WorldWideScience

Sample records for normal conditions subsurface

  1. Turbocharging Normalization in Highland Conditions

    Directory of Open Access Journals (Sweden)

    I. V. Filippov

    2017-01-01

    Full Text Available To ensure many production processes are used compressors of various types, including turbochargers, which produce compressed air. The actual performance values of turbochargers used in highlands are significantly different from the certified values, and parameters of compressed air do not always guarantee the smooth and efficient functioning for consumers.The paper presents research results of the turbochargers of 4CI 425MX4 type, a series of "CENTAC", manufactured by INGERSOL – RAND Company. The research has been conducted in industrial highland conditions in difficult climatic environment. There were almost no investigations of turbochargers running in highland conditions. The combination of low atmospheric pressure with high temperature of the intake air causes the abnormal operating conditions of a turbocharger. Only N. M. Barannikov in his paper shows the results of theoretical studies of such operating conditions, but as to the practical research, there is no information at all.To normalize the turbocharger operation an option of the mechanical pressurization in the suction pipe is adopted. As a result of theoretical research, a TurboMAX blower MAX500 was chosen as a supercharger. The next stage of theoretical research was to construct characteristics of the turbocharger 4CI 425MX4 with a mechanical supercharger in the suction pipe. The boost reduces to the minimum the time of using additional compressors when parameters of the intake air are changed and ensures the smooth and efficient functioning for consumers.To verify the results of theoretical studies, namely, the technique for recalculation of the turbocharger characteristics under the real conditions of suction, were carried out the experimental researches. The average error between experimental and theoretical data is 2,9783 %, which confirms the validity of the technique used for reduction of the turbocharger characteristics to those under the real conditions of suction.

  2. Surface and subsurface conditions in permafrost areas - a literature review

    International Nuclear Information System (INIS)

    Vidstrand, Patrik

    2003-02-01

    This report contains a summary of some of the information within existing technical and scientific literature on permafrost. Permafrost is viewed as one of the future climate driven process domains that may exist in Scandinavia, and that may give rise to significantly different surface and subsurface conditions than the present. Except for changes in the biosphere, permafrost may impact hydraulic, mechanical, and chemical subsurface processes and conditions. Permafrost and its influences on the subsurface conditions are thus of interest for the performance and safety assessments of deep geological waste repositories. The definition of permafrost is 'ground that stays at or below 0 deg C for at least two consecutive years'. Permafrost will effect the geological subsurface to some depth. How deep the permafrost may grow is a function of the heat balance, thermal conditions at the surface and within the ground, and the geothermal heat flux from the Earth's inner parts. The main chapters of the report summaries the knowledge on permafrost evolution, occurrence and distribution, and extracts information concerning hydrology and mechanical and chemical impacts due to permafrost related conditions. The results of a literature review are always dependent on the available literature. Concerning permafrost there is some literature available from investigations in the field of long-term repositories and some from mining industries. However, reports of these investigations are few and the bulk of permafrost literature comes from the science departments concerned with surficial processes (e.g. geomorphology, hydrology, agriculture, etc) and from engineering concerns, such as foundation of constructions and pipeline design. This focus within the permafrost research inevitably yields a biased but also an abundant amount of information on localised surficial processes and a limited amount on regional and deep permafrost characteristics. Possible conclusions are that there is

  3. Surface and subsurface conditions in permafrost areas - a literature review

    Energy Technology Data Exchange (ETDEWEB)

    Vidstrand, Patrik [Bergab, Goeteborg (Sweden)

    2003-02-01

    This report contains a summary of some of the information within existing technical and scientific literature on permafrost. Permafrost is viewed as one of the future climate driven process domains that may exist in Scandinavia, and that may give rise to significantly different surface and subsurface conditions than the present. Except for changes in the biosphere, permafrost may impact hydraulic, mechanical, and chemical subsurface processes and conditions. Permafrost and its influences on the subsurface conditions are thus of interest for the performance and safety assessments of deep geological waste repositories. The definition of permafrost is 'ground that stays at or below 0 deg C for at least two consecutive years'. Permafrost will effect the geological subsurface to some depth. How deep the permafrost may grow is a function of the heat balance, thermal conditions at the surface and within the ground, and the geothermal heat flux from the Earth's inner parts. The main chapters of the report summaries the knowledge on permafrost evolution, occurrence and distribution, and extracts information concerning hydrology and mechanical and chemical impacts due to permafrost related conditions. The results of a literature review are always dependent on the available literature. Concerning permafrost there is some literature available from investigations in the field of long-term repositories and some from mining industries. However, reports of these investigations are few and the bulk of permafrost literature comes from the science departments concerned with surficial processes (e.g. geomorphology, hydrology, agriculture, etc) and from engineering concerns, such as foundation of constructions and pipeline design. This focus within the permafrost research inevitably yields a biased but also an abundant amount of information on localised surficial processes and a limited amount on regional and deep permafrost characteristics. Possible conclusions are that

  4. The Correlation between Radon Emission Concentration and Subsurface Geological Condition

    Science.gov (United States)

    Kuntoro, Yudi; Setiawan, Herru L.; Wijayanti, Teni; Haerudin, Nandi

    2018-03-01

    Exploration activities with standard methods have already encountered many obstacles in the field. Geological survey is often difficult to find outcrop because they are covered by vegetation, alluvial layer or as a result of urban development and housing. Seismic method requires a large expense and licensing in the use of dynamite is complicated. Method of gravity requires the operator to go back (looping) to the starting point. Given some of these constraints, therefore it needs a solution in the form of new method that can work more efficiently with less cost. Several studies in various countries have shown a correlation between the presence of hydrocarbons and Radon gas concentration in the earth surface. By utilizing the properties of Radon that can migrate to the surface, the value of Radon concentration in the surface is suggested to provide information about the subsurface structure condition. Radon is the only radioactive substance that gas-phased at atmospheric temperature. It is very abundant in the earth mantle. The vast differences of temperatures and pressures between the mantle and the earth crust cause the convection flow toward earth surface. Radon in gas phase will be carried by convection flow to the surface. The quantity of convection currents depend on the porosity and permeability of rocks where Radon travels within, so that Radon concentration in the earth surface delineates the porosity and permeability of subsurface rock layers. Some measurements were carried out at several locations with various subsurface geological conditions, including proven oil fields, proven geothermal field, and frontier area as a comparison. These measurements show that the average and the background concentration threshold in the proven oil field (11,200 Bq/m3) and proven geothermal field (7,820 Bq/m3) is much higher than the quantity in frontier area (329 and 1,620 Bq/m3). Radon concentration in the earth surface is correlated with the presence of geological

  5. Transport of Chemical Vapors from Subsurface Sources to Atmosphere as Affected by Shallow Subsurface and Atmospheric Conditions

    Science.gov (United States)

    Rice, A. K.; Smits, K. M.; Hosken, K.; Schulte, P.; Illangasekare, T. H.

    2012-12-01

    Understanding the movement and modeling of chemical vapor through unsaturated soil in the shallow subsurface when subjected to natural atmospheric thermal and mass flux boundary conditions at the land surface is of importance to applications such as landmine detection and vapor intrusion into subsurface structures. New, advanced technologies exist to sense chemical signatures at the land/atmosphere interface, but interpretation of these sensor signals to make assessment of source conditions remains a challenge. Chemical signatures are subject to numerous interactions while migrating through the unsaturated soil environment, attenuating signal strength and masking contaminant source conditions. The dominant process governing movement of gases through porous media is often assumed to be Fickian diffusion through the air phase with minimal or no quantification of other processes contributing to vapor migration, such as thermal diffusion, convective gas flow due to the displacement of air, expansion/contraction of air due to temperature changes, temporal and spatial variations of soil moisture and fluctuations in atmospheric pressure. Soil water evaporation and interfacial mass transfer add to the complexity of the system. The goal of this work is to perform controlled experiments under transient conditions of soil moisture, temperature and wind at the land/atmosphere interface and use the resulting dataset to test existing theories on subsurface gas flow and iterate between numerical modeling efforts and experimental data. Ultimately, we aim to update conceptual models of shallow subsurface vapor transport to include conditionally significant transport processes and inform placement of mobile sensors and/or networks. We have developed a two-dimensional tank apparatus equipped with a network of sensors and a flow-through head space for simulation of the atmospheric interface. A detailed matrix of realistic atmospheric boundary conditions was applied in a series of

  6. An Evaluation of Subsurface Microbial Activity Conditional to Subsurface Temperature, Porosity, and Permeability at North American Carbon Sequestration Sites

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, B. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Mordensky, S. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Verba, Circe [National Energy Technology Lab. (NETL), Albany, OR (United States); Rabjohns, K. [Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); National Energy Technology Lab. (NETL), Albany, OR (United States); Colwell, F. [National Energy Technology Lab. (NETL), Albany, OR (United States); Oregon State Univ., Corvallis, OR (United States). College of Earth, Ocean, and Atmospheric Sciences

    2016-06-21

    Several nations, including the United States, recognize global climate change as a force transforming the global ecosphere. Carbon dioxide (CO2) is a greenhouse gas that contributes to the evolving climate. Reduction of atmospheric CO2 levels is a goal for many nations and carbon sequestration which traps CO2 in the Earth’s subsurface is one method to reduce atmospheric CO2 levels. Among the variables that must be considered in developing this technology to a national scale is microbial activity. Microbial activity or biomass can change rock permeability, alter artificial seals around boreholes, and play a key role in biogeochemistry and accordingly may determine how CO2 is sequestered underground. Certain physical parameters of a reservoir found in literature (e.g., temperature, porosity, and permeability) may indicate whether a reservoir can host microbial communities. In order to estimate which subsurface formations may host microbes, this report examines the subsurface temperature, porosity, and permeability of underground rock formations that have high potential to be targeted for CO2 sequestration. Of the 268 North American wellbore locations from the National Carbon Sequestration Database (NATCARB; National Energy and Technology Laboratory, 2015) and 35 sites from Nelson and Kibler (2003), 96 sequestration sites contain temperature data. Of these 96 sites, 36 sites have temperatures that would be favorable for microbial survival, 48 sites have mixed conditions for supporting microbial populations, and 11 sites would appear to be unfavorable to support microbial populations. Future studies of microbe viability would benefit from a larger database with more formation parameters (e.g. mineralogy, structure, and groundwater chemistry), which would help to increase understanding of where CO2 sequestration could be most efficiently implemented.

  7. Impact of environmental conditions on sub-surface storage tanks ...

    African Journals Online (AJOL)

    Cast iron made storage tanks with gasoline fluid were buried under the soil at a depth of 4 m under various environment conditions. The simulated conditions include natural rain fail, temperature and acidic, alkaline and neutral soils. A control condition of neutral sea sand as base and filling materials were also investigated.

  8. Use of Remote Sensing for Identification and Description of Subsurface Drainage System Condition

    Directory of Open Access Journals (Sweden)

    Lenka Tlapáková

    2015-01-01

    Full Text Available The paper presents basic facts and knowledge of special survey focused on detection and evaluation methods of subsurface drainage systems by means of remote sensing. It is aimed at the complex analysis of applied processes in spatial localization, classification or assessment of subsurface drainage systems’ actual condition by means of distance research methods. Data collection, their analysis and interpretation have been shown in seven experimental areas in the Czech Republic. Mainly it means determination of potential, application principles and limits of pracical use of different technologies and image data obtained by remote sensing in solving questions.

  9. Subsurface conditions description for the S-SX waste management area

    International Nuclear Information System (INIS)

    WOOD, M.I.

    1999-01-01

    This document provides a discussion of the subsurface conditions relevant to the occurrence and migration of contaminants in the vadose zone and groundwater underlying the 241-5 and 241-SX tank farms This document provides a concise summary of existing information in support of characterization planning This document includes a description of the available environmental contamination data and a limited qualitative interpretation of these data

  10. Subsurface Conditions Description of the B and BX and BY Waste Management Area

    Energy Technology Data Exchange (ETDEWEB)

    WOOD, M.I.

    2000-03-13

    This document provides a discussion of the subsurface conditions relevant to the occurrence and migration of contaminants in the vadose zone and groundwater underlying the 241-B, -BX, and -BY tank farms. This document provides a concise summary of existing information in support of characterization planning. This document includes a description of the available environmental contamination data and a limited, qualitative interpretation of these data.

  11. Subsurface Conditions Description of the B and BX and BY Waste Management Area

    International Nuclear Information System (INIS)

    WOOD, M.I.

    2000-01-01

    This document provides a discussion of the subsurface conditions relevant to the occurrence and migration of contaminants in the vadose zone and groundwater underlying the 241-B, -BX, and -BY tank farms. This document provides a concise summary of existing information in support of characterization planning. This document includes a description of the available environmental contamination data and a limited, qualitative interpretation of these data

  12. Subsurface Conditions Controlling Uranium Incorporation in Iron Oxides: A Redox Stable Sink

    International Nuclear Information System (INIS)

    Fendorf, Scott

    2016-01-01

    Toxic metals and radionuclides throughout the U.S. Department of Energy Complex pose a serious threat to ecosystems and to human health. Of particular concern is the redox-sensitive radionuclide uranium, which is classified as a priority pollutant in soils and groundwaters at most DOE sites owing to its large inventory, its health risks, and its mobility with respect to primary waste sources. The goal of this research was to contribute to the long-term mission of the Subsurface Biogeochemistry Program by determining reactions of uranium with iron (hydr)oxides that lead to long-term stabilization of this pervasive contaminant. The research objectives of this project were thus to (1) identify the (bio)geochemical conditions, including those of the solid-phase, promoting uranium incorporation in Fe (hydr)oxides, (2) determine the magnitude of uranium incorporation under a variety of relevant subsurface conditions in order to quantify the importance of this pathway when in competition with reduction or adsorption; (3) identify the mechanism(s) of U(VI/V) incorporation in Fe (hydr)oxides; and (4) determine the stability of these phases under different biogeochemical (inclusive of redox) conditions. Our research demonstrates that redox transformations are capable of achieving U incorporation into goethite at ambient temperatures, and that this transformation occurs within days at U and Fe(II) concentrations that are common in subsurface geochemical environments with natural ferrihydrites - inclusive of those with natural impurities. Increasing Fe(II) or U concentration, or initial pH, made U(VI) reduction to U(IV) a more competitive sequestration pathway in this system, presumably by increasing the relative rate of U reduction. Uranium concentrations commonly found in contaminated subsurface environments are often on the order of 1-10 μM, and groundwater Fe(II) concentrations can reach exceed 1 mM in reduced zones of the subsurface. The redox-driven U(V) incorporation

  13. Subsurface Conditions Controlling Uranium Incorporation in Iron Oxides: A Redox Stable Sink

    Energy Technology Data Exchange (ETDEWEB)

    Fendorf, Scott [Stanford Univ., CA (United States)

    2016-04-05

    Toxic metals and radionuclides throughout the U.S. Department of Energy Complex pose a serious threat to ecosystems and to human health. Of particular concern is the redox-sensitive radionuclide uranium, which is classified as a priority pollutant in soils and groundwaters at most DOE sites owing to its large inventory, its health risks, and its mobility with respect to primary waste sources. The goal of this research was to contribute to the long-term mission of the Subsurface Biogeochemistry Program by determining reactions of uranium with iron (hydr)oxides that lead to long-term stabilization of this pervasive contaminant. The research objectives of this project were thus to (1) identify the (bio)geochemical conditions, including those of the solid-phase, promoting uranium incorporation in Fe (hydr)oxides, (2) determine the magnitude of uranium incorporation under a variety of relevant subsurface conditions in order to quantify the importance of this pathway when in competition with reduction or adsorption; (3) identify the mechanism(s) of U(VI/V) incorporation in Fe (hydr)oxides; and (4) determine the stability of these phases under different biogeochemical (inclusive of redox) conditions. Our research demonstrates that redox transformations are capable of achieving U incorporation into goethite at ambient temperatures, and that this transformation occurs within days at U and Fe(II) concentrations that are common in subsurface geochemical environments with natural ferrihydrites—inclusive of those with natural impurities. Increasing Fe(II) or U concentration, or initial pH, made U(VI) reduction to U(IV) a more competitive sequestration pathway in this system, presumably by increasing the relative rate of U reduction. Uranium concentrations commonly found in contaminated subsurface environments are often on the order of 1-10 μM, and groundwater Fe(II) concentrations can reach exceed 1 mM in reduced zones of the subsurface. The redox-driven U(V) incorporation

  14. 10 CFR 71.71 - Normal conditions of transport.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Normal conditions of transport. 71.71 Section 71.71 Energy..., Special Form, and LSA-III Tests 2 § 71.71 Normal conditions of transport. (a) Evaluation. Evaluation of each package design under normal conditions of transport must include a determination of the effect on...

  15. Behavior of uranium under conditions of interaction of rocks and ores with subsurface water

    Science.gov (United States)

    Omel'Yanenko, B. I.; Petrov, V. A.; Poluektov, V. V.

    2007-10-01

    The behavior of uranium during interaction of subsurface water with crystalline rocks and uranium ores is considered in connection with the problem of safe underground insulation of spent nuclear fuel (SNF). Since subsurface water interacts with crystalline rocks formed at a high temperature, the mineral composition of these rocks and uranium species therein are thermodynamically unstable. Therefore, reactions directed toward the establishment of equilibrium proceed in the water-rock system. At great depths that are characterized by hindered water exchange, where subsurface water acquires near-neutral and reducing properties, the interaction is extremely sluggish and is expressed in the formation of micro- and nanoparticles of secondary minerals. Under such conditions, the slow diffusion redistribution of uranium with enrichment in absorbed forms relative to all other uranium species is realized as well. The products of secondary alteration of Fe- and Ti-bearing minerals serve as the main sorbents of uranium. The rate of alteration of minerals and conversion of uranium species into absorbed forms is slow, and the results of these processes are insignificant, so that the rocks and uranium species therein may be regarded as unaltered. Under reducing conditions, subsurface water is always saturated with uranium. Whether water interacts with rock or uranium ore, the equilibrium uranium concentration in water is only ≤10-8 mol/l. Uraninite ore under such conditions always remains stable irrespective of its age. The stability conditions of uranium ore are quite suitable for safe insulation of SNF, which consists of 95% uraninite (UO2) and is a confinement matrix for all other radionuclides. The disposal of SNF in massifs of crystalline rocks at depths below 500 m, where reducing conditions are predominant, is a reliable guarantee of high SNF stability. Under oxidizing conditions of the upper hydrodynamic zone, the rate of interaction of rocks with subsurface water

  16. Detection of Subsurface Defects in Levees in Correlation to Weather Conditions Utilizing Ground Penetrating Radar

    Science.gov (United States)

    Martinez, I. A.; Eisenmann, D.

    2012-12-01

    Ground Penetrating Radar (GPR) has been used for many years in successful subsurface detection of conductive and non-conductive objects in all types of material including different soils and concrete. Typical defect detection is based on subjective examination of processed scans using data collection and analysis software to acquire and analyze the data, often requiring a developed expertise or an awareness of how a GPR works while collecting data. Processing programs, such as GSSI's RADAN analysis software are then used to validate the collected information. Iowa State University's Center for Nondestructive Evaluation (CNDE) has built a test site, resembling a typical levee used near rivers, which contains known sub-surface targets of varying size, depth, and conductivity. Scientist at CNDE have developed software with the enhanced capabilities, to decipher a hyperbola's magnitude and amplitude for GPR signal processing. With this enhanced capability, the signal processing and defect detection capabilities for GPR have the potential to be greatly enhanced. This study will examine the effects of test parameters, antenna frequency (400MHz), data manipulation methods (which include data filters and restricting the range of depth in which the chosen antenna's signal can reach), and real-world conditions using this test site (such as varying weather conditions) , with the goal of improving GPR tests sensitivity for differing soil conditions.

  17. What's down below? Current and potential future applications of geophysical techniques to identify subsurface permafrost conditions (Invited)

    Science.gov (United States)

    Douglas, T. A.; Bjella, K.; Campbell, S. W.

    2013-12-01

    For infrastructure design, operations, and maintenance requirements in the North the ability to accurately and efficiently detect the presence (or absence) of ground ice in permafrost terrains is a serious challenge. Ground ice features including ice wedges, thermokarst cave-ice, and segregation ice are present in a variety of spatial scales and patterns. Currently, most engineering applications use borehole logging and sampling to extrapolate conditions at the point scale. However, there is high risk of over or under estimating the presence of frozen or unfrozen features when relying on borehole information alone. In addition, boreholes are costly, especially for planning linear structures like roads or runways. Predicted climate warming will provide further challenges for infrastructure development and transportation operations where permafrost degradation occurs. Accurately identifying the subsurface character in permafrost terrains will allow engineers and planners to cost effectively create novel infrastructure designs to withstand the changing environment. There is thus a great need for a low cost rapidly deployable, spatially extensive means of 'measuring' subsurface conditions. Geophysical measurements, both terrestrial and airborne, have strong potential to revolutionize our way of mapping subsurface conditions. Many studies in continuous and discontinuous permafrost have used geophysical measurements to identify discrete features and repeatable patterns in the subsurface. The most common measurements include galvanic and capacitive coupled resistivity, ground penetrating radar, and multi frequency electromagnetic induction techniques. Each of these measurements has strengths, weaknesses, and limitations. By combining horizontal geophysical measurements, downhole geophysics, multispectral remote sensing images, LiDAR measurements, and soil and vegetation mapping we can start to assemble a holistic view of how surface conditions and standoff measurements

  18. Effect analysis of core barrel openings under CEFR normal condition

    International Nuclear Information System (INIS)

    Zhang Yabo; Yang Hongyi

    2008-01-01

    Openings on the bottom of core barrel are important part of the decay heat removal system of China Experimental Fast Reactor (CEFR), which are designed to discharge the decay heat from reactor under accident condition. This paper analyses the effect of the openings design on the normal operation condition using the famouse CFD code CFX. The result indicates that the decay heat can be discharged safely and at the same time the effect of core barrel openings on the normal operation condition is acceptable. (authors)

  19. Experiment on Measurement of Interfacial Tension for Subsurface Conditions of Light Oil from Thailand

    Directory of Open Access Journals (Sweden)

    Jiravivitpanya Jiramet

    2017-01-01

    Full Text Available One of enhanced oil recovery techniques to increase oil production is surfactant flooding. Surfactants are considered as effective chemical agents used in oilfield in Thailand. It is used to reduce the interfacial tension (IFT of two fluids and to make them flow easier in the reservoir. In this study, Monoethanolamide (MEA commonly used for carbon dioxide capture, is applied as a surfactant to reduce IFT between oil and brine. Therefore, the aim of this work is to investigate and measure the IFT based on the conditions of subsurface at the oilfield in Thailand. These parameters such as temperature, pressure, salinity as well as the concentration of surfactant are adjusted to investigate the effects on IFT reduction. From the results, it is reported that pressure from 1000 to 2000 psi and temperature varied from 70°C to 90°C can reduce IFT insignificantly. However, salinity and surfactant concentration are the main parameters that impact on the IFT reduction. It can greatly decrease IFT up to 87.13% for surfactant concentration and up to 74.06% for salinity. Finally, the results can be applied to use in the real field for enhanced oil production in Thailand.

  20. Use of remote sensing for identification and description of subsurface drainage system condition

    Czech Academy of Sciences Publication Activity Database

    Tlapáková, L.; Žaloudík, Jiří; Kulhavý, Z.; Pelíšek, I.

    2015-01-01

    Roč. 63, č. 5 (2015), s. 1587-1599 ISSN 1211-8516 Institutional support: RVO:60077344 Keywords : subsurface drainage * remote sensing * aerial image interpretation * RPAS Subject RIV: DA - Hydrology ; Limnology

  1. Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Ansley, Shannon Leigh

    2002-02-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering and Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist.

  2. Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Wastewater Discharge Facility; TOPICAL

    International Nuclear Information System (INIS)

    Ansley, Shannon L.

    2002-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering and Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist

  3. Preoperational Subsurface Conditions at the Idaho Nuclear Technology and Engineering Center Service Wastewater Discharge Facility

    International Nuclear Information System (INIS)

    Ansley, Shannon L.

    2002-01-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) Service Wastewater Discharge Facility replaces the existing percolation ponds as a disposal facility for the INTEC Service Waste Stream. A preferred alternative for helping decrease water content in the subsurface near INTEC, closure of the existing ponds is required by the INTEC Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Record of Decision (ROD) for Waste Area Group 3 Operable Unit 3-13 (DOE-ID 1999a). By August 2002, the replacement facility was constructed approximately 2 miles southwest of INTEC, near the Big Lost River channel. Because groundwater beneath the Idaho National Engineering and Environmental Laboratory (INEEL) is protected under Federal and State of Idaho regulations from degradation due to INEEL activities, preoperational data required by U.S. Department of Energy (DOE) Order 5400.1 were collected. These data include preexisting physical, chemical, and biological conditions that could be affected by the discharge; background levels of radioactive and chemical components; pertinent environmental and ecological parameters; and potential pathways for human exposure or environmental impact. This document presents specific data collected in support of DOE Order 5400.1, including: four quarters of groundwater sampling and analysis of chemical and radiological parameters; general facility description; site specific geology, stratigraphy, soils, and hydrology; perched water discussions; and general regulatory requirements. However, in order to avoid duplication of previous information, the reader is directed to other referenced publications for more detailed information. Documents that are not readily available are compiled in this publication as appendices. These documents include well and borehole completion reports, a perched water evaluation letter report, the draft INEEL Wellhead Protection Program Plan, and the Environmental Checklist

  4. Premixed Flames Under Microgravity and Normal Gravity Conditions

    Science.gov (United States)

    Krikunova, Anastasia I.; Son, Eduard E.

    2018-03-01

    Premixed conical CH4-air flames were studied experimentally and numerically under normal straight, reversed gravity conditions and microgravity. Low-gravity experiments were performed in Drop tower. Classical Bunsen-type burner was used to find out features of gravity influence on the combustion processes. Mixture equivalence ratio was varied from 0.8 to 1.3. Wide range of flow velocity allows to study both laminar and weakly turbulized flames. High-speed flame chemoluminescence video-recording was used as diagnostic. The investigations were performed at atmospheric pressure. As results normalized flame height, laminar flame speed were measured, also features of flame instabilities were shown. Low- and high-frequency flame-instabilities (oscillations) have a various nature as velocity fluctuations, preferential diffusion instability, hydrodynamic and Rayleigh-Taylor ones etc., that was explored and demonstrated.

  5. Calcitonin serum levels in normal and in pathological conditions

    International Nuclear Information System (INIS)

    Ziliotto, D.; Luisetto, G.; Zanatta, G.P.; Cataldi, F.; Zangari, M.; Gangemi, M.; Melanotte, P.L.; Caira, S.

    1985-01-01

    Radioimmunoassay of calcitonin (CT) gives variable results because of differences in sensitivity and specificity of antibody preparations and because of the known immunoheterogeneity of circulating CT. The difficulties in interpretation of data has hindered our understanding of normal and abnormal CT physiology. The authors separated the biologically active CT monomer (CTm) from the higher molecular weight biologically inactive forms before RIA. It makes it possible to re-evaluate the behaviour of CT in physiological conditions and to study its changes in diseases in which bone and mineral metabolism are in some way compromised. (Auth.)

  6. Gallic Acid Promotes Wound Healing in Normal and Hyperglucidic Conditions

    Directory of Open Access Journals (Sweden)

    Dong Joo Yang

    2016-07-01

    Full Text Available Skin is the outermost layer of the human body that is constantly exposed to environmental stressors, such as UV radiation and toxic chemicals, and is susceptible to mechanical wounding and injury. The ability of the skin to repair injuries is paramount for survival and it is disrupted in a spectrum of disorders leading to skin pathologies. Diabetic patients often suffer from chronic, impaired wound healing, which facilitate bacterial infections and necessitate amputation. Here, we studied the effects of gallic acid (GA, 3,4,5-trihydroxybenzoic acid; a plant-derived polyphenolic compound on would healing in normal and hyperglucidic conditions, to mimic diabetes, in human keratinocytes and fibroblasts. Our study reveals that GA is a potential antioxidant that directly upregulates the expression of antioxidant genes. In addition, GA accelerated cell migration of keratinocytes and fibroblasts in both normal and hyperglucidic conditions. Further, GA treatment activated factors known to be hallmarks of wound healing, such as focal adhesion kinases (FAK, c-Jun N-terminal kinases (JNK, and extracellular signal-regulated kinases (Erk, underpinning the beneficial role of GA in wound repair. Therefore, our results demonstrate that GA might be a viable wound healing agent and a potential intervention to treat wounds resulting from metabolic complications.

  7. Analysis of WWER-440 fuel performance under normal operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gunduz, Oe; Koese, S; Akbas, T [Atomenerjisi Komisyonu, Ankara (Turkey); Colak, Ue [Ankara Nuclear Research and Training Center (Turkey)

    1994-12-31

    FRAPCON-2 code originally developed for LWR fuel behaviour simulation is used to analyse the WWER-440 fuel rod behaviour at normal operational conditions. The code is capable of utilizing different models for mechanical analysis and gas release calculations. Heat transfer calculations are accomplished through a collocation technique by the method of weighted residuals. Temperature and burnup element properties are evaluated using MATPRO package. As the material properties of Zr-1%Nb used as cladding in WWER-440s are not provided in the code, Zircaloy-4 is used as a substitute for Zr-1%Nb. Mac-Donald-Weisman model is used for gas release calculation. FRACAS-1 and FRACAS-2 models are used in the mechanical calculations. It is assumed that the reactor was operated for 920 days (three consecutive cycles), the burnup being 42000 Mwd/t U. Results of the fuel rod behaviour analysis are given for three axial nodes: bottom node, central node and top node. The variations of the following characteristic fuel rod parameters are studied through the prescribed power history: unmoved gap thickness, gap heat transfer coefficient, fuel axial elongation, cladding axial elongation, fuel centerline temperature and ZrO-thickness at cladding surface. The value of each parameter is calculated as a function of the effective power days for the three nodes by using FRACAS-1 and FRACAS-2 codes for comparison.The results show that calculations with deformable pellet approximation with FRACAS-II model could provide better information for the behaviour of a typical fuel rod. Calculations indicate that fuel rod failure is not observed during the operation. All fuel rod parameters investigated are found to be within the safety limits. It is concluded, however, that for better assessment of reactor safety these calculations should be extended for transient conditions such as LOCA. 1 tab., 10 figs., 4 refs.

  8. The effect of ochre applied to buffer zones on soluble phosphorus retention during combined surface and subsurface flow conditions

    Science.gov (United States)

    Habibiandehkordi, R.; Quinton, J.; Surridge, B.

    2012-12-01

    Despite invention of a wide range of mitigating measures, diffuse phosphorus (P) pollution from agricultural lands still remains a major threat to the water resources. Thus, reducing P inputs along with improving the effectiveness of current best management practices (BMPs) is necessary to avoid eutrophication. Buffer zones are considered to be among the BMPs to control diffuse P pollution. However, these features are less effective in controlling soluble P loss with a retention range of -71 to +95% which is generally governed by the process of infiltration. Moreover, the soil in buffer strip system can be saturated over a course of time thereby enriching surface and subsurface runoff with soluble P. The aim of this study is to evaluate effectiveness of ochre applied to buffer strips in reducing the loss of soluble P during coupled surface and subsurface flow conditions. Batch experiments showed a maximum P retention capacity of 17.2 g kg-1 for ochre collected from a mine water treatment plant in Capehouse, UK without any risk of P desorption or releasing trace elements to the environment. The preliminarily results of flume experiments confirms the suitability of ochre to be used as a soil amendment in conjunction with buffer strips for tackling soluble P loss.

  9. Dioxins from medical waste incineration: Normal operation and transient conditions.

    Science.gov (United States)

    Chen, Tong; Zhan, Ming-xiu; Yan, Mi; Fu, Jian-ying; Lu, Sheng-yong; Li, Xiao-dong; Yan, Jian-hua; Buekens, Alfons

    2015-07-01

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are key pollutants in waste incineration. At present, incinerator managers and official supervisors focus only on emissions evolving during steady-state operation. Yet, these emissions may considerably be raised during periods of poor combustion, plant shutdown, and especially when starting-up from cold. Until now there were no data on transient emissions from medical (or hospital) waste incineration (MWI). However, MWI is reputed to engender higher emissions than those from municipal solid waste incineration (MSWI). The emission levels in this study recorded for shutdown and start-up, however, were significantly higher: 483 ± 184 ng Nm(-3) (1.47 ± 0.17 ng I-TEQ Nm(-3)) for shutdown and 735 ng Nm(-3) (7.73 ng I-TEQ Nm(-3)) for start-up conditions, respectively. Thus, the average (I-TEQ) concentration during shutdown is 2.6 (3.8) times higher than the average concentration during normal operation, and the average (I-TEQ) concentration during start-up is 4.0 (almost 20) times higher. So monitoring should cover the entire incineration cycle, including start-up, operation and shutdown, rather than optimised operation only. This suggestion is important for medical waste incinerators, as these facilities frequently start up and shut down, because of their small size, or of lacking waste supply. Forthcoming operation should shift towards much longer operating cycles, i.e., a single weekly start-up and shutdown. © The Author(s) 2015.

  10. Degradation of atrazine and isoproturon in surface and sub-surface soil materials undergoing different moisture and aeration conditions.

    Science.gov (United States)

    Issa, Salah; Wood, Martin

    2005-02-01

    The influence of different moisture and aeration conditions on the degradation of atrazine and isoproturon was investigated in environmental samples aseptically collected from surface and sub-surface zones of agricultural land. The materials were maintained at two moisture contents corresponding to just above field capacity or 90% of field capacity. Another two groups of samples were adjusted with water to above field capacity, and, at zero time, exposed to drying-rewetting cycles. Atrazine was more persistent (t(1/2) = 22-35 days) than isoproturon (t(1/2) = 5-17 days) in samples maintained at constant moisture conditions. The rate of degradation for both herbicides was higher in samples maintained at a moisture content of 90% of field capacity than in samples with higher moisture contents. The reduction in moisture content in samples undergoing desiccation from above field capacity to much lower than field capacity enhanced the degradation of isoproturon (t(1/2) = 9-12 days) but reduced the rate of atrazine degradation (t(1/2) = 23-35 days). This demonstrates the variability between different micro-organisms in their susceptibility to desiccation. Under anaerobic conditions generated in anaerobic jars, atrazine degraded much more rapidly than isoproturon in materials taken from three soil profiles (0-250 cm depth). It is suggested that some specific micro-organisms are able to survive and degrade herbicide under severe conditions of desiccation. Copyright (c) 2005 Society of Chemical Industry.

  11. Effect of design and operational conditions on the performance of subsurface flow treatment wetlands: Emerging organic contaminants as indicators.

    Science.gov (United States)

    Kahl, Stefanie; Nivala, Jaime; van Afferden, Manfred; Müller, Roland A; Reemtsma, Thorsten

    2017-11-15

    Six pilot-scale subsurface flow treatment wetlands loaded with primary treated municipal wastewater were monitored over one year for classical wastewater parameters and a set of emerging organic compounds (EOCs) serving as process indicators for biodegradation: caffeine, ibuprofen, naproxen, benzotriazole, diclofenac, acesulfame, and carbamazepine. The wetland technologies investigated included conventional horizontal flow, unsaturated vertical flow (single and two-stage), horizontal flow with aeration, vertical flow with aeration, and reciprocating. Treatment efficiency for classical wastewater parameters and EOCs generally increased with increasing design complexity and dissolved oxygen concentrations. The two aerated wetlands and the two-stage vertical flow system showed the highest EOC removal, and the best performance in warm season and most robust performance in the cold season. These three systems performed better than the adjacent conventional WWTP with respect to EOC removal. Acesulfame was observed to be removed (>90%) by intensified wetland systems and with use of a tertiary treatment sand filter during the warm season. Elevated temperature and high oxygen content (aerobic conditions) proved beneficial for EOC removal. For EOCs of moderate to low biodegradability, the co-occurrence of aerobic conditions and low content of readily available carbon appears essential for efficient removal. Such conditions occurred in the aerated systems and with use of a tertiary treatment sand filter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Improving Chemical EOR Simulations and Reducing the Subsurface Uncertainty Using Downscaling Conditioned to Tracer Data

    KAUST Repository

    Torrealba, Victor A.; Hoteit, Hussein; Chawathe, Adwait

    2017-01-01

    and thermodynamic phase split, the impact of grid downscaling on CEOR simulations is not well understood. In this work, we introduce a geostatistical downscaling method conditioned to tracer data to refine a coarse history-matched WF model. This downscaling process

  13. Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency

    Science.gov (United States)

    2016-11-21

    through water evaporation , although some cooling also occurs due to sensible heat transfer . Cooling towers are very effective heat transfer devices... evaporator coil connected to the building heating , ventilation, and air conditioning (HVAC) system. The refrigerant evaporates in the coil, removing...vapor is directed to a condensing coil, where the refrigerant vapor condenses back into a liquid, releasing its heat of vaporization. During

  14. Channel normalization technique for speech recognition in mismatched conditions

    CSIR Research Space (South Africa)

    Kleynhans, N

    2008-11-01

    Full Text Available , where one wishes to use any available training data for a variety of purposes. Research into a new channel normalization (CN) technique for channel mismatched speech recognition is presented. A process of inverse linear filtering is used in order...

  15. An experimental investigation of geochromatography during secondary migration of petroleum performed under subsurface conditions with a real rock

    Directory of Open Access Journals (Sweden)

    Larter Steve

    2000-10-01

    Full Text Available An understanding of the size of petroleum secondary migration systems is vital for successful exploration for petroleum reserves. Geochemists have suggested that compositional fractionation of petroleum accompanying the migration process (geochromatography can potentially be used to infer distances petroleum may have travelled and the ratio of oil in the reservoir to that lost in the carrier. To date, this has been attempted by measuring concentrations and distributions of specific steranes, and aromatic oxygen and nitrogen compounds in reservoired oils which have been proposed to respond to migration rather than to source maturity or other effects. We report here an experiment involving oil migration through an initially water wet siltstone under realistic subsurface carrier bed or reservoir conditions (48 MPa, 70°C where source facies and maturity effects are eliminated. We show that geochromatography does indeed occur even for initially water-saturated rocks and that the migration fractionations observed for alkylcarbazoles, benzocarbazoles and alkylphenols are very similar to those seen in field data sets. In contrast, sterane based migration parameters show no compositional fractionation under these conditions.

  16. Carbon Nanotubes Preserve Normal Phenotypes Under Cancer-Promoting Conditions

    Science.gov (United States)

    Wailes, Elizabeth; Levi-Polyachenko, Nicole

    2015-03-01

    Tumor-associated fibroblasts and cancer cells have long been known to create a feedback loop that further stimulates the cancer. While this has been explored from a molecular biology standpoint, little is known about the physical relationship of the cell types even though both sets of cells are known to be mechanosensitive. Indeed, for both fibroblasts and cancer, mechanical signals can make the difference between a normal or pathological cell. To evaluate this relationship and test if it can be manipulated to favor normal cells, atomic force microscopy (AFM) and confocal microscopy was performed on fibroblast and breast cancer cell co-cultures with a collagen gel matrix to simulate the extracellular matrix. Pathological behavior was encouraged through the addition of transforming growth factor beta (TGF- β) . In a separate group, this behavior was discouraged through the doping of the collagen gel with multi-walled carbon nanotubes (MWNT). Significant differences were observed both in the elastic moduli of each cell type and the cancer cells' propensity to migrate through the gel as a model for metastasis. These results shed new light on how cancer progresses and promote the further investigation of nano-mechanical solutions to cancer.

  17. Improving Chemical EOR Simulations and Reducing the Subsurface Uncertainty Using Downscaling Conditioned to Tracer Data

    KAUST Repository

    Torrealba, Victor A.

    2017-10-02

    Recovery mechanisms are more likely to be influenced by grid-block size and reservoir heterogeneity in Chemical EOR (CEOR) than in conventional Water Flood (WF) simulations. Grid upscaling based on single-phase flow is a common practice in WF simulation models, where simulation grids are coarsened to perform history matching and sensitivity analyses within affordable computational times. This coarse grid resolution (typically about 100 ft.) could be sufficient in WF, however, it usually fails to capture key physical mechanisms in CEOR. In addition to increased numerical dispersion in coarse models, these models tend to artificially increase the level of mixing between the fluids and may not have enough resolution to capture different length scales of geological features to which EOR processes can be highly sensitive. As a result of which, coarse models usually overestimate the sweep efficiency, and underestimate the displacement efficiency. Grid refinement (simple downscaling) can resolve artificial mixing but appropriately re-creating the fine-scale heterogeneity, without degrading the history-match conducted on the coarse-scale, remains a challenge. Because of the difference in recovery mechanisms involved in CEOR, such as miscibility and thermodynamic phase split, the impact of grid downscaling on CEOR simulations is not well understood. In this work, we introduce a geostatistical downscaling method conditioned to tracer data to refine a coarse history-matched WF model. This downscaling process is necessary for CEOR simulations when the original (fine) earth model is not available or when major disconnects occur between the original earth model and the history-matched coarse WF model. The proposed downscaling method is a process of refining the coarse grid, and populating the relevant properties in the newly created finer grid cells. The method considers the values of rock properties in the coarse grid as hard data, and the corresponding variograms and property

  18. Carbonation processes of basalts and ultra-basic rocks in subsurface conditions

    International Nuclear Information System (INIS)

    Daval, D.

    2009-01-01

    formation of a thin (∼ 40 nm) passivating layer of amorphous silica as soon as the fluid becomes saturated with respect to amorphous silica. The chemical profile of magnesium across the silica coating suggests that olivine weathering can only carry on through solid-state diffusion, which slows down the process by more than 5 orders of magnitude. The reasons why carbonation of olivine and wollastonite are so different could involve either the specific role of calcium on the structure of the silica layer, or a competition between the hydrolysis rate of minerals and the rate of condensation of silanol groups within the silica layer. Another parameter responsible for overestimations of carbonation rates can arise from the inaccurate knowledge of the dependence of silicate dissolution rate (r) on the distance from equilibrium (ΔG r ). For example, over a wide range of ΔG r (∼ 60 - 75 kJ.mol -1 ), we measured experimentally (at 90 C and pH 5) that diopside dissolution rates are far slower (≥ 1 order of magnitude) than those predicted by the use of transition state theory (TST)-based relation. Because this kind of relations is implemented into geochemical codes, they can be the source of dramatic overestimations of the true carbonation rates. Such overestimations were calculated and corrected by coupling the geochemical code with a new kinetic module. To accurately model the weathering rate of silicates in nominally under-saturated solutions, the intrinsic effect of CO 2 on silicate dissolution rates was determined. At far from equilibrium conditions, for a given pH, the dissolution rate of serpentine minerals is enhanced under high pCO 2 . This effect can be ascribed to the formation of a surface complex involving HCO 3 - ligands, which could in turn promote the dissolution rate of serpentines. The last part of our work dealt with the weathering of ferrous-bearing silicates which could generate hydrogen, in competition with carbonation, and lead in turn to the formation

  19. Renal glucose metabolism in normal physiological conditions and in diabetes.

    Science.gov (United States)

    Alsahli, Mazen; Gerich, John E

    2017-11-01

    The kidney plays an important role in glucose homeostasis via gluconeogenesis, glucose utilization, and glucose reabsorption from the renal glomerular filtrate. After an overnight fast, 20-25% of glucose released into the circulation originates from the kidneys through gluconeogenesis. In this post-absorptive state, the kidneys utilize about 10% of all glucose utilized by the body. After glucose ingestion, renal gluconeogenesis increases and accounts for approximately 60% of endogenous glucose release in the postprandial period. Each day, the kidneys filter approximately 180g of glucose and virtually all of this is reabsorbed into the circulation. Hormones (most importantly insulin and catecholamines), substrates, enzymes, and glucose transporters are some of the various factors influencing the kidney's role. Patients with type 2 diabetes have an increased renal glucose uptake and release in the fasting and the post-prandial states. Additionally, glucosuria in these patients does not occur at plasma glucose levels that would normally produce glucosuria in healthy individuals. The major abnormality of renal glucose metabolism in type 1 diabetes appears to be impaired renal glucose release during hypoglycemia. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Radionuclides can be mobilized by bacteria from the subsurface grown under aerobic as well as anaerobic conditions

    International Nuclear Information System (INIS)

    Johnsson, A.; Arlinger, J.; Pedersen, K.; Albinsson, Y.; Andlid, T.

    2005-01-01

    . Instead anaerobic supernatants of both species retain about 50% of the 241 Am(III) in solution and P. stutzeri also shows an ability to mobilize 147 Pm(III). The findings so far show that bacteria from the subsurface have the ability to mobilize radionuclides under aerobic and anaerobic conditions. This should be considered when planning a future nuclear waste repository. (authors)

  1. Exponential model normalization for electrical capacitance tomography with external electrodes under gap permittivity conditions

    International Nuclear Information System (INIS)

    Baidillah, Marlin R; Takei, Masahiro

    2017-01-01

    A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution. (paper)

  2. Physics of collisionless scrape-off-layer plasma during normal and off-normal Tokamak operating conditions

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1999-01-01

    The structure of a collisionless scrape-off-layer (SOL) plasma in tokamak reactors is being studied to define the electron distribution function and the corresponding sheath potential between the divertor plate and the edge plasma. The collisionless model is shown to be valid during the thermal phase of a plasma disruption, as well as during the newly desired low-recycling normal phase of operation with low-density, high-temperature, edge plasma conditions. An analytical solution is developed by solving the Fokker-Planck equation for electron distribution and balance in the SOL. The solution is in good agreement with numerical studies using Monte-Carlo methods. The analytical solutions provide an insight to the role of different physical and geometrical processes in a collisionless SOL during disruptions and during the enhanced phase of normal operation over a wide range of parameters

  3. Site Recommendation Subsurface Layout

    International Nuclear Information System (INIS)

    C.L. Linden

    2000-01-01

    The purpose of this analysis is to develop a Subsurface Facility layout that is capable of accommodating the statutory capacity of 70,000 metric tons of uranium (MTU), as well as an option to expand the inventory capacity, if authorized, to 97,000 MTU. The layout configuration also requires a degree of flexibility to accommodate potential changes in site conditions or program requirements. The objective of this analysis is to provide a conceptual design of the Subsurface Facility sufficient to support the development of the Subsurface Facility System Description Document (CRWMS M andO 2000e) and the ''Emplacement Drift System Description Document'' (CRWMS M andO 2000i). As well, this analysis provides input to the Site Recommendation Consideration Report. The scope of this analysis includes: (1) Evaluation of the existing facilities and their integration into the Subsurface Facility design. (2) Identification and incorporation of factors influencing Subsurface Facility design, such as geological constraints, thermal loading, constructibility, subsurface ventilation, drainage control, radiological considerations, and the Test and Evaluation Facilities. (3) Development of a layout showing an available area in the primary area sufficient to support both the waste inventories and individual layouts showing the emplacement area required for 70,000 MTU and, if authorized, 97,000 MTU

  4. Subsurface probing

    International Nuclear Information System (INIS)

    Lytle, R.J.

    1978-01-01

    Imaging techniques that can be used to translate seismic and electromagnetic wave signals into visual representation are briefly discussed. The application of these techniques is illustrated on the example of determining the subsurface structure of a proposed power plant. Imaging makes the wave signals intelligible to the non-geologists. R and D work needed in this area are tabulated

  5. Experimental program on fuel rod behaviour under off-normal conditions

    International Nuclear Information System (INIS)

    Languille, A.; Cecchi, P.

    1985-01-01

    During LMFBR plant operation, fuel developments are primarily concerned with the fuel pin irradiation behaviour under steady-state conditions up to high burn-up levels. But additional studies under off-normal conditions are necessary in order to assess fuel pin performance and to define operational limits. (author)

  6. Estimation of value at risk and conditional value at risk using normal mixture distributions model

    Science.gov (United States)

    Kamaruzzaman, Zetty Ain; Isa, Zaidi

    2013-04-01

    Normal mixture distributions model has been successfully applied in financial time series analysis. In this paper, we estimate the return distribution, value at risk (VaR) and conditional value at risk (CVaR) for monthly and weekly rates of returns for FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI) from July 1990 until July 2010 using the two component univariate normal mixture distributions model. First, we present the application of normal mixture distributions model in empirical finance where we fit our real data. Second, we present the application of normal mixture distributions model in risk analysis where we apply the normal mixture distributions model to evaluate the value at risk (VaR) and conditional value at risk (CVaR) with model validation for both risk measures. The empirical results provide evidence that using the two components normal mixture distributions model can fit the data well and can perform better in estimating value at risk (VaR) and conditional value at risk (CVaR) where it can capture the stylized facts of non-normality and leptokurtosis in returns distribution.

  7. Subsurface Contamination Control

    Energy Technology Data Exchange (ETDEWEB)

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the

  8. Reactor internals design/analysis for normal, upset, and faulted conditions

    International Nuclear Information System (INIS)

    Burke, F.R.

    1977-06-01

    The analytical procedures used by Babcock and Wilcox to demonstrate the structural integrity of the 205-FA reactor internals are described. Analytical results are presented and compared to ASME Code allowable limits for Normal, Upset, and Faulted conditions. The particular faulted condition considered is a simultaneous loss-of-coolant accident and safe shutdown earthquake. The operating basis earthquake is addressed as an Upset condition

  9. MISTRAL V1.1.1: assessing doses from atmospheric releases in normal and off-normal conditions

    International Nuclear Information System (INIS)

    David Kerouanton; Patrick Devin; Malvina Rennesson

    2006-01-01

    Protecting the environment and the public from radioactive and chemical hazards has always been a top priority for all companies operating in the nuclear domain. In this scope, SGN provides all the services the nuclear industry needs in environmental studies especially in relation to the impact assessment in normal operating conditions and risk assessment in off-normal conditions. In order to quantify dose impact on members of the public due to atmospheric releases, COGEMA and SGN developed MISTRAL V1.1.1 code. Dose impact depends strongly on dispersion of radionuclides in atmosphere. The main parameters involved in dispersion characterization are wind velocity and direction, rain, diffusion conditions, coordinates of the point of observation and stack elevation. MISTRAL code implements DOURY and PASQUILL Gaussian plume models which are widely used in the scientific community. These models, applicable for distances of transfer ranging from 100 m up to 30 km, are used to calculate atmospheric concentration and deposit at different distances from the point of release. MISTRAL allows the use of different dose regulations or dose coefficient databases such as: - ICRP30 and ICPR71 for internal doses (inhalation, ingestion) - Despres/Kocher database or US-EPA Federal Guidance no.12 (ICPR72 for noble gases) for external exposure (from plume or ground). The initial instant of the release can be considered as the origin of time or a date format can be specified (could be useful in a crisis context). While the context is specified, the user define the meteorological conditions of the release. In normal operating mode (routine releases), the user gives the annual meteorological scheme. The data can be recorded in the MISTRAL meteorological database. In off-normal conditions mode, MISTRAL V1.1 allows the use of successive release stages for which the user gives the duration, the meteorological conditions, that is to say stability class, wind speed and direction and rainfall

  10. Plants as bio-indicators of subsurface conditions: impact of groundwater level on BTEX concentrations in trees.

    Science.gov (United States)

    Wilson, Jordan; Bartz, Rachel; Limmer, Matt; Burken, Joel

    2013-01-01

    Numerous studies have demonstrated trees' ability to extract and translocate moderately hydrophobic contaminants, and sampling trees for compounds such as BTEX can help delineate plumes in the field. However, when BTEX is detected in the groundwater, detection in nearby trees is not as reliable an indicator of subsurface contamination as other compounds such as chlorinated solvents. Aerobic rhizospheric and bulk soil degradation is a potential explanation for the observed variability of BTEX in trees as compared to groundwater concentrations. The goal of this study was to determine the effect of groundwater level on BTEX concentrations in tree tissue. The central hypothesis was increased vadose zone thickness promotes biodegradation of BTEX leading to lower BTEX concentrations in overlying trees. Storage methods for tree core samples were also investigated as a possible reason for tree cores revealing lower than expected BTEX levels in some sampling efforts. The water level hypothesis was supported in a greenhouse study, where water table level was found to significantly affect tree BTEX concentrations, indicating that the influx of oxygen coupled with the presence of the tree facilitates aerobic biodegradation of BTEX in the vadose zone.

  11. Condition monitoring with wind turbine SCADA data using Neuro-Fuzzy normal behavior models

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar

    2012-01-01

    System (ANFIS) models are employed to learn the normal behavior in a training phase, where the component condition can be considered healthy. In the application phase the trained models are applied to predict the target signals, e.g. temperatures, pressures, currents, power output, etc. The behavior......This paper presents the latest research results of a project that focuses on normal behavior models for condition monitoring of wind turbines and their components, via ordinary Supervisory Control And Data Acquisition (SCADA) data. In this machine learning approach Adaptive Neuro-Fuzzy Interference...... of the prediction error is used as an indicator for normal and abnormal behavior, with respect to the learned behavior. The advantage of this approach is that the prediction error is widely decoupled from the typical fluctuations of the SCADA data caused by the different turbine operational modes. To classify...

  12. Postnatal development of the hippocampal dentate gyrus under normal and experimental conditions

    International Nuclear Information System (INIS)

    Altman, J.; Bayer, S.

    Studies on postnatal maturation of the dentate gyrus are reviewed. Some topics discussed are: normal development of the dentate gyrus, cytogenesis, morphogenesis, synaptogenesis, gleogenesis, myelogenesis, development of the gyrus under experimental conditions, and effects of x radiation on cytogenesis and morphogenesis

  13. Recommended parameters for effect assessment of radioactive airborne effluents under normal condition of nuclear facilities

    International Nuclear Information System (INIS)

    Li Hong; Fang Dong; Sun Chengzhi; Xiao Naihong

    2003-01-01

    A set of models and default parameters are recommended for effect assessment of radioactive airborne effluents under normal condition of nuclear facilities in order to standardize the environmental effect assessment of nuclear facilities, and to simplify the observation and investigation in early phase. The paper introduces the input data and default parameters used in the model

  14. Normalization of informatisation parameter on airfield light-signal bar at flights in complex meteorological conditions

    Directory of Open Access Journals (Sweden)

    П.В. Попов

    2005-03-01

    Full Text Available  The technique of maintenance of the set level of flights safetivness is developed by normalization of informatisation parameters functional groups of light-signal lightings at technological stages of interaction of crew of the airplane with the airfield light-signals bar at flights in a complex weathercast conditions.

  15. French Contribution to the Specialists' Meeting on Demonstration of Structural Integrity under Normal and Fault Conditions

    International Nuclear Information System (INIS)

    Soulat, P.; Tavassoli, A.

    1981-01-01

    The following is a summary of a few selected programmes in France on the structural integrity of fast reactor components under normal and faulted conditions. The scope of the programmes selected is limited to that suggested by the specialists Meeting organisers

  16. The Serpentinite Subsurface Microbiome

    Science.gov (United States)

    Schrenk, M. O.; Nelson, B. Y.; Brazelton, W. J.

    2011-12-01

    Microbial habitats hosted in ultramafic rocks constitute substantial, globally-distributed portions of the subsurface biosphere, occurring both on the continents and beneath the seafloor. The aqueous alteration of ultramafics, in a process known as serpentinization, creates energy rich, high pH conditions, with low concentrations of inorganic carbon which place fundamental constraints upon microbial metabolism and physiology. Despite their importance, very few studies have attempted to directly access and quantify microbial activities and distributions in the serpentinite subsurface microbiome. We have initiated microbiological studies of subsurface seeps and rocks at three separate continental sites of serpentinization in Newfoundland, Italy, and California and compared these results to previous analyses of the Lost City field, near the Mid-Atlantic Ridge. In all cases, microbial cell densities in seep fluids are extremely low, ranging from approximately 100,000 to less than 1,000 cells per milliliter. Culture-independent analyses of 16S rRNA genes revealed low-diversity microbial communities related to Gram-positive Firmicutes and hydrogen-oxidizing bacteria. Interestingly, unlike Lost City, there has been little evidence for significant archaeal populations in the continental subsurface to date. Culturing studies at the sites yielded numerous alkaliphilic isolates on nutrient-rich agar and putative iron-reducing bacteria in anaerobic incubations, many of which are related to known alkaliphilic and subsurface isolates. Finally, metagenomic data reinforce the culturing results, indicating the presence of genes associated with organotrophy, hydrogen oxidation, and iron reduction in seep fluid samples. Our data provide insight into the lifestyles of serpentinite subsurface microbial populations and targets for future quantitative exploration using both biochemical and geochemical approaches.

  17. Comparative study; physiological and biochemical parameters of normal and induced dehydrated condition of rabbits

    International Nuclear Information System (INIS)

    Bashir, S.; Bukhari, I.

    2008-01-01

    Biochemical and physiological parameters like body weight, blood pH. Blood glucose, total lipids total protein, globulin, albumin and albumin/globulin ratio were determined in twelve rabbits each normal and after the induction of diseased condition i.e. dehydration. Statistically significant differences were identified when the comparison made between normal rabbits and their respective dehydrated group. Blood glucose total lipid packed cell. Volume and globulin increased significantly where where as body weight, albumin and albumin/globulin ratio decreased significantly. These differences in the physiological and biochemical parameters in disease induced condition require the necessity for analyzing this condition for the changes in the pharmacokinetics parameter like, absorption distribution metabolism and excretion leading to alteration in the pharmacokinetics of drug. (author)

  18. Microbial Influence on the Performance of Subsurface, Salt-Based Radioactive Waste Repositories. An Evaluation Based on Microbial Ecology, Bioenergetics and Projected Repository Conditions

    International Nuclear Information System (INIS)

    Swanson, J.S.; Reed, D.T.; Cherkouk, A.; Arnold, T.; Meleshyn, A.; Patterson, Russ

    2018-01-01

    For the past several decades, the Nuclear Energy Agency Salt Club has been supporting and overseeing the characterisation of rock salt as a potential host rock for deep geological repositories. This extensive evaluation of deep geological settings is aimed at determining - through a multidisciplinary approach - whether specific sites are suitable for radioactive waste disposal. Studying the microbiology of granite, basalt, tuff, and clay formations in both Europe and the United States has been an important part of this investigation, and much has been learnt about the potential influence of microorganisms on repository performance, as well as about deep subsurface microbiology in general. Some uncertainty remains, however, around the effects of microorganisms on salt-based repository performance. Using available information on the microbial ecology of hyper-saline environments, the bioenergetics of survival under high ionic strength conditions and studies related to repository microbiology, this report summarises the potential role of microorganisms in salt-based radioactive waste repositories

  19. Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions.

    Directory of Open Access Journals (Sweden)

    Valéria Mafra

    Full Text Available Real-time reverse transcription PCR (RT-qPCR has emerged as an accurate and widely used technique for expression profiling of selected genes. However, obtaining reliable measurements depends on the selection of appropriate reference genes for gene expression normalization. The aim of this work was to assess the expression stability of 15 candidate genes to determine which set of reference genes is best suited for transcript normalization in citrus in different tissues and organs and leaves challenged with five pathogens (Alternaria alternata, Phytophthora parasitica, Xylella fastidiosa and Candidatus Liberibacter asiaticus. We tested traditional genes used for transcript normalization in citrus and orthologs of Arabidopsis thaliana genes described as superior reference genes based on transcriptome data. geNorm and NormFinder algorithms were used to find the best reference genes to normalize all samples and conditions tested. Additionally, each biotic stress was individually analyzed by geNorm. In general, FBOX (encoding a member of the F-box family and GAPC2 (GAPDH was the most stable candidate gene set assessed under the different conditions and subsets tested, while CYP (cyclophilin, TUB (tubulin and CtP (cathepsin were the least stably expressed genes found. Validation of the best suitable reference genes for normalizing the expression level of the WRKY70 transcription factor in leaves infected with Candidatus Liberibacter asiaticus showed that arbitrary use of reference genes without previous testing could lead to misinterpretation of data. Our results revealed FBOX, SAND (a SAND family protein, GAPC2 and UPL7 (ubiquitin protein ligase 7 to be superior reference genes, and we recommend their use in studies of gene expression in citrus species and relatives. This work constitutes the first systematic analysis for the selection of superior reference genes for transcript normalization in different citrus organs and under biotic stress.

  20. Multiparametric magnetic resonance imaging characteristics of normal, benign and malignant conditions in the prostate

    Energy Technology Data Exchange (ETDEWEB)

    Visschere, Pieter J.L. de; Pattyn, Eva; Villeirs, Geert M. [Ghent University Hospital, Department of Radiology, Ghent (Belgium); Vral, Anne [Ghent University Hospital, Department of Basic Medical Sciences, Ghent (Belgium); Perletti, Gianpaolo [Ghent University Hospital, Department of Basic Medical Sciences, Ghent (Belgium); University of Insubria, Clinical Pharmacology, Medical and Surgical Sciences Section, Department of Biotechnology and Life Sciences, Varese (Italy); Praet, Marleen [Ghent University Hospital, Department of Pathology, Ghent (Belgium); Magri, Vittorio [Instituti Clinici di Perfezionamento, Urology Clinic, Milano (Italy)

    2017-05-15

    To identify the multiparametric magnetic resonance imaging (mpMRI) characteristics of normal, benign and malignant conditions in the prostate. Fifty-six histopathological whole-mount radical prostatectomy specimens from ten randomly selected patients with prostate cancer (PC) were matched with corresponding transverse mpMRI slices. The mpMRI was performed prior to biopsy and consisted of T2-weighted imaging (T2-WI), diffusion-weighted imaging (DWI), dynamic contrast-enhanced imaging (DCE) and magnetic resonance spectroscopic imaging (MRSI). In each prostate specimen, a wide range of histopathological conditions were observed. They showed consistent but overlapping characteristics on mpMRI. Normal glands in the transition zone showed lower signal intensity (SI) on T2-WI, lower ADC values and lower citrate peaks on MRSI as compared to the peripheral zone (PZ) due to sparser glandular elements and more prominent collagenous fibres. In the PZ, normal glands were iso-intense on T2-WI, while high SI areas represented cystic atrophy. Mimickers of well-differentiated PC on mpMRI were inflammation, adenosis, HG-PIN and post-atrophic hyperplasia. Each prostate is a unique mix of normal, benign and/or malignant areas that vary in extent and distribution resulting in very heterogeneous characteristics on mpMRI. Understanding the main concepts of this mpMRI-histopathological correlation may increase the diagnostic confidence in reporting mpMRI. (orig.)

  1. Thermal Behavior of Aerospace Spur Gears in Normal and Loss-of-Lubrication Conditions

    Science.gov (United States)

    Handschuh, Robert F.

    2015-01-01

    Testing of instrumented spur gears operating at aerospace rotorcraft conditions was conducted. The instrumented gears were operated in a normal and in a loss-of-lubrication environment. Thermocouples were utilized to measure the temperature at various locations on the test gears and a test utilized a full-field, high-speed infrared thermal imaging system. Data from thermocouples was recorded during all testing at 1 hertz. One test had the gears shrouded and a second test was run without the shrouds to permit the infrared thermal imaging system to take data during loss-of-lubrication operation. Both tests using instrumented spur gears were run in normal and loss-of-lubrication conditions. Also the result from four other loss-of-lubrication tests will be presented. In these tests two different torque levels were used while operating at the same rotational speed (10000 revolutions per minute).

  2. Simplified calculation method for radiation dose under normal condition of transport

    International Nuclear Information System (INIS)

    Watabe, N.; Ozaki, S.; Sato, K.; Sugahara, A.

    1993-01-01

    In order to estimate radiation dose during transportation of radioactive materials, the following computer codes are available: RADTRAN, INTERTRAN, J-TRAN. Because these codes consist of functions for estimating doses not only under normal conditions but also in the case of accidents, when nuclei may leak and spread into the environment by air diffusion, the user needs to have special knowledge and experience. In this presentation, we describe how, with a view to preparing a method by which a person in charge of transportation can calculate doses in normal conditions, the main parameters upon which the value of doses depends were extracted and the dose for a unit of transportation was estimated. (J.P.N.)

  3. Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions.

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhu

    Full Text Available Real-time reverse transcription PCR (RT-qPCR is a preferred method for rapid and accurate quantification of gene expression studies. Appropriate application of RT-qPCR requires accurate normalization though the use of reference genes. As no single reference gene is universally suitable for all experiments, thus reference gene(s validation under different experimental conditions is crucial for RT-qPCR analysis. To date, only a few studies on reference genes have been done in other plants but none in papaya. In the present work, we selected 21 candidate reference genes, and evaluated their expression stability in 246 papaya fruit samples using three algorithms, geNorm, NormFinder and RefFinder. The samples consisted of 13 sets collected under different experimental conditions, including various tissues, different storage temperatures, different cultivars, developmental stages, postharvest ripening, modified atmosphere packaging, 1-methylcyclopropene (1-MCP treatment, hot water treatment, biotic stress and hormone treatment. Our results demonstrated that expression stability varied greatly between reference genes and that different suitable reference gene(s or combination of reference genes for normalization should be validated according to the experimental conditions. In general, the internal reference genes EIF (Eukaryotic initiation factor 4A, TBP1 (TATA binding protein 1 and TBP2 (TATA binding protein 2 genes had a good performance under most experimental conditions, whereas the most widely present used reference genes, ACTIN (Actin 2, 18S rRNA (18S ribosomal RNA and GAPDH (Glyceraldehyde-3-phosphate dehydrogenase were not suitable in many experimental conditions. In addition, two commonly used programs, geNorm and Normfinder, were proved sufficient for the validation. This work provides the first systematic analysis for the selection of superior reference genes for accurate transcript normalization in papaya under different experimental

  4. Combining ability studies on yield related traits in wheat under normal and water stress conditions

    International Nuclear Information System (INIS)

    Saeed, A.; Khan, A.S.; Khaliq, I.

