kernenergetik und Energiesysteme (IKE), Stuttgart, and Kernforschungszentrum Karlsruhe (KfK) under contract of Projekt Nukleare Sicherheit (PNS) at KfK. The main differences between SSYST and similar codes are an open-ended modular code organization, and a preference for simple models, wherever possible. While the first feature makes SSYST a very flexible tool, easily adapted to changing requirements, the second feature leads to short execution times. The analysis of transient rod behaviour under LOCA boundary conditions takes 2 min cpu-time (IBM-3033), so that extensive parametric studies become possible. This paper gives an outline of the overall code organisation and a general overview of the physical models implemented. Besides explaining the routine application of SSYST in the analysis of loss-of-coolant accidents, examples are given of special applications which have led to a satisfactory understanding of the decisive influence of deviations from rotational symmetry on the fuel rod perimeter

  11. Confocal Microscopy and Flow Cytometry System Performance: Assessment of QA Parameters that affect data Quanitification

    Science.gov (United States)

    Flow and image cytometers can provide useful quantitative fluorescence data. We have devised QA tests to be used on both a flow cytometer and a confocal microscope to assure that the data is accurate, reproducible and precise. Flow Cytometry: We have provided two simple perform...

  12. Modeling enzymatic hydrolysis of lignocellulosic substrates using confocal fluorescence microscopy I: filter paper cellulose.

    Science.gov (United States)

    Luterbacher, Jeremy S; Moran-Mirabal, Jose M; Burkholder, Eric W; Walker, Larry P

    2015-01-01

    Enzymatic hydrolysis is one of the critical steps in depolymerizing lignocellulosic biomass into fermentable sugars for further upgrading into fuels and/or chemicals. However, many studies still rely on empirical trends to optimize enzymatic reactions. An improved understanding of enzymatic hydrolysis could allow research efforts to follow a rational design guided by an appropriate theoretical framework. In this study, we present a method to image cellulosic substrates with complex three-dimensional structure, such as filter paper, undergoing hydrolysis under conditions relevant to industrial saccharification processes (i.e., temperature of 50°C, using commercial cellulolytic cocktails). Fluorescence intensities resulting from confocal images were used to estimate parameters for a diffusion and reaction model. Furthermore, the observation of a relatively constant bound enzyme fluorescence signal throughout hydrolysis supported our modeling assumption regarding the structure of biomass during hydrolysis. The observed behavior suggests that pore evolution can be modeled as widening of infinitely long slits. The resulting model accurately predicts the concentrations of soluble carbohydrates obtained from independent saccharification experiments conducted in bulk, demonstrating its relevance to biomass conversion work. © 2014 Wiley Periodicals, Inc.

  13. CFD Analysis of Random Turbulent Flow Load in Steam Generator of APR1400 Under Normal Operation Condition

    International Nuclear Information System (INIS)

    Lim, Sang Gyu; You, Sung Chang; Kim, Han Gon

    2011-01-01

    Regulatory guide 1.20 revision 3 of the Nuclear Regulatory Committee (NRC) modifies guidance for vibration assessments of reactor internals and steam generator internals. The new guidance requires applicants to provide a preliminary analysis and evaluation of the design and performance of a facility, including the safety margins of during normal operation and transient conditions anticipated during the life of the facility. Especially, revision 3 require rigorous assessments of adverse flow effects in the steam dryer cased by flow-excited acoustic and structural resonances such as the abnormality from power-uprated BWR cases. For two nearly identical nuclear power plants, the steam system of one BWR plant experienced failure of steam dryers and the main steam system components when steam flow was increased by 16 percent for extended power uprate (EPU). The mechanisms of those failures have revealed that a small adverse flow changing from the prototype condition induced severe flow-excited acoustic and structural resonances, leading to structural failures. In accordance with the historical background, therefore, potential adverse flow effects should be evaluated rigorously for steam generator internals in both BWR and Pressurized Water Reactor (PWR). The Advanced Power Reactor 1400 (APR1400), an evolutionary light water reactor, increased the power by 7.7 percent from the design of the 'Valid Prototype', System80+. Thus, reliable evaluations of potential adverse flow effects on the steam generator of APR1400 are necessary according to the regulatory guide. This paper is part of the computational fluid dynamics (CFD) analysis results for evaluation of the adverse flow effect for the steam generator internals of APR1400, including a series of sensitivity analyses to enhance the reliability of CFD analysis and an estimation the effect of flow loads on the internals of the steam generator under normal operation conditions

  14. Confocal microscopy and imaging profilometry: A new tool aimed to evaluate aesthetic procedures.

    Science.gov (United States)

    Fabbrocini, Gabriella; Mazzella, Caterina; Montagnaro, Fabio; De Padova, Maria Pia; Lorenzi, Sandra; Tedeschi, Aurora; Forgione, Patrizia; Capasso, Claudia; Sivero, Luigi; Velotti, Carla; Russo, Daniela; Vitiello, Rosa; Ilardi, Gennaro

    2017-02-01

    According to the American Academy of Aesthetic Plastic Surgeons, more than 11 million cosmetic surgical and nonsurgical procedures were performed by board-certified plastic surgeons, dermatologists and otolaryngologists in the United States, totaling more than 12 billion dollars. We performed a retrospective observational multi-centric study on patients treated with a non-animal origin cross-linked hyaluronic acid with different molecular weights for nasolabial folds, evaluating through a new imaging system, profilometric techniques with the confocal microscopy, the durability, the efficacy and the safety of this product. From 25 patients, 150 silicone casts were obtained: 75 casts of the right nasolabial fold and 75 casts of the left nasolabial fold. Roughness arithmetical average of the right fold at T2 decreased by 50% versus T0 and by 40% compared to T1; at T2, it decreased by the 45% versus T0 and by 35% compared to T1. No side effects were reported. Results proved that the analysis of the skin microreliefs through confocal microscopy is a new imaging system that allows to evaluate with precision and safety the results of aesthetic treatments such as fillers objectively.

  15. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Esam M.A. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom); Edwards, Howell G.M. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)], E-mail: h.g.m.edwards@bradford.ac.uk; Hargreaves, Michael D.; Scowen, Ian J. [Raman Spectroscopy Group, University Analytical Centre, Division of Chemical and Forensic Sciences, University of Bradford, Bradford BD7 1DP (United Kingdom)

    2008-05-12

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 {mu}m. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material.

  16. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy

    International Nuclear Information System (INIS)

    Ali, Esam M.A.; Edwards, Howell G.M.; Hargreaves, Michael D.; Scowen, Ian J.

    2008-01-01

    This study describes the application of confocal Raman microscopy to the detection and identification of drugs-of-abuse in situ on undyed natural synthetic fibres, and coloured textile specimens. Raman spectra were obtained from drug particles trapped between the fibres of the specimens. Pure samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine HCl (MDMA-HCl) were used in this study. Raman spectra were collected from drug particles of an average size in the range 5-15 μm. Despite the presence of spectral bands arising from the natural and synthetic polymer and dyed textiles, the drugs could be identified by their characteristic Raman bands. If necessary, interfering bands could be successfully removed by spectral subtraction. Furthermore, Raman spectra were recorded from drug particles trapped between the fibres of highly fluorescent specimens. Interference from the fibres, including background fluorescence, was overcome by careful focusing of the confocal beam and the resulting spectra allow ready differentiation from interference from the fibres substrate bands. Spectra of several drugs-of-abuse on dyed and undyed clothing substrates were readily obtained within 3 min with little or no sample preparation and with no alteration of the evidential material

  17. Fault localization and analysis in semiconductor devices with optical-feedback infrared confocal microscopy

    International Nuclear Information System (INIS)

    Sarmiento, Raymund; Cemine, Vernon Julius; Tagaca, Imee Rose; Salvador, Arnel; Mar Blanca, Carlo; Saloma, Caesar

    2007-01-01

    We report on a cost-effective optical setup for characterizing light-emitting semiconductor devices with optical-feedback confocal infrared microscopy and optical beam-induced resistance change.We utilize the focused beam from an infrared laser diode to induce local thermal resistance changes across the surface of a biased integrated circuit (IC) sample. Variations in the multiple current paths are mapped by scanning the IC across the focused beam. The high-contrast current maps allow accurate differentiation of the functional and defective sites, or the isolation of the surface-emittingp-i-n devices in the IC. Optical beam-induced current (OBIC) is not generated since the incident beam energy is lower than the bandgap energy of the p-i-n device. Inhomogeneous current distributions in the IC become apparent without the strong OBIC background. They are located at a diffraction-limited resolution by referencing the current maps against the confocal reflectance image that is simultaneously acquired via optical-feedback detection. Our technique permits the accurate identification of metal and semiconductor sites as well as the classification of different metallic structures according to thickness, composition, or spatial inhomogeneity

  18. Semiautomated confocal imaging of fungal pathogenesis on plants: Microscopic analysis of macroscopic specimens.

    Science.gov (United States)

    Minker, Katharine R; Biedrzycki, Meredith L; Kolagunda, Abhishek; Rhein, Stephen; Perina, Fabiano J; Jacobs, Samuel S; Moore, Michael; Jamann, Tiffany M; Yang, Qin; Nelson, Rebecca; Balint-Kurti, Peter; Kambhamettu, Chandra; Wisser, Randall J; Caplan, Jeffrey L

    2018-02-01

    The study of phenotypic variation in plant pathogenesis provides fundamental information about the nature of disease resistance. Cellular mechanisms that alter pathogenesis can be elucidated with confocal microscopy; however, systematic phenotyping platforms-from sample processing to image analysis-to investigate this do not exist. We have developed a platform for 3D phenotyping of cellular features underlying variation in disease development by fluorescence-specific resolution of host and pathogen interactions across time (4D). A confocal microscopy phenotyping platform compatible with different maize-fungal pathosystems (fungi: Setosphaeria turcica, Cochliobolus heterostrophus, and Cercospora zeae-maydis) was developed. Protocols and techniques were standardized for sample fixation, optical clearing, species-specific combinatorial fluorescence staining, multisample imaging, and image processing for investigation at the macroscale. The sample preparation methods presented here overcome challenges to fluorescence imaging such as specimen thickness and topography as well as physiological characteristics of the samples such as tissue autofluorescence and presence of cuticle. The resulting imaging techniques provide interesting qualitative and quantitative information not possible with conventional light or electron 2D imaging. Microsc. Res. Tech., 81:141-152, 2018. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. Electrophoretic Detection and Confocal Microscopic Imaging of Tyrosine Nitrated Proteins in Plant Tissue.

