WorldWideScience

Sample records for normal cell clones

  1. Exact, time-independent estimation of clone size distributions in normal and mutated cells.

    Science.gov (United States)

    Roshan, A; Jones, P H; Greenman, C D

    2014-10-06

    Biological tools such as genetic lineage tracing, three-dimensional confocal microscopy and next-generation DNA sequencing are providing new ways to quantify the distribution of clones of normal and mutated cells. Understanding population-wide clone size distributions in vivo is complicated by multiple cell types within observed tissues, and overlapping birth and death processes. This has led to the increased need for mathematically informed models to understand their biological significance. Standard approaches usually require knowledge of clonal age. We show that modelling on clone size independent of time is an alternative method that offers certain analytical advantages; it can help parametrize these models, and obtain distributions for counts of mutated or proliferating cells, for example. When applied to a general birth-death process common in epithelial progenitors, this takes the form of a gambler's ruin problem, the solution of which relates to counting Motzkin lattice paths. Applying this approach to mutational processes, alternative, exact, formulations of classic Luria-Delbrück-type problems emerge. This approach can be extended beyond neutral models of mutant clonal evolution. Applications of these approaches are twofold. First, we resolve the probability of progenitor cells generating proliferating or differentiating progeny in clonal lineage tracing experiments in vivo or cell culture assays where clone age is not known. Second, we model mutation frequency distributions that deep sequencing of subclonal samples produce.

  2. IgE production by normal human B cells induced by alloreactive T cell clones is mediated by IL-4 and suppressed by IFN-gamma

    NARCIS (Netherlands)

    Pène, J.; Rousset, F.; Brière, F.; Chrétien, I.; Paliard, X.; Banchereau, J.; Spits, H.; de Vries, J. E.

    1988-01-01

    Seven T cell clones were established from mixed leukocyte cultures in which PBMC from two healthy donors and from one patient suffering from the hyper-IgE syndrome were stimulated by the irradiated EBV-transformed B cell lines JY or UD53. Five of seven T cell clones, after activation by

  3. Molecular cloning and expression analyses of porcine MAP1LC3A in the granulosa cells of normal and miniature pig

    Directory of Open Access Journals (Sweden)

    Kim Sang H

    2013-02-01

    Full Text Available Abstract Background The members of the microtubule-associated protein 1 light chain (MAP1LC family, especially those of the LC3 family (MAP1LC3A, B, C, are known to induce autophagy upon localization onto the autophagosomal membrane. In this regard, LC3 can be utilized as a marker for the formation of autophagosomes during the process of autophagy. The aims of this study are to clone porcine MAP1LC3A, and analyze the pattern of its expression in the ovarian tissues of normal and miniature pig ovary in an attempt to understand the distinct mode of apoptosis between two strains. Methods Rapid amplification of cDNA ends (RACE were used to obtain the 5′ and 3′ ends of the porcine MAP1LC3A full length cDNA. Reverse-transcriptase-PCR (RT-PCR, real-time PCR, and western blot analysis were performed to examine the expression of porcine MAP1LC3A. The localization of MAP1LC3A in the ovary was determined by In situ Hybridization and Immunohistochemical staining. Results We cloned the full-length cDNA of porcine MAP1LC3A and identified an open reading frame of 980 bp encoding 121 amino acids. Based on its homology to known mammalian proteins (98% this novel cDNA was designated as porcine MAP1LC3A and registered to the GenBank (Accession No. GU272221. We compared the expression of MAP1LC3A in the Graafian follicles of normal and miniature pigs by in situ hybridization at day 15 of the estrus cycle. While normal pigs showed a stronger expression of MAP1LC3A mRNA than miniature pigs in the theca cell area, the expression was lower in the granulosa cells. Immunofluorescence analysis of the MAP1LC3A fusion reporter protein showed the subcellular localization of porcine MAP1LC3A and ATG5 as a punctate pattern in the cytoplasm of porcine granulosa cells under stress conditions. In addition, the expressions of MAP1LC3A and ATG5 were higher in normal pigs than in miniature pigs both in the presence and absence of rapamycin. Conclusions The newly cloned porcine

  4. Cloning

    Science.gov (United States)

    Cloning describes the processes used to create an exact genetic replica of another cell, tissue or organism. ... named Dolly. There are three different types of cloning: Gene cloning, which creates copies of genes or ...

  5. Transfer of experimental autoimmune thyroiditis with T cell clones

    International Nuclear Information System (INIS)

    Romball, C.G.; Weigle, W.O.

    1987-01-01

    We have investigated three T lymphocyte clones isolated from CBA/CaJ mice primed with mouse thyroid extract (MTE) in adjuvant. All three clones are L3T4+, Ig-, and Lyt2- and proliferate to MTE, mouse thyroglobulin (MTG) and rat thyroid extract. Clones A7 and B7 transfer thyroiditis to irradiated (475 rad) syngeneic mice, but not to normal recipients. The thyroid lesion induced by the B7 clone is characterized by the infiltration of both mononuclear and polymorphonuclear cells. The thyroiditis is transient in that lesions are apparent 7 and 14 days after transfer, but thyroids return to normal by day 21. Clone B7 showed helper activity for trinitrophenyl-keyhole limpet hemocyanin-primed B cells in vitro when stimulated with trinitrophenyl-MTG and also stimulated the production of anti-MTG antibody in recipient mice. Clone A7 induced thyroid lesions characterized by infiltration of the thyroid with mononuclear cells, with virtually no polymorphonuclear cell infiltration. This clone has shown no helper activity following stimulation with trinitrophenyl-MTG. The third clone (D2) proliferates to and shows helper activity to MTG, but fails to transfer thyroiditis to syngeneic, irradiated mice. On continuous culture, clone B7 lost its surface Thy. The loss of Thy appears unrelated to the ability to transfer thyroiditis since subclones of B7 with markedly different percentages of Thy+ cells transferred disease equally well

  6. Automated Cell-Cutting for Cell Cloning

    Science.gov (United States)

    Ichikawa, Akihiko; Tanikawa, Tamio; Matsukawa, Kazutsugu; Takahashi, Seiya; Ohba, Kohtaro

    We develop an automated cell-cutting technique for cell cloning. Animal cells softened by the cytochalasin treatment are injected into a microfluidic chip. The microfluidic chip contains two orthogonal channels: one microchannel is wide, used to transport cells, and generates the cutting flow; the other is thin and used for aspiration, fixing, and stretching of the cell. The injected cell is aspirated and stretched in the thin microchannel. Simultaneously, the volumes of the cell before and after aspiration are calculated; the volumes are used to calculate the fluid flow required to aspirate half the volume of the cell into the thin microchannel. Finally, we apply a high-speed flow in the orthogonal microchannel to bisect the cell. This paper reports the cutting process, the cutting system, and the results of the experiment.

  7. Sex-reversed somatic cell cloning in the mouse.

    Science.gov (United States)

    Inoue, Kimiko; Ogonuki, Narumi; Mekada, Kazuyuki; Yoshiki, Atsushi; Sado, Takashi; Ogura, Atsuo

    2009-10-01

    Somatic cell nuclear transfer has many potential applications in the fields of basic and applied sciences. However, it has a disadvantage that can never be overcome technically-the inflexibility of the sex of the offspring. Here, we report an accidental birth of a female mouse following nuclear transfer using an immature Sertoli cell. We produced a batch of 27 clones in a nuclear transfer experiment using Sertoli cells collected from neonatal male mice. Among them, one pup was female. This "male-derived female" clone grew into a normal adult and produced offspring by natural mating with a littermate. Chromosomal analysis revealed that the female clone had a 39,X karyotype, indicating that the Y chromosome had been deleted in the donor cell or at some early step during nuclear transfer. This finding suggests the possibility of resuming sexual reproduction after a single male is cloned, which should be especially useful for reviving extinct or endangered species.

  8. Endangered wolves cloned from adult somatic cells.

    Science.gov (United States)

    Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hwang, Woo Suk; Hossein, Mohammad Shamim; Kim, Joung Joo; Shin, Nam Shik; Kang, Sung Keun; Lee, Byeong Chun

    2007-01-01

    Over the world, canine species, including the gray wolf, have been gradually endangered or extinct. Many efforts have been made to recover and conserve these canids. The aim of this study was to produce the endangered gray wolf with somatic cell nuclear transfer (SCNT) for conservation. Adult ear fibroblasts from a female gray wolf (Canis lupus) were isolated and cultured in vitro as donor cells. Because of limitations in obtaining gray wolf matured oocytes, in vivo matured canine oocytes obtained by flushing the oviducts from the isthmus to the infundibulum were used. After removing the cumulus cells, the oocyte was enucleated, microinjected, fused with a donor cell, and activated. The reconstructed cloned wolf embryos were transferred into the oviducts of the naturally synchronized surrogate mothers. Two pregnancies were detected by ultrasonography at 23 days of gestation in recipient dogs. In each surrogate dog, two fetal sacs were confirmed by early pregnancy diagnosis at 23 days, but only two cloned wolves were delivered. The first cloned wolf was delivered by cesarean section on October 18, 2005, 60 days after embryo transfer. The second cloned wolf was delivered on October 26, 2005, at 61 days postembryo transfer. Microsatellite analysis was performed with genomic DNA from the donor wolf, the two cloned wolves, and the two surrogate female recipients to confirm the genetic identity of the cloned wolves. Analysis of 19 microsatellite loci confirmed that the cloned wolves were genetically identical to the donor wolf. In conclusion, we demonstrated live birth of two cloned gray wolves by nuclear transfer of wolf somatic cells into enucleated canine oocyte, indicating that SCNT is a practical approach for conserving endangered canids.

  9. Mouse cloning and somatic cell reprogramming using electrofused blastomeres.

    Science.gov (United States)

    Riaz, Amjad; Zhao, Xiaoyang; Dai, Xiangpeng; Li, Wei; Liu, Lei; Wan, Haifeng; Yu, Yang; Wang, Liu; Zhou, Qi

    2011-05-01

    Mouse cloning from fertilized eggs can assist development of approaches for the production of "genetically tailored" human embryonic stem (ES) cell lines that are not constrained by the limitations of oocyte availability. However, to date only zygotes have been successfully used as recipients of nuclei from terminally differentiated somatic cell donors leading to ES cell lines. In fertility clinics, embryos of advanced embryonic stages are usually stored for future use, but their ability to support the derivation of ES cell lines via somatic nuclear transfer has not yet been proved. Here, we report that two-cell stage electrofused mouse embryos, arrested in mitosis, can support developmental reprogramming of nuclei from donor cells ranging from blastomeres to somatic cells. Live, full-term cloned pups from embryonic donors, as well as pluripotent ES cell lines from embryonic or somatic donors, were successfully generated from these reconstructed embryos. Advanced stage pre-implantation embryos were unable to develop normally to term after electrofusion and transfer of a somatic cell nucleus, indicating that discarded pre-implantation human embryos could be an important resource for research that minimizes the ethical concerns for human therapeutic cloning. Our approach provides an attractive and practical alternative to therapeutic cloning using donated oocytes for the generation of patient-specific human ES cell lines.

  10. Molecular cloning of complementary DNAs encoding the heavy chain of the human 4F2 cell-surface antigen: a type II membrane glycoprotein involved in normal and neoplastic cell growth

    International Nuclear Information System (INIS)

    Quackenbush, E.; Clabby, M.; Gottesdiener, K.M.; Barbosa, J.; Jones, N.H.; Strominger, J.L.; Speck, S.; Leiden, J.M.

    1987-01-01

    Complementary DNA (cDNA) clones encoding the heavy chain of the heterodimeric human membrane glycoprotein 4F2 have been isolated by immunoscreening of a λgt11 expression library. The identity of these clones has been confirmed by hybridization to RNA and DNA prepared from mouse L-cell transfectants, which were produced by whole cell gene transfer and selected for cell-surface expression of the human 4F2 heavy chain. DNA sequence analysis suggest that the 4F2 heavy-chain cDNAs encode an approximately 526-amino acid type II membrane glycoprotein, which is composed of a large C-terminal extracellular domain, a single potential transmembrane region, and a 50-81 amino acid N-terminal intracytoplasmic domain. Southern blotting experiments have shown that the 4F2 heavy-chain cDNAs are derived from a single-copy gene that has been highly conserved during mammalian evolution

  11. Dogs cloned from adult somatic cells.

    Science.gov (United States)

    Lee, Byeong Chun; Kim, Min Kyu; Jang, Goo; Oh, Hyun Ju; Yuda, Fibrianto; Kim, Hye Jin; Hossein, M Shamim; Shamim, M Hossein; Kim, Jung Ju; Kang, Sung Keun; Schatten, Gerald; Hwang, Woo Suk

    2005-08-04

    Several mammals--including sheep, mice, cows, goats, pigs, rabbits, cats, a mule, a horse and a litter of three rats--have been cloned by transfer of a nucleus from a somatic cell into an egg cell (oocyte) that has had its nucleus removed. This technology has not so far been successful in dogs because of the difficulty of maturing canine oocytes in vitro. Here we describe the cloning of two Afghan hounds by nuclear transfer from adult skin cells into oocytes that had matured in vivo. Together with detailed sequence information generated by the canine-genome project, the ability to clone dogs by somatic-cell nuclear transfer should help to determine genetic and environmental contributions to the diverse biological and behavioural traits associated with the many different canine breeds.

  12. DNA Methylation in Peripheral Blood Cells of Pigs Cloned by Somatic Cell Nuclear Transfer

    DEFF Research Database (Denmark)

    Gao, Fei; Li, Shengting; Lin, Lin

    2011-01-01

    To date, the genome-wide DNA methylation status of cloned pigs has not been investigated. Due to the relatively low success rate of pig cloning by somatic cell nuclear transfer, a better understanding of the epigenetic reprogramming and the global methylation patterns associated with development...... in cloned pigs is required. In this study we applied methylation-specific digital karyotyping tag sequencing by Solexa technology and investigated the genome-wide DNA methylation profiles of peripheral blood cells in cloned pigs with normal phenotypes in comparison with their naturally bred controls....... In the result, we found that globally there was no significant difference of DNA methylation patterns between the two groups. Locus-specifically, some genes involved in embryonic development presented a generally increased level of methylation. Our findings suggest that in cloned pigs with normal phenotypes...

  13. T cell clones which share T cell receptor epitopes differ in phenotype, function and specificity

    NARCIS (Netherlands)

    Yssel, H.; Blanchard, D.; Boylston, A.; de Vries, J. E.; Spits, H.

    1986-01-01

    Recently, we described a monoclonal antibody (3D6) that reacts with the T cell receptor (Ti) of the T leukemic cell line HPB-ALL and that cross-reacts with 2-10% of the T cells of normal healthy individuals. In this study we report the establishment of T cell clones that are 3D6+ but that differ in

  14. Epigenetic Loss of MLH1 Expression in Normal Human Hematopoietic Stem Cell Clones is Defined by the Promoter CpG Methylation Pattern Observed by High-Throughput Methylation Specific Sequencing.

    Science.gov (United States)

    Kenyon, Jonathan; Nickel-Meester, Gabrielle; Qing, Yulan; Santos-Guasch, Gabriela; Drake, Ellen; PingfuFu; Sun, Shuying; Bai, Xiaodong; Wald, David; Arts, Eric; Gerson, Stanton L

    Normal human hematopoietic stem and progenitor cells (HPC) lose expression of MLH1 , an important mismatch repair (MMR) pathway gene, with age. Loss of MMR leads to replication dependent mutational events and microsatellite instability observed in secondary acute myelogenous leukemia and other hematologic malignancies. Epigenetic CpG methylation upstream of the MLH1 promoter is a contributing factor to acquired loss of MLH1 expression in tumors of the epithelia and proximal mucosa. Using single molecule high-throughput bisulfite sequencing we have characterized the CpG methylation landscape from -938 to -337 bp upstream of the MLH1 transcriptional start site (position +0), from 30 hematopoietic colony forming cell clones (CFC) either expressing or not expressing MLH1 . We identify a correlation between MLH1 promoter methylation and loss of MLH1 expression. Additionally, using the CpG site methylation frequencies obtained in this study we were able to generate a classification algorithm capable of sorting the expressing and non-expressing CFC. Thus, as has been previously described for many tumor cell types, we report for the first time a correlation between the loss of MLH1 expression and increased MLH1 promoter methylation in CFC derived from CD34 + selected hematopoietic stem and progenitor cells.

  15. Cloning mice and ES cells by nuclear transfer from somatic stem cells and fully differentiated cells.

    Science.gov (United States)

    Wang, Zhongde

    2011-01-01

    Cloning animals by nuclear transfer (NT) has been successful in several mammalian species. In addition to cloning live animals (reproductive cloning), this technique has also been used in several species to establish cloned embryonic stem (ntES) cell lines from somatic cells. It is the latter application of this technique that has been heralded as being the potential means to produce isogenic embryonic stem cells from patients for cell therapy (therapeutic cloning). These two types of cloning differ only in the steps after cloned embryos are produced: for reproductive cloning the cloned embryos are transferred to surrogate mothers to allow them to develop to full term and for therapeutic cloning the cloned embryos are used to derive ntES cells. In this chapter, a detailed NT protocol in mouse by using somatic stem cells (neuron and skin stem cells) and fully differentiated somatic cells (cumulus cells and fibroblast cells) as nuclear donors is described.