    2010-01-01

    Six diverse wheat cultivars/lines viz; Baviacore, Nesser, 9247, 9252, 9258 and 9267 were crossed in a complete diallel fashion to develop 30 F1 crosses, which were tested along with their parents under normal and water stress conditions. Numerical analysis was made for spike density, number of grains per spike, 100-grain weight, biological yield, grain yield and harvest index. Significant differences among genotypic mean were observed in all of the traits under both conditions. GCA and SCA differences were significant for all the traits under study except spike density and 100-grain weight in both conditions. Wheat variety Nesser showed maximum general combining ability value for spike density under water stress conditions and maximum GCA value for biological yield and grain yield under irrigated condition. The variety Baviacore proved best general combiner for number of grains per spike and harvest index under both conditions while biological yield and grain yield under water stress condition. Variety 9252 found best general combiner for 100-grain weight under both condition. The cross 9252 x Nesser showed maximum specific combining ability value for spike density and biological yield under irrigated while for 100-grain weight under water stress condition. 9258 x 9252 exhibited maximum SCA for number of grains per spike under irrigated while 9258 x Nesser under water stress condition. 9267 x Nesser showed maximum SCA for 100-grain weight under irrigated condition while spike density under water stress condition. 9258 x 9247 was proved best combiner for grain yield and harvest index irrigated while 9267 x 9258 for biological yield, grain yield and harvest index under water stress condition. (author)

  5. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1993-01-01

    This paper addresses spent fuel and high level waste transportation history and prospects, discusses accident histories of radioactive material transport, discusses emergency responder needs and provides a general description of the Transportation Intelligent Monitoring System (TRANSIMS) design. The key objectives of the monitoring system are twofold: (1) to facilitate effective emergency response to accidents involving a radioactive waste transportation package, while minimizing risk to the public and emergency first-response personnel, and (2) to allow remote monitoring of transportation vehicle and payload conditions to enable research into radioactive material transportation for normal and accident conditions. (J.P.N.)

  6. Low calcium culture condition induces mesenchymal cell-like phenotype in normal human epidermal keratinocytes

    International Nuclear Information System (INIS)

    Takagi, Ryo; Yamato, Masayuki; Murakami, Daisuke; Sugiyama, Hiroaki; Okano, Teruo

    2011-01-01

    Highlights: → Normal human epidermal keratinocytes serially cultured under low calcium concentration were cytokeratin and vimentin double positive cells. → The human keratinocytes expressed some epithelial stem/progenitor cell makers, mesenchymal cell markers, and markers of epithelial-mesenchymal transition. → Mesenchymal cell-like phenotype in the keratinocytes was suppressed under high-calcium condition. -- Abstract: Epithelial-mesenchymal transition (EMT) is an important cellular phenomenon in organ developments, cancer invasions, and wound healing, and many types of transformed cell lines are used for investigating for molecular mechanisms of EMT. However, there are few reports for EMT in normal human epithelial cells, which are non-transformed or non-immortalized cells, in vitro. Therefore, normal human epidermal keratinocytes (NHEK) serially cultured in low-calcium concentration medium (LCM) were used for investigating relations between differentiation and proliferation and mesenchymal-like phenotype in the present study, since long-term cultivation of NHEK is achieved in LCM. Interestingly, NHEK serially cultured in LCM consisted essentially of cytokeratin-vimentin double positive cells (98%), although the NHEK exhibited differentiation under high-calcium culture condition with 3T3 feeder layer. The vimentin expression was suppressed under high-calcium condition. These results may indicate the importance of mesenchymal-like phenotype for serially cultivation of NHEK in vitro.

  7. 2-regularity and 2-normality conditions for systems with impulsive controls

    Directory of Open Access Journals (Sweden)

    Pavlova Natal'ya

    2007-01-01

    Full Text Available In this paper a controlled system with impulsive controls in the neighborhood of an abnormal point is investigated. The set of pairs (u,μ is considered as a class of admissible controls, where u is a measurable essentially bounded function and μ is a finite-dimensional Borel measure, such that for any Borel set B, μ(B is a subset of the given convex closed pointed cone. In this article the concepts of 2-regularity and 2-normality for the abstract mapping Ф, operating from the given Banach space into a finite-dimensional space, are introduced. The concepts of 2-regularity and 2-normality play a great role in the course of derivation of the first and the second order necessary conditions for the optimal control problem, consisting of the minimization of a certain functional on the set of the admissible processes. These concepts are also important for obtaining the sufficient conditions for the local controllability of the nonlinear systems. The convenient criterion for 2-regularity along the prescribed direction and necessary conditions for 2-normality of systems, linear in control, are introduced in this article as well.

  8. Study on the abnormal data rejection and normal condition evaluation applied in wind turbine farm

    Science.gov (United States)

    Zhang, Ying; Qian, Zheng; Tian, Shuangshu

    2016-01-01

    The condition detection of wind turbine is always an important issue which attract more and more attentions because of the rapid development of wind farm. And the on-line data analysis is also difficult since a lot of measured data is collected. In this paper, the abnormal data rejection and normal condition evaluation of wind turbine is processed. At first, since there are large amounts of abnormal data in the normal operation of wind turbine, which is probably caused by fault, maintenance downtime, power-limited operation and failure of wind speed sensor, a novel method is proposed to reject abnormal data in order to make more accurate analysis for the wind turbine condition. The core principle of this method is to fit the wind power curves by using the scatter diagram. The data outside the area covered by wind power curves is the abnormal data. The calculation shows that the abnormal data is rejected effectively. After the rejection, the vibration signals of wind turbine bearing which is a critical component are analyzed and the relationship between the vibration characteristic value and the operating condition of wind turbine is discussed. It will provide powerful support for the accurate fault analysis of wind turbine.

  9. Mathematical model and computer code for coated particles performance at normal operating conditions

    International Nuclear Information System (INIS)

    Golubev, I.; Kadarmetov, I.; Makarov, V.

    2002-01-01

    Computer modeling of thermo-mechanical behavior of coated particles during operating both at normal and off-normal conditions has a very significant role particularly on a stage of new reactors development. In Russia a big experience has been accumulated on fabrication and reactor tests of CP and fuel elements with UO 2 kernels. However, this experience cannot be using in full volume for development of a new reactor installation GT-MHR. This is due to very deep burn-up of the fuel based on plutonium oxide (up to 70% fima). Therefore the mathematical modeling of CP thermal-mechanical behavior and failure prediction becomes particularly important. The authors have a clean understanding that serviceability of fuel with high burn-ups are defined not only by thermo-mechanics, but also by structured changes in coating materials, thermodynamics of chemical processes, 'amoeba-effect', formation CO etc. In the report the first steps of development of integrate code for numerical modeling of coated particles behavior and some calculating results concerning the influence of various design parameters on fuel coated particles endurance for GT-MHR normal operating conditions are submitted. A failure model is developed to predict the fraction of TRISO-coated particles. In this model it is assumed that the failure of CP depends not only on probability of SiC-layer fracture but also on the PyC-layers damage. The coated particle is considered as a uniform design. (author)

  10. Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

    Directory of Open Access Journals (Sweden)

    M. Bashirpour

    2016-09-01

    Full Text Available Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC in a speech emotion recognition system. We investigate its performance in emotion recognition using clean and noisy speech materials and compare it with the performances of the well-known MFCC, LPCC, RASTA-PLP, and also TEMFCC features. Speech samples are extracted from the Berlin emotional speech database (Emo DB and Persian emotional speech database (Persian ESD which are corrupted with 4 different noise types under various SNR levels. The experiments are conducted in clean train/noisy test scenarios to simulate practical conditions with noise sources. Simulation results show that higher recognition rates are achieved for PNCC as compared with the conventional features under noisy conditions.

  11. Subsurface Facility System Description Document

    International Nuclear Information System (INIS)

    Eric Loros

    2001-01-01

    The Subsurface Facility System encompasses the location, arrangement, size, and spacing of the underground openings. This subsurface system includes accesses, alcoves, and drifts. This system provides access to the underground, provides for the emplacement of waste packages, provides openings to allow safe and secure work conditions, and interfaces with the natural barrier. This system includes what is now the Exploratory Studies Facility. The Subsurface Facility System physical location and general arrangement help support the long-term waste isolation objectives of the repository. The Subsurface Facility System locates the repository openings away from main traces of major faults, away from exposure to erosion, above the probable maximum flood elevation, and above the water table. The general arrangement, size, and spacing of the emplacement drifts support disposal of the entire inventory of waste packages based on the emplacement strategy. The Subsurface Facility System provides access ramps to safely facilitate development and emplacement operations. The Subsurface Facility System supports the development and emplacement operations by providing subsurface space for such systems as ventilation, utilities, safety, monitoring, and transportation

  12. Results of tests under normal and abnormal operating conditions concerning LMFBR fuel element behaviour

    International Nuclear Information System (INIS)

    Languille, A.; Bergeonneau, P.; Essig, C.; Guerin, Y.

    1985-04-01

    The objective of this paper is to improve the knowledge on LMFBR fuel element behaviour during protected and unprotected transients in RAPSODIE and PHENIX reactors in order to evaluate its reliability. The range of the tests performed in these reactors is sufficiently large to cover normal and also extreme off normal conditions such as fuel melting. Results of such tests allow to better establish transient design limits for reactor structural components in particular for fuel pin cladding which play a lead role in controlling the accident sequence. Three main topics are emphasized in this paper: fuel melting during slow over-power excursions; influence of the fuel element geometrical evolution on reactivity feedback effects and reactor dynamic behaviour; clad damage evaluation during a transient (essentially very severe loss of flow)

  13. Effects of preheated combustion air on laminar coflow diffusion flames under normal and microgravity conditions

    Science.gov (United States)

    Ghaderi Yeganeh, Mohammad

    Global energy consumption has been increasing around the world, owing to the rapid growth of industrialization and improvements in the standard of living. As a result, more carbon dioxide and nitrogen oxide are being released into the environment. Therefore, techniques for achieving combustion at reduced carbon dioxide and nitric oxide emission levels have drawn increased attention. Combustion with a highly preheated air and low-oxygen concentration has been shown to provide significant energy savings, reduce pollution and equipment size, and uniform thermal characteristics within the combustion chamber. However, the fundamental understanding of this technique is limited. The motivation of the present study is to identify the effects of preheated combustion air on laminar coflow diffusion flames. Combustion characteristics of laminar coflow diffusion flames are evaluated for the effects of preheated combustion air temperature under normal and low-gravity conditions. Experimental measurements are conducted using direct flame photography, particle image velocimetry (PIV) and optical emission spectroscopy diagnostics. Laminar coflow diffusion flames are examined under four experimental conditions: normal-temperature/normal-gravity (case I), preheated-temperature/normal gravity (case II), normal-temperature/low-gravity (case III), and preheated-temperature/low-gravity (case IV). Comparisons between these four cases yield significant insights. In our studies, increasing the combustion air temperature by 400 K (from 300 K to 700 K), causes a 37.1% reduction in the flame length and about a 25% increase in peak flame temperature. The results also show that a 400 K increase in the preheated air temperature increases CH concentration of the flame by about 83.3% (CH is a marker for the rate of chemical reaction), and also increases the C2 concentration by about 60% (C2 is a marker for the soot precursor). It can therefore be concluded that preheating the combustion air

  14. Comparison of Static Balance among Blind, Deaf and Normal Children in Different Conditions

    Directory of Open Access Journals (Sweden)

    Aidin Vali-Zadeh

    2014-01-01

    Full Text Available Objective: Sensory systems including proprioceptive, vestibular and visual network play an important role in motor control. Loss of information from each sensory channel can cause body sway on static positions. Materials & Methods: Seventeen blind children (9 girls, 8 boys and 30 deaf children (14 girls, 16 boys participated as the sample groups in Ardabil city. Sixteen normal children (30 girls and 30 boys also selected as the control group. One leg standing and tandem stance tests (reliability=0.87-0.99 in two condition (eyes open and closed was used for static balance evaluation. One-Way ANOVA and LSD post hoc test was used to compare groups, and independent t-test was used for comparing sexes in each group by using SPSS (16 version software. Results: results showed there is no significant difference between blind, deaf and normal girls in any of the balance tasks (p>0.05. While the balance function of deaf and normal boys was better than blind boys in all balance tasks except for tandem stance with eyes closed (p=0.507. Blind girls were better than blind boys in all balance tasks (p=0.05, p=0.02, p=0.02. Deaf boys were better than girls with deafness in one leg stance and tandem stance (eyes open tasks (p=0.04, p=0.02, p=0.04 but there was no significant different between deaf boys and girls in any other tasks (p=0.63, p=0.29, p=0.89. Normal boys have better performance than girls and only in tandem stance (eyes closed (p=0.21 and one leg stance (left foot eyes open (p=0.99 there was no significant difference between normal boys and girls. Conclusion: findings showed that static balance in deaf and normal children were better than the blinds. Since persons with blindness are not able to compensate the visual loss for postural stability, they show decreased postural stability in static conditions. Inclusive identifying effective factors on balance and its weakness and problems in appropriate time, attention to this factors in training

  15. Evaluation of some advanced wheat lines (F7 in normal and drought stress conditions

    Directory of Open Access Journals (Sweden)

    R. Nikseresht

    2016-05-01

    Full Text Available For assessment of drought stress effects on agro characteristics of 30 lines and 6 wheat cultivars and for introducing of drought tolerant and susceptible ones one trial were established using split plot base of randomized complete block design with two replications, main plots were stress and non-stress condition and sub plots contain 30 lines and six wheat cultivars in the check trial, irrigation the farm was done with the normal regime, but in stress trial for germination of seeds and one irrigation in Isfand to the end of rooting the farm was irrigated. Within and end of growth season we measured some agronomic and morphological characters such as yield and its component, height, peduncle length, and etc. Responses of cultivars under stress and non-stress conditions were' different, for example drought stress reduced yield. In spite of this general yield reducing, we found some line, such as 2, 29, 23 had relatively high yield (in tree levels. In order to final evaluate using Factor Analysis, Principal Component, Cluster Analysis .Factor Analysis indicated that four important factors accounted for about 80.245 and 79.624 percent of the total variation among traits in normal and drought stress conditions. With cluster analysis of 36 lines and cultivar using Ward procedure based on Euclidean distance were grouped in 4 distance cluster.

  16. Normalized performance and load data for the deepwind demonstrator in controlled conditions

    DEFF Research Database (Denmark)

    Battisti, L.; Benini, E.; Brighenti, A.

    2016-01-01

    , derived from real scale measurements on a three-bladed Troposkien vertical-axis wind turbine, are manipulated in a convenient form to be easily compared with the typical outputs provided by simulation codes. The here proposed data complement and support the measurements already presented in "Wind Tunnel......Performance and load normalized coefficients, deriving from an experimental campaign of measurements conducted at the large scale wind tunnel of the Politecnico di Milano (Italy), are presented with the aim of providing useful benchmark data for the validation of numerical codes. Rough data...... Testing of the DeepWind Demonstrator in Design and Tilted Operating Conditions" (Battisti et al., 2016) [1]....

  17. Experimental loop for fast neutron fuels under normal, abnormal, transient and emergency conditions

    International Nuclear Information System (INIS)

    Bauge, M.; Colomez, G.; Marfaing, R.J.; Mourain, M.

    1976-01-01

    Within the scope of safety experiments on power reactor fuels, an experimental loop is described which can, by reduction of the flow, flush the sodium joint of vented mixed carbide fuel elements and allow the study of the resulting phenomena. With the help of the annex laboratories at OSIRIS, the control test can be analyzed and followed, with special attention to the study of the migration of fission products inside and outside the fuel. This apparatus can, of course, also be used for testing the fuels under normal and abnormal working conditions [fr

  18. Wind turbine condition monitoring based on SCADA data using normal behavior models

    DEFF Research Database (Denmark)

    Schlechtingen, Meik; Santos, Ilmar; Achiche, Sofiane

    2013-01-01

    This paper proposes a system for wind turbine condition monitoring using Adaptive Neuro-Fuzzy Interference Systems (ANFIS). For this purpose: (1) ANFIS normal behavior models for common Supervisory Control And Data Acquisition (SCADA) data are developed in order to detect abnormal behavior...... the applicability of ANFIS models for monitoring wind turbine SCADA signals. The computational time needed for model training is compared to Neural Network (NN) models showing the strength of ANFIS in training speed. (2) For automation of fault diagnosis Fuzzy Interference Systems (FIS) are used to analyze...

  19. EEG Oscillatory States: Universality, Uniqueness and Specificity across Healthy-Normal, Altered and Pathological Brain Conditions

    Science.gov (United States)

    Fingelkurts, Alexander A.; Fingelkurts, Andrew A.

    2014-01-01

    For the first time the dynamic repertoires and oscillatory types of local EEG states in 13 diverse conditions (examined over 9 studies) that covered healthy-normal, altered and pathological brain states were quantified within the same methodological and conceptual framework. EEG oscillatory states were assessed by the probability-classification analysis of short-term EEG spectral patterns. The results demonstrated that brain activity consists of a limited repertoire of local EEG states in any of the examined conditions. The size of the state repertoires was associated with changes in cognition and vigilance or neuropsychopathologic conditions. Additionally universal, optional and unique EEG states across 13 diverse conditions were observed. It was demonstrated also that EEG oscillations which constituted EEG states were characteristic for different groups of conditions in accordance to oscillations’ functional significance. The results suggested that (a) there is a limit in the number of local states available to the cortex and many ways in which these local states can rearrange themselves and still produce the same global state and (b) EEG individuality is determined by varying proportions of universal, optional and unique oscillatory states. The results enriched our understanding about dynamic microstructure of EEG-signal. PMID:24505292

  20. Autonomous monitoring of control hardware to predict off-normal conditions using NIF automatic alignment systems

    International Nuclear Information System (INIS)

    Awwal, Abdul A.S.; Wilhelmsen, Karl; Leach, Richard R.; Miller-Kamm, Vicki; Burkhart, Scott; Lowe-Webb, Roger; Cohen, Simon

    2012-01-01

    Highlights: ► An automatic alignment system was developed to process images of the laser beams. ► System uses processing to adjust a series of control loops until alignment criteria are satisfied. ► Monitored conditions are compared against nominal values with an off-normal alert. ► Automated health monitoring system trends off-normals with a large image history. - Abstract: The National Ignition Facility (NIF) is a high power laser system capable of supporting high-energy-density experimentation as a user facility for the next 30 years. In order to maximize the facility availability, preventive maintenance enhancements are being introduced into the system. An example of such an enhancement is a camera-based health monitoring system, integrated into the automated alignment system, which provides an opportunity to monitor trends in measurements such as average beam intensity, size of the beam, and pixel saturation. The monitoring system will generate alerts based on observed trends in measurements to allow scheduled pro-active maintenance before routine off-normal detection stops system operations requiring unscheduled intervention.

  1. Proton MR spectroscopic features of the human liver: in-vivo application to the normal condition

    International Nuclear Information System (INIS)

    Cho, Soon Gu; Kim, Mi Young; Kim, Young Soo; Choi, Won; Shin, Seok Hwan; Ok, Chul Soo; Suh, Chang Hae

    1999-01-01

    To determine the feasibility of MR spectroscopy in the living human liver, and to evaluate the corresponding proton MR spectroscopic features. In fifteen normal volunteers with neither previous nor present liver disease, the proton MR spectroscopic findings were reviewed. Twelve subjects were male and three were female ; they were aged between 28 and 32 (mean, 30) years. MR spectroscopy involved the use of a 1.5T GE Signa Horizon system with body coil(GE Medical System, Milwaukee, U.S.A). We used STEAM (Stimulated Echo-Acquisition Mode) with 3000/30 msec of TR/TE for signal acquisition, and the prone position without respiratory interruption. Mean and standard deviation of the ratios of glutamate+glutamine/lipids, phosphomonoesters/lipids, and glycogen+glucose/lipids were calculated from the area of their peaks. The proton MR spectroscopic findings of normal human livers showed four distinctive peaks, i.e. lipids, glutamate and glutamine complex, phosphomonoesters, and glycogen and glucose complex. The mean and standard deviation of the ratios of glutamate+glutamine/lipids, phosphomonoesters/lipids, and glycogen+glucose/lipids were 0.02±0.01, 0.01±0.01, and 0.04±0.03, respectively. In living normal human livers, MR spectroscopy can be successfully applied. When applied to a liver whose condition is pathologic, the findings can be used as a standard

  2. Autonomous monitoring of control hardware to predict off-normal conditions using NIF automatic alignment systems

    Energy Technology Data Exchange (ETDEWEB)

    Awwal, Abdul A.S., E-mail: awwal1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Wilhelmsen, Karl; Leach, Richard R.; Miller-Kamm, Vicki; Burkhart, Scott; Lowe-Webb, Roger; Cohen, Simon [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer An automatic alignment system was developed to process images of the laser beams. Black-Right-Pointing-Pointer System uses processing to adjust a series of control loops until alignment criteria are satisfied. Black-Right-Pointing-Pointer Monitored conditions are compared against nominal values with an off-normal alert. Black-Right-Pointing-Pointer Automated health monitoring system trends off-normals with a large image history. - Abstract: The National Ignition Facility (NIF) is a high power laser system capable of supporting high-energy-density experimentation as a user facility for the next 30 years. In order to maximize the facility availability, preventive maintenance enhancements are being introduced into the system. An example of such an enhancement is a camera-based health monitoring system, integrated into the automated alignment system, which provides an opportunity to monitor trends in measurements such as average beam intensity, size of the beam, and pixel saturation. The monitoring system will generate alerts based on observed trends in measurements to allow scheduled pro-active maintenance before routine off-normal detection stops system operations requiring unscheduled intervention.

  3. Mechanical stress analysis for a fuel rod under normal operating conditions

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Giovedi, Claudia; Serra, Andre da Silva; Abe, Alfredo Y.

    2013-01-01

    Nuclear reactor fuel elements consist mainly in a system of a nuclear fuel encapsulated by a cladding material subject to high fluxes of energetic neutrons, high operating temperatures, pressure systems, thermal gradients, heat fluxes and with chemical compatibility with the reactor coolant. The design of a nuclear reactor requires, among a set of activities, the evaluation of the structural integrity of the fuel rod submitted to different loads acting on the fuel rod and the specific properties (dimensions and mechanical and thermal properties) of the cladding material and coolant, including thermal and pressure gradients produced inside the rod due to the fuel burnup. In this work were evaluated the structural mechanical stresses of a fuel rod using stainless steel as cladding material and UO 2 with a low degree of enrichment as fuel pellet on a PWR (pressurized water reactor) under normal operating conditions. In this sense, tangential, radial and axial stress on internal and external cladding surfaces considering the orientations of 0 deg, 90 deg and 180 deg were considered. The obtained values were compared with the limit values for stress to the studied material. From the obtained results, it was possible to conclude that, under the expected normal reactor operation conditions, the integrity of the fuel rod can be maintained. (author)

  4. Hydrogen utilization potential in subsurface sediments

    Directory of Open Access Journals (Sweden)

    Rishi Ram Adhikari

    2016-01-01

    Full Text Available Subsurface microbial communities undertake many terminal electron-accepting processes, often simultaneously. Using a tritium-based assay, we measured the potential hydrogen oxidation catalyzed by hydrogenase enzymes in several subsurface sedimentary environments (Lake Van, Barents Sea, Equatorial Pacific and Gulf of Mexico with different predominant electron-acceptors. Hydrogenases constitute a diverse family of enzymes expressed by microorganisms that utilize molecular hydrogen as a metabolic substrate, product or intermediate. The assay reveals the potential for utilizing molecular hydrogen and allows qualitative detection of microbial activity irrespective of the predominant electron-accepting process. Because the method only requires samples frozen immediately after recovery, the assay can be used for identifying microbial activity in subsurface ecosystems without the need to preserve live material.We measured potential hydrogen oxidation rates in all samples from multiple depths at several sites that collectively span a wide range of environmental conditions and biogeochemical zones. Potential activity normalized to total cell abundance ranges over five orders of magnitude and varies, dependent upon the predominant terminal electron acceptor. Lowest per-cell potential rates characterize the zone of nitrate reduction and highest per-cell potential rates occur in the methanogenic zone. Possible reasons for this relationship to predominant electron acceptor include (i increasing importance of fermentation in successively deeper biogeochemical zones and (ii adaptation of H2ases to successively higher concentrations of H2 in successively deeper zones.

  5. Spent fuel transport cask thermal evaluation under normal and accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pugliese, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Lo Frano, R., E-mail: rosa.lofrano@ing.unipi.i [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy); Forasassi, G. [Department of Mechanical, Nuclear and Production Engineering, University of Pisa, Via Diotisalvi, no 2-56126 Pisa (Italy)

    2010-06-15

    The casks used for transport of nuclear materials, especially the spent fuel element (SPE), must be designed according to rigorous acceptance criteria and standards requirements, e.g. the International Atomic Energy Agency ones, in order to provide protection to people and environment against radiation exposure particularly in a severe accident scenario. The aim of this work was the evaluation of the integrity of a spent fuel cask under both normal and accident scenarios transport conditions, such as impact and rigorous fire events, in according to the IAEA accident test requirements. The thermal behaviour and the temperatures distribution of a Light Water Reactor (LWR) spent fuel transport cask are presented in this paper, especially with reference to the Italian cask designed by AGN, which was characterized by a cylindrical body, with water or air inside the internal cavity, and two lateral shock absorbers. Using the finite element code ANSYS a series of thermal analyses (steady-state and transient thermal analyses) were carried out in order to obtain the maximum fuel temperature and the temperatures field in the body of the cask, both in normal and in accidents scenario, considering all the heat transfer modes between the cask and the external environment (fire in the test or air in the normal conditions) as well as inside the cask itself. In order to follow the standards requirements, the thermal analyses in accidents scenarios were also performed adopting a deformed shape of the shock absorbers to simulate the mechanical effects of a previous IAEA 9 m drop test event. Impact tests on scale models of the shock absorbers have already been conducted in the past at the Department of Mechanical, Nuclear and Production Engineering, University of Pisa, in the '80s. The obtained results, used for possible new licensing approval purposes by the Italian competent Authority of the cask for PWR spent fuel cask transport by the Italian competent Authority, are

  6. [Structure of maxillary sinus mucous membrane under normal conditions and in odontogenic perforative sinusitis].

    Science.gov (United States)

    Baĭdik, O D; Logvinov, S V; Zubarev, S G; Sysoliatin, P G; Gurin, A A

    2011-01-01

    Methods of light, electron microscopy and immunohistochemistry were used to study the samples of maxillary sinus (MS) mucous membrane (MM) under normal conditions and in odontogenic sinusitis. To study the normal structure, the samples were obtained at autopsy from 26 human corpses 12-24 hours after death. Electron microscopic and immunohistochemical study was performed on biopsies of grossly morphologically unchanged MS MM, obtained during the operations for retention cysts in 6 patients. MS MM in perforative sinusitis was studied using the biopsies obtained from 43 patients. The material is broken into 4 groups depending on perforative sinusitis duration. Under normal conditions, MS MM is lined with a pseudostratified columnar ciliated epithelium. Degenerative changes of ciliated epithelial cells were already detected at short time intervals after MS perforations and become apparent due to reduction of specific volume of mitochondria and, rough endoplasmic reticulum, and increase of nuclear-cytoplasmic ratio. In the globlet cells, the reduction of nuclear-cytoplasmic ratio was associated with the disturbance of the secretory product release. At time intervals exceeding 3 months, epithelium underwent metaplasia into simple cuboidal and stratified squamous keratinized, while in MS MM lamina propria, cellular infiltration was increased. CD4+ cell content in sinus MM gradually increased, while at late periods after perforation occurrence it decreased. Low CD4+ cell count within the epithelium and the absence of muromidase on the surface of MS MM was detected. With the increase of the time interval since MS perforation, the number of CD8+ and CD20+ cells in MS MM was found to increase.

  7. Review of the Effects of Normal Conditions of Transport on Spent Fuel Integrity in Transportation Casks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Junggoo; Yoo, Youngik; Lee, Seongki; Lim, Chaejoon [Korea Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2014-10-15

    Spent fuel(SF) storage capacity of each domestic nuclear power plant will reach a saturated state in the near future. Although there are several methods of SF disposal, interim storage is suggested as the most realistic and promising alternative. SF integrity evaluation is a regulatory requirement that is described in Part 71 of Code of Federal Regulations, Title 10 of the U..S. NRC licensing requirement. In this paper, the report is reviewed written by EPRI in US and it is helpful to a development of domestic SF integrity evaluation technology. EPRI report about integrity evaluation method on normal conditions of high burn-up spent fuel transport is reviewed. First, dynamic forces occurred in one-foot side drop are calculated. And deformation patterns and fuel rods responses by dynamic forces calculated from spent fuel and cask model are analyzed. It is shown that the damage of fuel rods is not occurred by the dynamic forces on normal conditions. Assembly distortion is not predicted, by virtue of the facts that the spacer grids do not experience significant permanent deformation. Axial forces, bending moments and pinch forces of fuel rods are calculated and compared with the results under the hypothetical accident conditions. No occurrence of transverse tearing mode that is the most serious damage mode in side drop case is predicted. Till now, in Korea, regulatory requirements related with structural integrity of spent fuel are not specified such as 10CFR71. To establish own regulation standards, producing and analyzing sufficient experimental data must be performed preferentially. Based on this, failure analysis and criteria establishment are necessary through modeling and analyzing of spent fuel.

  8. Ignition and combustion of bulk metals under elevated, normal and reduced gravity conditions

    Science.gov (United States)

    Abbud-Madrid, Angel; Branch, Melvyn C.; Daily, John W.

    1995-01-01

    This research effort is aimed at providing further insight into this multi-variable dependent phenomena by looking at the effects of gravity on the ignition and combustion behavior of metals. Since spacecraft are subjected to higher-than-1g gravity loads during launch and reentry and to zero-gravity environments while in orbit, the study of ignition and combustion of bulk metals at different gravitational potentials is of great practical concern. From the scientific standpoint, studies conducted under microgravity conditions provide simplified boundary conditions since buoyancy is removed, and make possible the identification of fundamental ignition mechanisms. The effect of microgravity on the combustion of bulk metals has been investigated by Steinberg, et al. on a drop tower simulator. However, no detailed quantitative work has been done on ignition phenomena of bulk metals at lower or higher-than-normal gravitational fields or on the combustion characteristics of metals at elevated gravity. The primary objective of this investigation is the development of an experimental system capable of providing fundamental physical and chemical information on the ignition of bulk metals under different gravity levels. The metals used in the study, iron (Fe), titanium (Ti), zirconium (Zr), magnesium (Mg), zinc (Zn), and copper (Cu) were selected because of their importance as elements of structural metals and their simple chemical composition (pure metals instead of multi-component alloys to avoid complication in morphology and spectroscopic studies). These samples were also chosen to study the two different combustion modes experienced by metals: heterogeneous or surface oxidation, and homogeneous or gas-phase reaction. The experimental approach provides surface temperature profiles, spectroscopic measurements, surface morphology, x-ray spectrometry of metals specimens and their combustion products, and high-speed cinematography of the heating, ignition and combustion

  9. Characterization of accumulated precipitates during subsurface iron removal

    KAUST Repository

    Van Halem, Doris

    2011-01-01

    The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O2-rich water oxidizes adsorbed Fe 2+, creating a subsurface oxidation zone. When groundwater abstraction is resumed, the soluble Fe 2+ is adsorbed and water with reduced Fe concentrations is abstracted for multiple volumes of the injection water. In this article, Fe accumulation deposits in the aquifer near subsurface treatment wells were identified and characterized to assess the sustainability of subsurface iron removal regarding clogging of the aquifer and the potential co-accumulation of other groundwater constituents, such as As. Chemical extraction of soil samples, with Acid-Oxalate and HNO3, showed that Fe had accumulated at specific depths near subsurface iron removal wells after 12 years of operation. Whether it was due to preferred flow paths or geochemical mineralogy conditions; subsurface iron removal clearly favoured certain soil layers. The total Fe content increased between 11.5 and 390.8 mmol/kg ds in the affected soil layers, and the accumulated Fe was found to be 56-100% crystalline. These results suggest that precipitated amorphous Fe hydroxides have transformed to Fe hydroxides of higher crystallinity. These crystalline, compact Fe hydroxides have not noticeably clogged the investigated well and/or aquifer between 1996 and 2008. The subsurface iron removal wells even need less frequent rehabilitation, as drawdown increases more slowly than in normal production wells. Other groundwater constituents, such as Mn, As and Sr were found to co-accumulate with Fe. Acid extraction and ESEM-EDX showed that Ca occurred together with Fe and by X-ray Powder Diffraction it was identified as calcite. © 2010 Elsevier Ltd. All rights reserved.

  10. Assessment of radiation doses in normal operation, upset accident conditions at the Olkiluoto nuclear waste facility

    International Nuclear Information System (INIS)

    Rossi, J.; Raiko, H.; Suolanen, V.

    2009-09-01

    Radiation doses for workers of the facility, for inhabitants in the environment and for terrestrial ecosystem possibly caused by the encapsulation and disposal facility to be built at Olkiluoto during its operation were considered in the study. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical abnormal fault and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that on average one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling space and to some degree to the atmosphere through the ventilation stack equipped with redundant filters. The critical group is conservatively assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. The dose value to a member of the critical group was calculated on the basis of the weather data in such a way that greater dose than obtained here is caused only in 0.5 percent of dispersion conditions. The results obtained indicate that during normal operation the doses to workers remain small and the dose to the member of the critical group is less than 0,001 mSv per year. In the case of hypothetical fault and accident releases the offsite doses do not exceed either the limit values set by the safety authority. The highest dose rates to the reference organisms of the terrestrial ecosystem with conservative assumptions from the largest release were estimated to be of the order of 100 μ Gy/h at the distance of 200 m. As a chronic exposure this dose rate is expected to bring up detrimental

  11. Microbial activity in the terrestrial subsurface

    International Nuclear Information System (INIS)

    Kaiser, J.P.; Bollag, J.M.

    1990-01-01

    Little is known about the layers under the earth's crust. Only in recent years have techniques for sampling the deeper subsurface been developed to permit investigation of the subsurface environment. Prevailing conditions in the subsurface habitat such as nutrient availability, soil composition, redox potential, permeability and a variety of other factors can influence the microflora that flourish in a given environment. Microbial diversity varies between geological formations, but in general sandy soils support growth better than soils rich in clay. Bacteria predominate in subsurface sediments, while eukaryotes constitute only 1-2% of the microorganisms. Recent investigations revealed that most uncontaminated subsurface soils support the growth of aerobic heteroorganotrophic bacteria, but obviously anaerobic microorganisms also exist in the deeper subsurface habitat. The microorganisms residing below the surface of the earth are capable of degrading both natural and xenobiotic contaminants and can thereby adapt to growth under polluted conditions. (author) 4 tabs, 77 refs

  12. MPPT Schemes for PV System under Normal and Partial Shading Condition: A Review

    Directory of Open Access Journals (Sweden)

    Malik Sameeullah

    2016-08-01

    Full Text Available The photovoltaic system is one of the renewable energy device, which directly converts solar radiation into electricity. The I-V characteristics of PV system are nonlinear in nature and under variable Irradiance and temperature, PV system has a single operating point where the power output is maximum, known as Maximum Power Point (MPP and the point varies on changes in atmospheric conditions and electrical load. Maximum Power Point Tracker (MPPT is used to track MPP of solar PV system for maximum efficiency operation. The various MPPT techniques together with implementation are reported in literature. In order to choose the best technique based upon the requirements, comprehensive and comparative study should be available. The aim of this paper is to present a comprehensive review of various MPPT techniques for uniform insolation and partial shading conditions. Furthermore, the comparison of practically accepted and widely used techniques has been made based on features, such as control strategy, type of circuitry, number of control variables and cost. This review work provides a quick analysis and design help for PV systems. Article History: Received March 14, 2016; Received in revised form June 26th 2016; Accepted July 1st 2016; Available online How to Cite This Article: Sameeullah, M. and Swarup, A. (2016. MPPT Schemes for PV System under Normal and Partial Shading Condition: A Review. Int. Journal of Renewable Energy Development, 5(2, 79-94. http://dx.doi.org/10.14710/ijred.5.2.79-94 

  13. US of the Nongravid Cervix with Multimodality Imaging Correlation: Normal Appearance, Pathologic Conditions, and Diagnostic Pitfalls.

    Science.gov (United States)

    Wildenberg, Joseph C; Yam, Benjamin L; Langer, Jill E; Jones, Lisa P

    2016-01-01

    The adult uterine cervix may exhibit a wide variety of pathologic conditions that include benign entities (eg, cervicitis, hyperplasia, nabothian cysts, cervical polyps, leiomyomas, endometriosis, and congenital abnormalities) as well as malignant lesions, particularly cervical carcinoma. In addition, lesions that arise in the uterine body may secondarily involve the cervix, such as endometrial carcinoma and prolapsed intracavitary masses. Many of these conditions can be identified and characterized at ultrasonography (US), which is considered the first-line imaging examination for the female pelvis. However, examination of the cervix is often cursory during pelvic US, such that cervical disease may be overlooked or misdiagnosed. Transabdominal US of the cervix may not afford sufficient spatial resolution to depict cervical disease in many patients; therefore, endovaginal US is considered the optimal technique. Use of supplemental imaging techniques, particularly the application of transducer pressure on the cervix, may be helpful. This review describes the normal appearance of the cervix at US, the appearance of cervical lesions and conditions that mimic abnormalities at US, and optimal US techniques for evaluation of the cervix. This information will help radiologists detect and diagnose cervical abnormalities more confidently at pelvic US. Online supplemental material is available for this article. (©)RSNA, 2016.

  14. Analysis of radionuclide dispersion at normal condition for AEC 1000 MW reactor power

    International Nuclear Information System (INIS)

    Sri Kuntjoro

    2010-01-01

    Analysis for radionuclide dispersion for the Atomic Energy Agency (AEC) 3,568 MWth Power Reactor, equal to the 1,000 MWe at normal condition has been done. Analysis was done for two piles that is separated by 500 m distance and angle of 90° one to other. Initial pace in doing the analysis is to determine reactors source term using ORIGEN2 and EMERALD NORMAL. computer code program. ORIGEN2 applied to determine radionuclide inventory emerged in the reactor. Hereinafter, by using Emerald Normal Computer code is calculated source term reaching the reactor stack. To analyze dose received by population is done by using PC-CREAM computer code. Calculation done for one and two PLTN attached in site candidate of plants. The result showed is that the highest radionuclide release for one PLTN is at 1 km distance and to 9 th zone toward ( 19.25° ) and for two PLTN is at 1 km distance and to 10 th zone toward (21.75° ). Radionuclide which up to population through two pathways that are foodstuff and inhalation. To foodstuff comes from radionuclide I 131 , and the biggest passed from milk product with 53.40 % for one and also two PLTN For inhalation pathway the highest radionuclide contribution come from Kr 85m is about 53.80 %. The highest total dose received by population is at 1 Km distance received by baby that is 4.10 µSi and 11.26 µSi for one and two PLTN respectively. Those result are very small compared to the maximum permission dose to population issued by regulatory body that is equal to 1 mSi. (author)

  15. Specialists’ Meeting on Demonstration of Structural Integrity under Normal and Faulted Conditions. Summary Report

    International Nuclear Information System (INIS)

    1981-03-01

    The Specialists' Meeting on ''Demonstration of Structural Integrity under Normal and Faulted Conditions'' was held at Chester, United Kingdom on 3-5 June 1980. The meeting was sponsored by the International Atomic Energy Agency (IAEA) on the recommendation of the International Working Group on Past Reactors (IWGFR). Twenty-one participants from France, the Federal Republic of Germany, Italy, Japan, the Netherlands, the United Kingdom, the United States of America and two international organizations, CEC and IAEA, attended. The purpose of the meeting was to review and discuss methods for assessing the integrity of the LMFBR safety-related structures during normal and abnormal operation, especially in the presence of defects, and to recommend future development. The technical sessions were divided into four topical sessions as follows: 1. National Review Presentations on Demonstration of Structural Integrity; 2. Material Properties; 3. Structural Analysis; 4. Design Approaches and Assessment Experience. During the meeting papers were presented by the participants on behalf of their countries or organizations. Each presentation was followed by an open discussion in the subject covered by the paper and subsequently, session summaries were drafted. After the formal sessions were completed, a final discussion session was held and general conclusions and recommendations were reached by consensus. Session summaries, general conclusions and recommendations, national review papers presented during the first session as well as the agenda of the meeting and the list of participants are given

  16. Hospital and Pre-Hospital Triage Systems in Disaster and Normal Conditions; a Review Article

    Directory of Open Access Journals (Sweden)

    Saeed Safari

    2015-02-01

    Full Text Available Triage is a priority classification system based on the severity of problem to do the best therapeutic proceedings for patients in the less time. A triage system should be performed in a way which can make a decision with high accuracy and in the least time for each patient. Simplicity and reliability of the performance are the most important features of a standard triage system. An appropriate triage causes to increase the quality of health care services and patients’ satisfaction rate, decrease the waiting time as well as mortality rate, and increase the yield and efficiency of emergency wards along with reducing the related expenses. Considering to the above statements, in the present study the history of triage formation was evaluated and categorizing of all triage systems regarding prehospital and hospital as well as triage in normal and critical conditions were assessed, too.

  17. Autoradiography of DNA from Hela cells under normal conditions and after treatment with hydroxyurea

    International Nuclear Information System (INIS)

    Martinova, Y.S.; Angelova, P.A.; Roeva, I.G.

    1984-01-01

    The results are presented of the first stage of the elaboration of the novel autoradiographic technique for studying the replication of DNA fibers from nonsynchronized Hela cell cultures under normal conditions and after treatment with hydroxyurea. The preparations were covered with liquid nuclear emulsion Ilford L 4 . Exposure was carried out for 3 months at 4 deg C. After development, the autoradiograms were recorded quantitatively, and the length of the individual replicative segments was measured by means of an object micrometers. For each group (control and experimental) 100 segments from different cells were recorded. The results obtained were subjected to mathematical-statistical processing for determining the standard deviation. The application of hidroxyurea highly reduces the replicative elements, i.e. it actually inhibits DNA synthesis. This inhibition is due to reduction in the production of the four endogenous deoxynucleotides and affects the length of growth of the DNA chain, but the interreplicative distance as well

  18. Structural performance of a multipurpose canister shell for HLNW under normal handling conditions

    International Nuclear Information System (INIS)

    Ladkany, S.G.; Rajagopalan, R.

    1994-01-01

    A Multipurpose Canister (MPC) is analyzed for critical stresses that occur during normal handling conditions and accidental scenarios. Linear and Non-linear Finite Element Analysis is performed and the stresses at various critical locations in the MPC and its weldments are studied extensively. Progressive failure analysis of the MPC's groove and fillet welds, is presented. The structural response of the MPC to dynamic lifting loads, to loads resulting from an accidental slippage of a crane cable carrying the MPC, and from the impact between two canisters, is evaluated. Nonlinear structural analysis is used in the evaluation of the local buckling and the ultimate failure phenomena in the shell when the steel is in the strain hardening state during impact. Results make a case for increasing the thickness of the shell and all the welds

  19. Predictions of structural integrity of steam generator tubes under normal operating, accident, and severe accident conditions

    International Nuclear Information System (INIS)

    Majumdar, S.

    1996-09-01

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation is confirmed by further tests at high temperatures as well as by finite element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation is confirmed by finite element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure is developed and validated by tests under varying temperature and pressure loading expected during severe accidents

  20. LHC Beam Dump Design Study - Part III : Off-normal operating conditions

    CERN Document Server

    Bruno, L; Ross, M; Sala, P

    2000-01-01

    The LHC beam dump design study has been preliminarily substantiated by energy deposition simulations (Part I) and heat transfer analyses (Part II). The present report is devoted to the abnormal operating conditions induced by a malfunction of the beam diluters. A general approach to the analysis of off-normal operation is presented, which is derived from standard design norms adopted in the nuclear industry. Attention is focused mainly on the carbon core, which is longitudinally split into segments of different density in order to better distribute the deposited energy. The maximum energy density it absorbs decreases by at least 33%, compared to a uniform standard density carbon core. This structure may sustain any partial sweep failure without major damage, up to the ultimate beam intensity and energy. To minimise the risks inherent in a fully unswept beam, a sacrificial graphite mandrel will be placed on the core axis, surrounded by a thick high strength carbon-carbon composite tube. With this arrangement, ...

  1. Changes in working conditions and major weight gain among normal- and overweight midlife employees.

    Science.gov (United States)

    Niskanen, Riikka; Holstila, Ansku; Rahkonen, Ossi; Lallukka, Tea

    2017-11-01

    Objectives We aimed to examine the association between changes in psychosocial working conditions and major weight gain among midlife women and men. Furthermore, we examined the associations separately among normal- and overweight participants. Methods We used survey data among employees of the City of Helsinki, Finland, from 2000-2002 (phase 1, N=8960), 2007 (phase 2, N=7332), and 2012 (phase 3, N=6814), with a final study sample of 4369 participants. We examined changes in job strain, job demands, and job control from phase 1 to 2. We defined major weight gain as ≥10% weight gain between phases 1 and 3 based on self-reported weight (kg). We performed logistic regression analysis adjusting for baseline age, marital status, and occupational class, stratifying by gender and by baseline body mass index. Results Job demands among both genders and job strain among women was associated with major weight gain. Furthermore, increased job demands [odds ratio (OR) 1.52, 95% CI 1.05-2.20] or increased job strain (OR 1.53, 95% CI 1.11-2.11) was associated with major weight gain among overweight women. Normal-weight men reporting decreased job demands (OR 4.11, 95% CI 1.48-11.40) and overweight men reporting increasing job demands (OR 2.93, 95% CI 1.26-6.82) exhibited higher odds of major weight gain. Conclusions Associations between working conditions and weight gain appeared primarily weak. Our study suggests that overweight individuals might be at a higher risk of weight gain when facing psychosocial strain in the workplace.

  2. 3D imaging of the mitochondrial redox state of rat hearts under normal and fasting conditions

    Directory of Open Access Journals (Sweden)

    He N. Xu

    2014-03-01

    Full Text Available The heart requires continuous ATP availability that is generated in the mitochondria. Although studies using the cell culture and perfused organ models have been carried out to investigate the biochemistry in the mitochondria in response to a change in substrate supply, mitochondrial bioenergetics of heart under normal feed or fasting conditions has not been studied at the tissue level with a sub-millimeter spatial resolution either in vivo or ex vivo. Oxidation of many food-derived metabolites to generate ATP in the mitochondria is realized through the NADH/NAD+ couple acting as a central electron carrier. We employed the Chance redox scanner — the low-temperature fluorescence scanner to image the three-dimensional (3D spatial distribution of the mitochondrial redox states in heart tissues of rats under normal feeding or an overnight starvation for 14.5 h. Multiple consecutive sections of each heart were imaged to map three redox indices, i.e., NADH, oxidized flavoproteins (Fp, including flavin adenine dinucleotide (FAD and the redox ratio NADH/Fp. The imaging results revealed the micro-heterogeneity and the spatial distribution of these redox indices. The quantitative analysis showed that in the fasted hearts the standard deviation of both NADH and Fp, i.e., SD_NADH and SD_Fp, significantly decreased with a p value of 0.032 and 0.045, respectively, indicating that the hearts become relatively more homogeneous after fasting. The fasted hearts contained 28.6% less NADH (p = 0.038. No significant change in Fp was found (p = 0.4. The NADH/Fp ratio decreased with a marginal p value (0.076. The decreased NADH in the fasted hearts is consistent with the cardiac cells' reliance of fatty acids consumption for energy metabolism when glucose becomes scarce. The experimental observation of NADH decrease induced by dietary restriction in the heart at tissue level has not been reported to our best knowledge. The Chance redox scanner demonstrated the

  3. 3D IMAGING OF THE MITOCHONDRIAL REDOX STATE OF RAT HEARTS UNDER NORMAL AND FASTING CONDITIONS.

    Science.gov (United States)

    Xu, He N; Zhou, Rong; Moon, Lily; Feng, Min; Li, Lin Z

    2014-03-01

    The heart requires continuous ATP availability that is generated in the mitochondria. Although studies using the cell culture and perfused organ models have been carried out to investigate the biochemistry in the mitochondria in response to a change in substrate supply, mitochondrial bioenergetics of heart under normal feed or fasting conditions has not been studied at the tissue level with a sub-millimeter spatial resolution either in vivo or ex vivo . Oxidation of many food-derived metabolites to generate ATP in the mitochondria is realized through the NADH/NAD + couple acting as a central electron carrier. We employed the Chance redox scanner - the low-temperature fluorescence scanner to image the three-dimensional (3D) spatial distribution of the mitochondrial redox states in heart tissues of rats under normal feeding or an overnight starvation for 14.5 h. Multiple consecutive sections of each heart were imaged to map three redox indices, i.e., NADH, oxidized flavoproteins (Fp, including flavin adenine dinucleotide (FAD)) and the redox ratio NADH/Fp. The imaging results revealed the micro-heterogeneity and the spatial distribution of these redox indices. The quantitative analysis showed that in the fasted hearts the standard deviation of both NADH and Fp, i.e., SD_NADH and SD_Fp, significantly decreased with a p value of 0.032 and 0.045, respectively, indicating that the hearts become relatively more homogeneous after fasting. The fasted hearts contained 28.6% less NADH ( p = 0.038). No significant change in Fp was found ( p = 0.4). The NADH/Fp ratio decreased with a marginal p value (0.076). The decreased NADH in the fasted hearts is consistent with the cardiac cells' reliance of fatty acids consumption for energy metabolism when glucose becomes scarce. The experimental observation of NADH decrease induced by dietary restriction in the heart at tissue level has not been reported to our best knowledge. The Chance redox scanner demonstrated the feasibility of 3D

  4. A comparison of cytokine responses during prolonged cycling in normal and hot environmental conditions

    Directory of Open Access Journals (Sweden)

    Ludmila M Cosio-Lima

    2011-01-01

    Full Text Available Ludmila M Cosio-Lima, Bhargav V Desai, Petra B Schuler, Lesley Keck, Logan ScheelerDepartment of Health, Leisure, and Exercise Science, University of West Florida, Pensacola, FL, USAPurpose: Components of immune function are affected by physical activity in an adverse environment. The purpose of this study was to compare plasma differences in inflammatory cytokines including tumor necrosis factor α (TNF-α and interleukin 6 (IL-6, in addition to the stress hormone cortisol, during prolonged cycling under normal and hot environmental conditions in elite cyclists.Methods and design: Six trained elite male cyclists (27 ± 8 years; 75.5 ± 4 kg; maximum oxygen uptake [VO2max] = 66 ± 6 mL/kg/min, mean ± SD. The cyclists biked for 2.5 h at their prescribed 60% maximum exercise workload (Wmax or 75% VO2max either in an environmental chamber set at 15°C and 40% relative humidity (NEUTRAL or at 35°C and 40% relative humidity (HOT. The cyclists were given 4 mL of water/kg body weight every 15 min under both conditions.Results: Total cortisol concentrations were elevated (P < 0.05 immediately postexercise and 12 h postexercise in both the NEUTRAL and HOT conditions. TNF-α concentrations were only significantly (P = 0.045 elevated postexercise in HOT conditions. During the HOT conditions, a significant (P = 0.006 and 0.007, respectively difference in IL-6 was seen immediately after and 12 h postexercise. During the NEUTRAL condition, IL-6 was only significantly elevated postexercise (P < 0.05.Conclusions: Heat exposure during a long bout of exercise is sufficient to elicit stress response in elite cyclists. However, the degree of release of anti-inflammatory and proinflammatory cytokines might be related to several factors that include the athlete’s fitness level, hydration status, exercise intensity, and length of exposure to hot environments.Keywords: cytokines, inflammation, heat, exercise, performance 

  5. Assessment of Radionuclides Release from Inshas LILW Disposal Facility Under Normal and Unusual Operational Conditions

    International Nuclear Information System (INIS)

    Zaki, A.A.

    2008-01-01

    Disposing of low and intermediate radioactive waste (LILW) is a big concern for Egypt due to the accumulated waste as a result of past fifty years of peaceful nuclear applications. Assessment of radionuclides release from Inshas LILW disposal facility under normal and unusual operational conditions is very important in order to apply for operation license of the facility. Aqueous release of radionuclides from this disposal facility is controlled by water flow, access of the water to the wasteform, release of the radionuclides from the wasteform, and transport to the disposal facility boundary. In this work, the release of 137 Cs , 6C o, and 90 Sr radionuclides from the Inshas disposal facility was studied under the change of operational conditions. The release of these radio contaminants from the source term to the unsaturated and saturated zones , to groundwater were studied. It was found that the concentration of radionuclides in a groundwater well located 150 m away from the Inshas disposal facility is less than the maximum permissible concentration in groundwater in both cases

  6. Water reactor fuel behaviour and fission products release in off-normal and accident conditions

    International Nuclear Information System (INIS)

    1987-09-01

    The present meeting was scheduled by the International Atomic Energy Agency upon the proposal of the Members of the International Working Group on Water Reactor Fuel Performance and Technology and held at the IAEA Headquarters in Vienna from 10 to 13 November 1986. Thirty participants from 17 countries and an international organization attended the meeting. Eighteen papers were presented from 13 countries and one international organization. The meeting was composed of four sessions and covered subjects related to: physico-chemical properties of core materials under off-normal conditions, and their interactions up to and after melt-down (5 papers); core materials deformation, relocation and core coolability under (severe) accident conditions (4 papers); fission products release: including experience, mechanisms and modelling (5 papers); power plant experience (4 papers). A separate abstract was prepared for each of these 18 papers. Four working groups covering the above-mentioned topics were held to discuss the present status of the knowledge and to develop recommendations for future activities in this field. Refs, figs and tabs

  7. Evaluation of gap heat transfer model in ELESTRES for CANDU fuel element under normal operating conditions

    International Nuclear Information System (INIS)

    Lee, Kang Moon; Ohn, Myung Ryong; Im, Hong Sik; Choi, Jong Hoh; Hwang, Soon Taek

    1995-01-01

    The gap conductance between the fuel and the sheath depends strongly on the gap width and has a significant influence on the amount of initial stored energy. The modified Ross and Stoute gap conductance model in ELESTRES is based on a simplified thermal deformation model for steady-state fuel temperature calculations. A review on a series of experiments reveals that fuel pellets crack, relocate, and are eccentrically positioned within the sheath rather than solid concentric cylinders. In this paper, the two recently-proposed gap conductance models (offset gap model and relocated gap model) are described and are applied to calculate the fuel-sheath gap conductances under experimental conditions and normal operating conditions in CANDU reactors. The good agreement between the experimentally-inferred and calculated gap conductance values demonstrates that the modified Ross and Stoute model was implemented correctly in ELESTRES. The predictions of the modified Ross and Stoute model provide conservative values for gap heat transfer and fuel surface temperature compared to the offset gap and relocated gap models for a limiting power envelope. 13 figs., 3 tabs., 16 refs. (Author)

  8. Subsurface microbial habitats on Mars

    Science.gov (United States)

    Boston, P. J.; Mckay, C. P.

    1991-01-01

    We developed scenarios for shallow and deep subsurface cryptic niches for microbial life on Mars. Such habitats could have considerably prolonged the persistence of life on Mars as surface conditions became increasingly inhospitable. The scenarios rely on geothermal hot spots existing below the near or deep subsurface of Mars. Recent advances in the comparatively new field of deep subsurface microbiology have revealed previously unsuspected rich aerobic and anaerobic microbal communities far below the surface of the Earth. Such habitats, protected from the grim surface conditions on Mars, could receive warmth from below and maintain water in its liquid state. In addition, geothermally or volcanically reduced gases percolating from below through a microbiologically active zone could provide the reducing power needed for a closed or semi-closed microbial ecosystem to thrive.

  9. Liftoff characteristics of partially premixed flames under normal and microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lock, Andrew J.; Briones, Alejandro M.; Aggarwal, Suresh K. [Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Qin, Xiao [Department of Mechanical & amp; Aerospace Engineering, Princeton University, Princeton, NJ 08544 (United States); Puri, Ishwar K. [Department of Engineering Science and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Hegde, Uday [National Center for Microgravity Research, Cleveland, OH 44135 (United States)

    2005-11-01

    An experimental and computational investigation on the liftoff characteristics of laminar partially premixed flames (PPFs) under normal (1-g) and microgravity ({mu}-g) conditions is presented. Lifted methane-air PPFs were established in axisymmetric coflowing jets using nitrogen dilution and various levels of partial premixing. The {mu}-g experiments were conducted in the 2.2-s drop tower at the NASA Glenn Research Center. A time-accurate, implicit algorithm that uses a detailed description of the chemistry and includes radiation effects is used for the simulations. The predictions are validated through a comparison of the flame reaction zone topologies, liftoff heights, lengths, and oscillation frequencies. The effects of equivalence ratio, gravity, jet velocity, and radiation on flame topology, liftoff height, flame length, base structure, and oscillation frequency are characterized. Both the simulations and measurements indicate that under identical conditions, a lifted {mu}-g PPF is stabilized closer to the burner compared with the 1-g flame, and that the liftoff heights of both 1-g and {mu}-g flames decrease with increasing equivalence ratio and approach their respective nonpremixed flame limits. The liftoff height also increases as the jet velocity is increased. In addition, the flame base structure transitions from a triple- to a double-flame structure as the flame liftoff height decreases. A modified flame index is developed to distinguish between the rich premixed, lean premixed, and nonpremixed reaction zones near the flame base. The 1-g lifted flames exhibit well-organized oscillations due to buoyancy-induced instability, while the corresponding {mu}-g flames exhibit steady-state behavior. The effect of thermal radiation is to slightly decrease the liftoff heights of both 1-g and {mu}-g flames under coflow conditions.

  10. Spent nuclear fuel system dynamic stability under normal conditions of transportation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao; Wang, Jy-An John, E-mail: wangja@ornl.gov

    2016-12-15

    Highlights: • A conformational potential effect of fuel assembly contact interaction induced transient shock. • Complex vibration modes and vibration load intensity were observed from fuel assembly system. • The project was able to link the periodic transient shock to spent fuel fatigue strength reduction. - Abstract: In a horizontal layout of a spent nuclear fuel (SNF) assembly under normal conditions of transportation (NCT), the fuel assembly’s skeleton formed by guide tubes and spacer grids is the primary load bearing structure for carrying and transferring the vibration loads within an SNF assembly. Therefore, the integrity of guide tubes and spacer grids will dictate the vibration amplitude/intensity of the fuel assembly during transport, and must be considered when designing multipurpose purpose canister (MPC) for safe SNF transport. This paper investigates the SNF assembly deformation dynamics during normal vibration mode, as well as the transient shock mode inside the cask during NCT. Dynamic analyses were performed in the frequency domain to study frequency characteristic of the fuel assembly system and in the time domain to simulate the transient dynamic response of the fuel assembly. To further evaluate the intensity of contact interaction induced by the local contacts’ impact loading at the spacer grid, detailed models of the actual spring and dimples of the spacer grids were created. The impacts between the fuel rod and springs and dimples were simulated with a 20 g transient shock load. The associated contact interaction intensities, in terms of reaction forces, were estimated from the finite element analyses (FEA) results. The bending moment estimated from the resultant stress on the clad under 20 g transient shock can be used to define the loading in cyclic integrated reversible-bending fatigue tester (CIRFT) vibration testing for the equivalent condition. To estimate the damage potential of the transient shock to the SNF vibration

  11. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Greg John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelhardt, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-01

    This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  12. Surrogate fuel assembly multi-axis shaker tests to simulate normal conditions of rail and truck transport

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Paul E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Koenig, Greg John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Uncapher, William Leonard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grey, Carissa [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Engelhardt, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Saltzstein, Sylvia J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sorenson, Ken B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-05-12

    This report describes the third set of tests (the “DCLa shaker tests”) of an instrumented surrogate PWR fuel assembly. The purpose of this set of tests was to measure strains and accelerations on Zircaloy-4 fuel rods when the PWR assembly was subjected to rail and truck loadings simulating normal conditions of transport when affixed to a multi-axis shaker. This is the first set of tests of the assembly simulating rail normal conditions of transport.

  13. Effects of surface and subsurface drip irrigation regimes with saline water on yield and water use efficiency of potato in arid conditions of Tunisia

    Directory of Open Access Journals (Sweden)

    Fathia El Mokh

    2014-12-01

    Full Text Available Field experiments were conducted on a sandy soil during spring of 2009 and autumn of 2010 in southern Tunisia for evaluating the effects of two drip irrigation methods and three irrigation regimes on soil moisture and salinity, yield and water use efficiency of potato (Solanum tuberosum L.. The surface drip (SDI and subsurface drip (SSDI irrigation methods were used. Irrigation regimes consisted in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI100, 60% (DI60 and 30% (DI30. FI100 was considered as full irrigation while DI60 and DI30 were considered as deficit irrigation regimes. Well water with an ECi of 7.0 dS/m was used for irrigation. Findings are globally consistent between the two experiments. Results show that soil moisture content and salinity were significantly affected by irrigation treatments and methods. Higher soil moisture content and lower soil salinity were maintained with SSDI than SDI for all irrigation treatments. For both irrigation methods, higher salinity and lower moisture content in the root zone are observed under DI60 and DI30 treatments compared to FI100. Potato yields were highest over two cropping periods for the SSDI method although no significant differences were observed with the SDI. Irrigation regimes resulted in significant difference in both irrigation methods on yield and its components. Yields were highest under FI100. Compared to FI100, considerable reductions in potato yields were observed under DI60 and DI30 deficit treatments resulting from a reduction in tubers number/m² and average tuber weight and size. Water use efficiency (WUE was found to vary significantly among irrigation methods and treatments and varied between 5.9 and 20.5 kg/m3. WUE of SSDI method had generally higher values than SDI. The lowest WUE values were observed for the FI100 treatment, while the highest values were obtained under DI30 treatment for both methods. SSDI method provides

  14. Bioluminescence imaging of β cells and intrahepatic insulin gene activity under normal and pathological conditions.

    Directory of Open Access Journals (Sweden)

    Tokio Katsumata

    Full Text Available In diabetes research, bioluminescence imaging (BLI has been applied in studies of β-cell impairment, development, and islet transplantation. To develop a mouse model that enables noninvasive imaging of β cells, we generated a bacterial artificial chromosome (BAC transgenic mouse in which a mouse 200-kbp genomic fragment comprising the insulin I gene drives luciferase expression (Ins1-luc BAC transgenic mouse. BLI of mice was performed using the IVIS Spectrum system after intraperitoneal injection of luciferin, and the bioluminescence signal from the pancreatic region analyzed. When compared with MIP-Luc-VU mice [FVB/N-Tg(Ins1-lucVUPwrs/J] expressing luciferase under the control of the 9.2-kbp mouse insulin I promoter (MIP, the bioluminescence emission from Ins1-luc BAC transgenic mice was enhanced approximately 4-fold. Streptozotocin-treated Ins1-luc BAC transgenic mice developed severe diabetes concomitant with a sharp decline in the BLI signal intensity in the pancreas. Conversely, mice fed a high-fat diet for 8 weeks showed an increase in the signal, reflecting a decrease or increase in the β-cell mass. Although the bioluminescence intensity of the islets correlated well with the number of isolated islets in vitro, the intensity obtained from a living mouse in vivo did not necessarily reflect an absolute quantification of the β-cell mass under pathological conditions. On the other hand, adenovirus-mediated gene transduction of β-cell-related transcription factors in Ins1-luc BAC transgenic mice generated luminescence from the hepatic region for more than 1 week. These results demonstrate that BLI in Ins1-luc BAC transgenic mice provides a noninvasive method of imaging islet β cells and extrapancreatic activity of the insulin gene in the liver under normal and pathological conditions.

  15. Characterization of accumulated precipitates during subsurface iron removal

    International Nuclear Information System (INIS)

    Halem, Doris van; Vet, Weren de; Verberk, Jasper; Amy, Gary; Dijk, Hans van

    2011-01-01

    Research highlights: → Accumulated iron was not found to clog the well or aquifer after 12 years of subsurface iron removal. → 56-100% of accumulated iron hydroxides were found to be crystalline. → Subsurface iron removal favoured certain soil layers, either due to hydraulics or mineralogy. → Other groundwater constituents, such as manganese and arsenic were found to co-accumulate with iron. - Abstract: The principle of subsurface iron removal for drinking water supply is that aerated water is periodically injected into the aquifer through a tube well. On its way into the aquifer, the injected O 2 -rich water oxidizes adsorbed Fe 2+ , creating a subsurface oxidation zone. When groundwater abstraction is resumed, the soluble Fe 2+ is adsorbed and water with reduced Fe concentrations is abstracted for multiple volumes of the injection water. In this article, Fe accumulation deposits in the aquifer near subsurface treatment wells were identified and characterized to assess the sustainability of subsurface iron removal regarding clogging of the aquifer and the potential co-accumulation of other groundwater constituents, such as As. Chemical extraction of soil samples, with Acid-Oxalate and HNO 3 , showed that Fe had accumulated at specific depths near subsurface iron removal wells after 12 years of operation. Whether it was due to preferred flow paths or geochemical mineralogy conditions; subsurface iron removal clearly favoured certain soil layers. The total Fe content increased between 11.5 and 390.8 mmol/kg ds in the affected soil layers, and the accumulated Fe was found to be 56-100% crystalline. These results suggest that precipitated amorphous Fe hydroxides have transformed to Fe hydroxides of higher crystallinity. These crystalline, compact Fe hydroxides have not noticeably clogged the investigated well and/or aquifer between 1996 and 2008. The subsurface iron removal wells even need less frequent rehabilitation, as drawdown increases more slowly than in

  16. Development of High Heat Input Welding Offshore Steel as Normalized Condition

    Science.gov (United States)

    Deng, Wei; Qin, Xiaomei

    The heavy plate used for offshore structure is one of the important strategic products. In recent years, there is an increasing demand for heavy shipbuilding steel plate with excellent weldability in high heat input welding. During the thermal cycle, the microstructure of the heat affected zone (HAZ) of plates was damaged, and this markedly reduced toughness of HAZ. So, how to improve the toughness of HAZ has been a key subject in the fields of steel research. Oxide metallurgy is considered as an effective way to improve toughness of HAZ, because it could be used to retard grain growth by fine particles, which are stable at the high temperature.The high strength steel plate, which satisfies the low temperature specification, has been applied to offshore structure. Excellent properties of the plates and welded joints were obtained by oxide metallurgy technology, latest controlled rolling and accelerated cooling technology using Ultra-Fast Cooling (an on-line accelerated cooling system). The 355MPa-grade high strength steel plates with normalizing condition were obtained, and the steels have excellent weldability with heat input energy of 79 287kJ/cm, and the nil ductility transition (NDT) temperature was -70°C, which can satisfy the construction of offshore structure in cold regions.