    Science.gov (United States)

    Arora, Dhara; Singh, Neha; Bhatla, Satish C

    2018-01-01

    Tyrosine nitrated proteins can be detected in plant cells electrophoretically and their distribution can be monitored by confocal laser scanning microscopy (CLSM) imaging. One-dimensional polyacrylamide gel electrophoresis (1D PAGE) followed by Western blotting using polyclonal antibody against 3-nitrotyrosine residues enables detection of tyrosine nitrated proteins in plant cells. Here we describe detection of tyrosine nitrated proteins in the homogenates derived from sunflower (Helianthus annuus L.) seedling cotyledons. Total soluble proteins obtained from tissue homogenates are resolved using vertical gel electrophoresis followed by their electrophoretic transfer on to a microporous membrane support for immunodetection. Spatial distribution of tyrosine nitrated proteins can be visualized using an antibody against 3-nitrotyrosine residues. Immunofluorescent localization is performed by cutting 7 μm thick wax sections of tissue followed by incubation in primary anti-nitrotyrosine antibody (dilution 1:200) and secondary Cy-3 labeled anti-rabbit IgG antibody (dilution 1:1500). Confocal laser scanning microscopy analysis is undertaken using argon lasers (ex: 530-550 nm and em: 570 nm) at pinhole 1. Modulation in the abundance and spatial localization of tyrosine nitrated proteins in plant tissues can be monitored using these techniques.

  20. In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract

    Science.gov (United States)

    Piyawattanametha, Wibool; Ra, Hyejun; Qiu, Zhen; Friedland, Shai; Liu, Jonathan T. C.; Loewke, Kevin; Kino, Gordon S.; Solgaard, Olav; Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.

    2012-02-01

    Near-infrared confocal microendoscopy is a promising technique for deep in vivo imaging of tissues and can generate high-resolution cross-sectional images at the micron-scale. We demonstrate the use of a dual-axis confocal (DAC) near-infrared fluorescence microendoscope with a 5.5-mm outer diameter for obtaining clinical images of human colorectal mucosa. High-speed two-dimensional en face scanning was achieved through a microelectromechanical systems (MEMS) scanner while a micromotor was used for adjusting the axial focus. In vivo images of human patients are collected at 5 frames/sec with a field of view of 362×212 μm2 and a maximum imaging depth of 140 μm. During routine endoscopy, indocyanine green (ICG) was topically applied a nonspecific optical contrasting agent to regions of the human colon. The DAC microendoscope was then used to obtain microanatomic images of the mucosa by detecting near-infrared fluorescence from ICG. These results suggest that DAC microendoscopy may have utility for visualizing the anatomical and, perhaps, functional changes associated with colorectal pathology for the early detection of colorectal cancer.

  1. EVIDÊNCIAS CIENTIFICAS SOBRE O USO DA ESPECTROSCOPIA RAMAN CONFOCAL IN VIVO NA PELE HUMANA

    Directory of Open Access Journals (Sweden)

    Aline Campos Pereira

    2017-04-01

    Full Text Available A Espectroscopia Raman Confocal (ERC é uma técnica totalmente não invasiva, eficaz na caracterização em tempo real dos arranjos químicos dos tecidos biológicos vivos. Com isso, o objetivo desse trabalho é destacar as pesquisas com uso da ERC. Foram selecionados e analisados das bases de dados: PubMed e Web of Science: 18 artigos científicos. Foram apresentados em dois quadros, obedecendo a ordem: nome dos autores, ano, revista, número de participantes, região espectral, tipo de sistema Raman Confocal, tipo e potência dos lasers. Todos os artigos reportados neste trabalham ressaltam que a ERC trata se de uma ferramenta valiosa, a qual fornece dados confiáveis. Conclui-se que existem poucos estudos científicos utilizando a ERC na pele humana, principalmente in vivo, apesar de fornecer informações em diferentes profundidades e obter dados com uma metodologia totalmente invasiva.

  2. Anatomical and metabolic small-animal whole-body imaging using ring-shaped confocal photoacoustic computed tomography

    Science.gov (United States)

    Xia, Jun; Chatni, Muhammad; Maslov, Konstantin; Wang, Lihong V.

    2013-03-01

    Due to the wide use of animals for human disease studies, small animal whole-body imaging plays an increasingly important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose metabolic information, leading to higher costs of building dual-modality systems. Even with image coregistration, the spatial resolution of the metabolic imaging modality is not improved. We present a ring-shaped confocal photoacoustic computed tomography (RC-PACT) system that can provide both assessments in a single modality. Utilizing the novel design of confocal full-ring light delivery and ultrasound transducer array detection, RC-PACT provides full-view cross-sectional imaging with high spatial resolution. Scanning along the orthogonal direction provides three-dimensional imaging. While the mouse anatomy was imaged with endogenous hemoglobin contrast, the glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. Through mouse tumor models, we demonstrate that RC-PACT may be a paradigm shifting imaging method for preclinical research.

  3. 3D imaging of the mitochondrial redox state of rat hearts under normal and fasting conditions

    Directory of Open Access Journals (Sweden)

    He N. Xu

    2014-03-01

    Full Text Available The heart requires continuous ATP availability that is generated in the mitochondria. Although studies using the cell culture and perfused organ models have been carried out to investigate the biochemistry in the mitochondria in response to a change in substrate supply, mitochondrial bioenergetics of heart under normal feed or fasting conditions has not been studied at the tissue level with a sub-millimeter spatial resolution either in vivo or ex vivo. Oxidation of many food-derived metabolites to generate ATP in the mitochondria is realized through the NADH/NAD+ couple acting as a central electron carrier. We employed the Chance redox scanner — the low-temperature fluorescence scanner to image the three-dimensional (3D spatial distribution of the mitochondrial redox states in heart tissues of rats under normal feeding or an overnight starvation for 14.5 h. Multiple consecutive sections of each heart were imaged to map three redox indices, i.e., NADH, oxidized flavoproteins (Fp, including flavin adenine dinucleotide (FAD and the redox ratio NADH/Fp. The imaging results revealed the micro-heterogeneity and the spatial distribution of these redox indices. The quantitative analysis showed that in the fasted hearts the standard deviation of both NADH and Fp, i.e., SD_NADH and SD_Fp, significantly decreased with a p value of 0.032 and 0.045, respectively, indicating that the hearts become relatively more homogeneous after fasting. The fasted hearts contained 28.6% less NADH (p = 0.038. No significant change in Fp was found (p = 0.4. The NADH/Fp ratio decreased with a marginal p value (0.076. The decreased NADH in the fasted hearts is consistent with the cardiac cells' reliance of fatty acids consumption for energy metabolism when glucose becomes scarce. The experimental observation of NADH decrease induced by dietary restriction in the heart at tissue level has not been reported to our best knowledge. The Chance redox scanner demonstrated the

  4. 3D IMAGING OF THE MITOCHONDRIAL REDOX STATE OF RAT HEARTS UNDER NORMAL AND FASTING CONDITIONS.

    Science.gov (United States)

    Xu, He N; Zhou, Rong; Moon, Lily; Feng, Min; Li, Lin Z

    2014-03-01

    The heart requires continuous ATP availability that is generated in the mitochondria. Although studies using the cell culture and perfused organ models have been carried out to investigate the biochemistry in the mitochondria in response to a change in substrate supply, mitochondrial bioenergetics of heart under normal feed or fasting conditions has not been studied at the tissue level with a sub-millimeter spatial resolution either in vivo or ex vivo . Oxidation of many food-derived metabolites to generate ATP in the mitochondria is realized through the NADH/NAD + couple acting as a central electron carrier. We employed the Chance redox scanner - the low-temperature fluorescence scanner to image the three-dimensional (3D) spatial distribution of the mitochondrial redox states in heart tissues of rats under normal feeding or an overnight starvation for 14.5 h. Multiple consecutive sections of each heart were imaged to map three redox indices, i.e., NADH, oxidized flavoproteins (Fp, including flavin adenine dinucleotide (FAD)) and the redox ratio NADH/Fp. The imaging results revealed the micro-heterogeneity and the spatial distribution of these redox indices. The quantitative analysis showed that in the fasted hearts the standard deviation of both NADH and Fp, i.e., SD_NADH and SD_Fp, significantly decreased with a p value of 0.032 and 0.045, respectively, indicating that the hearts become relatively more homogeneous after fasting. The fasted hearts contained 28.6% less NADH ( p = 0.038). No significant change in Fp was found ( p = 0.4). The NADH/Fp ratio decreased with a marginal p value (0.076). The decreased NADH in the fasted hearts is consistent with the cardiac cells' reliance of fatty acids consumption for energy metabolism when glucose becomes scarce. The experimental observation of NADH decrease induced by dietary restriction in the heart at tissue level has not been reported to our best knowledge. The Chance redox scanner demonstrated the feasibility of 3D

  5. [Structure and function of suburothelial myofibroblasts in the human urinary bladder under normal and pathological conditions].

    Science.gov (United States)

    Neuhaus, J; Heinrich, M; Schlichting, N; Oberbach, A; Fitzl, G; Schwalenberg, T; Horn, L-C; Stolzenburg, J-U

    2007-09-01

    Myofibroblasts play a pivotal role in numerous pathological alterations. Clarification of the structure and function and of the cellular plasticity of this cell type in the bladder may lead to new insights into the pathogenesis of lower urinary tract disorders. Bladder biopsies from patients with bladder carcinoma and interstitial cystitis were used to analyse the morphology and receptor expression using confocal immunofluorescence and electron microscopy. Cytokine effects and coupling behavior were tested in cultured myofibroblasts and detrusor smooth muscle cells. Myofibroblasts are in close contact with the suburothelial capillary network. They express Cx43 and form functional syncytia. The expression of muscarinic and purinergic receptors is highly variable. Dye coupling experiments showed differences to detrusor myocytes. Upregulation of smooth muscle cell alpha-actin and/or transdifferentiation into smooth muscle cells may contribute to the etiology of urge incontinence. A multi-step model is presented as a working hypothesis.