  16. Keith's MAGIC: Cloning and the Cell Cycle.

    Science.gov (United States)

    Wells, D N

    2013-10-01

    Abstract Professor Keith Campbell's critical contribution to the discovery that a somatic cell from an adult animal can be fully reprogrammed by oocyte factors to form a cloned individual following nuclear transfer (NT)(Wilmut et al., 1997 ) overturned a dogma concerning the reversibility of cell fate that many scientists had considered to be biologically impossible. This seminal experiment proved the totipotency of adult somatic nuclei and finally confirmed that adult cells could differentiate without irreversible changes to the genetic material.

  17. Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer.

    Science.gov (United States)

    Sung, Li-Ying; Gao, Shaorong; Shen, Hongmei; Yu, Hui; Song, Yifang; Smith, Sadie L; Chang, Ching-Chien; Inoue, Kimiko; Kuo, Lynn; Lian, Jin; Li, Ao; Tian, X Cindy; Tuck, David P; Weissman, Sherman M; Yang, Xiangzhong; Cheng, Tao

    2006-11-01

    Since the creation of Dolly via somatic cell nuclear transfer (SCNT), more than a dozen species of mammals have been cloned using this technology. One hypothesis for the limited success of cloning via SCNT (1%-5%) is that the clones are likely to be derived from adult stem cells. Support for this hypothesis comes from the findings that the reproductive cloning efficiency for embryonic stem cells is five to ten times higher than that for somatic cells as donors and that cloned pups cannot be produced directly from cloned embryos derived from differentiated B and T cells or neuronal cells. The question remains as to whether SCNT-derived animal clones can be derived from truly differentiated somatic cells. We tested this hypothesis with mouse hematopoietic cells at different differentiation stages: hematopoietic stem cells, progenitor cells and granulocytes. We found that cloning efficiency increases over the differentiation hierarchy, and terminally differentiated postmitotic granulocytes yield cloned pups with the greatest cloning efficiency.

  18. Human somatic cell nuclear transfer and cloning.

    Science.gov (United States)

    2012-10-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer (cloning)," last published in Fertil Steril 2000;74:873-6. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Isolation and characterization of variant clones of Chinese hamster cells after treatment with irradiated 5-iodouridine

    International Nuclear Information System (INIS)

    Kuroda, Y.; Yokoiyama, A.; Kada, T.

    1975-01-01

    Variant clones were isolated from cultured Chinese hamster Don cells after treatment with irradiated 5-iodouridine. The following characters of a primary variant clone, C-11 and a secondary variant clone, C-24 were compared with those of the original clone C-1: colony-forming activity, growth rate in the presence of irradiated and unirradiated 5-iodouridine, distribution of chromosome numbers and cell cohesion. The variant clones C-11 and C-24 were partially resistant to unirradiated 5-iodouridine at lower concentration and C-24 cells were slightly resistant to short-term treatment with irradiated 5-iodouridine. Unlike clones C-1 and C-11, the variant clone C-24 showed no lag phase on growth in 5-iodouridine medium. The modal numbers of the chromosomes of all three clones were 22, like that of normal Chinese hamster diploid cells. Of the three clones, the variant C-24 cells showed the least mutual cohesion and the original C-1 cells showed the most. The possibility that an alteration in cellular membrane might be related to an increase in the resistance to radiosensitizing agents was discussed

  20. In vitro properties and tumorigenicity of radiation-transformed clones of mouse 10T1/2 cells

    International Nuclear Information System (INIS)

    Otsu, Hiroshi; Yasukawa, Mieko; Terasima, Toyozo

    1983-01-01

    Nineteen radiation-induced and one spontaneously developed transformed foci were cloned from mouse 10T1/2 cells. Each clone was grown with normal 10T1/2 cells, and typing (types II and III) was carried out by making reference to the description of Reznikoff et al. Morphological characteristics of foci and their response to co-cultured normal counterparts are described. Some in vitro properties of the clones were examined and the relationship to each focus type is discussed. A reduced serum requirement of transformed clones was not recognized. Soft agar colonies were produced exclusively by type III clones. Tumorigenicity testing of the clones revealed that 93 % of type III clones were tumorigenic upon inoculation into syngeneic mice in an immunosuppressed condition. From these findings, it can be concluded that the tumorigenic potential of radiation-induced transformed cells can be predicted from the ability of the cells to form colonies in agar. (author)

  1. Human T-Cell Clones from Autoimmune Thyroid Glands: Specific Recognition of Autologous Thyroid Cells

    Science.gov (United States)

    Londei, Marco; Bottazzo, G. Franco; Feldmann, Marc

    1985-04-01

    The thyroid glands of patients with autoimmune diseases such as Graves' disease and certain forms of goiter contain infiltrating activated T lymphocytes and, unlike cells of normal glands, the epithelial follicular cells strongly express histocompatability antigens of the HLA-DR type. In a study of such autoimmune disorders, the infiltrating T cells from the thyroid glands of two patients with Graves' disease were cloned in mitogen-free interleukin-2 (T-cell growth factor). The clones were expanded and their specificity was tested. Three types of clones were found. One group, of T4 phenotype, specifically recognized autologous thyroid cells. Another, also of T4 phenotype, recognized autologous thyroid or blood cells and thus responded positively in the autologous mixed lymphocyte reaction. Other clones derived from cells that were activated in vivo were of no known specificity. These clones provide a model of a human autoimmune disease and their analysis should clarify mechanisms of pathogenesis and provide clues to abrogating these undesirable immune responses.

  2. Cloning Mice and Men: Prohibiting the Use of iPS Cells for Human Reproductive Cloning

    OpenAIRE

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2010-01-01

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation.

  3. Cloning mice and men: prohibiting the use of iPS cells for human reproductive cloning.

    Science.gov (United States)

    Lo, Bernard; Parham, Lindsay; Alvarez-Buylla, Arturo; Cedars, Marcelle; Conklin, Bruce; Fisher, Susan; Gates, Elena; Giudice, Linda; Halme, Dina Gould; Hershon, William; Kriegstein, Arnold; Kwok, Pui-Yan; Wagner, Richard

    2010-01-08

    The use of iPSCs and tetraploid complementation for human reproductive cloning would raise profound ethical objections. Professional standards and laws that ban human reproductive cloning by somatic cell nuclear transfer should be revised to also forbid it by other methods, such as iPSCs via tetraploid complementation. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Embryos, Clones, and Stem Cells: A Scientific Primer

    Directory of Open Access Journals (Sweden)

    Kenyon S. Tweedell

    2004-01-01

    Full Text Available This article is intended to give the nonspecialist an insight into the nuances of “clones”, cloning, and stem cells. It distinguishes embryonic and adult stem cells, their normal function in the organism, their origin, and how they are recovered to produce stem cell lines in culture. As background, the fundamental processes of embryo development are reviewed and defined, since the manipulation of stem cell lines into desired specialized cells employs many of the same events. Stem cells are defined and characterized and shown how they function in the intact organism during early development and later during cell regeneration in the adult. The complexity of stem cell recovery and their manipulation into specific cells and tissue is illustrated by reviewing current experimentation on both embryonic and adult stem cells in animals and limited research on human stem cell lines. The current and projected use of stem cells for human diseases and repair, along with the expanding methodology for the recovery of human embryonic stem cells, is described. An assessment on the use of human embryonic stem cells is considered from ethical, legal, religious, and political viewpoints.

  5. Transplantation and differentiation of donor cells in the cloned pigs

    International Nuclear Information System (INIS)

    Shimada, Arata; Tomii, Ryo; Kano, Koichiro; Nagashima, Hiroshi

    2006-01-01

    The application of nuclear transfer technology is an interesting approach to investigate stem and progenitor cell transplantation therapy. If stem cells are used as a nuclear donor, donor cells can engraft into cloned animals without histocompatible problems. However, it is still uncertain whether donor cells can engraft to cloned animal and differentiate in vivo. To address this problem, we transplanted donor cells to dermal tissues of cloned pigs developed by using preadipocytes as donor cells. Preadipocytes are adipocytic progenitor which can differentiate to mature adipocytes in vitro. We showed that the donor preadipocytes were successfully transplanted into the cloned pigs without immune rejection and they differentiated into mature adipocytes in vivo 3 weeks after transplantation. In contrast, allogenic control preadipocytes, which can differentiate in vitro, did not differentiate in vivo. These results indicate that donor progenitor cells can differentiate in cloned animal

  6. Six cloned calves produced from adult fibroblast cells after long-term culture

    Science.gov (United States)

    Kubota, Chikara; Yamakuchi, Hiroshi; Todoroki, Junichi; Mizoshita, Kazunori; Tabara, Norio; Barber, Michele; Yang, Xiangzhong

    2000-01-01

    Cloning whole animals with somatic cells as parents offers the possibility of targeted genetic manipulations in vitro such as “gene knock-out” by homologous recombination. However, such manipulation requires prolonged culture of nuclear donor cells. Previous successes in cloning have been limited to the use of cells collected either fresh or after short-term culture. Therefore, demonstration of genetic totipotency of cells after prolonged culture is pivotal to combining site-specific genetic manipulations and cloning. Here we report birth of six clones of an aged (17-year-old) Japanese Black Beef bull using ear skin fibroblast cells as nuclear donor cells after up to 3 months of in vitro culture (10–15 passages). We observed higher developmental rates for embryos derived from later passages (10 and 15) as compared with those embryos from an early passage (passage 5). The four surviving clones are now 10–12 months of age and appear normal, similar to their naturally reproduced peers. These data show that fibroblasts of aged animals remain competent for cloning, and prolonged culture does not affect the cloning competence of adult somatic donor cells. PMID:10655472

  7. [Product safety analysis of somatic cell cloned bovine].

    Science.gov (United States)

    Hua, Song; Lan, Jie; Song, Yongli; Lu, Chenglong; Zhang, Yong

    2010-05-01

    Somatic cell cloning (nuclear transfer) is a technique through which the nucleus (DNA) of a somatic cell is transferred into an enucleated oocyte for the generation of a new individual, genetically identical to the somatic cell donor. It could be applied for the enhancement of reproduction rate and the improvement of food products involving quality, yield and nutrition. In recent years, the United States, Japan and Europe as well as other countries announced that meat and milk products made from cloned cattle are safe for human consumption. Yet, cloned animals are faced with a wide range of health problems, with a high death rate and a high incidence of disease. The precise causal mechanisms for the low efficiency of cloning remain unclear. Is it safe that any products from cloned animals were allowed into the food supply? This review focuses on the security of meat, milk and products from cloned cattle based on the available data.

  8. In vitro and in vivo genotoxic effects of somatic cell nuclear transfer cloned cattle meat.

    Science.gov (United States)

    Lee, Nam-Jin; Yang, Byoung-Chul; Jung, Yu-Ri; Lee, Jung-Won; Im, Gi-Sun; Seong, Hwan-Hoo; Park, Jin-Ki; Kang, Jong-Koo; Hwang, Seongsoo

    2011-09-01

    Although the nutritional composition and health status after consumption of the meat and milk derived from both conventionally bred (normal) and somatic cell nuclear transferred (cloned) animals and their progeny are not different, little is known about their food safeties like genetic toxicity. This study is performed to examine both in vitro (bacterial mutation and chromosome aberration) and in vivo (micronucleus) genotoxicity studies of cloned cattle meat. The concentrations of both normal and cloned cattle meat extracts (0-10×) were tested to five strains of bacteria (Salmonella typhimurium: TA98, TA100, TA1535, and TA1537; Escherichia coli: WP2uvrA) for bacterial mutation and to Chinese hamster lung (CHL/IU) cells for chromosome aberration, respectively. For micronucleus test, ICR mice were divided into five dietary groups: commercial pellets (control), pellets containing 5% (N-5) and 10% (N-10) normal cattle meat, and pellets containing 5% (C-5) and 10% (C-10) cloned cattle meat. No test substance-related genotoxicity was noted in the five bacterial strains, CHL/IU cells, or mouse bone marrow cells, suggesting that the cloned cattle meat potentially may be safe in terms of mutagenic hazards. Thus, it can be postulated that the cloned cattle meat do not induce any harmful genotoxic effects in vitro and in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Cloning animals by somatic cell nuclear transfer – biological factors

    Science.gov (United States)

    Tian, X Cindy; Kubota, Chikara; Enright, Brian; Yang, Xiangzhong

    2003-01-01

    Cloning by nuclear transfer using mammalian somatic cells has enormous potential application. However, somatic cloning has been inefficient in all species in which live clones have been produced. High abortion and fetal mortality rates are commonly observed. These developmental defects have been attributed to incomplete reprogramming of the somatic nuclei by the cloning process. Various strategies have been used to improve the efficiency of nuclear transfer, however, significant breakthroughs are yet to happen. In this review we will discuss studies conducted, in our laboratories and those of others, to gain a better understanding of nuclear reprogramming. Because cattle are a species widely used for nuclear transfer studies, and more laboratories have succeeded in cloning cattle than any other specie, this review will be focused on somatic cell cloning of cattle. PMID:14614770

  10. Cloning the interleukin 1 receptor from human T cells

    International Nuclear Information System (INIS)

    Sims, J.E.; Acres, R.B.; Grubin, C.E.; McMahan, C.J.; Wignall, J.M.; March, C.J.; Dower, S.K.

    1989-01-01

    cDNA clones of the interleukin 1 (IL-1) receptor expressed in a human T-cell clone have been isolated by using a murine IL-1 receptor cDNA as a probe. The human and mouse receptors show a high degree of sequence conservation. Both are integral membrane proteins possessing a single membrane-spanning segment. Similar to the mouse receptor, the human IL-1 receptor contains a large cytoplasmic region and an extracellular, IL-1 binding portion composed of three immunoglobulin-like domains. When transfected into COS cells, the human IL-1 receptor cDNA clone leads to expression of two different affinity classes of receptors, with K a values indistinguishable from those determined for IL-1 receptors in the original T-cell clone. An IL-1 receptor expressed in human dermal fibroblasts has also been cloned and sequenced and found to be identical to the IL-1 receptor expressed in T cells

  11. Heterogeneity in induced thermal resistance of rat tumor cell clones

    International Nuclear Information System (INIS)

    Tomasovic, S.P.; Rosenblatt, P.L.; Heitzman, D.

    1983-01-01

    Four 13762NF rat mammary adenocarcinoma clones were examined for their survival response to heating under conditions that induced transient thermal resistance (thermotolerance). Clones MTC and MTF7 were isolated from the subcutaneous locally growing tumor, whereas clones MTLn2 and MTLn3 were derived from spontaneous lung metastases. There was heterogeneity among these clones in thermotolerance induced by either fractionated 45 0 C or continuous 42 0 C heating, but the order of sensitivity was not necessarily the same. The clones developed thermal resistance at different rates and to different degrees within the same time intervals. There was heterogeneity between clones isolated from within either the primary site or metastatic lesions. However, clones derived from metastatic foci did not intrinsically acquire more or less thermotolerance to fractionated 45 0 C or continuous 42 0 C heating than did clones from the primary tumor. Further, there was no apparent relationship between any phenotypic properties that conferred more or less thermotolerance in vitro and any phenotypic properties that conferred enhanced metastatic success of these same clones by spontaneous (subcutaneous) or experimental (intravenous) routes in vivo. These tumor clones also differ in their karyotype, metastatic potential, cell surface features, sensitivity to x-irradiation and drugs, and ability to repair sublethal radiation damage. These results provide further credence to the concept that inherent heterogeneity within tumors may be as important in therapeutic success as other known modifiers of outcome such as site and treatment heterogeneity

  12. Recent advancements in cloning by somatic cell nuclear transfer.

    Science.gov (United States)

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-05

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model.

  13. Recent advancements in cloning by somatic cell nuclear transfer

    Science.gov (United States)

    Ogura, Atsuo; Inoue, Kimiko; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer (SCNT) cloning is the sole reproductive engineering technology that endows the somatic cell genome with totipotency. Since the first report on the birth of a cloned sheep from adult somatic cells in 1997, many technical improvements in SCNT have been made by using different epigenetic approaches, including enhancement of the levels of histone acetylation in the chromatin of the reconstructed embryos. Although it will take a considerable time before we fully understand the nature of genomic programming and totipotency, we may expect that somatic cell cloning technology will soon become broadly applicable to practical purposes, including medicine, pharmaceutical manufacturing and agriculture. Here we review recent progress in somatic cell cloning, with a special emphasis on epigenetic studies using the laboratory mouse as a model. PMID:23166393

  14. Cloning from stem cells: different lineages, different species, same story.

    Science.gov (United States)

    Oback, Björn

    2009-01-01

    Following nuclear transfer (NT), the most stringent measure of extensive donor cell reprogramming is development into viable offspring. This is referred to as cloning efficiency and quantified as the proportion of cloned embryos transferred into surrogate mothers that survive into adulthood. Cloning efficiency depends on the ability of the enucleated recipient cell to carry out the reprogramming reactions ('reprogramming ability') and the ability of the nuclear donor cell to be reprogrammed ('reprogrammability'). It has been postulated that reprogrammability of the somatic donor cell epigenome is inversely proportional to its differentiation status. In order to test this hypothesis, reprogrammability was compared between undifferentiated stem cells and their differentiated isogenic progeny. In the mouse, cells of divergent differentiation status from the neuronal, haematopoietic and skin epithelial lineage were tested. In cattle and deer, skeletal muscle and antler cells, respectively, were used as donors. No conclusive correlation between differentiation status and cloning efficiency was found, indicating that somatic donor cell type may not be the limiting factor for cloning success. This may reflect technical limitations of the NT-induced reprogramming assay. Alternatively, differentiation status and reprogrammability may be unrelated, making all cells equally difficult to reprogramme once they have left the ground state of pluripotency.

  15. Somatic cell nuclear transfer cloning: practical applications and current legislation.

    Science.gov (United States)

    Niemann, H; Lucas-Hahn, A

    2012-08-01

    Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved. © 2012 Blackwell Verlag GmbH.