  17. Study on concrete cask for practical use. Heat removal test under normal condition

    International Nuclear Information System (INIS)

    Takeda, Hirofumi; Wataru, Masumi; Shirai, Koji; Saegusa, Toshiari

    2005-01-01

    In Japan, it is planed to construct interim storage facilities taking account of dry storage away form reactor in 2010. Recently, a concrete cask is noticed from the economical point of view. But data for its safety analysis have not been sufficient yet. Heat removal tests using to types of full-scale concrete casks were conducted. This paper describes the results under normal condition of spent fuel storage. In the tests, data on heat removal performance and integrity of cask components were obtained for different storage periods. The change of decay heat of spent fuel was simulated using electric heaters. Reinforced Concrete cask (RC cask) and Concrete Filled Steel cask (CFS cask) were the specimen casks. The levels of decay heat at the initial period of 60 years of storage, the intermediate period (20 years of storage), and the final period (40 years of storage) correspond to 22.6 kW, 16 kW and 10 kW, respectively. Quantitative temperature data of the cask components were obtained as compared with their limit temperature. In addition, heat balance data required for heat removal analyses were obtained. (author)

  18. Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions.

    Science.gov (United States)

    de Bruin, Wieke; Oerlemans, Frank; Wieringa, Bé

    2004-07-01

    Adenylate kinase (AK)-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy in cells of fully differentiated tissues with highly variable energy demand, such as muscle and brain. To investigate if AK isoenzymes have a comparable function in the energy-demand management of proliferating cells, AK1 and AK1beta were expressed in mouse neuroblastoma N2a cells and in human colon carcinoma SW480 cells. Glucose deprivation, galactose feeding, and metabolic inhibitor tests revealed a differential energy dependency for these two cell lines. N2a cells showed a faster proliferation rate and strongest coupling to mitochondrial activity, SW480 proliferation was more dependent on glycolysis. Despite these differences, ectopic expression of AK1 or AK1beta did not affect their growth characteristics under normal conditions. Also, no differential effects were seen under metabolic stress upon treatment with mitochondrial and glycolytic inhibitors in in vitro culture or in solid tumors grown in vivo. Although many intimate connections have been revealed between cell death and metabolism, our results suggest that AK1- or AK1beta-mediated high-energy phosphoryl transfer is not a modulating factor in the survival of tumor cells during episodes of metabolic crisis.

  19. Normal and Extreme Wind Conditions for Power at Coastal Locations in China.

    Science.gov (United States)

    Gao, Meng; Ning, Jicai; Wu, Xiaoqing

    2015-01-01

    In this paper, the normal and extreme wind conditions for power at 12 coastal locations along China's coastline were investigated. For this purpose, the daily meteorological data measured at the standard 10-m height above ground for periods of 40-62 years are statistically analyzed. The East Asian Monsoon that affects almost China's entire coastal region is considered as the leading factor determining wind energy resources. For most stations, the mean wind speed is higher in winter and lower in summer. Meanwhile, the wind direction analysis indicates that the prevalent winds in summer are southerly, while those in winter are northerly. The air densities at different coastal locations differ significantly, resulting in the difference in wind power density. The Weibull and lognormal distributions are applied to fit the yearly wind speeds. The lognormal distribution performs better than the Weibull distribution at 8 coastal stations according to two judgement criteria, the Kolmogorov-Smirnov test and absolute error (AE). Regarding the annual maximum extreme wind speed, the generalized extreme value (GEV) distribution performs better than the commonly-used Gumbel distribution. At these southeastern coastal locations, strong winds usually occur in typhoon season. These 4 coastal provinces, that is, Guangdong, Fujian, Hainan, and Zhejiang, which have abundant wind resources, are also prone to typhoon disasters.

  20. Normal conditions of transport thermal analysis and testing of a Type B drum package

    International Nuclear Information System (INIS)

    Jerrell, J.W.; Alstine, M.N. van; Gromada, R.J.

    1995-01-01

    Increasing the content limits of radioactive material packagings can save money and increase transportation safety by decreasing the total number of shipments required to transport large quantities of material. The contents of drum packages can be limited by unacceptable containment vessel pressures and temperatures due to the thermal properties of the insulation. The purpose of this work is to understand and predict the effects of insulation properties on containment system performance. The type B shipping container used in the study is a double containment fiberboard drum package. The package is primarily used to transport uranium and plutonium metals and oxides. A normal condition of transport (NCT) thermal test was performed to benchmark an NCT analysis of the package. A 21 W heater was placed in an instrumented package to simulate the maximum source decay heat. The package reached thermal equilibrium 120 hours after the heater was turned on. Testing took place indoors to minimize ambient temperature fluctuations. The thermal analysis of the package used fiberboard properties reported in the literature and resulted in temperature significantly greater than those measured during the test. Details of the NCT test will be described and transient temperatures at key thermocouple locations within the package will be presented. Analytical results using nominal fiberboard properties will be presented. Explanations of the results and the attempt to benchmark the analysis will be presented. The discovery that fiberboard has an anisotropic thermal conductivity and its effect on thermal performance will also be discussed

  1. [Biogenic amines in the epiphysis and hypothalamus under normal conditions and following ovariectomy].

    Science.gov (United States)

    Grishchenko, V I; Koliada, L D; Demidenko, D I

    1977-01-01

    Melatonin content in the epiphysis, serotonin, noradrenaline, dopamine-in the hypothalamus, gonadotropins--in the hypophysis of rats was studied under normal conditions and following ovariectomy; regularly of the estral cycle phases was studied as well. Two series of experiments were conducted on 120 rats with regular estral cycles. The animals were divided into groups according to the estral cycle phase. Melatonin concentration in the epiphysis, serotonin, noradrenaline, dopamine--in the hypothalamus was subject to variations coinciding with the estral cycle phases. Serotonin, noradrenaline, and dopamine content decreased in the hypophysis of ovariectomized rats in comparison with control; melatonin content rose in the epiphysis. There was no complete extinction of the estral cycle in the course of investigation (20 days). The action of castration on the sexual cycle depended on the phase at which the rats were subjected to ovariectomy. A reverse relationship existed between the melatonin content in the epiphysis and serotonin content in the hypothalamus, this serving as one of the important factors in the regulation of the sexual function.

  2. Establishment of normal gut microbiota is compromised under excessive hygiene conditions.

    Directory of Open Access Journals (Sweden)

    Bettina Schmidt

    Full Text Available BACKGROUND: Early gut colonization events are purported to have a major impact on the incidence of infectious, inflammatory and autoimmune diseases in later life. Hence, factors which influence this process may have important implications for both human and animal health. Previously, we demonstrated strong influences of early-life environment on gut microbiota composition in adult pigs. Here, we sought to further investigate the impact of limiting microbial exposure during early life on the development of the pig gut microbiota. METHODOLOGY/PRINCIPAL FINDINGS: Outdoor- and indoor-reared animals, exposed to the microbiota in their natural rearing environment for the first two days of life, were transferred to an isolator facility and adult gut microbial diversity was analyzed by 16S rRNA gene sequencing. From a total of 2,196 high-quality 16S rRNA gene sequences, 440 phylotypes were identified in the outdoor group and 431 phylotypes in the indoor group. The majority of clones were assigned to the four phyla Firmicutes (67.5% of all sequences, Proteobacteria (17.7%, Bacteroidetes (13.5% and to a lesser extent, Actinobacteria (0.1%. Although the initial maternal and environmental microbial inoculum of isolator-reared animals was identical to that of their naturally-reared littermates, the microbial succession and stabilization events reported previously in naturally-reared outdoor animals did not occur. In contrast, the gut microbiota of isolator-reared animals remained highly diverse containing a large number of distinct phylotypes. CONCLUSIONS/SIGNIFICANCE: The results documented here indicate that establishment and development of the normal gut microbiota requires continuous microbial exposure during the early stages of life and this process is compromised under conditions of excessive hygiene.

  3. Genetic and agronomic assessment of cob traits in corn under low and normal nitrogen management conditions.

    Science.gov (United States)

    Jansen, Constantin; Zhang, Yongzhong; Liu, Hongjun; Gonzalez-Portilla, Pedro J; Lauter, Nick; Kumar, Bharath; Trucillo-Silva, Ignacio; Martin, Juan Pablo San; Lee, Michael; Simcox, Kevin; Schussler, Jeff; Dhugga, Kanwarpal; Lübberstedt, Thomas

    2015-07-01

    Exploring and understanding the genetic basis of cob biomass in relation to grain yield under varying nitrogen management regimes will help breeders to develop dual-purpose maize. With rising energy demands and costs for fossil fuels, alternative energy from renewable sources such as maize cobs will become competitive. Maize cobs have beneficial characteristics for utilization as feedstock including compact tissue, high cellulose content, and low ash and nitrogen content. Nitrogen is quantitatively the most important nutrient for plant growth. However, the influence of nitrogen fertilization on maize cob production is unclear. In this study, quantitative trait loci (QTL) have been analyzed for cob morphological traits such as cob weight, volume, length, diameter and cob tissue density, and grain yield under normal and low nitrogen regimes. 213 doubled-haploid lines of the intermated B73 × Mo17 (IBM) Syn10 population have been resequenced for 8575 bins, based on SNP markers. A total of 138 QTL were found for six traits across six trials using composite interval mapping with ten cofactors and empirical comparison-wise thresholds (P = 0.001). Despite moderate to high repeatabilities across trials, few QTL were consistent across trials and overall levels of explained phenotypic variance were lower than expected some of the cob trait × trial combinations (R (2) = 7.3-43.1 %). Variation for cob traits was less affected by nitrogen conditions than by grain yield. Thus, the economics of cob usage under low nitrogen regimes is promising.

  4. Characterization of wear debris from metal-on-metal hip implants during normal wear versus edge-loading conditions.

    Science.gov (United States)

    Kovochich, Michael; Fung, Ernest S; Donovan, Ellen; Unice, Kenneth M; Paustenbach, Dennis J; Finley, Brent L

    2018-04-01

    Advantages of second-generation metal-on-metal (MoM) hip implants include low volumetric wear rates and the release of nanosized wear particles that are chemically inert and readily cleared from local tissue. In some patients, edge loading conditions occur, which result in higher volumetric wear. The objective of this study was to characterize the size, morphology, and chemistry of wear particles released from MoM hip implants during normal (40° angle) and edge-loading (65° angle with microseparation) conditions. The mean primary particle size by volume under normal wear was 35 nm (range: 9-152 nm) compared with 95 nm (range: 6-573 nm) under edge-loading conditions. Hydrodynamic diameter analysis by volume showed that particles from normal wear were in the nano- (edge-loading conditions generated particles that ranged from Edge-loading conditions generated more elongated particles (4.5%) (aspect ratio ≥ 2.5) and more CoCr alloy particles (9.3%) compared with normal wear conditions (1.3% CoCr particles). By total mass, edge-loading particles contained approximately 640-fold more cobalt than normal wear particles. Our findings suggest that high wear conditions are a potential risk factor for adverse local tissue effects in MoM patients who experience edge loading. This study is the first to characterize both the physical and chemical characteristics of MoM wear particles collected under normal and edge-loading conditions. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 986-996, 2018. © 2017 Wiley Periodicals, Inc.

  5. Subsurface oxidation for micropatterning silicon (SOMS).

    Science.gov (United States)

    Zhang, Feng; Sautter, Ken; Davis, Robert C; Linford, Matthew R

    2009-02-03

    Here we present a straightforward patterning technique for silicon: subsurface oxidation for micropatterning silicon (SOMS). In this method, a stencil mask is placed above a silicon surface. Radio-frequency plasma oxidation of the substrate creates a pattern of thicker oxide in the exposed regions. Etching with HF or KOH produces very shallow or much higher aspect ratio features on silicon, respectively, where patterning is confirmed by atomic force microscopy, scanning electron microscopy, and optical microscopy. The oxidation process itself is studied under a variety of reaction conditions, including higher and lower oxygen pressures (2 and 0.5 Torr), a variety of powers (50-400 W), different times and as a function of reagent purity (99.5 or 99.994% oxygen). SOMS can be easily executed in any normal chemistry laboratory with a plasma generator. Because of its simplicity, it may have industrial viability.

  6. 76 FR 36864 - Special Conditions: Gulfstream Model GVI Airplane; Operation Without Normal Electric Power

    Science.gov (United States)

    2011-06-23

    ... Normal Electric Power AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Final special... Interface Branch, ANM-111, Transport Standards Staff, Transport Airplane Directorate, Aircraft Certification... Model GVI airplane will be an all-new, two- engine jet transport airplane. The maximum takeoff weight...

  7. Hormonal regulation of apoptosis in the ovary under normal physiological and pathological conditions

    NARCIS (Netherlands)

    Slot, Karin Annemarie

    2005-01-01

    Programmed cell death or apoptosis plays an important role in normal reproductive function. Since apoptosis attributes to the exhaustion of the oocyte/follicle reserve, either directly through germ cell death or indirectly through follicular atresia, this process has been proposed to be the major

  8. Conditions and limits of serum LH radioimmunoassay in normal, hypophysectomised or castred rats

    International Nuclear Information System (INIS)

    Andre, M.; Boucher, D.; Thieblot, L.

    1976-01-01

    Serum LH was measured by radioimmunoassay (NIAMD Kits) free and linked hormones were separated by double antibodies method. Influence of concentration on antibody-hormone complex is studied. Hypophysectomised rats serum does not modify results. The standard (rat LH-RPl) has the same action as serum LH. Rat serum LH contents are measured in normal or castred rats [fr

  9. Buckling resistance calculation of Guide Thimbles for the mechanical design of fuel assembly type PWR under normal reactor operating conditions

    International Nuclear Information System (INIS)

    Cruz, C.B.L.

    1990-01-01

    The calculations demonstrate the fulfillment of one of the mechanical design criteria for the Fuel Assembly Structure under normal reactor operating conditions. The calculations of stresses in the Guide Thimbles are performed with the aid of the program ANSYS. This paper contains program parameters and modelling of a typical Fuel Assembly for a Reactor similar to ANGRA II. (author)

  10. Speech intelligibility for normal hearing and hearing-impaired listeners in simulated room acoustic conditions

    DEFF Research Database (Denmark)

    Arweiler, Iris; Dau, Torsten; Poulsen, Torben

    Speech intelligibility depends on many factors such as room acoustics, the acoustical properties and location of the signal and the interferers, and the ability of the (normal and impaired) auditory system to process monaural and binaural sounds. In the present study, the effect of reverberation...... on spatial release from masking was investigated in normal hearing and hearing impaired listeners using three types of interferers: speech shaped noise, an interfering female talker and speech-modulated noise. Speech reception thresholds (SRT) were obtained in three simulated environments: a listening room......, a classroom and a church. The data from the study provide constraints for existing models of speech intelligibility prediction (based on the speech intelligibility index, SII, or the speech transmission index, STI) which have shortcomings when reverberation and/or fluctuating noise affect speech...

  11. Normalized rare earth elements in water, sediments, and wine: identifying sources and environmental redox conditions

    Science.gov (United States)

    Piper, David Z.; Bau, Michael

    2013-01-01

    The concentrations of the rare earth elements (REE) in surface waters and sediments, when normalized on an element-by-element basis to one of several rock standards and plotted versus atomic number, yield curves that reveal their partitioning between different sediment fractions and the sources of those fractions, for example, between terrestrial-derived lithogenous debris and seawater-derived biogenous detritus and hydrogenous metal oxides. The REE of ancient sediments support their partitioning into these same fractions and further contribute to the identification of the redox geochemistry of the sea water in which the sediments accumulated. The normalized curves of the REE that have been examined in several South American wine varietals can be interpreted to reflect the lithology of the bedrock on which the vines may have been grown, suggesting limited fractionation during soil development.

  12. 76 FR 81360 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane, Operation Without Normal...

    Science.gov (United States)

    2011-12-28

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. FAA-2011-1172: Special Conditions No. 25-453-SC] Special Conditions: Gulfstream Aerospace LP (GALP) Model G280... Aerospace LP (GALP) Model G280 airplane. This airplane will have a novel or unusual design feature...

  13. Orientation-dependent ion beam sputtering at normal incidence conditions in FeSiAl alloy

    International Nuclear Information System (INIS)

    Batic, Barbara Setina; Jenko, Monika

    2010-01-01

    The authors have performed Ar+ broad ion beam sputtering of a polycrystalline Fe-Si-Al alloy at normal incidence at energies varying from 6 to 10 keV. Sputtering results in the formation of etch pits, which can be classified in three shapes: triangular, rectangular, and square. As each grain of individual orientation exhibits a certain type of pattern, the etch pits were correlated with the crystal orientations by electron backscattered diffraction technique.

  14. Analysis of adaptability of radioactive liquid effluent discharge under normal condition of inland nuclear power plant

    International Nuclear Information System (INIS)

    Xu Yueping; Zhang Bing; Chen Yang; Zhu Lingqing; Tao Yunliang; Shangguan Zhihong

    2011-01-01

    The discharge of radioactive liquid effluent from inland nuclear power plant under normal operation is an important part to be considered in environmental impact assessment. Requirements of newly revised and upcoming standards GB 6249 and GB 14587 are introduced in this paper. Through an example of an inland NPP siting in the preliminary feasibility study phase, the adaptability to the relevant regulations in the site selection is analyzed. Also, the concerned problems in the design of AP1000 units are addressed. (authors)

  15. [Age and characteristics of cholesterol biosynthesis in rat liver under normal conditions and during atherogenic loading].

    Science.gov (United States)

    Chaialo, P P

    1977-02-01

    Intraperitoneal injection of C14CH3COONa to normal rats aged 6--8 and 28--32 months revealed a slower dynamics of cholesterol biosynthesis in the liver of old rats at the maximum of the tracer incorporation was lower than in the young ones. Atherogenic diet (0.25 g of cholesterol per 100 g of animal weight for a period of 20 days) was accompanied by an increase in the total cholesterol content and depressio of its biosynthesis in the liver, more pronounced in the young rats. Continued cholesterol administration caused further depression of its biosynthesis, most pronounced (in this case) in the old animals.

  16. Sigma phases in an 11%Cr ferritic/martensitic steel with the normalized and tempered condition

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yinzhong, E-mail: shenyz@sjtu.edu.cn [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Zhou, Xiaoling; Shi, Tiantian; Huang, Xi [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Shang, Zhongxia [School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Liu, Wenwen; Ji, Bo; Xu, Zhiqiang [School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-12-15

    At the present time 9–12% Cr ferritic/martensitic (F/M) steels with target operating temperatures up to 650 °C and higher are being developed in order to further increase thermal efficiency so as to reduce coal consumption and air pollution. An 11% Cr F/M steel was prepared by reference to the nominal chemical composition of SAVE12 steel with an expected maximum use temperature of 650 °C. The precipitate phases of the 11% Cr F/M steel normalized at 1050 °C for 0.5 h and tempered at 780 °C for 1.5 h were investigated by transmission electron microscopy. Except for Cr-/Cr-Fe-Co-rich M{sub 23}C{sub 6}, Nb-/V-/Ta-Nb-/Nd-rich MX, Fe-rich M{sub 5}C{sub 2}, Co-rich M{sub 3}C and Fe-Co-rich M{sub 6}C phases previously identified in the steel, two types of sigma phases consisting of σ-FeCr and σ-FeCrW were found to be also present in the normalized and tempered steel. Identified σ-FeCr and σ-FeCrW phases have a simple tetragonal crystal structure with estimated lattice parameters a/c = 0.8713/0.4986 and 0.9119/0.5053 nm, respectively. The compositions in atomic pct of the observed sigma phases were determined to be approximately 50Fe-50Cr for the σ-FeCr, and 30Fe-55Cr-10W in addition to a small amount of Ta, Co and Mn for the σ-FeCrW. The sigma phases in the steel exhibit various blocky morphologies, and appear to have a smaller amount compared with the dominant phases Cr-rich M{sub 23}C{sub 6} and Nb-/V-/Ta-Nb-rich MX of the steel. The σ-FeCr phase in the steel was found to precipitate at δ-ferrite/martensite boundaries, suggesting that δ-ferrite may rapidly induce the formation of sigma phase at δ-ferrite/martensite boundaries in high Cr F/M steels containing δ-ferrite. The formation mechanism of sigma phases in the steel is also discussed in terms of the presence of δ-ferrite, M{sub 23}C{sub 6} precipitation, precipitation/dissolution of M{sub 2}X, and steel composition. - Highlights: •Precipitate phases in normalized and tempered 11%Cr F/M steel are

  17. French analytic experiment on the high specific burnup of PWR fuels in normal conditions

    International Nuclear Information System (INIS)

    Bruet, M.; Atabek, R.; Houdaille, B.; Baron, D.

    1982-04-01

    Hydrostatic density determinations made on UO 2 pellets of different kinds irradiated in conditions representative of PWR conditions enable the internal swelling rate of the UO 2 to be ascertained. A mean value of 0.8% per 10 4 MWdt -1 (u) up to a specific burnup of 45000 MWdt -1 (u) may be deduced from this experimental basis. These results agree well with those obtained in the TANGO experiments in which UO 2 balls were irradiated in quasi isothermal conditions and without stress. Further, the open porosity of oxide closes progressively and the change in the total porosity is thus very limited (under 1% at 45000 MWdt -1 (u)). With respect to the swelling of the pellets the rise in the specific burnup would not appear therefore to be a problem. The behaviour of recrystallized zircaloy 4 claddings remains satisfactory with respect to creep and growth during irradiation [fr

  18. Normalized performance and load data for the deepwind demonstrator in controlled conditions

    Directory of Open Access Journals (Sweden)

    L. Battisti

    2016-09-01

    Full Text Available Performance and load normalized coefficients, deriving from an experimental campaign of measurements conducted at the large scale wind tunnel of the Politecnico di Milano (Italy, are presented with the aim of providing useful benchmark data for the validation of numerical codes. Rough data, derived from real scale measurements on a three-bladed Troposkien vertical-axis wind turbine, are manipulated in a convenient form to be easily compared with the typical outputs provided by simulation codes. The here proposed data complement and support the measurements already presented in “Wind Tunnel Testing of the DeepWind Demonstrator in Design and Tilted Operating Conditions” (Battisti et al., 2016 [1]. Keywords: VAWT, DeepWind Project, Troposkien rotor, Skewed flow, Wind tunnel measurements, Wind turbine benchmark data

  19. CT and MR imaging of the normal and pathologic conditions of the facial nerve

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Lorenz E-mail: jaeger@ikra.med.uni-muenchen.de; Reiser, Maximilian

    2001-11-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) are well established imaging modalities to examine the facial nerve as well as the course of the facial nerve itself. High spatial resolution is guaranteed not only in the x- and y-axis, but also in the z-axis using multislice spiral CT. With this technique, reformatted multiplanar images in oblique planes, avoiding additional examinations in the coronal plane, facilitate the delineation of the facial nerve canal. This is beneficial in patients with temporal bone trauma, malformation or osseous changes. MR has a superior soft-tissue contrast to CT that enables imaging of the facial nerve itself. Therefore the normal facial nerve as well as pathologic changes of the facial nerve is readily visualized from the brain stem to the parotid gland. This review article presents anatomy, pathology and imaging strategies in the diagnostics of the facial nerve.

  20. [Comparative studying of anaerobic bacteria located in woman's reproductive ways in normal condition and dysbiosis].

    Science.gov (United States)

    Polishko, T N; Sirokvasha, E A; Klokov, V V; Vinnikov, A I

    2008-01-01

    Bacteriological investigation of obligate anaerobic bacteria located in UGT of two groups of the observed women has shown: that the microbiocoenosis of UGT of women of the group 1 can be determined as normal. Identification of these anaerobic bacteria revealed the presence of representatives of the following species: Lactobacillus spp., Bifidobacterium spp., Eubacterium spp., Bacteroides spp., Fusobacterium spp., Peptococcus spp., Peptostreptococcus spp. The microbiocoenosis of UGT of the women of group 2 is diagnosed as vaginosis, thus in addition to the listed previously bacteria is added another one, Clostridium spp. Characteristic feature of Vaginosis is from one side a considerable decrease in the frequency of finding (cultivation) and concentration of Lactobacillus spp. and Bifidobacterium spp. and from another side--a considerable increase of frequency finding (cultivation) and concentration of Bacteroides spp. In addition, there is change of metabolism of Lactobacillus spp. and Bifidobacterium spp resulting in decrease in specific intensity of secretion of acids.

  1. 76 FR 8314 - Special Conditions: Gulfstream Model GVI Airplane; Operation Without Normal Electric Power

    Science.gov (United States)

    2011-02-14

    ... issue a finding of regulatory adequacy pursuant to section 611 of Public Law 92-574, the ``Noise Control....101. Novel or Unusual Design Features The GVI incorporates an electronic flight control system that... Special Conditions The GVI incorporates an electronic flight control system that requires a continuous...

  2. The Impact of Listening Condition on Background Noise Acceptance for Young Adults with Normal Hearing

    Science.gov (United States)

    Gordon-Hickey, Susan; Moore, Robert E.; Estis, Julie M.

    2012-01-01

    Purpose: To evaluate the effect of different speech conditions on background noise acceptance. A total of 23 stimulus pairings, differing in primary talker gender (female, male, conventional), number of background talkers (1, 4, 12), and gender composition of the background noise (female, male, mixed) were used to evaluate background noise…

  3. 76 FR 66660 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane, Operation Without Normal...

    Science.gov (United States)

    2011-10-27

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 25 [Docket No. FAA-2011-1172: Notice No. 25-11-17-SC] Special Conditions: Gulfstream Aerospace LP (GALP) Model G280 Airplane... Aerospace LP (GALP) Model G280 airplane. This airplane will have a novel or unusual design feature...

  4. Subsurface Noble Gas Sampling Manual

    Energy Technology Data Exchange (ETDEWEB)

    Carrigan, C. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sun, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-18

    The intent of this document is to provide information about best available approaches for performing subsurface soil gas sampling during an On Site Inspection or OSI. This information is based on field sampling experiments, computer simulations and data from the NA-22 Noble Gas Signature Experiment Test Bed at the Nevada Nuclear Security Site (NNSS). The approaches should optimize the gas concentration from the subsurface cavity or chimney regime while simultaneously minimizing the potential for atmospheric radioxenon and near-surface Argon-37 contamination. Where possible, we quantitatively assess differences in sampling practices for the same sets of environmental conditions. We recognize that all sampling scenarios cannot be addressed. However, if this document helps to inform the intuition of the reader about addressing the challenges resulting from the inevitable deviations from the scenario assumed here, it will have achieved its goal.

  5. CATHENA Analysis Of Candu Advanced Passive Moderator Concept In Normal Operation Condition

    International Nuclear Information System (INIS)

    Alfa, Sudjatmi K

    2001-01-01

    In the CANDU - advanced passive moderator (APM) concept, the positive void reactivity is eliminated by reducing the density of the moderator. The simple model for the CANDU APM concept consists of the calandria, heat exchanger, pump, and a stabilizing tank, along with connecting piping. The calandria is divided into two parts, one part simulates the down area, while the other simulates up flow area. To demonstrate the thermalhydraulic behavior of the APM concept, Canadian algorithm for thermalhydraulic network analysis (CATHENA) code is used. The simulation for a pressure boundary condition of 300, 330 and 360 kPa and for water coolant mass flow rate boundary conditions of 2000 and 3000 kg/s respectively have been studied. Preliminary results show that there is boiling in the core, with vapor condensing in the heat exchanger. It is important to note, that the solution had not reached steady state when the boiling occurred

  6. Return to normal streamflows and water levels: summary of hydrologic conditions in Georgia, 2013

    Science.gov (United States)

    Knaak, Andrew E.; Caslow, Kerry; Peck, Michael F.

    2015-01-01

    The U.S. Geological Survey (USGS) South Atlantic Water Science Center (SAWSC) Georgia office, in cooperation with local, State, and other Federal agencies, maintains a long-term hydrologic monitoring network of more than 340 real-time continuous-record streamflow-gaging stations (streamgages), including 10 real-time lake-level monitoring stations, 67 real-time surface-water-quality monitors, and several water-quality sampling programs. Additionally, the SAWSC Georgia office operates more than 180 groundwater monitoring wells, 39 of which are real-time. The wide-ranging coverage of streamflow, reservoir, and groundwater monitoring sites allows for a comprehensive view of hydrologic conditions across the State. One of the many benefits of this monitoring network is that the analyses of the data provide a spatially distributed overview of the hydrologic conditions of creeks, rivers, reservoirs, and aquifers in Georgia.

  7. Evaluation of some sorghum genotypes under normal and moisture-stress conditions

    International Nuclear Information System (INIS)

    Abu Assar, A. H.; Salih, M.; Wagner, C.; Friedt, W.; Abdelmula, A. A.; Ordon, F.; Steffens, D.

    2008-01-01

    This study was undertaken to identify the morphological and physiological attributes related to drought tolerance in sorghum (sorghum bicolor (L) Moench). Eight genotypes were tested in a pot experiment carried out at Giessen, Germany. Drought conditions were imposed by withholding watering of the plants when filed water-holding capacity was at 40% and 70%. The tested genotypes differed significantly in most of the measured traits. Grain yield under drought stress ranged from 28 to 61 g/ plant, and relative yield ranged 30% to 56% with an average of 47%. Based on yield/plant, the genotypes Wad Ahmed (61g). SAR 41 (55 g) and ICSR 91030 (54 g) were the best under drought stress conditions, and based on relative yield, the best genotypes were SAR 41 (56%), Wad Ahmed (55%), and Red Mugud (53%). The mean potassium content was 18 mg/g, with a range of 14 mg/g (Red Mugud) to 22 mg/g (Arfa Gadamak). Significant difference were obtained for protein percentage of the dry matter under conditions of drought stress. The values ranged form 14.1% (Red Mugud) to 16.7% (Tabat) with a mean of 15.3%. Grain yield under drought stress was positively correlated with relative yield (r= 0.89), total biomass (r= 0.56), number of seeds per panicle (r= 0.66) and harvest index (r= 0.81), but negatively correlated with 1000-grain (r= 0.37). (Author)

  8. Fuel performance under normal PWR conditions: A review of relevant experimental results and models

    Science.gov (United States)

    Charles, M.; Lemaignan, C.

    1992-06-01

    Experiments conducted at Grenoble (CEA/DRN) over the past 20 years in the field of nuclear fuel behaviour are reviewed. Of particular concern is the need to achieve a comprehensive understanding of and subsequently overcome the limitations associated with high burnup and load-following conditions (pellet-cladding interaction (PCI), fission gas release (FGR), water-side corrosion). A general view is given of the organization of research work as well as some experimental details (irradiation, postirradiation examination — PIE). Based on various experimental programmes (Cyrano, Medicis, Anemone, Furet, Tango, Contact, Cansar, Hatac, Flog, Decor), the main contributions of the thermomechanical behaviour of a PWR fuel rod are described: thermal conductivity, in-pile densification, swelling, fission gas release in steady state and moderate transient conditions, gap thermal conductance, formation of primary and secondary ridges under PCI conditions. Specific programmes (Gdgrif, Thermox, Grimox) are devoted to the behaviour of particular fuels (gadolinia-bearing fuel, MOX fuel). Moreover, microstructure-based studies have been undertaken on fission gas release (fine analysis of the bubble population inside irradiated fuel samples), and on cladding behaviour (PCI related studies on stress-corrosion cracking (SCO, irradiation effects on zircaloy microstructure).

  9. Studies on level of cytokines and expression of connexin43 in tumor and normal cells in culture conditions

    International Nuclear Information System (INIS)

    Asati, V.; Pandey, B.N.

    2016-01-01

    Factors secreted from the tumor cells in culture medium have been known to facilitate the growth of fresh cultures and also to affect the cellular radio-sensitivity. Moreover, expression of gap junction proteins like connexin-43 is known as a key player in cell survival and proliferation. The present study is aimed to evaluate the effects of conditioned medium on the growth of respective tumor/normal cells and the expression of connexin-43 in these cells

  10. A generalized L1-approach for a kernel estimator of conditional quantile with functional regressors: Consistency and asymptotic normality

    OpenAIRE

    2009-01-01

    Abstract A kernel estimator of the conditional quantile is defined for a scalar response variable given a covariate taking values in a semi-metric space. The approach generalizes the median?s L1-norm estimator. The almost complete consistency and asymptotic normality are stated. correspondance: Corresponding author. Tel: +33 320 964 933; fax: +33 320 964 704. (Lemdani, Mohamed) (Laksaci, Ali) mohamed.lemdani@univ-lill...

  11. A simple treatment of fission gas for normal and accident conditions

    International Nuclear Information System (INIS)

    Matthews, J.R.; Wood, M.H.

    1980-01-01

    A set of simple modules have been developed to describe fission gas release and swelling in oxide nuclear fuels for use in fuel behaviour codes. The methods used are simplifications of earlier more detailed work and contain several important developments that allow for improved accuracy over earlier simple treatments and the description of the fission gas bubble population with little penalty in computer time or storage. The three modules are: (i) intragranular fission gas behaviour during normal operation, which treats gas bubble nucleation, growth and destruction by fission fragments and the diffusion of gas to the grain boundaries by single gas atom diffusion, (ii) intragranular fission gas behaviour during rapid transients which treats the migration and coalescence of gas bubbles, the sweeping up of fission gas atoms by bubbles and the drift of gas bubbles to the grain boundary under the driving force of the temperature gradient, and (iii) intergranular fission gas behaviour, which treats the growth and interaction of face and edge bubbles on the grain boundary, their interlinkage and gas release. All these models allow for transient behaviour and are compared with experimental observations of both macroscopic swelling and gas release (and retention) and microscopic observations of bubble sizes and concentrations. (author)

  12. Release of lead from crystal decanters under conditions of normal use.

    Science.gov (United States)

    Barbee, S J; Constantine, L A

    1994-03-01

    The pattern of release of lead (Pb) from crystal was investigated using new and used decanters. Two decanters in use prior to this study yielded significantly less Pb into sherry than did a decanter during its initial use. Pb concentrations in sherry after storage for 2 months reached 50, 163 or 1410 micrograms/litre in decanters previously used for 20, or for 10 yr, or a new decanter, respectively. The new decanter imparted progressively less Pb through normal use. Pb concentration was assayed in sherry during a series of three separate sampling periods, each 2 months in duration. The Pb concentration at the end of each period was 1410, 330 or 150 micrograms/litre respectively. These data are consistent with ceramic chemistry theory, which predicts that leaching of Pb from crystal is self-limiting exponentially as a function of increasing distance from the crystal-liquid interface. The results of this investigation support the concept that sufficient ageing of Pb crystal prior to use reduces, to acceptable levels, the human health risk to adults associated with consumption of beverages stored in Pb crystal decanters.

  13. Extending the application range of a fuel performance code from normal operating to design basis accident conditions

    International Nuclear Information System (INIS)

    Van Uffelen, P.; Gyori, C.; Schubert, A.; Laar, J. van de; Hozer, Z.; Spykman, G.

    2008-01-01

    Two types of fuel performance codes are generally being applied, corresponding to the normal operating conditions and the design basis accident conditions, respectively. In order to simplify the code management and the interface between the codes, and to take advantage of the hardware progress it is favourable to generate a code that can cope with both conditions. In the first part of the present paper, we discuss the needs for creating such a code. The second part of the paper describes an example of model developments carried out by various members of the TRANSURANUS user group for coping with a loss of coolant accident (LOCA). In the third part, the validation of the extended fuel performance code is presented for LOCA conditions, whereas the last section summarises the present status and indicates needs for further developments to enable the code to deal with reactivity initiated accident (RIA) events

  14. Electrical Subsurface Grounding Analysis

    International Nuclear Information System (INIS)

    J.M. Calle

    2000-01-01

    The purpose and objective of this analysis is to determine the present grounding requirements of the Exploratory Studies Facility (ESF) subsurface electrical system and to verify that the actual grounding system and devices satisfy the requirements

  15. A radioactive waste transportation package monitoring system for normal transport and accident emergency response conditions

    International Nuclear Information System (INIS)

    Brown, G.S.; Cashwell, J.W.; Apple, M.L.

    1991-01-01

    Shipments of radioactive material (RAM) constitute but a small fraction of the total hazardous materials shipped in the United States each year. Public perception, however, of the potential consequences of a release from a transportation package containing RAM has resulted in significant regulation of transport operations, both to ensure the integrity of a package in accident conditions and to place operational constraints on the shipper. Much of this attention has focused on shipments of spent nuclear fuel and high level wastes which, although comprising a very small number of total shipments, constitute a majority of the total curies transported on an annual basis. This report discusses the shipment of these highly radioactive materials

  16. Analytical model for power plant condenser for transients and off-normal operating conditions

    International Nuclear Information System (INIS)

    Thangamani, I.; Dutta, Anu; Chakraborty, G.; Ghosh, A.K.

    2006-11-01

    A computer code for power plant condenser dynamic analysis has been developed based on a lumped parameter approach considering time dependent mass and energy conservation equations over the control volumes for the shell side as well as tube side fluids. Effects of heat transfer on condenser structure and hot well level transients were considered in the analysis. Suitable heat transfer coefficient recommended by various standards and codes were employed. The code was used to analyze the condenser performance during steady state as well as transient (load rejection or turbine trip) conditions. The condenser performance is predicted in terms of condenser back pressure, shell side steam temperature and tube side coolant exit temperature with respect to time. As a part of parametric studies, the effect of change in tube side coolant flow rate and inlet temperature was also studied. The analysis predicted that up to 47% of rated coolant flow rate on the tube side (for design conditions), the steam dumping can be continued without condenser isolation. The paper describes the detailed methodology adopted for the condenser modeling and presents the results obtained from the different parametric studies and code validation. (author)

  17. Reading performance of monofocal pseudophakic patients with and without glasses under normal and dim light conditions.

    Science.gov (United States)

    Radner, Wolfgang; Radner, Stephan; Raunig, Valerian; Diendorfer, Gabriela

    2014-03-01

    To evaluate reading performance of patients with monofocal intraocular lenses (IOLs) (Acrysof SN60WF) with or without reading glasses under bright and dim light conditions. Austrian Academy of Ophthalmology, Vienna, Austria. Evaluation of a diagnostic test or technology. In pseudophakic patients, the spherical refractive error was limited to between +0.50 diopter (D) and -0.75 D with astigmatism of 0.75 D (mean spherical equivalent: right eye, -0.08 ± 0.43 [SD]; left eye, -0.15 ± 0.35). Near addition was +2.75 D. Reading performance was assessed binocularly with or without reading glasses at an illumination of 100 candelas (cd)/m(2) and 4 cd/m(2) using the Radner Reading Charts. In the 25 patients evaluated, binocularly, the mean corrected distance visual acuity was -0.07 ± 0.06 logMAR and the mean uncorrected distance visual acuity was 0.01 ± 0.11 logMAR. The mean reading acuity with reading glasses was 0.02 ± 0.10 logRAD at 100 cd/m(2) and 0.12 ± 0.14 logRAD at 4 cd/m(2). Without reading glasses, it was 0.44 ± 0.13 logRAD and 0.56 ± 0.16 logRAD, respectively (P light conditions. Copyright © 2014 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  18. Deep subsurface microbial processes

    Science.gov (United States)

    Lovley, D.R.; Chapelle, F.H.

    1995-01-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed redox reactions that influence the geophysical properties of these environments. Furthermore, there is an increasing threat that deep aquifers, an important drinking water resource, may be contaminated by man's activities, and there is a need to predict the extent to which microbial activity may remediate such contamination. Metabolically active microorganisms can be recovered from a diversity of deep subsurface environments. The available evidence suggests that these microorganisms are responsible for catalyzing the oxidation of organic matter coupled to a variety of electron acceptors just as microorganisms do in surface sediments, but at much slower rates. The technical difficulties in aseptically sampling deep subsurface sediments and the fact that microbial processes in laboratory incubations of deep subsurface material often do not mimic in situ processes frequently necessitate that microbial activity in the deep subsurface be inferred through nonmicrobiological analyses of ground water. These approaches include measurements of dissolved H2, which can predict the predominant microbially catalyzed redox reactions in aquifers, as well as geochemical and groundwater flow modeling, which can be used to estimate the rates of microbial processes. Microorganisms recovered from the deep subsurface have the potential to affect the fate of toxic organics and inorganic contaminants in groundwater. Microbial activity also greatly influences 1 the chemistry of many pristine groundwaters and contributes to such phenomena as porosity development in carbonate aquifers, accumulation of undesirably high concentrations of dissolved iron, and production of methane and hydrogen sulfide. Although the last decade has seen a dramatic increase in interest in deep subsurface microbiology, in comparison with the study of

  19. Fracture Mechanics Analyses of Subsurface Defects in Reinforced Carbon-Carbon Joggles Subjected to Thermo-Mechanical Loads

    Science.gov (United States)

    Knight, Norman F., Jr.; Raju, Ivatury S.; Song, Kyongchan

    2011-01-01

    Coating spallation events have been observed along the slip-side joggle region of the Space Shuttle Orbiter wing-leading-edge panels. One potential contributor to the spallation event is a pressure build up within subsurface voids or defects due to volatiles or water vapor entrapped during fabrication, refurbishment, or normal operational use. The influence of entrapped pressure on the thermo-mechanical fracture-mechanics response of reinforced carbon-carbon with subsurface defects is studied. Plane-strain simulations with embedded subsurface defects are performed to characterize the fracture mechanics response for a given defect length when subjected to combined elevated-temperature and subsurface-defect pressure loadings to simulate the unvented defect condition. Various subsurface defect locations of a fixed-length substrate defect are examined for elevated temperature conditions. Fracture mechanics results suggest that entrapped pressure combined with local elevated temperatures have the potential to cause subsurface defect growth and possibly contribute to further material separation or even spallation. For this anomaly to occur, several unusual circumstances would be required making such an outcome unlikely but plausible.

  20. Electrical resistivity determination of subsurface layers, subsoil ...

    African Journals Online (AJOL)

    Electrical resistivity determination of subsurface layers, subsoil competence and soil corrosivity at and engineering site location in Akungba-Akoko, ... The study concluded that the characteristics of the earth materials in the site would be favourable to normal engineering structures/materials that may be located on it.

  1. Design report on the guide box-reactivity and safety control plates for MPR reactor under normal operation conditions

    International Nuclear Information System (INIS)

    Markiewicz, M.

    1999-01-01

    The reactivity control system for the MPR reactor (Multi Purpose Reactor) is a critical component regarding safety, it must ensure a fast shut down, maintaining the reactor in subcritical condition under normal or accidental operation condition. For this purpose, this core component must be designed to maintain its operating capacity during all the residence time and under any foreseen operation condition. The mechanical design of control plates and guide boxes must comply with structural integrity, maintaining its geometric and dimensional stability within the pre-established limits to prevent interferences with other core components. For this, the heat generation effect, mechanical loads and environment and irradiation effects were evaluated during the mechanical design. The reactivity control system is composed of guide boxes, manufactured from Aluminium alloy, located between the fuel elements, and control absorber plates of Ag-In-Cd alloy hermetically enclosed by a cladding of stainless steel sliding inside de guide boxes. The upward-downward movement is transmitted by a rod from the motion device located at the reactor lower part. The design requirements, criteria and limits were established to fulfill with the normal and abnormal operation conditions. The design verifications were performed by analytical method, estimating the guide box and control plates residence time. The result of the analysis performed, shows that the design of the reactivity control system and the material selected, are appropriate to fulfill the functional requirements, with no failures attributed to the mechanical design. (author)

  2. Efficiency of measures aimed at improving health by normalization of temperature conditions in the Kochegarka mine

    Energy Technology Data Exchange (ETDEWEB)

    Litvinov, G.I.; Nifonov, V.P.; Kobets, A.N.

    1981-06-01

    This paper evaluates effects of air conditioning in the Kochegarka black coal mine on miners' health. Up to 1975 air temperature in the lowest mine horizon located at a depth of 970 m ranged from 26 to 32 C, in summer from 34 to 36 C. Air humidity ranged from 94 to 98%. Since 1975 KhTMF-248-4000 freon air cooling machines have been used in the mine; their capacity amounts to 3.8 x 10/SUP/6 kcal/h. Use of air cooling systems reduces air temperature to permissible limits. Air temperature measured at a distance of 1 km from mine shaft ranges from 24 to 26 C, and air humidity from 90 to 95%. At a distance of 1.5 km from the mine shaft air temperature in conveyor roadways is 26.4 C, in dead-end development workings 27 C, and at working faces 26 C (with air humidity ranging from 96 to 98%). ARVP systems for local air cooling are used at places distant from the mine shaft. The ARVP reduces air temperature from 2 to 4.5 C at a distance ranging from 4 to 8 m from the machine. Reducing air temperature, combined with other measures aimed at improving miners' health, has caused a decrease in miner absenteeism due to illness by 25.4%.

  3. Structural evaluation and analysis under normal conditions for spent fuel concrete storage cask

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Taechul; Baeg, Changyeal; Yoon, Sitae [Korea Radioactive waste Management Agency, Daejeon (Korea, Republic of); Jung, Insoo [Korea Nuclear Engineering and Service Co., Daejeon (Korea, Republic of)

    2014-05-15

    The purpose of this paper is the verification of stabilities of the structural elements that influence the safety of a concrete storage cask. The evaluation results were reviewed with respect to every design criterion, in terms of whether the results satisfy the criteria, provided by 10CFR 72 and NUREG-1536. The basic information on the design is partially explained in 2. Description of spent fuel storage system and the maintainability and assumptions included in the analysis were confirmed through detailed explanations of the acceptable standards, analysis model, and analysis method. ABAQUS 6.10, a widely used finite element analysis program, was used in the structural analysis. The storage cask shall maintain the sub-criticality, shielding, structural integrity, thermal capability and confinement in accordance with the requirements specified in US 10 CFR 72. The safety of storage cask is analyzed and it has been confirmed to meet the requirements of US 10 CFR 72. This paper summarizes the structural stability evaluation results of a concrete storage cask with respect to the design criteria. The evaluation results of this paper show that the maximum stress was below the allowable stress under every condition, and the concrete storage cask satisfied the design criteria.

  4. Comparison between particulate matter and ultrafine particle emission by electronic and normal cigarettes in real-life conditions.

    Science.gov (United States)

    Ruprecht, Ario Alberto; De Marco, Cinzia; Pozzi, Paolo; Munarini, Elena; Mazza, Roberto; Angellotti, Giorgia; Turla, Francesca; Boffi, Roberto

    2014-01-01

    Electronic cigarettes may be safer than conventional cigarettes as they generate less indoor pollution in terms of particulate matter (PM); however, recent findings in experimental conditions demonstrated that secondhand exposure to PM may be expected from e-cigarette smoking. The aim of the present study was to investigate the emission of PM generated by e-cigarettes and normal cigarettes under real-life conditions. Real-time measurement and comparison of PM and ultrafine particles (UFP) generated by electronic cigarettes with and without nicotine and by normal cigarettes in a 50 m3 office of an Italian comprehensive cancer center was performed. PM mass as PM1, PM2.5, PM7, PM10, total suspended particles (TSP) in μg/m³ and UFP in number of particles per cubic centimeter from 10 to 1,000 nanometers were measured. Outdoor concentrations were measured contemporaneously to compensate for urban background changes. Regardless of their nicotine content, e-cigarettes generated lower PM levels than conventional cigarettes. Notably, nicotine-enriched e-cigarettes produced lower PM levels than their nicotine-free counterparts. E-cigarettes appear to generate less indoor pollution than normal cigarettes and may therefore be safer. Further studies are required to investigate the long-term health-related effects of secondhand e-cigarette exposure.

  5. Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions.

    Science.gov (United States)

    Grossini, Elena; Farruggio, Serena; Qoqaiche, Fatima; Raina, Giulia; Camillo, Lara; Sigaudo, Lorenzo; Mary, David; Surico, Nicola; Surico, Daniela

    2016-09-15

    Perivascular adipose tissue can be involved in the process of cardiovascular pathology through the release of adipokines, namely adiponectins. Monomeric adiponectin has been shown to increase coronary blood flow in anesthetized pigs through increased nitric oxide (NO) release and the involvement of adiponectin receptor 1 (AdipoR1). The present study was therefore planned to examine the effects of monomeric adiponectin on NO release and Ca(2+) transients in porcine aortic endothelial cells (PAEs) in normal/high glucose conditions and the related mechanisms. PAEs were treated with monomeric adiponectin alone or in the presence of intracellular kinases blocker, AdipoR1 and Ca(2+)-ATPase pump inhibitors. The role of Na(+)/Ca(2+) exchanger was examined in experiments performed in zero Na(+) medium. NO release and intracellular Ca(2+) were measured through specific probes. In PAE cultured in normal glucose conditions, monomeric adiponectin elevated NO production and [Ca(2+)]c. Similar effects were observed in high glucose conditions, although the response was lower and not transient. The Ca(2+) mobilized by monomeric adiponectin originated from an intracellular pool thapsigargin- and ATP-sensitive and from the extracellular space. Moreover, the effects of monomeric adiponectin were prevented by kinase blockers and AdipoR1 inhibitor. Finally, in normal glucose condition, a role for Na(+)/Ca(2+) exchanger and Ca(2+)-ATPase pump in restoring Ca(2+) was found. Our results add new information about the control of endothelial function elicited by monomeric adiponectin, which would be achieved by modulation of NO release and Ca(2+) transients. A signalling related to Akt, ERK1/2 and p38MAPK downstream AdipoR1 would be involved. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. GENETIC VARIABILITY OF CULTURED PLANT TISSUES UNDER NORMAL CONDITIONS AND UNDER STRESS

    Directory of Open Access Journals (Sweden)

    Dolgikh Yu.I.

    2012-08-01

    Full Text Available The genetic variability induced by in vitro conditions known as somaclonal variation is of practical interest due to its potential uses in plant breeding but, on the other hand, if clonal propagation or transformation is main goal, it becomes an unwelcome phenomenon. Thus, it is important to know frequency, the genomic distribution, the mechanisms and factors influencing somaclonal variation. We studied variability of PCR-based DNA markers of cultured tissues and regenerated plants of maize and bread wheat. The original A188 line of maize and the somaclones obtained were tested using 38 RAPD and 10 ISSR primers. None of the A188 plants showed variation in the RAPD and ISSR spectra for any of the primers used. However, the PCR spectra obtained from the somaclones demonstrated some variations, i.e., 22 RAPD primers and 6 ISSR primers differentiated at least one somaclonal variant from the progenitor line. Six SCAR markers were developed based on several RAPD and ISSR fragments. The inheritance of these SCAR markers was verified in the selfing progeny of each somaclone in the R1–R4 generations and in the hybrids, with A188 as the parental line in the F1 and F2 generations. These markers were sequenced and bioinformatic searches were performed to understand the molecular events that may underlie the variability observed in the somaclones. All changes were found in noncoding sequences and were induced by different molecular events, such as the insertion of long terminal repeat transposon, precise miniature inverted repeat transposable element (MITE excision, microdeletion, recombination, and a change in the pool of mitochondrial DNA. In two groups of independently produced somaclones, the same features (morphological, molecular were variable, which confirms the theory of ‘hot spots’ occurring in the genome. The presence of the same molecular markers in the somaclones and in different non-somaclonal maize variants suggests that in some cases

  7. Emerging roles of exosomes in normal and pathological conditions. New insights for diagnosis and therapeutic applications

    Directory of Open Access Journals (Sweden)

    Julieta eDe Toro

    2015-05-01

    Full Text Available From the time when they were first described in the 1970s by the group of Johnstone and Stahl, exosomes are a target of constant research. Exosomes belong to the family of nano-vesicles which are of great interest for their many functions and potential for diagnosis and therapy in multiples diseases. Exosomes originate from the intraluminal vesicles of late endosomal compartments named multivesicular bodies and the fusion of these late endosomes with the cell membrane result in the release of the vesicles into the extracellular compartment. Moreover, their generation can be induced by many factors including extracellular stimuli, such as microbial attack and other stress conditions. The primary role attributed to exosomes was the removal of unnecessary proteins from the cells. Now, several studies have demonstrated that exosomes are involved in cell-cell communication, even though their biological function is not completely clear.The participation of exosomes in cancer is the field of microvesicle research that has expanded more over the last years. Evidence proving that exosomes derived from tumor-pulsed dendritic cells, neoplastic cells and malignant effusions, are able to present antigens to T‐cells, has led to numerous studies using them as cell free cancer vaccines.Since exosomes derive from all cell types, they contain proteins, lipids and miRNA capable of regulating a variety of target genes. Much research is being conducted, which focuses on the employment of these vesicles as biomarkers in the diagnosis of cancer in addition to innovative biomarkers for diagnosis, prognosis and management of cardiovascular diseases. Interesting findings indicating the role of exosomes in the pathogenesis of several diseases have encouraged researchers to consider their therapeutic potential not only in oncology but also in the treatment of autoimmune syndromes and neurodegenerative disorders such as Alzheimer´s and Parkinson´s disease; in addition

  8. Evaluation of permeable and non-permeable tritium in normal condition in a fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marta, V; Manuel, P J [Instituto de Fusion Nuclear (DENIM)/ETSII, Universidad Politecnica Madrid (UPM) (Spain); Sedano Luis, A [Ministerio de Educacion y Ciencia, Ciemat (Spain)], E-mail: marta@denim.upm.es

    2008-05-15

    The tritium cycle, technologies of process and control of the tritium in the plant will constitute a fraction of the environmental impact of the first generation of DT fusion reactors. The efforts of conceptual development of the tritium cycle are centered in the Internal Regenerator Cycle. The tritium could be recovered from a flow of He gas, or directly from solid breeder. The limits of transfers to the atmosphere are assumed {approx} 1 gr-T/a ({approx}20 Ci/a) (without species distinction). In the case of ITER, for example, we have global demands of control of 5 orders of magnitude have been demonstrated at experimental level. The transfer limits determine the key parameters in tritium Cycle (HT, HTO, as dominant, and T2, T2O as marginal). Presently, the transfer from the cycle to the environment is assumed through the exchange system of the power plant (primary to secondary). That transport is due to the permeation through HT, T2, or leakage to the coolant in the primary system. It is key the chemical optimization in the primary system, that needs to be reanalyzed in terms of radiological impact both for permeable, HT, T2, and non-permeable HTO, T2O. It is necessary considered the pathway of tritium from the reactor to the atmosphere, these processes are modelled adequately. Results of the assessments were early and chronic doses which have been evaluated for the Most Exposed Individual at particular distance bands from the release point. The impact evaluations will be performed with the computational tools (NORMTRI), besides national regulatory models, internationally accepted computer these code for dosimetric evaluations of tritiated effluents in operational conditions.

  9. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    Randle, D.C.

    2000-01-01

    , controlled, and interfaced (Section 6.2). (3) Develop a preliminary design for the overall Subsurface Repository Integrated Control System functional architecture and graphically depict the operational features of this design through a series of control system functional block diagrams (Section 6.2). (4) Develop a physical architecture that presents a viable yet preliminary physical implementation for the Subsurface Repository Integrated Control System functional architecture (Section 6.3). (5) Develop an initial concept for an overall subsurface data communications network that can be used to integrate the various control systems comprising the Subsurface Repository Integrated Control System (Section 6.4). (6) Develop a preliminary central control room design for the Subsurface Repository Integrated Control System (Section 6.5). (7) Identify and discuss the general safety-related issues and design strategies with respect to development of the Subsurface Repository Integrated Control System (Section 6.6). (8) Discuss plans for the Subsurface Repository Integrated Control System's response to off-normal operations (Section 6.7). (9) Discuss plans and strategies for developing software for the Subsurface Repository Integrated Control System (Section 6.8)

  10. Radiation Dose Estimates in Indian Adults in Normal and Pathological Conditions due to 99Tcm-Labelled Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Tyagi, K.; Jain, S.C.; Jain, P.C.

    2001-01-01

    ICRP Publications 53, 62 and 80 give organ dose coefficients and effective doses to ICRP Reference Man and Child from established nuclear medicine procedures. However, an average Indian adult differs significantly from the ICRP Reference Man as regards anatomical, physiological and metabolic characteristics, and is also considered to have different tissue weighting factors (called here risk factors). The masses of total body and most organs are significantly lower for the Indian adult than for his ICRP counterpart (e.g. body mass 52 and 70 kg respectively). Similarly, the risk factors are lower by 20-30% for 8 out of the 13 organs and 30-60% higher for 3 organs. In the present study, available anatomical data of Indians and their risk factors have been utilised to estimate the radiation doses from administration of commonly used 99 Tc m -labelled radiopharmaceuticals under normal and certain pathological conditions. The following pathological conditions have been considered for phosphates/phosphonates - high bone uptake and severely impaired kidney function; IDA - parenchymal liver disease, occlusion of cystic duct, and occlusion of bile duct; DTPA - abnormal renal function; large colloids - early to intermediate diffuse parenchymal liver disease, intermediate to advanced parenchymal liver disease; small colloids - early to intermediate parenchymal liver disease, intermediate to advanced parenchymal liver disease; and MAG3 - abnormal renal function, acute unilateral renal blockage. The estimated 'effective doses' to Indian adults are 14-21% greater than the ICRP value from administration of the same activity of radiopharmaceutical under normal physiological conditions based on anatomical considerations alone, because of the smaller organ masses for the Indian; for some pathological conditions the effective doses are 11-22% more. When tissue risk factors are considered in addition to anatomical considerations, the estimated effective doses are still found to be

  11. High Resolution Definition of Subsurface Heterogeneity for Understanding the Biodynamics of Natural Field Systems: Advancing the Ability for Scaling to Field Conditions

    International Nuclear Information System (INIS)

    Majer, Ernest L.; Brockman, Fred J.

    1999-01-01

    This research is an integrated project which uses physical (geophysical and hydrologic) and innovative geophysical imaging and microbial characterization methods to identify key scales of physical heterogeneities that affect bioremediation. In the this effort data from controlled laboratory and in situ experiments at the Idaho National Engineering and Environmental (INEEL) Test Area North (TAN) site were used to determine the dominant physical characteristics (lithologic, structural, and hydrologic) that can be imaged in situ and correlated with flow and transport properties. Emphasis was placed on identifying fundamental scales of variation of physical parameters that control transport behavior relative to subsurface microbial dynamics that could be used to develop a predictive model. A key hypothesis of the work was that nutrient flux and transport properties are key factors in controlling microbial dynamics, and that geophysical techniques could be used to identify the critical physical properties and scales controlling transport. This hypothesis was essentially validated. The goal was not only to develop and apply methods to monitor the spatial and temporal distribution of the bioremediation in fractured sites such as TAN, but also to develop methods applicable to a wider range of DOE sites. The outcome has been an improved understanding of the relationship between physical, chemical and microbial processes in heterogeneous environments, thus applicable to the design and monitoring of bioremediation strategies for a variety of environments. In this EMSP work we demonstrated that high resolution geophysical methods have considerable resolving power, especially when linked with modern advanced processing and interpretation. In terms of basic science, in addition to providing innovative methods for monitoring bioremediation, the work also provided a strong motivation for developing and extending high resolution geophysical methods

  12. Fibroblast-matrix interplay: Nintedanib and pirfenidone modulate the effect of IPF fibroblast-conditioned matrix on normal fibroblast phenotype.

    Science.gov (United States)

    Epstein Shochet, Gali; Wollin, Lutz; Shitrit, David

    2018-03-12

    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. Activated fibroblasts are the key effector cells in fibrosis, producing excessive amounts of collagen and extracellular matrix (ECM) proteins. Whether the ECM conditioned by IPF fibroblasts determines the phenotype of naïve fibroblasts is difficult to explore. IPF-derived primary fibroblasts were cultured on Matrigel and then cleared using ammonium hydroxide, creating an IPF-conditioned matrix (CM). Normal fibroblast CM served as control. Normal fibroblasts were cultured on both types of CM, and cell count, cell distribution and markers of myofibroblast differentiation; transforming growth factor beta (TGFβ) signalling; and ECM expression were assessed. The effects of the anti-fibrotic drugs nintedanib and pirfenidone at physiologically relevant concentrations were also explored. Normal fibroblasts cultured on IPF-CM arranged in large aggregates as a result of increased proliferation and migration. Moreover, increased levels of pSmad3, pSTAT3 (phospho signal transducer and activator of transcription 3), alpha smooth muscle actin (αSMA) and Collagen1a were found, suggesting a differentiation towards a myofibroblast-like phenotype. SB505124 (10 μmol/L) partially reversed these alterations, suggesting a TGFβ contribution. Furthermore, nintedanib at 100 nmol/L and, to a lesser extent, pirfenidone at 100 μmol/L prevented the IPF-CM-induced fibroblast phenotype alterations, suggesting an attenuation of the ECM-fibroblast interplay. IPF fibroblasts alter the ECM, thus creating a CM that further propagates an IPF-like phenotype in normal fibroblasts. This assay demonstrated differences in drug activities for approved IPF drugs at clinically relevant concentrations. Thus, the matrix-fibroblast phenotype interplay might be a relevant assay to explore drug candidates for IPF treatment. © 2018 Asian Pacific Society of Respirology.

  13. Differences in kata performance time and distance from a marker for experienced Shotokan karateka under normal sighted and blindfolded conditions.

    Science.gov (United States)

    Layton, Clive; Avenell, Leon

    2002-08-01

    10 experienced Shotokan karateka were tested on performance time and distance from a marker on the five Heian kata under normal sighted and blind-folded conditions. Whilst each kata's line of movement is different, it is the intention to start and finish at the same location. Analysis showed that despite an average of 16.8 yr. of training, whilst timing was not significantly affected on four of the kata by subjects being deprived of the visual sense, the group's mean change in distance from an original marker was significant for performances on three of the kata.

  14. Speech perception in older listeners with normal hearing:conditions of time alteration, selective word stress, and length of sentences.

    Science.gov (United States)

    Cho, Soojin; Yu, Jyaehyoung; Chun, Hyungi; Seo, Hyekyung; Han, Woojae

    2014-04-01

    Deficits of the aging auditory system negatively affect older listeners in terms of speech communication, resulting in limitations to their social lives. To improve their perceptual skills, the goal of this study was to investigate the effects of time alteration, selective word stress, and varying sentence lengths on the speech perception of older listeners. Seventeen older people with normal hearing were tested for seven conditions of different time-altered sentences (i.e., ±60%, ±40%, ±20%, 0%), two conditions of selective word stress (i.e., no-stress and stress), and three different lengths of sentences (i.e., short, medium, and long) at the most comfortable level for individuals in quiet circumstances. As time compression increased, sentence perception scores decreased statistically. Compared to a natural (or no stress) condition, the selectively stressed words significantly improved the perceptual scores of these older listeners. Long sentences yielded the worst scores under all time-altered conditions. Interestingly, there was a noticeable positive effect for the selective word stress at the 20% time compression. This pattern of results suggests that a combination of time compression and selective word stress is more effective for understanding speech in older listeners than using the time-expanded condition only.

  15. Size-dependent δ18O and δ13C variations in a planktic foraminiferal Neogloboquadrina pachyderma (sinistral) record from Chukchi Plateau: implications for (sub)surface water conditions in the western Arctic Ocean over the past 50 ka

    Science.gov (United States)

    Wang, R.; Xiao, W.; Mei, J.; Polyak, L.

    2017-12-01

    Oxygen and carbon stable isotopes in planktic foraminifera Neogloboquadrina pachyderma (sinistral) (Nps) have a promising potential for reconstructing (sub)surface water conditions in the Arctic Ocean. Size-dependent (63-154 µm, 154-250 µm, and >250 µm) Nps δ18O and δ13C were measured along with Ice Rafted Debris (IRD) and scanned XRF Ca and Mn contents in sediment core ARC3-P31 from the Chukchi Plateau (434 m water depth) representing paleoceanographic conditions during the last 50 ka (Marine Isotope Stages 1-3). While the interval corresponding to the Last Glacial Maximum is represented by a hiatus, the following deglaciation is clearly marked by a strong depletion in both δ18O and δ13C in all Nps size fractions along with a peak in detrital carbonate IRD indicative of the Canadian Arctic Archipelago provenance. This pronounced feature presumably indicates a collapse event of the northwestern Laurentide Ice Sheet, potentially linked to the rising sea level. In the overall record under study, average values of Nps δ18O and δ13C fluctuate in the range of 1.2-2.1‰ and 0.3-0.9 ‰, respectively. Mid-size Nps δ18O values (154-250 µm) are in average lighter by 0.2-0.5 ‰ than those of small (63-154 µm) and large (>250 µm) Nps tests. This offset may indicate a different water-depth dwelling, possibly affected by a relatively warm subsurface Atlantic water.