  6. A generalized L1-approach for a kernel estimator of conditional quantile with functional regressors: Consistency and asymptotic normality

    OpenAIRE

    2009-01-01

    Abstract A kernel estimator of the conditional quantile is defined for a scalar response variable given a covariate taking values in a semi-metric space. The approach generalizes the median?s L1-norm estimator. The almost complete consistency and asymptotic normality are stated. correspondance: Corresponding author. Tel: +33 320 964 933; fax: +33 320 964 704. (Lemdani, Mohamed) (Laksaci, Ali) mohamed.lemdani@univ-lill...

  7. Plurihormonal cells of normal anterior pituitary: Facts and conclusions

    Science.gov (United States)

    Mitrofanova, Lubov B.; Konovalov, Petr V.; Krylova, Julia S.; Polyakova, Victoria O.; Kvetnoy, Igor M.

    2017-01-01

    Introduction plurihormonality of pituitary adenomas is an ability of adenoma cells to produce more than one hormone. After the immunohistochemical analysis had become a routine part of the morphological study, a great number of adenomas appeared to be multihormonal in actual practice. We hypothesize that the same cells of a normal pituitary gland releases several hormones simultaneously. Objective To analyse a possible co-expression of hormones by the cells of the normal anterior pituitary of adult humans in autopsy material. Materials and methods We studied 10 pituitary glands of 4 women and 6 men with cardiovascular and oncological diseases. Double staining immunohistochemistry using 11 hormone combinations was performed in all the cases. These combinations were: prolactin/thyroid-stimulating hormone (TSH), prolactin/luteinizing hormone (LH), prolactin/follicle-stimulating hormone (FSH), prolactin/adrenocorticotropic hormone (ACTH), growth hormone (GH)/TSH, GH/LH, GH/FSH, GH/ACTH, TSH/LH, TSH/FSH, TSH/ACTH. Laser Confocal Scanning Microscopy with a mixture of primary antibodies was performed in 2 cases. These mixtures were ACTH/prolactin, FSH/prolactin, TSH/prolactin, ACTH/GH, and FSH/GH. Results We found that the same cells of the normal adenohypophysis can co-express prolactin with ACTH, TSH, FSH, LH; GH with ACTH, TSH, FSH, LH, and TSH with ACTH, FSH, LH. The comparison of the average co-expression coefficients of prolactin, GH and TSH with other hormones showed that the TSH co-expression coefficient was significantly the least (9,5±6,9%; 9,6±7,8%; 1,0±1,3% correspondingly). Conclusion Plurihormonality of normal adenohypophysis is an actually existing phenomenon. Identification of different hormones in pituitary adenomas enables to find new ways to improve both diagnostic process and targeted treatment. PMID:28418929

  8. Specialists’ Meeting on Demonstration of Structural Integrity under Normal and Faulted Conditions. Summary Report

    International Nuclear Information System (INIS)

    1981-03-01

    The Specialists' Meeting on ''Demonstration of Structural Integrity under Normal and Faulted Conditions'' was held at Chester, United Kingdom on 3-5 June 1980. The meeting was sponsored by the International Atomic Energy Agency (IAEA) on the recommendation of the International Working Group on Past Reactors (IWGFR). Twenty-one participants from France, the Federal Republic of Germany, Italy, Japan, the Netherlands, the United Kingdom, the United States of America and two international organizations, CEC and IAEA, attended. The purpose of the meeting was to review and discuss methods for assessing the integrity of the LMFBR safety-related structures during normal and abnormal operation, especially in the presence of defects, and to recommend future development. The technical sessions were divided into four topical sessions as follows: 1. National Review Presentations on Demonstration of Structural Integrity; 2. Material Properties; 3. Structural Analysis; 4. Design Approaches and Assessment Experience. During the meeting papers were presented by the participants on behalf of their countries or organizations. Each presentation was followed by an open discussion in the subject covered by the paper and subsequently, session summaries were drafted. After the formal sessions were completed, a final discussion session was held and general conclusions and recommendations were reached by consensus. Session summaries, general conclusions and recommendations, national review papers presented during the first session as well as the agenda of the meeting and the list of participants are given

  9. Herb-drug interaction of Nisha Amalaki and Curcuminoids with metformin in normal and diabetic condition: A disease system approach.

    Science.gov (United States)

    Shengule, Sushant; Kumbhare, Kalyani; Patil, Dada; Mishra, Sanjay; Apte, Kishori; Patwardhan, Bhushan

    2018-05-01

    Nisha Amalaki (NA), formulation with Curcuma longa Linn (Turmeric, Haridra, Nisha in Sanskrit; Family: Zingiberaceae) and Phyllanthus emblica Linn (Indian gooseberry, Amlaki in Sanskrit; Family: Phyllanthaceae) which is described for various diseases including diabetes in ayurvedic texts and Nighantus. The aim of the present study was to assess the pharmacokinetic (PK) and pharmacodynamic (PD) interactions of chemically standardized NA and Curcuminoids (CE) with metformin (MET) in normal and diabetic animals. Oral administration of NA (200 mg/kg) and CE (30 mg/kg) was carried out for seven days followed by co-administration of MET till fifteen days. MET plasma PK parameters including C max , AUC 0-∞ , t 1/2 , CL and V d were measured on the eighth day. PD parameters including plasma glucose AUC followed by oral glucose tolerance test, high-density lipoproteins (HDL), total cholesterol (TC) and triglycerides (TG) were measured on the fifteenth day. In normal animals, co-administration of NA + MET and CE + MET resulted in significant increase (p < 0.05) in C max , AUC 0-∞ , t 1/2, and reduction of CL and V d . We report that co-administration of NA + MET and CE + MET significantly (p < 0.01, p < 0.001) reduced plasma glucose level, HDL level while a notable reduction in TG and TC level was observed. Interestingly, in diabetic condition, co-administration of NA + MET and CE + MET indicated a significant decrease (p < 0.05) in C max , AUC 0-∞ , t 1/2 and enhanced CL and V d. Hence, to conclude, co-administration of NA + MET and CE + MET resulted in beneficial PK and PD interactions leading to antihyperglycemic and antihyperlipidemic effects in both conditions. However, PK interaction was drastically different in diabetic and normal conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Changes in glycosaminoglycans and proteoglycans of normal breast and fibroadenoma during the menstrual cycle.

    Science.gov (United States)

    de Lima, Cilene Rebouças; de Arimatéa dos Santos Junior, José; Nazário, Afonso Celso Pinto; Michelacci, Yara M

    2012-07-01

    Fibroadenoma is the most common breast tumor in young women, and its growth and metabolism may be under hormonal control. In the present paper we described the proteoglycan (PG) composition and synthesis rate of normal breast and fibroadenoma during the menstrual cycle. Samples of fibroadenoma and adjacent normal breast tissue were obtained at surgery. PGs were characterized by agarose gel electrophoresis and enzymatic degradation with glycosaminoglycan (GAG) lyases, and immunolocalized by confocal microscopy. To assess the synthesis rate, PGs were metabolic labeled by 35S-sulfate. The concentration of PGs in normal breast was higher during the secretory phase. Fibroadenoma contained and synthesized more PGs than their paired controls, but the PG concentrations varied less with the menstrual cycle and, in contrast to normal tissue, peaked in the proliferative phase. The main mammary GAGs are heparan sulfate (HS, 71%-74%) and dermatan sulfate (DS, 26%-29%). The concentrations of both increased in fibroadenoma, but DS increased more, becoming 35%-37% of total. The DS chains contained more β-d-glucuronic acid (IdoUA/GlcUA ratios were >10 in normal breast and 2-7 in fibroadenoma). The 35S-sulfate incorporation rate revealed that the in vitro synthesis rate of DS was higher than HS. Decorin was present in both tissues, while versican was found only in fibroadenoma. In normal breast, the PG concentration varied with the menstrual cycle. It was increased in fibroadenoma, especially DS. PGs are increased in fibroadenoma, but their concentrations may be less sensitive to hormonal control. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies.

    LENUS (Irish Health Repository)

    Horgan, R P

    2012-01-31

    Being born small for gestational age (SGA) confers significantly increased risks of perinatal morbidity and mortality. Accumulating evidence suggests that an SGA fetus results from a poorly perfused and abnormally developed placenta. Some of the placental features seen in SGA, such as abnormal cell turnover and impaired nutrient transport, can be reproduced by culture of placental explants in hypoxic conditions. Metabolic footprinting offers a hypothesis-generating strategy to investigate factors absorbed by and released from this tissue in vitro. Previously, metabolic footprinting of the conditioned culture media has identified differences in placental explants cultured under normoxic and hypoxic conditions and between normal pregnancies and those complicated by pre-eclampsia. In this study we aimed to examine the differences in the metabolic footprint of placental villous explants cultured at different oxygen (O(2)) tensions between women who deliver an SGA baby (n = 9) and those from normal controls (n = 8). Placental villous explants from cases and controls were cultured for 96 h in 1% (hypoxic), 6% (normoxic) and 20% (hyperoxic) O(2). Metabolic footprints were analysed by Ultra Performance Liquid Chromatography coupled to an electrospray hybrid LTQ-Orbitrap Mass Spectrometry (UPLC-MS). 574 metabolite features showed significant difference between SGA and normal at one or more of the oxygen tensions. SGA explant media cultured under hypoxic conditions was observed, on a univariate level, to exhibit the same metabolic signature as controls cultured under normoxic conditions in 49% of the metabolites of interest, suggesting that SGA tissue is acclimatised to hypoxic conditions in vivo. No such behaviour was observed under hyperoxic culture conditions. Glycerophospholipid and tryptophan metabolism were highlighted as areas of particular interest.

  12. Studies on level of cytokines and expression of connexin43 in tumor and normal cells in culture conditions

    International Nuclear Information System (INIS)

    Asati, V.; Pandey, B.N.