  16. Dose dependency of the frequency of micronucleated binucleated clone cells and of division related median clone sizes difference. Pt. 2

    International Nuclear Information System (INIS)

    Hagemann, G,; Kreczik, A.; Treichel, M.

    1996-01-01

    Following irradiation of the progenitor cells the clone growth of CHO cells decreases as a result of cell losses. Lethally acting expressions of micronuclei are produced by heritable lethal mutations. The dependency of the frequency of micronucleated binucleated clone cells and of the median clone sizes difference on the radiation dose was measured and compared to non-irradiated controls. Using the cytokinesis-block-micronucleus-method binucleated cells with micronuclei were counted as ratio of all binucleated cells within a clone size distribution. This ratio (shortened: micronucleus yield) was determined for all clone size distributions, which had been exposed to different irradiation doses and incubation times. The micronucleus yields were compared to the corresponding median clone sizes differences. The micronucleus yield is linearly dependent on the dose and is independent of the incubation time. The same holds true for the division related median clone sizes difference, which as a result is also linearly dependent on the micronucleus yield. Due to the inevitably errors of the cell count of micronucleated binucleated cells, an automatic measurement of the median clone sizes differences is the preferred method for evaluation of cellular radiation sensitivity for heritable lethal mutations. This value should always be determined in addition, if clone survival fractions are used as predictive test because it allows for an estimation of the remission probability of surviving cells. (orig.) [de

  17. Production of cloned mice and ES cells from adult somatic cells by nuclear transfer: how to improve cloning efficiency?

    Science.gov (United States)

    Wakayama, Teruhiko

    2007-02-01

    Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), most cloned embryos usually undergo developmental arrest prior to or soon after implantation, and the success rate for producing live offspring by cloning remains below 5%. The low success rate is believed to be associated with epigenetic errors, including abnormal DNA hypermethylation, but the mechanism of "reprogramming" is unclear. We have been able to develop a stable NT method in the mouse in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Especially in the mouse, only a few laboratories can make clones from adult somatic cells, and cloned mice are never successfully produced from most mouse strains. However, this technique promises to be an important tool for future research in basic biology. For example, NT can be used to generate embryonic stem (NT-ES) cell lines from a patient's own somatic cells. We have shown that NT-ES cells are equivalent to ES cells derived from fertilized embryos and that they can be generated relatively easily from a variety of mouse genotypes and cell types of both sexes, even though it may be more difficult to generate clones directly. In general, NT-ES cell techniques are expected to be applied to regenerative medicine; however, this technique can also be applied to the preservation of genetic resources of mouse strain instead of embryos, oocytes and spermatozoa. This review describes how to improve cloning efficiency and NT-ES cell establishment and further applications.

  18. Hybrid clone cells derived from human breast epithelial cells and human breast cancer cells exhibit properties of cancer stem/initiating cells.

    Science.gov (United States)

    Gauck, Daria; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas

    2017-08-02

    The biological phenomenon of cell fusion has been associated with cancer progression since it was determined that normal cell × tumor cell fusion-derived hybrid cells could exhibit novel properties, such as enhanced metastatogenic capacity or increased drug resistance, and even as a mechanism that could give rise to cancer stem/initiating cells (CS/ICs). CS/ICs have been proposed as cancer cells that exhibit stem cell properties, including the ability to (re)initiate tumor growth. Five M13HS hybrid clone cells, which originated from spontaneous cell fusion events between M13SV1-EGFP-Neo human breast epithelial cells and HS578T-Hyg human breast cancer cells, and their parental cells were analyzed for expression of stemness and EMT-related marker proteins by Western blot analysis and confocal laser scanning microscopy. The frequency of ALDH1-positive cells was determined by flow cytometry using AldeRed fluorescent dye. Concurrently, the cells' colony forming capabilities as well as the cells' abilities to form mammospheres were investigated. The migratory activity of the cells was analyzed using a 3D collagen matrix migration assay. M13HS hybrid clone cells co-expressed SOX9, SLUG, CK8 and CK14, which were differently expressed in parental cells. A variation in the ALDH1-positive putative stem cell population was observed among the five hybrids ranging from 1.44% (M13HS-7) to 13.68% (M13HS-2). In comparison to the parental cells, all five hybrid clone cells possessed increased but also unique colony formation and mammosphere formation capabilities. M13HS-4 hybrid clone cells exhibited the highest colony formation capacity and second highest mammosphere formation capacity of all hybrids, whereby the mean diameter of the mammospheres was comparable to the parental cells. In contrast, the largest mammospheres originated from the M13HS-2 hybrid clone cells, whereas these cells' mammosphere formation capacity was comparable to the parental breast cancer cells. All M13HS

  19. Cloning of Plasmodium falciparum by single-cell sorting.

    Science.gov (United States)

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-10-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Cloning of Plasmodium falciparum by single-cell sorting

    Science.gov (United States)

    Miao, Jun; Li, Xiaolian; Cui, Liwang

    2010-01-01

    Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038

  1. Establishment of bipotent progenitor cell clone from rat skeletal muscle.

    Science.gov (United States)

    Murakami, Yousuke; Yada, Erica; Nakano, Shin-ichi; Miyagoe-Suzuki, Yuko; Hosoyama, Tohru; Matsuwaki, Takashi; Yamanouchi, Keitaro; Nishihara, Masugi

    2011-12-01

    The present study describes the isolation, cloning and characterization of adipogenic progenitor cells from rat skeletal muscle. Among the obtained 10 clones, the most highly adipogenic progenitor, 2G11 cells, were further characterized. In addition to their adipogenicity, 2G11 cells retain myogenic potential as revealed by formation of multinucleated myotubes when co-cultured with myoblasts. 2G11 cells were resistant to an inhibitory effect of basic fibroblast growth factor on adipogenesis, while adipogenesis of widely used preadipogenic cell line, 3T3-L1 cells, was suppressed almost completely by the same treatment. In vivo transplantation experiments revealed that 2G11 cells are able to possess both adipogenicity and myogenicity in vivo. These results indicate the presence of bipotent progenitor cells in rat skeletal muscle, and suggest that such cells may contribute to ectopic fat formation in skeletal muscle. © 2011 The Authors. Animal Science Journal © 2011 Japanese Society of Animal Science.

  2. Effects of donor fibroblast cell type and transferred cloned embryo number on the efficiency of pig cloning.

    Science.gov (United States)

    Li, Zicong; Shi, Junsong; Liu, Dewu; Zhou, Rong; Zeng, Haiyu; Zhou, Xiu; Mai, Ranbiao; Zeng, Shaofen; Luo, Lvhua; Yu, Wanxian; Zhang, Shouquan; Wu, Zhenfang

    2013-02-01

    Currently, cloning efficiency in pigs is very low. Donor cell type and number of cloned embryos transferred to an individual surrogate are two major factors that affect the successful rate of somatic cell nuclear transfer (SCNT) in pigs. This study aimed to compare the influence of different donor fibroblast cell types and different transferred embryo numbers on recipients' pregnancy rate and delivery rate, the average number of total clones born, clones born alive and clones born healthy per litter, and the birth rate of healthy clones (=total number of healthy cloned piglets born /total number of transferred cloned embryos). Three types of donor fibroblasts were tested in large-scale production of cloned pigs, including fetal fibroblasts (FFBs) from four genetically similar Western swine breeds of Pietrain (P), Duroc (D), Landrace (L), and Yorkshire (Y), which are referred to as P,D,LY-FFBs, adult fibroblasts (AFBs) from the same four breeds, which are designated P,D,L,Y-AFBs, and AFBs from a Chinese pig breed of Laiwu (LW), which is referred to as LW-AFBs. Within each donor fibroblast cell type group, five transferred cloned embryo number groups were tested. In each embryo number group, 150-199, 200-249, 250-299, 300-349, or 350-450 cloned embryos were transferred to each individual recipient sow. For the entire experiment, 92,005 cloned embryos were generated from nearly 115,000 matured oocytes and transferred to 328 recipients; in total, 488 cloned piglets were produced. The results showed that the mean clones born healthy per litter resulted from transfer of embryos cloned from LW-AFBs (2.53 ± 0.34) was similar with that associated with P,D,L,Y-FFBs (2.72 ± 0.29), but was significantly higher than that resulted from P,D,L,Y-AFBs (1.47 ± 0.18). Use of LW-AFBs as donor cells for SCNT resulted in a significantly higher pregnancy rate (72.00% vs. 59.30% and 48.11%) and delivery rate (60.00% vs. 45.93% and 35.85%) for cloned embryo recipients, and a

  3. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    Science.gov (United States)

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-01-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…

  4. Cloning Endangered Felids by Interspecies Somatic Cell Nuclear Transfer.

    Science.gov (United States)

    Gómez, Martha C; Pope, C Earle

    2015-01-01

    In 2003, the first wild felid was produced by interspecies somatic cell nuclear transfer. Since then other wild felid clone offspring have been produced by using the same technique with minor modifications. This chapter describes detailed protocols used in our laboratory for (1) the isolation, culture, and preparation of fibroblast cells as donor nucleus, and (2) embryo reconstruction with domestic cat enucleated oocytes to produce cloned embryos that develop to the blastocyst stage in vitro and, after transfer into synchronized recipients, establish successful pregnancies.

  5. In vivo localization of cloned IL-2-dependent T cells

    International Nuclear Information System (INIS)

    Carroll, A.M.; Palladino, M.A.; Oettgen, H.; De Sousa, M.

    1983-01-01

    The quantitative organ distribution and tissue microenvironment positioning of radioisotopically labeled cloned T cells were characterized. Intravenous (iv) injection of 51chromium ( 51 Cr)-labeled, long-term cultured cloned T-helper cells and cells from several cloned cytolytic T-lymphocyte lines (CTLL) resulted in poor localization of these cells in recipient lymphoid tissues, similar to results reported for activated lymphoblastoid cells. Simultaneous administration of interleukin 2 (IL-2) with labeled cells resulted in enhanced recovery from recipient spleen. By the intraperitoneal (ip) injection route, overall percentage recovery of injected radioactivity was lower than by the iv route, but significant localization to lymph nodes occurred. Examination of autoradiographs of tissue sections from recipients of [ 3 H]adenosine-labeled cells showed most label associated with intact, isolated cells in the liver, lungs, spleen, and small intestine. By 24 hr after iv injection, labeled cells in spleen sections were distributed to both nonlymphoid and T- and B-lymphoid areas. These findings suggest that poor localization of these cells to recipient lymphoid tissue is due both to intrinsic characteristics of cultured lymphocytes and to the possible reduced viability of IL-2-dependent cells in vivo

  6. Human cloning, stem cell research. An Islamic perspective.

    Science.gov (United States)

    Al-Aqeel, Aida I

    2009-12-01

    The rapidly changing technologies that involve human subjects raise complex ethical, legal, social, and religious issues. Recent advances in the field of cloning and stem cell research have introduced new hopes for the treatment of serious diseases. But this promise has raised many complex questions. This field causes debate and challenge, not only among scientists but also among ethicists, religious scholars, governments, and politicians. There is no consensus on the morality of human cloning, even within specific religious traditions. In countries in which religion has a strong influence on political decision making, the moral status of the human embryo is at the center of the debate. Because of the inevitable consequences of reproductive cloning, it is prohibited in Islam. However, stem cell research for therapeutic purposes is permissible with full consideration, and all possible precautions in the pre-ensoulment stages of early fetus development, if the source is legitimate.

  7. Effect of TH-lines and clones on the growth and differentiation of B cell clones in microculture.

    Science.gov (United States)

    Kotloff, D B; Cebra, J J

    1988-02-01

    Antibody isotype expression by B cell clones was analyzed using in vitro microcultures containing low numbers of hapten-gelatin-enriched B cells and higher numbers of hemocyanin-specific helper T cell lines or clones. Twenty-eight to sixty-three percent of clones grown in microculture with haptenated hemocyanin and T cells from established lines expressed IgG and/or IgA isotypes in random mixtures, almost always accompanied by IgM. Helper T cells from hemocyanin-specific clones also supported the expression of non-IgM isotypes by the B cell clones, suggesting that a single specificity of T cell can provide sufficient growth and differentiation factors for the display of isotype switching. A positive correlation between the antibody output of clones and the expression of non-IgM isotypes indicated that the switching process may be associated with cell division. Although memory B cells that give clones expressing IgG and/or IgA in the absence of IgM are also enriched on haptenated gelatin, they are not stimulable under conditions of this microculture assay.

  8. Cloned Hemoglobin Genes Enhance Growth Of Cells

    Science.gov (United States)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  9. Cloning of ES cells and mice by nuclear transfer.

    Science.gov (United States)

    Wakayama, Sayaka; Kishigami, Satoshi; Wakayama, Teruhiko

    2009-01-01

    We have been able to develop a stable nuclear transfer (NT) method in the mouse, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Although the piezo unit is a complex tool, once mastered it is of great help not only in NT experiments, but also in almost all other forms of micromanipulation. Using this technique, embryonic stem (ntES) cell lines established from somatic cell nuclei can be generated relatively easily from a variety of mouse genotypes and cell types. Such ntES cells can be used not only for experimental models of human therapeutic cloning but also as a means of preserving mouse genomes instead of preserving germ cells. Here, we describe our most recent protocols for mouse cloning.

  10. Cloning and expression of cell wall acid invertase gene fragment ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... intron. It had a high homology to previously cloned cell wall acid invertase genes in other plants by sequence .... Japan) in a final volume of 50 µl. The programs for ... The first strand of cDNA was synthesized by using SYBR ...

  11. Characterization of three newly established rat sarcoma cell clones

    Czech Academy of Sciences Publication Activity Database

    Holubová, Monika; Leba, M.; Sedmíková, M.; Vannucci, Luca; Horák, Vratislav

    2012-01-01

    Roč. 48, č. 10 (2012), s. 610-618 ISSN 1071-2690 R&D Projects: GA MŠk 2B08063 Institutional support: RVO:67985904 Keywords : sarcoma * cell clones * lewis rat Subject RIV: FD - Oncology ; Hematology Impact factor: 1.289, year: 2012

  12. Growth regulation, imprinting, and epigenetic transcription-related gene expression differs in lung of deceased transgenic cloned and normal goats

    NARCIS (Netherlands)

    Meng, L.; Jia, R.X.; Sun, Y.; Wang, Z.Y.; Wan, Y.J.; Zhang, Y.L.; Zhong, B.S.; Wang, F.

    2014-01-01

    Somatic cell nuclear transfer (SCNT) is a promising technique to produce mammalian transgenic clones. Only a small proportion of manipulated embryos, however, can develop into viable offspring. The abnormal growth and development of cloned animals, furthermore, are accompanied by aberrant lung

  13. Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem.

    Science.gov (United States)

    Oh, H J; Kim, M K; Jang, G; Kim, H J; Hong, S G; Park, J E; Park, K; Park, C; Sohn, S H; Kim, D Y; Shin, N S; Lee, B C

    2008-09-01

    The objective of the present study was to investigate whether nuclear transfer of postmortem wolf somatic cells into enucleated dog oocytes, is a feasible method to produce a cloned wolf. In vivo-matured oocytes (from domestic dogs) were enucleated and fused with somatic cells derived from culture of tissue obtained from a male gray wolf 6h after death. The reconstructed embryos were activated and transferred into the oviducts of naturally synchronous domestic bitches. Overall, 372 reconstructed embryos were transferred to 17 recipient dogs; four recipients (23.5%) were confirmed pregnant (ultrasonographically) 23-25 d after embryo transfer. One recipient spontaneously delivered two dead pups and three recipients delivered, by cesarean section, four cloned wolf pups, weighing 450, 190, 300, and 490g, respectively. The pup that weighed 190g died within 12h after birth. The six cloned wolf pups were genetically identical to the donor wolf, and their mitochondrial DNA originated from the oocyte donors. The three live wolf pups had a normal wolf karyotype (78, XY), and the amount of telomeric DNA, assessed by quantitative fluorescence in situ hybridization, was similar to, or lower than, that of the nuclear donor. In conclusion, the present study demonstrated the successful cloning of an endangered male gray wolf via interspecies transfer of somatic cells, isolated postmortem from a wolf, and transferred into enucleated dog oocytes. Therefore, somatic cell nuclear transfer has potential for preservation of canine species in extreme situations, including sudden death.

  14. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning.

    Science.gov (United States)

    Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng

    2015-01-01

    We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.

  15. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing

    Directory of Open Access Journals (Sweden)

    Jianguo Wen

    2017-06-01

    Full Text Available Abstract Background Sickle cell disease (SCD is a disorder of red blood cells (RBCs expressing abnormal hemoglobin-S (HbS due to genetic inheritance of homologous HbS gene. However, people with the sickle cell trait (SCT carry a single allele of HbS and do not usually suffer from SCD symptoms, thus providing a rationale to treat SCD. Methods To validate gene therapy potential, hematopoietic stem cells were isolated from the SCD patient blood and treated with CRISPR/Cas9 approach. To precisely dissect genome-editing effects, erythroid progenitor cells were cloned from single colonies of CRISPR-treated cells and then expanded for simultaneous gene, protein, and cellular function studies. Results Genotyping and sequencing analysis revealed that the genome-edited erythroid progenitor colonies were converted to SCT genotype from SCD genotype. HPLC protein assays confirmed reinstallation of normal hemoglobin at a similar level with HbS in the cloned genome-edited erythroid progenitor cells. For cell function evaluation, in vitro RBC differentiation of the cloned erythroid progenitor cells was induced. As expected, cell sickling assays indicated function reinstitution of the genome-edited offspring SCD RBCs, which became more resistant to sickling under hypoxia condition. Conclusions This study is an exploration of genome editing of SCD HSPCs.