  16. A non-parametric conditional bivariate reference region with an application to height/weight measurements on normal girls

    DEFF Research Database (Denmark)

    Petersen, Jørgen Holm

    2009-01-01

    A conceptually simple two-dimensional conditional reference curve is described. The curve gives a decision basis for determining whether a bivariate response from an individual is "normal" or "abnormal" when taking into account that a third (conditioning) variable may influence the bivariate...... response. The reference curve is not only characterized analytically but also by geometric properties that are easily communicated to medical doctors - the users of such curves. The reference curve estimator is completely non-parametric, so no distributional assumptions are needed about the two......-dimensional response. An example that will serve to motivate and illustrate the reference is the study of the height/weight distribution of 7-8-year-old Danish school girls born in 1930, 1950, or 1970....

  17. Study and Optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent

    International Nuclear Information System (INIS)

    Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2012-01-01

    Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA–grafted NWPE (GMA–g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA–g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h −1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.

  18. Study and Optimization on graft polymerization under normal pressure and air atmospheric conditions, and its application to metal adsorbent

    Science.gov (United States)

    Ueki, Yuji; Chandra Dafader, Nirmal; Hoshina, Hiroyuki; Seko, Noriaki; Tamada, Masao

    2012-07-01

    Radiation-induced graft polymerization of glycidyl methacrylate (GMA) onto non-woven polyethylene (NWPE) fabric was achieved under normal pressure and air atmospheric conditions, without using unique apparatus such as glass ampoules or vacuum lines. To attain graft polymerization under normal pressure and air atmospheric conditions, the effects of the pre-irradiation dose, pre-irradiation atmosphere, pre-irradiation temperature, de-aeration of GMA-emulsion, grafting atmosphere in a reactor, and dissolved oxygen (DO) concentration in GMA-emulsion on the degree of grafting (Dg) were investigated in detail. It was found that the DO concentration had the strongest influence, the pre-irradiation dose, de-aeration of emulsion and grafting atmosphere had a relatively strong impact, and the pre-irradiation atmosphere and pre-irradiation temperature had the least effect on Dg. The optimum DO concentration before grafting was 2.0 mg/L or less. When a polyethylene bottle was used as a reactor instead of a glass ampoule, graft polymerization under normal pressure and air atmospheric conditions could be achieved under the following conditions; the pre-irradiation dose was more than 50 kGy, the volume ratio of GMA-emulsion to air was 50:1 or less, and the DO concentration in GMA-emulsion during grafting was below 2.0 mg/L. Under these grafting conditions, Dg was controlled within a range of up to 362%. The prepared GMA-grafted NWPE (GMA-g-NWPE) fabric was modified with a phosphoric acid to obtain an adsorbent for heavy metal ions. In the column-mode adsorption tests of Pb(II), the adsorption performance of the produced phosphorylated GMA-g-NWPE fabric (fibrous metal adsorbent) was not essentially dependent on the flow rate of the feed. The breakthrough points of 200, 500, and 1000 h-1 in space velocity were 483, 477 and 462 bed volumes, and the breakthrough capacities of the three flow rates were 1.16, 1.15 and 1.16 mmol-Pb(II)/g-adsorbent.

  19. A comparison of spent fuel shipping cask response to 10 CFR 71 normal conditions and realistic hot day extremes

    International Nuclear Information System (INIS)

    Manson, S.J.; Gianoulakis, S.E.

    1994-04-01

    An examination of the effect of a realistic (though conservative) hot day environment on the thermal transient behavior of spent fuel shipping casks is made. These results are compared to those that develop under the prescribed normal thermal condition of 10 CFR 71. Of specific concern are the characteristics of propagating thermal waves, which are set up by diurnal variations of temperature and insolation in the outdoor environment. In order to arrive at a realistic approximation of these variations on a conservative hot day, actual temperature and insolation measurements have been obtained from the National Climatic Data Center (NCDC) for representatively hot and high heat flux days. Thus, the use of authentic meteorological data ensures the realistic approach sought. Further supporting the desired realism of the modeling effort is the use of realistic cask configurations in which multiple laminations of structural, shielding, and other materials are expected to attenuate the propagating thermal waves. The completed analysis revealed that the majority of wall temperatures, for a wide variety of spent fuel shipping cask configurations, fall well below those predicted by enforcement of the regulatory environmental conditions of 10 CFR 71. It was found that maximum temperatures at the cask surface occasionally lie above temperatures predicted under the prescribed regulatory conditions. However, the temperature differences are small enough that the normal conservative assumptions that are made in the course of typical cask evaluations should correct for any potential violations. The analysis demonstrates that diurnal temperature variations that penetrate the cask wall all have maxima substantially less than the corresponding regulatory solutions. Therefore it is certain that vital cask components and the spent fuel itself will not exceed the temperatures calculated by use of the conditions of 10 CFR 71

  20. CFD Analysis of Random Turbulent Flow Load in Steam Generator of APR1400 Under Normal Operation Condition

    International Nuclear Information System (INIS)

    Lim, Sang Gyu; You, Sung Chang; Kim, Han Gon

    2011-01-01

    Regulatory guide 1.20 revision 3 of the Nuclear Regulatory Committee (NRC) modifies guidance for vibration assessments of reactor internals and steam generator internals. The new guidance requires applicants to provide a preliminary analysis and evaluation of the design and performance of a facility, including the safety margins of during normal operation and transient conditions anticipated during the life of the facility. Especially, revision 3 require rigorous assessments of adverse flow effects in the steam dryer cased by flow-excited acoustic and structural resonances such as the abnormality from power-uprated BWR cases. For two nearly identical nuclear power plants, the steam system of one BWR plant experienced failure of steam dryers and the main steam system components when steam flow was increased by 16 percent for extended power uprate (EPU). The mechanisms of those failures have revealed that a small adverse flow changing from the prototype condition induced severe flow-excited acoustic and structural resonances, leading to structural failures. In accordance with the historical background, therefore, potential adverse flow effects should be evaluated rigorously for steam generator internals in both BWR and Pressurized Water Reactor (PWR). The Advanced Power Reactor 1400 (APR1400), an evolutionary light water reactor, increased the power by 7.7 percent from the design of the 'Valid Prototype', System80+. Thus, reliable evaluations of potential adverse flow effects on the steam generator of APR1400 are necessary according to the regulatory guide. This paper is part of the computational fluid dynamics (CFD) analysis results for evaluation of the adverse flow effect for the steam generator internals of APR1400, including a series of sensitivity analyses to enhance the reliability of CFD analysis and an estimation the effect of flow loads on the internals of the steam generator under normal operation conditions

  1. SUBSURFACE EMPLACEMENT TRANSPORTATION SYSTEM

    International Nuclear Information System (INIS)

    Wilson, T.; Novotny, R.

    1999-01-01

    The objective of this analysis is to identify issues and criteria that apply to the design of the Subsurface Emplacement Transportation System (SET). The SET consists of the track used by the waste package handling equipment, the conductors and related equipment used to supply electrical power to that equipment, and the instrumentation and controls used to monitor and operate those track and power supply systems. Major considerations of this analysis include: (1) Operational life of the SET; (2) Geometric constraints on the track layout; (3) Operating loads on the track; (4) Environmentally induced loads on the track; (5) Power supply (electrification) requirements; and (6) Instrumentation and control requirements. This analysis will provide the basis for development of the system description document (SDD) for the SET. This analysis also defines the interfaces that need to be considered in the design of the SET. These interfaces include, but are not limited to, the following: (1) Waste handling building; (2) Monitored Geologic Repository (MGR) surface site layout; (3) Waste Emplacement System (WES); (4) Waste Retrieval System (WRS); (5) Ground Control System (GCS); (6) Ex-Container System (XCS); (7) Subsurface Electrical Distribution System (SED); (8) MGR Operations Monitoring and Control System (OMC); (9) Subsurface Facility System (SFS); (10) Subsurface Fire Protection System (SFR); (11) Performance Confirmation Emplacement Drift Monitoring System (PCM); and (12) Backfill Emplacement System (BES)

  2. Herb-drug interaction of Nisha Amalaki and Curcuminoids with metformin in normal and diabetic condition: A disease system approach.

    Science.gov (United States)

    Shengule, Sushant; Kumbhare, Kalyani; Patil, Dada; Mishra, Sanjay; Apte, Kishori; Patwardhan, Bhushan

    2018-05-01

    Nisha Amalaki (NA), formulation with Curcuma longa Linn (Turmeric, Haridra, Nisha in Sanskrit; Family: Zingiberaceae) and Phyllanthus emblica Linn (Indian gooseberry, Amlaki in Sanskrit; Family: Phyllanthaceae) which is described for various diseases including diabetes in ayurvedic texts and Nighantus. The aim of the present study was to assess the pharmacokinetic (PK) and pharmacodynamic (PD) interactions of chemically standardized NA and Curcuminoids (CE) with metformin (MET) in normal and diabetic animals. Oral administration of NA (200 mg/kg) and CE (30 mg/kg) was carried out for seven days followed by co-administration of MET till fifteen days. MET plasma PK parameters including C max , AUC 0-∞ , t 1/2 , CL and V d were measured on the eighth day. PD parameters including plasma glucose AUC followed by oral glucose tolerance test, high-density lipoproteins (HDL), total cholesterol (TC) and triglycerides (TG) were measured on the fifteenth day. In normal animals, co-administration of NA + MET and CE + MET resulted in significant increase (p < 0.05) in C max , AUC 0-∞ , t 1/2, and reduction of CL and V d . We report that co-administration of NA + MET and CE + MET significantly (p < 0.01, p < 0.001) reduced plasma glucose level, HDL level while a notable reduction in TG and TC level was observed. Interestingly, in diabetic condition, co-administration of NA + MET and CE + MET indicated a significant decrease (p < 0.05) in C max , AUC 0-∞ , t 1/2 and enhanced CL and V d. Hence, to conclude, co-administration of NA + MET and CE + MET resulted in beneficial PK and PD interactions leading to antihyperglycemic and antihyperlipidemic effects in both conditions. However, PK interaction was drastically different in diabetic and normal conditions. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Development and Implementation of Mechanistic Terry Turbine Models in RELAP-7 to Simulate RCIC Normal Operation Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haihua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zou, Ling [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Hongbin [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, James Edward [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    As part of the efforts to understand the unexpected “self-regulating” mode of the RCIC (Reactor Core Isolation Cooling) systems in Fukushima accidents and extend BWR RCIC and PWR AFW (Auxiliary Feed Water) operational range and flexibility, mechanistic models for the Terry turbine, based on Sandia’s original work [1], have been developed and implemented in the RELAP-7 code to simulate the RCIC system. In 2016, our effort has been focused on normal working conditions of the RCIC system. More complex off-design conditions will be pursued in later years when more data are available. In the Sandia model, the turbine stator inlet velocity is provided according to a reduced-order model which was obtained from a large number of CFD (computational fluid dynamics) simulations. In this work, we propose an alternative method, using an under-expanded jet model to obtain the velocity and thermodynamic conditions for the turbine stator inlet. The models include both an adiabatic expansion process inside the nozzle and a free expansion process outside of the nozzle to ambient pressure. The combined models are able to predict the steam mass flow rate and supersonic velocity to the Terry turbine bucket entrance, which are the necessary input information for the Terry turbine rotor model. The analytical models for the nozzle were validated with experimental data and benchmarked with CFD simulations. The analytical models generally agree well with the experimental data and CFD simulations. The analytical models are suitable for implementation into a reactor system analysis code or severe accident code as part of mechanistic and dynamical models to understand the RCIC behaviors. The newly developed nozzle models and modified turbine rotor model according to the Sandia’s original work have been implemented into RELAP-7, along with the original Sandia Terry turbine model. A new pump model has also been developed and implemented to couple with the Terry turbine model. An input

  4. Current status of the FASTGRASS/PARAGRASS models for fission product release from LWR fuel during normal and accident conditions

    International Nuclear Information System (INIS)

    Rest, J.; Zawadski, S.A.; Piasecka, M.

    1983-10-01

    The theoretical FASTGRASS model for the prediction of the behavior of the gaseous and volatile fission products in nuclear fuels under normal and transient conditions has undergone substantial improvements. The major improvements have been in the atomistic and bubble diffusive flow models, in the models for the behavior of gas bubbles on grain surfaces, and in the models for the behavior of the volatile fission products iodine and cesium. The thoery has received extensive verification over a wide range of fuel operating conditions, and can be regarded as a state-of-the-art model based on our current level of understanding of fission product behavior. PARAGRASS is an extremely efficient, mechanistic computer code with the capability of modeling steady-state and transient fission-product behavior. The models in PARAGRASS are based on the more detailed ones in FASTGRASS. PARAGRASS updates for the FRAPCON (PNL), FRAP-T (INEL), and SCDAP (INEL) codes have recently been completed and implemented. Results from an extensive FASTGRASS verification are presented and discussed for steady-state and transient conditions. In addition, FASTGRASS predictions for fission product release rate constants are compared with those in NUREG-0772. 21 references, 13 figures

  5. THE ESTIMATION OF SOME CHANGES OF SOIL PHYSICAL STATE UNDER THE EFFECT OF LAND RECLAMATION TECHNOLOGIES, IN THE CONDITION OF SUBSURFACE DRAINAGE IN BAIA-MOLDOVA DEPPRESSION

    Directory of Open Access Journals (Sweden)

    V. Moca

    2006-10-01

    Full Text Available In the pedo-climatic conditions of Suceava County that extends on a total surface of 855 300 ha, the balance of agricultural land affected by humidity excess with temporar or permanent character is differenciated from south to north and from east to west, between 30 % till 40%, which means almost 100 000 ha. On these soils with underground water or pluvial excess hydro ameliorative drainage systems have been installed, associated to a complex agroameliorative works. For long effect estimation of the underground drainage asociated with the agropedoameliorative works upon the some physical and hydrophysical characteristics, there were analyzed the soil and the environment conditions from Baia field. For this reason, we analyzed the agrophysical conditions for luvisol albic pseudogleic (SRCS-1980, respectively luvosol albic stagnic-glosic (SRTS-2003 albic luvosoil drained and cultivated, after a period of 28 years (1978-2006 use. The obtained data regarding to te water balance and the evolution of the major physical properties of soil, under the influence of drainage and amelioration works, put into evidence in the first stage (1978-1986 a general improvement of the aerohidrycal state and physical-chemical conditioning. In the next two experimental cycles of 10 years each, have been noticed a increased of compaction degree of soil drained and cultivated on 0-30 cm depth, from weak loose to moderately compaction depending on the remanence of the reclamation technologies.

  6. A comparison study of the two-bladed partial pitch turbine during normal operation and an extreme gust conditions

    International Nuclear Information System (INIS)

    Kim, T; Petersen, M M; Larsen, T J

    2014-01-01

    This paper shows the load comparisons between the numerical simulation and the full-scale load measurement data. First part of this paper includes the comparisons of statistic load in terms of maximum, mean, and minimum values for the selected normal operation cases. The blade root bending moments and tower top bending moments are compared. Second part of this paper introduces the dynamic response comparisons during an extreme wind gust condition where the wind speed changed approximately 10 m/s during three seconds. The rotor speed and blade root flapwise and edgewise bending moment are compared. The nonlinear aeroelastic simulation code HAWC2 is used for the simulations. A very fine agreement between the simulated and the full-scale measured loads is seen for the both comparisons

  7. Microplankton biomass and diversity in the Vietnamese upwelling area during SW monsoon under normal conditions and after an ENSO event

    DEFF Research Database (Denmark)

    Loick-Wilde, Natalie; Bombar, Deniz; Doan, Hai Nhu

    2017-01-01

    to show how climatological-driven changes can have a significant influence on the distribution of microplankton communities and their biomass via its impact on nutrient concentrations in the water column. The first summer in July 2003 followed a weak El-Nino Southern Oscillation (ENSO) event...... (10–20 µm) prevailed ubiquitously during reduced upwelling. During normal upwelling, the diatom Rhizosolenia sp. dominated the cell-carbon biomass in the silicate poor upwelling waters. Trichodesmium erythraeum dominated in the Mekong-influenced and nutrient depleted offshore waters, where it co......Investigating microplankton biomass and diversity under different climatological conditions is key to the understanding of cascading effects of climate change on nutrient cycles and biological productivity. Here we have used data collected during two contrasting summers along the coast of Viet Nam...

  8. Mathematical modelling of liquid meniscus shape in cylindrical micro-channel for normal and micro gravity conditions

    Science.gov (United States)

    Marchuk, Igor; Lyulin, Yuriy

    2017-10-01

    Mathematical model of liquid meniscus shape in cylindrical micro-channel of the separator unit of condensing/separating system is presented. Moving liquid meniscus in the 10 μm cylindrical microchannel is used as a liquid lock to recover the liquid obtained by condensation from the separators. The main goal of the liquid locks to prevent penetration of a gas phase in the liquid line at the small flow rate of the condensate and because of pressure fluctuations in the vapor-gas-liquid loop. Calculation of the meniscus shape has been performed for liquid FC-72 at different values of pressure difference gas - liquid and under normal and micro gravity conditions.

  9. Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions.

    Science.gov (United States)

    Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa

    2013-04-12

    Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Subsurface Geotechnical Parameters Report

    International Nuclear Information System (INIS)

    Rigby, D.; Mrugala, M.; Shideler, G.; Davidsavor, T.; Leem, J.; Buesch, D.; Sun, Y.; Potyondy, D.; Christianson, M.

    2003-01-01

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce

  11. Subsurface Geotechnical Parameters Report

    Energy Technology Data Exchange (ETDEWEB)

    D. Rigby; M. Mrugala; G. Shideler; T. Davidsavor; J. Leem; D. Buesch; Y. Sun; D. Potyondy; M. Christianson

    2003-12-17

    The Yucca Mountain Project is entering a the license application (LA) stage in its mission to develop the nation's first underground nuclear waste repository. After a number of years of gathering data related to site characterization, including activities ranging from laboratory and site investigations, to numerical modeling of processes associated with conditions to be encountered in the future repository, the Project is realigning its activities towards the License Application preparation. At the current stage, the major efforts are directed at translating the results of scientific investigations into sets of data needed to support the design, and to fulfill the licensing requirements and the repository design activities. This document addresses the program need to address specific technical questions so that an assessment can be made about the suitability and adequacy of data to license and construct a repository at the Yucca Mountain Site. In July 2002, the U.S. Nuclear Regulatory Commission (NRC) published an Integrated Issue Resolution Status Report (NRC 2002). Included in this report were the Repository Design and Thermal-Mechanical Effects (RDTME) Key Technical Issues (KTI). Geotechnical agreements were formulated to resolve a number of KTI subissues, in particular, RDTME KTIs 3.04, 3.05, 3.07, and 3.19 relate to the physical, thermal and mechanical properties of the host rock (NRC 2002, pp. 2.1.1-28, 2.1.7-10 to 2.1.7-21, A-17, A-18, and A-20). The purpose of the Subsurface Geotechnical Parameters Report is to present an accounting of current geotechnical information that will help resolve KTI subissues and some other project needs. The report analyzes and summarizes available qualified geotechnical data. It evaluates the sufficiency and quality of existing data to support engineering design and performance assessment. In addition, the corroborative data obtained from tests performed by a number of research organizations is presented to reinforce

  12. THE FEATURES OF CONNEXINS EXPRESSION IN THE CELLS OF NEUROVASCLAR UNIT IN NORMAL CONDITIONS AND HYPOXIA IN VITRO

    Directory of Open Access Journals (Sweden)

    A. V. Morgun

    2014-01-01

    Full Text Available The aim of this research was to assess a role of connexin 43 (Cx43 and associated molecule CD38 in the regulation of cell-cell interactions in the neurovascular unit (NVU in vitro in physiological conditions and in hypoxia.Materials and methods. The study was done using the original neurovascular unit model in vitro. The NVU consisted of three cell types: neurons, astrocytes, and cerebral endothelial cells derived from rats. Hypoxia was induced by incubating cells with sodium iodoacetate for 30 min at37 °C in standard culture conditions.Results. We investigated the role of connexin 43 in the regulation of cell interactions within the NVU in normal and hypoxic injury in vitro. We found that astrocytes were characterized by high levels of expression of Cx43 and low level of CD38 expression, neurons demonstrated high levels of CD38 and low levels of Cx43. In hypoxic conditions, the expression of Cx43 and CD38 in astrocytes markedly increased while CD38 expression in neurons decreased, however no changes were found in endothelial cells. Suppression of Cx43 activity resulted in down-regulation of CD38 in NVU cells, both in physiological conditions and at chemical hypoxia.Conclusion. Thus, the Cx-regulated intercellular NAD+-dependent communication and secretory phenotype of astroglial cells that are the part of the blood-brain barrier is markedly changed in hypoxia.

  13. Production of starch nanoparticles using normal maize starch via heat-moisture treatment under mildly acidic conditions and homogenization.

    Science.gov (United States)

    Park, Eun Young; Kim, Min-Jung; Cho, MyoungLae; Lee, Ju Hun; Kim, Jong-Yea

    2016-10-20

    Normal maize starch was subjected to heat-moisture treatment (HMT) under mildly acidic conditions (0.000, 0.050, or 0.075M H2SO4) for various treatment times (3, 5, or 8h) followed by homogenization up to 60min to prepare nanoparticles. The combination of HMT (0.075M, for 8h) and homogenization (60min) produced nanoparticles with diameters of less than 50nm at a yield higher than 80%. X-ray diffractometry and size-exclusion chromatography revealed that HMT under mildly acidic conditions selectively hydrolyzed the starch chains (especially amylose and/or long chains of amylopectin) in the amorphous region of the granules without significant damage to the crystalline structure, however, modification of the molecular structure in the amorphous region increased fragility of the granules during homogenization. Homogenization for 60min caused obvious damage in the long-range crystalline structure of the HMT starch (0.15N, for 8h), while the short-range chain associations (FT-IR) remained intact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. SSYST, a code-system for analysing transient LWR fuel rod behaviour under off-normal conditions

    International Nuclear Information System (INIS)

    Borgwaldt, H.; Gulden, W.

    1983-01-01

    SSYST is a code-system for analysing transient fuel rod behaviour under off-normal conditions, developed conjointly by the Institut fuer Kernenergetik und Energiesysteme (IKE), Stuttgart, and Kernforschungszentrum Karlsruhe (KfK) under contract of Projek Nukleare Sicherheit (PNS) at KfK. The main differences between SSYST and similar codes are (1) an open-ended modular code organisation, and (2) a preference for simple models, wherever possible. While the first feature makes SSYST a very flexible tool, easily adapted to changing requirements, the second feature leads to short execution times. The analysis of transient rod behaviour under LOCA boundary conditions takes 2 min cpu-time (IBM-3033), so that extensive parametric studies become possible. This paper gives an outline of the overall code organisation and a general overview of the physical models implemented. Besides explaining the routine application of SSYST in the analysis of loss-of-coolant accidents, examples are given of special applications which have led to a satisfactory understanding of the decisive influence of deviations from rotational symmetry on the fuel rod perimeter. (author)

  15. SSYST: A code-system for analyzing transient LWR fuel rod behaviour under off-normal conditions

    International Nuclear Information System (INIS)

    Borgwaldt, H.; Gulden, W.

    1983-01-01

    SSYST is a code-system for analyzing transient fuel rod behaviour under off-normal conditions, developed conjointly by the Institut fur Kernenergetik und Energiesysteme (IKE), Stuttgart, and Kernforschungszentrum Karlsruhe (KfK) under contract of Projekt Nukleare Sicherheit (PNS) at KfK. The main differences between SSYST and similar codes are an open-ended modular code organization, and a preference for simple models, wherever possible. While the first feature makes SSYST a very flexible tool, easily adapted to changing requirements, the second feature leads to short execution times. The analysis of transient rod behaviour under LOCA boundary conditions takes 2 min cpu-time (IBM-3033), so that extensive parametric studies become possible. This paper gives an outline of the overall code organisation and a general overview of the physical models implemented. Besides explaining the routine application of SSYST in the analysis of loss-of-coolant accidents, examples are given of special applications which have led to a satisfactory understanding of the decisive influence of deviations from rotational symmetry on the fuel rod perimeter

  16. Subsurface quality assurance practices

    International Nuclear Information System (INIS)

    1987-08-01

    This report addresses only the concept of applying Nuclear Quality Assurance (NQA) practices to repository shaft and subsurface design and construction; how NQA will be applied; and the level of detail required in the documentation for construction of a shaft and subsurface repository in contrast to the level of detail required in the documentation for construction of a traditional mine. This study determined that NQA practices are viable, attainable, as well as required. The study identified the appropriate NQA criteria and the repository's major structures, systems, items, and activities to which the criteria are applicable. A QA plan, for design and construction, and a list of documentation, for construction, are presented. 7 refs., 1 fig., 18 tabs

  17. Modeling subsurface stormflow initiation in low-relief landscapes

    Science.gov (United States)

    Hopp, Luisa; Vaché, Kellie B.; Rhett Jackson, C.; McDonnell, Jeffrey J.

    2015-04-01

    Shallow lateral subsurface flow as a runoff generating mechanism at the hillslope scale has mostly been studied in steeper terrain with typical hillside angles of 10 - 45 degrees. These studies have shown that subsurface stormflow is often initiated at the interface between a permeable upper soil layer and a lower conductivity impeding layer, e.g. a B horizon or bedrock. Many studies have identified thresholds of event size and soil moisture states that need to be exceeded before subsurface stormflow is initiated. However, subsurface stormflow generation on low-relief hillslopes has been much less studied. Here we present a modeling study that investigates the initiation of subsurface stormflow on low-relief hillslopes in the Upper Coastal Plain of South Carolina, USA. Hillslopes in this region typically have slope angles of 2-5 degrees. Topsoils are sandy, underlain by a low-conductivity sandy clay loam Bt horizon. Subsurface stormflow has only been intercepted occasionally in a 120 m long trench, and often subsurface flow was not well correlated with stream signals, suggesting a disconnect between subsurface flow on the hillslopes and stream flow. We therefore used a hydrologic model to better understand which conditions promote the initiation of subsurface flow in this landscape, addressing following questions: Is there a threshold event size and soil moisture state for producing lateral subsurface flow? What role does the spatial pattern of depth to the impeding clay layer play for subsurface stormflow dynamics? We reproduced a section of a hillslope, for which high-resolution topographic data and depth to clay measurements were available, in the hydrologic model HYDRUS-3D. Soil hydraulic parameters were based on experimentally-derived data. The threshold analysis was first performed using hourly climate data records for 2009-2010 from the study site to drive the simulation. For this period also trench measurements of subsurface flow were available. In addition

  18. The Microbiology of Subsurface, Salt-Based Nuclear Waste Repositories: Using Microbial Ecology, Bioenergetics, and Projected Conditions to Help Predict Microbial Effects on Repository Performance

    International Nuclear Information System (INIS)

    Swanson, Juliet S.; Cherkouk, Andrea; Arnold, Thuro; Meleshyn, Artur; Reed, Donald T.

    2016-01-01

    This report summarizes the potential role of microorganisms in salt-based nuclear waste repositories using available information on the microbial ecology of hypersaline environments, the bioenergetics of survival under high ionic strength conditions, and ''repository microbiology'' related studies. In areas where microbial activity is in question, there may be a need to shift the research focus toward feasibility studies rather than studies that generate actual input for performance assessments. In areas where activity is not necessary to affect performance (e.g., biocolloid transport), repository-relevant data should be generated. Both approaches will lend a realistic perspective to a safety case/performance scenario that will most likely underscore the conservative value of that case.

  19. The Microbiology of Subsurface, Salt-Based Nuclear Waste Repositories: Using Microbial Ecology, Bioenergetics, and Projected Conditions to Help Predict Microbial Effects on Repository Performance

    Energy Technology Data Exchange (ETDEWEB)

    Swanson, Juliet S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cherkouk, Andrea [Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf (Germany); Arnold, Thuro [Helmholtz-Zentrum Dresden-Rossendorf, Rossendorf (Germany); Meleshyn, Artur [Gesellschaft fur Anlagen und Reaktorsicherheit, Braunschweig (Germany); Reed, Donald T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-11-17

    This report summarizes the potential role of microorganisms in salt-based nuclear waste repositories using available information on the microbial ecology of hypersaline environments, the bioenergetics of survival under high ionic strength conditions, and “repository microbiology” related studies. In areas where microbial activity is in question, there may be a need to shift the research focus toward feasibility studies rather than studies that generate actual input for performance assessments. In areas where activity is not necessary to affect performance (e.g., biocolloid transport), repository-relevant data should be generated. Both approaches will lend a realistic perspective to a safety case/performance scenario that will most likely underscore the conservative value of that case.

  20. Reaction of subsurface coastal aquifers to climate and land use changes in Greece: modelling of groundwater refreshening patterns under natural recharge conditions

    Science.gov (United States)

    Lambrakis, N.; Kallergis, G.

    2001-05-01

    This paper studies the multicomponent ion exchange process and freshening time under natural recharge conditions for three coastal aquifers in Greece. Due to over-pumping and the dry years of 1980-1990 decline in groundwater quality has been observed in most of the Greek coastal aquifers. This decline is caused by a lack of reliable water resource management, water abstraction from great depths, and seawater intrusion resulting in a rise of the fresh/salt water interface (salinisation process) due to a negative water balance. The reverse phenomenon, which should lead to groundwater freshening, is a long process. The freshening process shows chromatographic patterns that are due to chemical reactions such as calcite dissolution and cation exchange, and simultaneously occurring transport and dispersion processes. Using the geochemical simulation codes PHREEQE and PHREEQM (Parkhurst et al., US Geol. Surv. Water Resour. Invest., 80-96 (1980) 210; Appelo and Postma, Geochemistry, Groundwater and Pollution (1994)), these patterns were analysed and the above-mentioned processes were simulated for carefully selected aquifers in Peloponnesus and Crete (Greece). Aquifers of the Quaternary basin of Glafkos in Peloponnesus, the Neogene formations in Gouves, Crete, and the carbonate aquifer of Malia, Crete, were examined as representative examples of Greek coastal aquifer salinisation. The results show that when pumping was discontinued, the time required for freshening under natural conditions of the former two aquifers is long and varies between 8000 and 10,000 years. The Malia aquifer on the other hand, has a freshening time of 15 years. Freshening time was shown to depend mainly on cation exchange capacities and the recharge rate of the aquifers.

  1. Subsurface contaminants focus area

    International Nuclear Information System (INIS)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites

  2. Subsurface contaminants focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  3. Improving the biodegradative capacity of subsurface bacteria

    International Nuclear Information System (INIS)

    Romine, M.F.; Brockman, F.J.

    1993-04-01

    The continual release of large volumes of synthetic materials into the environment by agricultural and industrial sources over the last few decades has resulted in pollution of the subsurface environment. Cleanup has been difficult because of the relative inaccessibility of the contaminants caused by their wide dispersal in the deep subsurface, often at low concentrations and in large volumes. As a possible solution for these problems, interest in the introduction of biodegradative bacteria for in situ remediation of these sites has increased greatly in recent years (Timmis et al. 1988). Selection of biodegradative microbes to apply in such cleanup is limited to those strains that can survive among the native bacterial and predator community members at the particular pH, temperature, and moisture status of the site (Alexander, 1984). The use of microorganisms isolated from subsurface environments would be advantageous because the organisms are already adapted to the subsurface conditions. The options are further narrowed to strains that are able to degrade the contaminant rapidly, even in the presence of highly recalcitrant anthropogenic waste mixtures, and in conditions that do not require addition of further toxic compounds for the expression of the biodegradative capacity (Sayler et al. 1990). These obstacles can be overcome by placing the genes of well-characterized biodegradative enzymes under the control of promoters that can be regulated by inexpensive and nontoxic external factors and then moving the new genetic constructs into diverse groups of subsurface microbes. ne objective of this research is to test this hypothesis by comparing expression of two different toluene biodegradative enzymatic pathways from two different regulatable promoters in a variety of subsurface isolates

  4. Modelling of real area of contact between tool and workpiece in metal forming processes including the influence of subsurface deformation

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, Paulo A. F.; Bay, Niels Oluf

    2016-01-01

    New equipment for testing asperity deformation at various normal loads and subsurface elongations is presented. Resulting real contact area ratios increase heavily with increasing subsurface expansion due to lowered yield pressure on the asperities when imposing subsurface normal stress parallel ...... for estimating friction in the numerical modelling of metal forming processes.......New equipment for testing asperity deformation at various normal loads and subsurface elongations is presented. Resulting real contact area ratios increase heavily with increasing subsurface expansion due to lowered yield pressure on the asperities when imposing subsurface normal stress parallel...... to the surface. Finite element modelling supports the presentation and contributes by extrapolation of results to complete the mapping of contact area as function of normal pressure and one-directional subsurface strain parallel to the surface. Improved modelling of the real contact area is the basis...

  5. Dry Matter Accumulation and Remobilization in Grain Sorghum Genotypes (Sorghum bicolor L. Moench (underNormal and Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    A Beheshti

    2011-02-01

    Full Text Available Abstract Production, remobilization and accumulation of assimilates in crops especially under water stress are essential factors for determination and studying the yield differences of species and cultivars. Field experiment was conducted using a split plot design based on a randomized complete block design with 3 replication s during 2007 growing season in agricultural research station (Khorasan Agricultural and Natural Resource Research Center, Mashhad-Iran. Main plots were consisted of 2 levels of water, water deficit after anthesis and normal condition (with out water stress and factorial arrangement of photosynthesis status (non desiccation and chemical desiccation with potassium iodide and 3 grain sorghum genotypes (Sepide, M5 and M2 promising lines were assigned to sub plots. Results of variance analysis showed, that the effects of water stress on dry matter accumulation, efficiency of remobilization (REE, percent of remobilization (REP, biologic yield were significant in (p≤0.01 (and grain yield (economic yield was significant in p≤0.05, respectively. Water deficit caused an increase of 10.08%, 24.45 % and 12.43% in dry matter accumulation, percent of remobilization and efficiency of remobilization, respectively as compared to normal conditions. This in turn was led to decrease in seed yield, biological yield and harvest index by 36.38%, 5.43% and 31.60%, respectively. The effect of disturbance in current photosynthesis was significant in all of traits and caused the increase of 15.58%, 17.5% and 36.62% in dry matter accumulation, efficiency of remobilization and percent of remobilization, respectively. The role of remobilization was crucial in sorghum genotypes. Interaction between factors showed that highest dry matter accumulation, percentage of remobilization and efficiency of remobilization was in drought stress and disturbance in current photosynthesis and was 16.62%, 62.54 and 24.60%, respectively and was significantly

  6. Behavior of U3Si2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions

    International Nuclear Information System (INIS)

    Gamble, Kyle Allan Lawrence; Hales, Jason Dean; Barani, Tommaso; Pizzocri, Davide; Pastore, Giovanni

    2016-01-01

    As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.

  7. Sequential path analysis for determining interrelationships between yield and related traits in tobacco (Nicotiana tabacum L. under normal and abiotic stress conditions

    Directory of Open Access Journals (Sweden)

    Bayat Mahdi

    2014-01-01

    Full Text Available In the present work the relationships between yield and its related traits were investigated in tobacco genotypes under normal and abiotic stress conditions (Orobanche aegyptiaca weed at Urmia Tobacco Research Centre, Iran, during 2006-2009 cropping seasons. The experimental design was a randomized complete block design (RCBD with three replications in each condition every year. Analysis of variance revealed extent genetic variability among the genotypes for most of the traits studied. In comparison with normal condition, the mean value of studied traits decreased in stress condition. LAI and FD showed the maximum and minimum diminution in the mean values under stress condition compared to normal one so known as more sensitive and more tolerant traits, respectively. Based on CV values, the traits FD and DLYP showed the minimum and maximum variation among traits in both normal and stress conditions. Correlation analysis revealed significant and positive correlations between DLYP with all studied traits in both normal and stress conditions. Path analysis detected the traits including biomass, APDW and DWR as the first-order variables at normal condition and biomass, APDW, DWR and harvest index as the first-order variables under abiotic stress condition. Based on results, the traits such as biomass, APDW, DWR detected as more important factors in both conditions can be used in tobacco breeding programs for increasing yield. Abbreviation: aerial part fresh weight without leaves weight (APFW, aerial part dry weight without leaves weight (APDW, biomass (BIO, coefficient of variation (CV, dry weight of root (DWR, flowering date (FD, fresh weight of leaf (FWL, fresh weight of root (FWR, harvest index (HI, leaf area index (LAI, dry leaf yield per plant (DLYP, number of leaf (NL, plant height (PH, randomized complete block design (RCBD, standard deviation (Std.

  8. SOLID OXYGEN SOURCE FOR BIOREMEDIATION IN SUBSURFACE SOILS

    Science.gov (United States)

    Sodium percarbonate was encapsulated in poly(vinylidene chloride) to determine its potential as a slow-release oxygen source for biodegradation of contaminan ts in subsurface soils. In laboratory studies under aqueous conditions, the encapsulated sodium percarbonate was estimate...

  9. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport- Demonstration of Approach and Results on Used Fuel Performance Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geelhood, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flores, Gregg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Jy-An [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sanborn, Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spears, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klymyshyn, Nick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    This document addresses Oak Ridge National Laboratory milestone M2FT-13OR0822015 Demonstration of Approach and Results on Used Nuclear Fuel Performance Characterization. This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies that have been performed. Finally, discussion on the long-term goals and objectives of this initiative are provided.

  10. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  11. Personal monitoring of 218Po and 214Po radionuclide deposition onto individuals under normal environmental exposure conditions

    International Nuclear Information System (INIS)

    Eatough, J.P.; Worley, A.; Moss, G.R.

    1999-01-01

    Personal dosemeters have been utilized to monitor the deposition of the radon decay products 218 Po and 214 Po onto individuals under normal environmental exposure conditions. Each detector consists of TASTRAK alpha-sensitive plastic incorporated into an ordinary working wristwatch. Subsequent analysis provides energy discrimination of the detected alpha-particle decays, and allows events from the individual radon decay products 218 Po and 214 Po, attached to the detector surface, to be uniquely identified. Assuming similar deposition onto skin and detector surfaces, the activity per unit area of deposited radionuclides can be determined for exposed skin. Forty-one personal dosemeters were issued to volunteers selected through the hospital medical physics departments at Reading, Northampton, Exeter and Plymouth. Each volunteer was also issued with a personal radon dosemeter to determine their individual radon exposure. The volunteers wore the two dosemeters simultaneously and continuously for a period of around one month. Correlations were observed between the radon exposure of the individual and the activity per unit area of 218 Po and 214 Po on the detector surface. From these correlations it can be estimated that at the UK average radon exposure of 20 Bq m -3 , the number of decays/cm 2 /year on continuously exposed skin surface is between 3500 and 28 000 for 218 Po, and between 7000 and 21 000 for 214 Po. These results can be combined with theoretical modelling of the dose distribution in the skin to yield the alpha-particle radiation dose to any identified target cells. (author)

  12. Evaluation of LWR fuel performance under transient and off-normal conditions. A review of recent reports

    International Nuclear Information System (INIS)

    Knudsen, P.

    1979-11-01

    Reports from the meetings at Petten (Nov. - Dec. 1978), Portland (April-May 1979) and Arles (May 1979) have been reviewed together with various reports related to the Three-Mile Island accident. The reports were selected to cover transients in normal operation (power ramps, load-following) as well as off-normal transients. (author)

  13. Investigation of buoyancy effects on turbulent nonpremixed jet flames by using normal and low-gravity conditions

    Science.gov (United States)

    Idicheria, Cherian Alex

    An experimental study was performed with the aim of investigating the structure of transitional and turbulent nonpremixed jet flames under different gravity conditions. In particular, the focus was to determine the effect of buoyancy on the mean and fluctuating characteristics of the jet flames. Experiments were conducted under three gravity levels, viz. 1 g, 20 mg and 100 mug. The milligravity and microgravity conditions were achieved by dropping a jet-flame rig in the UT-Austin 1.25-second and the NASA-Glenn Research Center 2.2-second drop towers, respectively. The principal diagnostics employed were time-resolved, cinematographic imaging of the visible soot luminosity and planar laser Mie scattering (PLMS). For the cinematographic flame luminosity imaging experiments, the flames studied were piloted nonpremixed propane, ethylene and methane jet flames at source Reynolds numbers ranging from 2000 to 10500. From the soot luminosity images, mean and root-mean square (RMS) images were computed, and volume rendering of the image sequences was used to investigate the large-scale structure evolution and flame tip dynamics. The relative importance of buoyancy was quantified with the parameter, xL , as defined by Becker and Yamazaki [1978]. The results show, in contrast to previous microgravity studies, that the high Reynolds number flames have the same flame length irrespective of the gravity level. The RMS fluctuations and volume renderings indicate that the large-scale structure and flame tip dynamics are essentially identical to those of purely momentum driven flames provided xL is approximately less than 2. The volume-renderings show that the luminous structure celerities (normalized by jet exit velocity) are approximately constant for xL 8. The celerity values for xL > 8 are seen to follow a x3/2L scaling, which can be predicted with a simplified momentum equation analysis for the buoyancy-dominated regime. The underlying turbulent structure and mean mixture

  14. Identification, Expression Analysis, and Target Prediction of Flax Genotroph MicroRNAs Under Normal and Nutrient Stress Conditions

    Science.gov (United States)

    Melnikova, Nataliya V.; Dmitriev, Alexey A.; Belenikin, Maxim S.; Koroban, Nadezhda V.; Speranskaya, Anna S.; Krinitsina, Anastasia A.; Krasnov, George S.; Lakunina, Valentina A.; Snezhkina, Anastasiya V.; Sadritdinova, Asiya F.; Kishlyan, Natalya V.; Rozhmina, Tatiana A.; Klimina, Kseniya M.; Amosova, Alexandra V.; Zelenin, Alexander V.; Muravenko, Olga V.; Bolsheva, Nadezhda L.; Kudryavtseva, Anna V.

    2016-01-01

    Cultivated flax (Linum usitatissimum L.) is an important plant valuable for industry. Some flax lines can undergo heritable phenotypic and genotypic changes (LIS-1 insertion being the most common) in response to nutrient stress and are called plastic lines. Offspring of plastic lines, which stably inherit the changes, are called genotrophs. MicroRNAs (miRNAs) are involved in a crucial regulatory mechanism of gene expression. They have previously been assumed to take part in nutrient stress response and can, therefore, participate in genotroph formation. In the present study, we performed high-throughput sequencing of small RNAs (sRNAs) extracted from flax plants grown under normal, phosphate deficient and nutrient excess conditions to identify miRNAs and evaluate their expression. Our analysis revealed expression of 96 conserved miRNAs from 21 families in flax. Moreover, 475 novel potential miRNAs were identified for the first time, and their targets were predicted. However, none of the identified miRNAs were transcribed from LIS-1. Expression of seven miRNAs (miR168, miR169, miR395, miR398, miR399, miR408, and lus-miR-N1) with up- or down-regulation under nutrient stress (on the basis of high-throughput sequencing data) was evaluated on extended sampling using qPCR. Reference gene search identified ETIF3H and ETIF3E genes as most suitable for this purpose. Down-regulation of novel potential lus-miR-N1 and up-regulation of conserved miR399 were revealed under the phosphate deficient conditions. In addition, the negative correlation of expression of lus-miR-N1 and its predicted target, ubiquitin-activating enzyme E1 gene, as well as, miR399 and its predicted target, ubiquitin-conjugating enzyme E2 gene, was observed. Thus, in our study, miRNAs expressed in flax plastic lines and genotrophs were identified and their expression and expression of their targets was evaluated using high-throughput sequencing and qPCR for the first time. These data provide new insights

  15. Cultivating the Deep Subsurface Microbiome

    Science.gov (United States)

    Casar, C. P.; Osburn, M. R.; Flynn, T. M.; Masterson, A.; Kruger, B.

    2017-12-01

    Subterranean ecosystems are poorly understood because many microbes detected in metagenomic surveys are only distantly related to characterized isolates. Cultivating microorganisms from the deep subsurface is challenging due to its inaccessibility and potential for contamination. The Deep Mine Microbial Observatory (DeMMO) in Lead, SD however, offers access to deep microbial life via pristine fracture fluids in bedrock to a depth of 1478 m. The metabolic landscape of DeMMO was previously characterized via thermodynamic modeling coupled with genomic data, illustrating the potential for microbial inhabitants of DeMMO to utilize mineral substrates as energy sources. Here, we employ field and lab based cultivation approaches with pure minerals to link phylogeny to metabolism at DeMMO. Fracture fluids were directed through reactors filled with Fe3O4, Fe2O3, FeS2, MnO2, and FeCO3 at two sites (610 m and 1478 m) for 2 months prior to harvesting for subsequent analyses. We examined mineralogical, geochemical, and microbiological composition of the reactors via DNA sequencing, microscopy, lipid biomarker characterization, and bulk C and N isotope ratios to determine the influence of mineralogy on biofilm community development. Pre-characterized mineral chips were imaged via SEM to assay microbial growth; preliminary results suggest MnO2, Fe3O4, and Fe2O3 were most conducive to colonization. Solid materials from reactors were used as inoculum for batch cultivation experiments. Media designed to mimic fracture fluid chemistry was supplemented with mineral substrates targeting metal reducers. DNA sequences and microscopy of iron oxide-rich biofilms and fracture fluids suggest iron oxidation is a major energy source at redox transition zones where anaerobic fluids meet more oxidizing conditions. We utilized these biofilms and fluids as inoculum in gradient cultivation experiments targeting microaerophilic iron oxidizers. Cultivation of microbes endemic to DeMMO, a system

  16. 78 FR 63902 - Special Conditions: Embraer S.A., Model EMB-550 Airplanes; Flight Envelope Protection: Normal...

    Science.gov (United States)

    2013-10-25

    ...): (a) The positive limiting load factor must not be less than: (1) 2.5g for the normal state of the... is readily achievable at operational speeds. For the FAA to consider a trajectory change as...

  17. Evaluation of candidate reference genes for normalization of quantitative RT-PCR in soybean tissues under various abiotic stress conditions.

    Directory of Open Access Journals (Sweden)

    Dung Tien Le

    Full Text Available Quantitative RT-PCR can be a very sensitive and powerful technique for measuring differential gene expression. Changes in gene expression induced by abiotic stresses are complex and multifaceted, which make determining stably expressed genes for data normalization difficult. To identify the most suitable reference genes for abiotic stress studies in soybean, 13 candidate genes collected from literature were evaluated for stability of expression under dehydration, high salinity, cold and ABA (abscisic acid treatments using delta CT and geNorm approaches. Validation of reference genes indicated that the best reference genes are tissue- and stress-dependent. With respect to dehydration treatment, the Fbox/ABC, Fbox/60s gene pairs were found to have the highest expression stability in the root and shoot tissues of soybean seedlings, respectively. Fbox and 60s genes are the most suitable reference genes across dehydrated root and shoot tissues. Under salt stress the ELF1b/IDE and Fbox/ELF1b are the most stably expressed gene pairs in roots and shoots, respectively, while 60s/Fbox is the best gene pair in both tissues. For studying cold stress in roots or shoots, IDE/60s and Fbox/Act27 are good reference gene pairs, respectively. With regard to gene expression analysis under ABA treatment in either roots, shoots or across these tissues, 60s/ELF1b, ELF1b/Fbox and 60s/ELF1b are the most suitable reference genes, respectively. The expression of ELF1b/60s, 60s/Fbox and 60s/Fbox genes was most stable in roots, shoots and both tissues, respectively, under various stresses studied. Among the genes tested, 60s was found to be the best reference gene in different tissues and under various stress conditions. The highly ranked reference genes identified from this study were proved to be capable of detecting subtle differences in expression rates that otherwise would be missed if a less stable reference gene was used.

  18. Monomeric adiponectin increases cell viability in porcine aortic endothelial cells cultured in normal and high glucose conditions: Data on kinases activation

    Directory of Open Access Journals (Sweden)

    Elena Grossini

    2016-09-01

    Full Text Available We found that monomeric adiponectin was able to increase cell viability in porcine aortic endothelial cells (PAE cultured both in normal and high glucose condition. Moreover, in normal glucose condition monomeric adiponectin increased p38MAPK, Akt, ERK1/2 and eNOS phosphorylation in a dose- and time-dependent way. Also in high glucose condition monomeric adiponectin increased eNOS and above kinases phosphorylation with similar patterns but at lower extent. For interpretation of the data presented in this article, please see the research article “Monomeric adiponectin modulates nitric oxide release and calcium movements in porcine aortic endothelial cells in normal/high glucose conditions” (Grossini et al., in press [1].

  19. Phenological Variation and its Relation with Yield in several Wheat (Triticum aestivum L. Cultivars under Normal and Late Sowing Mediated Heat Stress Condition

    Directory of Open Access Journals (Sweden)

    Kamrun NAHAR

    2010-09-01

    Full Text Available Phenological performance in relation to yield of five modern varieties of wheat Sourav, Pradip, Sufi, Shatabdi and Bijoy were evaluated under two growing environments; one is normal growing environment (sowing at November 30 and the other is post anthesis heat stressed environment (sowing at December 30. In case of late seeding, the varieties phased a significant level of high temperature stress that also significantly affected the required days to germination, booting, anthesis, maturity of all varieties including the yield as compared to normal sowing treatment. The temperature during the grain filling or grain maturing period was near 23C in case of normal seeding and it was near about 28C to 30C and sometimes reached above this range in the later period of late seeded treatment. In the normal sowing treatment the germination period was lower than the late sowing treatment as during that time the temperature was higher as compared to late sowing condition where temperature was lower. Days to anthesis and booting decreased due to late sown heat stress condition regardless the cultivars. These phenological characteristics under heat stressed condition led the wheat cultivars to significantly lower the grain yield as compared to normal condition. Due to heat stress, the yield reduction was 69.53% in Sourav, 58.41% in Pradip, 73.01% in Sufi, 55.46% in Shatabdi and 53.42% in Bijoy.

  20. Water Table Recession in Subsurface Drained Soils

    OpenAIRE

    Moustafa, Mahmoud Mohamed; Yomota, Atsushi

    1999-01-01

    Theoretical drainage equations are intensively tested in many parts of humid and arid regions and are commonly used in drainage design. However, this is still a great concern in Japan as the drainage design is exclusively based on local experiences and empirical basis. There is a need therefore to evaluate the theoretical drainage equations under Japanese field conditions to recommend equations for design of subsurface drainage systems. This was the main motivation for this study. While drain...

  1. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  2. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  3. Basic conditions for radioimmunoassay of erythropoietin, and plasma levels of erythropoietin in normal subjects and anemic patients

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, Hideaki; Ohta, Kazuo; Suzuki, Toshiaki; Murakami, Akihiko; Ueda, Masatsugu; Sasaki, Ryuzou; Chiba, Hideo

    1987-02-01

    We have developed a specific and sensitive radioimmunoassay for erythropoietin. The sensitivity of our assay is 0.5 mU or 5 mU/ml and is sufficient to detect normal plasma erythropoietin levels. The mean plasma erythropoietin titer of normal Japanese with our radioimmunoassay was found to be 21.9 +- 12.0 mU/ml (n = 199). The validity of the method was further confirmed by the observations that the plasma erythropoietin titers were inversely related to hemoglobin levels in patients with nonuremic anemias, lower in uremic patients than in patients with nonuremic anemias with similar hemoglobin levels, markedly elevated in patients with aplastic anemia and pure red cell aplasia, and in a low normal range in patients with polycythemia vera.

  4. Modeling Subsurface Hydrology in Floodplains

    Science.gov (United States)

    Evans, Cristina M.; Dritschel, David G.; Singer, Michael B.

    2018-03-01

    Soil-moisture patterns in floodplains are highly dynamic, owing to the complex relationships between soil properties, climatic conditions at the surface, and the position of the water table. Given this complexity, along with climate change scenarios in many regions, there is a need for a model to investigate the implications of different conditions on water availability to riparian vegetation. We present a model, HaughFlow, which is able to predict coupled water movement in the vadose and phreatic zones of hydraulically connected floodplains. Model output was calibrated and evaluated at six sites in Australia to identify key patterns in subsurface hydrology. This study identifies the importance of the capillary fringe in vadose zone hydrology due to its water storage capacity and creation of conductive pathways. Following peaks in water table elevation, water can be stored in the capillary fringe for up to months (depending on the soil properties). This water can provide a critical resource for vegetation that is unable to access the water table. When water table peaks coincide with heavy rainfall events, the capillary fringe can support saturation of the entire soil profile. HaughFlow is used to investigate the water availability to riparian vegetation, producing daily output of water content in the soil over decadal time periods within different depth ranges. These outputs can be summarized to support scientific investigations of plant-water relations, as well as in management applications.

  5. Testing post-weaning food motivation in low and normal birth weight pigs in a runway and operant conditioning task

    NARCIS (Netherlands)

    van Eck, L. M.; Antonides, A.; Nordquist, R. E.; van der Staay, F. J.

    2016-01-01

    Low birth weight (LBW) pigs face more welfare challenges than their normal birth weight (NBW) siblings. Understanding the underlying mechanisms of cognitive and learning abilities in these pigs may help to improve their welfare. Early competition in life over resources, combined with the higher need

  6. 78 FR 76249 - Special Conditions: Airbus, Model A350-900 Series Airplane; Flight Envelope Protection: Normal...

    Science.gov (United States)

    2013-12-17

    ..., and accommodates side-by-side placement of LD-3 containers in the cargo compartment. The basic Airbus... availability of this excess maneuver capacity in case of extreme emergency such as upset recoveries or... factor must not be less than: (a) 2.5g for the EFCS normal state with the high lift devices retracted up...

  7. Testing post-weaning food motivation in low and normal birth weight pigs in a runway and operant conditioning task

    NARCIS (Netherlands)

    Eck, van L.M.; Antonides, A.; Nordquist, R.E.; Staay, van der F.J.

    2016-01-01

    Low birth weight (LBW) pigs face more welfare challenges than their normal birth weight (NBW) siblings. Understanding the underlying mechanisms of cognitive and learning abilities in these pigs may help to improve their welfare. Early competition in life over resources, combined with the higher

  8. Seasonal variations of the particle flux in the Peru-Chile current at 30°S under `normal' and El Niño conditions

    Science.gov (United States)

    Hebbeln, Dierk; Marchant, Margarita; Wefer, Gerold

    Time-series sediment traps were deployed 180 km off the Chilean coast at 30°S in the Peru-Chile Current during the El Niño period 1991/1992 (6 months) and during the 'normal' period 1993/1994 (12 months). Under normal conditions in 1993/1994 the particle fluxes display a pronounced seasonal cycle marked by a settling phytoplankton bloom in September, intermediate fluxes until January, and low fluxes between January and July. This seasonal pattern is also reflected in stable isotope data, measured on the planktic foraminifera species Neogloboquadrina pachyderma (dex.) and Globigerina bulloides, which indicate persistent upwelling conditions between August and February followed by a stratified water column between March and July. The total flux under normal conditions amounts to 65.1 g m -2 a-1, with the main flux constituents contributing 47.6% (carbonate), 26.4% (lithogenic matter), 17.4% (biogenic opal), and 8.6% (organic matter), respectively. Based on these particle flux data the export production has been estimated to be 42 gC m -2 a-1. Although the main flux event in September was not sampled in the El Niño period 1991/1992, the available record from November 1991 to April 1992 allows an interesting comparison with the fluxes of the normal year. The total amount of fluxes and the timing of minor flux events are very similar under normal and under El Niño conditions. However, increased proportions of organic carbon and lithogenic matter under El Niño conditions are interpreted to reflect faster sedimentation and preferred scavenging of organic matter by elevated lithogenic fluxes rather than increased productivity. The higher lithogenic fluxes under El Niño conditions are probably due to increased precipitation and terrestial runoff in the arid to semiarid northern part of Chile.

  9. Subsurface remote sensing

    International Nuclear Information System (INIS)

    Schweitzer, Jeffrey S.; Groves, Joel L.

    2002-01-01

    Subsurface remote sensing measurements are widely used for oil and gas exploration, for oil and gas production monitoring, and for basic studies in the earth sciences. Radiation sensors, often including small accelerator sources, are used to obtain bulk properties of the surrounding strata as well as to provide detailed elemental analyses of the rocks and fluids in rock pores. Typically, instrument packages are lowered into a borehole at the end of a long cable, that may be as long as 10 km, and two-way data and instruction telemetry allows a single radiation instrument to operate in different modes and to send the data to a surface computer. Because these boreholes are often in remote locations throughout the world, the data are frequently transmitted by satellite to various locations around the world for almost real-time analysis and incorporation with other data. The complete system approach that permits rapid and reliable data acquisition, remote analysis and transmission to those making decisions is described

  10. Assessment of Oral Conditions and Quality of Life in Morbid Obese and Normal Weight Individuals: A Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Joselene Martinelli Yamashita

    Full Text Available The aim of this study was to identify the impact of oral disease on the quality of life of morbid obese and normal weight individuals. Cohort was composed of 100 morbid-obese and 50 normal-weight subjects. Dental caries, community periodontal index, gingival bleeding on probing (BOP, calculus, probing pocket depth, clinical attachment level, dental wear, stimulated salivary flow, and salivary pH were used to evaluate oral diseases. Socioeconomic and the oral impacts on daily performances (OIDP questionnaires showed the quality of life in both groups. Unpaired Student, Fisher's Exact, Chi-Square, Mann-Whitney, and Multiple Regression tests were used (p<0.05. Obese showed lower socio-economic level than control group, but no differences were found considering OIDP. No significant differences were observed between groups considering the number of absent teeth, bruxism, difficult mastication, calculus, initial caries lesion, and caries. However, saliva flow was low, and the salivary pH was changed in the obese group. Enamel wear was lower and dentine wear was higher in obese. More BOP, insertion loss, and periodontal pocket, especially the deeper ones, were found in obese subjects. The regression model showed gender, smoking, salivary pH, socio-economic level, periodontal pocket, and periodontal insertion loss significantly associated to obesity. However, both OIDP and BOP did not show significant contribution to the model. The quality of life of morbid obese was more negatively influenced by oral disease and socio-economic factors than in normal weight subjects.

  11. Executive functions differences in normal scholars, with Attention deficit-hyperactivity disorder, disorder of arithmetical skills and comorbid condition

    OpenAIRE

    Gaitán Chipatecua, Alexandra; Rey-Anacona, César-Armando

    2013-01-01

    El objetivo del presente estudio descriptivo-comparativo fue comparar el desempeño en funciones ejecutivas de escolares entre ocho y trece años con trastorno por déficit de atención e hiperactividad (TDAH), trastorno del cálculo (TC), TDAH+TC y controles normales. Los diagnósticos se confirmaron a través de una entrevista clínica semiestructurada, un cuestionario clínico de déficit atencional y pruebas de cálculo matemático. Se encontraron diferencias estadísticamente significativas entre los...

  12. Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming

    Science.gov (United States)

    Huang, Ping; Lin, I. -I; Chou, Chia; Huang, Rong-Hui

    2015-01-01

    Tropical cyclones (TCs) are hazardous natural disasters. Because TC intensification is significantly controlled by atmosphere and ocean environments, changes in these environments may cause changes in TC intensity. Changes in surface and subsurface ocean conditions can both influence a TC's intensification. Regarding global warming, minimal exploration of the subsurface ocean has been undertaken. Here we investigate future subsurface ocean environment changes projected by 22 state-of-the-art climate models and suggest a suppressive effect of subsurface oceans on the intensification of future TCs. Under global warming, the subsurface vertical temperature profile can be sharpened in important TC regions, which may contribute to a stronger ocean coupling (cooling) effect during the intensification of future TCs. Regarding a TC, future subsurface ocean environments may be more suppressive than the existing subsurface ocean environments. This suppressive effect is not spatially uniform and may be weak in certain local areas. PMID:25982028

  13. Phenological Variation and its Relation with Yield in several Wheat (Triticum aestivum L. Cultivars under Normal and Late Sowing Mediated Heat Stress Condition

    Directory of Open Access Journals (Sweden)

    Kamrun NAHAR

    2010-09-01

    Full Text Available Phenological performance in relation to yield of five modern varieties of wheat �Sourav�, �Pradip�, �Sufi�, �Shatabdi� and �Bijoy� were evaluated under two growing environments; one is normal growing environment (sowing at November 30 and the other is post anthesis heat stressed environment (sowing at December 30. In case of late seeding, the varieties phased a significant level of high temperature stress that also significantly affected the required days to germination, booting, anthesis, maturity of all varieties including the yield as compared to normal sowing treatment. The temperature during the grain filling or grain maturing period was near 23�C in case of normal seeding and it was near about 28�C to 30�C and sometimes reached above this range in the later period of late seeded treatment. In the normal sowing treatment the germination period was lower than the late sowing treatment as during that time the temperature was higher as compared to late sowing condition where temperature was lower. Days to anthesis and booting decreased due to late sown heat stress condition regardless the cultivars. These phenological characteristics under heat stressed condition led the wheat cultivars to significantly lower the grain yield as compared to normal condition. Due to heat stress, the yield reduction was 69.53% in �Sourav�, 58.41% in �Pradip�, 73.01% in �Sufi�, 55.46% in �Shatabdi� and 53.42% in �Bijoy�.

  14. Translocation of 14C-photosynthates under normal and moisture stress conditions in finger millet (Eleusine coracana) gaertin

    International Nuclear Information System (INIS)

    Udayakumar, M.; Rama Rao, S.; Krishna Sastry, K.S.

    1981-01-01

    Translocation of photosynthates into different sinks was studied following feeding a single leaf with 14 CO 2 in 40 day old stressed and non-stressed plants of Eleusine coracana. The rate of efflux of 14 C-photosynthates was twice as much in non-stressed plants compared to stressed plants. Young developing leaves, stem apex and stem which are the potential sinks under non-stressed conditions received very little activity under stress conditions. Percent activity in the roots was enhanced under stress suggesting the pattern of translocation was altered under stress conditions. In the plants subjected to moisture stress, after feeding with 14 CO 2 the rate of efflux of 14 C-photosynthates from the fed leaf decreased and the pattern of translocation was altered. Though the effect of stress seems to be directly on the translocation system, the photosynthetic rate appears to be more sensitive to stress than translocation. (author)

  15. Changes in the metabolic footprint of placental explant-conditioned medium cultured in different oxygen tensions from placentas of small for gestational age and normal pregnancies.

    LENUS (Irish Health Repository)

    Horgan, R P

    2012-01-31

    Being born small for gestational age (SGA) confers significantly increased risks of perinatal morbidity and mortality. Accumulating evidence suggests that an SGA fetus results from a poorly perfused and abnormally developed placenta. Some of the placental features seen in SGA, such as abnormal cell turnover and impaired nutrient transport, can be reproduced by culture of placental explants in hypoxic conditions. Metabolic footprinting offers a hypothesis-generating strategy to investigate factors absorbed by and released from this tissue in vitro. Previously, metabolic footprinting of the conditioned culture media has identified differences in placental explants cultured under normoxic and hypoxic conditions and between normal pregnancies and those complicated by pre-eclampsia. In this study we aimed to examine the differences in the metabolic footprint of placental villous explants cultured at different oxygen (O(2)) tensions between women who deliver an SGA baby (n = 9) and those from normal controls (n = 8). Placental villous explants from cases and controls were cultured for 96 h in 1% (hypoxic), 6% (normoxic) and 20% (hyperoxic) O(2). Metabolic footprints were analysed by Ultra Performance Liquid Chromatography coupled to an electrospray hybrid LTQ-Orbitrap Mass Spectrometry (UPLC-MS). 574 metabolite features showed significant difference between SGA and normal at one or more of the oxygen tensions. SGA explant media cultured under hypoxic conditions was observed, on a univariate level, to exhibit the same metabolic signature as controls cultured under normoxic conditions in 49% of the metabolites of interest, suggesting that SGA tissue is acclimatised to hypoxic conditions in vivo. No such behaviour was observed under hyperoxic culture conditions. Glycerophospholipid and tryptophan metabolism were highlighted as areas of particular interest.

  16. Molecular analysis of deep subsurface bacteria

    International Nuclear Information System (INIS)

    Jimenez Baez, L.E.

    1989-09-01

    Deep sediments samples from site C10a, in Appleton, and sites, P24, P28, and P29, at the Savannah River Site (SRS), near Aiken, South Carolina were studied to determine their microbial community composition, DNA homology and mol %G+C. Different geological formations with great variability in hydrogeological parameters were found across the depth profile. Phenotypic identification of deep subsurface bacteria underestimated the bacterial diversity at the three SRS sites, since bacteria with the same phenotype have different DNA composition and less than 70% DNA homology. Total DNA hybridization and mol %G+C analysis of deep sediment bacterial isolates suggested that each formation is comprised of different microbial communities. Depositional environment was more important than site and geological formation on the DNA relatedness between deep subsurface bacteria, since more 70% of bacteria with 20% or more of DNA homology came from the same depositional environments. Based on phenotypic and genotypic tests Pseudomonas spp. and Acinetobacter spp.-like bacteria were identified in 85 million years old sediments. This suggests that these microbial communities might have been adapted during a long period of time to the environmental conditions of the deep subsurface

  17. Linking Chaotic Advection with Subsurface Biogeochemical Processes

    Science.gov (United States)

    Mays, D. C.; Freedman, V. L.; White, S. K.; Fang, Y.; Neupauer, R.

    2017-12-01

    This work investigates the extent to which groundwater flow kinematics drive subsurface biogeochemical processes. In terms of groundwater flow kinematics, we consider chaotic advection, whose essential ingredient is stretching and folding of plumes. Chaotic advection is appealing within the context of groundwater remediation because it has been shown to optimize plume spreading in the laminar flows characteristic of aquifers. In terms of subsurface biogeochemical processes, we consider an existing model for microbially-mediated reduction of relatively mobile uranium(VI) to relatively immobile uranium(IV) following injection of acetate into a floodplain aquifer beneath a former uranium mill in Rifle, Colorado. This model has been implemented in the reactive transport code eSTOMP, the massively parallel version of STOMP (Subsurface Transport Over Multiple Phases). This presentation will report preliminary numerical simulations in which the hydraulic boundary conditions in the eSTOMP model are manipulated to simulate chaotic advection resulting from engineered injection and extraction of water through a manifold of wells surrounding the plume of injected acetate. This approach provides an avenue to simulate the impact of chaotic advection within the existing framework of the eSTOMP code.