    2016-01-01

    Factors secreted from the tumor cells in culture medium have been known to facilitate the growth of fresh cultures and also to affect the cellular radio-sensitivity. Moreover, expression of gap junction proteins like connexin-43 is known as a key player in cell survival and proliferation. The present study is aimed to evaluate the effects of conditioned medium on the growth of respective tumor/normal cells and the expression of connexin-43 in these cells

  13. Detection of a fluorescent-labeled avidin-nucleic acid nanoassembly by confocal laser endomicroscopy in the microvasculature of chronically inflamed intestinal mucosa

    Directory of Open Access Journals (Sweden)

    Buda A

    2015-01-01

    Full Text Available Andrea Buda,1,* Sonia Facchin,1,* Elisa Dassie,2 Elisabetta Casarin,3 Mark A Jepson,4 Helmut Neumann,5 Giorgia Hatem,1 Stefano Realdon,6 Renata D’Incà,1 Giacomo Carlo Sturniolo,1 Margherita Morpurgo3 1Department of Surgical, Oncological, and Gastroenterological Sciences, University of Padova, 2Department of Molecular Medicine, University of Padova, Padova, Italy; 3Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy; 4School of Biochemistry and Wolfson Bioimaging Facility, University of Bristol, Bristol, UK; 5Ludwig Demlig Endoscopic Center of Excellence, ESGE Endoscopy Training Center, University of Erlangen-Nuremberg, Erlangen, Germany; 6Veneto Institute of Oncology IOV-IRCCS, Padova, Italy *These authors contributed equally to this work Abstract: Inflammatory bowel diseases are chronic gastrointestinal pathologies causing great discomfort in both children and adults. The pathogenesis of inflammatory bowel diseases is not yet fully understood and their diagnosis and treatment are often challenging. Nanoparticle-based strategies have been tested in local drug delivery to the inflamed colon. Here, we have investigated the use of the novel avidin-nucleic acid nanoassembly (ANANAS platform as a potential diagnostic carrier in an experimental model of inflammatory bowel diseases. Fluorescent-labeled ANANAS nanoparticles were administered to mice with chemically induced chronic inflammation of the large intestine. Localization of mucosal nanoparticles was assessed in vivo by dual-band confocal laser endomicroscopy. This technique enables characterization of the mucosal microvasculature and crypt architecture at subcellular resolution. Intravascular nanoparticle distribution was observed in the inflamed mucosa but not in healthy controls, demonstrating the utility of the combination of ANANAS and confocal laser endomicroscopy for highlighting intestinal inflammatory conditions. The specific localization of

  14. Buckling resistance calculation of Guide Thimbles for the mechanical design of fuel assembly type PWR under normal reactor operating conditions

    International Nuclear Information System (INIS)

    Cruz, C.B.L.

    1990-01-01

    The calculations demonstrate the fulfillment of one of the mechanical design criteria for the Fuel Assembly Structure under normal reactor operating conditions. The calculations of stresses in the Guide Thimbles are performed with the aid of the program ANSYS. This paper contains program parameters and modelling of a typical Fuel Assembly for a Reactor similar to ANGRA II. (author)

  15. A note on totally normal spaces

    International Nuclear Information System (INIS)

    Zougdani, H.K.

    1990-10-01

    In this note we give the necessary and sufficient condition for a topological space X such that the product space X x Y is totally normal for any (non discrete) metric space Y, and we show that a totally normal p-space need not be a perfectly normal in general, which makes Theorem 2 doubtful. (author). 6 refs

  16. Confocal microscopy and spectroscopy of nanocrystals on a high-Q microsphere resonator

    International Nuclear Information System (INIS)

    Goetzinger, S; Menezes, L de S; Benson, O; Talapin, D V; Gaponik, N; Weller, H; Rogach, A L; Sandoghdar, V

    2004-01-01

    We report on experiments where we used a home-made confocal microscope to excite single nanocrystals on a high-Q microsphere resonator. In that way spectra of an individual quantum emitter could be recorded. The Q factor of the microspheres coated with nanocrystals was still up to 10 9 . We also demonstrate the use of a prism coupler as a well-defined output port to collect the fluorescence of an ensemble of nanocrystals coupled to whispering-gallery modes

  17. Confocal laser scanning microscopy in vivo for diagnosing melanocytic skin neoplasms

    Directory of Open Access Journals (Sweden)

    A. A. Kubanova

    2014-01-01

    Full Text Available The authors discuss the use of confocal laser scanning microscopy in vivo (CLSM for diagnosing melanocytic skin neoplasms and its value for early diagnostics of melanoma. CLSM is an innovation noninvasive visual examination method for real-time multiple and painless examinations of the patient’s skin without injuring the skin integument. The method ensures early diagnostics of skin melanomas with high sensitivity and specificity, which makes it possible to use CLSM for screening melanocytic skin neoplasms for the sake of the early onset of treatment to save patient life and health.

  18. Spontaneous confocal Raman microscopy--a tool to study the uptake of nanoparticles and carbon nanotubes into cells

    Science.gov (United States)

    Romero, Gabriela; Rojas, Elena; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio Enrique

    2011-06-01

    Confocal Raman microscopy as a label-free technique was applied to study the uptake and internalization of poly(lactide- co-glycolide) (PLGA) nanoparticles (NPs) and carbon nanotubes (CNTs) into hepatocarcinoma human HepG2 cells. Spontaneous confocal Raman spectra was recorded from the cells exposed to oxidized CNTs and to PLGA NPs. The Raman spectra showed bands arising from the cellular environment: lipids, proteins, nucleic acids, as well as bands characteristic for either PLGA NPs or CNTs. The simultaneous generation of Raman bands from the cell and nanomaterials from the same spot proves internalization, and also indicates the cellular region, where the nanomaterial is located. For PLGA NPs, it was found that they preferentially co-localized with lipid bodies, while the oxidized CNTs are located in the cytoplasm.

  19. Materials and corrosion characterization using the confocal resonator

    Energy Technology Data Exchange (ETDEWEB)

    Tigges, C.P.; Sorensen, N.R.; Hietala, V.M.; Plut, T.A. [and others

    1997-05-01

    Improved characterization and process control is important to many Sandia and DOE programs related to manufacturing. Many processes/structures are currently under-characterized including thin film growth, corrosion and semiconductor structures, such as implant profiles. A sensitive tool is required that is able to provide lateral and vertical imaging of the electromagnetic properties of a sample. The confocal resonator is able to characterize the surface and near-surface impedance of materials. This device may be applied to a broad range of applications including in situ evaluation of thin film processes, physical defect detection/characterization, the characterization of semiconductor devices and corrosion studies. In all of these cases, the technology should work as a real-time process diagnostic or as a feedback mechanism regarding the quality of a manufacturing process. This report summarizes the development and exploration of several diagnostic applications.

  20. Mathematical modelling of liquid meniscus shape in cylindrical micro-channel for normal and micro gravity conditions

    Science.gov (United States)

    Marchuk, Igor; Lyulin, Yuriy

    2017-10-01

    Mathematical model of liquid meniscus shape in cylindrical micro-channel of the separator unit of condensing/separating system is presented. Moving liquid meniscus in the 10 μm cylindrical microchannel is used as a liquid lock to recover the liquid obtained by condensation from the separators. The main goal of the liquid locks to prevent penetration of a gas phase in the liquid line at the small flow rate of the condensate and because of pressure fluctuations in the vapor-gas-liquid loop. Calculation of the meniscus shape has been performed for liquid FC-72 at different values of pressure difference gas - liquid and under normal and micro gravity conditions.

  1. In vivo confocal laser microscopy of morphologic changes after small incision lenticule extraction with accelerated cross-linking (SMILE Xtra) in patients with thin corneas and high myopia.

    Science.gov (United States)

    Zhou, Yugui; Liu, Manli; Zhang, Ting; Zheng, Hua; Sun, Yuan; Yang, Xiaonan; Weng, Shengbei; Lin, Haiqin; Liu, Quan

    2018-01-01

    To evaluate the microstructural modifications and safety of small incision lenticule extraction combined with accelerated cross-linking (SMILE Xtra) in high myopia and thin corneas by means of in vivo confocal microscopy (IVCM) and 3D-OCT after a 6-month follow-up. Forty-three eyes with high myopia and thin corneas were enrolled. All eyes underwent SMILE procedure. After the lenticule was extracted, 0.25% riboflavin was injected into the interface and allowed to diffuse for 60 s. The eye was irradiated with UVA radiation of 30 mW/cm 2 for 90 s through the cap. The total energy delivered was 2.7 J/cm 2 . Morphologic modifications of corneal architecture were evaluated prior to SMILE Xtra and 7 days, 1, 3, and 6 months after SMILE by in vivo confocal microscopy (IVCM) and 3D-OCT. The corneal epithelial cells showed slight damage until 3 months postoperatively. The subepithelial nerve plexus decreased but no absence within the treatment zone at the first week after treatment, recolonized at 3 months postoperatively, and had mostly recovered at the 6 months postoperative but remained less than its normal baseline state. Keratocytes were absent in the surgical interface area, and the presence of strong reflective particles and cicatricial reaction in the anterior stroma were observed during the entire 6-month examination period. Increased hyperreflectivity was observed from the cap side at a depth of 60 µm to stroma bed at a depth of 388 µm through 6 months. The depth of the demarcation line in 40 eyes (93.0%) was at a mean depth of 296.12 ± 47.86 μm (range, 211-388 μm). No particular change between preoperative and postoperative corneal endothelium was observed. Confocal microscopy showed increased hyperreflectivity in the SMILE Xtra eyes, and no changes in corneal endothelium. We confirmed the safety of the SMILE Xtra but recognize that larger and longer-term studies of SMILE Xtra are necessary.

  2. Characterization of a confocal three-dimensional micro X-ray fluorescence facility based on polycapillary X-ray optics and Kirkpatrick-Baez mirrors

    International Nuclear Information System (INIS)

    Sun Tianxi; Ding Xunliang; Liu Zhiguo; Zhu Guanghua; Li Yude; Wei Xiangjun; Chen Dongliang; Xu Qing; Liu Quanru; Huang Yuying; Lin Xiaoyan; Sun Hongbo

    2008-01-01

    A new confocal three-dimensional micro X-ray fluorescence (3D micro-XRF) facility based on polycapillary X-ray optics in the detection channel and Kirkpatrick-Baez (KB) mirrors in the excitation channel is designed. The lateral resolution (l x , l y ) of this confocal three-dimensional micro-X-ray fluorescence facility is 76.3(l x ) and 53.4(l y ) μm respectively, and its depth resolution d z is 77.1 μm at θ = 90 o . A plant sample (twig of B. microphylla) and airborne particles are analyzed

  3. Insights into esophagus tissue architecture using two-photon confocal microscopy

    Science.gov (United States)

    Liu, Nenrong; Wang, Yue; Feng, Shangyuan; Chen, Rong

    2013-08-01

    In this paper, microstructures of human esophageal mucosa were evaluated using the two-photon laser scanning confocal microscopy (TPLSCM), based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). The distribution of epithelial cells, muscle fibers of muscularis mucosae has been distinctly obtained. Furthermore, esophageal submucosa characteristics with cancer cells invading into were detected. The variation of collagen, elastin and cancer cells is very relevant to the pathology in esophagus, especially early esophageal cancer. Our experimental results indicate that the MPM technique has the much more advantages for label-free imaging, and has the potential application in vivo in the clinical diagnosis and monitoring of early esophageal cancer.