  16. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis.

    Science.gov (United States)

    Lovato, Laura; Willis, Simon N; Rodig, Scott J; Caron, Tyler; Almendinger, Stefany E; Howell, Owain W; Reynolds, Richard; O'Connor, Kevin C; Hafler, David A

    2011-02-01

    In the central nervous system of patients with multiple sclerosis, B cell aggregates populate the meninges, raising the central question as to whether these structures relate to the B cell infiltrates found in parenchymal lesions or instead, represent a separate central nervous system immune compartment. We characterized the repertoires derived from meningeal B cell aggregates and the corresponding parenchymal infiltrates from brain tissue derived primarily from patients with progressive multiple sclerosis. The majority of expanded antigen-experienced B cell clones derived from meningeal aggregates were also present in the parenchyma. We extended this investigation to include 20 grey matter specimens containing meninges, 26 inflammatory plaques, 19 areas of normal appearing white matter and cerebral spinal fluid. Analysis of 1833 B cell receptor heavy chain variable region sequences demonstrated that antigen-experienced clones were consistently shared among these distinct compartments. This study establishes a relationship between extraparenchymal lymphoid tissue and parenchymal infiltrates and defines the arrangement of B cell clones that populate the central nervous system of patients with multiple sclerosis.

  17. [Distribution of abnormal cell clone with deletion of chromosome 20q in marrow cell lineages and apoptosis cells in myelodysplastic syndrome].

    Science.gov (United States)

    Qin, Ling; Wang, Chun; Qin, You-Wen; Xie, Kuang-Cheng; Yan, Shi-Ke; Gao, Yan-Rong; Wang, Xiao-Rui; Zhao, Chu-Xian

    2008-06-01

    This study was aimed to investigate the distribution of abnormal clone in marrow cell lineages and apoptosis cells in myelodysplastic syndrome (MDS) with deletion of chromosome 20q. Monoclonal antibodies recognizing myeloid precursors (CD15), erythroid precursors (GPA), T cells (CD3(+)CD56(-)CD16(-)), B cells (CD19), NK cells (CD3(-)CD56(+)CD16(+)) were used to sort bone marrow cells in a MDS patient with del (20q) by fluorescence activated cell sorting (FACS). Annexin V-FITC and PI were used to sort bone marrow Annexin V(+)PI(-) and Annexin V(-)PI(-) cells by FACS. The sorted positive cells were detected by interphase dual-color fluorescence in situ hybridization (D-FISH) using a LSI D20S108 probe (Spectrum Orange) and a Telvysion TM 20p probe (Spectrum Green). FACS and FISH analysis were also performed on the samples from 4 cases with normal karyotype. The results showed that the proportions of MDS clone in the myeloid and erythroid precursors were 70.50% and 93.33% respectively, in the RAEB-1 patient with del (20q) and were obviously higher than that in control group (5.39% and 6.17%). The proportions of abnormal clone in T, B and NK cells were 3.23%, 4.32% and 5.77% respectively and were less than that in control group (5.76%, 4.85%, 6.36%). The percentage of apoptotic cells in the bone marrow nucleated cells was 16.09%. The proportions of MDS clone in Annexin V(+)PI(-) and Annexin V(-)PI(-) cells were 32.48% and 70.11%, respectively. It is concluded that most myeloid and erythroid precursors are originated from the abnormal clone in MDS with del (20q). A little part of apoptotic cells are derived from the abnormal clone.

  18. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    Science.gov (United States)

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  19. Microsporogênese em clones normais e tetraplóides de Hevea brasiliensis Muell.-Arg Microsporo genesis in normal and tetraploid Hevea brasiliensis (Muell.-Arg.

    Directory of Open Access Journals (Sweden)

    Cândida H. T. M. Conagin

    1971-01-01

    Full Text Available Pesquisas sôbre o efeito da colquicina em Hevea brasiliensis Muell.-Arg. realizadas anteriormente levaram à obtenção de clones com número duplicado de cromossomos; tais clones, atualmente em fase de amplas e detalhadas observações (6, floresceram em 1969, pela primeira vez. Foi então realizado um estudo citológico comparativo da microsporo-gènese de duas plantas, uma pertencente ao clone normal n.° 3064, com 2n = 36 cromossomos, e outra pertencente ao clone duplicado n.° 3065, com 2n=72 cromossomos. Ambos são considerados clones gêmeos, porque foram obtidos de uma mesma semente, por técnica especial (7. Na planta com 2n = 36 cromossomos, o processo meiótico é normal, dando tétrades perfeitas e grãos de pólen aparentemente funcionais. A planta 3065, com 2n=72 cromossomos, apresenta, além de células-mães de pólen que se dividem normalmente, outras que no final da meiose produzem tétrades anormais, com micrócitos excedentes e grãos de pólen vazios. Caracteriza-se também por grãos de pólen que não passam pelas divisões mitóticas, isto é, apresentam sempre um núcleo só, que não se divide. Em virtude destas primeiras observações pode-se formular uma hipótese de esterilidade masculina para o clone em estudo.Previous works on Hevea brasiliensis Muell.-Arg. produced several pairs of twin clones, one member having the normal chromosome number and the other the duplicated set after colchicine treatment. Plants of normal clone 3064 are fertile and have 32 chromosomes. Microsporogenesis is normal, producing only normal tetrads of four microsporocytes. The resulting pollen grains have three germinal pores. Grains in different stages of development could be noticed, from one-nucleated cytoplasm to the two-nucleated reproductive cell, which undoubtedly means normal game to genesis. On the other hand plants of the duplicated twin clone 3065, blossomed during the year of 1969 for the first time. Microsporogenesis studied

  20. A NEW CELL CLONE DERIVED FROM TRICHOPLUSIA NI TN5B1-4 CELLS

    Institute of Scientific and Technical Information of China (English)

    Jian-xiaoTian; Chang-youLi; Gui-lingZheng; Guo-xunLi; PingWang; Granados

    2004-01-01

    The characteristics of a cultured cell line do not always remain stable and may change upon continuous passage. Most continuous cell lines, even after cloning, possess several genotypes that are constantly changing. There are numerous selective and adaptive culture processes, in addition to genetic instability, that may improve phenotypic change in cell growth, virus susceptibility, gene expression, and production of virus. Similar detrimental effects of long term passaging of insect cells have also been reported for continuous cell lines, for example, Tn5B 1-4 cells, which are the most widely used for the baculovirus expression vector system (BEVS), provide superior production of recombinant proteins,however, this high productivity may be more evident in low passage cells. In this paper, we describe the isolation of a cell clone, Tn5B-40, from low passage Tn5B 1-4 cells. The growth characteristics,productions of virus, and high level of recombinant protein productions were determined. The results showed the susceptibility of both clone and Tn5B 1-4 cells to wild-type AcNPV was approximately the same rate with over 95% of infection; when the cloned cells were infected with recombinant baculoviruses expressing β-galactosidase and secreted alkaline phosphatase (SEAP), expression of the recombinant proteins from the cloned cells exceeded that from the parental Tn5B 1-4 cells.

  1. Nucleolar re-activation is delayed in mouse embryos cloned from two different cell lines

    DEFF Research Database (Denmark)

    Svarcova, Olga; Dinnyes, A.; Polgar, Z.

    2009-01-01

    displayed early NPBs transformation. In conclusion, despite normal onset of EGA in cloned embryos, activation of functional nucleoli was one cell cycle delayed in NT embryos. NT-MEF embryos displayed normal targeting but delayed activation of nucleolar proteins. Contrary, in NT-HM1 embryos, both......Aim of this study was to evaluate and compare embryonic genome activation (EGA) in mouse embryos of different origin using nucleolus as a marker. Early and late 2-cell and late 4-cell stage embryos, prepared by in vitro fertilization (IVF), parthenogenetic activation (PG), and nuclear transfer...... ofmouse embryonic fibroblast (MEF) and mouse HM1 emryonic stem cells (HM1), were processed for autoradiography following 3H-uridine incubation (transcriptional activity), transmission electron microscopy (ultrastructure) and immunofluorescence (nucleolar proteins; upstream binding factor, UBF...

  2. [SPREADING OF NCTC CLONE 929 CELLS AFTER RESEEDING].

    Science.gov (United States)

    Petrov, Yu P; Negulyaev, Yu A; Tsupkina, N V

    2015-01-01

    The period (1 h after reseeding) of behaviour of mouse NCTC clone 929 cells to the conditions of artificial cultivation was studied. The time-lapse imaging followed the processing of the cells with ImageJ program was applied. To characterize the parametres cell status we used the cell area (projection of the cell on substrate) and Rp/Ra ratio introduced earlier as a spreading coefficient (Kuz'minykh, Petrov, 2004). After attaching a substratum, cells have a form of sphere (the phase "sphere") as the daughter cells after a mitosis. We revealed however that after this phase the reseeded cells do not start usual spreading and migration along substratum. They pass a phase of equally spreading in all directions and shaping their area as a circle (phase "circle"). This phase is absent of the daughter cells spreading after mitosis. We assume that the phase "circle" is a result of adaptation of the cells to reseedings at artificial cultivation. It is necessary for formation of a substrate composed of own extracellular matrix components (ECM) of the cells. Own ECM facilitates transition of the cells to their usual spreading and migration along substratum.

  3. Establishment of a vascular endothelial cell-reactive type II NKT cell clone from a rat model of autoimmune vasculitis.

    Science.gov (United States)

    Iinuma, Chihiro; Waki, Masashi; Kawakami, Ai; Yamaguchi, Madoka; Tomaru, Utano; Sasaki, Naomi; Masuda, Sakiko; Matsui, Yuki; Iwasaki, Sari; Baba, Tomohisa; Kasahara, Masanori; Yoshiki, Takashi; Paletta, Daniel; Herrmann, Thomas; Ishizu, Akihiro

    2015-02-01

    We previously generated a rat model that spontaneously developed small vessel vasculitis (SVV). In this study, a T cell clone reactive with rat vascular endothelial cells (REC) was established and named VASC-1. Intravenous injection of VASC-1 induced SVV in normal recipients. VASC-1 was a TCRαβ/CD3-positive CD4/CD8 double-negative T cell clone with expression of NKG2D. The cytokine mRNA profile under unstimulated condition was positive for IL-4 and IFN-γ but negative for IL-2 and IL-10. After interaction with REC, the mRNA expression of IL-2, IL-5 and IL-6 was induced in VASC-1, which was inhibited by blocking of CD1d on the REC surface. Although the protein levels of these cytokines seemed to be lower than the detection limit in the culture medium, IFN-γ was detectable. The production of IFN-γ from the VASC-1 stimulated with LPS-pre-treated REC was inhibited by the CD1d blockade on the REC. These findings indicated VASC-1 as an NKT cell clone. The NKT cell pool includes two major subsets, namely types I and II. Type I NKT cells are characterized by expression of semi-invariant TCRs and the potential to bind to marine sponge-derived α-galactosylceramide (α-GalCer) loaded on CD1d; whereas, type II NKT cells do not manifest these characteristics. VASC-1 exhibited a usage of TCR other than the type I invariant TCR α chain and did not bind to α-GalCer-loaded CD1d; therefore, it was determined as a type II NKT cell clone. The collective evidence suggested that REC-reactive type II NKT cells could be involved in the pathogenesis of SVV in rats. © The Japanese Society for Immunology. 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Cloning higher plants from aseptically cultured tissues and cells

    Science.gov (United States)

    Krikorian, A. D.

    1982-01-01

    A review of aseptic culture methods for higher plants is presented, which focuses on the existing problems that limit or prevent the full realization of cloning plants from free cells. It is shown that substantial progress in clonal multiplication has been made with explanted stem tips or lateral buds which can be stimulated to produce numerous precocious axillary branches. These branches can then be separated or subdivided and induced to root in order to yield populations of genetically and phenotypically uniorm plantlets. Similarly, undifferentiated calluses can sometimes be induced to form shoots and/or roots adventitiously. Although the cell culture techniques required to produce somatic embryos are presently rudimentary, steady advances are being made in learning how to stimulate formation of somatic or adventive embryos from totipotent cells grown in suspension cultures. It is concluded that many problems exist in the producing and growing of totipotent or morphogenetically competent cell suspensions, but the potential benefits are great.

  5. Delayed reproductive death as a dominant phenotype in cell clones surviving X-irradiation

    International Nuclear Information System (INIS)

    Chang, W.P.; Little, J.B.

    1992-01-01

    Residual damage manifested as reduced cloning efficiency was observed in many of the cloned progeny of Chinese hamster ovary (CHO) cells and human carcinoma SQ-20B cells surviving X-irradiation. This stable phenotype, which we have termed delayed reproductive death, persisted for >50 generations of cell replication post-irradiation. Clones showing this phenotype were aneuploid, and formed colonies with a high proportion of giant cells. By somatic cell hybridization of CHO clones, the delayed reproductive death phenotype was found to be a dominant trait; the cloning efficiency of hybrid clones was persistently depressed, as compared with that of control hybrid cells. These results suggest that delayed reproductive death represents a specific cellular response that may persist in some of the progeny of mammalian cells for long periods after X-irradiation. (author)

  6. In vitro culture of skin fibroblast cells for potential cloning by nuclear transfer

    International Nuclear Information System (INIS)

    Gupta, S.C.; Gupta, N.; Ahlawat, S.P.S.; Kumar, A.; Taneja, R.; Sharma, R.; Sunder, S.; Tantia, M.S.

    2005-01-01

    Donor cell lines were developed from skin tissue for the conservation of the endangered Jaiselmeri camel breed of India. Average cell proliferation rates varied from 0.82 to 0.69 in different passages, and population doubling time from 29.3 h to 34.8 h. Around 15 population doublings were accomplished during this culturing. Cell viability was 97 to 99% in different passages. Growth curves of cells from the JC-5 cell line reached a plateau on day 7, while the slower-growing cultures of JC-3 showed elevation even on day 10, possibly due to donor age differences. Cell proliferation rates by both cell count and MTT absorbance showed similar patterns, with a correlation coefficient of 0.79. MTT assay, a colorimetric method, can handle large samples in somatic cell cultures. Diploid chromosomal counts in passages 1, 3 and 5 were normal (2N=74, XY) in 97% of the cells. Occasional metaphase plates showed polyploidy. The present baseline data on standard growth curve, linear relationship in colorimetric assay for estimation of cell proliferation rate, and normal ploidy and karyological levels in camel skin fibroblast cells in multiplication could be useful in developing competent donor somatic cell lines for conservation now and revival of this camel breed by cloning in the future. (author)

  7. Peripheral blood and intrathyroidal T cell clones from patients with thyroid autoimmune diseases.

    Science.gov (United States)

    Massart, C; Caroff, G; Maugendre, D; Genetet, N; Gibassier, J

    1999-01-01

    For a better understanding of the pathogenesis of thyroid autoimmune diseases, we have studied morphological and functional properties of T clones from peripheral blood lymphocytes (PBL) and from intrathyroidal lymphocytes (ITL) obtained from 3 patients with Graves' disease or 1 Hashimoto's thyroiditis. Investigations were carried out on clones cultured alone or cocultured with autologous thyrocytes. Clonage efficiency ranged from 30% to 33% for PBL and 10% to 36% for ITL. A predominance of CD4-positive clones was observed whatever the origin of the lymphocytes or the autoimmune pathology. Gamma interferon (IFN-gamma) was detected in the majority (17/19) of the clones tested. Intracytoplasmic interleukin (IL-4) was secreted in 7/19 clones and both cytokines were produced in 5/19 clones. In coculture a proliferative response and tumour necrosis factor (TNF-alpha) production were observed with 6 clones (4 from Graves thyrocytes and 2 from thyroiditis). No cytotoxic clone was derived from Graves or thyroiditis tissues. These data demonstrate that the large majority of T clones are principally CD4-T cells; all the clones secreted TNF-alpha and a large majority produced IFN-gamma. Only a few clones produced IL-4 alone or associated with IFN-gamma. Six T clones induced proliferative response and of TNF-alpha secretion in coculture. Further investigations must be performed on these antigen-reactive T clones to analyse their role in the pathogenesis of the human thyroid autoimmune diseases.

  8. Lysis of cells infected with typhus group rickettsiae by a human cytotoxic T cell clone

    International Nuclear Information System (INIS)

    Carl, M.; Robbins, F.; Hartzman, R.J.; Dasch, G.A.

    1987-01-01

    Cytolytic human T cells clones generated in response to the intracellular bacterium Rickettsia typhi were characterized. Growing clones were tested for their ability to proliferate specifically in response to antigens derived from typhus group rickettsiae or to lyse targets infected with R. typhi or Rickettsia prowazekii, as measured by 51 Cr-release from target cells. Two clones were able to lyse targets infected with typhus group rickettsiae. One of these clones was more fully characterized because of its rapid growth characteristics. This cytolytic clone was capable of lysing an autologous infected target as well as a target matched for class I and II histocompatibility leukocyte antigens (HLA). It was not capable, however, of lysing either a target mismatched for both class I and II HLA or a target partially matched for class I HLA. In addition, the clone exhibited specificity in that it was able to lyse an autologous target infected with typhus group rickettsiae, but did not lyse an autologous target infected with an antigenically distinct rickettsial species, Rickettsia tsutsugamushi. These results demonstrate, for the first time, that cells infected with intracellular bacteria can be lysed by human cytotoxic T lymphocytes

  9. Nuclear donor cell lines considerably influence cloning efficiency and the incidence of large offspring syndrome in bovine somatic cell nuclear transfer.