  18. Subsurface urban heat islands in German cities.

    Science.gov (United States)

    Menberg, Kathrin; Bayer, Peter; Zosseder, Kai; Rumohr, Sven; Blum, Philipp

    2013-01-01

    Little is known about the intensity and extension of subsurface urban heat islands (UHI), and the individual role of the driving factors has not been revealed either. In this study, we compare groundwater temperatures in shallow aquifers beneath six German cities of different size (Berlin, Munich, Cologne, Frankfurt, Karlsruhe and Darmstadt). It is revealed that hotspots of up to +20K often exist, which stem from very local heat sources, such as insufficiently insulated power plants, landfills or open geothermal systems. When visualizing the regional conditions in isotherm maps, mostly a concentric picture is found with the highest temperatures in the city centers. This reflects the long-term accumulation of thermal energy over several centuries and the interplay of various factors, particularly in heat loss from basements, elevated ground surface temperatures (GST) and subsurface infrastructure. As a primary indicator to quantify and compare large-scale UHI intensity the 10-90%-quantile range UHII(10-90) of the temperature distribution is introduced. The latter reveals, in comparison to annual atmospheric UHI intensities, an even more pronounced heating of the shallow subsurface. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. "It's Not Like a Normal 9 to 5!": The Learning Journeys of Media Production Apprentices in Distributed Working Conditions

    Science.gov (United States)

    Lahiff, Ann; Guile, David

    2016-01-01

    An apprenticeship in media production in England is at the centre of this case study exploration. The context is exemplified by the organisation of the process of production around project teams and the development of project-based working cultures. Given these developments, the working conditions and learning opportunities presented to…

  20. Heart-rate mediated blood pressure control in preterm fetal sheep under normal and hypoxic-ischemic conditions

    NARCIS (Netherlands)

    Zwanenburg, A.A.; Jellema, R.K.; Jennekens, W.; Ophelders, D.; Vullings, R.; Hunnik, van A.; Pul, van C.; Bennet, L.; Delhaas, T.; Kramer, B.W.; Andriessen, P.

    2013-01-01

    Background: The understanding of hypoxemia-induced changes in baroreflex function is limited and may be studied in a fetal sheep experiment before, during, and after standardized hypoxic conditions. Methods: Preterm fetal lambs were instrumented at 102 d gestation (term: 146 d). At 106 d,

  1. Mechanistic prediction of fission product release under normal and accident conditions: key uncertainties that need better resolution

    International Nuclear Information System (INIS)

    Rest, J.

    1983-09-01

    A theoretical model has been used for predicting the behavior of fission gas and volatile fission products (VFPs) in UO 2 -base fuels during steady-state and transient conditions. This model represents an attempt to develop an efficient predictive capability for the full range of possible reactor operating conditions. Fission products released from the fuel are assumed to reach the fuel surface by successively diffusing (via atomic and gas-bubble mobility) from the grains to grain faces and then to the grain edges, where the fission products are released through a network of interconnected tunnels of fission-gas induced and fabricated porosity. The model provides for a multi-region calculation and uses only one size class to characterize a distribution of fission gas bubbles

  2. Construction of an external electrode for determination of electrochemical corrosion potential in normal operational conditions of an BWR type reactor for hot cells

    International Nuclear Information System (INIS)

    Aguilar T, J.A.; Rivera M, H.; Hernandez C, R.

    2001-01-01

    The behavior of the corrosion processes at high temperature requires of external devices that being capable to resist a temperature of 288 Centigrade and a pressure of 80 Kg/cm 2 , to give stable and reproducible results of some variable and resisting physically and chemically the radiation. The external electrode of Ag/AgCl fulfils all the requirements in the determination of the electrochemical corrosion potential under normal operational conditions of a BWR type reactor in hot cells. (Author)

  3. Selection and Validation of Reference Genes for Quantitative Real-Time PCR Normalization Under Ethanol Stress Conditions in Oenococcus oeni SD-2a

    Directory of Open Access Journals (Sweden)

    Shuai Peng

    2018-05-01

    Full Text Available The powerful Quantitative real-time PCR (RT-qPCR was widely used to assess gene expression levels, which requires the optimal reference genes used for normalization. Oenococcus oeni (O. oeni, as the one of most important microorganisms in wine industry and the most resistant lactic acid bacteria (LAB species to ethanol, has not been investigated regarding the selection of stable reference genes for RT-qPCR normalization under ethanol stress conditions. In this study, nine candidate reference genes (proC, dnaG, rpoA, ldhD, ddlA, rrs, gyrA, gyrB, and dpoIII were analyzed to determine the most stable reference genes for RT-qPCR in O. oeni SD-2a under different ethanol stress conditions (8, 12, and 16% (v/v ethanol. The transcript stabilities of these genes were evaluated using the algorithms geNorm, NormFinder, and BestKeeper. The results showed that dnaG and dpoIII were selected as the best reference genes across all experimental ethanol conditions. Considering single stress experimental modes, dpoIII and dnaG would be suitable to normalize expression level for 8% ethanol shock treatment, while the combination of gyrA, gyrB, and rrs would be suitable for 12% ethanol shock treatment. proC and gyrB revealed the most stable expression in 16% ethanol shock treatment. This study selected and validated for the first time the reference genes for RT-qPCR normalization in O. oeni SD-2a under ethanol stress conditions.

  4. Relative survival of hybrid x-ray-resistant, and normally sensitive mammalian cells exposed to x rays and protons under aerobic and hypoxic conditions

    International Nuclear Information System (INIS)

    Williams, J.R.; Gould, R.G.; Flynn, D.; Robertson, J.B.; Little, J.B.

    1978-01-01

    Survival of an x-ray-resistant hybrid cell line (HD 1 ) and a normally responsive cell line (H 4 ) have been compared when irradiated under induced hypoxia by both protons and X rays. The two cell lines are similarly protected when irradiated under hypoxic conditions with oxygen enhancement ratios of 2.8 and 2.7, respectively. The protection is consistent with a dose-modifying factor. No statistically significant difference is observed between cell inactivation by x rays and protons in either cell line, whether irradiated under aerobic or hypoxic conditions

  5. An assessment of the relationship of physical activity, obesity, and chronic diseases/conditions between active/obese and sedentary/ normal weight American women in a national sample.

    Science.gov (United States)

    Pharr, J R; Coughenour, C A; Bungum, T J

    2018-03-01

    Obesity and physical inactivity are associated with increased rates of chronic diseases and conditions. However, the 'fit but fat' theory posits that cardiopulmonary fitness (or physical activity) can mitigate risks to health associated with obesity. The purpose of this study was to compare chronic diseases and conditions of highly active/obese women with inactive/normal weight women. This was a cross-sectional study of the 2015 Behavioral Risk Factor Surveillance System data. Weighted descriptive statistics were performed to describe the demographic characteristics of the two groups. We calculated odds ratios and adjusted odds ratios for chronic diseases and conditions comparing highly active/obese women with inactive/normal weight women. Highly active/obese women were more likely to report risk factors (hypertension, high cholesterol, and diabetes) for coronary heart disease (CHD) and cardiovascular disease (CVD) than inactive/normal weight women; however, they did not have increased rates of CVD, CHD, or heart attack and had decreased risk for stroke. Highly active/obese women had increased risk for asthma, arthritis, and depression, but not for cancer, kidney disease, or chronic obstructive pulmonary disease. Highly active/obese women appear to be staving off the actual development of CHD and CVD; however, further research is needed to understand the long-term health benefits of physical activity among obese women. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  6. SUBSURFACE CONSTRUCTION AND DEVELOPMENT ANALYSIS

    International Nuclear Information System (INIS)

    N.E. Kramer

    1998-01-01

    The purpose of this analysis is to identify appropriate construction methods and develop a feasible approach for construction and development of the repository subsurface facilities. The objective of this analysis is to support development of the subsurface repository layout for License Application (LA) design. The scope of the analysis for construction and development of the subsurface Repository facilities covers: (1) Excavation methods, including application of knowledge gained from construction of the Exploratory Studies Facility (ESF). (2) Muck removal from excavation headings to the surface. This task will examine ways of preventing interference with other subsurface construction activities. (3) The logistics and equipment for the construction and development rail haulage systems. (4) Impact of ground support installation on excavation and other construction activities. (5) Examination of how drift mapping will be accomplished. (6) Men and materials handling. (7) Installation and removal of construction utilities and ventilation systems. (8) Equipping and finishing of the emplacement drift mains and access ramps to fulfill waste emplacement operational needs. (9) Emplacement drift and access mains and ramps commissioning prior to handover for emplacement operations. (10) Examination of ways to structure the contracts for construction of the repository. (11) Discussion of different construction schemes and how to minimize the schedule risks implicit in those schemes. (12) Surface facilities needed for subsurface construction activities

  7. Program overview: Subsurface science program

    International Nuclear Information System (INIS)

    1994-03-01

    The OHER Subsurface Science Program is DOE's core basic research program concerned with subsoils and groundwater. These practices have resulted in contamination by mixtures of organic chemicals, inorganic chemicals, and radionuclides. A primary long-term goal is to provide a foundation of knowledge that will lead to the reduction of environmental risks and to cost-effective cleanup strategies. Since the Program was initiated in 1985, a substantial amount of research in hydrogeology, subsurface microbiology, and the geochemistry of organically complexed radionuclides has been completed, leading to a better understanding of contaminant transport in groundwater and to new insights into microbial distribution and function in the subsurface environments. The Subsurface Science Program focuses on achieving long-term scientific advances that will assist DOE in the following key areas: providing the scientific basis for innovative in situ remediation technologies that are based on a concept of decontamination through benign manipulation of natural systems; understanding the complex mechanisms and process interactions that occur in the subsurface; determining the influence of chemical and geochemical-microbial processes on co-contaminant mobility to reduce environmental risks; improving predictions of contaminant transport that draw on fundamental knowledge of contaminant behavior in the presence of physical and chemical heterogeneities to improve cleanup effectiveness and to predict environmental risks

  8. Dissolution rates of unirradiated UO2, UO2 doped with 233U, and spent fuel under normal atmospheric conditions and under reducing conditions using an isotope dilution method

    International Nuclear Information System (INIS)

    Ollila, Kaija; Albinsson, Yngve; Oversby, Virginia; Cowper, Mark

    2003-10-01

    The experimental results given in this report allow us to draw the following conclusions. 1) Tests using unirradiated fuel pellet materials from two different manufacturers gave very different dissolution rates under air atmosphere testing. Tests for fragments of pellets from different pellets made by the same manufacturer gave good agreement. This indicates that details of the manufacturing process have a large effect on the behavior of unirradiated UO 2 in dissolution experiments. Care must be taken in interpreting differences in results obtained in different laboratories because the results may be affected by manufacturing effects. 2) Long-term tests under air atmosphere have begun to show the effects of precipitation. Further testing will be needed before the samples reach steady state. 3) Testing of unirradiated UO 2 in systems containing an iron strip to produce reducing conditions gave [U] less than detection limits ( 235 U added as spike was recovered, indicating that 90% of the spike had precipitated onto the solid sample or the iron strip. 9) Tests of UO 2 pellet materials containing 233 U to provide an alpha decay activity similar to that expected for spent fuel 3000 and 10,000 years after disposal showed that the pellet materials behaved as expected under air atmosphere conditions, showing that the manufacturing method was successful. 10) Early testing of the 233 U-doped materials under reducing conditions showed relatively rapid (30 minute) dissolution of small amounts of U at the start of the puff test procedure. Results of analyses of an acidified fraction of the same solutions after 1 or 2 weeks holding indicate that the solutions were inhomogeneous, indicating the presence of colloidal material or small grains of solid. 11) Samples from the 233 U-doped tests initially indicated dissolution of solid during the first week of testing, with some indication of more rapid dissolution of the material with the higher doping. 12) The second cycle of testing

  9. Comparison of the corrosion potential for stainless steel measured in-plant and in laboratory during BWR normal water chemistry conditions

    International Nuclear Information System (INIS)

    Molander, A.; Pein, K.; Tarkpea, P.; Takagi, Junichi; Karlberg, G.; Gott, K.

    1998-01-01

    To obtain reliable crack growth rate date for stainless steel in BWR environments careful laboratory simulation of the environmental conditions is necessary. In the plant the BWR normal water chemistry environment contains hydrogen peroxide, oxygen and hydrogen. However, in crack growth rate experiments in laboratories, the environment is normally simulated by adding 200 ppb oxygen to the high temperature water. Thus, as hydrogen peroxide is a more powerful oxidant than oxygen, it is to be expected that a lower corrosion potential will be measured in the laboratory than in the plant. To resolve this issue this work has been performed. In-plant and laboratory measurements have often been performed with somewhat different equipment, due to the special requirements concerning in-plant measurements. In this work such differences have been avoided and two identical sets of equipment for electrochemical measurements were built and used for measurements in-plant in a Swedish BWR and in high purity water in the laboratory. The host plant was Barsebaeck 1. Corrosion potential monitoring in-plant was performed under both NWC (Normal Water Chemistry) and HWC (Hydrogen Water Chemistry) conditions. This paper is, however, focused on NWC conditions. This is due to the fact, that the total crack growth obtained during a reactor cycle, can be determined by NWC conditions, even for plants running with HWC due to periodic stops in the hydrogen addition for turbine inspections or failure of the dosage or hydrogen production equipment. Thus, crack growth data for NWC is of great importance both for BWRs operating with HWC and NWC. Measurements in-plant and in the laboratory were performed during additions of oxygen and hydrogen peroxide to the autoclave systems. The corrosion potentials were compared for various conditions in the autoclaves, as well as versus in-plant in-pipe corrosion potentials. (J.P.N.)

  10. Microbiological Transformations of Radionuclides in the Subsurface

    International Nuclear Information System (INIS)

    Marshall, Matthew J.; Beliaev, Alex S.; Fredrickson, Jim K.

    2010-01-01

    Microorganisms are ubiquitous in subsurface environments although their populations sizes and metabolic activities can vary considerably depending on energy and nutrient inputs. As a result of their metabolic activities and the chemical properties of their cell surfaces and the exopolymers they produce, microorganisms can directly or indirectly facilitate the biotransformation of radionuclides, thus altering their solubility and overall fate and transport in the environment. Although biosorption to cell surfaces and exopolymers can be an important factor modifying the solubility of some radionuclides under specific conditions, oxidation state is often considered the single most important factor controlling their speciation and, therefore, environmental behavior.

  11. Subsurface Fire Hazards Technical Report

    International Nuclear Information System (INIS)

    Logan, R.C.

    1999-01-01

    The results from this report are preliminary and cannot be used as input into documents supporting procurement, fabrication, or construction. This technical report identifies fire hazards and proposes their mitigation for the subsurface repository fire protection system. The proposed mitigation establishes the minimum level of fire protection to meet NRC regulations, DOE fire protection orders, that ensure fire containment, adequate life safety provisions, and minimize property loss. Equipment requiring automatic fire suppression systems is identified. The subsurface fire hazards that are identified can be adequately mitigated

  12. Tenskinmetric Evaluation of Surface Energy Changes in Adult Skin: Evidence from 834 Normal Subjects Monitored in Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Camilla Dal Bosco

    2014-03-01

    Full Text Available To evaluate the influence of the skin aging critical level on the adult skin epidermal functional state, an improved analytical method based on the skin surface energetic measurement (TVS modeling was developed. Tenskinmetric measurements were carried out non-invasively in controlled conditions by contact angle method using only a water-drop as reference standard liquid. Adult skin was monitored by TVS Observatory according to a specific and controlled thermal protocol (Camianta protocol in use at the interconnected “Mamma Margherita Terme spa” of Terme Euganee. From June to November 2013, the surface free energy and the epidermal hydration level of adult skin were evaluated on arrival of 265 male and 569 female adult volunteers (51–90 years of age and when they departed 2 weeks later. Sensitive measurements were carried out at 0.1 mN/m. High test compliance was obtained (93.2% of all guests. Very interesting results are obtained. The high sensitivity and discrimination power of tenskinmetry combined with a thermal Camianta protocol demonstrate the possibility to evaluate at baseline level the surface energetic changes and the skin reactivity which occurs on adult skin.

  13. Koehler/Zimmer: The X-ray findings of the skeleton marking off the onset of pathological changes against normal conditions. 13. rev. ed.

    International Nuclear Information System (INIS)

    Schmidt, H.; Freyschmidt, J.; Holthusen, W.

    1989-01-01

    It is extremely difficult to define the border line, or border area, between normal and pathological conditions. This applies in particular to diagnostic radiology of the skeleton. Although the X-ray picture of a certain skeletal area in principle yields more objective information than the anamnestic data given by the patient, or the clinical findings, this more objective information in borderline cases will develop its full usefulness only if X-ray or clinical findings are interpreted synoptically, sometimes with recourse to other radiological techniques (such as scintiscanning, CT, or NMR imaging). This also is the suitable approach to evaluating and interpreting measured anatomic data as for instance shape or size. Transitions from normal conditions to pathological processes cannot be seen in the image, they will have to be defined in every case by negative exclusion, and this is why the book in hand is neither an atlas of normal X-ray anatomy, nor a collection of differential diagnostic X-ray findings of the skeleton. Having regard to practical requirements and respecting the excellent picture material of the preceding issue, the authors in some cases decided to assign borderline findings rather to the pathological types. (orig./MG) With 2816 figs., 16 tabs [de

  14. The fluid flow consequences of CO2 migration from 1000 to 600 metres upon passing the critical conditions of CO2

    NARCIS (Netherlands)

    Meer, L.G.H.; Hofstee, C.; Orlic, B.

    2009-01-01

    The minimum injection depth for the storage of CO2 is normally set at 800 metres. At and beyond this depth in the subsurface conditions exist where CO2 is in a so-called critical state. The supercritical CO2 has a viscosity comparable to that of a normal gas and a liquid-like density, Due to the

  15. Fkh1 and Fkh2 associate with Sir2 to control CLB2 transcription under normal and oxidative stress conditions

    Directory of Open Access Journals (Sweden)

    Christian eLinke

    2013-07-01

    Full Text Available The Forkhead box family of transcription factors is evolutionary conserved from yeast to higher eukaryotes and its members are involved in many physiological processes including metabolism, DNA repair, cell cycle, stress resistance, apoptosis and aging. In budding yeast, four Forkhead transcription factors were identified, namely Fkh1, Fkh2, Fhl1, and Hcm1, which are implicated in chromatin silencing, cell cycle regulation and stress response. These factors impinge transcriptional regulation during cell cycle progression, and histone deacetylases play an essential role in this process, e.g. the nuclear localisation of Hcm1 depends on Sir2 activity, whereas Sin3/Rpd3 silence cell cycle specific gene transcription in G2/M phase. However, a direct involvement of Sir2 in Fkh1/Fkh2-dependent regulation of target genes is at present unknown. Here, we show that Fkh1 and Fkh2 associate with Sir2 in G1 and M phase, and that Fkh1/Fkh2-mediated activation of reporter genes is antagonized by Sir2. We further report that Sir2 overexpression strongly affects cell growth in an Fkh1/Fkh2-dependent manner. In addition, Sir2 regulates the expression of the mitotic cyclin Clb2 through Fkh1/Fkh2-mediated binding to the CLB2 promoter in G1 and M phase. We finally demonstrate that Sir2 is also enriched at the CLB2 promoter under stress conditions, and that the nuclear localization of Sir2 is dependent on Fkh1 and Fkh2. Taken together, our results show a functional interplay between Fkh1/Fkh2 and Sir2 suggesting a novel mechanism of cell cycle repression. Thus, in budding yeast, not only the regulation of G2/M gene expression but also the protective response against stress could be directly coordinated by Fkh1 and Fkh2.

  16. Kinetics of sup(99m)technetium-tin-methylene-diphosphonate in normal subjects and pathological conditions: A simple index of bone metabolism

    International Nuclear Information System (INIS)

    Caniggia, A.; Vattimo, A.

    1980-01-01

    The blood clearance and the urinary excretion of the bone scanning complex technetium-tin-methylene-diphosphonate sup(99m)Tc-Sn-MDP administered intravenously have been measured in 27 normal subjects and 104 patients with postmenopausal osteoporosis, osteomalacia, primary hyperparathyroidism, Paget's disease, pagetoid metastases of prostatic cancer, osteolyses, chronic renal failure, and liver cirrhosis to quantitative the skeletal uptake of the radiopharmaceutical. Kinetic analysis of the data was performed in terms of a four-compartment model; correspondent rate constants and fitted values were estimated. In normal subjects the whole-body retention (WBR) up to 24 h was 33.3% +- 7.4 SD, whereas significantly more elevated values were observed in several pathological conditions, the highest values being ascertained in patients with pagetoid metastases, primary hyperparathyroidism, and chronic renal failure and whenever large osteoid seams were present. Differences were found between osteoporosis and osteomalacia, monostotic and polyostotic Paget's, pagetoid and osteolytic metastases of bone. (orig./AJ) [de

  17. The Mojave vadose zone: a subsurface biosphere analogue for Mars.

    Science.gov (United States)

    Abbey, William; Salas, Everett; Bhartia, Rohit; Beegle, Luther W

    2013-07-01

    If life ever evolved on the surface of Mars, it is unlikely that it would still survive there today, but as Mars evolved from a wet planet to an arid one, the subsurface environment may have presented a refuge from increasingly hostile surface conditions. Since the last glacial maximum, the Mojave Desert has experienced a similar shift from a wet to a dry environment, giving us the opportunity to study here on Earth how subsurface ecosystems in an arid environment adapt to increasingly barren surface conditions. In this paper, we advocate studying the vadose zone ecosystem of the Mojave Desert as an analogue for possible subsurface biospheres on Mars. We also describe several examples of Mars-like terrain found in the Mojave region and discuss ecological insights that might be gained by a thorough examination of the vadose zone in these specific terrains. Examples described include distributary fans (deltas, alluvial fans, etc.), paleosols overlain by basaltic lava flows, and evaporite deposits.

  18. Feasibility of a subsurface storage

    International Nuclear Information System (INIS)

    1998-11-01

    This report analyses the notion of subsurface storage under the scientifical, technical and legal aspects. This reflection belongs to the studies about long duration storage carried out in the framework of the axis 3 of the December 30, 1991 law. The report comprises 3 parts. The first part is a synthesis of the complete subsurface storage study: definitions, aim of the report, very long duration storage paradigm, description files of concepts, thematic synthesis (legal aspects, safety, monitoring, sites, seismicity, heat transfers, corrosion, concretes, R and works, handling, tailings and dismantlement, economy..), multi-criteria/multi-concept cross-analysis. The second part deals with the technical aspects of the subsurface storage: safety approach (long duration impact, radiation protection, mastery of effluents), monitoring strategy, macroscopic inventory of B-type waste packages, inventory of spent fuels, glasses, hulls and nozzles, geological contexts in the French territory (sites selection and characterization), on-site activities, hydrogeological and geochemical aspects, geo-technical works and infrastructures organization, subsurface seismic effects, cooling modes (ventilation, heat transfer with the geologic environment), heat transfer research programs (convection, poly-phase cooling in porous media), handling constraints, concretes (use, behaviour, durability), corrosion of metallic materials, technical-economical analysis, international context (experience feedback from Sweden (CLAB) and the USA (Yucca Mountain), other European and French facilities). The last part of the report is a graphical appendix with 3-D views and schemes of the different concepts. (J.S.)

  19. Safety analysis in subsurface repositories

    International Nuclear Information System (INIS)

    1985-06-01

    The development of mathematical models to represent the repository-geosphere-biosphere system, and the development of a structure for data acquisition, processing, and use to analyse the safety of subsurface repositories, are presented. To study the behavior of radionuclides in geosphere a laboratory to determine the hydrodynamic dispersion coefficient was constructed. (M.C.K.) [pt

  20. SUBSURFACE VISUAL ALARM SYSTEM ANALYSIS

    International Nuclear Information System (INIS)

    D.W. Markman

    2001-01-01

    The ''Subsurface Fire Hazard Analysis'' (CRWMS M andO 1998, page 61), and the document, ''Title III Evaluation Report for the Surface and Subsurface Communication System'', (CRWMS M andO 1999a, pages 21 and 23), both indicate the installed communication system is adequate to support Exploratory Studies Facility (ESF) activities with the exception of the mine phone system for emergency notification purposes. They recommend the installation of a visual alarm system to supplement the page/party phone system The purpose of this analysis is to identify data communication highway design approaches, and provide justification for the selected or recommended alternatives for the data communication of the subsurface visual alarm system. This analysis is being prepared to document a basis for the design selection of the data communication method. This analysis will briefly describe existing data or voice communication or monitoring systems within the ESF, and look at how these may be revised or adapted to support the needed data highway of the subsurface visual alarm. system. The existing PLC communication system installed in subsurface is providing data communication for alcove No.5 ventilation fans, south portal ventilation fans, bulkhead doors and generator monitoring system. It is given that the data communication of the subsurface visual alarm system will be a digital based system. It is also given that it is most feasible to take advantage of existing systems and equipment and not consider an entirely new data communication system design and installation. The scope and primary objectives of this analysis are to: (1) Briefly review and describe existing available data communication highways or systems within the ESF. (2) Examine technical characteristics of an existing system to disqualify a design alternative is paramount in minimizing the number of and depth of a system review. (3) Apply general engineering design practices or criteria such as relative cost, and degree

  1. On the Similarity of Sturm-Liouville Operators with Non-Hermitian Boundary Conditions to Self-Adjoint and Normal Operators

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David; Siegl, Petr; Železný, Jakub

    2014-01-01

    Roč. 8, č. 1 (2014), s. 255-281 ISSN 1661-8254 R&D Projects: GA MŠk LC06002; GA MŠk LC527; GA ČR GAP203/11/0701 Grant - others:GA ČR(CZ) GD202/08/H072 Institutional support: RVO:61389005 Keywords : Sturm-Liouville operators * non-symmetric Robin boundary conditions * similarity to normal or self-adjoint operators * discrete spectral operator * complex symmetric operator * PT-symmetry * metric operator * C operator * Hilbert- Schmidt operators Subject RIV: BE - Theoretical Physics Impact factor: 0.545, year: 2014

  2. Investigation of analytical methods in thermal stratification analysis. Evaluation of flow rates through flow holes for normal and scram conditions of 40% power operation with AQUA code

    International Nuclear Information System (INIS)

    Doi, Yoshihiro; Muramatsu, Toshiharu

    1997-08-01

    Thermal stratification phenomena are observed in an upper plenum of liquid metal fast breeder reactors (LMFBRs) under reactor scram conditions, which give rise to thermal stress on structural components. Therefore it is important to evaluate characteristics of phenomena in the design of the internal structure in an LMFBR plenum. To evaluate flow rates through flow holes of the prototype fast breeder reactor, MONJU, numerical analyses were carried out with AQUA code for normal and scram conditions with 40% power operation. Through comparison of analysis results and measured temperature, thermal stratification phenomena in 300 second period after the scram was evaluated. Flow rate through the upper flow holes, the lower flow holes and annular gap between the inner barrel and the reactor vessel were evaluated with the measured temperature and the analysis results individually. (J.P.N.)

  3. Integrated geomechanical modelling for deep subsurface damage

    NARCIS (Netherlands)

    Wees, J.D. van; Orlic, B.; Zijl, W.; Jongerius, P.; Schreppers, G.J.; Hendriks, M.

    2001-01-01

    Government, E&P and mining industry increasingly demand fundamental insight and accurate predictions on subsurface and surface deformation and damage due to exploitation of subsurface natural resources, and subsurface storage of energy residues (e.g. CO2). At this moment deformation is difficult to

  4. Groundwater Salinity Simulation of a Subsurface Reservoir in Taiwan

    Science.gov (United States)

    Fang, H. T.

    2015-12-01

    The subsurface reservoir is located in Chi-Ken Basin, Pescadores (a group islands located at western part of Taiwan). There is no river in these remote islands and thus the freshwater supply is relied on the subsurface reservoir. The basin area of the subsurface reservoir is 2.14 km2 , discharge of groundwater is 1.27×106m3 , annual planning water supplies is 7.9×105m3 , which include for domestic agricultural usage. The annual average temperature is 23.3oC, average moisture is 80~85%, annual average rainfall is 913 mm, but ET rate is 1975mm. As there is no single river in the basin; the major recharge of groundwater is by infiltration. Chi-Ken reservoir is the first subsurface reservoir in Taiwan. Originally, the water quality of the reservoir is good. The reservoir has had the salinity problem since 1991 and it became more and more serious from 1992 until 1994. Possible reason of the salinity problem was the shortage of rainfall or the leakage of the subsurface barrier which caused the seawater intrusion. The present study aimed to determine the leakage position of subsurface barrier that caused the salinity problem. In order to perform the simulation for different possible leakage position of the subsurface reservoir, a Groundwater Modeling System (GMS) is used to define soils layer data, hydro-geological parameters, initial conditions, boundary conditions and the generation of three dimension meshes. A three dimension FEMWATER(Yeh , 1996) numerical model was adopted to find the possible leakage position of the subsurface barrier and location of seawater intrusion by comparing the simulation of different possible leakage with the observations. 1.By assuming the leakage position in the bottom of barrier, the simulated numerical result matched the observation better than the other assumed leakage positions. It showed that the most possible leakage position was at the bottom of the barrier. 2.The research applied three dimension FEMWATER and GMS as an interface

  5. Subsurface offset behaviour in velocity analysis with extended reflectivity images

    NARCIS (Netherlands)

    Mulder, W.A.

    2013-01-01

    Migration velocity analysis with the constant-density acoustic wave equation can be accomplished by the focusing of extended migration images, obtained by introducing a subsurface shift in the imaging condition. A reflector in a wrong velocity model will show up as a curve in the extended image. In

  6. A comparison of the lactate Pro, Accusport, Analox GM7 and Kodak Ektachem lactate analysers in normal, hot and humid conditions.

    Science.gov (United States)

    Mc Naughton, L R; Thompson, D; Philips, G; Backx, K; Crickmore, L

    2002-02-01

    This study aimed to compare the performance of a new portable lactate analyser against other standard laboratory methods in three conditions, normal (20 +/- 1.3 degrees C; 40 +/- 5 % RH), hot (40 +/- 2.5 degrees C; 40 +/- 5 % RH), and humid (20 +/- 1.1 degrees C; 82 +/- 6 % RH) conditions. Seven healthy males, ([Mean +/- SE]: age, 26.3 +/- 1.3 yr; height, 177.7 +/- 1.6 cm; weight, 77.4 +/- 0.9 kg, .VO(2)max, 56.1 +/- 1.9 ml x kg x min(-1)) undertook a maximal cycle ergometry test to exhaustion in the three conditions. Blood was taken every 3 min at the end of each stage and was analysed using the Lactate Pro LT-1710, the Accusport, the Analox GM7 and the Kodak Ektachem systems. The MANOVA (Analyser Type x Condition x Workload) indicated no interaction effect (F(42,660), = 0.45, p > 0.99, Power = 0.53). The data across all workloads indicated that the machines measured significantly differently to each other (F(4,743) = 14.652, p < 0.0001, Power = 1.00). The data were moderately to highly correlated. We conclude that the Lactate Pro is a simple and effective measurement device for taking blood lactate in a field or laboratory setting. However, we would caution against using this machine to compare data from other machines.

  7. Considerations in the development of subsurface containment barrier performance standards

    International Nuclear Information System (INIS)

    Dunstan, S.; Zdinak, A.P.; Lodman, D.

    1997-01-01

    The U.S. Department of Energy (DOE) is supporting subsurface barriers as an alternative remedial option for management of contamination problems at their facilities. Past cleanup initiatives have sometimes proven ineffective or extremely expensive. Economic considerations coupled with changing public and regulatory philosophies regarding remediation techniques makes subsurface barriers a promising technology for future cleanup efforts. As part of the initiative to develop subsurface containment barriers as an alternative remedial option, DOE funded MSE Technology Applications, Inc. (MSE) to conduct a comprehensive review to identify performance considerations for the acceptability of subsurface barrier technologies as a containment method. Findings from this evaluation were intended to provide a basis for selection and application of containment technologies to address waste problems at DOE sites. Based on this study, the development of performance standards should consider: (1) sustainable low hydraulic conductivity; (2) capability to meet applicable regulations; (3) compatibility with subsurface environmental conditions; (4) durability and long-term stability; (5) repairability; and (6) verification and monitoring. This paper describes the approach for determining considerations for performance standards

  8. VISUALIZATION OF REGISTERED SUBSURFACE ANATOMY

    DEFF Research Database (Denmark)

    2010-01-01

    A system and method for visualization of subsurface anatomy includes obtaining a first image from a first camera and a second image from a second camera or a second channel of the first camera, where the first and second images contain shared anatomical structures. The second camera and the secon....... A visual interface displays the registered visualization of the first and second images. The system and method are particularly useful for imaging during minimally invasive surgery, such as robotic surgery....

  9. Dislocation model of a subsurface crack

    International Nuclear Information System (INIS)

    Yang, F.; Li, J.C.

    1997-01-01

    A dislocation model of a subsurface crack parallel to the surface is presented. For tensile loading, the results agree with those of previous workers except that we studied the crack very close to the surface and found that K II (mode II stress intensity factor) approaches K I (mode I stress intensity factor) to within about 22% (K II =0.78K I ). (Note that K II is zero when the crack is far away from the surface). Using bending theory for such situations, it is found that both stress intensity factors are inversely proportional to the 3/2 power of the distance between the subsurface crack and the free surface. For shear loading, the crack faces overlap each other for the free traction condition. This indicates the failure of the model. However, there was no overlap for tensile loading even though the stresses in front of the crack oscillate somewhat when the crack is very close to the surface. copyright 1997 American Institute of Physics

  10. Geophysical characterization of subsurface barriers

    International Nuclear Information System (INIS)

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier

  11. Subsurface transport program: Research summary

    International Nuclear Information System (INIS)

    1987-01-01

    DOE's research program in subsurface transport is designed to provide a base of fundamental scientific information so that the geochemical, hydrological, and biological mechanisms that contribute to the transport and long term fate of energy related contaminants in subsurface ecosystems can be understood. Understanding the physical and chemical mechanisms that control the transport of single and co-contaminants is the underlying concern of the program. Particular attention is given to interdisciplinary research and to geosphere-biosphere interactions. The scientific results of the program will contribute to resolving Departmental questions related to the disposal of energy-producing and defense wastes. The background papers prepared in support of this document contain additional information on the relevance of the research in the long term to energy-producing technologies. Detailed scientific plans and other research documents are available for high priority research areas, for example, in subsurface transport of organic chemicals and mixtures and in the microbiology of deep aquifers. 5 figs., 1 tab

  12. Surface/subsurface observation and removal mechanisms of ground reaction bonded silicon carbide

    Science.gov (United States)

    Yao, Wang; Zhang, Yu-Min; Han, Jie-cai; Zhang, Yun-long; Zhang, Jian-han; Zhou, Yu-feng; Han, Yuan-yuan

    2006-01-01

    Reaction Bonded Silicon Carbide (RBSiC) has long been recognized as a promising material for optical applications because of its unique combination of favorable properties and low-cost fabrication. Grinding of silicon carbide is difficult because of its high hardness and brittleness. Grinding often induces surface and subsurface damage, residual stress and other types of damage, which have great influence on the ceramic components for optical application. In this paper, surface integrity, subsurface damage and material removal mechanisms of RBSiC ground using diamond grinding wheel on creep-feed surface grinding machine are investigated. The surface and subsurface are studied with scanning electron microscopy (SEM) and optical microscopy. The effects of grinding conditions on surface and subsurface damage are discussed. This research links the surface roughness, surface and subsurface cracks to grinding parameters and provides valuable insights into the material removal mechanism and the dependence of grind induced damage on grinding conditions.

  13. Mercury critical concentrations to Enchytraeus crypticus (Annelida: Oligochaeta) under normal and extreme conditions of moisture in tropical soils - Reproduction and survival.

    Science.gov (United States)

    Buch, Andressa Cristhy; Schmelz, Rüdiger M; Niva, Cintia Carla; Correia, Maria Elizabeth Fernandes; Silva-Filho, Emmanoel Vieira

    2017-05-01

    Soil provides many ecosystem services that are essential to maintain its quality and healthy development of the flora, fauna and human well-being. Environmental mercury levels may harm the survival and diversity of the soil fauna. In this respect, efforts have been made to establish limit values of mercury (Hg) in soils to terrestrial fauna. Soil organisms such as earthworms and enchytraeids have intimate contact with trace metals in soil by their oral and dermal routes, reflecting the potentially adverse effects of this contaminant. The main goal of this study was to obtain Hg critical concentrations under normal and extreme conditions of moisture in tropical soils to Enchytraeus crypticus to order to assess if climate change may potentiate their acute and chronic toxicity effects. Tropical soils were sampled from of two Forest Conservation Units of the Rio de Janeiro State - Brazil, which has been contaminated by Hg atmospheric depositions. Worms were exposed to three moisture conditions, at 20%, 50% and 80% of water holding capacity, respectively, and in combination with different Hg (HgCl 2 ) concentrations spiked in three types of tropical soil (two natural soils and one artificial soil). The tested concentrations ranged from 0 to 512mg Hg kg -1 dry weight. Results indicate that the Hg toxicity is higher under increased conditions of moisture, significantly affecting survival and reproduction rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Incidental Serous Tubal Intraepithelial Carcinoma and Non-Neoplastic Conditions of the Fallopian Tubes in Grossly Normal Adnexa: A Clinicopathologic Study of 388 Completely Embedded Cases.

    Science.gov (United States)

    Seidman, Jeffrey D; Krishnan, Jayashree; Yemelyanova, Anna; Vang, Russell

    2016-09-01

    Serous tubal intraepithelial carcinoma (STIC), the putative precursor of the majority of extrauterine high-grade serous carcinomas, has been reported in both high-risk women (those with a germline BRCA mutation, a personal history of breast carcinoma, and/or family history of breast or ovarian carcinoma) and average risk women from the general population. We reviewed grossly normal adnexal specimens from 388 consecutive, unselected women undergoing surgery, including those with germline BRCA mutation (37 patients), personal history of breast cancer or family history of breast/ovarian cancer (74 patients), endometrial cancer (175 patients), and a variety of other conditions (102 patients). Among 111 high-risk cases and 277 non-high-risk cases, 3 STICs were identified (0.8%), all in non-high-risk women (high risk vs. non-high risk: P=not significant). STIC was found in 2 women with nonserous endometrial carcinoma and 1 with complex atypical endometrial hyperplasia. Salpingoliths (mucosal calcifications), found in 9% of high-risk cases, and fimbrial adenofibromas in 9.9% of high-risk cases, were significantly more common in high-risk as compared with non-high-risk women (1.8% and 2.5%, respectively; PSTIC and endometrial hyperplasia and carcinoma, and clarify the frequency of non-neoplastic tubal findings in grossly normal fallopian tubes.

  15. Variation of radioactivity in the environmental media and dose evaluation in Suzhou city after normal operation of Qinshan Nuclear Power Station condition

    International Nuclear Information System (INIS)

    Fu Rongchu; Liu Li

    2002-01-01

    Objective: To study the radioactive monitoring in environmental media of Suzhou City when Qinshan Nuclear Power Station was in normal operational condition (from 1992-2001). Methods: The radiochemical method was used for monitoring the radioactivity level in air, soil and food. Results: The total radioactivity, concentrations of 134 I and 134,137 Cs in environmental media was far lower than the limit values specified by the national standard GB. Conclusion: The radioactivity level in Suzhou City is at the natural background level. The individual annual average effective dose for adults in that period caused by ingestion 134,137 Cs in food is 4.41 x 10 -4 mSv/a

  16. Performance of iron–chromium–aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Weicheng; Mouche, Peter A.; Han, Xiaochun [University of Illinois, Department of Nuclear, Radiological, and Plasma Engineering, Urbana, IL 61801 (United States); Heuser, Brent J., E-mail: bheuser@illinois.edu [University of Illinois, Department of Nuclear, Radiological, and Plasma Engineering, Urbana, IL 61801 (United States); Mandapaka, Kiran K.; Was, Gary S. [University of Michigan, Department of Nuclear Engineering and Radiological Sciences, Ann Arbor, MI 48109 (United States)

    2016-03-15

    Iron-chromium-aluminum (FeCrAl) coatings deposited on Zircaloy 2 (Zy2) and yttria-stabilized zirconia (YSZ) by magnetron sputtering have been tested with respect to oxidation weight gain in high-temperature steam. In addition, autoclave testing of FeCrAl-coated Zy2 coupons under pressure-temperature-dissolved oxygen coolant conditions representative of a boiling water reactor (BWR) environment has been performed. Four different FeCrAl compositions have been tested in 700 °C steam; compositions that promote alumina formation inhibited oxidation of the underlying Zy2. Parabolic growth kinetics of alumina on FeCrAl-coated Zy2 is quantified via elemental depth profiling. Autoclave testing under normal BWR operating conditions (288 °C, 9.5 MPa with normal water chemistry) up to 20 days demonstrates observable weight gain over uncoated Zy2 simultaneously exposed to the same environment. However, no FeCrAl film degradation was observed. The 900 °C eutectic in binary Fe–Zr is addressed with the FeCrAl-YSZ system. - Graphical abstract: Weight gain normalized to total sample surface area versus time during 700 °C steam exposure for FeCrAl samples with different composition (A) and Fe/Cr/Al:62/4/34 (B). In both cases, the responses of uncoated Zry2 (Zry2-13A and Zry2-19A) are shown for comparison. This uncoated Zry2 response shows the expected pre-transition quasi-cubic kinetic behavior and eventual breakaway (linear) kinetics. Highlights: • FeCrAl coatings deposited on Zy2 have been tested with respect to oxidation in high-temperature steam. • FeCrAl compositions promoting alumina formation inhibited oxidation of Zy2 and delay weight gain. • Autoclave testing to 20 days of coated Zy2 in a simulated BWR environment demonstrates minimal weight gain and no film degradation. • The 900 °C eutectic in binary Fe-Zr is addressed with the FeCrAl-YSZ system.

  17. Characterization of six small HSP genes from Chironomus riparius (Diptera, Chironomidae): Differential expression under conditions of normal growth and heat-induced stress.

    Science.gov (United States)

    Martín-Folgar, Raquel; de la Fuente, Mercedes; Morcillo, Gloria; Martínez-Guitarte, José-Luis

    2015-10-01

    Small heat shock proteins (sHSPs) comprise the most numerous, structurally diverse, and functionally uncharacterized family of heat shock proteins. Several Hsp genes (Hsp 90, 70, 40, and 27) from the insect Chironomus riparius are widely used in aquatic toxicology as biomarkers for environmental toxins. Here, we conducted a comparative study and characterized secondary structure of the six newly identified sHsp genes Hsp17, Hsp21, Hsp22, Hsp23, Hsp24, and Hsp34. A characteristic α-crystallin domain is predicted in all the new proteins. Phylogenetic analysis suggests a strong relation to other sHSPs from insects and interesting evidence regarding evolutionary origin and duplication events. Comparative analysis of transcription profiles for Hsp27, Hsp70, and the six newly identified genes revealed that Hsp17, Hsp21, and Hsp22 are constitutively expressed under normal conditions, while under two different heat shock conditions these genes are either not activated or are even repressed (Hsp22). In contrast, Hsp23, Hsp24, and Hsp34 are significantly activated along with Hsp27 and Hsp70 during heat stress. These results strongly suggest functional differentiation within the small HSP subfamily and provide new data to help understand the coping mechanisms induced by stressful environmental stimuli. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Blood lactate changes in men during graded workloads at normal atmospheric pressure (100 kPa) and under simulated caisson conditions (400 kPa).

    Science.gov (United States)

    Neubauer, B; Tetzlaff, K; Buslaps, C; Schwarzkopf, J; Bettinghausen, E; Rieckert, H

    1999-05-01

    A hyperbaric environment may influence lactate metabolism due to hyperoxia affecting biochemical pathways. The purpose of our study was to determine the blood lactate levels occurring at high workloads in a sample of professional divers under simulated caisson conditions. The ambient air pressure was equivalent to a diving depth of 30 m of seawater (400 kPa). A total of 23 healthy male subjects performed graded bicycle exercise in a dry hyperbaric chamber up to a maximum of 3.5 W kg(-1) body weight at normal (100 kPa) and elevated ambient air pressure (400 kPa). The blood lactate level and the heart rate were measured. In comparison with control conditions, the heart rate and the peripheral blood lactate level were significantly lower at depth for all workloads. The differences between the normobaric and hyperbaric lactate values may be explained by an overall improvement in lactate metabolism at elevated ambient pressure, especially in the working muscles and the organs responsible for the lactate reduction, i.e., the liver. The reduced heart rate may be an effect of the improved tissue oxygen supply at depth.

  19. Subsurface material identification and sensor selection

    Science.gov (United States)

    T, H.; Reghunadh, R.; Ramesh, M. V.

    2017-12-01

    In India, most of the landslides occur during monsoon season and causes huge loss of life and property. Design of an early warning system for highly landslide prone area will reduce losses to a great extent. The in-situ monitoring systems needs deployment of several sensors inside a borehole for monitoring a particular slope. Amrita Center for Wireless Networks and Applications (AmritaWNA), Amrita University has designed, developed and deployed a Wireless Sensor Network (WSN) for real time landslide monitoring using geotechnical instruments and sensors like rain gauge, moisture sensor, piezometer, strain gauge, tilt meter and geophone inside a Deep Earth Probe (DEP) at different locations. These sensors provide point measurements of the subsurface at a higher accuracy. Every landslide prone terrain is unique with respect to its geology, hydrological conditions, meteorological conditions, velocity of movement etc. The decision of installing different geotechnical instruments in a landslide prone terrain is a crucial step to be considered. Rain gauge, moisture sensor, and piezometer are usually used in clay rich areas to sense the moisture and pore pressure values. Geophone and Crack meter are instruments used in rocky areas to monitor cracks and vibrations associated with a movement. Inclinometer and Strain gauge are usually placed inside a casing and can be used in both rocky and soil areas. In order to place geotechnical instruments and sensors at appropriate places Electrical Resistivity Tomography (ERT) method can be used. Variation in electrical resistivity values indicate the changes in composition, layer thickness, or contaminant levels. The derived true resistivity image can be used for identifying the type of materials present in the subsurface at different depths. We have used this method for identifying the type of materials present in our site at Chandmari (Sikkim). Fig 1 shows the typical resistivity values of a particular area in Chandmari site. The

  20. Comprehensive gene expression analysis of the NAC gene family under normal growth conditions, hormone treatment, and drought stress conditions in rice using near-isogenic lines (NILs) generated from crossing Aday Selection (drought tolerant) and IR64.

    Science.gov (United States)

    Nuruzzaman, Mohammed; Sharoni, Akhter Most; Satoh, Kouji; Moumeni, Ali; Venuprasad, Ramiah; Serraj, Rachid; Kumar, Arvind; Leung, Hei; Attia, Kotb; Kikuchi, Shoshi

    2012-05-01

    The NAC (NAM, ATAF1/2 and CUC2) genes are plant-specific transcriptional factors known to play diverse roles in various plant developmental processes. We describe the rice (Oryza sativa) OsNAC genes expression profiles (GEPs) under normal and water-deficit treatments (WDTs). The GEPs of the OsNAC genes were analyzed in 25 tissues covering the entire life cycle of Minghui 63. High expression levels of 17 genes were demonstrated in certain tissues under normal conditions suggesting that these genes may play important roles in specific organs. We determined that 16 genes were differentially expressed under at least 1 phytohormone (NAA, GA3, KT, SA, ABA, and JA) treatment. To investigate the GEPs in the root, leaf, and panicle of three rice genotypes [e.g., 2 near-isogenic lines (NILs) and IR64], we used two NILs from a common genetic combination backcross developed by Aday Selection and IR64. WDTs were applied using the fraction of transpirable soil water at severe, mild, and control conditions. Transcriptomic analysis using a 44K oligoarray from Agilent was performed on all the tissue samples. We identified common and specific genes in all tissues from the two NILs under both WDTs, and the majority of the OsNAC genes that were activated were in the drought-tolerant IR77298-14-1-2-B-10 line compared with the drought-susceptible IR77298-14-1-2-B-13 or IR64. In IR77298-14-1-2-B-10, seventeen genes were very specific in their expression levels. Approximately 70 % of the genes from subgroups SNAC and NAM/CUC3 were activated in the leaf, but 37 % genes from subgroup SND were inactivated in the root compared with the control under severe stress conditions. These results provide a useful reference for the cloning of candidate genes from the specific subgroup for further functional analysis.

  1. Detailed imaging of the normal anatomy and pathologic conditions of the cavernous region at 3 Tesla using a contrast-enhanced MR angiography

    Energy Technology Data Exchange (ETDEWEB)

    Linn, Jennifer; Peters, Friederike; Lummel, Nina; Brueckmann, Hartmut; Yousry, Indra [University Hospital Munich, Department of Neuroradiology, Munich (Germany); Schankin, Christoph [University Hospital Munich, Department of Neurology, Munich (Germany); Rachinger, Walter [University Hospital Munich, Department of Neurosurgery, Munich (Germany)

    2011-12-15

    The purpose of this study was to evaluate the potential of a high-resolution contrast-enhanced magnetic resonance angiography (CE-MRA) at 3 Tesla for the delineation of the cavernous sinus (CS) anatomy both under normal and under pathological conditions. Fifteen patients without pathologies in the CS and ten patients with pituitary adenomas were included. The CE-MRA was performed on a 3-Tesla scanner and analyzed collaboratively by two readers. The cranial nerves (CNs) within the CS, namely CNIII, CNIV, CNV1, CNV2, and CNVI, were identified in both patient groups. In the adenoma patients it was also assessed whether and to which extend the adenoma invaded the CS and the spatial relationship between tumor and CNs was determined. In the patients with normal CS anatomy, CNIII could be identified in 100%, CNIV in 86.7%, and CNV1, CNV2, as well as CNVI in 100% of analyzed sides. Pituitary adenomas invaded the CS unilaterally (right side) in four patients, and bilaterally in six patients. In patients with adenomas, the CN could be identified and differentiated from the tumor in the following percentages: CNIII in 100%, CNIV in 70%, both CNV1 and CNV2 in 90%, and CNVI in 100%. In all these cases, the tumor-nerve spatial relationship could be visualized. 3-Tesla CE-MRA allows detailed imaging of the complex anatomy of the CS and its structures. In adenoma patients, it clearly visualizes the spatial relationship between tumor and CNs, and thus might be helpful to optimize presurgical planning. (orig.)

  2. Detailed imaging of the normal anatomy and pathologic conditions of the cavernous region at 3 Tesla using a contrast-enhanced MR angiography

    International Nuclear Information System (INIS)

    Linn, Jennifer; Peters, Friederike; Lummel, Nina; Brueckmann, Hartmut; Yousry, Indra; Schankin, Christoph; Rachinger, Walter

    2011-01-01

    The purpose of this study was to evaluate the potential of a high-resolution contrast-enhanced magnetic resonance angiography (CE-MRA) at 3 Tesla for the delineation of the cavernous sinus (CS) anatomy both under normal and under pathological conditions. Fifteen patients without pathologies in the CS and ten patients with pituitary adenomas were included. The CE-MRA was performed on a 3-Tesla scanner and analyzed collaboratively by two readers. The cranial nerves (CNs) within the CS, namely CNIII, CNIV, CNV1, CNV2, and CNVI, were identified in both patient groups. In the adenoma patients it was also assessed whether and to which extend the adenoma invaded the CS and the spatial relationship between tumor and CNs was determined. In the patients with normal CS anatomy, CNIII could be identified in 100%, CNIV in 86.7%, and CNV1, CNV2, as well as CNVI in 100% of analyzed sides. Pituitary adenomas invaded the CS unilaterally (right side) in four patients, and bilaterally in six patients. In patients with adenomas, the CN could be identified and differentiated from the tumor in the following percentages: CNIII in 100%, CNIV in 70%, both CNV1 and CNV2 in 90%, and CNVI in 100%. In all these cases, the tumor-nerve spatial relationship could be visualized. 3-Tesla CE-MRA allows detailed imaging of the complex anatomy of the CS and its structures. In adenoma patients, it clearly visualizes the spatial relationship between tumor and CNs, and thus might be helpful to optimize presurgical planning. (orig.)

  3. Modular evaluation method for subsurface activities (MEMSA). A novel approach for integrating social acceptance in a permit decision-making process for subsurface activities

    Energy Technology Data Exchange (ETDEWEB)

    Os, Herman W.A. van, E-mail: h.w.a.van.os@rug.nl [University of Groningen, Faculty of Mathematics and Natural Sciences, Geo-Energy, PO Box 800, 9700 AV Groningen (Netherlands); Herber, Rien, E-mail: rien.herber@rug.nl [University of Groningen, Faculty of Mathematics and Natural Sciences, Geo-Energy, PO Box 800, 9700 AV Groningen (Netherlands); Scholtens, Bert, E-mail: l.j.r.scholtens@rug.nl [University of Groningen, Faculty of Economics and Business, PO Box 800, 9700 AV Groningen (Netherlands)

    2017-05-15

    We investigate how the decision support system ‘Modular Evaluation Method Subsurface Activities’ (MEMSA) can help facilitate an informed decision-making process for permit applications of subsurface activities. To this end, we analyze the extent the MEMSA approach allows for a dialogue between stakeholders in a transparent manner. We use the exploration permit for the underground gas storage facility at the Pieterburen salt dome (Netherlands) as a case study. The results suggest that the MEMSA approach is flexible enough to adjust to changing conditions. Furthermore, MEMSA provides a novel way for identifying structural problems and possible solutions in permit decision-making processes for subsurface activities, on the basis of the sensitivity analysis of intermediate rankings. We suggest that the planned size of an activity should already be specified in the exploration phase, because this would allow for a more efficient use of the subsurface as a whole. We conclude that the host community should be involved to a greater extent and in an early phase of the permit decision-making process, for example, already during the initial analysis of the project area of a subsurface activity. We suggest that strategic national policy goals are to be re-evaluated on a regular basis, in the form of a strategic vision for the subsurface, to account for timing discrepancies between the realization of activities and policy deadlines, because this discrepancy can have a large impact on the necessity and therefore acceptance of a subsurface activity.

  4. Modular evaluation method for subsurface activities (MEMSA). A novel approach for integrating social acceptance in a permit decision-making process for subsurface activities

    International Nuclear Information System (INIS)

    Os, Herman W.A. van; Herber, Rien; Scholtens, Bert

    2017-01-01

    We investigate how the decision support system ‘Modular Evaluation Method Subsurface Activities’ (MEMSA) can help facilitate an informed decision-making process for permit applications of subsurface activities. To this end, we analyze the extent the MEMSA approach allows for a dialogue between stakeholders in a transparent manner. We use the exploration permit for the underground gas storage facility at the Pieterburen salt dome (Netherlands) as a case study. The results suggest that the MEMSA approach is flexible enough to adjust to changing conditions. Furthermore, MEMSA provides a novel way for identifying structural problems and possible solutions in permit decision-making processes for subsurface activities, on the basis of the sensitivity analysis of intermediate rankings. We suggest that the planned size of an activity should already be specified in the exploration phase, because this would allow for a more efficient use of the subsurface as a whole. We conclude that the host community should be involved to a greater extent and in an early phase of the permit decision-making process, for example, already during the initial analysis of the project area of a subsurface activity. We suggest that strategic national policy goals are to be re-evaluated on a regular basis, in the form of a strategic vision for the subsurface, to account for timing discrepancies between the realization of activities and policy deadlines, because this discrepancy can have a large impact on the necessity and therefore acceptance of a subsurface activity.

  5. Effects of Supplemental Chromium Source and Concentration on Growth, Carcass Characteristics, and Serum Lipid Parameters of Broilers Reared Under Normal Conditions.

    Science.gov (United States)

    Zheng, Cancai; Huang, Yanling; Xiao, Fang; Lin, Xi; Lloyd, Karen

    2016-02-01

    An experiment was conducted to investigate the effects of dietary chromium (Cr) source and concentration on growth performance, carcass traits, and some serum lipid parameters of broilers under normal rearing conditions for 42 days. A total of 252 1-day-old Cobb 500 commercial female broilers were randomly allotted by body weight (BW) to one of six replicate cages (six broilers per cage) for each of seven treatments in a completely randomized design involved in a 2 × 3 factorial arrangement of treatments with three Cr sources (Cr propionate (CrPro), Cr picolinate (CrPic), Cr chloride (CrCl3)) and two concentrations of added Cr (0.4 and 2.0 mg of Cr/kg) plus a Cr-unsupplemented control diet. The results showed that dietary Cr supplementation tended to increase the breast muscle percentage compared with the Cr-unsupplemented control group (P = 0.0784), while Cr from CrPic tended to have higher breast muscle percentage compared with Cr from CrCl3 (P = 0.0881). Chromium from CrPic also tended to increase the breast intramuscular fat (IMF) compared with Cr from CrCl3 (P = 0.0648). In addition, supplementation of 0.4 mg/kg Cr tended to decrease low-density lipoprotein cholesterol (LDL-C) (P = 0.0614). Compared with the control group, broilers fed Cr-supplemented diets had higher triglyceride (TG) (P = 0.0129) regardless of Cr source and Cr concentration. Chromium from CrPro and CrPic had lower total cholesterol (TC) compared with Cr from CrCl3 (P = 0.0220). These results indicate that dietary supplementation of Cr has effects on carcass characteristics and serum lipid parameters of broilers under normal rearing conditions, while supplementation of organic Cr can improve carcass characteristics and reduce the cholesterol content in serum.

  6. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport - Modeling, Simulation and Experimental Integration RD&D Plan

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Harold E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-04-01

    Under current U.S. Nuclear Regulatory Commission regulation, it is not sufficient for used nuclear fuel (UNF) to simply maintain its integrity during the storage period, it must maintain its integrity in such a way that it can withstand the physical forces of handling and transportation associated with restaging the fuel and moving it to treatment or recycling facilities, or a geologic repository. Hence it is necessary to understand the performance characteristics of aged UNF cladding and ancillary components under loadings stemming from transport initiatives. Researchers would like to demonstrate that enough information, including experimental support and modeling and simulation capabilities, exists to establish a preliminary determination of UNF structural performance under normal conditions of transport (NCT). This research, development and demonstration (RD&D) plan describes a methodology, including development and use of analytical models, to evaluate loading and associated mechanical responses of UNF rods and key structural components. This methodology will be used to provide a preliminary assessment of the performance characteristics of UNF cladding and ancillary components under rail-related NCT loading. The methodology couples modeling and simulation and experimental efforts currently under way within the Used Fuel Disposition Campaign (UFDC). The methodology will involve limited uncertainty quantification in the form of sensitivity evaluations focused around available fuel and ancillary fuel structure properties exclusively. The work includes collecting information via literature review, soliciting input/guidance from subject matter experts, performing computational analyses, planning experimental measurement and possible execution (depending on timing), and preparing a variety of supporting documents that will feed into and provide the basis for future initiatives. The methodology demonstration will focus on structural performance evaluation of

  7. Automatic WEMVA by Focusing Subsurface Offset Virtual Sources

    KAUST Repository

    Sun, Bingbing

    2017-05-26

    Macro velocity building is important for subsequent prestack depth migration and full waveform inversion. Wave equation migration velocity analysis (WEMVA) utilizes band-limited waveform to invert the velocity in an automatic manner. Normally, inversion would be implemented by focusing the subsurface offset common image gathers(SOCIGs). We re-examine it with a different perspective and propose to view the SOCIGs and the background wavefield together as subsurface offset virtual sources(SOVS). A linear system connecting the perturbation of the position of those SOVS and velocity is derived and solved subsequently using a conjugate gradient method. Both synthetic and real dataset examples verify the correctness and effectiveness of the proposed method.

  8. Histone variant H2A.Z antagonizes the positive effect of the transcriptional activator CPC1 to regulate catalase-3 expression under normal and oxidative stress conditions.

    Science.gov (United States)

    Dong, Qing; Wang, Yajun; Qi, Shaohua; Gai, Kexin; He, Qun; Wang, Ying

    2018-05-05

    In eukaryotes, deposition of the histone variant H2A.Z into nucleosomes through the chromatin remodeling complex, SWR1, is a crucial step in modulating gene transcription. Recently, H2A.Z has been shown to control the expression of responsive genes, but the underlying mechanism of how H2A.Z responds to physiological stimuli is not well understood. Here, we reveal that, in Neurospora crassa, H2A.Z is a negative regulator of catalase-3 gene, which is responsible for resistance to oxidative stress. H2A.Z represses cat-3 gene expression through direct incorporation at cat-3 locus in a SWR1 complex dependent pathway. Notably, loss of H2A.Z or SWR1 subunits leads to increased binding of a transcription factor, CPC1, at cat-3 locus. Additionally, introduction of plasmids containing gene encoding H2A.Z or SWR1 complex subunits into wild-type strains decreased CAT-3 expression, indicating that H2A.Z counteracts the positive effect of CPC1 to achieve low level cat-3 expression under non-inductive condition. Furthermore, upon oxidative stress, H2A.Z is rapidly evicted from cat-3 locus for the recruitment of CPC1, resulting in robust and full cat-3 gene expression in response to external stimuli. Collectively, this study strongly demonstrates that H2A.Z antagonizes the function of transcription factor to regulate responsive gene transcription under normal conditions and to poise for gene full activation under oxidative stress. Copyright © 2018. Published by Elsevier Inc.

  9. Validation of noninvasive indices of global systolic function in patients with normal and abnormal loading conditions: a simultaneous echocardiography pressure-volume catheterization study.

    Science.gov (United States)

    Yotti, Raquel; Bermejo, Javier; Benito, Yolanda; Sanz-Ruiz, Ricardo; Ripoll, Cristina; Martínez-Legazpi, Pablo; del Villar, Candelas Pérez; Elízaga, Jaime; González-Mansilla, Ana; Barrio, Alicia; Bañares, Rafael; Fernández-Avilés, Francisco

    2014-01-01

    Noninvasive indices based on Doppler echocardiography are increasingly used in clinical cardiovascular research to evaluate left ventricular global systolic chamber function. Our objectives were to clinically validate ultrasound-based methods of global systolic chamber function to account for differences between patients in conditions of abnormal load, and to assess their sensitivity to load confounders. Twenty-seven patients (8 dilated cardiomyopathy, 10 normal ejection fraction, and 9 end-stage liver disease) underwent simultaneous echocardiography and left heart catheterization with pressure-conductance instrumentation. The reference index, maximal elastance (Emax), was calculated from pressure-volume loop data obtained during acute inferior vena cava occlusion. A wide range of values were observed for left ventricular systolic chamber function (Emax: 2.8±1.0 mm Hg/mL), preload, and afterload. Among the noninvasive indices tested, the peak ejection intraventricular pressure difference showed the best correlation with Emax (R=0.75). A significant but weaker correlation with Emax was observed for ejection fraction (R=0.41), midwall fractional shortening (R=0.51), global circumferential strain (R=-0.53), and strain rate (R=-0.46). Longitudinal strain and strain rate failed to correlate with Emax, as did noninvasive single-beat estimations of this index. Principal component and multiple regression analyses demonstrated that peak ejection intraventricular pressure difference was less sensitive to load, whereas ejection fraction and longitudinal strain and strain rate were heavily influenced by afterload. Current ultrasound methods have limited accuracy to characterize global left ventricular systolic chamber function in a given patient. The Doppler-derived peak ejection intraventricular pressure difference should be preferred for this purpose because it best correlates with the reference index and is more robust in conditions of abnormal load.

  10. In situ detection of anaerobic alkane metabolites in subsurface environments

    Directory of Open Access Journals (Sweden)

    Lisa eGieg

    2013-06-01

    Full Text Available Alkanes comprise a substantial fraction of crude oil and refined fuels. As such, they are prevalent within deep subsurface fossil fuel deposits and in shallow subsurface environments such as aquifers that are contaminated with hydrocarbons. These environments are typically anaerobic, and host diverse microbial communities that can potentially use alkanes as substrates. Anaerobic alkane biodegradation has been reported to occur under nitrate-reducing, sulfate-reducing, and methanogenic conditions. Elucidating the pathways of anaerobic alkane metabolism has been of interest in order to understand how microbes can be used to remediate contaminated sites. Alkane activation primarily occurs by addition to fumarate, yielding alkylsuccinates, unique anaerobic metabolites that can be used to indicate in situ anaerobic alkane metabolism. These metabolites have been detected in hydrocarbon-contaminated shallow aquifers, offering strong evidence for intrinsic anaerobic bioremediation. Recently, studies have also revealed that alkylsuccinates are present in oil and coal seam production waters, indicating that anaerobic microbial communities can utilize alkanes in these deeper subsurface environments. In many crude oil reservoirs, the in situ anaerobic metabolism of hydrocarbons such as alkanes may be contibuting to modern-day detrimental effects such as oilfield souring, or may lead to more benefical technologies such as enhanced energy recovery from mature oilfields. In this review, we briefly describe the key metabolic pathways for anaerobic alkane (including n-alkanes, isoalkanes, and cyclic alkanes metabolism and highlight several field reports wherein alkylsuccinates have provided evidence for anaerobic in situ alkane metabolism in shallow and deep subsurface environments.

  11. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Sobecky, Patricia A. [Univ. of Alabama, Tuscaloosa, AL (United States)

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  12. Contaminated environments in the subsurface and bioremediation: organic contaminants.