  4. Integrated Confocal and Scanning Probe Microscopy for Biomedical Research

    Directory of Open Access Journals (Sweden)

    B.J. Haupt

    2006-01-01

    Full Text Available Atomic force microscopy (AFM continues to be developed, not only in design, but also in application. The new focus of using AFM is changing from pure material to biomedical studies. More frequently, it is being used in combination with other optical imaging methods, such as confocal laser scanning microscopy (CLSM and fluorescent imaging, to provide a more comprehensive understanding of biological systems. To date, AFM has been used increasingly as a precise micromanipulator, probing and altering the mechanobiological characteristics of living cells and tissues, in order to examine specific, receptor-ligand interactions, material properties, and cell behavior. In this review, we discuss the development of this new hybrid AFM, current research, and potential applications in diagnosis and the detection of disease.

  5. Confocal mapping of myelin figures with micro-Raman spectroscopy

    Science.gov (United States)

    Huang, Jung-Ren; Cheng, Yu-Che; Huang, Hung Ji; Chiang, Hai-Pang

    2018-01-01

    We employ confocal micro-Raman spectroscopy (CMRS) with submicron spatial resolution to study the myelin structures (cylindrical lamellae) composed of nested surfactant C12E3 or lipid DMPC bilayers. The CMRS mapping indicates that for a straight C12E3 myelin, the surfactant concentration increases with the myelin width and is higher in the center region than in the peripheral region. For a curved C12E3 myelin, the convex side has a higher surfactant concentration than the corresponding concave side. The spectrum of DMPC myelins undergoes a qualitative change as the temperature increases above 60 °C, suggesting that the surfactant molecules may be damaged. Our work demonstrates the utility of CMRS in bio-soft material research.

  6. Confocal non-line-of-sight imaging based on the light-cone transform

    Science.gov (United States)

    O’Toole, Matthew; Lindell, David B.; Wetzstein, Gordon

    2018-03-01

    How to image objects that are hidden from a camera’s view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.

  7. In vivo confocal microscopy of conjunctiva-associated lymphoid tissue in healthy humans.

    Science.gov (United States)

    Agnifili, Luca; Mastropasqua, Rodolfo; Fasanella, Vincenzo; Di Staso, Silvio; Mastropasqua, Alessandra; Brescia, Lorenza; Mastropasqua, Leonardo

    2014-07-29

    To investigate modifications with aging of the presence, distribution and morphologic features of conjunctiva-associated lymphoid tissue (CALT) in healthy human subjects using laser scanning in vivo confocal microscopy (IVCM). A total of 108 (age range, 17-75 years) subjects were enrolled. In vivo confocal microscopy of the tarsal and bulbar conjunctiva, and impression cytology (IC) with CD3 (intra-epithelial T-lymphocytes) and CD20 (intra-epithelial B-lymphocytes) antibody immunofluorescence staining were performed. The main outcomes were subepithelial lymphocyte density (LyD), follicular density (FD), and follicular area (FA). The secondary outcomes were follicular reflectivity (FR), and lymphocyte density (FLyD), and CD3 and CD20 positivity. Conjunctiva-associated lymphoid tissue was observed in all subjects (97% only superior and 3% in both superior and inferior tarsum). Lymphocyte density ranged from 7.8 to 165.8 cells/mm(2) (46.42 [18.37]; mean [SD]), FD from 0.5 to 19.4 follicles/mm(2) (5.3 [3.6]), and FA from 1110 to 96,280 mm(2) (26,440 [26,280]). All three parameters showed a highly significant inverse cubic relationship with age (P lymphoid structures. These modifications may account for the decrease of mucosal immune response and increase of ocular surface diseases in the elderly. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  8. Confocal Raman spectroscopy to trace lipstick with their smudges on different surfaces.

    Science.gov (United States)

    López-López, Maria; Özbek, Nil; García-Ruiz, Carmen

    2014-06-01

    Lipsticks are very popular cosmetic products that can be transferred by contact to different surfaces, being important forensic evidence with an intricate analysis if they are found in a crime scene. This study evaluates the use of confocal Raman microscopy at 780 nm excitation wavelength for the nondestructive identification of 49 lipsticks of different brands and colors, overcoming the lipstick fluorescence problem reported by previous works using other laser wavelengths. Although the lipsticks samples showed some fluorescence, this effect was not so intense to completely overwhelm the Raman spectra. Lipsticks smudges on twelve different surfaces commonly stained with these samples were also analyzed. In the case of the surfaces, some of them provided several bands to the smudge spectra compromising the identification of the lipstick. For these samples spectral subtraction of the interfering bands from the surface was performed. Finally, five different red lipsticks with very similar color were measured on different surfaces to evaluate the lipstick traceability with their smudges even on interfering surfaces. Although previous spectral subtraction was needed in some cases, all the smudged were linked to their corresponding lipsticks even when they are smeared on the interfering surfaces. As a consequence, confocal Raman microscopy using the 780 nm excitation laser is presented as a nondestructive powerful tool for the identification of these tricky samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. US of the Nongravid Cervix with Multimodality Imaging Correlation: Normal Appearance, Pathologic Conditions, and Diagnostic Pitfalls.

    Science.gov (United States)

    Wildenberg, Joseph C; Yam, Benjamin L; Langer, Jill E; Jones, Lisa P

    2016-01-01

    The adult uterine cervix may exhibit a wide variety of pathologic conditions that include benign entities (eg, cervicitis, hyperplasia, nabothian cysts, cervical polyps, leiomyomas, endometriosis, and congenital abnormalities) as well as malignant lesions, particularly cervical carcinoma. In addition, lesions that arise in the uterine body may secondarily involve the cervix, such as endometrial carcinoma and prolapsed intracavitary masses. Many of these conditions can be identified and characterized at ultrasonography (US), which is considered the first-line imaging examination for the female pelvis. However, examination of the cervix is often cursory during pelvic US, such that cervical disease may be overlooked or misdiagnosed. Transabdominal US of the cervix may not afford sufficient spatial resolution to depict cervical disease in many patients; therefore, endovaginal US is considered the optimal technique. Use of supplemental imaging techniques, particularly the application of transducer pressure on the cervix, may be helpful. This review describes the normal appearance of the cervix at US, the appearance of cervical lesions and conditions that mimic abnormalities at US, and optimal US techniques for evaluation of the cervix. This information will help radiologists detect and diagnose cervical abnormalities more confidently at pelvic US. Online supplemental material is available for this article. (©)RSNA, 2016.

  10. Visualization and quantitation of abundant macroautophagy in virus-infected cells by confocal three-dimensional fluorescence imaging.

    Science.gov (United States)

    Jackson, Wallen; Yamada, Masaki; Moninger, Thomas; Grose, Charles

    2013-10-01

    Varicella-zoster virus (VZV) is a human herpesvirus. Primary infection causes varicella (chickenpox), a viremic illness typified by an exanthem consisting of several hundred vesicles. When VZV reactivates from latency in the spinal ganglia during late adulthood, the emerging virus causes a vesicular dermatomal rash (herpes zoster or shingles). To expand investigations of autophagy during varicella and zoster, newer 3D imaging technology was combined with laser scanning confocal microscopy to provide animations of autophagosomes in the vesicular rash. First, the cells were immunolabeled with antibodies against VZV proteins and the LC3 protein, an integral autophagosomal protein. Antibody reagents lacking activity against the human blood group A1 antigen were selected. After laser excitation of the samples, optimized emission detection bandwidths were configured by Zeiss Zen control software. Confocal Z-stacks comprising up to 40 optical slices were reconstructed into 3D animations with the aid of Imaris software. With this imaging technology, individual autophagosomes were clearly detectable as spheres within each vesicular cell. To enumerate the number of autophagosomes, data sets from 50 cells were reconstructed as 3D fluorescence images and analyzed with MeasurementPro software. The mean number of autophagosomes per infected vesicular cell was >100, although over 200 autophagosomes were seen in a few cells. In summary, macroautophagy was easily quantitated within VZV-infected cells after immunolabeling and imaging by 3D confocal animation technology. These same 3D imaging techniques will be applicable for investigations of autophagy in other virus-infected cells. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  11. A comparison of spent fuel shipping cask response to 10 CFR 71 normal conditions and realistic hot day extremes

    International Nuclear Information System (INIS)

    Manson, S.J.; Gianoulakis, S.E.

    1994-04-01

    An examination of the effect of a realistic (though conservative) hot day environment on the thermal transient behavior of spent fuel shipping casks is made. These results are compared to those that develop under the prescribed normal thermal condition of 10 CFR 71. Of specific concern are the characteristics of propagating thermal waves, which are set up by diurnal variations of temperature and insolation in the outdoor environment. In order to arrive at a realistic approximation of these variations on a conservative hot day, actual temperature and insolation measurements have been obtained from the National Climatic Data Center (NCDC) for representatively hot and high heat flux days. Thus, the use of authentic meteorological data ensures the realistic approach sought. Further supporting the desired realism of the modeling effort is the use of realistic cask configurations in which multiple laminations of structural, shielding, and other materials are expected to attenuate the propagating thermal waves. The completed analysis revealed that the majority of wall temperatures, for a wide variety of spent fuel shipping cask configurations, fall well below those predicted by enforcement of the regulatory environmental conditions of 10 CFR 71. It was found that maximum temperatures at the cask surface occasionally lie above temperatures predicted under the prescribed regulatory conditions. However, the temperature differences are small enough that the normal conservative assumptions that are made in the course of typical cask evaluations should correct for any potential violations. The analysis demonstrates that diurnal temperature variations that penetrate the cask wall all have maxima substantially less than the corresponding regulatory solutions. Therefore it is certain that vital cask components and the spent fuel itself will not exceed the temperatures calculated by use of the conditions of 10 CFR 71

  12. Hospital and Pre-Hospital Triage Systems in Disaster and Normal Conditions; a Review Article

    Directory of Open Access Journals (Sweden)

    Saeed Safari

    2015-02-01

    Full Text Available Triage is a priority classification system based on the severity of problem to do the best therapeutic proceedings for patients in the less time. A triage system should be performed in a way which can make a decision with high accuracy and in the least time for each patient. Simplicity and reliability of the performance are the most important features of a standard triage system. An appropriate triage causes to increase the quality of health care services and patients’ satisfaction rate, decrease the waiting time as well as mortality rate, and increase the yield and efficiency of emergency wards along with reducing the related expenses. Considering to the above statements, in the present study the history of triage formation was evaluated and categorizing of all triage systems regarding prehospital and hospital as well as triage in normal and critical conditions were assessed, too.