    Science.gov (United States)

    Liu, J; Wang, Y; Su, J; Luo, Y; Quan, F; Zhang, Y

    2013-08-01

    Total five ear skin fibroblast lines (named F1, F2, F3, F4 and F5) from different newborn Holstein cows have been used as nuclear donor cells for producing cloned cows by somatic cell nuclear transfer (SCNT). The effects of these cell lines on both in vitro and in vivo developmental rates of cloned embryos, post-natal survivability and incidence of large offspring syndrome (LOS) were examined in this study. We found that the different cell lines possessed the same capacity to support pre-implantation development of cloned embryos, the cleavage and blastocyst formation rates ranged from 80.2 ± 0.9 to 84.5 ± 2.5% and 28.5 ± 0.9 to 33.3 ± 1.4%, respectively. However, their capacities to support the in vivo development of SCNT embryos showed significant differences (p cloning efficiency was significantly higher in group F5 than those in group F1, F2, F3 and F4 (9.3% vs 4.1%, 1.2%, 2.0% and 5.0%, respectively, p cloned offspring from cell line F1, F2, F3 and F4 showed LOS and gestation length delay, while all cloned offspring from F5 showed normal birthweight and gestation length. We concluded that the nuclear donor cell lines have significant impact on the in vivo development of cloned embryos and the incidence of LOS in cloned calves. © 2013 Blackwell Verlag GmbH.

  10. Mast cell distribution in normal adult skin

    NARCIS (Netherlands)

    A.S. Janssens (Artiena Soe); R. Heide (Rogier); J.C. den Hollander (Jan); P.G.M. Mulder (P. G M); B. Tank (Bhupendra); A.P. Oranje (Arnold)

    2005-01-01

    markdownabstract__AIMS:__ To investigate mast cell distribution in normal adult skin to provide a reference range for comparison with mastocytosis. __METHODS:__ Mast cells (MCs) were counted in uninvolved skin adjacent to basal cell carcinomas and other dermatological disorders in adults.

  11. Characterization of T cell clones from chagasic patients: predominance of CD8 surface phenotype in clones from patients with pathology

    Directory of Open Access Journals (Sweden)

    Washington R. Cuna

    1995-08-01

    Full Text Available Human Chagas' disease, caused by the protozoan Trypanosoma cruzi, is associated with pathological processes whose mechanisms are not known. To address this question, T cell lines were developed from chronic chagasic patients peripheral blood mononuclear cells (PBMC and cloned. These T cell clones (TCC were analyzed phenotypically with monoclonal antibodies by the use of a fluorescence microscope. The surface phenotype of the TCC from the asymptomatic patient were predominantly CD4 positive (86%. On the contrary, the surface phenotype CD8 was predominant in the TCC from the patients suffering from cardiomegaly with right bundle branch block (83%, bradycardia with megacolon (75 % and bradycardia (75%. Future studies will be developed in order to identify the antigens eliciting these T cell subpopulations.

  12. Oncogenesis of melanoma B16 cell clones mutagenized by space environment

    International Nuclear Information System (INIS)

    Guo Yupeng; Yang Hongsheng; Tang Jingtian; Xu Mei; Geng Chuanying; Fang Qing; Xu Bo; Li Hongyan; Xiang Xing; Pan Lin

    2005-01-01

    Objective: To explore the oncogenesis of the melanoma B16 cell clones mutagenized by space environment, and find the B16 cell clones with remarkably mutated immunogenicity. Methods: B16 cells were carried by the Chinese 20th recoverable satellite to the outer space, and were harvested after 18 days' spaceflight and then monocloned. Four cell clones, which were randomly selected from the total 110 clones obtained , and the control clone were routinely cultured. The cultured cells were injected to 10 groups of C57BL/6J mice, 82.1 mice in each group. Five groups of mice received hypodermic injection and another 5 groups of mice received abdominal injection. The survival time was observed in abdominal injection groups. The mice in hypodermic injection groups were sacrificed after 14 days, the tumor, spleen and thymus were weighted, and the serum IL-2 concentration was determined. Moreover, the melanoma tumor tissues were examined histopathologically. Results: An experiment program suitable to screening space mutagenesis of B16 tumor cell clones in vivo and the observation indices were basically established. One clone was found out which was remarkably different from the control clone in latent period of tumor formation, tumor weight, survival time of the tumor-bearing mice and the expression of IL-2. Conclusions: Cultured melanoma B16 cells could be mutated by outer space environment. The further study will be focused on the influence of space environment on immunogenicity of mutagenized B16 cells. (authors)

  13. Complementation of radiation-sensitive Ataxia telangiectasia cells after transfection of cDNA expression libraries and cosmid clones from wildtype cells

    International Nuclear Information System (INIS)

    Fritz, E.

    1994-06-01

    In this Ph.D.-thesis, phenotypic complementation of AT-cells (AT5BIVA) by transfection of cDNA-expression-libraries was adressed: After stable transfection of cDNA-expression-libraries G418 resistant clones were selected for enhanced radioresistance by a fractionated X-ray selection. One surviving transfectant clone (clone 514) exhibited enhanced radiation resistance in dose-response experiments and further X-ray selections. Cell cycle analysis revealed complementation of untreated and irradiated 514-cells in cell cycle progression. The rate of DNA synthesis, however, is not diminished after irradiation but shows the reverse effect. A transfected cDNA-fragment (AT500-cDNA) was isolated from the genomic DNA of 514-cells and proved to be an unknown DNA sequence. A homologous sequence could be detected in genomic DNA from human cell lines, but not in DNA from other species. The cDNA-sequence could be localized to human chromosome 11. In human cells the cDNA sequence is part of two large mRNAs. 4 different cosmid clones containing high molecular genomic DNA from normal human cells could be isolated from a library, each hybridizing to the AT500-cDNA. After stable transfection into AT-cells, one cosmid-clone was able to confer enhanced radiation resistance both in X-ray selections and dose-response experiments. The results indicate that the cloned cDNA-fragment is based on an unknown gene from human chromosome 11 which partially complements the radiosensitivity and the defective cell cycle progression in AT5BIVA cells. (orig.) [de

  14. Human Endothelial Cells: Use of Heparin in Cloning and Long-Term Serial Cultivation

    Science.gov (United States)

    Thornton, Susan C.; Mueller, Stephen N.; Levine, Elliot M.

    1983-11-01

    Endothelial cells from human blood vessels were cultured in vitro, with doubling times of 17 to 21 hours for 42 to 79 population doublings. Cloned human endothelial cell strains were established for the first time and had similar proliferative capacities. This vigorous cell growth was achieved by addition of heparin to culture medium containing reduced concentrations of endothelial cell growth factor. The routine cloning and long-term culture of human endothelial cells will facilitate studying the human endothelium in vitro.

  15. Individual clones of hemopoietic cells in murine long-term bone marrow culture

    International Nuclear Information System (INIS)

    Chertkov, J.L.; Deryugina, E.I.; Drize, N.J.; Udalov, G.A.

    1987-01-01

    Forty-seven individual hemopoietic cell clones bearing unique radiation markers were studied in long-term bone marrow cultures. Throughout cultivation clones appeared at different times, from 1 to 12 weeks after explantation, survived during 1-10 more weeks, and were characterized by marked variability in size. Usually, the number of metaphases peculiar to an individual clone rapidly increased, achieved maximum, and then underwent a decline. Cells of reliably disappearing clones were never seen again. The experimental results provide further evidence for the model of hemopoiesis by clonal succession

  16. Hope for restoration of dead valuable bulls through cloning using donor somatic cells isolated from cryopreserved semen.

    Directory of Open Access Journals (Sweden)

    Naresh L Selokar

    Full Text Available Somatic cells were isolated from cryopreserved semen of 4 buffalo bulls, 3 of which had died over 10 years earlier, and were established in culture. The cells expressed cytokeratin-18, keratin and vimentin indicating that they were of epithelial origin. The cells were used as nuclear donors for hand-made cloning for producing buffalo embryos. The blastocyst rate and quality, as indicated by apoptotic index, were comparable among embryos produced using cells obtained from fresh or frozen-thawed semen or those obtained from conventional cell sources such as skin. Examination of the epigenetic status revealed that the global level of H3K27me3 but not that of H3K9/14ac and H4K5ac differed significantly (P<0.05 among cloned embryos from different bulls. The relative mRNA abundance of HDAC1, DNMT1, P53 and CASPASE 3 but not that of DNMT3a differed in cells and in cloned embryos. Following transfer of 24 cloned embryos produced from fresh semen-derived cells to 12 recipients, one calf weighing 55 kg, which is now 6 months of age and is normal, was born through normal parturition. Following transfer of 20 embryos produced from frozen-thawed semen-derived cells to 10 recipients, 2 became pregnant, one of which aborted in the first trimester; the calf born was severely underweight (17 kg, and died 12 h after birth. The ability of cells derived from fresh and frozen-thawed semen to produce live offspring confirms the ability of these cells to be reprogrammed. Our findings pave the way for restoration of highly precious progeny-tested bulls, which has immense economic importance, and can also be used for restoration of endangered species.

  17. Recombinant human albumin supports single cell cloning of CHO cells in chemically defined media.

    Science.gov (United States)

    Zhu, Jiang; Wooh, Jong Wei; Hou, Jeff Jia Cheng; Hughes, Benjamin S; Gray, Peter P; Munro, Trent P

    2012-01-01

    Biologic drugs, such as monoclonal antibodies, are commonly made using mammalian cells in culture. The cell lines used for manufacturing should ideally be clonal, meaning derived from a single cell, which represents a technically challenging process. Fetal bovine serum is often used to support low cell density cultures, however, from a regulatory perspective, it is preferable to avoid animal-derived components to increase process consistency and reduce the risk of contamination from adventitious agents. Chinese hamster ovary (CHO) cells are the most widely used cell line in industry and a large number of serum-free, protein-free, and fully chemically defined growth media are commercially available, although these media alone do not readily support efficient single cell cloning. In this work, we have developed a simple, fully defined, single-cell cloning media, specifically for CHO cells, using commercially available reagents. Our results show that a 1:1 mixture of CD-CHO™ and DMEM/F12 supplemented with 1.5 g/L of recombinant albumin (Albucult®) supports single cell cloning. This formulation can support recovery of single cells in 43% of cultures compared to 62% in the presence of serum. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  18. Heterogeneity of functional properties of Clone 66 murine breast cancer cells expressing various stem cell phenotypes.

    Science.gov (United States)

    Mukhopadhyay, Partha; Farrell, Tracy; Sharma, Gayatri; McGuire, Timothy R; O'Kane, Barbara; Sharp, J Graham

    2013-01-01

    Breast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous. Cells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis. The proportion of cells expressing CD44(high)CD24(low/neg), side population (SP) cells, ALDH1(+), CD49f(high), CD133(high), and CD34(high) differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1(+), CD34(low), and CD49f(high) suggested properties of transit amplifying cells. Colony formation was higher from ALDH1(-) and non-SP cells than ALDH1(+) and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than "non-stem" cells. Fewer SP cells were needed to form tumors than ALDH1(+) cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined. These data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.

  19. Chromosome painting analysis of radiation-induced aberrant cell clones in the mouse

    International Nuclear Information System (INIS)

    Spruill, M.D.; Nath, J.; Tucker, J.D.

    1997-01-01

    In a study of the persistence of radiation-induced translocations over the life span of the mouse, we observed a number of clonal cells in peripheral blood lymphocytes. The presence of clones caused the mean frequency of aberrations at various time points to be elevated which interfered with biodosimetry. For this reason, we have corrected our data for the presence of clones. Mice were given an acute dose of 0, 1, 2, 3 or 4 Gy 137 Cs at 8 weeks of age. Aberrations were measured by painting chromosomes 2 and 8 and cells were examined for clones at 3 months and every 3 months thereafter until 21 months. Clones were identified by comparing the color photographic slides of all abnormal cells from each animal. Determination of clonality was made on the basis of similar breakpoint locations or the presence of other identifying characteristics such as unusual aberrations. To correct the frequency of translocations for the presence of clones, each clone, regardless of how many cells it contained, was counted only once. This reflects the original aberration frequency since each clone originated as only one cell. Among mice exposed to 4 Gy, the mean frequencies of aberrant cell clones ranged from 3-29% of the total number of metaphase cells scored with the highest frequency being 1 year post exposure. 32-70% of reciprocal and 19-92% of non-reciprocal translocations were clonal. A dose response relationship for clones was evident until 21 months when the unexposed animals exhibited a mean frequency of aberrant cell clones >10% of the total number of cells scored. Almost 75% of reciprocal and 95% of non-reciprocal translocations in these unexposed control animals were of clonal origin. Correction for clonal expansion greatly reduced the means and their standard errors at most time points where clonal expansion was prevalent. The biodosimetry was much improved suggesting that correction is beneficial in long-term studies

  20. Characterization of cloned cells from an immortalized fetal pulmonary type II cell line

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F.; Waide, J.J.; Lechner, J.F.

    1995-12-01

    A cultured cell line that maintained expression of pulmonary type II cell markers of differentiation would be advantageous to generate a large number of homogenous cells in which to study the biochemical functions of type II cells. Type II epithelial cells are the source of pulmonary surfactant and a cell of origin for pulmonary adenomas. Last year our laboratory reported the induction of expression of two phenotypic markers of pulmonary type II cells (alkaline phosphatase activity and surfactant lipid synthesis) in cultured fetal rat lung epithelial (FRLE) cells, a spontaneously immortalized cell line of fetal rat lung type II cell origin. Subsequently, the induction of the ability to synthesize surfactant lipid became difficult to repeat. We hypothesized that the cell line was heterogenuous and some cells were more like type II cells than others. The purpose of this study was to test this hypothesis and to obtain a cultured cell line with type II cell phenotypic markers by cloning several FRLE cells and characterizing them for phenotypic markers of type II cells (alkaline phosphatase activity and presence of surfactant lipids). Thirty cloned cell lines were analyzed for induced alkaline phosphatase activity (on x-axis) and for percent of phospholipids that were disaturated (i.e., surfactant).

  1. Big Animal Cloning Using Transgenic Induced Pluripotent Stem Cells: A Case Study of Goat Transgenic Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Song, Hui; Li, Hui; Huang, Mingrui; Xu, Dan; Wang, Ziyu; Wang, Feng

    2016-02-01

    Using of embryonic stem cells (ESCs) could improve production traits and disease resistance by improving the efficiency of somatic cell nuclear transfer (SCNT) technology. However, robust ESCs have not been established from domestic ungulates. In the present study, we generated goat induced pluripotent stem cells (giPSCs) and transgenic cloned dairy goat induced pluripotent stem cells (tgiPSCs) from dairy goat fibroblasts (gFs) and transgenic cloned dairy goat fibroblasts (tgFs), respectively, using lentiviruses that contained hOCT4, hSOX2, hMYC, and hKLF4 without chemical compounds. The giPSCs and tgiPSCs expressed endogenous pluripotent markers, including OCT4, SOX2, MYC, KLF4, and NANOG. Moreover, they were able to maintain a normal karyotype and differentiate into derivatives from all three germ layers in vitro and in vivo. Using SCNT, tgFs and tgiPSCs were used as donor cells to produce embryos, which were named tgF-Embryos and tgiPSC-Embryos. The fusion rates and cleavage rates had no significant differences between tgF-Embryos and tgiPSC-Embryos. However, the expression of IGF-2, which is an important gene associated with embryonic development, was significantly lower in tgiPSC-Embryos than in tgF-Embryos and was not significantly different from vivo-Embryos.

  2. Islet-specific T cell clones transfer diabetes to nonobese diabetic (NOD) F1 mice.

    Science.gov (United States)

    Peterson, J D; Pike, B; McDuffie, M; Haskins, K

    1994-09-15

    To investigate diabetes resistance to T cell-mediated disease transfer, we administered islet-specific T cell clones to the F1 progeny of nonobese diabetic (NOD) mice that were crossed with various nondiabetes-prone inbred mouse strains. We investigated four diabetogenic CD4+ T cell clones and all induced insulitis and full development of diabetes in (SWR x NOD)F1, (SJL x NOD)F1, and (C57BL/6 x NOD)F1 mice. In contrast, (BALB/c x NOD)F1 and (CBA x NOD)F1 mice were susceptible to disease transfer by some T cell clones but not others, and (C57/L x NOD)F1 mice seemed to be resistant to both insulitis and disease transfer by all of the clones tested. Disease induced by the T cell clones in susceptible F1 strains was age dependent and could only be observed in recipients younger than 13 days old. Full or partial disease resistance did not correlate with the presence or absence of I-E, different levels of Ag expression in islet cells, or differences in APC function. The results from this study suggest that there may be multiple factors contributing to susceptibility of F1 mice to T cell clone-mediated induction of diabetes, including non-MHC-related genetic background, the immunologic maturity of the recipient, and individual characteristics of the T cell clones.

  3. Donor cell differentiation, reprogramming, and cloning efficiency: elusive or illusive correlation?

    Science.gov (United States)

    Oback, B; Wells, D N

    2007-05-01

    Compared to other assisted reproductive technologies, mammalian nuclear transfer (NT) cloning is inefficient in generating viable offspring. It has been postulated that nuclear reprogramming and cloning efficiency can be increased by choosing less differentiated cell types as nuclear donors. This hypothesis is mainly supported by comparative mouse cloning experiments using early blastomeres, embryonic stem (ES) cells, and terminally differentiated somatic donor cells. We have re-evaluated these comparisons, taking into account different NT procedures, the use of donor cells from different genetic backgrounds, sex, cell cycle stages, and the lack of robust statistical significance when post-blastocyst development is compared. We argue that while the reprogrammability of early blastomeres appears to be much higher than that of somatic cells, it has so far not been conclusively determined whether differentiation status affects cloning efficiency within somatic donor cell lineages. Copyright (c) 2006 Wiley-Liss, Inc.