    Science.gov (United States)

    Holliger, C; Gaspard, S; Glod, G; Heijman, C; Schumacher, W; Schwarzenbach, R P; Vazquez, F

    1997-07-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low biomass production and good electron acceptor availability, and they are sometimes the only possible solution. This review will focus on three important groups of environmental organic contaminants: hydrocarbons, chlorinated and nitroaromatic compounds. Whereas hydrocarbons are oxidized and completely mineralized under anaerobic conditions in the presence of electron acceptors such as nitrate, iron, sulfate and carbon dioxide, chlorinated and nitroaromatic compounds are reductively transformed. For the aerobic often persistent polychlorinated compounds, reductive dechlorination leads to harmless products or to compounds that are aerobically degradable. The nitroaromatic compounds are first reductively transformed to the corresponding amines and can subsequently be bound to the humic fraction in an aerobic process. Such new findings and developments give hope that in the near future contaminated aquifers can efficiently be remediated, a prerequisite for a sustainable use of the precious-subsurface drinking water resources.

  13. Martian sub-surface ionising radiation: biosignatures and geology

    Directory of Open Access Journals (Sweden)

    J. M. Ward

    2007-07-01

    Full Text Available The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments.

    We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost, solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude, and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.

  14. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    International Nuclear Information System (INIS)

    Sobecky, Patricia A.

    2015-01-01

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  15. Peculiarity of deuterium ions interaction with tungsten surface in the condition imitating combination of normal operation with plasma disruption in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, M.I. E-mail: martyn@nfi.kiae.ru; Vasiliev, V.I.; Gureev, V.M.; Danelyan, L.S.; Khirpunov, B.I.; Korshunov, S.N.; Kulikauskas, V.S.; Martynenko, Yu.V.; Petrov, V.B.; Strunnikov, V.N.; Stolyarova, V.G.; Zatekin, V.V.; Litnovsky, A.M

    2001-03-01

    Tungsten is a candidate material for the ITER divertor. For the simulation of ITER normal operation conditions in combination with plasma disruptions samples of various types of tungsten were exposed to both steady-state and high power pulsed deuterium plasmas. Tungsten samples were first exposed in a steady-state plasma with an ion current density {approx}10{sup 21} m{sup -2} s{sup -1} up to a dose of 10{sup 25} m{sup -2} at a temperature of 770 K. The energy of deuterium ions was 150 eV. The additional exposure of the samples to 10 pulses of deuterium plasma was performed in the electrodynamical plasma accelerator with an energy flux 0.45 MJ/m{sup 2} per pulse. Samples of four types of tungsten (W-1%La{sub 2}O{sub 3}, W-13I, monocrystalline W(1 1 1) and W-10%Re) were investigated. The least destruction of the surface was observed for W(1 1 1). The concentration of retained deuterium in tungsten decreased from 2.5x10{sup 19} m{sup -2} to 1.07x10{sup 19} m{sup -2} (for W(1 1 1)) as a result of the additional pulsed plasma irradiation. Investigation of the tungsten erosion products after the high power pulsed plasma shots was also carried out.

  16. Behavior of U3Si2 Fuel and FeCrAl Cladding under Normal Operating and Accident Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gamble, Kyle Allan Lawrence [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hales, Jason Dean [Idaho National Lab. (INL), Idaho Falls, ID (United States); Barani, Tommaso [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pizzocri, Davide [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pastore, Giovanni [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    As part of the Department of Energy's Nuclear Energy Advanced Modeling and Simulation program, an Accident Tolerant Fuel High Impact Problem was initiated at the beginning of fiscal year 2015 to investigate the behavior of \\usi~fuel and iron-chromium-aluminum (FeCrAl) claddings under normal operating and accident reactor conditions. The High Impact Problem was created in response to the United States Department of Energy's renewed interest in accident tolerant materials after the events that occurred at the Fukushima Daiichi Nuclear Power Plant in 2011. The High Impact Problem is a multinational laboratory and university collaborative research effort between Idaho National Laboratory, Los Alamos National Laboratory, Argonne National Laboratory, and the University of Tennessee, Knoxville. This report primarily focuses on the engineering scale research in fiscal year 2016 with brief summaries of the lower length scale developments in the areas of density functional theory, cluster dynamics, rate theory, and phase field being presented.

  17. Starvation-survival of subsurface bacteria

    International Nuclear Information System (INIS)

    Magill, N.G.

    1988-01-01

    The ability of four subsurface isolates to survive starvation was examined and the results were compared to survival curves obtained for Escherichia coli B and Serratia marcescens. To examine the starvation-survival phenomenon further, several experimental parameters including nutritional history, initial cell density, growth phase, temperature of growth and starvation, and aeration. Nutritional history, initial cell density, and growth phases of the cells had some effect on the ability of these bacteria to survive whereas temperature and limited aeration had no effect under the conditions tested. No conditions were found where E. coli B or Serratia marcescens died rapidly or where less than 10% of the original cell number of viable cells remained. Because the apparent survival of these bacteria may be due to cryptic growth, cross-feeding experiments with 14 C-labeled cells and unlabeled cells were carried out with E. coli B and Pseudomonas Lula V. Leaked extracellular 14 C-compounds were not used for growth or maintenance energy, and were not taken up by either bacterium. Cryptic growth did not occur; the cells were truly starving under the experimental conditions used

  18. Drawing the subsurface : an integrative design approach

    NARCIS (Netherlands)

    Hooimeijer, F.L.; Lafleur, F.; Trinh, T.T.; Gogu, Constantin Radu; Campbell, Diarmad; de Beer, Johannes

    2017-01-01

    The sub-surface, with its man-made and natural components, plays an important, if not crucial, role in the urban climate and global energy transition. On the one hand, the sub-surface is associated with a variety of challenges such as subsidence, pollution, damage to infrastructure and shortages of

  19. Extracting subsurface fingerprints using optical coherence tomography

    CSIR Research Space (South Africa)

    Akhoury, SS

    2015-02-01

    Full Text Available Subsurface Fingerprints using Optical Coherence Tomography Sharat Saurabh Akhoury, Luke Nicholas Darlow Modelling and Digital Science, Council for Scientific and Industrial Research, Pretoria, South Africa Abstract Physiologists have found... approach to extract the subsurface fingerprint representation using a high-resolution imaging technology known as Optical Coherence Tomography (OCT). ...

  20. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    Energy Technology Data Exchange (ETDEWEB)

    Pyrak-Nolte, Laura J [Purdue Univ., West Lafayette, IN (United States); DePaolo, Donald J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Pietraß, Tanja [USDOE Office of Science, Washington, DC (United States)

    2015-05-22

    . In response, the Office of Science, through its Office of Basic Energy Science (BES), convened a roundtable consisting of 15 national lab, university and industry geoscience experts to brainstorm basic research areas that underpin the SubTER goals but are currently underrepresented in the BES research portfolio. Held in Germantown, Maryland on May 22, 2015, the round-table participants developed a basic research agenda that is detailed in this report. Highlights include the following: -A grand challenge calling for advanced imaging of stress and geological processes to help understand how stresses and chemical substances are distributed in the subsurface—knowledge that is critical to all aspects of subsurface engineering; -A priority research direction aimed at achieving control of fluid flow through fractured media; -A priority research direction aimed at better understanding how mechanical and geochemical perturbations to subsurface rock systems are coupled through fluid and mineral interactions; -A priority research direction aimed at studying the structure, permeability, reactivity and other properties of nanoporous rocks, like shale, which have become critical energy materials and exhibit important hallmarks of mesoscale materials; -A cross-cutting theme that would accelerate development of advanced computational methods to describe heterogeneous time-dependent geologic systems that could, among other potential benefits, provide new and vastly improved models of hydraulic fracturing and its environmental impacts; -A cross-cutting theme that would lead to the creation of “geo-architected materials” with controlled repeatable heterogeneity and structure that can be tested under a variety of thermal, hydraulic, chemical and mechanical conditions relevant to subsurface systems; -A cross-cutting theme calling for new laboratory studies on both natural and geo-architected subsurface materials that deploy advanced high-resolution 3D imaging and chemical analysis

  1. Energy as a Constraint on Habitability in the Subsurface

    Science.gov (United States)

    Hoehler, T.

    2008-12-01

    All living things must obtain energy from the environment to grow, to maintain a metabolic steady state, or simply to preserve viability. The availability of energy sources in the environment thus represents a key factor in determining the size, distribution, and activity of biological populations, and ultimately constrains the possibility for life itself. Lacking the abundant energy provided by solar radiation or the products of oxygenic photosynthesis, life in subsurface environments may be limited by energy availability as much as any other factor. The biological requirement for energy is expressed in two dimensions - analogous to the power and voltage requirements of electrical devices - and consideration and quantification of these requirements establishes quantitative boundary conditions on subsurface habitability. The magnitude of these requirements depends significantly on physicochemical environment, as does the provision of biologically-accessible energy from subsurface sources. With this conceptual basis, we are developing an 'energy balance' model that is designed to ultimately predict the habitability of a given environment, with respect to a given metabolism, in quantitative terms (as 'biomass density potential'). The model will develop from conceptual to quantitative as experimental and observational work constrains and quantifies, in natural populations adapted to low energy conditions, the magnitude of the biological energy requirements and the impacts of physicochemical environmental conditions on energy demand and supply.

  2. Effects of dietary chlorogenic acid on growth performance, antioxidant capacity of white shrimp Litopenaeus vannamei under normal condition and combined stress of low-salinity and nitrite.

    Science.gov (United States)

    Wang, Yun; Li, Zheng; Li, Jian; Duan, Ya-Fei; Niu, Jin; Wang, Jun; Huang, Zhong; Lin, Hei-Zhao

    2015-04-01

    An eight-week feeding trial followed by an acute combined stress test of low-salinity and nitrite were performed to evaluate effects of chlorogenic acid (CGA) on growth performance and antioxidant capacity of white shrimp Litopenaeus vannamei. Shrimp were randomly allocated in 12 tanks (30 shrimp per tank) and triplicate tanks were fed with a control diet or diets containing different levels of CGA (100, 200 and 400 mg kg(-1) feed) as treatment groups. Growth performance including weight gain (WG), biomass gain (BG), feed conversion ratio (FCR), and feed intake were determined after feeding for 56 days. Antioxidant capacity were evaluated by determining the activity of total antioxidant status (TAS), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) as well as the gene expression of GSH-Px and CAT in the hepatopancreas of shrimp at the end of feeding trial and again at the end of the combined stress test. The results indicated that supplemention of CGA had no significant effects on the growth performance and the activities of TAS, SOD, GSH-Px and CAT in hepatopancreas of shrimp cultured under normal conditions for 56 days. However, compared with the control group, CGA (200, 400 mg kg(-1) feed) significantly improved the resistance of L. vannamei against the combined stress of low-salinity and nitrite, as indicated by the significant (P shrimp treated with CGA in the combined tress test. Our findings suggested that CGA possessed dual-modulatory effects on antioxidant capacity of L. vannamei and could be a potential feed additive that can enhance shrimp resistance against environmental stresses. The recommended application dosage is 200 mg kg(-1) and further studies are needed to clarify the action model of CGA efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Clarifying Normalization

    Science.gov (United States)

    Carpenter, Donald A.

    2008-01-01

    Confusion exists among database textbooks as to the goal of normalization as well as to which normal form a designer should aspire. This article discusses such discrepancies with the intention of simplifying normalization for both teacher and student. This author's industry and classroom experiences indicate such simplification yields quicker…

  4. Modeling subsurface contamination at Fernald

    International Nuclear Information System (INIS)

    Jones, B.W.; Flinn, J.C.; Ruwe, P.R.

    1994-01-01

    The Department of Energy's Fernald site is located about 20 miles northwest of Cincinnati. Fernald produced refined uranium metal products from ores between 1953 and 1989. The pure uranium was sent to other DOE sites in South Carolina, Tennessee, Colorado,and Washington in support of the nation's strategic defense programs. Over the years of large-scale uranium production, contamination of the site's soil and groundwater occurred.The contamination is of particular concern because the Fernald site is located over the Great Miami Aquifer, a designated sole-source drinking water aquifer. Contamination of the aquifer with uranium was found beneath the site, and migration of the contamination had occurred well beyond the site's southern boundary. As a result, Fernald was placed on the National Priorities (CERCLA/Superfund) List in 1989. Uranium production at the site ended in 1989,and Fernald's mission has been changed to one of environmental restoration. This paper presents information about computerized modeling of subsurface contamination used for the environmental restoration project at Fernald

  5. Introduction: energy and the subsurface

    Science.gov (United States)

    Viswanathan, Hari S.

    2016-01-01

    This theme issue covers topics at the forefront of scientific research on energy and the subsurface, ranging from carbon dioxide (CO2) sequestration to the recovery of unconventional shale oil and gas resources through hydraulic fracturing. As such, the goal of this theme issue is to have an impact on the scientific community, broadly, by providing a self-contained collection of articles contributing to and reviewing the state-of-the-art of the field. This collection of articles could be used, for example, to set the next generation of research directions, while also being useful as a self-study guide for those interested in entering the field. Review articles are included on the topics of hydraulic fracturing as a multiscale problem, numerical modelling of hydraulic fracture propagation, the role of computational sciences in the upstream oil and gas industry and chemohydrodynamic patterns in porous media. Complementing the reviews is a set of original research papers covering growth models for branched hydraulic crack systems, fluid-driven crack propagation in elastic matrices, elastic and inelastic deformation of fluid-saturated rock, reaction front propagation in fracture matrices, the effects of rock mineralogy and pore structure on stress-dependent permeability of shales, topographic viscous fingering and plume dynamics in porous media convection. This article is part of the themed issue ‘Energy and the subsurface’. PMID:27597784

  6. Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2015-04-01

    This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined that both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".

  7. Studies of the subsurface effects of earthquakes

    International Nuclear Information System (INIS)

    Marine, I.W.

    1980-01-01

    As part of the National Terminal Waste Storage Program, the Savannah River Laboratory is conducting a series of studies on the subsurface effects of earthquakes. This report summarizes three subcontracted studies. (1) Earthquake damage to underground facilities: the purpose of this study was to document damage and nondamage caused by earthquakes to tunnels and shallow underground openings; to mines and other deep openings; and to wells, shafts, and other vertical facilities. (2) Earthquake related displacement fields near underground facilities: the study included an analysis of block motion, an analysis of the dependence of displacement on the orientation and distance of joints from the earthquake source, and displacement related to distance and depth near a causative fault as a result of various shapes, depths, and senses of movement on the causative fault. (3) Numerical simulation of earthquake effects on tunnels for generic nuclear waste repositories: the objective of this study was to use numerical modeling to determine under what conditions seismic waves might cause instability of an underground opening or create fracturing that would increase the permeability of the rock mass

  8. DOE UST interim subsurface barrier technologies workshop

    International Nuclear Information System (INIS)

    1992-09-01

    This document contains information which was presented at a workshop regarding interim subsurface barrier technologies that could be used for underground storage tanks, particularly the tank 241-C-106 at the Hanford Reservation

  9. Design and maintenance of subsurface gravel wetlands.

    Science.gov (United States)

    2015-02-01

    This report summarizes the University of New Hampshire Stormwater Center (UNHSC) evaluation of : a review of Subsurface Gravel Wetlands design and specifications used by the New Hampshire : Department of Transportation (NHDOT or Department). : Subsur...

  10. Component-based framework for subsurface simulations

    International Nuclear Information System (INIS)

    Palmer, B J; Fang, Yilin; Hammond, Glenn; Gurumoorthi, Vidhya

    2007-01-01

    Simulations in the subsurface environment represent a broad range of phenomena covering an equally broad range of scales. Developing modelling capabilities that can integrate models representing different phenomena acting at different scales present formidable challenges both from the algorithmic and computer science perspective. This paper will describe the development of an integrated framework that will be used to combine different models into a single simulation. Initial work has focused on creating two frameworks, one for performing smooth particle hydrodynamics (SPH) simulations of fluid systems, the other for performing grid-based continuum simulations of reactive subsurface flow. The SPH framework is based on a parallel code developed for doing pore scale simulations, the continuum grid-based framework is based on the STOMP (Subsurface Transport Over Multiple Phases) code developed at PNNL Future work will focus on combining the frameworks together to perform multiscale, multiphysics simulations of reactive subsurface flow

  11. Subsurface Prospecting by Planetary Drones, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program innovates subsurface prospecting by planetary drones to seek a solution to the difficulty of robotic prospecting, sample acquisition, and sample...

  12. The thermal impact of subsurface building structures on urban groundwater resources - A paradigmatic example.

    Science.gov (United States)

    Epting, Jannis; Scheidler, Stefan; Affolter, Annette; Borer, Paul; Mueller, Matthias H; Egli, Lukas; García-Gil, Alejandro; Huggenberger, Peter

    2017-10-15

    Shallow subsurface thermal regimes in urban areas are increasingly impacted by anthropogenic activities, which include infrastructure development like underground traffic lines as well as industrial and residential subsurface buildings. In combination with the progressive use of shallow geothermal energy systems, this results in the so-called subsurface urban heat island effect. This article emphasizes the importance of considering the thermal impact of subsurface structures, which commonly is underestimated due to missing information and of reliable subsurface temperature data. Based on synthetic heat-transport models different settings of the urban environment were investigated, including: (1) hydraulic gradients and conductivities, which result in different groundwater flow velocities; (2) aquifer properties like groundwater thickness to aquitard and depth to water table; and (3) constructional features, such as building depths and thermal properties of building structures. Our results demonstrate that with rising groundwater flow velocities, the heat-load from building structures increase, whereas down-gradient groundwater temperatures decrease. Thermal impacts on subsurface resources therefore have to be related to the permeability of aquifers and hydraulic boundary conditions. In regard to the urban settings of Basel, Switzerland, flow velocities of around 1 md -1 delineate a marker where either down-gradient temperature deviations or heat-loads into the subsurface are more relevant. Furthermore, no direct thermal influence on groundwater resources should be expected for aquifers with groundwater thicknesses larger 10m and when the distance of the building structure to the groundwater table is higher than around 10m. We demonstrate that measuring temperature changes down-gradient of subsurface structures is insufficient overall to assess thermal impacts, particularly in urban areas. Moreover, in areas which are densely urbanized, and where groundwater flow

  13. Advanced core-analyses for subsurface characterization

    Science.gov (United States)

    Pini, R.

    2017-12-01

    numerical schemes populated with the parameterisation above. While it validates the core-flooding experiments themselves, the calibrated mathematical model represents a key element for extending them to conditions prevalent in the subsurface, which would be otherwise not attainable in the laboratory.

  14. Birkhoff normalization

    NARCIS (Netherlands)

    Broer, H.; Hoveijn, I.; Lunter, G.; Vegter, G.

    2003-01-01

    The Birkhoff normal form procedure is a widely used tool for approximating a Hamiltonian systems by a simpler one. This chapter starts out with an introduction to Hamiltonian mechanics, followed by an explanation of the Birkhoff normal form procedure. Finally we discuss several algorithms for

  15. Influence of gamma-radiation upon aldolase activity in red blood cells of normal cattle and cattle with genetically conditioned muscle hypertrophy

    International Nuclear Information System (INIS)

    Gabryelak, T.; Leyko, W.; Kolataj, A.

    1979-01-01

    An investigation was conducted on the influence of gamma-radiation upon the activity of aldolase in erythrocytes of three different groups of cattle: normal cattle, doppelenders, halfdoppelenders. The highest aldolase activity was found in the group of normal cattle, it was lower in halfdoppelenders and the lowest in doppelenders. After irradiation of erythrocytes a dose-dependent increase in the activity of aldolase was observed. The erythrocytes of halfdoppelenders were most sensitive to ionizing radiation in the dose-range of 50-100 krads. (author)

  16. Kinematics of reflections in subsurface offset and angle-domain image gathers

    Science.gov (United States)

    Dafni, Raanan; Symes, William W.

    2018-05-01

    Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry

  17. Microbial controls on metal mobility under the low nutrient fluxes found throughout the subsurface

    International Nuclear Information System (INIS)

    Boult, Stephen; Hand, Victoria L.; Vaughan, David J.

    2006-01-01

    Laboratory simulations and field studies of the shallow subsurface have shown that microbes and their extracellular products can influence the mobility of toxic metals from waste disposal sites. Modelling the transport of contaminants in groundwater may, therefore, require the input of microbial ecology data in addition to geochemical data, thus increasing the costs and the uncertainty of predictions. However, whether microbial effects on contaminant mobility occur extensively in the natural subsurface is unknown because the conditions under which they have been observed hitherto are generally unrepresentative of the average subsurface environment. Here, we show that microbial activity affects the mobility of a toxic trace metal (Cu) under the relatively low nutrient fluxes that dominate subsurface systems. More particularly, we show that under these low nutrient conditions, microbes and microbial products can immobilize metal but may themselves be subject to subsequent mobilization, thus complicating the pattern of metal storage and release. Our results show that the capability of microbes in the subsurface to change both the capacity of porous media to store metal, and the behaviour of metal that is released, is not restricted to the well researched environments close to sites of waste disposal. We anticipate our simulations will be a starting point for generating input data for transport models, and specifying the mechanism of metal remobilisation in environments more representative of the subsurface generally

  18. Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans.

    Science.gov (United States)

    Makihara, Yukiko; Segal, Richard L; Wolpaw, Jonathan R; Thompson, Aiko K

    2014-09-15

    In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion. Copyright © 2014 the American Physiological Society.

  19. Subsurface metals fatigue cracking without and with crack tip

    Directory of Open Access Journals (Sweden)

    Andrey Shanyavskiy

    2013-07-01

    Full Text Available Very-High-Cycle-Fatigue regime for metals was considered and mechanisms of the subsurface crack origination were introduced. In many metals first step of crack origination takes place with specific area formation because of material pressing and rotation that directed to transition in any volume to material ultra-high-plasticity with nano-structure appearing. Then by the border of the nano-structure takes place volume rotation and fracture surface creates with spherical particles which usually named Fine-Granular-Area. In another case there takes place First-Smooth-Facet occurring in area of origin due to whirls appearing by the one of the slip systems under discussed the same stress-state conditions. Around Fine-Granular-Area or First-Smooth-Facet there plastic zone appeared and, then, subsurface cracking develops by the same manner as for through cracks. In was discussed quantum-mechanical nature of fatigue crack growth in accordance with Yang’s modulus quantization for low level of deformations. New simply equation was considered for describing subsurface cracking in metals out of Fine-Granular-Area or Fist-Smooth-Facet.

  20. Identification of subsurface structures using electromagnetic data and shape priors

    Energy Technology Data Exchange (ETDEWEB)

    Tveit, Svenn, E-mail: svenn.tveit@uni.no [Uni CIPR, Uni Research, Bergen 5020 (Norway); Department of Mathematics, University of Bergen, Bergen 5020 (Norway); Bakr, Shaaban A., E-mail: shaaban.bakr1@gmail.com [Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Uni CIPR, Uni Research, Bergen 5020 (Norway); Lien, Martha, E-mail: martha.lien@octio.com [Uni CIPR, Uni Research, Bergen 5020 (Norway); Octio AS, Bøhmergaten 44, Bergen 5057 (Norway); Mannseth, Trond, E-mail: trond.mannseth@uni.no [Uni CIPR, Uni Research, Bergen 5020 (Norway); Department of Mathematics, University of Bergen, Bergen 5020 (Norway)

    2015-03-01

    We consider the inverse problem of identifying large-scale subsurface structures using the controlled source electromagnetic method. To identify structures in the subsurface where the contrast in electric conductivity can be small, regularization is needed to bias the solution towards preserving structural information. We propose to combine two approaches for regularization of the inverse problem. In the first approach we utilize a model-based, reduced, composite representation of the electric conductivity that is highly flexible, even for a moderate number of degrees of freedom. With a low number of parameters, the inverse problem is efficiently solved using a standard, second-order gradient-based optimization algorithm. Further regularization is obtained using structural prior information, available, e.g., from interpreted seismic data. The reduced conductivity representation is suitable for incorporation of structural prior information. Such prior information cannot, however, be accurately modeled with a gaussian distribution. To alleviate this, we incorporate the structural information using shape priors. The shape prior technique requires the choice of kernel function, which is application dependent. We argue for using the conditionally positive definite kernel which is shown to have computational advantages over the commonly applied gaussian kernel for our problem. Numerical experiments on various test cases show that the methodology is able to identify fairly complex subsurface electric conductivity distributions while preserving structural prior information during the inversion.

  1. Normalized modes at selected points without normalization

    Science.gov (United States)

    Kausel, Eduardo

    2018-04-01

    As every textbook on linear algebra demonstrates, the eigenvectors for the general eigenvalue problem | K - λM | = 0 involving two real, symmetric, positive definite matrices K , M satisfy some well-defined orthogonality conditions. Equally well-known is the fact that those eigenvectors can be normalized so that their modal mass μ =ϕT Mϕ is unity: it suffices to divide each unscaled mode by the square root of the modal mass. Thus, the normalization is the result of an explicit calculation applied to the modes after they were obtained by some means. However, we show herein that the normalized modes are not merely convenient forms of scaling, but that they are actually intrinsic properties of the pair of matrices K , M, that is, the matrices already "know" about normalization even before the modes have been obtained. This means that we can obtain individual components of the normalized modes directly from the eigenvalue problem, and without needing to obtain either all of the modes or for that matter, any one complete mode. These results are achieved by means of the residue theorem of operational calculus, a finding that is rather remarkable inasmuch as the residues themselves do not make use of any orthogonality conditions or normalization in the first place. It appears that this obscure property connecting the general eigenvalue problem of modal analysis with the residue theorem of operational calculus may have been overlooked up until now, but which has in turn interesting theoretical implications.Á

  2. Measurement of the cross-sectional area of the dural tube in the lumbar spine on magnetic resonance imaging. Comparison between normal, pre- and post-discectomy conditions

    International Nuclear Information System (INIS)

    Matsubayashi, Yasutomo

    1997-01-01

    This study evaluated the usefulness of pre- and postoperative magnetic resonance imaging (MRI) of lumbar disc hernia with special attention to measurement of the cross-sectional area of the dural tube. Twenty-five patients (20 men and 5 women; 25 discs) who underwent posterior lumbar discectomy and 73 normal individuals (44 men and 29 women; 219 discs) of a similar age distribution were studied. Axial MRI was mainly used for the measurement of the dural tube. In the patient group, MRI examination was performed 1, 3, 6, and 12 months postoperatively. Assessment of the clinical symptoms was also included and used for comparison with the MRI evaluation. The cross-sectional area was significantly reduced to about 50% of the normal preoperatively. One month postoperatively, there was no significant increase in the size of the area, but after three months, the area increased significantly and progressed to the normal size within a year. One-month postoperatively, MRI examination was not considered useful because of postoperative hematoma and/or edema at the surgical site. The increase in the size of the cross-sectional area of the dural tube correlated well with the improvement in clinical symptoms. Three-months postoperatively, MRI evaluation of the lumbar disc seemed useful and measurement of the cross-sectional area of the dural tube appeared to serve as an indicator of the effectiveness of the surgery. (author)

  3. Measurement of the cross-sectional area of the dural tube in the lumbar spine on magnetic resonance imaging. Comparison between normal, pre- and post-discectomy conditions

    Energy Technology Data Exchange (ETDEWEB)

    Matsubayashi, Yasutomo [Juntendo Univ., Tokyo (Japan). School of Medicine

    1997-07-01

    This study evaluated the usefulness of pre- and postoperative magnetic resonance imaging (MRI) of lumbar disc hernia with special attention to measurement of the cross-sectional area of the dural tube. Twenty-five patients (20 men and 5 women; 25 discs) who underwent posterior lumbar discectomy and 73 normal individuals (44 men and 29 women; 219 discs) of a similar age distribution were studied. Axial MRI was mainly used for the measurement of the dural tube. In the patient group, MRI examination was performed 1, 3, 6, and 12 months postoperatively. Assessment of the clinical symptoms was also included and used for comparison with the MRI evaluation. The cross-sectional area was significantly reduced to about 50% of the normal preoperatively. One month postoperatively, there was no significant increase in the size of the area, but after three months, the area increased significantly and progressed to the normal size within a year. One-month postoperatively, MRI examination was not considered useful because of postoperative hematoma and/or edema at the surgical site. The increase in the size of the cross-sectional area of the dural tube correlated well with the improvement in clinical symptoms. Three-months postoperatively, MRI evaluation of the lumbar disc seemed useful and measurement of the cross-sectional area of the dural tube appeared to serve as an indicator of the effectiveness of the surgery. (author)

  4. Effect of irradiation, cyclophosphamide, and etoposide (VP-16) on number of peripheral blood and peritoneal leukocytes in mice under normal conditions and during acute inflammatory reaction

    International Nuclear Information System (INIS)

    van't Wout, J.W.; Linde, I.; Leijh, P.C.; van Furth, R.

    1989-01-01

    In order to develop a suitable model for studying the role of granulocytes and monocytes in resistance against pathogenic microorganisms, we investigated the effect of irradiation and cytostatic treatment (cyclophosphamide and VP-16) on the number of both peripheral blood and peritoneal leukocytes in male Swiss mice. Irradiation and cyclophosphamide treatment severely decreased the number of both granulocytes and monocytes in peripheral blood, whereas VP-16 only lowered the number of blood monocytes to a significant degree and had little effect on the number of blood granulocytes or lymphocytes. When normal mice were injected intraperitoneally with newborn calf serum (NBCS) the number of peritoneal granulocytes rose about 100-fold within 6 h. In irradiated and cyclophosphamide-treated mice, this influx of granulocytes into the peritoneal cavity was virtually eliminated, as was the concomitant increase in the number of blood granulocytes; in VP-16-treated mice, on the other hand, the number of peripheral blood and peritoneal granulocytes increased to the same degree as in normal mice. An increase in the number of peripheral blood monocytes and peritoneal macrophages occurred 24-48 h after injection of NBCS in normal mice. This increase was significantly impaired by irradiation as well as by treatment with cyclophosphamide or VP-16

  5. Conditional expression of Pomc in the Lepr-positive subpopulation of POMC neurons is sufficient for normal energy homeostasis and metabolism.

    Science.gov (United States)

    Lam, Daniel D; Attard, Courtney A; Mercer, Aaron J; Myers, Martin G; Rubinstein, Marcelo; Low, Malcolm J

    2015-04-01

    Peptides derived from the proopiomelanocortin (POMC) precursor are critical for the normal regulation of many physiological parameters, and POMC deficiency results in severe obesity and metabolic dysfunction. Conversely, augmentation of central nervous system melanocortin function is a promising therapeutic avenue for obesity and diabetes but is confounded by detrimental cardiovascular effects including hypertension. Because the hypothalamic population of POMC-expressing neurons is neurochemically and neuroanatomically heterogeneous, there is interest in the possible dissociation of functionally distinct POMC neuron subpopulations. We used a Cre recombinase-dependent and hypothalamus-specific reactivatable PomcNEO allele to restrict Pomc expression to hypothalamic neurons expressing leptin receptor (Lepr) in mice. In contrast to mice with total hypothalamic Pomc deficiency, which are severely obese, mice with Lepr-restricted Pomc expression displayed fully normal body weight, food consumption, glucose homeostasis, and locomotor activity. Thus, Lepr+ POMC neurons, which constitute approximately two-thirds of the total POMC neuron population, are sufficient for normal regulation of these parameters. This functional dissociation approach represents a promising avenue for isolating therapeutically relevant POMC neuron subpopulations.

  6. Intelligent SUBsurface Quality : Intelligent use of subsurface infrastructure for surface quality

    NARCIS (Netherlands)

    Hooimeijer, F.L.; Kuzniecow Bacchin, T.; Lafleur, F.; van de Ven, F.H.M.; Clemens, F.H.L.R.; Broere, W.; Laumann, S.J.; Klaassen, R.G.; Marinetti, C.

    2016-01-01

    This project focuses on the urban renewal of (delta) metropolises and concentrates on the question how to design resilient, durable (subsurface) infrastructure in urban renewal projects using parameters of the natural system – linking in an efficient way (a) water cycle, (b) soil and subsurface

  7. Simulations of the Scandinavian ice sheet and its subsurface conditions

    International Nuclear Information System (INIS)

    Boulton, G.S.; Caban, P.; Hulton, N.

    1999-12-01

    An ice sheet model has been applied to an approximate flow line through the area of the Fennoscandian ice sheet. The modelled ice sheet fluctuations have been matched with stratigraphic evidence of Weichselian ice sheet fluctuation in order to simulate ice sheet attributes through time along the flowline. The model predicts extensive melting at the base of the ice sheet. This output has been used as an input to a simplified model of hydrogeology along the southern flank of the ice sheet so as to reconstruct patterns of subglacial groundwater flow. The output from the model is also used to estimate patterns of subglacial stress and strain. Results suggest that large scale subglacial groundwater catchment are formed which were quite different in extent from modern catchment; that fossil subglacial groundwaters should be found at sampling depths; and much fracturing in shallow bedrock in Sweden could be glacially generated

  8. Simulations of the Scandinavian ice sheet and its subsurface conditions

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, G.S.; Caban, P.; Hulton, N. [Edinburgh Univ. (United Kingdom). Dept of Geology and Geophysics

    1999-12-01

    An ice sheet model has been applied to an approximate flow line through the area of the Fennoscandian ice sheet. The modelled ice sheet fluctuations have been matched with stratigraphic evidence of Weichselian ice sheet fluctuation in order to simulate ice sheet attributes through time along the flowline. The model predicts extensive melting at the base of the ice sheet. This output has been used as an input to a simplified model of hydrogeology along the southern flank of the ice sheet so as to reconstruct patterns of subglacial groundwater flow. The output from the model is also used to estimate patterns of subglacial stress and strain. Results suggest that large scale subglacial groundwater catchment are formed which were quite differentin extent from modern catchment; that fossil subglacial groundwaters should be found at sampling depths; and much fracturing in shallow bedrock in Sweden could be glacially generated.

  9. Assessment of Subsurface Conditions in a Coastal Area of Lagos ...

    African Journals Online (AJOL)

    Akorede

    Integrated interpretation led to the delineation of low resistivity, low bearing capacity clay which ... The combination of geophysical data and geotechnical measurements may greatly improve the quality of building .... soil in the type locality.

  10. Subsurface Thermal Energy Storage for Improved Air Conditioning Efficiency

    Science.gov (United States)

    2016-11-01

    reasons , enlarging the ground loop does not seem like it would be a practical solution for dealing with highly unbalanced systems. Figure 6.5...3) Using reasonable ground loop sizes, assess the degree to which the ground loop temperature will increase over the expected life of the system...5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Clemson

  11. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    C.J. Fernado

    1998-01-01

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I andC) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I andC and will typically be integrated over a data communication network. The subsurface I andC systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures

  12. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  13. Subsurface barrier verification technologies, informal report

    International Nuclear Information System (INIS)

    Heiser, J.H.

    1994-06-01

    One of the more promising remediation options available to the DOE waste management community is subsurface barriers. Some of the uses of subsurface barriers include surrounding and/or containing buried waste, as secondary confinement of underground storage tanks, to direct or contain subsurface contaminant plumes and to restrict remediation methods, such as vacuum extraction, to a limited area. To be most effective the barriers should be continuous and depending on use, have few or no breaches. A breach may be formed through numerous pathways including: discontinuous grout application, from joints between panels and from cracking due to grout curing or wet-dry cycling. The ability to verify barrier integrity is valuable to the DOE, EPA, and commercial sector and will be required to gain full public acceptance of subsurface barriers as either primary or secondary confinement at waste sites. It is recognized that no suitable method exists for the verification of an emplaced barrier's integrity. The large size and deep placement of subsurface barriers makes detection of leaks challenging. This becomes magnified if the permissible leakage from the site is low. Detection of small cracks (fractions of an inch) at depths of 100 feet or more has not been possible using existing surface geophysical techniques. Compounding the problem of locating flaws in a barrier is the fact that no placement technology can guarantee the completeness or integrity of the emplaced barrier. This report summarizes several commonly used or promising technologies that have been or may be applied to in-situ barrier continuity verification

  14. Subsurface Science Program Bibliography, 1985--1992

    International Nuclear Information System (INIS)

    1992-08-01

    The Subsurface Science Program sponsors long-term basic research on (1) the fundamental physical, chemical, and biological mechanisms that control the reactivity, mobilization, stability, and transport of chemical mixtures in subsoils and ground water; (2) hydrogeology, including the hydraulic, microbiological, and geochemical properties of the vadose and saturated zones that control contaminant mobility and stability, including predictive modeling of coupled hydraulic-geochemical-microbial processes; and (3) the microbiology of deep sediments and ground water. TWs research, focused as it is on the natural subsurface environments that are most significantly affected by the more than 40 years of waste generation and disposal at DOE sites, is making important contributions to cleanup of DOE sites. Past DOE waste-disposal practices have resulted in subsurface contamination at DOE sites by unique combinations of radioactive materials and organic and inorganic chemicals (including heavy metals), which make site cleanup particularly difficult. The long- term (10- to 30-year) goal of the Subsurface Science Program is to provide a foundation of fundamental knowledge that can be used to reduce environmental risks and to provide a sound scientific basis for cost-effective cleanup strategies. The Subsurface Science Program is organized into nine interdisciplinary subprograms, or areas of basic research emphasis. The subprograms currently cover the areas of Co-Contaminant Chemistry, Colloids/Biocolloids, Multiphase Fluid Flow, Biodegradation/ Microbial Physiology, Deep Microbiology, Coupled Processes, Field-Scale (Natural Heterogeneity and Scale), and Environmental Science Research Center

  15. Subsurface Shielding Source Term Specification Calculation

    International Nuclear Information System (INIS)

    S.Su

    2001-01-01

    The purpose of this calculation is to establish appropriate and defensible waste-package radiation source terms for use in repository subsurface shielding design. This calculation supports the shielding design for the waste emplacement and retrieval system, and subsurface facility system. The objective is to identify the limiting waste package and specify its associated source terms including source strengths and energy spectra. Consistent with the Technical Work Plan for Subsurface Design Section FY 01 Work Activities (CRWMS M and O 2001, p. 15), the scope of work includes the following: (1) Review source terms generated by the Waste Package Department (WPD) for various waste forms and waste package types, and compile them for shielding-specific applications. (2) Determine acceptable waste package specific source terms for use in subsurface shielding design, using a reasonable and defensible methodology that is not unduly conservative. This calculation is associated with the engineering and design activity for the waste emplacement and retrieval system, and subsurface facility system. The technical work plan for this calculation is provided in CRWMS M and O 2001. Development and performance of this calculation conforms to the procedure, AP-3.12Q, Calculations

  16. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    International Nuclear Information System (INIS)

    Wang, Zhongwei; Yan, Yu; Su, Yanjing; Qiao, Lijie

    2017-01-01

    Highlights: • Accelerated electrochemical corrosion results in severer plastic deformation with finer grains. • Lower applied potential can increase protein adsorption on sample surfaces. • The tribo-film decreases the shear stresses and relief subsurface deformation. • Tribocorrosion induced passive film can suppress the annihilation of stacking faults. - Abstract: The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  17. Effect of electrochemical corrosion on the subsurface microstructure evolution of a CoCrMo alloy in albumin containing environment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhongwei; Yan, Yu, E-mail: yanyu@ustb.edu.cn; Su, Yanjing; Qiao, Lijie

    2017-06-01

    Highlights: • Accelerated electrochemical corrosion results in severer plastic deformation with finer grains. • Lower applied potential can increase protein adsorption on sample surfaces. • The tribo-film decreases the shear stresses and relief subsurface deformation. • Tribocorrosion induced passive film can suppress the annihilation of stacking faults. - Abstract: The subsurface microstructures of metallic implants play a key role in bio-tribocorrosion. Due to wear or change of local environment, the implant surface can have inhomogeneous electrochemical corrosion properties. In this work, the effect of electrochemical corrosion conditions on the subsurface microstructure evolution of CoCrMo alloys for artificial joints was investigated. Transmission electron microscope (TEM) was employed to observe the subsurface microstructures of worn areas at different applied potentials in a simulated physiological solution. The results showed that applied potentials could affect the severity of the subsurface deformation not only by changing the surface passivation but also affecting the adsorption of protein on the alloy surface.

  18. Ma_MISS on ExoMars: Mineralogical Characterization of the Martian Subsurface

    Science.gov (United States)

    De Sanctis, Maria Cristina; Altieri, Francesca; Ammannito, Eleonora; Biondi, David; De Angelis, Simone; Meini, Marco; Mondello, Giuseppe; Novi, Samuele; Paolinetti, Riccardo; Soldani, Massimo; Mugnuolo, Raffaele; Pirrotta, Simone; Vago, Jorge L.; Ma_MISS Team

    2017-07-01

    The Ma_MISS (Mars Multispectral Imager for Subsurface Studies) experiment is the visible and near infrared (VNIR) miniaturized spectrometer hosted by the drill system of the ExoMars 2020 rover. Ma_MISS will perform IR spectral reflectance investigations in the 0.4-2.2 μm range to characterize the mineralogy of excavated borehole walls at different depths (between 0 and 2 m). The spectral sampling is about 20 nm, whereas the spatial resolution over the target is 120 μm. Making use of the drill's movement, the instrument slit can scan a ring and build up hyperspectral images of a borehole. The main goal of the Ma_MISS instrument is to study the martian subsurface environment. Access to the martian subsurface is crucial to our ability to constrain the nature, timing, and duration of alteration and sedimentation processes on Mars, as well as habitability conditions. Subsurface deposits likely host and preserve H2O ice and hydrated materials that will contribute to our understanding of the H2O geochemical environment (both in the liquid and in the solid state) at the ExoMars 2020 landing site. The Ma_MISS spectral range and sampling capabilities have been carefully selected to allow the study of minerals and ices in situ before the collection of samples. Ma_MISS will be implemented to accomplish the following scientific objectives: (1) determine the composition of subsurface materials, (2) map the distribution of subsurface H2O and volatiles, (3) characterize important optical and physical properties of materials (e.g., grain size), and (4) produce a stratigraphic column that will inform with regard to subsurface geological processes. The Ma_MISS findings will help to refine essential criteria that will aid in our selection of the most interesting subsurface formations from which to collect samples.

  19. Transport of volatile fission products in the fuel-to-sheath gap of defective fuel elements during normal and reactor accident conditions

    International Nuclear Information System (INIS)

    Lewis, B.J.; Bonin, H.W.

    1995-01-01

    An analytical treatment has been used to model the vapour transport of radioactive fission products released into the fuel-to-sheath gap of defective nuclear fuel elements. The model accounts for both diffusive and bulk-convective transport. Convective transport becomes important as a result of a significant release of gaseous fission products into the gap during a high-temperature reactor accident. However, during normal reactor operation, diffusion is shown to be the dominant process of transport. The model is based on an analysis of several in-reactor tests with operating defective fuel elements, and high-temperature annealing experiments with irradiated fuel specimens. ((orig.))

  20. Subsurface Contaminants Focus Area annual report 1997

    International Nuclear Information System (INIS)

    1997-01-01

    In support of its vision for technological excellence, the Subsurface Contaminants Focus Area (SCFA) has identified three strategic goals. The three goals of the SCFA are: Contain and/or stabilize contamination sources that pose an imminent threat to surface and ground waters; Delineate DNAPL contamination in the subsurface and remediate DNAPL-contaminated soils and ground water; and Remove a full range of metal and radionuclide contamination in soils and ground water. To meet the challenges of remediating subsurface contaminants in soils and ground water, SCFA funded more than 40 technologies in fiscal year 1997. These technologies are grouped according to the following product lines: Dense Nonaqueous-Phase Liquids; Metals and Radionuclides; Source Term Containment; and Source Term Remediation. This report briefly describes the SCFA 1997 technologies and showcases a few key technologies in each product line

  1. Complete Subsurface Elemental Composition Measurements With PING

    Science.gov (United States)

    Parsons, A. M.

    2012-01-01

    The Probing In situ with Neutrons and Gamma rays (PING) instrument will measure the complete bulk elemental composition of the subsurface of Mars as well as any other solid planetary body. PING can thus be a highly effective tool for both detailed local geochemistry science investigations and precision measurements of Mars subsurface reSOurces in preparation for future human exploration. As such, PING is thus fully capable of meeting a majority of both ncar and far term elements in Challenge #1 presented for this conference. Measuring the ncar subsurface composition of Mars will enable many of the MEPAG science goals and will be key to filling an important Strategic Knowledge Gap with regard to In situ Resources Utilization (ISRU) needs for human exploration. [1, 2] PING will thus fill an important niche in the Mars Exploration Program.

  2. Normal live births after intracytoplasmic sperm injection in a man with the rare condition of Eagle-Barrett syndrome (prune-belly syndrome).

    Science.gov (United States)

    Fleming, Steven D; Varughese, Elizabeth; Hua, Vi-Khiem; Robertson, Amanda; Dalzell, Fiona; Boothroyd, Clare V

    2013-12-01

    To report the first live births of male infants resulting from intracytoplasmic sperm injection (ICSI) using spermatozoa from a man with Eagle-Barrett syndrome (EBS). Case report. Assisted conception unit within a private hospital. An infertile couple. An infertile couple received repeated treatment with ICSI. Clinical pregnancy and a normal live birth. In 2008, after microinjection of ten oocytes, the transfer of a single expanded blastocyst led to the premature birth of a morphologically normal male infant at 18 weeks' gestation. This outcome followed preterm rupture of membranes and possible cervical incompetence. In 2009, after microinjection of six oocytes, transfer of a single 5-cell embryo led to a singleton pregnancy, with emergency cervical cerclage being performed at 21 weeks. A healthy male infant was born at 30 weeks, with no evidence of EBS, by lower-segment cesarean section for breech presentation and premature labor. In 2012, after elective laparoscopic placement of cervical suture, microinjection of ten oocytes and transfer of a single 4-cell embryo led to a singleton pregnancy with a healthy male infant, with no evidence of EBS, being born by cesarean section at 38 weeks. This report suggests that EBS is not transmitted to male offspring via ICSI. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  3. MSTS - Multiphase Subsurface Transport Simulator theory manual

    International Nuclear Information System (INIS)

    White, M.D.; Nichols, W.E.

    1993-05-01

    The US Department of Energy, through the Yucca Mountain Site Characterization Project Office, has designated the Yucca Mountain site in Nevada for detailed study as the candidate US geologic repository for spent nuclear fuel and high-level radioactive waste. Site characterization will determine the suitability of the Yucca Mountain site for the potential waste repository. If the site is determined suitable, subsequent studies and characterization will be conducted to obtain authorization from the Nuclear Regulatory Commission to construct the potential waste repository. A principal component of the characterization and licensing processes involves numerically predicting the thermal and hydrologic response of the subsurface environment of the Yucca Mountain site to the potential repository over a 10,000-year period. The thermal and hydrologic response of the subsurface environment to the repository is anticipated to include complex processes of countercurrent vapor and liquid migration, multiple-phase heat transfer, multiple-phase transport, and geochemical reactions. Numerical simulators based on mathematical descriptions of these subsurface phenomena are required to make numerical predictions of the thermal and hydrologic response of the Yucca Mountain subsurface environment The engineering simulator called the Multiphase Subsurface Transport Simulator (MSTS) was developed at the request of the Yucca Mountain Site Characterization Project Office to produce numerical predictions of subsurface flow and transport phenomena at the potential Yucca Mountain site. This document delineates the design architecture and describes the specific computational algorithms that compose MSTS. Details for using MSTS and sample problems are given in the open-quotes User's Guide and Referenceclose quotes companion document

  4. Heating systems for heating subsurface formations

    Science.gov (United States)

    Nguyen, Scott Vinh [Houston, TX; Vinegar, Harold J [Bellaire, TX

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  5. Geophysical subsurface imaging and interface identification.

    Energy Technology Data Exchange (ETDEWEB)

    Pendley, Kevin; Bochev, Pavel Blagoveston; Day, David Minot; Robinson, Allen Conrad; Weiss, Chester Joseph

    2005-09-01

    Electromagnetic induction is a classic geophysical exploration method designed for subsurface characterization--in particular, sensing the presence of geologic heterogeneities and fluids such as groundwater and hydrocarbons. Several approaches to the computational problems associated with predicting and interpreting electromagnetic phenomena in and around the earth are addressed herein. Publications resulting from the project include [31]. To obtain accurate and physically meaningful numerical simulations of natural phenomena, computational algorithms should operate in discrete settings that reflect the structure of governing mathematical models. In section 2, the extension of algebraic multigrid methods for the time domain eddy current equations to the frequency domain problem is discussed. Software was developed and is available in Trilinos ML package. In section 3 we consider finite element approximations of De Rham's complex. We describe how to develop a family of finite element spaces that forms an exact sequence on hexahedral grids. The ensuing family of non-affine finite elements is called a van Welij complex, after the work [37] of van Welij who first proposed a general method for developing tangentially and normally continuous vector fields on hexahedral elements. The use of this complex is illustrated for the eddy current equations and a conservation law problem. Software was developed and is available in the Ptenos finite element package. The more popular methods of geophysical inversion seek solutions to an unconstrained optimization problem by imposing stabilizing constraints in the form of smoothing operators on some enormous set of model parameters (i.e. ''over-parametrize and regularize''). In contrast we investigate an alternative approach whereby sharp jumps in material properties are preserved in the solution by choosing as model parameters a modest set of variables which describe an interface between adjacent regions in

  6. Subsurface characterization and geohydrologic site evaluation West Chestnut Ridge site

    International Nuclear Information System (INIS)

    1984-01-01

    The West Chestnut Ridge Site at the Oak Ridge National Laboratory is being considered for use as a repository for low-level radioactive waste. The purposes of this study were to provide a geohydrological characterization of the site for use in pathways analysis, and to provide preliminary geotechnical recommendations that would be used for development of a site utilization plan. Subsurface conditions were investigated at twenty locations and observation wells were installed. Field testing at each location included the Standard Penetration Test and permeability tests in soil and rock. A well pumping test was ocmpleted at one site. Laboratory testing included permeability, deformability, strength and compaction tests, as well as index and physical property tests. The field investigations showed that the subsurface conditions include residual soil overlying a weathered zone of dolomite which grades into relatively unweathered dolomite at depth. The thickness of residual soil is typically 80 ft (24 m) on the ridges, but can be as little as 10 ft (3 m) in the valleys. Trench excavations to depths of 30 ft (9 m) should not present serious slope stability problems above the water table. On-site soils can be used for liners or trench backfill but these soils may require moisture conditioning to achieve required densities. 19 figures, 8 tables

  7. Subsurface clade of Geobacteraceae that predominates in a diversity of Fe(III)-reducing subsurface environments

    Science.gov (United States)

    Holmes, Dawn E.; O'Neil, Regina A.; Vrionis, Helen A.; N'Guessan, Lucie A.; Ortiz-Bernad, Irene; Larrahondo, Maria J.; Adams, Lorrie A.; Ward, Joy A.; Nicoll , Julie S.; Nevin, Kelly P.; Chavan, Milind A.; Johnson, Jessica P.; Long, Philip E.; Lovely, Derek R.

    2007-01-01

    There are distinct differences in the physiology of Geobacter species available in pure culture. Therefore, to understand the ecology of Geobacter species in subsurface environments, it is important to know which species predominate. Clone libraries were assembled with 16S rRNA genes and transcripts amplified from three subsurface environments in which Geobacter species are known to be important members of the microbial community: (1) a uranium-contaminated aquifer located in Rifle, CO, USA undergoing in situ bioremediation; (2) an acetate-impacted aquifer that serves as an analog for the long-term acetate amendments proposed for in situ uranium bioremediation and (3) a petroleum-contaminated aquifer in which Geobacter species play a role in the oxidation of aromatic hydrocarbons coupled with the reduction of Fe(III). The majority of Geobacteraceae 16S rRNA sequences found in these environments clustered in a phylogenetically coherent subsurface clade, which also contains a number of Geobacter species isolated from subsurface environments. Concatamers constructed with 43 Geobacter genes amplified from these sites also clustered within this subsurface clade. 16S rRNA transcript and gene sequences in the sediments and groundwater at the Rifle site were highly similar, suggesting that sampling groundwater via monitoring wells can recover the most active Geobacter species. These results suggest that further study of Geobacter species in the subsurface clade is necessary to accurately model the behavior of Geobacter species during subsurface bioremediation of metal and organic contaminants.

  8. Evaluation of the Weibull and log normal distribution functions as survival models of Escherichia coli under isothermal and non isothermal conditions.

    Science.gov (United States)

    Aragao, Glaucia M F; Corradini, Maria G; Normand, Mark D; Peleg, Micha

    2007-11-01

    Published survival curves of Escherichia coli in two growth media, with and without the presence of salt, at various temperatures and in a Greek eggplant salad having various levels of essential oil, all had a characteristic downward concavity when plotted on semi logarithmic coordinates. Some also exhibited what appeared as a 'shoulder' of considerable length. Regardless of whether a shoulder was noticed, the survival pattern could be considered as a manifestation of an underlying unimodal distribution of the cells' death times. Mathematically, the data could be described equally well by the Weibull and log normal distribution functions, which had similar modes, means, standard deviations and coefficients of skewness. When plotted in their probability density function (PDF) form, the curves also appeared very similar visually. This enabled us to quantify and compare the effect of temperature or essential oil concentration on the organism's survival in terms of these temporal distributions' characteristics. Increased lethality was generally expressed in a shorter mean and mode, a smaller standard deviation and increased overall symmetry as judged by the distributions' degree of skewness. The 'shoulder', as expected, simply indicated that the distribution's standard deviation was much smaller than its mode. Rate models based on the two distribution functions could be used to predict non isothermal survival patterns. They were derived on the assumption that the momentary inactivation rate is the isothermal rate at the momentary temperature at a time that corresponds to the momentary survival ratio. In this application, however, the Weibullian model with a fixed power was not only simpler and more convenient mathematically than the one based on the log normal distribution, but it also provided more accurate estimates of the dynamic inactivation patterns.

  9. Subsurface Sampling and Sensing Using Burrowing Moles

    Science.gov (United States)

    Stoker, C. R.; Richter, L.; Smith, W. H.

    2004-01-01

    Finding evidence for life on Mars will likely require accessing the subsurface since the Martian surface is both hostile to life and to preservation of biosignatures due to the cold dry conditions, the strong W environment, and the presence of strong oxidants. Systems are needed to probe beneath the sun and oxidant baked surface of Mars and return samples to the surface for analysis or to bring the instrument sensing underground. Recognizing this need, the European Space Agency incorporated a small subsurface penetrometer or Mole onto the Beagle 2 Mars lander. Had the 2003 landing been successful, the Mole would have collected samples from 1-1.5 m depth and delivered them to an organic analysis instrument on the surface. The de- vice called the Planetary Underground Tool (PLUTO), also measured soil mechanical and thermophysical properties. Constrained by the small mass and volume allowance of the Beagle lander, the PLUTO mole was a slender cylinder only 2 cm diameter and 28 cm long equipped with a small sampling device designed to collect samples and bring them to the surface for analysis by other instrument. The mass of the entire system including deployment mechanism and tether was 1/2 kg. sensor package underground to make in situ measurements. The Mars Underground Mole (MUM) is a larger Mole based on the PLUTO design but incorporating light collection optics that interface to a fiber optic cable in the tether that transmits light to a combined stimulated emission Raman Spectrometer and Short Wave Infrared (SWIR) reflectance Spectrometer with sensitivity from 0.7 to 2.5 micrometers. This instrument is called the Dual Spectral Sensor and uses a Digital Array Scanning Interferometer as the sensor technology, a type of fourier transform interferometer that uses fixed element prisms and thus is highly rugged compared to a Michaelson interferometer. Due to the size limitations of an on-Mole instrument compartment, and the availability of a tether, the sensor head

  10. Discriminative Random Field Models for Subsurface Contamination Uncertainty Quantification

    Science.gov (United States)

    Arshadi, M.; Abriola, L. M.; Miller, E. L.; De Paolis Kaluza, C.

    2017-12-01

    Application of flow and transport simulators for prediction of the release, entrapment, and persistence of dense non-aqueous phase liquids (DNAPLs) and associated contaminant plumes is a computationally intensive process that requires specification of a large number of material properties and hydrologic/chemical parameters. Given its computational burden, this direct simulation approach is particularly ill-suited for quantifying both the expected performance and uncertainty associated with candidate remediation strategies under real field conditions. Prediction uncertainties primarily arise from limited information about contaminant mass distributions, as well as the spatial distribution of subsurface hydrologic properties. Application of direct simulation to quantify uncertainty would, thus, typically require simulating multiphase flow and transport for a large number of permeability and release scenarios to collect statistics associated with remedial effectiveness, a computationally prohibitive process. The primary objective of this work is to develop and demonstrate a methodology that employs measured field data to produce equi-probable stochastic representations of a subsurface source zone that capture the spatial distribution and uncertainty associated with key features that control remediation performance (i.e., permeability and contamination mass). Here we employ probabilistic models known as discriminative random fields (DRFs) to synthesize stochastic realizations of initial mass distributions consistent with known, and typically limited, site characterization data. Using a limited number of full scale simulations as training data, a statistical model is developed for predicting the distribution of contaminant mass (e.g., DNAPL saturation and aqueous concentration) across a heterogeneous domain. Monte-Carlo sampling methods are then employed, in conjunction with the trained statistical model, to generate realizations conditioned on measured borehole data

  11. Malware Normalization

    OpenAIRE

    Christodorescu, Mihai; Kinder, Johannes; Jha, Somesh; Katzenbeisser, Stefan; Veith, Helmut

    2005-01-01

    Malware is code designed for a malicious purpose, such as obtaining root privilege on a host. A malware detector identifies malware and thus prevents it from adversely affecting a host. In order to evade detection by malware detectors, malware writers use various obfuscation techniques to transform their malware. There is strong evidence that commercial malware detectors are susceptible to these evasion tactics. In this paper, we describe the design and implementation of a malware normalizer ...

  12. Final Technical Report. Origins of subsurface microorganisms: Relating laboratory microcosm studies to a geologic time scale; FINAL

    International Nuclear Information System (INIS)

    Kieft, Thomas; Amy, Penny S.; Phillips, Fred M.

    1998-01-01

    This project was conducted as part of the Department of Energy's Deep Subsurface Science Program. It was part of a larger effort to determine the origins of subsurface microorganisms. Two hypotheses have been suggested for the origins of subsurface microorganisms: (1) microorganisms were deposited at the time of (or shortly after) geologic deposition of rocks and sediments (the in situ survival hypothesis), and (2) microorganisms have been transported from surface environments to subsurface rocks and sediments since the time of geologic deposition (transport hypothesis). These two hypotheses are not mutually exclusive. Depending on the geological setting, either one or both of these hypotheses may best explain microbial origins. Our project focused on the in situ survival hypothesis. We tested the hypothesis that microorganisms (individuals populations and communities) can survive long-term sequestration within subsurface sediments. Other objectives were to identify geologic conditions that favor long-term survival, identify physiological traits of microorganisms that favor long-term survival, and determine which groups of microorganisms are most likely to survive long-term sequestration in subsurface sediments. We tested this hypothesis using a combination of pure culture techniques in laboratory microcosms under controlled conditions and field experiments with buried subsurface sediments

  13. Modelling Nitrogen Transformation in Horizontal Subsurface Flow ...

    African Journals Online (AJOL)

    A mathematical model was developed to permit dynamic simulation of nitrogen interaction in a pilot horizontal subsurface flow constructed wetland receiving effluents from primary facultative pond. The system was planted with Phragmites mauritianus, which was provided with root zone depth of 75 cm. The root zone was ...

  14. Analysis of the thermo-mechanical behaviour of the DEMO Water-Cooled Lithium Lead breeding blanket module under normal operation steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Di Maio, P.A.; Arena, P. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Aubert, J. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Bongiovì, G. [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Chiovaro, P., E-mail: pierluigi.chiovaro@unipa.it [Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici, Università di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Giammusso, R. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy); Li Puma, A. [CEA Saclay, DEN/DANS/DM2S/SEMT, 91191 Gif sur Yvette Cedex (France); Tincani, A. [ENEA – C.R. Brasimone, 40032 Camugnano (Italy)

    2015-10-15

    Highlights: • A DEMO WCLL blanket module thermo-mechanical behaviour has been investigated. • Two models of the WCLL blanket module have been set-up adopting a code based on FEM. • The water flow domain in the module has been considered. • A set of uncoupled steady state thermo-mechanical analyses has been carried out. • Critical temperature is not overcome. Safety verifications are generally satisfied. - Abstract: Within the framework of DEMO R&D activities, a research cooperation has been launched between ENEA, the University of Palermo and CEA to investigate the thermo-mechanical behaviour of the outboard equatorial module of the DEMO1 Water-Cooled Lithium Lead (WCLL) blanket under normal operation steady state scenario. The research campaign has been carried out following a theoretical–computational approach based on the Finite Element Method (FEM) and adopting a qualified commercial FEM code. In particular, two different 3D FEM models (Model 1 and Model 2), reproducing respectively the central and the lateral poloidal–radial slices of the WCLL blanket module, have been set up. A particular attention has been paid to the modelling of water flow domain, within both the segment box channels and the breeder zone tubes, to simulate realistically the coolant-box thermal coupling. Results obtained are herewith reported and critically discussed.

  15. Circadian rhythms in the incidence of apoptotic cells and number of clonogenic cells in intestinal crypts after radiation using normal and reversed light conditions

    International Nuclear Information System (INIS)

    Ijiri, K.; Potten, C.S.

    1988-01-01

    Variations in the number of radiation-induced morphologically dead or dying cells (apoptotic cells) in the crypts in the small intestine of the mouse have been studied throughout a 24-h period under a normal light regimen. A clear circadian rhythm was displayed in the apoptotic incidence 3 or 6 h after irradiation for each gamma-ray dose studied (range 0.14-9.0 Gy). The most prominent circadian rhythm was obtained after 0.5 Gy. Peak time of day for inducing apoptosis was 06.00-09.00 h, and the trough occurred at 18.00-21.00 h. Some mice were also transferred to a reversed light cycle, and irradiated on different days after transfer. Apoptosis induced by 0.5 Gy or 9.0 Gy, or number of surviving crypts (microcolonies) after 11.0 Gy or 13.0 Gy was examined. The transition point for reversal of circadian rhythm in apoptosis (after 0.5 Gy) occurred 7 days after transfer and the rhythm was reversed by 14 days. The rhythm for crypt survival (i.e. for clonogenic cell radiosensitivity) was disturbed on 1 day and transition point for reversal occurred 3 days after transfer. The rhythm became reversed by 7 days. (author)

  16. RANS simulation of the thermal mixing in HTTF LP during normal operation conditions – High Temperature Test Facility at Oregon State University

    International Nuclear Information System (INIS)

    Gradecka, Malwina J.; Woods, Brian

    2014-01-01

    Since High Temperature Gas-cooled Reactors are being considered as the most promising design of upcoming IV Gen reactors, key research areas were identified to address safety aspects of this design. A number of simulations and experiments need to be conducted in this field. In this paper, thermal-hydraulics aspects of coolant flow through Lower Plenum (LP) of HTGR were considered, specifically flow characteristics to identify the risk of temperature stratification in LP and hot spotting on LP floor. Local temperature gradients can cause material degradation. As the power profile is non-uniform across the core, jets of coolant exit the core region at different temperatures and enter the LP impinging on LP floor causing hot spots at LP structure and temperature stratification. To address those issues numerical simulation and an experiment are being developed. The numerical simulation provides coolant flow velocity and temperature fields. The purpose of this study is to investigate the mixing phenomenon in the LP due to risk of the hot streaking and thermal stratification phenomena during normal operation of HTTF. The following aspect are being examined: identification of gas flow behavior in lower plenum of HTTF based on CFD simulations, identification of hot streaking issue in the HTTF lower plenum using CFD tools, and computational investigation of gas mixing efficiency. This paper includes a description of experimental setup of HTTF, guidance for LP CFD modeling, and the results and analysis of CFD simulation. (author)

  17. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation.

    Science.gov (United States)

    Sihto, Henna-Maria; Tasara, Taurai; Stephan, Roger; Johler, Sophia

    2014-07-01

    Staphylococcus aureus represents the most prevalent cause of food-borne intoxications worldwide. While being repressed by competing bacteria in most matrices, this pathogen exhibits crucial competitive advantages during growth at high salt concentrations or low pH, conditions frequently encountered in food production and preservation. We aimed to identify reference genes that could be used to normalize qPCR mRNA expression levels during growth of S. aureus in food-related osmotic (NaCl) and acidic (lactic acid) stress adaptation models. Expression stability of nine housekeeping genes was evaluated in full (LB) and nutrient-deficient (CYGP w/o glucose) medium under conditions of osmotic (4.5% NaCl) and acidic stress (lactic acid, pH 6.0) after 2-h exposure. Among the set of candidate reference genes investigated, rplD, rpoB,gyrB, and rho were most stably expressed in LB and thus represent the most suitable reference genes for normalization of qPCR data in osmotic or lactic acid stress models in a rich medium. Under nutrient-deficient conditions, expression of rho and rpoB was highly stable across all tested conditions. The presented comprehensive data on changes in expression of various S. aureus housekeeping genes under conditions of osmotic and lactic acid stress facilitate selection of reference genes for qPCR-based stress response models. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. Is the genetic landscape of the deep subsurface biosphere affected by viruses?