  13. Diagnostic accuracy of confocal microscopy imaging vs. punch biopsy for diagnosing and subtyping basal cell carcinoma

    NARCIS (Netherlands)

    Kadouch, D. J.; Leeflang, M. M.; Elshot, Y. S.; Longo, C.; Ulrich, M.; van der Wal, A. C.; Wolkerstorfer, A.; Bekkenk, M. W.; de Rie, M. A.

    2017-01-01

    BackgroundIn vivo reflectance confocal microscopy (RCM) is a promising non-invasive skin imaging technique that could facilitate early diagnosis of basal cell carcinoma (BCC) instead of routine punch biopsies. However, the clinical value and utility of RCM vs. a punch biopsy in diagnosing and

  14. Stratum corneum lipid organization as observed by atomic force, confocal and two-photon excitation fluorescence microscopy

    DEFF Research Database (Denmark)

    Norlén, Lars; Plasencia Gil, Maria Inés; Bagatolli, Luis

    2008-01-01

    -related biophysical techniques (e.g. atomic force microscopy and confocal/two-photon excitation fluorescence microscopy), it was recently shown that reconstituted membranes composed of extracted decontaminated human stratum corneum lipids do not form a fluid phase, but exclusively a single-gel phase that segregates...

  15. Down-regulation of integrin β1 and focal adhesion kinase in renal glomeruli under various hemodynamic conditions.

    Directory of Open Access Journals (Sweden)

    Xiaoli Yuan

    Full Text Available Given that integrin β1 is an important component of the connection to maintain glomerular structural integrity, by binding with multiple extracellular matrix proteins and mediating intracellular signaling. Focal adhesion kinase (FAK is the most essential intracellular integrator in the integrin β1-FAK signalling pathway. Here, we investigated the changes of the two molecules and visualized the possible interaction between them under various hemodynamic conditions in podocytes. Mice kidney tissues were prepared using in vivo cryotechnique (IVCT and then were stained and observed using light microscopy, confocal laser scanning microscopy and immunoelectron microscopy. The expression of these molecules were examined by western blot. Under the normal condition, integrin β1 stained continually and evenly at the membrane, and FAK was located in the cytoplasm and nuclei of the podocytes. There were significant colocalized plaques of two molecules. But under acute hypertensive and cardiac arrest conditions, integrin β1 decreased and stained intermittently. Similarly, FAK decreased and appeared uneven. Additionally, FAK translocated to the nuclei of the podocytes. As a result, the colocalization of integrin β1 and FAK reduced obviously under these conditions. Western blot assay showed a consistent result with the immunostaining. Collectively, the abnormal redistribution and decreased expressions of integrin β1 and FAK are important molecular events in regulating the functions of podocytes under abnormal hemodynamic conditions. IVCT could offer considerable advantages for morphological analysis when researching renal diseases.

  16. The Signal Detection and Control Circuit Design for Confocal Auto-Focus System

    OpenAIRE

    Yin Liu; Jin Yu; Zeqiang Mo

    2016-01-01

    Based on the demands of Confocal Auto-Focus system, the implementation method of signal measurement circuit and control circuit is given. Using the high performance instrumental amplifier AD620BN, low noise precision FET Op amplifier AD795JRZ and ultralow offset voltage Op amplifier OP07EP, a signal measurement circuit used to converse the two differential light intensity signal to electric signal is designed. And a control circuit which takes MCU MSP430F149 as core processes the former signa...

  17. Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions.

    Science.gov (United States)

    Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa

    2013-04-12

    Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. [Biogenic amines in the epiphysis and hypothalamus under normal conditions and following ovariectomy].

    Science.gov (United States)

    Grishchenko, V I; Koliada, L D; Demidenko, D I

    1977-01-01

    Melatonin content in the epiphysis, serotonin, noradrenaline, dopamine-in the hypothalamus, gonadotropins--in the hypophysis of rats was studied under normal conditions and following ovariectomy; regularly of the estral cycle phases was studied as well. Two series of experiments were conducted on 120 rats with regular estral cycles. The animals were divided into groups according to the estral cycle phase. Melatonin concentration in the epiphysis, serotonin, noradrenaline, dopamine--in the hypothalamus was subject to variations coinciding with the estral cycle phases. Serotonin, noradrenaline, and dopamine content decreased in the hypophysis of ovariectomized rats in comparison with control; melatonin content rose in the epiphysis. There was no complete extinction of the estral cycle in the course of investigation (20 days). The action of castration on the sexual cycle depended on the phase at which the rats were subjected to ovariectomy. A reverse relationship existed between the melatonin content in the epiphysis and serotonin content in the hypothalamus, this serving as one of the important factors in the regulation of the sexual function.

  19. Confocal Laser Endomicroscopy for the Diagnosis of Urothelial Carcinoma in the Bladder and the Upper Urinary Tract: Protocols for Two Prospective Explorative Studies.

    Science.gov (United States)

    Liem, Esmee Iml; Freund, Jan Erik; Baard, Joyce; de Bruin, D Martijn; Laguna Pes, M Pilar; Savci-Heijink, C Dilara; van Leeuwen, Ton G; de Reijke, Theo M; de la Rosette, Jean Jmch

    2018-02-07

    Visual confirmation of a suspicious lesion in the urinary tract is a major corner stone in diagnosing urothelial carcinoma. However, during cystoscopy (for bladder tumors) and ureterorenoscopy (for tumors of the upper urinary tract) no real-time histopathologic information can be obtained. Confocal laser endomicroscopy (CLE) is an optical imaging technique that allows for in vivo high-resolution imaging and may allow real-time tumor grading of urothelial lesions. The primary objective of both studies is to develop descriptive criteria for in vivo CLE images of urothelial carcinoma (low-grade, high-grade, carcinoma in situ) and normal urothelium by comparing CLE images with corresponding histopathology. In these two prospective clinical trials, CLE imaging will be performed of suspicious lesions and normal tissue in the urinary tract during surgery, prior to resection or biopsy. In the bladder study, CLE will be performed in 60 patients using the Cystoflex UHD-R probe. In the upper urinary tract study, CLE will be performed in 25 patients during ureterorenoscopy, who will undergo radical treatment (nephroureterectomy or segmental ureter resection) thereafter. All CLE images will be analyzed frame by frame by three independent, blinded observers. Histopathology and CLE-based diagnosis of the lesions will be evaluated. Both studies comply with the IDEAL stage 2b recommendations. Presently, recruitment of patients is ongoing in both studies. Results and outcomes are expected in 2018. For development of CLE-based diagnosis of urothelial carcinoma in the bladder and the upper urinary tract, a structured conduct of research is required. This study will provide more insight in tissue-specific CLE criteria for real-time tumor grading of urothelial carcinoma. Confocal Laser Endomicroscopy: ClinicalTrials.gov NCT03013894; https://clinicaltrials.gov /ct2/show/NCT03013894?term=NCT03013894&rank=1 (Archived by WebCite at http://www.webcitation.org/6wiPZ378I); and Dutch Central

  20. Measurement uncertainty associated with chromatic confocal profilometry for 3D surface texture characterization of natural human enamel.

    Science.gov (United States)

    Mullan, F; Bartlett, D; Austin, R S

    2017-06-01

    To investigate the measurement performance of a chromatic confocal profilometer for quantification of surface texture of natural human enamel in vitro. Contributions to the measurement uncertainty from all potential sources of measurement error using a chromatic confocal profilometer and surface metrology software were quantified using a series of surface metrology calibration artifacts and pre-worn enamel samples. The 3D surface texture analysis protocol was optimized across 0.04mm 2 of natural and unpolished enamel undergoing dietary acid erosion (pH 3.2, titratable acidity 41.3mmolOH/L). Flatness deviations due to the x, y stage mechanical movement were the major contribution to the measurement uncertainty; with maximum Sz flatness errors of 0.49μm. Whereas measurement noise; non-linearity's in x, y, z and enamel sample dimensional instability contributed minimal errors. The measurement errors were propagated into an uncertainty budget following a Type B uncertainty evaluation in order to calculate the Standard Combined Uncertainty (u c ), which was ±0.28μm. Statistically significant increases in the median (IQR) roughness (Sa) of the polished samples occurred after 15 (+0.17 (0.13)μm), 30 (+0.12 (0.09)μm) and 45 (+0.18 (0.15)μm) min of erosion (Pchromatic confocal profilometry was from flatness deviations however by optimizing measurement protocols the profilometer successfully characterized surface texture changes in enamel from erosive wear in vitro. Copyright © 2017 The Academy of Dental Materials. All rights reserved.

  1. Koehler/Zimmer: The X-ray findings of the skeleton marking off the onset of pathological changes against normal conditions. 13. rev. ed.

    International Nuclear Information System (INIS)

    Schmidt, H.; Freyschmidt, J.; Holthusen, W.