  4. Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Directory of Open Access Journals (Sweden)

    Magnusson Magnus K

    2010-07-01

    Full Text Available Abstract Background Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D co-culture assay. Methods Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy. Results In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors. Conclusion Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.

  5. Isolation and partial characterization of peripheral blood CD4+ T cell clones expressing γδT cell receptors

    International Nuclear Information System (INIS)

    Kyoizumi, Seishi; Akiyama, Mitoshi; Hirai, Yuko; Kusunoki, Yoichiro.

    1990-06-01

    Rare T cell clones bearing both CD4 and T cell receptors (TCRγ and TCRδ) were obtained from human peripheral blood by cell sorting using anti-CD4 and anti-TCRδ1 antibodies. All the clones established were reactive with anti-TCRγδ1 antibody, whereas only about 20 % of the clones showed reactivity with anti-δTCS1 antibody. Unlike CD4 + T cells bearing TCRαβ, all the clones tested were lectin-dependent and showed CD3 antibody-redirected cytolytic activity. About 60 % exhibited natural killer cell-like activity. Immunoprecipitation analysis of TCRγδ showed that each clone expressed either a disulfide-linked or nondisulfide-linked heterodimer consisting of 37-44 kilodalton TCRγ and TCRδ chains. Southern blot analyses of TCRγ and TCRδ genes revealed some identical rearrangement patterns, suggesting the limited heterogeneity of CD4 + TCRγδ + T cells in peripheral blood. (author)

  6. DNA repair characteristics of a hybrid cell clone between xeroderma pigmentosum and Potorous tridactilis

    International Nuclear Information System (INIS)

    Ida, Kenji

    1986-01-01

    A hybrid cell clone PX1 was isolated by fusing UV sensitive XP20S(SV)neo, an SV-40-transformed, neomycin-resistant xeroderma pigmentosum (XP) cell line, and Pt K2, a rat kangaroo (Potorous tridactilis) cell line. The UV-survival curve of PX1 cells fell midway between those of Pt K2 and XP20S(SV)neo cells, since mean lethal doses(D 0 ) were 2.5, 4.7 and 0.27 J/m 2 for PX1, Pt K2 and XP20S(SV)neo, respectively. Amounts of unscheduled DNA synthesis (UDS) after UV, relative to normal human cells, were 60.4 % for Pt K2, 37.7 % for PX1 and 0.1 % for XP20S(SV)neo. Such relative UDS capacities for excision repair of Pt K2, PX1 and XP20S(SV)neo were also consistent with the respective relative capacities of host cell reactivation (HCR) of UV-irradiated Herpes simplex virus. Apparently, there was no single Pt K2 chromosome in the PX1 cells. One possibility is that a gene which may account for the partial restoration of the UV resistance has been transferred from Pt K2 to PX1. (author)

  7. Entamoeba Clone-Recognition Experiments: Morphometrics, Aggregative Behavior, and Cell-Signaling Characterization.

    Science.gov (United States)

    Espinosa, Avelina; Paz-Y-Miño-C, Guillermo; Hackey, Meagan; Rutherford, Scott

    2016-05-01

    Studies on clone- and kin-discrimination in protists have proliferated during the past decade. We report clone-recognition experiments in seven Entamoeba lineages (E. invadens IP-1, E. invadens VK-1:NS, E. terrapinae, E. moshkovskii Laredo, E. moshkovskii Snake, E. histolytica HM-1:IMSS and E. dispar). First, we characterized morphometrically each clone (length, width, and cell-surface area) and documented how they differed statistically from one another (as per single-variable or canonical-discriminant analyses). Second, we demonstrated that amebas themselves could discriminate self (clone) from different (themselves vs. other clones). In mix-cell-line cultures between closely-related (E. invadens IP-1 vs. E. invadens VK-1:NS) or distant-phylogenetic clones (E. terrapinae vs. E. moshkovskii Laredo), amebas consistently aggregated with same-clone members. Third, we identified six putative cell-signals secreted by the amebas (RasGap/Ankyrin, coronin-WD40, actin, protein kinases, heat shock 70, and ubiquitin) and which known functions in Entamoeba spp. included: cell proliferation, cell adhesion, cell movement, and stress-induced encystation. To our knowledge, this is the first multi-clone characterization of Entamoeba spp. morphometrics, aggregative behavior, and cell-signaling secretion in the context of clone-recognition. Protists allow us to study cell-cell recognition from ecological and evolutionary perspectives. Modern protistan lineages can be central to studies about the origins and evolution of multicellularity. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  8. Effective donor cell fusion conditions for production of cloned dogs by somatic cell nuclear transfer.

    Science.gov (United States)

    Park, JungEun; Oh, HyunJu; Hong, SoGun; Kim, MinJung; Kim, GeonA; Koo, OkJae; Kang, SungKeun; Jang, Goo; Lee, ByeongChun

    2011-03-01

    As shown by the birth of the first cloned dog 'Snuppy', a protocol to produce viable cloned dogs has been reported. In order to evaluate optimum fusion conditions for improving dog cloning efficiency, in vivo matured oocytes were reconstructed with adult somatic cells from a female Pekingese using different fusion conditions. Fusion with needle vs chamber methods, and with low vs high pulse strength was compared by evaluating fusion rate and in vivo development of canine cloned embryos. The fusion rates in the high voltage groups were significantly higher than in the low voltage groups regardless of fusion method (83.5 vs 66.1% for the needle fusion method, 67.4 vs 37.9% for the fusion chamber method). After embryo transfer, one each pregnancy was detected after using the needle fusion method with high and low voltage and in the chamber fusion method with high voltage, whereas no pregnancy was detected using the chamber method with low voltage. However, only the pregnancy from the needle fusion method with high voltage was maintained to term and one healthy puppy was delivered. The results of the present study demonstrated that two DC pulses of 3.8 to 4.0 kV/cm for 15 μsec using the needle fusion method were the most effective method for the production of cloned dogs under the conditions of this experiment. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480.

    Directory of Open Access Journals (Sweden)

    Akari Takaya

    Full Text Available Human cancer stem-like cells (CSCs/cancer-initiating cells (CICs can be isolated as side population (SP cells, aldehyde dehydrogenase high (ALDHhigh cells or cell surface marker-positive cells including CD44+ cells and CD133+ cells. CSCs/CICs and non-CSCs/CICs are unstable in in vitro culture, and CSCs/CICs can differentiate into non-CSCs/CICs and some non-CSCs/CICs can dedifferentiate into CSCs/CICs. Therefore, experiments using a large amount of CSCs/CICs are technically very difficult. In this study, we isolated single cell clones from SP cells and main population (MP cells derived from the human colon cancer cell line SW480. SP analysis revealed that SP clone cells had relatively high percentages of SP cells, whereas MP clone cells showed very few SP cells, and the phenotypes were sustainable for more than 2 months of in vitro culture. Xenograft transplantation revealed that SP clone cells have higher tumor-initiating ability than that of MP clone cells and SP clone cell showed higher chemo-resistance compared with MP clone cells. These results indicate that SP clone cells derived from SW480 cells are enriched with CSCs/CICs, whereas MP clone cells are pure non-CSCs/CICs. SP clone cells and MP clone cells are a very stable in vitro CSC/CIC-enriched and non-CSC/CIC model for further analysis.

  10. Establishment and Analysis of Cancer Stem-Like and Non-Cancer Stem-Like Clone Cells from the Human Colon Cancer Cell Line SW480.

    Science.gov (United States)

    Takaya, Akari; Hirohashi, Yoshihiko; Murai, Aiko; Morita, Rena; Saijo, Hiroshi; Yamamoto, Eri; Kubo, Terufumi; Nakatsugawa, Munehide; Kanaseki, Takayuki; Tsukahara, Tomohide; Tamura, Yasuaki; Takemasa, Ichiro; Kondo, Toru; Sato, Noriyuki; Torigoe, Toshihiko

    2016-01-01

    Human cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) can be isolated as side population (SP) cells, aldehyde dehydrogenase high (ALDHhigh) cells or cell surface marker-positive cells including CD44+ cells and CD133+ cells. CSCs/CICs and non-CSCs/CICs are unstable in in vitro culture, and CSCs/CICs can differentiate into non-CSCs/CICs and some non-CSCs/CICs can dedifferentiate into CSCs/CICs. Therefore, experiments using a large amount of CSCs/CICs are technically very difficult. In this study, we isolated single cell clones from SP cells and main population (MP) cells derived from the human colon cancer cell line SW480. SP analysis revealed that SP clone cells had relatively high percentages of SP cells, whereas MP clone cells showed very few SP cells, and the phenotypes were sustainable for more than 2 months of in vitro culture. Xenograft transplantation revealed that SP clone cells have higher tumor-initiating ability than that of MP clone cells and SP clone cell showed higher chemo-resistance compared with MP clone cells. These results indicate that SP clone cells derived from SW480 cells are enriched with CSCs/CICs, whereas MP clone cells are pure non-CSCs/CICs. SP clone cells and MP clone cells are a very stable in vitro CSC/CIC-enriched and non-CSC/CIC model for further analysis.

  11. Successful cloning of coyotes through interspecies somatic cell nuclear transfer using domestic dog oocytes.

    Science.gov (United States)

    Hwang, Insung; Jeong, Yeon Woo; Kim, Joung Joo; Lee, Hyo Jeong; Kang, Mina; Park, Kang Bae; Park, Jung Hwan; Kim, Yeun Wook; Kim, Woo Tae; Shin, Taeyoung; Hyun, Sang Hwan; Jeung, Eui-Bae; Hwang, Woo Suk

    2013-01-01

    Interspecies somatic cell nuclear transfer (iSCNT) is an emerging assisted reproductive technology (ART) for preserving Nature's diversity. The scarcity of oocytes from some species makes utilisation of readily available oocytes inevitable. In the present study, we describe the successful cloning of coyotes (Canis latrans) through iSCNT using oocytes from domestic dogs (Canis lupus familiaris or dingo). Transfer of 320 interspecies-reconstructed embryos into 22 domestic dog recipients resulted in six pregnancies, from which eight viable offspring were delivered. Fusion rate and cloning efficiency during iSCNT cloning of coyotes were not significantly different from those observed during intraspecies cloning of domestic dogs. Using neonatal fibroblasts as donor cells significantly improved the cloning efficiency compared with cloning using adult fibroblast donor cells (Pcloning of coyotes in the present study holds promise for cloning other endangered species in the Canidae family using similar techniques. However, there are still limitations of the iSCNT technology, as demonstrated by births of morphologically abnormal coyotes and the clones' inheritance of maternal domestic dog mitochondrial DNA.

  12. Malignant progressive tumor cell clone exhibits significant up-regulation of cofilin-2 and 27-kDa modified form of cofilin-1 compared to regressive clone.

    Science.gov (United States)

    Kuramitsu, Yasuhiro; Wang, Yufeng; Okada, Futoshi; Baron, Byron; Tokuda, Kazuhiro; Kitagawa, Takao; Akada, Junko; Nakamura, Kazuyuki

    2013-09-01

    QR-32 is a regressive murine fibrosarcoma cell clone which cannot grow when they are transplanted in mice; QRsP-11 is a progressive malignant tumor cell clone derived from QR-32 which shows strong tumorigenicity. A recent study showed there to be differentially expressed up-regulated and down-regulated proteins in these cells, which were identified by proteomic differential display analyses by using two-dimensional gel electrophoresis and mass spectrometry. Cofilins are small proteins of less than 20 kDa. Their function is the regulation of actin assembly. Cofilin-1 is a small ubiquitous protein, and regulates actin dynamics by means of binding to actin filaments. Cofilin-1 plays roles in cell migration, proliferation and phagocytosis. Cofilin-2 is also a small protein, but it is mainly expressed in skeletal and cardiac muscles. There are many reports showing the positive correlation between the level of cofilin-1 and cancer progression. We have also reported an increased expression of cofilin-1 in pancreatic cancer tissues compared to adjacent paired normal tissues. On the other hand, cofilin-2 was significantly less expressed in pancreatic cancer tissues. Therefore, the present study investigated the comparison of the levels of cofilin-1 and cofilin-2 in regressive QR-32 and progressive QRsP-11cells by western blotting. Cofilin-2 was significantly up-regulated in QRsP-11 compared to QR-32 cells (p<0.001). On the other hand, the difference of the intensities of the bands of cofilin-1 (18 kDa) in QR-32 and QRsP-11 was not significant. However, bands of 27 kDa showed a quite different intensity between QR-32 and QRsP-11, with much higher intensities in QRsP-11 compared to QR-32 (p<0.001). These results suggested that the 27-kDa protein recognized by the antibody against cofilin-1 is a possible biomarker for progressive tumor cells.

  13. Cloning and chromosomal assignment of a human cDNA encoding a T cell- and natural killer cell-specific trypsin-like serine protease

    International Nuclear Information System (INIS)

    Gershenfeld, H.K.; Hershberger, R.J.; Shows, T.B.; Weissman, I.L.

    1988-01-01

    A cDNA clone encoding a human T cell- and natural killer cell-specific serine protease was obtained by screening a phage λgt10 cDNA library from phytohemagglutinin-stimulated human peripheral blood lymphocytes with the mouse Hanukah factor cDNA clone. In an RNA blot-hybridization analysis, this human Hanukah factor cDNA hybridized with a 1.3-kilobase band in allogeneic-stimulated cytotoxic T cells and the Jurkat cell line, but this transcript was not detectable in normal muscle, liver, tonsil, or thymus. By dot-blot hybridization, this cDNA hybridized with RNA from three cytolytic T-cell clones and three noncytolytic T-cell clones grown in vitro as well as with purified CD16 + natural killer cells and CD3 + , CD16 - T-cell large granular lymphocytes from peripheral blood lymphocytes (CD = cluster designation). The nucleotide sequence of this cDNA clone encodes a predicted serine protease of 262 amino acids. The active enzyme is 71% and 77% similar to the mouse sequence at the amino acid and DNA level, respectively. The human and mouse sequences conserve the active site residues of serine proteases--the trypsin-specific Asp-189 and all 10 cysteine residues. The gene for the human Hanukah factor serine protease is located on human chromosome 5. The authors propose that this trypsin-like serine protease may function as a common component necessary for lysis of target cells by cytotoxic T lymphocytes and natural killer cells

  14. Hope for restoration of dead valuable bulls through cloning using donor somatic cells isolated from cryopreserved semen.

    Science.gov (United States)

    Selokar, Naresh L; Saini, Monika; Palta, Prabhat; Chauhan, Manmohan S; Manik, Radheysham; Singla, Suresh K

    2014-01-01

    Somatic cells were isolated from cryopreserved semen of 4 buffalo bulls, 3 of which had died over 10 years earlier, and were established in culture. The cells expressed cytokeratin-18, keratin and vimentin indicating that they were of epithelial origin. The cells were used as nuclear donors for hand-made cloning for producing buffalo embryos. The blastocyst rate and quality, as indicated by apoptotic index, were comparable among embryos produced using cells obtained from fresh or frozen-thawed semen or those obtained from conventional cell sources such as skin. Examination of the epigenetic status revealed that the global level of H3K27me3 but not that of H3K9/14ac and H4K5ac differed significantly (Pcloned embryos from different bulls. The relative mRNA abundance of HDAC1, DNMT1, P53 and CASPASE 3 but not that of DNMT3a differed in cells and in cloned embryos. Following transfer of 24 cloned embryos produced from fresh semen-derived cells to 12 recipients, one calf weighing 55 kg, which is now 6 months of age and is normal, was born through normal parturition. Following transfer of 20 embryos produced from frozen-thawed semen-derived cells to 10 recipients, 2 became pregnant, one of which aborted in the first trimester; the calf born was severely underweight (17 kg), and died 12 h after birth. The ability of cells derived from fresh and frozen-thawed semen to produce live offspring confirms the ability of these cells to be reprogrammed. Our findings pave the way for restoration of highly precious progeny-tested bulls, which has immense economic importance, and can also be used for restoration of endangered species.

  15. Hope for Restoration of Dead Valuable Bulls through Cloning Using Donor Somatic Cells Isolated from Cryopreserved Semen

    Science.gov (United States)

    Selokar, Naresh L.; Saini, Monika; Palta, Prabhat; Chauhan, Manmohan S.; Manik, Radheysham; Singla, Suresh K.