    Science.gov (United States)

    Anderson, Rika E; Brazelton, William J; Baross, John A

    2011-01-01

    Viruses are powerful manipulators of microbial diversity, biogeochemistry, and evolution in the marine environment. Viruses can directly influence the genetic capabilities and the fitness of their hosts through the use of fitness factors and through horizontal gene transfer. However, the impact of viruses on microbial ecology and evolution is often overlooked in studies of the deep subsurface biosphere. Subsurface habitats connected to hydrothermal vent systems are characterized by constant fluid flux, dynamic environmental variability, and high microbial diversity. In such conditions, high adaptability would be an evolutionary asset, and the potential for frequent host-virus interactions would be high, increasing the likelihood that cellular hosts could acquire novel functions. Here, we review evidence supporting this hypothesis, including data indicating that microbial communities in subsurface hydrothermal fluids are exposed to a high rate of viral infection, as well as viral metagenomic data suggesting that the vent viral assemblage is particularly enriched in genes that facilitate horizontal gene transfer and host adaptability. Therefore, viruses are likely to play a crucial role in facilitating adaptability to the extreme conditions of these regions of the deep subsurface biosphere. We also discuss how these results might apply to other regions of the deep subsurface, where the nature of virus-host interactions would be altered, but possibly no less important, compared to more energetic hydrothermal systems.

  19. Improving the temperature predictions of subsurface thermal models by using high-quality input data. Part 1: Uncertainty analysis of the thermal-conductivity parameterization

    DEFF Research Database (Denmark)

    Fuchs, Sven; Balling, Niels

    2016-01-01

    The subsurface temperature field and the geothermal conditions in sedimentary basins are frequently examined by using numerical thermal models. For those models, detailed knowledge of rock thermal properties are paramount for a reliable parameterization of layer properties and boundary conditions...

  20. Gas phase 1H NMR studies and kinetic modeling of dihydrogen isotope equilibration catalyzed by Ru-nanoparticles under normal conditions: dissociative vs. associative exchange.

    Science.gov (United States)

    Limbach, Hans-Heinrich; Pery, Tal; Rothermel, Niels; Chaudret, Bruno; Gutmann, Torsten; Buntkowsky, Gerd

    2018-04-25

    The equilibration of H2, HD and D2 between the gas phase and surface hydrides of solid organic-ligand-stabilized Ru metal nanoparticles has been studied by gas phase 1H NMR spectroscopy using closed NMR tubes as batch reactors at room temperature and 800 mbar. When two different nanoparticle systems, Ru/PVP (PVP ≡ polyvinylpyrrolidone) and Ru/HDA (HDA ≡ hexadecylamine) were exposed to D2 gas, only the release of HD from the hydride containing surface could be detected in the initial stages of the reaction, but no H2. In the case of Ru/HDA also the reverse experiment was performed where surface deuterated nanoparticles were exposed to H2. In that case, the conversion of H2 into gaseous HD was detected. In order to analyze the experimental kinetic and spectroscopic data, we explored two different mechanisms taking into account potential kinetic and equilibrium H/D isotope effects. Firstly, we explored the dissociative exchange mechanism consisting of dissociative adsorption of dihydrogen, fast hydride surface diffusion and associative desorption of dihydrogen. It is shown that if D2 is the reaction partner, only H2 will be released in the beginning of the reaction, and HD only in later reaction stages. The second mechanism, dubbed here associative exchange consists of the binding of dihydrogen to Ru surface atoms, followed by a H-transfer to or by H-exchange with an adjacent hydride site, and finally of the associative desorption of dihydrogen. In that case, in the exchange with D2, only HD will be released in the beginning of the reaction. Our experimental results are not compatible with the dissociative exchange but can be explained in terms of the associative exchange. Whereas the former will dominate at low temperatures and pressures, the latter will prevail around room temperature and normal pressures where transition metal nanoparticles are generally used as reaction catalysts.

  1. Association between mean and interannual equatorial Indian Ocean subsurface temperature bias in a coupled model

    Science.gov (United States)

    Srinivas, G.; Chowdary, Jasti S.; Gnanaseelan, C.; Prasad, K. V. S. R.; Karmakar, Ananya; Parekh, Anant

    2018-03-01

    In the present study the association between mean and interannual subsurface temperature bias over the equatorial Indian Ocean (EIO) is investigated during boreal summer (June through September; JJAS) in the National Centers for Environmental Prediction (NCEP) Climate Forecast System (CFSv2) hindcast. Anomalously high subsurface warm bias (greater than 3 °C) over the eastern EIO (EEIO) region is noted in CFSv2 during summer, which is higher compared to other parts of the tropical Indian Ocean. Prominent eastward current bias in the upper 100 m over the EIO region induced by anomalous westerly winds is primarily responsible for subsurface temperature bias. The eastward currents transport warm water to the EEIO and is pushed down to subsurface due to downwelling. Thus biases in both horizontal and vertical currents over the EIO region support subsurface warm bias. The evolution of systematic subsurface warm bias in the model shows strong interannual variability. These maximum subsurface warming episodes over the EEIO are mainly associated with La Niña like forcing. Strong convergence of low level winds over the EEIO and Maritime continent enhanced the westerly wind bias over the EIO during maximum warming years. This low level convergence of wind is induced by the bias in the gradient in the mean sea level pressure with positive bias over western EIO and negative bias over EEIO and parts of western Pacific. Consequently, changes in the atmospheric circulation associated with La Niña like conditions affected the ocean dynamics by modulating the current bias thereby enhancing the subsurface warm bias over the EEIO. It is identified that EEIO subsurface warming is stronger when La Niña co-occurred with negative Indian Ocean Dipole events as compared to La Niña only years in the model. Ocean general circulation model (OGCM) experiments forced with CFSv2 winds clearly support our hypothesis that ocean dynamics influenced by westerly winds bias is primarily

  2. Normal accidents

    International Nuclear Information System (INIS)

    Perrow, C.

    1989-01-01

    The author has chosen numerous concrete examples to illustrate the hazardousness inherent in high-risk technologies. Starting with the TMI reactor accident in 1979, he shows that it is not only the nuclear energy sector that bears the risk of 'normal accidents', but also quite a number of other technologies and industrial sectors, or research fields. The author refers to the petrochemical industry, shipping, air traffic, large dams, mining activities, and genetic engineering, showing that due to the complexity of the systems and their manifold, rapidly interacting processes, accidents happen that cannot be thoroughly calculated, and hence are unavoidable. (orig./HP) [de

  3. The platelet P2Y(12) receptor under normal and pathological conditions. Assessment with the radiolabeled selective antagonist [(3)H]PSB-0413.

    Science.gov (United States)

    Ohlmann, Philippe; Lecchi, Anna; El-Tayeb, Ali; Müller, Christa E; Cattaneo, Marco; Gachet, Christian

    2013-03-01

    Various radioligands have been used to characterize and quantify the platelet P2Y(12) receptor, which share several weaknesses: (a) they are metabolically unstable and substrates for ectoenzymes, (b) they are agonists, and (c) they do not discriminate between P2Y(1) and P2Y(12). We used the [(3)H]PSB-0413 selective P2Y(12) receptor antagonist radioligand to reevaluate the number of P2Y(12) receptors in intact platelets and in membrane preparations. Studies in humans showed that: (1) [(3)H]PSB-0413 bound to 425 ± 50 sites/platelet (K (D) = 3.3 ± 0.6 nM), (2) 0.5 ± 0.2 pmol [(3)H]PSB-0413 bound to 1 mg protein of platelet membranes (K (D) = 6.5 ± 3.6 nM), and (3) competition studies confirmed the known features of P2Y(12), with the expected rank order of potency: AR-C69931MX > 2MeSADP ≫ ADPβS > ADP, while the P2Y(1) ligand MRS2179 and the P2X(1) ligand α,β-Met-ATP did not displace [(3)H]PSB-0413 binding. Patients with severe P2Y(12) deficiency displayed virtually no binding of [(3)H]PSB-0413 to intact platelets, while a patient with a dysfunctional P2Y(12) receptor had normal binding. Studies in mice showed that: (1) [(3)H]PSB-0413 bound to 634 ± 87 sites/platelet (K (D) = 14 ± 4.5 nM) and (2) 0.7 pmol ± 0.3 [(3)H]PSB-0413 bound to 1 mg protein of platelet membranes (K (D) = 9.1 ± 5.3 nM). Clopidogrel and other thiol reagents like pCMBS or DTT abolished the binding both to intact platelets and membrane preparations. Therefore, [(3)H]PSB-0413 is an accurate and selective tool for radioligand binding studies aimed at quantifying P2Y(12) receptors, to identify patients with P2Y(12) deficiencies or quantify the effect of P2Y(12) targeting drugs.

  4. Characteristics of six small heat shock protein genes from Bactrocera dorsalis: Diverse expression under conditions of thermal stress and normal growth.

    Science.gov (United States)

    Dou, Wei; Tian, Yi; Liu, Hong; Shi, Yan; Smagghe, Guy; Wang, Jin-Jun

    2017-11-01

    To explore the functions of small heat shock proteins (sHsps) in relation to thermal stress and development in Bactrocera dorsalis (Hendel), one of the most economically important pest species attacking a wide range of fruits and vegetables, six full-length cDNAs of sHsp genes (BdHsp17.7, 18.4, 20.4, 20.6, 21.6 and 23.8) were cloned, and the expression patterns in different developmental stages and tissues, as well as in response to both thermal and 20-hydroxyecdysone (20E) exposures, were examined using real time quantitative PCR. The open reading frames (ORFs) of six sHsps are 453, 489, 537, 543, 567 and 630bp in length, encoding proteins with molecular weights of 17.7, 18.4, 20.4, 20.6, 21.6 and 23.8kDa, respectively. BdHsp18.4 and BdHsp20.4 maintained lower expression levels in both eggs and larvae, whereas remarkably up-regulated after the larval-pupal transformation, suggesting that these two sHsps may be involved in metamorphosis. Significant tissue specificity exists among sHsps: the highest expression of BdHsp20.6 and BdHsp23.8 in the Malpighian tubules and ovary, respectively, versus a peak in the fat body for others. BdHsp20.4 and BdHsp20.6 were significantly up-regulated by thermal stress. In contrast, BdHsp18.4 and BdHsp23.8 reacted only to heat stress. BdHsp17.7 and BdHsp21.6 were insensitive to both heat and cold stresses. The degree of sHsps response depends on intensity of 20E treatment, i.e., dose and time. These results strongly suggest functional differentiation within the sHsp subfamily in B. dorsalis. The physiological function of sHsp members under thermal stress and normal growth remains the subjects of further investigation. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Quantifying induced effects of subsurface renewable energy storage

    Science.gov (United States)

    Bauer, Sebastian; Beyer, Christof; Pfeiffer, Tilmann; Boockmeyer, Anke; Popp, Steffi; Delfs, Jens-Olaf; Wang, Bo; Li, Dedong; Dethlefsen, Frank; Dahmke, Andreas

    2015-04-01

    New methods and technologies for energy storage are required for the transition to renewable energy sources. Subsurface energy storage systems such as salt caverns or porous formations offer the possibility of hosting large amounts of energy or substance. When employing these systems, an adequate system and process understanding is required in order to assess the feasibility of the individual storage option at the respective site and to predict the complex and interacting effects induced. This understanding is the basis for assessing the potential as well as the risks connected with a sustainable usage of these storage options, especially when considering possible mutual influences. For achieving this aim, in this work synthetic scenarios for the use of the geological underground as an energy storage system are developed and parameterized. The scenarios are designed to represent typical conditions in North Germany. The types of subsurface use investigated here include gas storage and heat storage in porous formations. The scenarios are numerically simulated and interpreted with regard to risk analysis and effect forecasting. For this, the numerical simulators Eclipse and OpenGeoSys are used. The latter is enhanced to include the required coupled hydraulic, thermal, geomechanical and geochemical processes. Using the simulated and interpreted scenarios, the induced effects are quantified individually and monitoring concepts for observing these effects are derived. This presentation will detail the general investigation concept used and analyze the parameter availability for this type of model applications. Then the process implementation and numerical methods required and applied for simulating the induced effects of subsurface storage are detailed and explained. Application examples show the developed methods and quantify induced effects and storage sizes for the typical settings parameterized. This work is part of the ANGUS+ project, funded by the German Ministry

  6. Effect of Organic and Chemical Fertilizers on Yield and Essential Oil of Two Ecotypes of Savory (Satureja hortensis L. under Normal and Drought Stress Conditions

    Directory of Open Access Journals (Sweden)

    O Akrami nejad

    2016-02-01

    Full Text Available Introduction Savory (Satureja hortensis L. is an annual and aromatic plant from Labiatae family, which has plenty of essential oil and is important in medicinal, food, health and beauty industries (6. In comparison with chemical fertilizers, organic fertilizers especially manure have lots of organic material sources, and can be used as nutrients, especially Nitrogen, Phosphor and Potassium. Organic fertilizers also keeps more water in the soil (14. Water deficit is one of the most important boundaries of production in arid and semi-arid regions. Drought stress reduces water content, limits plant growth and changes some physiological and metabolic activities (31. This experiment was conducted as there is a global interest for production of medicinal plants with sustainable agriculture system, and with low input and shortage of information about Savory reaction to fertilization in drought stress condition. The objective of this research was to compare the effects of chemical fertilizers and different organic fertilizers on quantitative and qualitative characteristics of two ecotypes of savory under drought stress condition. Materials and Methods In order to study the effects of organic and mineral (N, P and K fertilizers on quantitative and qualitative characteristics of savory in drought stress condition, two separate split plot designs with three replications were carried out in 2012-2013 year, at the research field of Shahid Bahonar University of Kerman, Iran. In each design fertilizers including cow manure (30 ton per hectare, poultry manure (10 ton per hectare, chemical fertilizers (used equally with macro elements existing in both poultry and cow manure and control (no fertilizer were used as main factor. Kerman and Khuzestan ecotypes were sub-factor. One of the experiments was irrigated to 100% and the other to 50% of field capacity. Two experiments were analyzed as a combined design. The important characteristics of Savory such as plant

  7. Reconstructing Normality

    DEFF Research Database (Denmark)

    Gildberg, Frederik Alkier; Bradley, Stephen K.; Fristed, Peter Billeskov

    2012-01-01

    Forensic psychiatry is an area of priority for the Danish Government. As the field expands, this calls for increased knowledge about mental health nursing practice, as this is part of the forensic psychiatry treatment offered. However, only sparse research exists in this area. The aim of this study...... was to investigate the characteristics of forensic mental health nursing staff interaction with forensic mental health inpatients and to explore how staff give meaning to these interactions. The project included 32 forensic mental health staff members, with over 307 hours of participant observations, 48 informal....... The intention is to establish a trusting relationship to form behaviour and perceptual-corrective care, which is characterized by staff's endeavours to change, halt, or support the patient's behaviour or perception in relation to staff's perception of normality. The intention is to support and teach the patient...

  8. Pursuing Normality

    DEFF Research Database (Denmark)

    Madsen, Louise Sofia; Handberg, Charlotte

    2018-01-01

    implying an influence on whether to participate in cancer survivorship care programs. Because of "pursuing normality," 8 of 9 participants opted out of cancer survivorship care programming due to prospects of "being cured" and perceptions of cancer survivorship care as "a continuation of the disease......BACKGROUND: The present study explored the reflections on cancer survivorship care of lymphoma survivors in active treatment. Lymphoma survivors have survivorship care needs, yet their participation in cancer survivorship care programs is still reported as low. OBJECTIVE: The aim of this study...... was to understand the reflections on cancer survivorship care of lymphoma survivors to aid the future planning of cancer survivorship care and overcome barriers to participation. METHODS: Data were generated in a hematological ward during 4 months of ethnographic fieldwork, including participant observation and 46...

  9. Aseptically Sampled Organics in Subsurface Rocks From the Mars Analog Rio Tinto Experiment: An Analog For The Search for Deep Subsurface Life on Mars.}

    Science.gov (United States)

    Bonaccorsi, R.; Stoker, C. R.

    2005-12-01

    The subsurface is the key environment for searching for life on planets lacking surface life. Subsurface ecosystems are of great relevance to astrobiology including the search for past/present life on Mars. The surface of Mars has conditions preventing current life but the subsurface might preserve organics and even host some life [1]. The Mars-Analog-Rio-Tinto-Experiment (MARTE) is performing a simulation of a Mars drilling experiment. This comprises conventional and robotic drilling of cores in a volcanically-hosted-massive-pyrite deposit [2] from the Iberian Pyritic Belt (IBP) and life detection experiments applying anti-contamination protocols (e.g., ATP Luminometry assay). The RT is considered an important analog of the Sinus Meridiani site on Mars and an ideal model analog for a deep subsurface Martian environment. Former results from MARTE suggest the existence of a relatively complex subsurface life including aerobic and anaerobic chemoautotrophs and strict anaerobic methanogens sustained by Fe and S minerals in anoxic conditions. A key requirement for the analysis of a subsurface sample on Mars is a set of simple tests that can help determine if the sample contains organic material of biological origin, and its potential for retaining definitive biosignatures. We report here on the presence of bulk organic matter Corg (0.03-0.05 Wt%), and Ntot (0.01-0.04 Wt%) and amount of measured ATP (Lightning MVP, Biocontrol) in weathered rocks (tuffs, gossan, pyrite stockwork from Borehole #8; >166m). This provides key insight on the type of trophic system sustaining the subsurface biosphere (i.e., heterotrophs vs. autotrophs) at RT. ATP data (Relative-Luminosity-Units, RLU) provide information on possible contamination and distribution of viable biomass with core depth (BH#8, and BH#7, ~3m). Avg. 153 RLU, i.e., surface vs. center of core, suggest that cleaness/sterility can be maintained when using a simple sterile protocol under field conditions. Results from this

  10. Tomographic SAR analysis of subsurface ice structure in Greenland: first results

    DEFF Research Database (Denmark)

    Banda, Francesco; Dall, Jørgen; Tebaldini, Stefano

    2013-01-01

    structure with P-band SAR tomography. First results from ESA IceSAR 2012 campaign carried out in south-west Greenland are presented. It is found that significant penetration in the upper layers of glacial subsurface can be achieved up to an extent of about 20–60 m, conditional on the different type...

  11. Low-dimensional models of ‘Neuro-glio-vascular unit’ for describing neural dynamics under normal and energy-starved conditions

    Directory of Open Access Journals (Sweden)

    Karishma eChhabria

    2016-03-01

    Full Text Available The motivation of developing simple minimal models for neuro-glio-vascular system arises from a recent modeling study elucidating the bidirectional information flow within the neuro-glio-vascular system having 89 dynamic equations (Chander and Chakravarthy 2012. While this was one of the first attempts at formulating a comprehensive model for neuro-glia-vascular system, it poses severe restrictions in scaling up to network levels. On the contrary, low dimensional models are convenient devices in simulating large networks that also provide an intuitive understanding of the complex interactions occurring within the neuro-glio-vascular system. The key idea underlying the proposed models is to describe the glio-vascular system as a lumped system which takes neural firing rate as input and returns an ‘energy’ variable (analogous to ATP as output. To this end we present two models: Biophysical neuro-energy (Model #1 with 5 variables, comprising of KATP channel activity governed by neuronal ATP dynamics and the Dynamic threshold (Model #2 with 3 variables depicting the dependence of neural firing threshold on the ATP dynamics. Both the models show different firing regimes such as continuous spiking, phasic and tonic bursting depending on the ATP production coefficient, εp and external current. We then demonstrate that in a network comprising of such energy-dependent neuron units, εp could modulate the Local field potential (LFP frequency and amplitude. Interestingly, low frequency LFP dominates under low εp conditions, which is thought to be reminiscent of seizure-like activity observed in epilepsy. The proposed ‘neuron-energy’ unit may be implemented in building models of neuro-glio-vascular networks to simulate data obtained from multimodal neuroimaging systems such as fNIRS-EEG and fMRI-EEG. Such models could also provide a theoretical basis for devising optimal neurorehabilitation strategies such as non-invasive brain stimulation for

  12. Low-Dimensional Models of "Neuro-Glio-Vascular Unit" for Describing Neural Dynamics under Normal and Energy-Starved Conditions.

    Science.gov (United States)

    Chhabria, Karishma; Chakravarthy, V Srinivasa

    2016-01-01

    The motivation of developing simple minimal models for neuro-glio-vascular (NGV) system arises from a recent modeling study elucidating the bidirectional information flow within the NGV system having 89 dynamic equations (1). While this was one of the first attempts at formulating a comprehensive model for neuro-glio-vascular system, it poses severe restrictions in scaling up to network levels. On the contrary, low--dimensional models are convenient devices in simulating large networks that also provide an intuitive understanding of the complex interactions occurring within the NGV system. The key idea underlying the proposed models is to describe the glio-vascular system as a lumped system, which takes neural firing rate as input and returns an "energy" variable (analogous to ATP) as output. To this end, we present two models: biophysical neuro-energy (Model 1 with five variables), comprising KATP channel activity governed by neuronal ATP dynamics, and the dynamic threshold (Model 2 with three variables), depicting the dependence of neural firing threshold on the ATP dynamics. Both the models show different firing regimes, such as continuous spiking, phasic, and tonic bursting depending on the ATP production coefficient, ɛp, and external current. We then demonstrate that in a network comprising such energy-dependent neuron units, ɛp could modulate the local field potential (LFP) frequency and amplitude. Interestingly, low-frequency LFP dominates under low ɛp conditions, which is thought to be reminiscent of seizure-like activity observed in epilepsy. The proposed "neuron-energy" unit may be implemented in building models of NGV networks to simulate data obtained from multimodal neuroimaging systems, such as functional near infrared spectroscopy coupled to electroencephalogram and functional magnetic resonance imaging coupled to electroencephalogram. Such models could also provide a theoretical basis for devising optimal neurorehabilitation strategies, such as

  13. Numerical solution of the transport equation describing the radon transport from subsurface soil to buildings

    International Nuclear Information System (INIS)

    Savovic, S.; Djordjevich, A.; Ristic, G.

    2012-01-01

    A theoretical evaluation of the properties and processes affecting the radon transport from subsurface soil into buildings is presented in this work. The solution of the relevant transport equation is obtained using the explicit finite difference method (EFDM). Results are compared with analytical steady-state solution reported in the literature. Good agreement is found. It is shown that EFDM is effective and accurate for solving the equation that describes radon diffusion, advection and decay during its transport from subsurface to buildings, which is especially important when arbitrary initial and boundary conditions are required. (authors)

  14. Single and Multipolarimetric P-Band SAR Tomography of Subsurface Ice Structure

    DEFF Research Database (Denmark)

    Banda, Francesco; Dall, Jørgen; Tebaldini, Stefano

    2016-01-01

    In this paper, first results concerning the characterization of the subsurface of ice sheets and glaciers through single and multipolarization synthetic aperture radar (SAR) tomography (TomoSAR) are illustrated. To this aim, the processing of data acquired in the framework of the European Space...... that scattering in the upper layers of glacial subsurface can be achieved up to an extent of about 20–60 m, conditional on the different types of glaciological zone observed. Moreover, clear morphological structures have been found beneath the ice surface at one of the investigated sites....

  15. Estimating Impacts of Agricultural Subsurface Drainage on Evapotranspiration Using the Landsat Imagery-Based METRIC Model

    Directory of Open Access Journals (Sweden)

    Kul Khand

    2017-11-01

    Full Text Available Agricultural subsurface drainage changes the field hydrology and potentially the amount of water available to the crop by altering the flow path and the rate and timing of water removal. Evapotranspiration (ET is normally among the largest components of the field water budget, and the changes in ET from the introduction of subsurface drainage are likely to have a greater influence on the overall water yield (surface runoff plus subsurface drainage from subsurface drained (TD fields compared to fields without subsurface drainage (UD. To test this hypothesis, we examined the impact of subsurface drainage on ET at two sites located in the Upper Midwest (North Dakota-Site 1 and South Dakota-Site 2 using the Landsat imagery-based METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration model. Site 1 was planted with corn (Zea mays L. and soybean (Glycine max L. during the 2009 and 2010 growing seasons, respectively. Site 2 was planted with corn for the 2013 growing season. During the corn growing seasons (2009 and 2013, differences between the total ET from TD and UD fields were less than 5 mm. For the soybean year (2010, ET from the UD field was 10% (53 mm greater than that from the TD field. During the peak ET period from June to September for all study years, ET differences from TD and UD fields were within 15 mm (<3%. Overall, differences between daily ET from TD and UD fields were not statistically significant (p > 0.05 and showed no consistent relationship.

  16. Erosão hídrica influenciada por condições físicas de superfície e subsuperfície do solo resultantes do seu manejo, na ausência de cobertura vegetal Water erosion influenced by surface and subsurface soil physical conditions resulting from its management, in the absence of vegetal cover

    Directory of Open Access Journals (Sweden)

    L. B. S. Volk

    2004-08-01

    com cultivo, mostrou a maior perda de solo no estudo. A semeadura direta, apesar de também ter recuperado a estrutura do solo pelo cultivo, apresentou a maior perda de água, ficando a perda de solo próxima à do preparo convencional com resíduo cultural removido e intermediária entre o preparo convencional com resíduo cultural incorporado e o sem cultivo. A perda de solo após o cultivo do milho foi praticamente o dobro da observada após o cultivo da aveia preta, independentemente do preparo do solo e da incorporação ou remoção dos resíduos culturais, enquanto a perda de água foi apenas ligeiramente maior. Os resultados confirmaram que as condições físicas de superfície e subsuperfície do solo resultantes do seu manejo que governam as perdas de solo por erosão hídrica são distintas das que governam as perdas de água pelo mesmo fenômeno.Different management practices lead to distinct surface and subsurface soil physical conditions, which in turn result in different levels of rainfall erosion. In this context, a 5.5 year field erosion-study was conducted with the objective of studying the effects of both tillage and cropping systems and forms of crop residue management on some surface and subsurface physical soil conditions and their influence on rainfall erosion. For this purpose, rainfall was simulated on a severely degraded, sandy loam Paleudult with 0.08 m m-1 slope-steepness. Treatments consisted of: corn and black oat cultivation, both under no-tillage and conventional tillage (the latter with incorporation or removal of crop residues, and no-plant cultivation under conventional tillage (control. For all treatments, the soil was freshly-tilled or consolidated, without residue cover, when the erosion tests were performed. Ten rainfall tests were imposed with the rotating-boom rainfall simulator at a constant intensity of 64.0 mm h-1 during 90 min, short after the harvest of one crop and the soil tillage (or no-tillage for the subsequent crop

  17. Final report - Microbial pathways for the reduction of mercury in saturated subsurface sediments

    Energy Technology Data Exchange (ETDEWEB)

    Tamar barkay; Lily Young; Gerben Zylstra

    2009-08-25

    Mercury is a component of mixed wastes that have contaminated vast areas of the deep subsurface as a result of nuclear weapon and energy production. While this mercury is mostly bound to soil constituents episodes of groundwater contamination are known in some cases resulting in potable water super saturated with Hg(0). Microbial processes that reduce Hg(II) to the elemental form Hg(0) in the saturated subsurface sediments may contribute to this problem. When we started the project, only one microbial pathway for the reduction of Hg(II), the one mediated by the mer operon in mercury resistant bacteria was known. As we had previously demonstrated that the mer mediated process occurred in highly contaminated environments (Schaefer et al., 2004), and mercury concentrations in the subsurface were reported to be low (Krabbenhoft and Babiarz, 1992), we hypothesized that other microbial processes might be active in reducing Hg(II) to Hg(0) in saturated subsurface environments. The specific goals of our projects were: (1) Investigating the potential for Hg(II) reduction under varying electron accepting conditions in subsurface sediments and relating these potential to mer gene distribution; and (2) Examining the physiological and biochemical characteristics of the interactions of anaerobic bacteria with mercury. The results are briefly summarized with references to published papers and manuscripts in preparation where details about our research can be found. Additional information may be found in copies of our published manuscripts and conference proceedings, and our yearly reports that were submitted through the RIMS system.

  18. Smooth quantile normalization.

    Science.gov (United States)

    Hicks, Stephanie C; Okrah, Kwame; Paulson, Joseph N; Quackenbush, John; Irizarry, Rafael A; Bravo, Héctor Corrada

    2018-04-01

    Between-sample normalization is a critical step in genomic data analysis to remove systematic bias and unwanted technical variation in high-throughput data. Global normalization methods are based on the assumption that observed variability in global properties is due to technical reasons and are unrelated to the biology of interest. For example, some methods correct for differences in sequencing read counts by scaling features to have similar median values across samples, but these fail to reduce other forms of unwanted technical variation. Methods such as quantile normalization transform the statistical distributions across samples to be the same and assume global differences in the distribution are induced by only technical variation. However, it remains unclear how to proceed with normalization if these assumptions are violated, for example, if there are global differences in the statistical distributions between biological conditions or groups, and external information, such as negative or control features, is not available. Here, we introduce a generalization of quantile normalization, referred to as smooth quantile normalization (qsmooth), which is based on the assumption that the statistical distribution of each sample should be the same (or have the same distributional shape) within biological groups or conditions, but allowing that they may differ between groups. We illustrate the advantages of our method on several high-throughput datasets with global differences in distributions corresponding to different biological conditions. We also perform a Monte Carlo simulation study to illustrate the bias-variance tradeoff and root mean squared error of qsmooth compared to other global normalization methods. A software implementation is available from https://github.com/stephaniehicks/qsmooth.

  19. A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces

    Science.gov (United States)

    Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.

    2017-10-01

    We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.

  20. Microbial transformations of natural organic compounds and radionuclides in subsurface environments

    International Nuclear Information System (INIS)

    Francis, A.J.

    1985-10-01

    A major national concern in the subsurface disposal of energy wastes is the contamination of ground and surface waters by waste leachates containing radionuclides, toxic metals, and organic compounds. Microorganisms play an important role in the transformation of organic compounds, radionuclides, and toxic metals present in the waste and affect their mobility in subsurface environments. Microbial processes involved in dissolution, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are briefly reviewed. Metal complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and toxic metals in subsurface environments. Information on the persistence of and biodegradation rates of synthetic as well as microbiologically produced complexing agents is scarce but important in determining the mobility of metal organic complexes in subsoils. Several gaps in knowledge in the area of microbial transformation of naturally occurring organics, radionuclides, and toxic metals have been identified, and further basic research has been suggested. 31 refs., 1 fig., 3 tabs

  1. Geophysical data fusion for subsurface imaging

    International Nuclear Information System (INIS)

    Blohm, M.; Hatch, W.E.; Hoekstra, P.; Porter, D.W.

    1994-01-01

    Effective site characterization requires that many relevant geologic, hydrogeologic and biological properties of the subsurface be evaluated. A parameter that often directly influences chemical processes, ground water flow, contaminant transport, and biological activities is the lateral and vertical distribution of clays. The objective of the research an development under this contract is to improve non-invasive methods for detecting clay lenses. The percentage of clays in soils influences most physical properties that have an impact on environmental restoration and waste management. For example, the percentage of clays determine hydraulic permeability and the rate of contaminant migration, absorption of radioactive elements, and interaction with organic compounds. Therefore, improvements in non-invasive mapping of clays in the subsurface will result in better: characterization of contaminated sites, prediction of pathways of contaminant migration, assessment of risk of contaminants to public health if contaminants reach water supplies, design of remedial action and evaluation of alternative action

  2. CLASSIFICATION OF THE MGR SUBSURFACE VENTILATION SYSTEM

    International Nuclear Information System (INIS)

    R.J. Garrett

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) subsurface ventilation system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P7 ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  3. Cultivation Of Deep Subsurface Microbial Communities

    Science.gov (United States)

    Obrzut, Natalia; Casar, Caitlin; Osburn, Magdalena R.

    2018-01-01

    The potential habitability of surface environments on other planets in our solar system is limited by exposure to extreme radiation and desiccation. In contrast, subsurface environments may offer protection from these stressors and are potential reservoirs for liquid water and energy that support microbial life (Michalski et al., 2013) and are thus of interest to the astrobiology community. The samples used in this project were extracted from the Deep Mine Microbial Observatory (DeMMO) in the former Homestake Mine at depths of 800 to 2000 feet underground (Osburn et al., 2014). Phylogenetic data from these sites indicates the lack of cultured representatives within the community. We used geochemical data to guide media design to cultivate and isolate organisms from the DeMMO communities. Media used for cultivation varied from heterotrophic with oxygen, nitrate or sulfate to autotrophic media with ammonia or ferrous iron. Environmental fluid was used as inoculum in batch cultivation and strains were isolated via serial transfers or dilution to extinction. These methods resulted in isolating aerobic heterotrophs, nitrate reducers, sulfate reducers, ammonia oxidizers, and ferric iron reducers. DNA sequencing of these strains is underway to confirm which species they belong to. This project is part of the NASA Astrobiology Institute Life Underground initiative to detect and characterize subsurface microbial life; by characterizing the intraterrestrials, the life living deep within Earth’s crust, we aim to understand the controls on how and where life survives in subsurface settings. Cultivation of terrestrial deep subsurface microbes will provide insight into the survival mechanisms of intraterrestrials guiding the search for these life forms on other planets.

  4. CLASSIFICATION OF THE MGR SUBSURFACE EXCAVATION SYSTEM

    International Nuclear Information System (INIS)

    R. Garrett

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) subsurface excavation system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  5. Yucca Mountain Project Subsurface Facilities Design

    International Nuclear Information System (INIS)

    Linden, A.; Saunders, R.S.; Boutin, R.J.; Harrington, P.G.; Lachman, K.D.; Trautner, L.J.

    2002-01-01

    Four units of the Topopah Springs formation (volcanic tuff) are considered for the proposed repository: the upper lithophysal, the middle non-lithophysal, the lower lithophysal, and the lower non-lithophysal. Yucca Mountain was recently designated the site for a proposed repository to dispose of spent nuclear fuel and high-level radioactive waste. Work is proceeding to advance the design of subsurface facilities to accommodate emplacing waste packages in the proposed repository. This paper summarized recent progress in the design of subsurface layout of the proposed repository. The original Site Recommendation (SR) concept for the subsurface design located the repository largely within the lower lithophysal zone (approximately 73%) of the Topopah The Site Recommendation characterized area suitable for emplacement consisted of the primary upper block, the lower block and the southern upper block extension. The primary upper block accommodated the mandated 70,000 metric tons of heavy metal (MTHM) at a 1.45 kW/m hear heat load. Based on further study of the Site Recommendation concept, the proposed repository siting area footprint was modified to make maximum use of available site characterization data, and thus, reduce uncertainties associated with performance assessment. As a result of this study, a modified repository footprint has been proposed and is presently being review for acceptance by the DOE. A panel design concept was developed to reduce overall costs and reduce the overall emplacement schedule. This concept provides flexibility to adjust the proposed repository subsurface layout with time, as it makes it unnecessary to ''commit'' to development of a large single panel at the earliest stages of construction. A description of the underground layout configuration and influencing factors that affect the layout configuration are discussed in the report

  6. Characterizing Normal Groundwater Chemistry in Hawaii

    Science.gov (United States)

    Tachera, D.; Lautze, N. C.; Thomas, D. M.; Whittier, R. B.; Frazer, L. N.

    2017-12-01

    Hawaii is dependent on groundwater resources, yet how water moves through the subsurface is not well understood in many locations across the state. As marine air moves across the islands water evaporates from the ocean, along with trace amounts of sea-salt ions, and interacts with the anthropogenic and volcanic aerosols (e.g. sulfuric acid, ammonium sulfate, HCl), creating a slightly more acidic rain. When this rain falls, it has a chemical signature distinctive of past processes. As this precipitation infiltrates through soil it may pick up another distinctive chemical signature associated with land use and degree of soil development, and as it flows through the underlying geology, its chemistry is influenced by the host rock. We are currently conducting an investigation of groundwater chemistry in selected aquifer areas of Hawaii, having diverse land use, land cover, and soil development conditions, in an effort to investigate and document what may be considered a "normal" water chemistry for an area. Through this effort, we believe we better assess anomalies due to contamination events, hydrothermal alteration, and other processes; and we can use this information to better understand groundwater flow direction. The project has compiled a large amount of precipitation, soil, and groundwater chemistry data in the three focus areas distributed across in the State of Hawaii. Statistical analyses of these data sets will be performed in an effort to determine what is "normal" and what is anomalous chemistry for a given area. Where possible, results will be used to trace groundwater flow paths. Methods and preliminary results will be presented.

  7. Optimized Subsurface Irrigation System: The Future of Sugarcane Irrigation

    Directory of Open Access Journals (Sweden)

    M. H. J. P. Gunarathna

    2018-03-01

    Full Text Available Climate change may harm the growth and yield of sugarcane (Saccharum officinarum L. without the introduction of appropriate irrigation facilities. Therefore, new irrigation methods should be developed to maximize water use efficiency and reduce operational costs. OPSIS (optimized subsurface irrigation system is a new solar-powered automatic subsurface irrigation system that creates a phreatic zone below crop roots and relies on capillarity to supply water to the root zone. It is designed for upland crops such as sugarcane. We investigated the performance of OPSIS for irrigating sugarcane and evaluated its performance against sprinkler irrigation under subtropical conditions. We conducted field experiments in Okinawa, Japan, over the period from 2013 to 2016 and took measurements during spring- and summer-planted main crops and two ratoon crops of the spring-planted crop. Compared with sprinkler irrigation, OPSIS produced a significantly higher fresh cane yield, consumed less irrigation water and provided a higher irrigation water use efficiency. We conclude that OPSIS could be adopted as a sustainable solution to sugarcane irrigation in Okinawa and similar environments.

  8. Using electrical resistance tomography to map subsurface temperatures

    Science.gov (United States)

    Ramirez, A.L.; Chesnut, D.A.; Daily, W.D.

    1994-09-13

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations. 1 fig.

  9. Using electrical resistance tomography to map subsurface temperatures

    Science.gov (United States)

    Ramirez, Abelardo L.; Chesnut, Dwayne A.; Daily, William D.

    1994-01-01

    A method is provided for measuring subsurface soil or rock temperatures remotely using electrical resistivity tomography (ERT). Electrical resistivity measurements are made using electrodes implanted in boreholes driven into the soil and/or at the ground surface. The measurements are repeated as some process changes the temperatures of the soil mass/rock mass. Tomographs of electrical resistivity are calculated based on the measurements using Poisson's equation. Changes in the soil/rock resistivity can be related to changes in soil/rock temperatures when: (1) the electrical conductivity of the fluid trapped in the soil's pore space is low, (2) the soil/rock has a high cation exchange capacity and (3) the temperature changes are sufficiently high. When these three conditions exist the resistivity changes observed in the ERT tomographs can be directly attributed to changes in soil/rock temperatures. This method provides a way of mapping temperature changes in subsurface soils remotely. Distances over which the ERT method can be used to monitor changes in soil temperature range from tens to hundreds of meters from the electrode locations.

  10. Subsurface plasma in beam of continuous CO2-laser

    Science.gov (United States)

    Danytsikov, Y. V.; Dymshakov, V. A.; Lebedev, F. V.; Pismennyy, V. D.; Ryazanov, A. V.

    1986-03-01

    Experiments performed at the Institute of Atomic Energy established the conditions for formation of subsurface plasma in substances by laser radiation and its characteristics. A quasi-continuous CO2 laser emitting square pulses of 0.1 to 1.0 ms duration and 1 to 10 kW power as well as a continuous CO2 laser served as radiation sources. Radiation was focused on spots 0.1 to 0.5 mm in diameter and maintained at levels ensuring constant power density during the interaction time, while the temperature of the target surface was measured continuously. Metals, graphite and dielectric materials were tested with laser action taking place in air N2 + O2 mixtures, Ar or He atmosphere under pressures of 0.01 to 1.0 atm. Data on radiation intensity thresholds for evaporation and plasma formation were obtained. On the basis of these thresholds, combined with data on energy balance and the temperature profile in plasma layers, a universal state diagram was constructed for subsurface plasma with nonquantified surface temperature and radiation intensity coordinates.

  11. Liquid Water in the Extremely Shallow Martian Subsurface

    Science.gov (United States)

    Pavlov, A.; Shivak, J. N.

    2012-01-01

    Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.

  12. Making nuclear 'normal'

    International Nuclear Information System (INIS)

    Haehlen, Peter; Elmiger, Bruno

    2000-01-01

    irrelevant for readers. The Swiss media's way of handling the contaminated irradiated fuel element transports and their politically delicate resumption in September 1999 after a 15 months ban confirmed the advantage of being treated as a normal industry, even in a peculiar situation, rather than being treated as a special case, even in routine conditions

  13. The Effect of Phase-to-earth Faults on the Operating Conditions of a Separated 110 kV Grid Normally Operated with Effectively Earthed Neutral, and Temporarily Supplied from a Compensated 110 kV Grid

    Directory of Open Access Journals (Sweden)

    Wilhelm Rojewski

    2015-06-01

    Full Text Available The paper discusses the interoperability of the German compensated 110 kV grid and the Polish effectively earthed 110 kV grid. It is assumed that an area of one grid, separated from its power system, will be temporarily supplied from the other grid in its normal regime. Reference is made to the risks associated with phase-to-earth faults in grids so interconnected. Particular attention is paid to the working conditions of surge arresters and voltage transformers in the Polish 110 kV grid deprived of its neutral earthing when supplied from the German grid.

  14. The Role of Subsurface Properties on Transport of Water and Trace Gases: 1D Simulations at Selected Mars Landing Sites.

    Science.gov (United States)

    Karatekin, O.; Gloesener, E.; Dehant, V. M. A.

    2017-12-01

    In this work, water ice stability and water vapour transport through porous martian subsurface are studied using a 1D diffusive model. The role of adsorption on water transfer in martian conditions is investigated as well as the range of parameters that have the largest effect on gas transport. In addition, adsorption kinetics is considered to examine its influence on the water vapor exchange between the subsurface and the atmosphere. As methane has been detected in the martian atmosphere, the subsurface model is then used to study methane diffusion in the CH4/CO2/H2O system from variable depths under the surface. The results of subsurface gas transport at selected locations/landing sites are shown and implications for present/future observations are discussed.

  15. A-TOUGH: A multimedia fluid-flow/energy-transport model for fully- coupled atmospheric-subsurface interactions

    International Nuclear Information System (INIS)

    Montazer, P.; Hammermeister, D.; Ginanni, J.

    1994-01-01

    The long-term effect of changes in atmospheric climatological conditions on subsurface hydrological conditions in the unsaturated zone in and environments is an important factor in defining the performance of a high-level and low-level radioactive waste repositories in geological environment. Computer simulation coupled with paleohydrological studies can be used to understand and quantify the potential impact of future climatological conditions on repository performance. A-TOUGH efficiently simulates (given current state-of-the-art technology) the physical processes involved in the near-surface atmosphere and its effect on subsurface conditions. This efficiency is due to the numerical techniques used in TOUGH and the efficient computational techniques used in V-TOUGH to solve non-linear thermodynamic equations that govern the flux of vapor and energy within subsurface porous and fractured media and between these media and the atmosphere

  16. Neutrophil migration under normal and sepsis conditions.

    Science.gov (United States)

    Lerman, Yelena V; Kim, Minsoo

    2015-01-01

    Neutrophil migration is critical for pathogen clearance and host survival during severe sepsis. Interaction of neutrophil adhesion receptors with ligands on endothelial cells results in firm adhesion of the circulating neutrophils, followed by neutrophil activation and directed migration to sites of infection through the basement membrane and interstitial extracellular matrix. Proteolytic enzymes and reactive oxygen species are produced and released by neutrophils in response to a variety of inflammatory stimuli. Although these mediators are important for host defense, they also promote tissue damage. Excessive neutrophil migration during the early stages of sepsis may lead to an exaggerated inflammatory response with associated tissue damage and subsequent organ dysfunction. On the other hand, dysregulation of migration and insufficient migratory response that occurs during the latter stages of severe sepsis contributes to neutrophils' inability to contain and control infection and impaired wound healing. This review discusses the major steps and associated molecules involved in the balance of neutrophil trafficking, the precise regulation of which during sepsis spells life or death for the host.

  17. Effect of Azospirillum brasilense on the harvest and radical development of sugar cane plants, variety C86 - 456, obtained by in vitro culture in normal conditions and under overhumidity of soil

    Directory of Open Access Journals (Sweden)

    Sergio Rodríguez Rodríguez

    2005-01-01

    Full Text Available In order to know the influence of the bacteria Azospirillum brasilense on plants of sugar cane, cultivar C86-456, from tissue culture under normal conditions and flooded soil in a Vertisol from El Valle del Cauto, an experiment was carried out using an at random blocks design. The main crop variables (pol in cane, t. caña.ha-1 and t. pol.ha-1 at the twelve months of age were taken, as stump of spring of the year and the development reached by the radical system in its more active area to achieve this experiment. The best results in the crop variables and development of the radical system were obtained it the treatments where the bacteria was present, although non significant under both conditions, evidencing that the stress due to excess of water in the soil affects the normal development of the sugar cane in general by modifying the kindness that the rhizospheric microorganism provides. Key words: biofertilizer, radical system, Saccharum, yield

  18. Dissolution rates of unirradiated UO{sub 2}, UO{sub 2} doped with {sup 233}U, and spent fuel under normal atmospheric conditions and under reducing conditions using an isotope dilution method

    Energy Technology Data Exchange (ETDEWEB)

    Ollila, Kaija [VTT Processes, Helsinki (Finland); Albinsson, Yngve [Chalmers Univ. of Technology, Goeteborg (Sweden); Oversby, Virginia [VMO Konsult, Stockholm (Sweden); Cowper, Mark [AEA Technology, Harwell (United Kingdom)

    2003-10-01

    The experimental results given in this report allow us to draw the following conclusions. 1) Tests using unirradiated fuel pellet materials from two different manufacturers gave very different dissolution rates under air atmosphere testing. Tests for fragments of pellets from different pellets made by the same manufacturer gave good agreement. This indicates that details of the manufacturing process have a large effect on the behavior of unirradiated UO{sub 2} in dissolution experiments. Care must be taken in interpreting differences in results obtained in different laboratories because the results may be affected by manufacturing effects. 2) Long-term tests under air atmosphere have begun to show the effects of precipitation. Further testing will be needed before the samples reach steady state. 3) Testing of unirradiated UO{sub 2} in systems containing an iron strip to produce reducing conditions gave [U] less than detection limits (<0.02 ppb) after a few days to a few weeks of testing. Uranium recovered from the rinsing of reaction vessels and from acid stripping of vessels was shown to be from dissolution of grains of solid dislodged when the samples were handled after the tests were terminated. 4) Batch tests conducted under reducing conditions showed evidence of colloidal material in the early solution samples. 5) In the batch tests, measurements taken at day 3 and day 5 show that precipitation occurs from day 3 to day 5 without any further dissolution of the solid. 6) At termination of the batch tests, all but one sample had [U] in solution less than detection limits (< 0.02 ppb). Materials recovered in test termination samples showed evidence for recovery of small amounts - amounts corresponding to that expected from a few grains of 5 to 10 {mu}m size - in the acidified solution samples. These are interpreted to have been dislodged during sample handling operations. 7) Batch test data show that increasing test duration beyond 2 weeks does not provide

  19. Residues of endosulfan in surface and subsurface agricultural soil and its bioremediation.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2016-01-01

    The persistence of many hydrophobic pesticides has been reported by various workers in various soil environments and its bioremediation is a major concern due to less bioavailability. In the present study, the pesticide residues in the surface and subsurface soil in an area of intense agricultural activity in Pakkam Village of Thiruvallur District, Tamilnadu, India, and its bioremediation using a novel bacterial consortium was investigated. Surface (0-15 cm) and subsurface soils (15-30 cm and 30-40 cm) were sampled, and pesticides in different layers of the soil were analyzed. Alpha endosulfan and beta endosulfan concentrations ranged from 1.42 to 3.4 mg/g and 1.28-3.1 mg/g in the surface soil, 0.6-1.4 mg/g and 0.3-0.6 mg/g in the subsurface soil (15-30 cm), and 0.9-1.5 mg/g and 0.34-1.3 mg/g in the subsurface soil (30-40 cm) respectively. Residues of other persistent pesticides were also detected in minor concentrations. These soil layers were subjected to bioremediation using a novel bacterial consortium under a simulated soil profile condition in a soil reactor. The complete removal of alpha and beta endosulfan was observed over 25 days. Residues of endosulfate were also detected during bioremediation, which was subsequently degraded on the 30th day. This study revealed the existence of endosulfan in the surface and subsurface soils and also proved that the removal of such a ubiquitous pesticide in the surface and subsurface environment can be achieved in the field by bioaugumenting a biosurfactant-producing bacterial consortium that degrades pesticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. A multi-scale experimental and simulation approach for fractured subsurface systems

    Science.gov (United States)

    Viswanathan, H. S.; Carey, J. W.; Frash, L.; Karra, S.; Hyman, J.; Kang, Q.; Rougier, E.; Srinivasan, G.

    2017-12-01

    Fractured systems play an important role in numerous subsurface applications including hydraulic fracturing, carbon sequestration, geothermal energy and underground nuclear test detection. Fractures that range in scale from microns to meters and their structure control the behavior of these systems which provide over 85% of our energy and 50% of US drinking water. Determining the key mechanisms in subsurface fractured systems has been impeded due to the lack of sophisticated experimental methods to measure fracture aperture and connectivity, multiphase permeability, and chemical exchange capacities at the high temperature, pressure, and stresses present in the subsurface. In this study, we developed and use microfluidic and triaxial core flood experiments required to reveal the fundamental dynamics of fracture-fluid interactions. In addition we have developed high fidelity fracture propagation and discrete fracture network flow models to simulate these fractured systems. We also have developed reduced order models of these fracture simulators in order to conduct uncertainty quantification for these systems. We demonstrate an integrated experimental/modeling approach that allows for a comprehensive characterization of fractured systems and develop models that can be used to optimize the reservoir operating conditions over a range of subsurface conditions.

  1. Using lagged dependence to identify (de)coupled surface and subsurface soil moisture values

    Science.gov (United States)

    Carranza, Coleen D. U.; van der Ploeg, Martine J.; Torfs, Paul J. J. F.

    2018-04-01

    Recent advances in radar remote sensing popularized the mapping of surface soil moisture at different spatial scales. Surface soil moisture measurements are used in combination with hydrological models to determine subsurface soil moisture values. However, variability of soil moisture across the soil column is important for estimating depth-integrated values, as decoupling between surface and subsurface can occur. In this study, we employ new methods to investigate the occurrence of (de)coupling between surface and subsurface soil moisture. Using time series datasets, lagged dependence was incorporated in assessing (de)coupling with the idea that surface soil moisture conditions will be reflected at the subsurface after a certain delay. The main approach involves the application of a distributed-lag nonlinear model (DLNM) to simultaneously represent both the functional relation and the lag structure in the time series. The results of an exploratory analysis using residuals from a fitted loess function serve as a posteriori information to determine (de)coupled values. Both methods allow for a range of (de)coupled soil moisture values to be quantified. Results provide new insights into the decoupled range as its occurrence among the sites investigated is not limited to dry conditions.

  2. Using Muons to Image the Subsurface.

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, Nedra [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cashion, Avery Ted [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cieslewski, Grzegorz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dorsey, Daniel J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Foris, Adam [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Timothy J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Su, Jiann-Cherng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dreesen, Wendi [NSTec, Livermore, CA (United States); Green, J. Andrew [NSTec, Livermore, CA (United States); Schwellenbach, David [NSTec, Livermore, CA (United States)

    2016-11-01

    Muons are subatomic particles that can penetrate the earth 's crust several kilometers and may be useful for subsurface characterization . The absorption rate of muons depends on the density of the materials through which they pass. Muons are more sensitive to density variation than other phenomena, including gravity, making them beneficial for subsurface investigation . Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and the detector, much like a CAT scan. Currently, muon tomography can resolve features to the sub-meter scale. This work consists of three parts to address the use of muons for subsurface characterization : 1) assess the use of muon scattering for estimating density differences of common rock types, 2 ) using muon flux to detect a void in rock, 3) measure muon direction by designing a new detector. Results from this project lay the groundwork for future directions in this field. Low-density objects can be detected by muons even when enclosed in high-density material like lead, and even small changes in density (e.g. changes due to fracturing of material) can be detected. Rock density has a linear relationship with muon scattering density per rock volume when this ratio is greater than 0.10 . Limitations on using muon scattering to assess density changes among common rock types have been identified. However, other analysis methods may show improved results for these relatively low density materials. Simulations show that muons can be used to image void space (e.g. tunnels) within rock but experimental results have been ambiguous. Improvements are suggested to improve imaging voids such as tunnels through rocks. Finally, a muon detector has been designed and tested to measure muon direction, which will improve signal-to-noise ratio and help address fundamental questions about the source of upgoing muons .

  3. Molecular Simulation towards Efficient and Representative Subsurface Reservoirs Modeling

    KAUST Repository

    Kadoura, Ahmad

    2016-09-01

    This dissertation focuses on the application of Monte Carlo (MC) molecular simulation and Molecular Dynamics (MD) in modeling thermodynamics and flow of subsurface reservoir fluids. At first, MC molecular simulation is proposed as a promising method to replace correlations and equations of state in subsurface flow simulators. In order to accelerate MC simulations, a set of early rejection schemes (conservative, hybrid, and non-conservative) in addition to extrapolation methods through reweighting and reconstruction of pre-generated MC Markov chains were developed. Furthermore, an extensive study was conducted to investigate sorption and transport processes of methane, carbon dioxide, water, and their mixtures in the inorganic part of shale using both MC and MD simulations. These simulations covered a wide range of thermodynamic conditions, pore sizes, and fluid compositions shedding light on several interesting findings. For example, the possibility to have more carbon dioxide adsorbed with more preadsorbed water concentrations at relatively large basal spaces. The dissertation is divided into four chapters. The first chapter corresponds to the introductory part where a brief background about molecular simulation and motivations are given. The second chapter is devoted to discuss the theoretical aspects and methodology of the proposed MC speeding up techniques in addition to the corresponding results leading to the successful multi-scale simulation of the compressible single-phase flow scenario. In chapter 3, the results regarding our extensive study on shale gas at laboratory conditions are reported. At the fourth and last chapter, we end the dissertation with few concluding remarks highlighting the key findings and summarizing the future directions.

  4. Low temperature monitoring system for subsurface barriers

    Science.gov (United States)

    Vinegar, Harold J [Bellaire, TX; McKinzie, II Billy John [Houston, TX

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  5. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1991-06-01

    This study seeks to determine numbers, diversity, and morphology of anaerobic microorganisms in 15 samples of subsurface material from the Idaho National Engineering Laboratory, in 18 samples from the Hanford Reservation and in 1 rock sample from the Nevada Test Site; set up long term experiments on the chemical activities of anaerobic microorganisms based on these same samples; work to improve methods for the micro-scale determination of in situ anaerobic microbial activity;and to begin to isolate anaerobes from these samples into axenic culture with identification of the axenic isolates.

  6. Instrumented Moles for Planetary Subsurface Regolith Studies

    Science.gov (United States)

    Richter, L. O.; Coste, P. A.; Grzesik, A.; Knollenberg, J.; Magnani, P.; Nadalini, R.; Re, E.; Romstedt, J.; Sohl, F.; Spohn, T.

    2006-12-01

    Soil-like materials, or regolith, on solar system objects provide a record of physical and/or chemical weathering processes on the object in question and as such possess significant scientific relevance for study by landed planetary missions. In the case of Mars, a complex interplay has been at work between impact gardening, aeolian as well as possibly fluvial processes. This resulted in regolith that is texturally as well as compositionally layered as hinted at by results from the Mars Exploration Rover (MER) missions which are capable of accessing shallow subsurface soils by wheel trenching. Significant subsurface soil access on Mars, i.e. to depths of a meter or more, remains to be accomplished on future missions. This has been one of the objectives of the unsuccessful Beagle 2 landed element of the ESA Mars Express mission having been equipped with the Planetary Underground Tool (PLUTO) subsurface soil sampling Mole system capable of self-penetration into regolith due to an internal electro-mechanical hammering mechanism. This lightweight device of less than 900 g mass was designed to repeatedly obtain and deliver to the lander regolith samples from depths down to 2 m which would have been analysed for organic matter and, specifically, organic carbon from potential extinct microbial activity. With funding from the ESA technology programme, an evolved Mole system - the Instrumented Mole System (IMS) - has now been developed to a readiness level of TRL 6. The IMS is to serve as a carrier for in situ instruments for measurements in planetary subsurface soils. This could complement or even eliminate the need to recover samples to the surface. The Engineering Model hardware having been developed within this effort is designed for accommodating a geophysical instrument package (Heat Flow and Physical Properties Package, HP3) that would be capable of measuring regolith physical properties and planetary heat flow. The chosen design encompasses a two-body Mole

  7. Directional Dipole Model for Subsurface Scattering

    DEFF Research Database (Denmark)

    Frisvad, Jeppe Revall; Hachisuka, Toshiya; Kjeldsen, Thomas Kim

    2014-01-01

    Rendering translucent materials using Monte Carlo ray tracing is computationally expensive due to a large number of subsurface scattering events. Faster approaches are based on analytical models derived from diffusion theory. While such analytical models are efficient, they miss out on some...... point source diffusion. A ray source corresponds better to the light that refracts through the surface of a translucent material. Using this ray source, we are able to take the direction of the incident light ray and the direction toward the point of emergence into account. We use a dipole construction...

  8. In-situ Planetary Subsurface Imaging System

    Science.gov (United States)

    Song, W.; Weber, R. C.; Dimech, J. L.; Kedar, S.; Neal, C. R.; Siegler, M.

    2017-12-01

    Geophysical and seismic instruments are considered the most effective tools for studying the detailed global structures of planetary interiors. A planet's interior bears the geochemical markers of its evolutionary history, as well as its present state of activity, which has direct implications to habitability. On Earth, subsurface imaging often involves massive data collection from hundreds to thousands of geophysical sensors (seismic, acoustic, etc) followed by transfer by hard links or wirelessly to a central location for post processing and computing, which will not be possible in planetary environments due to imposed mission constraints on mass, power, and bandwidth. Emerging opportunities for geophysical exploration of the solar system from Venus to the icy Ocean Worlds of Jupiter and Saturn dictate that subsurface imaging of the deep interior will require substantial data reduction and processing in-situ. The Real-time In-situ Subsurface Imaging (RISI) technology is a mesh network that senses and processes geophysical signals. Instead of data collection then post processing, the mesh network performs the distributed data processing and computing in-situ, and generates an evolving 3D subsurface image in real-time that can be transmitted under bandwidth and resource constraints. Seismic imaging algorithms (including traveltime tomography, ambient noise imaging, and microseismic imaging) have been successfully developed and validated using both synthetic and real-world terrestrial seismic data sets. The prototype hardware system has been implemented and can be extended as a general field instrumentation platform tailored specifically for a wide variety of planetary uses, including crustal mapping, ice and ocean structure, and geothermal systems. The team is applying the RISI technology to real off-world seismic datasets. For example, the Lunar Seismic Profiling Experiment (LSPE) deployed during the Apollo 17 Moon mission consisted of four geophone instruments

  9. Prediction of future subsurface temperatures in Korea

    Science.gov (United States)

    Lee, Y.; Kim, S. K.; Jeong, J.; SHIN, E.

    2017-12-01

    The importance of climate change has been increasingly recognized because it has had the huge amount of impact on social, economic, and environmental aspect. For the reason, paleoclimate change has been studied intensively using different geological tools including borehole temperatures and future surface air temperatures (SATs) have been predicted for the local areas and the globe. Future subsurface temperatures can have also enormous impact on various areas and be predicted by an analytical method or a numerical simulation using measured and predicted SATs, and thermal diffusivity data of rocks. SATs have been measured at 73 meteorological observatories since 1907 in Korea and predicted at same locations up to the year of 2100. Measured SATs at the Seoul meteorological observatory increased by about 3.0 K from the year of 1907 to the present. Predicted SATs have 4 different scenarios depending on mainly CO2 concentration and national action plan on climate change in the future. The hottest scenario shows that SATs in Korea will increase by about 5.0 K from the present to the year of 2100. In addition, thermal diffusivity values have been measured on 2,903 rock samples collected from entire Korea. Data pretreatment based on autocorrelation analysis was conducted to control high frequency noise in thermal diffusivity data. Finally, future subsurface temperatures in Korea were predicted up to the year of 2100 by a FEM simulation code (COMSOL Multiphysics) using measured and predicted SATs, and thermal diffusivity data in Korea. At Seoul, the results of predictions show that subsurface temperatures will increase by about 5.4 K, 3.0 K, 1.5 K, and 0.2 K from the present to 2050 and then by about 7.9 K, 4.8 K, 2.5 K, and 0.5 K to 2100 at the depths of 10 m, 50 m, 100 m, and 200 m, respectively. We are now proceeding numerical simulations for subsurface temperature predictions for 73 locations in Korea.

  10. Parallel heater system for subsurface formations

    Science.gov (United States)

    Harris, Christopher Kelvin [Houston, TX; Karanikas, John Michael [Houston, TX; Nguyen, Scott Vinh [Houston, TX

    2011-10-25

    A heating system for a subsurface formation is disclosed. The system includes a plurality of substantially horizontally oriented or inclined heater sections located in a hydrocarbon containing layer in the formation. At least a portion of two of the heater sections are substantially parallel to each other. The ends of at least two of the heater sections in the layer are electrically coupled to a substantially horizontal, or inclined, electrical conductor oriented substantially perpendicular to the ends of the at least two heater sections.

  11. Surface-subsurface turbulent interaction at the interface of a permeable bed: influence of the wall permeability

    Science.gov (United States)

    Kim, T.; Blois, G.; Best, J.; Christensen, K. T.

    2017-12-01

    Coarse-gravel river beds possess a high degree of permeability. Flow interactions between surface and subsurface flow across the bed interface is key to a number of natural processes occurring in the hyporheic zone. In fact, it is increasingly recognized that these interactions drive mass, momentum and energy transport across the interface, and consequently control biochemical processes as well as stability of sediments. The current study explores the role of the wall permeability in surface and subsurface flow interaction under controlled experimental conditions on a physical model of a gravel bed. The present wall model was constructed by five layers of cubically arranged spheres (d=25.4mm, where d is a diameter) providing 48% of porosity. Surface topography was removed by cutting half of a diameter on the top layer of spheres to render the flow surface smooth and highlight the impact of the permeability on the overlying flow. An impermeable smooth wall was also considered as a baseline of comparison for the permeable wall flow. To obtain basic flow statistics, low-frame-rate high-resolution PIV measurements were performed first in the streamwise-wall-normal (x-y) plane and refractive-index matching was employed to optically access the flow within the permeable wall. Time-resolved PIV experiments in the same facility were followed to investigate the flow interaction across the wall interface in sptaio-temporal domain. In this paper, a detailed analysis of the first and second order velocity statistics as well as the amplitude modulation for the flow overlying the permeable smooth wall will be presented.

  12. Contaminated environments in the subsurface and bioremediation: organic contaminants

    OpenAIRE

    Holliger, Christof; Gaspard, Sarra; Glod, Guy; Heijman, Cornelis; Schumacher, Wolfram; Schwarzenbach, René P.; Vazquez, Francisco

    2017-01-01

    Due to leakages, spills, improper disposal and accidents during transport, organic compounds have become subsurface contaminants that threaten important drinking water resources. One strategy to remediate such polluted subsurface environments is to make use of the degradative capacity of bacteria. It is often sufficient to supply the subsurface with nutrients such as nitrogen and phosphorus, and aerobic treatments are still dominating. However, anaerobic processes have advantages such as low ...

  13. Subsurface water and clay mineral formation during the early history of Mars.

    Science.gov (United States)

    Ehlmann, Bethany L; Mustard, John F; Murchie, Scott L; Bibring, Jean-Pierre; Meunier, Alain; Fraeman, Abigail A; Langevin, Yves

    2011-11-02

    Clay minerals, recently discovered to be widespread in Mars's Noachian terrains, indicate long-duration interaction between water and rock over 3.7 billion years ago. Analysis of how they formed should indicate what environmental conditions prevailed on early Mars. If clays formed near the surface by weathering, as is common on Earth, their presence would indicate past surface conditions warmer and wetter than at present. However, available data instead indicate substantial Martian clay formation by hydrothermal groundwater circulation and a Noachian rock record dominated by evidence of subsurface waters. Cold, arid conditions with only transient surface water may have characterized Mars's surface for over 4 billion years, since the early-Noachian period, and the longest-duration aqueous, potentially habitable environments may have been in the subsurface.

  14. The Search for Sustainable Subsurface Habitats on Mars, and the Sampling of Impact Ejecta

    Directory of Open Access Journals (Sweden)

    Paula Lindgren

    2010-07-01

    Full Text Available On Earth, the deep subsurface biosphere of both the oceanic and the continental crust is well known for surviving harsh conditions and environments characterized by high temperatures, high pressures, extreme pHs, and the absence of sunlight. The microorganisms of the terrestrial deep biosphere have an excellent capacity for adapting to changing geochemistry, as the alteration of the crust proceeds and the conditions of their habitats slowly change. Despite an almost complete isolation from surface conditions and the surface biosphere, the deep biosphere of the crustal rocks has endured over geologic time. This indicates that the deep biosphere is a self-sufficient system, independent of the global events that occur at the surface, such as impacts, glaciations, sea level fluctuations, and climate changes. With our sustainable terrestrial subsurface biosphere in mind, the subsurface on Mars has often been suggested as the most plausible place to search for fossil Martian life, or even present Martian life. Since the Martian surface is more or less sterile, subsurface settings are the only place on Mars where life could have been sustained over geologic time. To detect a deep biosphere in the Martian basement, drilling is a requirement. However, near future Mars sample return missions are limited by the mission’s payload, which excludes heavy drilling equipment and restrict the missions to only dig the topmost meter of the Martian soil. Therefore, the sampling and analysis of Martian impact ejecta has been suggested as a way of accessing the deeper Martian subsurface without using heavy drilling equipment. Impact cratering is a natural geological process capable of excavating and exposing large amounts of rock material from great depths up to the surface. Several studies of terrestrial impact deposits show the preservation of pre-impact biosignatures, such as fossilized organisms and chemical biological markers. Therefore, if the Martian

  15. Predictability of Subsurface Temperature and the AMOC

    Science.gov (United States)

    Chang, Y.; Schubert, S. D.