    1989-01-01

    It is extremely difficult to define the border line, or border area, between normal and pathological conditions. This applies in particular to diagnostic radiology of the skeleton. Although the X-ray picture of a certain skeletal area in principle yields more objective information than the anamnestic data given by the patient, or the clinical findings, this more objective information in borderline cases will develop its full usefulness only if X-ray or clinical findings are interpreted synoptically, sometimes with recourse to other radiological techniques (such as scintiscanning, CT, or NMR imaging). This also is the suitable approach to evaluating and interpreting measured anatomic data as for instance shape or size. Transitions from normal conditions to pathological processes cannot be seen in the image, they will have to be defined in every case by negative exclusion, and this is why the book in hand is neither an atlas of normal X-ray anatomy, nor a collection of differential diagnostic X-ray findings of the skeleton. Having regard to practical requirements and respecting the excellent picture material of the preceding issue, the authors in some cases decided to assign borderline findings rather to the pathological types. (orig./MG) With 2816 figs., 16 tabs [de

  2. Depth-variant blind restoration with pupil-phase constraints for 3D confocal microscopy

    International Nuclear Information System (INIS)

    Hadj, Saima Ben; Blanc-Féraud, Laure; Engler, Gilbert

    2013-01-01

    Three-dimensional images of confocal laser scanning microscopy suffer from a depth-variant blur, due to refractive index mismatch between the different mediums composing the system as well as the specimen, leading to optical aberrations. Our goal is to develop an image restoration method for 3D confocal microscopy taking into account the blur variation with depth. The difficulty is that optical aberrations depend on the refractive index of the biological specimen. The depth-variant blur function or the Point Spread Function (PSF) is thus different for each observation. A blind or semi-blind restoration method needs to be developed for this system. For that purpose, we use a previously developed algorithm for the joint estimation of the specimen function (original image) and the 3D PSF, the continuously depth-variant PSF is approximated by a convex combination of a set of space-invariant PSFs taken at different depths. We propose to add to that algorithm a pupil-phase constraint for the PSF estimation, given by the the optical instrument geometry. We thus define a blind estimation algorithm by minimizing a regularized criterion in which we integrate the Gerchberg-Saxton algorithm allowing to include these physical constraints. We show the efficiency of this method relying on some numerical tests

  3. Probing the compressibility of tumor cell nuclei by combined atomic force-confocal microscopy

    Science.gov (United States)

    Krause, Marina; te Riet, Joost; Wolf, Katarina

    2013-12-01

    The cell nucleus is the largest and stiffest organelle rendering it the limiting compartment during migration of invasive tumor cells through dense connective tissue. We here describe a combined atomic force microscopy (AFM)-confocal microscopy approach for measurement of bulk nuclear stiffness together with simultaneous visualization of the cantilever-nucleus contact and the fate of the cell. Using cantilevers functionalized with either tips or beads and spring constants ranging from 0.06-10 N m-1, force-deformation curves were generated from nuclear positions of adherent HT1080 fibrosarcoma cell populations at unchallenged integrity, and a nuclear stiffness range of 0.2 to 2.5 kPa was identified depending on cantilever type and the use of extended fitting models. Chromatin-decondensating agent trichostatin A (TSA) induced nuclear softening of up to 50%, demonstrating the feasibility of our approach. Finally, using a stiff bead-functionalized cantilever pushing at maximal system-intrinsic force, the nucleus was deformed to 20% of its original height which after TSA treatment reduced further to 5% remaining height confirming chromatin organization as an important determinant of nuclear stiffness. Thus, combined AFM-confocal microscopy is a feasible approach to study nuclear compressibility to complement concepts of limiting nuclear deformation in cancer cell invasion and other biological processes.

  4. Systematic study of alginate-based microcapsules by micropipette aspiration and confocal fluorescence microscopy.

    Science.gov (United States)

    Kleinberger, Rachelle M; Burke, Nicholas A D; Dalnoki-Veress, Kari; Stöver, Harald D H

    2013-10-01

    Micropipette aspiration and confocal fluorescence microscopy were used to study the structure and mechanical properties of calcium alginate hydrogel beads (A beads), as well as A beads that were additionally coated with poly-L-lysine (P) and sodium alginate (A) to form, respectively, AP and APA hydrogels. A beads were found to continue curing for up to 500 h during storage in saline, due to residual calcium chloride carried over from the gelling bath. In subsequent saline washes, micropipette aspiration proved to be a sensitive indicator of gel weakening and calcium loss. Aspiration tests were used to compare capsule stiffness before and after citrate extraction of calcium. They showed that the initial gel strength is largely due to the calcium alginate gel cores, while the long term strength is solely due to the poly-L-lysine-alginate polyelectrolyte complex (PEC) shells. Confocal fluorescence microscopy showed that calcium chloride exposure after PLL deposition led to PLL redistribution into the hydrogel bead, resulting in thicker but more diffuse and weaker PEC shells. Adding a final alginate coating to form APA capsules did not significantly change the PEC membrane thickness and stiffness, but did speed the loss of calcium from the bead core. © 2013.

  5. Near-Infrared Confocal Laser Reflectance Cytoarchitectural Imaging of the Substantia Nigra and Cerebellum in the Fresh Human Cadaver.

    Science.gov (United States)

    Cheyuo, Cletus; Grand, Walter; Balos, Lucia L

    2017-01-01

    Cytoarchitectural neuroimaging remains critical for diagnosis of many brain diseases. Fluorescent dye-enhanced, near-infrared confocal in situ cellular imaging of the brain has been reported. However, impermeability of the blood-brain barrier to most fluorescent dyes limits clinical utility of this modality. The differential degree of reflectance from brain tissue with unenhanced near-infrared imaging may represent an alternative technique for in situ cytoarchitectural neuroimaging. We assessed the utility of unenhanced near-infrared confocal laser reflectance imaging of the cytoarchitecture of the cerebellum and substantia nigra in 2 fresh human cadaver brains using a confocal near-infrared laser probe. Cellular images based on near-infrared differential reflectance were captured at depths of 20-180 μm from the brain surface. Parts of the cerebellum and substantia nigra imaged using the probe were subsequently excised and stained with hematoxylin and eosin for histologic correlation. Near-infrared reflectance imaging revealed the 3-layered cytoarchitecture of the cerebellum, with Purkinje cells appearing hyperreflectant. In the substantia nigra, neurons appeared hyporeflectant with hyperreflectant neuromelanin cytoplasmic inclusions. Cytoarchitecture of the cerebellum and substantia nigra revealed on near-infrared imaging closely correlated with the histology on hematoxylin-eosin staining. We showed that unenhanced near-infrared reflectance imaging of fresh human cadaver brain can reliably identify and distinguish neurons and detailed cytoarchitecture of the cerebellum and substantia nigra. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong; Otsuna, Hideo; Chien, Chi-Bin; Hansen, Charles

    2012-01-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  7. FluoRender: An application of 2D image space methods for 3D and 4D confocal microscopy data visualization in neurobiology research

    KAUST Repository

    Wan, Yong

    2012-02-01

    2D image space methods are processing methods applied after the volumetric data are projected and rendered into the 2D image space, such as 2D filtering, tone mapping and compositing. In the application domain of volume visualization, most 2D image space methods can be carried out more efficiently than their 3D counterparts. Most importantly, 2D image space methods can be used to enhance volume visualization quality when applied together with volume rendering methods. In this paper, we present and discuss the applications of a series of 2D image space methods as enhancements to confocal microscopy visualizations, including 2D tone mapping, 2D compositing, and 2D color mapping. These methods are easily integrated with our existing confocal visualization tool, FluoRender, and the outcome is a full-featured visualization system that meets neurobiologists\\' demands for qualitative analysis of confocal microscopy data. © 2012 IEEE.

  8. Evaluation of gap heat transfer model in ELESTRES for CANDU fuel element under normal operating conditions

    International Nuclear Information System (INIS)

    Lee, Kang Moon; Ohn, Myung Ryong; Im, Hong Sik; Choi, Jong Hoh; Hwang, Soon Taek

    1995-01-01

    The gap conductance between the fuel and the sheath depends strongly on the gap width and has a significant influence on the amount of initial stored energy. The modified Ross and Stoute gap conductance model in ELESTRES is based on a simplified thermal deformation model for steady-state fuel temperature calculations. A review on a series of experiments reveals that fuel pellets crack, relocate, and are eccentrically positioned within the sheath rather than solid concentric cylinders. In this paper, the two recently-proposed gap conductance models (offset gap model and relocated gap model) are described and are applied to calculate the fuel-sheath gap conductances under experimental conditions and normal operating conditions in CANDU reactors. The good agreement between the experimentally-inferred and calculated gap conductance values demonstrates that the modified Ross and Stoute model was implemented correctly in ELESTRES. The predictions of the modified Ross and Stoute model provide conservative values for gap heat transfer and fuel surface temperature compared to the offset gap and relocated gap models for a limiting power envelope. 13 figs., 3 tabs., 16 refs. (Author)

  9. A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models.

    Science.gov (United States)

    Wood, Scott T; Dean, Brian C; Dean, Delphine

    2013-04-01

    This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction

    Science.gov (United States)

    Slimani, Amel; Nouioua, Fares; Desoutter, Alban; Levallois, Bernard; Cuisinier, Frédéric J. G.; Tassery, Hervé; Terrer, Elodie; Salehi, Hamideh

    2017-08-01

    The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660 cm-1 over 1690 cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960 cm-1, and the ratio of two Raman peaks of phosphate at 960/950 cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues.

  11. Adapting a compact confocal microscope system to a two-photon excitation fluorescence imaging architecture.

    Science.gov (United States)

    Diaspro, A; Corosu, M; Ramoino, P; Robello, M

    1999-11-01

    Within the framework of a national National Institute of Physics of Matter (INFM) project, we have realised a two-photon excitation (TPE) fluorescence microscope based on a new generation commercial confocal scanning head. The core of the architecture is a mode-locked Ti:Sapphire laser (Tsunami 3960, Spectra Physics Inc., Mountain View, CA) pumped by a high-power (5 W, 532 nm) laser (Millennia V, Spectra Physics Inc.) and an ultracompact confocal scanning head, Nikon PCM2000 (Nikon Instruments, Florence, Italy) using a single-pinhole design. Three-dimensional point-spread function has been measured to define spatial resolution performances. The TPE microscope has been used with a wide range of excitable fluorescent molecules (DAPI, Fura-2, Indo-1, DiOC(6)(3), fluoresceine, Texas red) covering a single photon spectral range from UV to green. An example is reported on 3D imaging of the helical structure of the sperm head of the Octopus Eledone cirrhosa labelled with an UV excitable dye, i.e., DAPI. The system can be easily switched for operating both in conventional and two-photon mode. Copyright 1999 Wiley-Liss, Inc.

  12. Chondrocytes provide a model for in-situ confocal microscopy and 3D reconstructions

    Science.gov (United States)

    Hirsch, Michelle S.; Svoboda, Kathy K. H.