    2014-01-01

    Somatic cells were isolated from cryopreserved semen of 4 buffalo bulls, 3 of which had died over 10 years earlier, and were established in culture. The cells expressed cytokeratin-18, keratin and vimentin indicating that they were of epithelial origin. The cells were used as nuclear donors for hand-made cloning for producing buffalo embryos. The blastocyst rate and quality, as indicated by apoptotic index, were comparable among embryos produced using cells obtained from fresh or frozen-thawed semen or those obtained from conventional cell sources such as skin. Examination of the epigenetic status revealed that the global level of H3K27me3 but not that of H3K9/14ac and H4K5ac differed significantly (Pcloned embryos from different bulls. The relative mRNA abundance of HDAC1, DNMT1, P53 and CASPASE 3 but not that of DNMT3a differed in cells and in cloned embryos. Following transfer of 24 cloned embryos produced from fresh semen-derived cells to 12 recipients, one calf weighing 55 kg, which is now 6 months of age and is normal, was born through normal parturition. Following transfer of 20 embryos produced from frozen-thawed semen-derived cells to 10 recipients, 2 became pregnant, one of which aborted in the first trimester; the calf born was severely underweight (17 kg), and died 12 h after birth. The ability of cells derived from fresh and frozen-thawed semen to produce live offspring confirms the ability of these cells to be reprogrammed. Our findings pave the way for restoration of highly precious progeny-tested bulls, which has immense economic importance, and can also be used for restoration of endangered species. PMID:24614586

  16. Production of a Cloned Buffalo (Bubalus bubalis) Calf from Somatic Cells Isolated from Urine.

    Science.gov (United States)

    Madheshiya, Pankaj K; Sahare, Amol A; Jyotsana, Basanti; Singh, Karn P; Saini, Monika; Raja, Anuj K; Kaith, Sakshi; Singla, Suresh K; Chauhan, Manmohan S; Manik, Radhey S; Palta, Prabhat

    2015-06-01

    This study was aimed at isolation of cells from urine and skin on the ventral part of the tails of healthy adult female buffaloes (Bubalus bubalis), an area rarely exposed to solar radiation, establishment of the cells in culture, and their use as donor cells for production of buffalo embryos by handmade cloning (HMC). The blastocyst rate and total cell number of urine- and tail skin-derived embryos were similar to those of control embryos derived from ear skin cells; however, their apoptotic index was lower (pear skin-derived cells, whereas in blastocysts, it was higher (p<0.05) in urine- and tail skin-derived HMC blastocysts than that in IVF blastocysts. The expression level of CASPASE3, CASPASE9, P53, DNMT1, DNMT3a, OCT4, and NANOG, which was similar in HMC blastocysts of three the groups, was lower (p<0.05) than that in IVF blastocysts, whereas that of HDAC1 was similar among the four groups. Following transfer of urine-derived embryos (n=10) to five recipients (two embryos/recipient), one of the recipients delivered a normal calf that is now 5 weeks old.

  17. Cloning and Characterization of Genes that Inhibit TRAIL-Induced Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Shu, Hong-Bing

    2003-01-01

    ...). However, some cancer cells are resistant to TRAIL-induced apoptosis (3, 4, 6-13). The purpose of this proposed study is to clone and characterize such inhibitory genes of TRAIL-induced apoptosis...

  18. Health status and productive performance of somatic cell cloned cattle and their offspring produced in Japan.

    Science.gov (United States)

    Watanabe, Shinya; Nagai, Takashi

    2008-02-01

    Since the first somatic cell cloned calves were born in Japan in 1998, more than 500 cloned cattle have been produced by somatic cell nuclear transfer and many studies concerning cloned cattle and their offspring have been conducted in this country. However, most of the results have been published in Japanese; thus, the data produced in this country is not well utilized by researchers throughout the world. This article reviews the 65 reports produced by Japanese researchers (62 written in Japanese and 3 written in English), which employed 171 clones and 32 offspring, and categorizes them according to the following 7 categories: (1) genetic similarities and muzzle prints, (2) hematology and clinical chemistry findings, (3) pathology, (4) growth performance, (5) reproductive performance, (6) meat production performance and (7) milk production performance. No remarkable differences in health status or reproductive performance were found among conventionally bred cattle, somatic cell cloned cattle surviving to adulthood and offspring of somatic cell cloned cattle. Similarities in growth performance and meat quality were observed between nuclear donor cattle and their clones. The growth curves of the offspring resembled those of their full siblings.

  19. Can mammalian cloning combined with embryonic stem cell technologies be used to treat human diseases?

    Science.gov (United States)

    Hadjantonakis, Anna-Katerina; Papaioannou, Virginia E

    2002-01-01

    Cloning is commonly perceived as a means of generating genetically identical individuals, but it can also be used to obtain genetically matched embryo-derived stem cells, which could potentially be used in the treatment of patients. A recent report offers the first 'proof of principle' of such cloning for therapeutic purposes, referred to as nuclear transplantation to produce stem cells for autologous transplantation. PMID:12186652

  20. Mast cell distribution in normal adult skin.

    Science.gov (United States)

    Janssens, A S; Heide, R; den Hollander, J C; Mulder, P G M; Tank, B; Oranje, A P

    2005-03-01

    To investigate mast cell distribution in normal adult skin to provide a reference range for comparison with mastocytosis. Mast cells (MCs) were counted in uninvolved skin adjacent to basal cell carcinomas and other dermatological disorders in adults. There was an uneven distribution of MCs in different body sites using the anti-tryptase monoclonal antibody technique. Numbers of MCs on the trunk, upper arm, and upper leg were similar, but were significantly different from those found on the lower leg and forearm. Two distinct groups were formed--proximal and distal. There were 77.0 MCs/mm2 at proximal body sites and 108.2 MCs/mm2 at distal sites. Adjusted for the adjacent diagnosis and age, this difference was consistent. The numbers of MCs in uninvolved skin adjacent to basal cell carcinomas and other dermatological disorders were not different from those in the control group. Differences in the numbers of MCs between the distal and the proximal body sites must be considered when MCs are counted for a reliable diagnosis of mastocytosis. A pilot study in patients with mastocytosis underlined the variation in the numbers of MCs in mastocytosis and normal skin, but showed a considerable overlap. The observed numbers of MCs in adults cannot be extrapolated to children. MC numbers varied significantly between proximal and distal body sites and these differences must be considered when MCs are counted for a reliable diagnosis of mastocytosis. There was a considerable overlap between the numbers of MCs in mastocytosis and normal skin.

  1. Liquid Chromatography–Mass Spectrometry Based Metabolomics Study of Cloned versus Normal Pigs Fed Either Restricted or Ad Libitum High-Energy Diets

    DEFF Research Database (Denmark)

    Christensen, Kirstine Lykke; Hedemann, Mette Skou; Jørgensen, Henry

    2012-01-01

    Genetically identical cloned pigs should in principle eliminate biological variation and provide more pronounced effects when subjected to, e.g., dietary interventions, but little is known about how phenotype and phenotypic variation is affected by cloning. Therefore, an investigation...... of the metabolome of cloned pigs compared to normal control pigs was performed to elucidate the variation and possible differences in the metabolic phenotypes during a dietary intervention. A total of 19 control pigs and 17 cloned pigs were given the same high-energy dense diet either ad libitum or in a restricted...... manner (60% of ad libitum) for 6 months, and plasma was subjected to liquid chromatography–mass spectrometry nontargeted metabolomics and biochemical analyses. Low systemic levels of IGF-1 could indicate altered growth conditions and energy metabolism in cloned pigs. In response to ad libitum feeding...

  2. In vitro development of cloned bovine embryos produced by handmade cloning using somatic cells from distinct levels of cell culture confluence.

    Science.gov (United States)

    Gerger, R P C; Ribeiro, E S; Forell, F; Bertolini, L R; Rodrigues, J L; Ambrósio, C E; Miglino, M A; Mezzalira, A; Bertolini, M

    2010-02-18

    The relationship between the level of cell confluence near the plateau phase of growth and blastocyst yield following somatic cell cloning is not well understood. We examined the effect of distinct cell culture confluence levels on in vitro development of cloned bovine embryos. In vitro-matured bovine oocytes were manually bisected and selected by DNA staining. One or two enucleated hemi-cytoplasts were paired and fused with an adult skin somatic cell. Cultured skin cells from an adult Nellore cow harvested at three distinct culture confluence levels (70-80, 80-90, and >95%) were used for construction of embryos and hemi-embryos. After activation, structures were cultured in vitro as one embryo (1 x 100%) or as aggregates of two hemi-embryos (2 x 50%) per microwell. Fusion, cleavage and blastocyst rates were compared using the chi(2) test. The fusion rate for hemi-embryos (51.4%) was lower than for embryos (67.6%), with no influence of degree of cell confluence. However, blastocyst rates improved linearly (7.0, 17.5, and 29.4%) with increases in cell confluence. We conclude that degree of cell culture confluence significantly influences subsequent embryo development; use of a cell population in high confluence (>90%) for nuclear transfer significantly improved blastocyst yield after cloning.

  3. Cloning and characterization of the complementary DNA for the B chain of normal human serum C1q.

    Science.gov (United States)

    Reid, K B; Bentley, D R; Wood, K J

    1984-09-06

    Normal human C1q is a serum glycoprotein of 460 kDa containing 18 polypeptide chains (6A, 6B, 6C) each 226 amino acids long and each containing an N-terminal collagen-like domain and a C-terminal globular domain. Two unusual forms of C1q have been described: a genetically defective form, which has a molecular mass of approximately 160 kDa and is found in the sera of homozygotes for the defect who show a marked susceptibility to immune complex related disease; a fibroblast form, shown to be synthesized and secreted, in vitro, with a molecular mass of about 800 kDa and with chains approximately 16 kDa greater than those of normal C1q. A higher than normal molecular mass form of C1q has also been described in human colostrum and a form of C1q has been claimed to represent one of the types of Fc receptor on guinea-pig macrophages. To initiate studies, at the genomic level, on these various forms of C1q, and to investigate the possible relation between the C1q genes and the procollagen genes, the complementary DNA corresponding to the B chain of normal C1q has been cloned and characterized.

  4. Lessons learned from cloning dogs.

    Science.gov (United States)

    Kim, M J; Oh, H J; Kim, G A; Park, J E; Park, E J; Jang, G; Ra, J C; Kang, S K; Lee, B C

    2012-08-01

    The aim of this article is to review dog cloning research and to suggest its applications based on a discussion about the normality of cloned dogs. Somatic cell nuclear transfer was successfully used for production of viable cloned puppies despite limited understanding of in vitro dog embryo production. Cloned dogs have similar growth characteristics to those born from natural fertilization, with no evidence of serious adverse effects. The offspring of cloned dogs also have similar growth performance and health to those of naturally bred puppies. Therefore, cloning in domestic dogs can be applied as an assisted reproductive technique to conserve endangered species, to treat sterile canids or aged dogs, to improve reproductive performance of valuable individuals and to generate disease model animals. © 2012 Blackwell Verlag GmbH.

  5. Differentiation of human B lymphocyte subpopulations induced by an alloreactive helper T-cell clone

    International Nuclear Information System (INIS)

    Anderson, S.J.; Hummell, D.S.; Lawton, A.R.

    1988-01-01

    We have used cloned alloreactive helper T cells to determine if direct T cell-B cell interaction can induce differentiation of human peripheral blood B cells which do not respond to pokeweed mitogen (PWM). T-cell clone 2F8 was derived from a one-way mixed lymphocyte reaction. 2F8 cells are T3+T4+T8-IL-2R+ and proliferate in response to irradiated stimulator cells, but not autologous cells, in the absence of exogenous interleukin-2. 2F8 cells provide allospecific help for polyclonal proliferation and differentiation of B cells in the absence of any other stimulus. The magnitude of this response is comparable to that of the response of the same B cells to PWM and fresh autologous T cells. 2F8 cells could also provide nonspecific help for unrelated donor B cells in the presence of PWM, with no requirement for costimulation by irradiated stimulator cells. Allospecific stimulation of B cells was completely inhibited by antibodies to class II major histocompatibility complex (MHC) framework determinants and was abrogated by 1000-rad irradiation. Cloned 2F8 T cells stimulated differentiation of both small, high-density B cells and larger B cells, generating up to 30% plasma cells with either fraction. B cells forming rosettes with mouse erythrocytes were also induced to differentiate by the helper T cell clone. As found previously, neither small, high-density B cells nor mouse rosette+ B cells responded well to PWM. Direct interaction with allospecific T cells induces differentiation of a broader spectrum of B cells than soluble growth and differentiation factors in conjunction with polyclonal activators such as PWM and protein A containing staphylococci

  6. Cell cloning-on-the-spot by using an attachable silicone cylinder.

    Science.gov (United States)

    Park, Hong Bum; Son, Wonseok; Chae, Dong Han; Lee, Jisu; Kim, Il-Woung; Yang, Woomi; Sung, Jae Kyu; Lim, Kyu; Lee, Jun Hee; Kim, Kyung-Hee; Park, Jong-Il

    2016-06-10

    Cell cloning is a laboratory routine to isolate and keep particular properties of cultured cells. Transfected or other genetically modified cells can be selected by the traditional microbiological cloning. In addition, common laboratory cell lines are prone to genotypic drift during their continual culture, so that supplementary cloning steps are often required to maintain correct lineage phenotypes. Here, we designed a silicone-made attachable cloning cylinder, which facilitated an easy and bona fide cloning of interested cells. This silicone cylinder was easy to make, showed competent stickiness to laboratory plastics including culture dishes, and hence enabled secure isolation and culture for days of selected single cells, especially, on the spots of preceding cell-plating dishes under microscopic examination of visible cellular phenotypes. We tested the silicone cylinder in the monoclonal subcloning from a heterogeneous population of a breast cancer cell line, MDA-MB-231, and readily established independent MDA-MB-231 subclones showing different sublineage phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Cloning and expression of cell wall acid invertase gene fragment ...

    African Journals Online (AJOL)

    A fragment of invertase gene containing catalytic sites of cysteine was cloned from poinsettia (Euphorbia pulcherrima wild.) by using the polymerase chain reaction (PCR) method. The length of the fragment was 521 bp, encoding 173 amino acids and containing a part of open reading frames, but no intron. It had a high ...

  8. Statistical analysis of clone formation in cultures of human stem cells.

    Science.gov (United States)

    Bochkov, N P; Vinogradova, M S; Volkov, I K; Voronina, E S; Kuleshov, N P

    2011-08-01

    We performed a statistical analysis of clone formation from aneuploid cells (chromosomes 6, 8, 11, X) in cultures of bone marrow-derived human multipotent mesenchymal stromal cells by spontaneous level of aneuploidy at different terms of culturing (from 2 to 19 cell cycles). It was found that the duration of cell cycle increased from 65.6 h at passages 2-3 to 164.5 h at passage 12. The expected ratio of aneuploid cells was calculated using modeled 5, 10, 20 and 30% selective preference in reproduction. The size of samples for detecting 10, 25, and 50% increased level of aneuploidy was calculated. The presented principles for evaluation of aneuploid clone formation may be used to distinguish clones of any abnormal cells.

  9. Establishment of primary bovine intestinal epithelial cell culture and clone method.

    Science.gov (United States)

    Zhan, Kang; Lin, Miao; Liu, Ming-Mei; Sui, Yang-Nan; Zhao, Guo-Qi

    2017-01-01

    The aim of this study was to establish bovine intestinal epithelial cell (BIEC) line and provide a novel clone cell method. Although various strategies of bovine cell culture and clone techniques have been reported, these methods remain not established. Here, we culture successfully primary BIECs and establish a novel clone cell method. Our result showed that BIECs could be successfully cultured and passaged about generation 5. These cellular aggregates and clusters were adherent loosely at day 2 of culture. Cell aggregates and clusters start to proliferate after approximately 4 d. The BIECs showed positive reaction against cytokeratin 18, E-cadherin, and characteristics of epithelial-like morphology. In addition, the fatty acid-binding proteins (FABPs), villin, and intestinal peptidase (IP) band were positive in BIECs. Our results suggest that the establishment of culturing and clone BIEC methods will apply to isolate and clone other primary cells. These BIECs could therefore contribute to the study of bovine intestinal nutrient absorption and regulation, immune regulation, and the pathogenesis of the bovine intestinal disease, which will provide intestinal cell model in vitro.

  10. Are cancer cells really softer than normal cells?

    Science.gov (United States)

    Alibert, Charlotte; Goud, Bruno; Manneville, Jean-Baptiste

    2017-05-01

    Solid tumours are often first diagnosed by palpation, suggesting that the tumour is more rigid than its surrounding environment. Paradoxically, individual cancer cells appear to be softer than their healthy counterparts. In this review, we first list the physiological reasons indicating that cancer cells may be more deformable than normal cells. Next, we describe the biophysical tools that have been developed in recent years to characterise and model cancer cell mechanics. By reviewing the experimental studies that compared the mechanics of individual normal and cancer cells, we argue that cancer cells can indeed be considered as softer than normal cells. We then focus on the intracellular elements that could be responsible for the softening of cancer cells. Finally, we ask whether the mechanical differences between normal and cancer cells can be used as diagnostic or prognostic markers of cancer progression. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  11. Evaluation of cloned cells, animal model, and ATRA sensitivity of human testicular yolk sac tumor

    Directory of Open Access Journals (Sweden)

    Zhao Junfeng

    2012-03-01

    Full Text Available Abstract The testicular yolk sac tumor (TYST is the most common neoplasm originated from germ cells differentiated abnormally, a major part of pediatric malignant testicular tumors. The present study aimed at developing and validating the in vitro and vivo models of TYST and evaluating the sensitivity of TYST to treatments, by cloning human TYST cells and investigating the histology, ultra-structure, growth kinetics and expression of specific proteins of cloned cells. We found biological characteristics of cloned TYST cells were similar to the yolk sac tumor and differentiated from the columnar to glandular-like or goblet cells-like cells. Chromosomes for tumor identification in each passage met nature of the primary tumor. TYST cells were more sensitive to all-trans-retinoic acid which had significantly inhibitory effects on cell proliferation. Cisplatin induced apoptosis of TYST cells through the activation of p53 expression and down-regulation of Bcl- expression. Thus, we believe that cloned TYST cells and the animal model developed here are useful to understand the molecular mechanism of TYST cells and develop potential therapies for human TYST.