    2013-12-01

    GEOS 5 coupled model is extensively used for experimental decadal climate prediction. Understanding the limits of decadal ocean predictability is critical for making progress in these efforts. Using this model, we study the subsurface temperature initial value predictability, the variability of the Atlantic meridional overturning circulation (AMOC) and its impacts on the global climate. Our approach is to utilize the idealized data assimilation technology developed at the GMAO. The technique 'replay' allows us to assess, for example, the impact of the surface wind stresses and/or precipitation on the ocean in a very well controlled environment. By running the coupled model in replay mode we can in fact constrain the model using any existing reanalysis data set. We replay the model constraining (nudging) it to the MERRA reanalysis in various fields from 1948-2012. The fields, u,v,T,q,ps, are adjusted towards the 6-hourly analyzed fields in atmosphere. The simulated AMOC variability is studied with a 400-year-long segment of replay integration. The 84 cases of 10-year hindcasts are initialized from 4 different replay cycles. Here, the variability and predictability are examined further by a measure to quantify how much the subsurface temperature and AMOC variability has been influenced by atmospheric forcing and by ocean internal variability. The simulated impact of the AMOC on the multi-decadal variability of the SST, sea surface height (SSH) and sea ice extent is also studied.

  16. Geophysical data fusion for subsurface imaging

    International Nuclear Information System (INIS)

    Hoekstra, P.; Vandergraft, J.; Blohm, M.; Porter, D.

    1993-08-01

    A geophysical data fusion methodology is under development to combine data from complementary geophysical sensors and incorporate geophysical understanding to obtain three dimensional images of the subsurface. The research reported here is the first phase of a three phase project. The project focuses on the characterization of thin clay lenses (aquitards) in a highly stratified sand and clay coastal geology to depths of up to 300 feet. The sensor suite used in this work includes time-domain electromagnetic induction (TDEM) and near surface seismic techniques. During this first phase of the project, enhancements to the acquisition and processing of TDEM data were studied, by use of simulated data, to assess improvements for the detection of thin clay layers. Secondly, studies were made of the use of compressional wave and shear wave seismic reflection data by using state-of-the-art high frequency vibrator technology. Finally, a newly developed processing technique, called ''data fusion,'' was implemented to process the geophysical data, and to incorporate a mathematical model of the subsurface strata. Examples are given of the results when applied to real seismic data collected at Hanford, WA, and for simulated data based on the geology of the Savannah River Site

  17. Atmospheric energy for subsurface life on Mars?

    Science.gov (United States)

    Weiss, B. P.; Yung, Y. L.; Nealson, K. H.

    2000-01-01

    The location and density of biologically useful energy sources on Mars will limit the biomass, spatial distribution, and organism size of any biota. Subsurface Martian organisms could be supplied with a large energy flux from the oxidation of photochemically produced atmospheric H(2) and CO diffusing into the regolith. However, surface abundance measurements of these gases demonstrate that no more than a few percent of this available flux is actually being consumed, suggesting that biological activity driven by atmospheric H(2) and CO is limited in the top few hundred meters of the subsurface. This is significant because the available but unused energy is extremely large: for organisms at 30-m depth, it is 2,000 times previous estimates of hydrothermal and chemical weathering energy and far exceeds the energy derivable from other atmospheric gases. This also implies that the apparent scarcity of life on Mars is not attributable to lack of energy. Instead, the availability of liquid water may be a more important factor limiting biological activity because the photochemical energy flux can only penetrate to 100- to 1,000-m depth, where most H(2)O is probably frozen. Because both atmospheric and Viking lander soil data provide little evidence for biological activity, the detection of short-lived trace gases will probably be a better indicator of any extant Martian life.

  18. Contaminant geochemistry. Interactions and transport in the subsurface environment

    Energy Technology Data Exchange (ETDEWEB)

    Berkowitz, Brian; Dror, Ishai; Yaron, Bruno [Weizmann Institute of Science, Rehovot (Israel). Dept. of Environmental Sciences and Energy Research

    2008-07-01

    This book combines earth science, subsurface hydrology and environmental geochemistry, providing a comprehensive background for specialists interested in the protection and sustainable management of the subsurface environment. The reader is introduced to the chemistry of contaminants, which usually disturb the natural equilibrium in the subsurface as a result of human activity. The major focus of the book is on contaminant reactions in soil solutions, groundwater and porous media solid phases, accounting for their persistence and transformation in the subsurface, as they are transported from the land surface into groundwater. Discussions on selected case studies are provided. (orig.)

  19. Method of imaging the electrical conductivity distribution of a subsurface

    Science.gov (United States)

    Johnson, Timothy C.

    2017-09-26

    A method of imaging electrical conductivity distribution of a subsurface containing metallic structures with known locations and dimensions is disclosed. Current is injected into the subsurface to measure electrical potentials using multiple sets of electrodes, thus generating electrical resistivity tomography measurements. A numeric code is applied to simulate the measured potentials in the presence of the metallic structures. An inversion code is applied that utilizes the electrical resistivity tomography measurements and the simulated measured potentials to image the subsurface electrical conductivity distribution and remove effects of the subsurface metallic structures with known locations and dimensions.

  20. Microbial communities in the deep subsurface

    Science.gov (United States)

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface

  1. Drain current enhancement induced by hole injection from gate of 600-V-class normally off gate injection transistor under high temperature conditions up to 200 °C

    Science.gov (United States)

    Ishii, Hajime; Ueno, Hiroaki; Ueda, Tetsuzo; Endoh, Tetsuo

    2018-06-01

    In this paper, the current–voltage (I–V) characteristics of a 600-V-class normally off GaN gate injection transistor (GIT) from 25 to 200 °C are analyzed, and it is revealed that the drain current of the GIT increases during high-temperature operation. It is found that the maximum drain current (I dmax) of the GIT is 86% higher than that of a conventional 600-V-class normally off GaN metal insulator semiconductor hetero-FET (MIS-HFET) at 150 °C, whereas the GIT obtains 56% I dmax even at 200 °C. Moreover, the mechanism of the drain current increase of the GIT is clarified by examining the relationship between the temperature dependence of the I–V characteristics of the GIT and the gate hole injection effect determined from the shift of the second transconductance (g m) peak of the g m–V g characteristic. From the above, the GIT is a promising device with enough drivability for future power switching applications even under high-temperature conditions.

  2. Final report - Reduction of mercury in saturated subsurface sediments and its potential to mobilize mercury in its elemental form

    Energy Technology Data Exchange (ETDEWEB)

    Bakray, Tamar [Rutgers University

    2013-06-13

    The goal of our project was to investigate Hg(II) reduction in the deep subsurface. We focused on microbial and abiotic pathways of reduction and explored how it affected the toxicity and mobility of Hg in this unique environment. The project’s tasks included: 1. Examining the role of mer activities in the reduction of Hg(II) in denitrifying enrichment cultures; 2. Investigating the biotic/abiotic reduction of Hg(II) under iron reducing conditions; 3. Examining Hg(II) redox transformations under anaerobic conditions in subsurface sediments from DOE sites.

  3. Feasibility of permeation grouting for constructing subsurface barriers

    International Nuclear Information System (INIS)

    Dwyer, B.P.

    1994-04-01

    Efforts are being made to devise technologies that provide interim containment of waste sites while final remediation alternatives are developed. Permeation grouting, a technique used extensively in the civil and mining engineering industry has been investigated as a method for emplacing a subsurface containment barrier beneath existing waste sites. Conceptually an underlying barrier is placed by injecting grout into the formation at less than fracturing pressure from a series of directionally drilled boreholes beneath the waste site. This study evaluated the penetration and performance characteristics in varying soil conditions of four different grout materials (two microfine cements, mineral wax, and sodium silicate) at a field scale. Field testing consisted of grout injection via sleeve (tube-a'-manchette) pipe into both vertical and horizontal borehole configurations at the Mixed Waste Landfill Integrated Demonstration site at Sandia National Laboratories. Prior to, during, and after grout injection non-intrusive geophysical techniques were used to map grout flow. Following the tests, the site was excavated to reveal details of the grout permeation, and grouted soil samples were cored for laboratory characterization. The non-intrusive and intrusive grout mapping showed preferential flow patterns, i.e., the grout tended to follow the path of least resistance. Preliminary testing indicates that permeation grouting is a feasible method for emplacing a low permeability subsurface barrier in the semi-arid unconsolidated alluvial soils common to the Southwest. Despite the success of this project, difficulties in predicting grout flow in heterogeneous soils and non-intrusive methods for imaging grout location and continuity are issues that need more attention

  4. Some Ecological Mechanisms to Generate Habitability in Planetary Subsurface Areas by Chemolithotrophic Communities: The Ro Tinto Subsurface Ecosystem as a Model System

    Science.gov (United States)

    Fernández-Remolar, David C.; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T.; Rodríguez, Nuria; Amiols, Ricardo

    2008-02-01

    Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Ro Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Ro Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.

  5. Some ecological mechanisms to generate habitability in planetary subsurface areas by chemolithotrophic communities: the Río Tinto subsurface ecosystem as a model system.

    Science.gov (United States)

    Fernández-Remolar, David C; Gómez, Felipe; Prieto-Ballesteros, Olga; Schelble, Rachel T; Rodríguez, Nuria; Amils, Ricardo

    2008-02-01

    Chemolithotrophic communities that colonize subsurface habitats have great relevance for the astrobiological exploration of our Solar System. We hypothesize that the chemical and thermal stabilization of an environment through microbial activity could make a given planetary region habitable. The MARTE project ground-truth drilling campaigns that sampled cryptic subsurface microbial communities in the basement of the Río Tinto headwaters have shown that acidic surficial habitats are the result of the microbial oxidation of pyritic ores. The oxidation process is exothermic and releases heat under both aerobic and anaerobic conditions. These microbial communities can maintain the subsurface habitat temperature through storage heat if the subsurface temperature does not exceed their maximum growth temperature. In the acidic solutions of the Río Tinto, ferric iron acts as an effective buffer for controlling water pH. Under anaerobic conditions, ferric iron is the oxidant used by microbes to decompose pyrite through the production of sulfate, ferrous iron, and protons. The integration between the physical and chemical processes mediated by microorganisms with those driven by the local geology and hydrology have led us to hypothesize that thermal and chemical regulation mechanisms exist in this environment and that these homeostatic mechanisms could play an essential role in creating habitable areas for other types of microorganisms. Therefore, searching for the physicochemical expression of extinct and extant homeostatic mechanisms through physical and chemical anomalies in the Mars crust (i.e., local thermal gradient or high concentration of unusual products such as ferric sulfates precipitated out from acidic solutions produced by hypothetical microbial communities) could be a first step in the search for biological traces of a putative extant or extinct Mars biosphere.

  6. Large temporal scale and capacity subsurface bulk energy storage with CO2

    Science.gov (United States)

    Saar, M. O.; Fleming, M. R.; Adams, B. M.; Ogland-Hand, J.; Nelson, E. S.; Randolph, J.; Sioshansi, R.; Kuehn, T. H.; Buscheck, T. A.; Bielicki, J. M.

    2017-12-01

    Decarbonizing energy systems by increasing the penetration of variable renewable energy (VRE) technologies requires efficient and short- to long-term energy storage. Very large amounts of energy can be stored in the subsurface as heat and/or pressure energy in order to provide both short- and long-term (seasonal) storage, depending on the implementation. This energy storage approach can be quite efficient, especially where geothermal energy is naturally added to the system. Here, we present subsurface heat and/or pressure energy storage with supercritical carbon dioxide (CO2) and discuss the system's efficiency, deployment options, as well as its advantages and disadvantages, compared to several other energy storage options. CO2-based subsurface bulk energy storage has the potential to be particularly efficient and large-scale, both temporally (i.e., seasonal) and spatially. The latter refers to the amount of energy that can be stored underground, using CO2, at a geologically conducive location, potentially enabling storing excess power from a substantial portion of the power grid. The implication is that it would be possible to employ centralized energy storage for (a substantial part of) the power grid, where the geology enables CO2-based bulk subsurface energy storage, whereas the VRE technologies (solar, wind) are located on that same power grid, where (solar, wind) conditions are ideal. However, this may require reinforcing the power grid's transmission lines in certain parts of the grid to enable high-load power transmission from/to a few locations.

  7. Performance and risk assessment of subsurface barriers for single-shell tank waste retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Bazinet, G.D.; Cruse, J.M.; Hampsten, K.L. [Westinghouse Hanford Co., Richland, WA (United States); Treat, R.L.

    1995-02-01

    Subsurface barriers are among various alternatives under evaluation to mitigate the threat of leakage from the Hanford Site`s 149 single-shell high-level radioactive waste tanks. The Tank Waste Remediation System (TWRS) division of Westinghouse Hanford Company is conducting this evaluation of subsurface barriers and other alternatives, focusing on risk and cost as performance measures. A number of alternative retrieval/closure approaches were evaluated in terms of risks (carcinogenic and toxicological) to a postulated maximally exposed individual. In addition, worker and accident risks were evaluated and factors developed for each alternative on a relative basis. The work performed to date indicates the use of subsurface barriers may potentially reduce public risk by limiting contamination of groundwater below the Hanford Site; however, the cost in terms of actual funding and in elevated worker risk is significant. The analyses also assume certain performance levels for technologies that have not been demonstrated in field conditions similar to Hanford Site tank farms. The evaluations summarized herein are being used to support a decision by representatives of the US Department of Energy, Richland Operations Office, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA) regarding potential further development of subsurface barrier technology.

  8. Performance and risk assessment of subsurface barriers for single-shell tank waste retrieval

    International Nuclear Information System (INIS)

    Bazinet, G.D.; Cruse, J.M.; Hampsten, K.L.; Treat, R.L.

    1995-02-01

    Subsurface barriers are among various alternatives under evaluation to mitigate the threat of leakage from the Hanford Site's 149 single-shell high-level radioactive waste tanks. The Tank Waste Remediation System (TWRS) division of Westinghouse Hanford Company is conducting this evaluation of subsurface barriers and other alternatives, focusing on risk and cost as performance measures. A number of alternative retrieval/closure approaches were evaluated in terms of risks (carcinogenic and toxicological) to a postulated maximally exposed individual. In addition, worker and accident risks were evaluated and factors developed for each alternative on a relative basis. The work performed to date indicates the use of subsurface barriers may potentially reduce public risk by limiting contamination of groundwater below the Hanford Site; however, the cost in terms of actual funding and in elevated worker risk is significant. The analyses also assume certain performance levels for technologies that have not been demonstrated in field conditions similar to Hanford Site tank farms. The evaluations summarized herein are being used to support a decision by representatives of the US Department of Energy, Richland Operations Office, the Washington State Department of Ecology (Ecology), and the US Environmental Protection Agency (EPA) regarding potential further development of subsurface barrier technology

  9. Microbial redox processes in deep subsurface environments and the potential application of (perchlorate in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Martin G Liebensteiner

    2014-09-01

    Full Text Available The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese- and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (perchlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (perchlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (perchlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (metagenome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (perchlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (perchlorate for bioremediation, souring control and microbial enhanced oil recovery are addressed.

  10. Direct thermal effects of the Hadean bombardment did not limit early subsurface habitability

    Science.gov (United States)

    Grimm, R. E.; Marchi, S.

    2018-03-01

    Intense bombardment is considered characteristic of the Hadean and early Archean eons, yet some detrital zircons indicate that near-surface water was present and thus at least intervals of clement conditions may have existed. We investigate the habitability of the top few kilometers of the subsurface by updating a prior approach to thermal evolution of the crust due to impact heating, using a revised bombardment history, a more accurate thermal model, and treatment of melt sheets from large projectiles (>100 km diameter). We find that subsurface habitable volume grows nearly continuously throughout the Hadean and early Archean (4.5-3.5 Ga) because impact heat is dissipated rapidly compared to the total duration and waning strength of the bombardment. Global sterilization was only achieved using an order of magnitude more projectiles in 1/10 the time. Melt sheets from large projectiles can completely resurface the Earth several times prior to ∼4.2 Ga but at most once since then. Even in the Hadean, melt sheets have little effect on habitability because cooling times are short compared to resurfacing intervals, allowing subsurface biospheres to be locally re-established by groundwater infiltration between major impacts. Therefore the subsurface is always habitable somewhere, and production of global steam or silicate-vapor atmospheres are the only remaining avenues to early surface sterilization by bombardment.

  11. Structure and function of subsurface microbial communities affecting radionuclide transport and bioimmobilization

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Joel E. [Florida State Univ., Tallahassee, FL (United States); Prakash, Om [Florida State Univ., Tallahassee, FL (United States); Green, Stefan J. [Florida State Univ., Tallahassee, FL (United States); Akob, Denise [Florida State Univ., Tallahassee, FL (United States); Jasrotia, Puja [Florida State Univ., Tallahassee, FL (United States); Kerkhof, Lee [Rutgers Univ., New Brunswick, NJ (United States); Chin, Kuk-Jeong [Georgia State Univ., Atlanta, GA (United States); Sheth, Mili [Georgia State Univ., Atlanta, GA (United States); Keller, Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Venkateswaran, Amudhan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Elkins, James G. [Univ. of Illinois, Urbana-Champaign, IL (United States); Stucki, Joseph W. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2012-05-01

    Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. The ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).

  12. Shot Peening Effects on Subsurface Layer Properties and Fatigue Performance of Case-Hardened 18CrNiMo7-6 Steel

    Directory of Open Access Journals (Sweden)

    H. S. Ho

    2018-01-01

    Full Text Available The present study is conducted with a dual-aim: firstly, to examine the effect of several single shot peening conditions on the subsurface layer properties and fatigue performance of the case-hardened 18CrNiMo7-6 steel, and secondly, to propose an optimized peening condition for improved fatigue performance. By carrying out the subsurface integrity analysis and fatigue testing, the underlying relationships among the peening process, subsurface layer property and fatigue performance are investigated, the way peening conditions affect the fatigue life and its associated scatter for the case-hardened 18CrNiMo7-6 steel is quantitatively assessed. The in-depth study shows that dual peening can be an optimized solution, for it is able to produce a subsurface layer with enhanced properties and eventually gain a significant improvement in fatigue performance.

  13. Subsurface data visualization in Virtual Reality

    Science.gov (United States)

    Krijnen, Robbert; Smelik, Ruben; Appleton, Rick; van Maanen, Peter-Paul

    2017-04-01

    Due to their increasing complexity and size, visualization of geological data is becoming more and more important. It enables detailed examining and reviewing of large volumes of geological data and it is often used as a communication tool for reporting and education to demonstrate the importance of the geology to policy makers. In the Netherlands two types of nation-wide geological models are available: 1) Layer-based models in which the subsurface is represented by a series of tops and bases of geological or hydrogeological units, and 2) Voxel models in which the subsurface is subdivided in a regular grid of voxels that can contain different properties per voxel. The Geological Survey of the Netherlands (GSN) provides an interactive web portal that delivers maps and vertical cross-sections of such layer-based and voxel models. From this portal you can download a 3D subsurface viewer that can visualize the voxel model data of an area of 20 × 25 km with 100 × 100 × 5 meter voxel resolution on a desktop computer. Virtual Reality (VR) technology enables us to enhance the visualization of this volumetric data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of-the-shelf VR hardware enabled us to create an new intuitive and low visualization tool. A VR viewer has been implemented using the HTC Vive head set and allows visualization and analysis of the GSN voxel model data with geological or hydrogeological units. The user can navigate freely around the voxel data (20 × 25 km) which is presented in a virtual room at a scale of 2 × 2 or 3 × 3 meters. To enable analysis, e.g. hydraulic conductivity, the user can select filters to remove specific hydrogeological units. The user can also use slicing to cut-off specific sections of the voxel data to get a closer look. This slicing

  14. Anaerobic microbial transformations of radioactive wastes in subsurface environments

    International Nuclear Information System (INIS)

    Francis, A.J.

    1984-01-01

    Radioactive wastes disposed of in subsurface environments contain a variety of radionuclides and organic compounds. Microorganisms play a major role in the transformation of organic and inorganic constituents of the waste and are partly responsible for the problems encountered at the waste disposal sites. These include microbial degradation of waste forms resulting in trench cover subsidence, migration of radionuclides, and production of radioactive gases such as 14 CO 2 , 14 CH 4 , HT, and CH 3 T. Microbial processes involved in solubilization, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are reviewed. Complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and heavy metals from the wastes. Microorganisms play a significant role in the transformation and cycling of tritium in the environment by (i) oxidation of tritium and tritiated methane under aerobic conditions and (ii) production of tritium and tritiated methane from wastes containing tritiated water and organic compounds under anaerobic conditions. 23 references, 2 figures, 2 tables

  15. Repository Subsurface Preliminary Fire Hazard Analysis

    International Nuclear Information System (INIS)

    Logan, Richard C.

    2001-01-01

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M and O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents

  16. Longevity of magma in the near subsurface

    International Nuclear Information System (INIS)

    Marsh, B.D.; Resmini, R.G.

    1992-01-01

    Small, sporadic occurrences of basaltic volcanism are particularly difficult to evaluate in terms of long term threat to mankind because of their short overall eruptive history. Insight into future eruptive vigor and possible subsurface magma storage may be furnished by studying the ages of crystals in the eruptive products themselves. In this paper, the authors do this by applying the method of crystal size distribution theory (CSD) to a stack of basaltic lavas within the Nevada test site; namely the Dome Mtn. lavas. Preliminary results suggest a pre-eruptive residence time of 10 - 20 years, decreasing with decreasing age of lava within the sequence. These times are similar to those found by M.T. Mangan for the 1959 Kilauea (Hawaii) eruptions, and may suggest a relatively vigorous magmatic system at this time some 8 m.y. ago. Work is progressing on a greatly expanded CSD analysis of the Dome Mtn. lavas

  17. Physiologically anaerobic microorganisms of the deep subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, S.E. Jr.; Chung, K.T.

    1992-06-01

    A variety of different media were used to isolate facultatively (FAB) and obligately anaerobic bacteria (OAB). These bacteria were isolated from core subsamples obtained from boreholes at the Idaho National Engineering Lab. (INEL) or at the Hanford Lab. (Yakima). Core material was sampled at various depths to 600 feet below the surface. All core samples with culturable bacteria contained at least FAB making thisthe most common physiological type of anaerobic bacteria present in the deep subsurface at these two sites. INEL core samples are characterized by isolates of both FAB and OAB. No isolates of acetogenic, methanogenic, or sulfate reducing bacteria were obtained. Yakima core samples are characterized by a marked predominance of FAB in comparison to OAB. In addition, isolates of acetogenic, methanogenic, and sulfate reducing bacteria were obtained. The Yakima site has the potential for complete anaerobic mineralization of organic compounds whereas this potential appears to be lacking at INEL.

  18. Acclimation of subsurface microbial communities to mercury

    DEFF Research Database (Denmark)

    de Lipthay, Julia R; Rasmussen, Lasse D; Øregaard, Gunnar

    2008-01-01

    of mercury tolerance and functional versatility of bacterial communities in contaminated soils initially were higher for surface soil, compared with the deeper soils. However, following new mercury exposure, no differences between bacterial communities were observed, which indicates a high adaptive potential......We studied the acclimation to mercury of bacterial communities of different depths from contaminated and noncontaminated floodplain soils. The level of mercury tolerance of the bacterial communities from the contaminated site was higher than those of the reference site. Furthermore, the level...... of the subsurface communities, possibly due to differences in the availability of mercury. IncP-1 trfA genes were detected in extracted community DNA from all soil depths of the contaminated site, and this finding was correlated to the isolation of four different mercury-resistance plasmids, all belonging...

  19. Letter report: Ari Patrinos -- Subsurface bioremediation

    International Nuclear Information System (INIS)

    Happer, W.; MacDonald, G.J.; Ruderman, M.A.; Treiman, S.B.

    1995-01-01

    During the past summer, the authors had the opportunity to examine aspects of the remediation program of the Department of Energy (DOE). The most important conclusion that they have come to is that there is an urgent need to mount a comprehensive research program in remediation. It is also clear to them that DOE does not have the funding to carry out a program on the scale that is required. On the other hand, Environmental Management could very well fund such activities. They would hope that in the future there would be close collaboration between Environmental Management and Energy Research in putting together a comprehensive and well thought-out research program. Here, the authors comment on one aspect of remediation: subsurface bioremediation

  20. Imaging the Subsurface with Upgoing Muons

    Science.gov (United States)

    Bonal, N.; Preston, L. A.; Schwellenbach, D.; Dreesen, W.; Green, A.

    2014-12-01

    We assess the feasibility of imaging the subsurface using upgoing muons. Traditional muon imaging focuses on more-prevalent downgoing muons. Muons are subatomic particles capable of penetrating the earth's crust several kilometers. Downgoing muons have been used to image the Pyramid of Khafre of Giza, various volcanoes, and smaller targets like cargo. Unfortunately, utilizing downgoing muons requires below-target detectors. For aboveground objects like a volcano, the detector is placed at the volcano's base and the top portion of the volcano is imaged. For underground targets like tunnels, the detector would have to be placed below the tunnel in a deeper tunnel or adjacent borehole, which can be costly and impractical for some locations. Additionally, detecting and characterizing subsurface features like voids from tunnels can be difficult. Typical characterization methods like sonar, seismic, and ground penetrating radar have shown mixed success. Voids have a marked density contrast with surrounding materials, so using methods sensitive to density variations would be ideal. High-energy cosmic ray muons are more sensitive to density variation than other phenomena, including gravity. Their absorption rate depends on the density of the materials through which they pass. Measurements of muon flux rate at differing directions provide density variations of the materials between the muon source (cosmic rays and neutrino interactions) and detector, much like a CAT scan. Currently, tomography using downgoing muons can resolve features to the sub-meter scale. We present results of exploratory work, which demonstrates that upgoing muon fluxes appear sufficient to achieve target detection within a few months. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Agriculture and wildlife: ecological implications of subsurface irrigation drainage

    Science.gov (United States)

    A. Dennis Lemly

    1994-01-01

    Subsurface agricultural irrigation drainage is a wastewater with the potential to severely impact wetlands and wildlife populations. Widespread poisoning of migratory birds by drainwater contaminants has occurred in the western United States and waterfowl populations are threatened in the Pacific and Central flyways. Irrigated agriculture could produce subsurface...

  2. DEMONSTRATION BULLETIN: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM - BROWN & ROOT ENVIRONMENTAL

    Science.gov (United States)

    The Subsurface Volatilization and Ventilation System (SVVS*) is an in-situ vacuum extraction/air sparging and bioremediation technology for the treatment of subsurface organic contamination in soil and groundwater. The technology, developed by Billings and Associates, Inc., and o...

  3. Water and nitrogen requirements of subsurface drip irrigated pomegranate

    Science.gov (United States)

    Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...

  4. Geochemical characterization of subsurface sediments in the Netherlands

    NARCIS (Netherlands)

    Huisman, D.J.

    1998-01-01

    Traditionally, the Netherlands' subsurface is mainly used to obtain good quality drinking and industrial waters from the different aquifers. Due to the lack of space on the surface, increasing environmental problems and demand for energy, the subsurface will be used increasingly for other

  5. Selection of organic chemicals for subsurface transport. Subsurface transport program interaction seminar series. Summary

    International Nuclear Information System (INIS)

    Zachara, J.M.; Wobber, F.J.

    1984-11-01

    Model compounds are finding increasing use in environmental research. These individual compounds are selected as surrogates of important contaminants present in energy/defense wastes and their leachates and are used separately or as mixtures in research to define the anticipated or ''model'' environmental behavior of key waste components and to probe important physicochemical mechanisms involved in transport and fate. A seminar was held in Germantown, Maryland, April 24-25, 1984 to discuss the nature of model organic compounds being used for subsurface transport research. The seminar included participants experienced in the fields of environmental chemistry, microbiology, geohydrology, biology, and analytic chemistry. The objectives of the seminar were two-fold: (1) to review the rationale for the selection of organic compounds adopted by research groups working on the subsurface transport of organics, and (2) to evaluate the use of individual compounds to bracket the behavior of compound classes and compound constructs to approximate the behavior of complex organic mixtures

  6. Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site

    Energy Technology Data Exchange (ETDEWEB)

    Green, Stefan [Florida State University; Prakash, Om [Florida State University; Jasrotia, Puja [Florida State University; Overholt, Will [Florida State University; Cardenas, Erick [Michigan State University, East Lansing; Hubbard, Daniela [Florida State University; Tiedje, James M. [Michigan State University, East Lansing; Watson, David B [ORNL; Schadt, Christopher Warren [ORNL; Brooks, Scott C [ORNL; Kostka, Joel [Florida State University

    2011-01-01

    The effect of long-term mixed-waste contamination, particularly uranium and nitrate, on the microbial community in the terrestrial subsurface was investigated at the field scale at the Oak Ridge Integrated Field Research Challenge (ORIFRC) site in Oak Ridge, TN. The abundance, community composition, and distribution of groundwater microorganisms were examined across the site during two seasonal sampling events. At representative locations, subsurface sediment was also examined from two boreholes, one sampled from the most heavily contaminated area of the site and another from an area with low contamination. A suite of DNA- and RNA-based molecular tools were employed for community characterization, including quantitative PCR of ribosomal RNA and nitrite reductase genes, community composition fingerprinting analysis, and high-throughput pyrotag sequencing of rRNA genes. The results demonstrate that pH is a major driver of the subsurface microbial community structure, and denitrifying bacteria from the genus Rhodanobacter (class Gammaproteobacteria) dominate at low pH. The relative abundance of bacteria from this genus was positively correlated with lower pH conditions, and these bacteria were abundant and active in the most highly contaminated areas. Other factors, such as concentration of nitrogen species, oxygen and sampling season did not appear to strongly influence the distribution of Rhodanobacter. Results indicate that these organisms are acid-tolerant denitrifiers, well suited to the acidic, nitrate-rich subsurface conditions, and pH is confirmed as a dominant driver of bacterial community structure in this contaminated subsurface environment.

  7. Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

    2008-02-29

    This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

  8. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin; Martin Keller; Joseph W. Stucki

    2011-06-15

    The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where the subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which

  9. Normal Pressure Hydrocephalus (NPH)

    Science.gov (United States)

    ... local chapter Join our online community Normal Pressure Hydrocephalus (NPH) Normal pressure hydrocephalus is a brain disorder ... Symptoms Diagnosis Causes & risks Treatments About Normal Pressure Hydrocephalus Normal pressure hydrocephalus occurs when excess cerebrospinal fluid ...

  10. Integrating real-time subsurface hydrologic monitoring with empirical rainfall thresholds to improve landslide early warning

    Science.gov (United States)

    Mirus, Benjamin B.; Becker, Rachel E.; Baum, Rex L.; Smith, Joel B.

    2018-01-01

    Early warning for rainfall-induced shallow landsliding can help reduce fatalities and economic losses. Although these commonly occurring landslides are typically triggered by subsurface hydrological processes, most early warning criteria rely exclusively on empirical rainfall thresholds and other indirect proxies for subsurface wetness. We explore the utility of explicitly accounting for antecedent wetness by integrating real-time subsurface hydrologic measurements into landslide early warning criteria. Our efforts build on previous progress with rainfall thresholds, monitoring, and numerical modeling along the landslide-prone railway corridor between Everett and Seattle, Washington, USA. We propose a modification to a previously established recent versus antecedent (RA) cumulative rainfall thresholds by replacing the antecedent 15-day rainfall component with an average saturation observed over the same timeframe. We calculate this antecedent saturation with real-time telemetered measurements from five volumetric water content probes installed in the shallow subsurface within a steep vegetated hillslope. Our hybrid rainfall versus saturation (RS) threshold still relies on the same recent 3-day rainfall component as the existing RA thresholds, to facilitate ready integration with quantitative precipitation forecasts. During the 2015–2017 monitoring period, this RS hybrid approach has an increase of true positives and a decrease of false positives and false negatives relative to the previous RA rainfall-only thresholds. We also demonstrate that alternative hybrid threshold formats could be even more accurate, which suggests that further development and testing during future landslide seasons is needed. The positive results confirm that accounting for antecedent wetness conditions with direct subsurface hydrologic measurements can improve thresholds for alert systems and early warning of rainfall-induced shallow landsliding.

  11. Nitrogen patterns in subsurface waters of the Yzeron stream: effect of combined sewer overflows and subsurface-surface water mixing.

    Science.gov (United States)

    Aucour, A M; Bariac, T; Breil, P; Namour, P; Schmitt, L; Gnouma, R; Zuddas, P

    2013-01-01

    Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ(18)O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ(18)O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20-30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.

  12. Integrating experimental and numerical methods for a scenario-based quantitative assessment of subsurface energy storage options

    Science.gov (United States)

    Kabuth, Alina; Dahmke, Andreas; Hagrey, Said Attia al; Berta, Márton; Dörr, Cordula; Koproch, Nicolas; Köber, Ralf; Köhn, Daniel; Nolde, Michael; Tilmann Pfeiffer, Wolf; Popp, Steffi; Schwanebeck, Malte; Bauer, Sebastian

    2016-04-01

    Within the framework of the transition to renewable energy sources ("Energiewende"), the German government defined the target of producing 60 % of the final energy consumption from renewable energy sources by the year 2050. However, renewable energies are subject to natural fluctuations. Energy storage can help to buffer the resulting time shifts between production and demand. Subsurface geological structures provide large potential capacities for energy stored in the form of heat or gas on daily to seasonal time scales. In order to explore this potential sustainably, the possible induced effects of energy storage operations have to be quantified for both specified normal operation and events of failure. The ANGUS+ project therefore integrates experimental laboratory studies with numerical approaches to assess subsurface energy storage scenarios and monitoring methods. Subsurface storage options for gas, i.e. hydrogen, synthetic methane and compressed air in salt caverns or porous structures, as well as subsurface heat storage are investigated with respect to site prerequisites, storage dimensions, induced effects, monitoring methods and integration into spatial planning schemes. The conceptual interdisciplinary approach of the ANGUS+ project towards the integration of subsurface energy storage into a sustainable subsurface planning scheme is presented here, and this approach is then demonstrated using the examples of two selected energy storage options: Firstly, the option of seasonal heat storage in a shallow aquifer is presented. Coupled thermal and hydraulic processes induced by periodic heat injection and extraction were simulated in the open-source numerical modelling package OpenGeoSys. Situations of specified normal operation as well as cases of failure in operational storage with leaking heat transfer fluid are considered. Bench-scale experiments provided parameterisations of temperature dependent changes in shallow groundwater hydrogeochemistry. As a

  13. Direct Extraction of InP/GaAsSb/InP DHBT Equivalent-Circuit Elements From S-Parameters Measured at Cut-Off and Normal Bias Conditions

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Leblanc, Rémy; Poulain, Julien

    2016-01-01

    A unique direct parameter extraction method for the small-signal equivalent-circuit model of InP/GaAsSb/InP double heterojunction bipolar transistors (DHBTs) is presented. $S$-parameters measured at cut-off bias are used, at first, to extract the distribution factor $X_{0}$ for the base-collector......A unique direct parameter extraction method for the small-signal equivalent-circuit model of InP/GaAsSb/InP double heterojunction bipolar transistors (DHBTs) is presented. $S$-parameters measured at cut-off bias are used, at first, to extract the distribution factor $X_{0}$ for the base......-collector capacitance at zero collector current and the collector-to-emitter overlap capacitance $C_{ceo}$ present in InP DHBT devices. Low-frequency $S$-parameters measured at normal bias conditions then allows the extraction of the external access resistances $R_{bx}$, $R_{e}$, and $R_{cx}$ as well as the intrinsic...

  14. Biogenic Carbon on Mars: A Subsurface Chauvinistic Viewpoint

    Science.gov (United States)

    Onstott, T. C.; Lau, C. Y. M.; Magnabosco, C.; Harris, R.; Chen, Y.; Slater, G.; Sherwood Lollar, B.; Kieft, T. L.; van Heerden, E.; Borgonie, G.; Dong, H.

    2015-12-01

    A review of 150 publications on the subsurface microbiology of the continental subsurface provides ~1,400 measurements of cellular abundances down to 4,800 meter depth. These data suggest that the continental subsurface biomass is comprised of ~1016-17 grams of carbon, which is higher than the most recent estimates of ~1015 grams of carbon (1 Gt) for the marine deep biosphere. If life developed early in Martian history and Mars sustained an active hydrological cycle during its first 500 million years, then is it possible that Mars could have developed a subsurface biomass of comparable size to that of Earth? Such a biomass would comprise a much larger fraction of the total known Martian carbon budget than does the subsurface biomass on Earth. More importantly could a remnant of this subsurface biosphere survive to the present day? To determine how sustainable subsurface life could be in isolation from the surface we have been studying subsurface fracture fluids from the Precambrian Shields in South Africa and Canada. In these environments the energetically efficient and deeply rooted acetyl-CoA pathway for carbon fixation plays a central role for chemolithoautotrophic primary producers that form the base of the biomass pyramid. These primary producers appear to be sustained indefinitely by H2 generated through serpentinization and radiolytic reactions. Carbon isotope data suggest that in some subsurface locations a much larger population of secondary consumers are sustained by the primary production of biogenic CH4 from a much smaller population of methanogens. These inverted biomass and energy pyramids sustained by the cycling of CH4 could have been and could still be active on Mars. The C and H isotopic signatures of Martian CH4 remain key tools in identifying potential signatures of an extant Martian biosphere. Based upon our results to date cavity ring-down spectroscopic technologies provide an option for making these measurements on future rover missions.

  15. Normalization: A Preprocessing Stage

    OpenAIRE

    Patro, S. Gopal Krishna; Sahu, Kishore Kumar

    2015-01-01

    As we know that the normalization is a pre-processing stage of any type problem statement. Especially normalization takes important role in the field of soft computing, cloud computing etc. for manipulation of data like scale down or scale up the range of data before it becomes used for further stage. There are so many normalization techniques are there namely Min-Max normalization, Z-score normalization and Decimal scaling normalization. So by referring these normalization techniques we are ...

  16. Physiologically anaerobic microorganisms of the deep subsurface

    International Nuclear Information System (INIS)

    Stevens, S.E. Jr.; Chung, K.T.

    1993-10-01

    Anaerobic bacteria were isolated from deep subsurface sediment samples taken at study sites in Idaho (INEL) and Washington (HR) by culturing on dilute and concentrated medium. Morphologically distinct colonies were purified, and their responses to 21 selected physiological tests were determined. Although the number of isolates was small (18 INEL, 27 HR) some general patterns could be determined. Most strains could utilize all the carbon sources, however the glycerol and melizitose utilization was positive for 50% or less of the HR isolates. Catalase activity (27.78% at INEL, 74.07% at HR) and tryptophan metabolism (11.12% at INEL, 40.74% at HR) were significantly different between the two study sites. MPN and viable counts indicate that sediments near the water table yield the greatest numbers of anaerobes. Deeper sediments also appear to be more selective with the greatest number of viable counts on low-nutrient mediums. Likewise, only strictly obligate anaerobes were found in the deepest sediment samples. Selective media indicated the presence of methanogens, acetogens, and sulfate reducers at only the HR site

  17. Fracture detection using subsurface electromagnetic techniques

    International Nuclear Information System (INIS)

    Zhou, Q.; Becker, A.; Goldstein, N.E.; Morrison, H.F.; Lee, K.H.

    1987-01-01

    Audio frequency subsurface electromagnetic (EM) techniques using cross-hole and in-hole arrays for fracture detection are evaluated numerically. The fracture zone is represented by a thin rectangular conductor with finite dimensions, embedded in a conductive host rock. Because of its practical advantages, the EM source considered in this study is a grounded vertical electrical dipole (G.V.E.D.) placed in a vertical bore hole. Three source-receiver configurations are considered. The first is the cross-hole configuration with the source and receiver moving parallel to each other in separate holes. The second configuration is a fixed source in one hole and a moving receiver in the other. Finally, the author also treat the case of a tandem source and receiver at fixed separation traversing a single hole. In all cases the conductive fracture zone is not intersected by either hole. Comparisons between the grounded electric dipole and the vertical magnetic dipole indicate clear advantages for the former

  18. Determining the terrain characteristics related to the surface expression of subsurface water pressurization in permafrost landscapes using susceptibility modelling

    Directory of Open Access Journals (Sweden)

    J. E. Holloway

    2017-06-01

    Full Text Available Warming of the Arctic in recent years has led to changes in the active layer and uppermost permafrost. In particular, thick active layer formation results in more frequent thaw of the ice-rich transient layer. This addition of moisture, as well as infiltration from late season precipitation, results in high pore-water pressures (PWPs at the base of the active layer and can potentially result in landscape degradation. To predict areas that have the potential for subsurface pressurization, we use susceptibility maps generated using a generalized additive model (GAM. As model response variables, we used active layer detachments (ALDs and mud ejections (MEs, both formed by high PWP conditions at the Cape Bounty Arctic Watershed Observatory, Melville Island, Canada. As explanatory variables, we used the terrain characteristics elevation, slope, distance to water, topographic position index (TPI, potential incoming solar radiation (PISR, distance to water, normalized difference vegetation index (NDVI; ME model only, geology, and topographic wetness index (TWI. ALDs and MEs were accurately modelled in terms of susceptibility to disturbance across the study area. The susceptibility models demonstrate that ALDs are most probable on hill slopes with gradual to steep slopes and relatively low PISR, whereas MEs are associated with higher elevation areas, lower slope angles, and areas relatively far from water. Based on these results, this method identifies areas that may be sensitive to high PWPs and helps improve our understanding of geomorphic sensitivity to permafrost degradation.

  19. Subsurface Flow and Contaminant Transport Documentation and User's Guide

    Energy Technology Data Exchange (ETDEWEB)

    Aleman, S.E.

    1999-07-28

    This report documents a finite element code designed to model subsurface flow and contaminant transport, named FACT. FACT is a transient three-dimensional, finite element code designed to simulate isothermal groundwater flow, moisture movement, and solute transport in variably saturated and fully saturated subsurface porous media. The code is designed specifically to handle complex multi-layer and/or heterogeneous aquifer systems in an efficient manner and accommodates a wide range of boundary conditions. Additionally, 1-D and 2-D (in Cartesian coordinates) problems are handled in FACT by simply limiting the number of elements in a particular direction(s) to one. The governing equations in FACT are formulated only in Cartesian coordinates.

  20. Astrobiological Field Campaign to a Volcanosedimentary Mars Analogue Methane Producing Subsurface Protected Ecosystem: Imuruk Lake (Alaska

    Directory of Open Access Journals (Sweden)

    F. Gómez

    2011-01-01

    Full Text Available Viking missions reported adverse conditions for life in Mars surface. High hydrogen signal obtained by Mars orbiters has increased the interest in subsurface prospection as putative protected Mars environment with life potential. Permafrost has attracted considerable interest from an astrobiological point of view due to the recently reported results from the Mars exploration rovers. Considerable studies have been developed on extreme ecosystems and permafrost in particular, to evaluate the possibility of life on Mars and to test specific automated life detection instruments for space missions. The biodiversity of permafrost located on the Bering Land Bridge National Preserve has been studied as an example of subsurface protected niche of astrobiological interest. Different conventional (enrichment and isolation and molecular ecology techniques (cloning, fluorescence “in situ” probe hybridization, FISH have been used for isolation and bacterial identification.

  1. The InSight Mars Lander and Its Effect on the Subsurface Thermal Environment

    Science.gov (United States)

    Siegler, Matthew A.; Smrekar, Suzanne E.; Grott, Matthias; Piqueux, Sylvain; Mueller, Nils; Williams, Jean-Pierre; Plesa, Ana-Catalina; Spohn, Tilman

    2017-10-01

    The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3's sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (>3 m depth) placement of the heat flow probe.

  2. Project GeoPower: Basic subsurface information for the utilization of geothermal energy in the Danish-German border region

    DEFF Research Database (Denmark)

    Kirsch, Reinhard; Balling, Niels; Fuchs, Sven

    and require reliable cross-border management and planning tools. In the framework of the Interreg4a GeoPower project, fundamental geological and geophysical information of importance for the planning of geothermal energy utilization in the Danish-German border region was compiled and analyzed. A 3D geological......Information on both hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. This is paramount in particular for densely populated international border regions, where different subsurface applications may introduce conflicts of use...... on potential geothermal reservoirs, and a new 3D structural geological model was developed. The interpretation of petrophysical data (core data and well logs) allows to evaluate the hydraulic and thermal rock properties of geothermal formations and to develop a parameterized 3D thermal conductive subsurface...

  3. Recent experimental data may point to a greater role for osmotic pressures in the subsurface

    Science.gov (United States)

    Neuzil, C.E.; Provost, A.M.

    2009-01-01

    Uncertainty about the origin of anomalous fluid pressures in certain geologic settings has caused researchers to take a second look at osmosis, or flow driven by chemical potential differences, as a pressure‐generating process in the subsurface. Interest in geological osmosis has also increased because of an in situ experiment by Neuzil (2000) suggesting that Pierre Shale could generate large osmotic pressures when highly compacted. In the last few years, additional laboratory and in situ experiments have greatly increased the number of data on osmotic properties of argillaceous formations, but they have not been systematically examined. In this paper we compile these data and explore their implications for osmotic pressure generation in subsurface systems. Rather than base our analysis on osmotic efficiencies, which depend strongly on concentration, we calculated values of a quantity we term osmotic specific surface area (Aso) that, in principle, is a property of the porous medium only. The Aso values are consistent with a surprisingly broad spectrum of osmotic behavior in argillaceous formations, and all the formations tested exhibited at least a modest ability to generate osmotic pressure. It appears possible that under appropriate conditions some formations can be highly effective osmotic membranes able to generate osmotic pressures exceeding 30 MPa (3 km of head) at porosities as high as ∼0.1 and pressures exceeding 10 MPa at porosities as high as ∼0.2. These findings are difficult to reconcile with the lack of compelling field evidence for osmotic pressures, and we propose three explanations for the disparity: (1) Our analysis is flawed and argillaceous formations are less effective osmotic membranes than it suggests; (2) the necessary subsurface conditions, significant salinity differences within intact argillaceous formations, are rare; or (3) osmotic pressures are unlikely to be detected and are not recognized when encountered. The last possibility

  4. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    International Nuclear Information System (INIS)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-01-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  5. Plutonium in the environment. Can we predict its subsurface behavior?

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie [Glenn T. Seaborg Institute, Lawrence Livermore National Laborartory, CA (United States)

    2015-07-01

    There is an acute need to expedite progress toward a permanent storage facility that can safely isolated long-lived radionuclides from the biosphere. Significant uncertainty remains on how to safely store long-lived radionuclides that will make up the majority of the dose after a few hundred years.Plutonium (Pu) is of particular interest because of its high toxicity and long half life (t1/2 239Pu 2.4 x104 yrs). The chemical interactions of Pu are dependent on its oxidation state, which in turn control its stability and solubility. Understanding the interplay (the bio-geo-chemistry) between Pu and the repository environment is necessary to predict the conditions for which Pu will either migrate or remain immobile. A mechanistic understanding of the surface structure and reactivity of coupled Pu*mineral, Pu*organic ligand, and Pu*microbe interfacial processes is needed to advance our understanding Pu. To elucidate the mechanisms controlling Pu transport, we have investigated Pu desorption rates from montmorillonite and other mineral colloids. These data suggest that Pu desorption rates are slow enough that colloid-facilitated transport of adsorbed Pu is possible at the field scale (km distances and decade timescales). Additional experiments show that the presence of organic matter plays an important role in stabilizing Pu both in solution and on mineral surfaces. Our experiments are helping to develop a conceptual model of Pu subsurface behavior.

  6. Evaluating two irrigation controllers under subsurface drip irrigated tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghobari, H.M.; Mohammad, F.S.; El Marazky, M.S.A.

    2016-07-01

    Smart systems could be used to improve irrigation scheduling and save water under Saudi Arabia’s present water crisis scenario. This study investigated two types of evapotranspiration-based smart irrigation controllers, SmartLine and Hunter Pro-C2, as promising tools for scheduling irrigation and quantifying plants’ water requirements to achieve water savings. The effectiveness of these technologies in reducing the amount of irrigation water was compared with the conventional irrigation scheduling method as a control treatment. The two smart irrigation sensors were used for subsurface irrigation of a tomato crop (cv. Nema) in an arid region. The results showed that the smart controllers significantly reduced the amount of applied water and increased the crop yield. In general, the Hunter Pro-C2 system saved the highest amount of water and produced the highest crop yield, resulting in the highest water irrigation efficiency compared with the SmartLine controller and the traditional irrigation schedule. It can be concluded that the application of advanced scheduling irrigation techniques such as the Hunter controller under arid conditions can realise economic benefits by saving large amounts of irrigation water.

  7. Pollutant removal in subsurface wastewater infiltration systems with ...

    African Journals Online (AJOL)

    Pollutant removal in subsurface wastewater infiltration systems with/without intermittent ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search ... wastewater infiltration systems (SWISs) with and without intermittent aeration, ...

  8. Broadband Counter-Wound Spiral Antenna for Subsurface Radar Applications

    National Research Council Canada - National Science Library

    Yong, Lim

    2003-01-01

    Subsurface radar also known as ground-penetrating radar is increasingly being used for the detection and location of buried objects such as mines and structure that are found within the upper regions...

  9. SUBSURFACE VOLATIZATION AND VENTILATION SYSTEM (SVVS) - INNOVATIVE TECHNOLOGY REPORT

    Science.gov (United States)

    This report summarizes the findings associated with a Demonstration Test of Environmental Improvement Technologies’ (EIT) Subsurface Volatilization and Ventilation System (SVVS) process. The technology was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) ...

  10. SITE TECHNOLOGY CAPSULE: SUBSURFACE VOLATILIZATION AND VENTILATION SYSTEM (SVVS)

    Science.gov (United States)

    The Subsurface Volatilization and Ventilation System is an integrated technology used for attacking all phases of volatile organic compound (VOC) contamination in soil and groundwater. The SVVS technology promotes insitu remediation of soil and groundwater contaminated with or-ga...

  11. Molecular Simulation towards Efficient and Representative Subsurface Reservoirs Modeling

    KAUST Repository

    Kadoura, Ahmad Salim

    2016-01-01

    This dissertation focuses on the application of Monte Carlo (MC) molecular simulation and Molecular Dynamics (MD) in modeling thermodynamics and flow of subsurface reservoir fluids. At first, MC molecular simulation is proposed as a promising method

  12. Sub-Surface Oil Monitoring Cruise (GU1002, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives were to evaluate ability of acoustic echosounder measurements to detect and localize a sub-surface plume of oil or related hydrocarbons released from the...

  13. DWH MC 252: Subsurface Oil Transport

    Science.gov (United States)

    Beegle-Krause, C. J.; Boyer, T.; Murray, D.

    2010-12-01

    , previous research and modeling were combined to tell the story of the DWH MC 252 from the subsurface perspective. The Comprehensive Deepwater Oil and Gas model (CDOG, Yapa and Xie, 2005), and the General NOAA Operational Modeling Environment (GNOME, Beegle-Krause, 1999) were used with the NOAA Gulf of Mexico Model nowcast/forecast model to understand the 3D evolution of the subsurface spill. Model/observational comparisons are favorable, though limitations of the available models are apparent. Historical perspective on Thunder Horse (a deepwater well incident that was a dress-rehearsal for the DWH MC 252, Beegle-Krause and Walton, 2004), transitioning models from research to operations, and research needs will also be discussed.

  14. Subsurface structures of buried features in the lunar Procellarum region

    Science.gov (United States)

    Wang, Wenrui; Heki, Kosuke

    2017-07-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission unraveled numbers of features showing strong gravity anomalies without prominent topographic signatures in the lunar Procellarum region. These features, located in different geologic units, are considered to have complex subsurface structures reflecting different evolution processes. By using the GRAIL level-1 data, we estimated the free-air and Bouguer gravity anomalies in several selected regions including such intriguing features. With the three-dimensional inversion technique, we recovered subsurface density structures in these regions.

  15. Method of solution mining subsurface orebodies to reduce restoration activities

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, G.J.

    1984-01-24

    A method of solution mining is claimed wherein a lixiviant containing both leaching and oxidizing agents is injected into the subsurface orebody. The composition of the lixiviant is changed by reducing the level of oxidizing agent to zero so that soluble species continue to be removed from the subsurface environment. This reduces the uranium level of the ground water aquifer after termination of the lixiviant injection.

  16. Paracetamol removal in subsurface flow constructed wetlands

    Science.gov (United States)

    Ranieri, Ezio; Verlicchi, Paola; Young, Thomas M.

    2011-07-01

    SummaryIn this study two pilot scale Horizontal Subsurface Flow Constructed Wetlands (HSFCWs) near Lecce, Italy, planted with different macrophytes ( Phragmites australis and Typha latifolia) and an unplanted control were assessed for their effectiveness in removing paracetamol. Residence time distributions (RTDs) for the two beds indicated that the Typha bed was characterized by a void volume fraction (porosity) of 0.16 and exhibited more ideal plug flow behavior (Pe = 29.7) than the Phragmites bed (Pe = 26.7), which had similar porosity. The measured hydraulic residence times in the planted beds were 35.8 and 36.7 h when the flow was equal to 1 m 3/d. The Phragmites bed exhibited a range of paracetamol removals from 51.7% for a Hydraulic Loading Rate (HLR) of 240 mm/d to 87% with 120 mm/d HLR and 99.9% with 30 mm/d. The Typha bed showed a similar behavior with percentages of removal slightly lower, ranging from 46.7% (HLR of 240 mm/d) to >99.9% (hydraulic loading rate of 30 mm/d). At the same HLR values the unplanted bed removed between 51.3% and 97.6% of the paracetamol. In all three treatments the paracetamol removal was higher with flow of 1 m 3/d and an area of approx. 7.5 m 2 (half bed) than in the case of flow equal to 0.5 m 3/d with a surface treatment of approx. 3.75 m 2. A first order model for paracetamol removal was evaluated and half lives of 5.16 to 10.2 h were obtained.

  17. An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V

    Directory of Open Access Journals (Sweden)

    Tatiana Mishurova

    2017-03-01

    Full Text Available Ti-6Al-4V bridges were additively fabricated by selective laser melting (SLM under different scanning speed conditions, to compare the effect of process energy density on the residual stress state. Subsurface lattice strain characterization was conducted by means of synchrotron diffraction in energy dispersive mode. High tensile strain gradients were found at the frontal surface for samples in an as-built condition. The geometry of the samples promotes increasing strains towards the pillar of the bridges. We observed that the higher the laser energy density during fabrication, the lower the lattice strains. A relief of lattice strains takes place after heat treatment.

  18. Modeling Subsurface Behavior at the System Level: Considerations and a Path Forward

    Science.gov (United States)

    Geesey, G.

    2005-12-01

    to remotely measure microbial community parameters that define their key functions at a scale that accurately reflects their role in large scale subsurface system behavior. The practical questions that geomicrobiologist must answer in the short term are: 1) What is known about the activities of the dominant microbial populations or those of their closest relatives? 2) Which of these activities is likely to dominate under in situ conditions? In the process of answering these questions, researchers will obtain answers to questions of a more fundamental nature such as 1) How deep does "active" life extend below the surface of the seafloor and terrestrial subsurface? 2) How are electrons exchanged between microbial cells and solid phase minerals? 3) What is the metabolic state and mechanism of survival of "inactive" life forms in the subsurface? 4) What can genomes of life forms trapped in geological material tell us about evolution of life that current methods cannot? The subsurface environment represents a challenging environment to understand and model. As the need to understand subsurface processes increases and the technologies to characterize them become available, modeling subsurface behavior will approach the level of sophistication of models used today to predict behavior of other large scale systems such as the oceans.

  19. CMP reflection imaging via interferometry of distributed subsurface sources

    Science.gov (United States)

    Kim, D.; Brown, L. D.; Quiros, D. A.

    2015-12-01

    The theoretical foundations of recovering body wave energy via seismic interferometry are well established. However in practice, such recovery remains problematic. Here, synthetic seismograms computed for subsurface sources are used to evaluate the geometrical combinations of realistic ambient source and receiver distributions that result in useful recovery of virtual body waves. This study illustrates how surface receiver arrays that span a limited distribution suite of sources, can be processed to reproduce virtual shot gathers that result in CMP gathers which can be effectively stacked with traditional normal moveout corrections. To verify the feasibility of the approach in practice, seismic recordings of 50 aftershocks following the magnitude of 5.8 Virginia earthquake occurred in August, 2011 have been processed using seismic interferometry to produce seismic reflection images of the crustal structure above and beneath the aftershock cluster. Although monotonic noise proved to be problematic by significantly reducing the number of usable recordings, the edited dataset resulted in stacked seismic sections characterized by coherent reflections that resemble those seen on a nearby conventional reflection survey. In particular, "virtual" reflections at travel times of 3 to 4 seconds suggest reflector sat approximately 7 to 12 km depth that would seem to correspond to imbricate thrust structures formed during the Appalachian orogeny. The approach described here represents a promising new means of body wave imaging of 3D structure that can be applied to a wide array of geologic and energy problems. Unlike other imaging techniques using natural sources, this technique does not require precise source locations or times. It can thus exploit aftershocks too small for conventional analyses. This method can be applied to any type of microseismic cloud, whether tectonic, volcanic or man-made.

  20. RANGE AND DISTRIBUTION OF TECHNETIUM KD VALUES IN THE SRS SUBSURFACE ENVIRONMENT

    International Nuclear Information System (INIS)

    Kaplan, D.

    2008-01-01

    Performance assessments (PAs) are risk calculations used to estimate the amount of low-level radioactive waste that can be disposed at DOE sites. Distribution coefficients (K d values) are input parameters used in PA calculations to provide a measure of radionuclide sorption to sediment; the greater the K d value, the greater the sorption and the slower the estimated movement of the radionuclide through sediment. Understanding and quantifying K d value variability is important for estimating the uncertainty of PA calculations. Without this information, it is necessary to make overly conservative estimates about the possible limits of K d values, which in turn may increase disposal costs. Finally, technetium is commonly found to be amongst the radionuclides posing potential risk at waste disposal locations because it is believed to be highly mobile in its anionic form (pertechnetate, TcO 4 - ), it exists in relatively high concentrations in SRS waste, and it has a long half-life (213,000 years). The objectives of this laboratory study were to determine under SRS environmental conditions: (1) whether and to what extent TcO 4 - sorbs to sediments, (2) the range of Tc K d values, (3) the distribution (normal or log-normal) of Tc K d values, and (4) how strongly Tc sorbs to SRS sediments through desorption experiments. Objective 3, to identify the Tc K d distribution is important because it provides a statistical description that influences stochastic modeling of estimated risk. The approach taken was to collect 26 sediments from a non-radioactive containing sediment core collected from E-Area, measure Tc K d values and then perform statistical analysis to describe the measured Tc K d values. The mean K d value was 3.4 ± 0.5 mL/g and ranged from -2.9 to 11.2 mL/g. The data did not have a Normal distribution (as defined by the Shapiro-Wilk's Statistic) and had a 95-percentile range of 2.4 to 4.4 mL/g. The E-Area subsurface is subdivided into three hydrostratigraphic

  1. Estimation of subsurface-fracture orientation with the three-component crack-wave measurement; Kiretsuha sanjiku keisoku ni yoru chika kiretsumen no hoko suitei

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, K; Sato, K [Muroran Institute of Technology, Hokkaido (Japan); Niitsuma, H [Tohoku University, Sendai (Japan)

    1996-05-01

    This paper reports experiments carried out to estimate subsurface-fracture orientation with the three-component crack-wave measurement. The experiments were performed by using existing subsurface cracks and two wells in the experimental field. An air gun as a sound source was installed directly above a subsurface crack intersection in one of the wells, and a three-component elastic wave detector was fixed in the vicinity of a subsurface crack intersection in the other well. Crack waves from the sound source were measured in a frequency bandwidth from 150 to 300 Hz. A coherence matrix was constituted relative to triaxial components of vibration in the crack waves; a coherent vector was sought that corresponds to a maximum coherent value of the matrix; and the direction of the longer axis in an ellipse (the direction being perpendicular to the crack face) was approximated in particle motions of the crack waves by using the vector. The normal line direction of the crack face estimated by using the above method was found to agree nearly well with the direction of the minimum crust compression stress measured in the normal line direction of the crack face existed in core samples collected from the wells, and measured at nearly the same position as the subsurface crack. 5 refs., 4 figs.

  2. Forward modeling of gravity data using geostatistically generated subsurface density variations

    Science.gov (United States)

    Phelps, Geoffrey

    2016-01-01

    Using geostatistical models of density variations in the subsurface, constrained by geologic data, forward models of gravity anomalies can be generated by discretizing the subsurface and calculating the cumulative effect of each cell (pixel). The results of such stochastically generated forward gravity anomalies can be compared with the observed gravity anomalies to find density models that match the observed data. These models have an advantage over forward gravity anomalies generated using polygonal bodies of homogeneous density because generating numerous realizations explores a larger region of the solution space. The stochastic modeling can be thought of as dividing the forward model into two components: that due to the shape of each geologic unit and that due to the heterogeneous distribution of density within each geologic unit. The modeling demonstrates that the internally heterogeneous distribution of density within each geologic unit can contribute significantly to the resulting calculated forward gravity anomaly. Furthermore, the stochastic models match observed statistical properties of geologic units, the solution space is more broadly explored by producing a suite of successful models, and the likelihood of a particular conceptual geologic model can be compared. The Vaca Fault near Travis Air Force Base, California, can be successfully modeled as a normal or strike-slip fault, with the normal fault model being slightly more probable. It can also be modeled as a reverse fault, although this structural geologic configuration is highly unlikely given the realizations we explored.

  3. Quantitative sub-surface and non-contact imaging using scanning microwave microscopy

    International Nuclear Information System (INIS)

    Gramse, Georg; Kasper, Manuel; Hinterdorfer, Peter; Brinciotti, Enrico; Rankl, Christian; Kienberger, Ferry; Lucibello, Andrea; Marcelli, Romolo; Patil, Samadhan B.; Giridharagopal, Rajiv

    2015-01-01

    The capability of scanning microwave microscopy for calibrated sub-surface and non-contact capacitance imaging of silicon (Si) samples is quantitatively studied at broadband frequencies ranging from 1 to 20 GHz. Calibrated capacitance images of flat Si test samples with varying dopant density (10 15 –10 19 atoms cm −3 ) and covered with dielectric thin films of SiO 2 (100–400 nm thickness) are measured to demonstrate the sensitivity of scanning microwave microscopy (SMM) for sub-surface imaging. Using standard SMM imaging conditions the dopant areas could still be sensed under a 400 nm thick oxide layer. Non-contact SMM imaging in lift-mode and constant height mode is quantitatively demonstrated on a 50 nm thick SiO 2 test pad. The differences between non-contact and contact mode capacitances are studied with respect to the main parameters influencing the imaging contrast, namely the probe tip diameter and the tip–sample distance. Finite element modelling was used to further analyse the influence of the tip radius and the tip–sample distance on the SMM sensitivity. The understanding of how the two key parameters determine the SMM sensitivity and quantitative capacitances represents an important step towards its routine application for non-contact and sub-surface imaging. (paper)

  4. Stress management skills in the subsurface: H2 stress on thermophilic heterotrophs and methanogens

    Science.gov (United States)

    Topcuoglu, B. D.; Holden, J. F.

    2017-12-01

    Marine hyperthermophilic heterotrophs and methanogens belonging to the Thermococcales and Methanococcales are often found in subsurface environments such as coal and shale beds, marine sediments, and oil reservoirs where they encounter H2 stress conditions. It is important to study the H2 stress survival strategies of these organisms and their cooperation with one another for survival to better understand their biogeochemical impact in hot subsurface environments. In this study, we have shown that H2 inhibition changed the growth kinetics and the transcriptome of Thermococcus paralvinellae. We observed a significant decrease in batch phase growth rates and cell concentrations with high H2 background. Produced metabolite production measurements, RNA-seq analyses of differentially expressed genes and in silico experiments we performed with the T. paralvinellae metabolic model showed that T. paralvinellae produces formate by a formate hydrogenlyase to survive H2 inhibition. We have also shown that H2 limitation caused a significant decrease in batch phase growth rates and methane production rates of the methanogen, Methanocaldococcus jannaschii. H2 stress of both organisms can be ameliorated by syntrophic growth. H2 syntrophy was demonstrated in microcosm incubations for a natural assemblage of Thermococcus and hyperthermophilic methanogens present in hydrothermal fluid samples. This project aims to describe how a hyperthermophilic heterotroph and a hyperthermophilic methanogen eliminate H2 stress and explore cooperation among thermophiles in the hot subsurface.

  5. Single cell genomics indicates horizontal gene transfer and viral infections in a deep subsurface Firmicutes population

    Directory of Open Access Journals (Sweden)

    Jessica eLabonté

    2015-04-01

    Full Text Available A major fraction of Earth's prokaryotic biomass dwells in the deep subsurface, where cellular abundances per volume of sample are lower, metabolism is slower, and generation times are longer than those in surface terrestrial and marine environments. How these conditions impact biotic interactions and evolutionary processes is largely unknown. Here we employed single cell genomics to analyze cell-to-cell genome content variability and signatures of horizontal gene transfer (HGT and viral infections in five cells of Candidatus Desulforudis audaxviator, which were collected from a three km-deep fracture water in the 2.9 Ga-old Witwatersrand Basin of South Africa. Between 0 and 32 % of genes recovered from single cells were not present in the original, metagenomic assembly of Desulforudis, which was obtained from a neighboring subsurface fracture. We found a transposable prophage, a retron, multiple clustered regularly interspaced short palindromic repeats (CRISPRs and restriction-modification systems, and an unusually high frequency of transposases in the analyzed single cell genomes. This indicates that recombination, HGT and viral infections are prevalent evolutionary events in the studied population of microorganisms inhabiting a highly stable deep subsurface environment.