    1994-04-01

    Hyaline cartilage is composed of chondrocytes that reside in lacunae surrounded by extracellular matrix molecules. Microscopic and histochemical features of cartilage have been studied with many techniques. Many of these techniques can be time consuming and may alter natural cartilage characteristics. In addition, the orientation and order of sectioned tissue must be maintained to create 3D reconstructions. We show that confocal laser scanning microscopy may replace traditional methods for studying cartilage.

  13. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    Science.gov (United States)

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  14. Iris ultrastructure in patients with synechiae as revealed by in vivo laser scanning confocal microscopy : In vivo iris ultrastructure in patients with Synechiae by Laser Scanning Confocal Microscopy.

    Science.gov (United States)

    Li, Ming; Cheng, Hongbo; Guo, Ping; Zhang, Chun; Tang, Song; Wang, Shusheng

    2016-04-26

    Iris plays important roles in ocular physiology and disease pathogenesis. Currently it is technically challenging to noninvasively examine the human iris ultrastructure in vivo. The purpose of the current study is to reveal human iris ultrastructure in patients with synechiae by using noninvasive in vivo laser scanning confocal microscopy (LSCM). The ultrastructure of iris in thirty one patients, each with synechiae but transparent cornea, was examined by in vivo LSCM. Five characteristic iris ultrastructures was revealed in patients with synechiae by in vivo LSCM, which include: 1. tree trunk-like structure; 2. tree branch/bush-like structure; 3. Fruit-like structure; 4. Epithelioid-like structure; 5. deep structure. Pigment granules can be observed as a loose structure on the top of the arborization structure. In iris-associated diseases with Tyndall's Phenomenon and keratic precipitates, the pigment particles are more likely to fall off from the arborization structure. The ultrastructure of iris in patients with synechiae has been visualized using in vivo LSCM. Five iris ultrastructures can be clearly observed, with some of the structures maybe disease-associated. The fall-off of the pigment particles may cause the Tyndall's Phenomenon positive. In vivo LSCM provides a non-invasive approach to observe the human iris ultrastructure under certain eye disease conditions, which sets up a foundation to visualize certain iris-associated diseases in the future.

  15. Internalisation of polymeric nanosensors in mesenchymal stem cells: analysis by flow cytometry and confocal microscopy.

    Science.gov (United States)

    Coupland, Paul G; Fisher, Karen A; Jones, D Rhodri E; Aylott, Jonathan W

    2008-09-10

    The aim of this study was to demonstrate that flow cytometry and confocal microscopy could be applied in a complementary manner to analyse the internalisation of polymeric nanosensors in mesenchymal stem cells (MSC). The two techniques are able to provide en masse data analysis of nanosensors from large cell populations and detailed images of intracellular nanosensor localisation, respectively. The polyacrylamide nanosensors used in this investigation had been modified to contain free amine groups which were subsequently conjugated to Tat peptide, which acted as a delivery vector for nanosensor internalisation. Flow cytometry was used to confirm the health of MSC culture and assess the impact of nanosensor internalisation. MSC were characterised using fluorescently tagged CD cell surface markers that were also used to show that nanosensor internalisation did not negatively impact on MSC culture. Additionally it was shown that flow cytometry can be used to measure fluorophores located both on the cell surface and internalised within the cell. Complementary data was obtained using confocal microscopy to confirm nanosensor internalisation within MSC.

  16. SU-F-T-665: Confocal Microscopy Imaging of Cell Cycle Distribution in Cells Treated with Pegylated Gold Nanoshells

    Energy Technology Data Exchange (ETDEWEB)

    Sadetaporn, D [Rice University, Houston, TX (United States); The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Flint, D; McFadden, C; Sawakuchi, G [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Asaithamby, A [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To use confocal microscopy to distinguish cells in different phases of the cell cycle before and after treatment with pegylated gold nanoshells (PEG-AuNSs). Methods: Transfected fibrosarcoma cells (HT1080-EYFP-53BP1-FUCCI) were cultured in T-25 flasks and seeded in glass bottom dishes. These cells express the fluorescent probe AmCyan during the G2/S phases of the cell cycle, mCherry during the G1 phase, and EYFP tagged to the DNA repair protein 53BP1. After allowing cells 4 h to adhere to dishes, PEG-AuNS (Nanospectra Biosciences, Houston, TX) at a concentration of 0.15 OD were administered. At time points of 8, 16 and 24 h following treatment, the PEG-AuNS-treated and control samples were washed with phosphate buffered saline (PBS) and fixed using 4% paraformaldehyde in PBS. Samples were imaged with an Olympus FV1200 confocal microscope using 473, 543, and 641 nm excitation lasers. We used band-pass filters to select AmCyan and mCherry fluorescence. Reflection from the 641 nm laser was used to detect PEG-AuNSs. Z-stack images were analyzed to assess cell cycle distribution through fluorescent probe expression. Live cells were imaged after PEG-AuNS treatment using a confocal microscope with a stage top CO2 incubator. Results: We were able to obtain high-resolution images of cells with internalized AuNSs. We were also able to distinguish cells in different phases of the cell cycle. Conclusion: This work demonstrates a new assay to investigate the effect of AuNSs on the cell cycle phase in live cells. Future work will employ confocal microscopy and flow cytometry to focus on effects of AuNS treatment on cell cycle distribution. This research was supported by the Sister Institution Network Fund and the Center for Radiation Oncology Research at The University of Texas MD Anderson Cancer Center and Cancer Prevention and Research Institute of Texas. Gabriel Sawakuchi has research support from Elekta Inc.

  17. SU-F-T-665: Confocal Microscopy Imaging of Cell Cycle Distribution in Cells Treated with Pegylated Gold Nanoshells

    International Nuclear Information System (INIS)

    Sadetaporn, D; Flint, D; McFadden, C; Sawakuchi, G; Asaithamby, A

    2016-01-01

    Purpose: To use confocal microscopy to distinguish cells in different phases of the cell cycle before and after treatment with pegylated gold nanoshells (PEG-AuNSs). Methods: Transfected fibrosarcoma cells (HT1080-EYFP-53BP1-FUCCI) were cultured in T-25 flasks and seeded in glass bottom dishes. These cells express the fluorescent probe AmCyan during the G2/S phases of the cell cycle, mCherry during the G1 phase, and EYFP tagged to the DNA repair protein 53BP1. After allowing cells 4 h to adhere to dishes, PEG-AuNS (Nanospectra Biosciences, Houston, TX) at a concentration of 0.15 OD were administered. At time points of 8, 16 and 24 h following treatment, the PEG-AuNS-treated and control samples were washed with phosphate buffered saline (PBS) and fixed using 4% paraformaldehyde in PBS. Samples were imaged with an Olympus FV1200 confocal microscope using 473, 543, and 641 nm excitation lasers. We used band-pass filters to select AmCyan and mCherry fluorescence. Reflection from the 641 nm laser was used to detect PEG-AuNSs. Z-stack images were analyzed to assess cell cycle distribution through fluorescent probe expression. Live cells were imaged after PEG-AuNS treatment using a confocal microscope with a stage top CO2 incubator. Results: We were able to obtain high-resolution images of cells with internalized AuNSs. We were also able to distinguish cells in different phases of the cell cycle. Conclusion: This work demonstrates a new assay to investigate the effect of AuNSs on the cell cycle phase in live cells. Future work will employ confocal microscopy and flow cytometry to focus on effects of AuNS treatment on cell cycle distribution. This research was supported by the Sister Institution Network Fund and the Center for Radiation Oncology Research at The University of Texas MD Anderson Cancer Center and Cancer Prevention and Research Institute of Texas. Gabriel Sawakuchi has research support from Elekta Inc.

  18. Embryological study of Herminium monorchis (Orchidaceae) using confocal scanning laser microscopy

    International Nuclear Information System (INIS)

    Fredrikson, M.

    1990-01-01

    The embryology of Herminium monorchis (Orchidaceae) was studied using confocal scanning laser microscopy (CSLM), a new technique for embryological studies. This technique may contribute new information to plant embryology. Herminium monorchis has a monosporic embryo sac development. The mature embryo sac is 8-nucleate. Two integuments, both 2-layered, are formed, but only the inner takes part in formation of the micropyle. Double fertilization takes place. The primary endosperm nucleus does not divide, but remains alive at least at the 3-celled stage of embryo development. The three antipodals do not show any sign of degeneration at this stage. (author)

  19. Ex vivo confocal microscopy: an emerging technique in dermatology

    Science.gov (United States)

    Perrot, Jean Luc; Labeille, Bruno; Cambazard, Frédéric; Rubegni, Pietro

    2018-01-01

    This review aims to give an overview of the current available applications of ex vivo confocal microscopy (EVCM) in dermatology. EVCM is a relatively new imaging technique that allows microscopic examination of freshly excised unfixed tissue. It enables a rapid examination of the skin sample directly in the surgery room and thus represents an alternative to the intraoperative micrographic control of the surgical margins of cutaneous tumors by standard microscopic examination on cryopreserved sections during Mohs surgery. Although this technique has mainly been developed for the margin’s control of basal cell carcinoma, many other skin tumors have been studied, including melanoma. Use of EVCM is continuing to evolve, and many possible applications are under investigation, such as the study of nails and hair diseases and the diagnosis of skin infections. PMID:29785327

  20. Autoradiography of DNA from Hela cells under normal conditions and after treatment with hydroxyurea

    International Nuclear Information System (INIS)

    Martinova, Y.S.; Angelova, P.A.; Roeva, I.G.

    1984-01-01

    The results are presented of the first stage of the elaboration of the novel autoradiographic technique for studying the replication of DNA fibers from nonsynchronized Hela cell cultures under normal conditions and after treatment with hydroxyurea. The preparations were covered with liquid nuclear emulsion Ilford L 4 . Exposure was carried out for 3 months at 4 deg C. After development, the autoradiograms were recorded quantitatively, and the length of the individual replicative segments was measured by means of an object micrometers. For each group (control and experimental) 100 segments from different cells were recorded. The results obtained were subjected to mathematical-statistical processing for determining the standard deviation. The application of hidroxyurea highly reduces the replicative elements, i.e. it actually inhibits DNA synthesis. This inhibition is due to reduction in the production of the four endogenous deoxynucleotides and affects the length of growth of the DNA chain, but the interreplicative distance as well