  12. Irreversible barrier to the reprogramming of donor cells in cloning with mouse embryos and embryonic stem cells.

    Science.gov (United States)

    Ono, Yukiko; Kono, Tomohiro

    2006-08-01

    Somatic cloning does not always result in ontogeny in mammals, and development is often associated with various abnormalities and embryo loss with a high frequency. This is considered to be due to aberrant gene expression resulting from epigenetic reprogramming errors. However, a fundamental question in this context is whether the developmental abnormalities reported to date are specific to somatic cloning. The aim of this study was to determine the stage of nuclear differentiation during development that leads to developmental abnormalities associated with embryo cloning. In order to address this issue, we reconstructed cloned embryos using four- and eight-cell embryos, morula embryos, inner cell mass (ICM) cells, and embryonic stem cells as donor nuclei and determined the occurrence of abnormalities such as developmental arrest and placentomegaly, which are common characteristics of all mouse somatic cell clones. The present analysis revealed that an acute decline in the full-term developmental competence of cloned embryos occurred with the use of four- and eight-cell donor nuclei (22.7% vs. 1.8%) in cases of standard embryo cloning and with morula and ICM donor nuclei (11.4% vs. 6.6%) in serial nuclear transfer. Histological observation showed abnormal differentiation and proliferation of trophoblastic giant cells in the placentae of cloned concepti derived from four-cell to ICM cell donor nuclei. Enlargement of placenta along with excessive proliferation of the spongiotrophoblast layer and glycogen cells was observed in the clones derived from morula embryos and ICM cells. These results revealed that irreversible epigenetic events had already started to occur at the four-cell stage. In addition, the expression of genes involved in placentomegaly is regulated at the blastocyst stage by irreversible epigenetic events, and it could not be reprogrammed by the fusion of nuclei with unfertilized oocytes. Hence, developmental abnormalities such as placentomegaly as

  13. To clone or not to clone? Induced pluripotent stem cells can be generated in bulk culture.

    Science.gov (United States)

    Willmann, Charlotte A; Hemeda, Hatim; Pieper, Lisa A; Lenz, Michael; Qin, Jie; Joussen, Sylvia; Sontag, Stephanie; Wanek, Paul; Denecke, Bernd; Schüler, Herdit M; Zenke, Martin; Wagner, Wolfgang

    2013-01-01

    Induced pluripotent stem cells (iPSCs) are usually clonally derived. The selection of fully reprogrammed cells generally involves picking of individual colonies with morphology similar to embryonic stem cells (ESCs). Given that fully reprogrammed cells are highly proliferative and escape from cellular senescence, it is conceivable that they outgrow non-pluripotent and partially reprogrammed cells during culture expansion without the need of clonal selection. In this study, we have reprogrammed human dermal fibroblasts (HDFs) with episomal plasmid vectors. Colony frequency was higher and size was larger when using murine embryonic fibroblasts (MEFs) as stromal support instead of HDFs or human mesenchymal stromal cells (MSCs). We have then compared iPSCs which were either clonally derived by manual selection of a single colony, or derived from bulk-cultures of all initial colonies. After few passages their morphology, expression of pluripotency markers, and gene expression profiles did not reveal any significant differences. Furthermore, clonally-derived and bulk-cultured iPSCs revealed similar in vitro differentiation potential towards the three germ layers. Therefore, manual selection of individual colonies does not appear to be necessary for the generation of iPSCs - this is of relevance for standardization and automation of cell culture procedures.

  14. Late post-irradiation phenomena in mammalian cell populations. Pt. 3. Characteristics of the slowly growing clones isolated from X-irradiated L5178Y-S cell cultures

    International Nuclear Information System (INIS)

    Beer, J.Z.; Szumiel, I.

    1975-01-01

    Populations of murine leukaemic lymphoblasts L5178Y-S irradiated with 300 rads of X-rays in vitro were analysed by serial clonings. It was found that the latent radiation-induced heritable lesions can be revealed by this technique. Approximately 100 slowly growing cell sublines with doubling times varying from 12 to 25 h, obtained by cloning, were assayed for: viability, cloning efficiency, mitotic index, labelling index (1 h and 24 h exposure to 3 H-thymidine), 3 H-thymidine incorporation rate, histone Fl phosphorous content, radiosensitivity, cell cycle disturbances, DNA per cell content, karyotype changes. The slowly-growing clones show normal or almost normal viability but have reduced cloning efficiencies. No correlations were found between the subline's doubling time or time interval between its isolation and determination, on one hand, and mitotic index or 1 h labelling index, on the other hand. 3 H-thymidine incorporation rate and histone Fl phosphorylation degree were inversely related to the subline's doubling time. Increased radiosensitivity of the slowly growing sublines, observed soon after their isolation, indicates that the heritable lesions in the cells studied are radiation-induced rather than selected. Autoradiographic analysis of the cell cycle indicates: heterogeneity of the slowly growing cell lines, occurence of cells with prolonged G2 phase and a possibility that in more severely damaged cells S phase is also affected. (author)

  15. Numbers and dispersion of repopulating hematopoietic cell clones in radiation chimeras as functions of injected cell dose

    International Nuclear Information System (INIS)

    Micklem, H.S.; Lennon, J.E.; Ansell, J.D.; Gray, R.A.

    1987-01-01

    Lethally irradiated mice were repopulated with low (10(5)), medium (10(6)) or high (10(7)) doses of congenic bone marrow cells. Marrow donors were heterozygous for the X-chromosome-encoded allozyme marker phosphoglycerate kinase (PGK-1). A second allozyme marker, phosphoglucose isomerase (GPI-1), distinguished between donor and radioresistant host cells. Use of these markers allowed the numbers and dispersion of repopulating hematopoietic clones to be estimated by binomial statistics. The number of major repopulating clones was related to the injected cell dose in a linear fashion, the inferred frequency of clonogenic cells in donor bone marrow being about 1:40,000. In high-dose recipients, the clones grew locally, with little or no dispersion between bones. Low-dose recipients, in contrast, carried widely dispersed clones; these tended to become reduced in number with increasing time after repopulation. Most of the (few) bone marrow clones present in low-dose recipients were also present in the thymus. In contrast, only about 10% of bone marrow clones in high-dose recipients were substantially represented in the thymus at any one time--about 16 clones in each lobe

  16. Inference of Cell Mechanics in Heterogeneous Epithelial Tissue Based on Multivariate Clone Shape Quantification

    Science.gov (United States)

    Tsuboi, Alice; Umetsu, Daiki; Kuranaga, Erina; Fujimoto, Koichi

    2017-01-01

    Cell populations in multicellular organisms show genetic and non-genetic heterogeneity, even in undifferentiated tissues of multipotent cells during development and tumorigenesis. The heterogeneity causes difference of mechanical properties, such as, cell bond tension or adhesion, at the cell–cell interface, which determine the shape of clonal population boundaries via cell sorting or mixing. The boundary shape could alter the degree of cell–cell contacts and thus influence the physiological consequences of sorting or mixing at the boundary (e.g., tumor suppression or progression), suggesting that the cell mechanics could help clarify the physiology of heterogeneous tissues. While precise inference of mechanical tension loaded at each cell–cell contacts has been extensively developed, there has been little progress on how to distinguish the population-boundary geometry and identify the cause of geometry in heterogeneous tissues. We developed a pipeline by combining multivariate analysis of clone shape with tissue mechanical simulations. We examined clones with four different genotypes within Drosophila wing imaginal discs: wild-type, tartan (trn) overexpression, hibris (hbs) overexpression, and Eph RNAi. Although the clones were previously known to exhibit smoothed or convoluted morphologies, their mechanical properties were unknown. By applying a multivariate analysis to multiple criteria used to quantify the clone shapes based on individual cell shapes, we found the optimal criteria to distinguish not only among the four genotypes, but also non-genetic heterogeneity from genetic one. The efficient segregation of clone shape enabled us to quantitatively compare experimental data with tissue mechanical simulations. As a result, we identified the mechanical basis contributed to clone shape of distinct genotypes. The present pipeline will promote the understanding of the functions of mechanical interactions in heterogeneous tissue in a non-invasive manner. PMID

  17. Spontaneous mutation rate in Chinese hamster cell clones differing in UV-sensitivity

    International Nuclear Information System (INIS)

    Manuilova, E.S.; Bagrova, A.M.; Moskovskij Gosudarstvennyj Univ.

    1983-01-01

    The spontaneous rate of appearance of mutations to 6-mercaptopurine (6 MP) resistence in the cells of CHR2 and CHs2 clones dofferent in sensitivity to lethal and matagenous effect of UV-rays, is investigated. Increased UV-sensitivity of CHs2 clone is caused by the violation of postreplicative DNA reparation. It is established that the purity of spontaneously occuring mutations in both clones turns out to be similar, i.e. (1.5-1.8)x10 -5 for the cell pergeneration. It is shown that the effect of postreplicative DNA reparation in the cells of chinese hamster is not connected with the increase of spontaneous mutation ability. The problem on the possible role of reparation in the mechanism of appearance of spontaneous and induced mutations in the cells of Chinese hamster with increased UV-sensitivity is discussed

  18. Glucocorticoids inhibit the proliferation of IL-2-dependent T cell clones

    International Nuclear Information System (INIS)

    Fresno, M.; Redondo, J.M.; Lopez-Rivas, A.

    1986-01-01

    It has been shown that glucocorticoids inhibit mitogen or antigen-induced lymphocyte proliferation by decreasing the production of interleukin-2 (IL-2). They have studied the effect of dexamethasone (Dx) on the proliferation of IL-2-dependent T cell clones. They have found that preincubation of these clones with Dx inhibits ( 3 H) thymidine incorporation and cell proliferation in a dose-dependent manner (ID 50 % 5 x 10 -10 M). The inhibition of DNA synthesis by Dx was dependent on the concentration of IL-2. High concentration of IL-2 reversed completely this inhibition. The action of Dx seems to be mediated through the induction of a protein since the simultaneous presence of cycloheximide and Dx prevented the inhibitory effect of the latter. Moreover, dialyzed conditioned medium of Dx treated cells inhibited DNA synthesis by T cell clones. The biochemical characterization of this protein is in progress

  19. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    Science.gov (United States)

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer

    Directory of Open Access Journals (Sweden)

    Müller Mathias

    2007-12-01

    Full Text Available Abstract Background The mitochondrial DNA (mtDNA of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts. Results The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy numbers per cell (A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88. The ratio of donor to recipient oocyte mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS PCR (i.e. ARMS-qPCR. For quantification of SNP variants with frequencies below 0.1% we developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR. We report the first cases (n = 4 fetuses, n = 3 lambs of recipient oocyte/nuclear donor mtDNA heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring. Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6 indicating neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5% was observed in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with three rare amino acid changes compared to the donor including one substitution at an evolutionary conserved site. Conclusion Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones

  1. [Cloning and characterization of genes differentially expressed in human dental pulp cells and gingival fibroblasts].

    Science.gov (United States)

    Wang, Zhong-dong; Wu, Ji-nan; Zhou, Lin; Ling, Jun-qi; Guo, Xi-min; Xiao, Ming-zhen; Zhu, Feng; Pu, Qin; Chai, Yu-bo; Zhao, Zhong-liang

    2007-02-01

    To study the biological properties of human dental pulp cells (HDPC) by cloning and analysis of genes differentially expressed in HDPC in comparison with human gingival fibroblasts (HGF). HDPC and HGF were cultured and identified by immunocytochemistry. HPDC and HGF subtractive cDNA library was established by PCR-based modified subtractive hybridization, genes differentially expressed by HPDC were cloned, sequenced and compared to find homogeneous sequence in GenBank by BLAST. Cloning and sequencing analysis indicate 12 genes differentially expressed were obtained, in which two were unknown genes. Among the 10 known genes, 4 were related to signal transduction, 2 were related to trans-membrane transportation (both cell membrane and nuclear membrane), and 2 were related to RNA splicing mechanisms. The biological properties of HPDC are determined by the differential expression of some genes and the growth and differentiation of HPDC are associated to the dynamic protein synthesis and secretion activities of the cell.

  2. TNP-specific Lyt-2+ cytolytic T cell clones preferentially respond to TNP-conjugated epidermal cells

    International Nuclear Information System (INIS)

    Shimada, S.; Katz, S.I.

    1985-01-01

    A most effective method for the induction of hapten-specific allergic contact sensitivity (CS) is via epicutaneous application of the hapten. Another effective method is by the administration of haptenated epidermal cells (EC) subcutaneously. The latter method induces more intense and longer lasting CS than does the subcutaneous administration of haptenated spleen cells (SC). Thus, there may be something unique about EC which, when haptenated, allows them to generate effector cells more effectively than do SC. The authors therefore, attempted to generate T cell clones that were both hapten- and epidermal-specific. Four days after painting mice with 7% trinitrochlorobenzene, draining lymph node cells were obtained and T cells were purified. These cells were co-cultured with trinitrophenylated (TNP) Langerhans cell-enriched EC. After 4 days, cells were harvested and rested on non-TNP-conjugated EC. The cells were restimulated and rested three times, and were then cloned by limiting dilution with added interleukin 2, which was then continually added. Proliferation of T cells was assessed by [ 3 H]-thymidine incorporation. Cytotoxicity assays utilized TNP-conjugated concanavalin A SC blasts or EC as targets. Clones A-2 and E-4 are Thy-1+, Lyt-2+, and L3T4-, and TNP-specific. In contrast to noncloned TNP-specific T cells, the clones proliferate preferentially in response to TNP-EC rather than TNP-SC. Also in contrast to noncloned T cells, the clones were preferentially cytotoxic for TNP-EC; compared to TNP-SC, there was an eight- to 32-fold increase in killing when TNP-EC were used as targets. Clones A-2 and E-4 therefore exhibit hapten and epidermal specificity

  3. Plasticity of marrow mesenchymal stem cells from human first-trimester fetus: from single-cell clone to neuronal differentiation.

    Science.gov (United States)

    Zhang, Yihua; Shen, Wenzheng; Sun, Bingjie; Lv, Changrong; Dou, Zhongying

    2011-02-01

    Recent results have shown that bone marrow mesenchymal stem cells (BMSCs) from human first-trimester abortus (hfBMSCs) are closer to embryonic stem cells and perform greater telomerase activity and faster propagation than mid- and late-prophase fetal and adult BMSCs. However, no research has been done on the plasticity of hfBMSCs into neuronal cells using single-cell cloned strains without cell contamination. In this study, we isolated five single cells from hfBMSCs and obtained five single-cell cloned strains, and investigated their biological property and neuronal differentiation potential. We found that four of the five strains showed similar expression profile of surface antigen markers to hfBMSCs, and most of them differentiated into neuron-like cells expressing Nestin, Pax6, Sox1, β-III Tubulin, NF-L, and NSE under induction. One strain showed different expression profile of surface antigen markers from the four strains and hfBMSCs, and did not differentiate toward neuronal cells. We demonstrated for the first time that some of single-cell cloned strains from hfBMSCs can differentiate into nerve tissue-like cell clusters under induction in vitro, and that the plasticity of each single-cell cloned strain into neuronal cells is different.

  4. Cloning the Gravity and Shear Stress Related Genes from MG-63 Cells by Subtracting Hybridization

    Science.gov (United States)

    Zhang, Shu; Dai, Zhong-quan; Wang, Bing; Cao, Xin-sheng; Li, Ying-hui; Sun, Xi-qing

    2008-06-01

    Background The purpose of the present study was to clone the gravity and shear stress related genes from osteoblast-like human osteosarcoma MG-63 cells by subtractive hybridization. Method MG-63 cells were divided into two groups (1G group and simulated microgravity group). After cultured for 60 h in two different gravitational environments, two groups of MG-63 cells were treated with 1.5Pa fluid shear stress (FSS) for 60 min, respectively. The total RNA in cells was isolated. The gravity and shear stress related genes were cloned by subtractive hybridization. Result 200 clones were gained. 30 positive clones were selected using PCR method based on the primers of vector and sequenced. The obtained sequences were analyzed by blast. changes of 17 sequences were confirmed by RT-PCR and these genes are related to cell proliferation, cell differentiation, protein synthesis, signal transduction and apoptosis. 5 unknown genes related to gravity and shear stress were found. Conclusion In this part of our study, our result indicates that simulated microgravity may change the activities of MG-63 cells by inducing the functional alterations of specific genes.

  5. Survival of irradiated glia and glioma cells studied with a new cloning technique

    International Nuclear Information System (INIS)

    Nilsson, S.; Carlsson, J.; Larsson, B.; Ponten, J.

    1980-01-01

    A method allowing cloning of monolayer cultured cells with a low plating efficiency was developed. Cells were grown in several small palladium squares to obtain a high cell density. These squares were surrounded by non-adhesive agarose to prevent large distance migration and thereby mixing of the clones. By using easily-cloned hamster cells for comparison it was found that the survival curves were similar to the curves obtained with conventional cloning. The new method was used to compare the radiosensitivity of cultured human glia and glioma cells which both have a low plating efficiency ( 0 -values (1.5 to 2.5 Gy) and large shoulders (extrapolation numbers around 5) indicating that they were rather resistant and had a high capacity for accumulation of sublethal damage. The survival curves for glia cells had lower D 0 -values (1.3 to 1.5 Gy) and no shoulders at all, indicating that they were more sensitive than the glioma cells. (author)

  6. RON kinase isoforms demonstrate variable cell motility in normal cells.

    Science.gov (United States)

    Greenbaum, Alissa; Rajput, Ashwani; Wan, Guanghua

    2016-09-01

    Aberrant RON (Recepteur d'Origine Nantais) tyrosine kinase activation causes the epithelial cell to evade normal growth pathways, resulting in unregulated cell proliferation, increased cell motility and decreased apoptosis. Wildtype (wt) RON has been shown to play a role in metastasis of epithelial malignancies. It presents an important potential therapeutic target for colorectal, breast, gastric and pancreatic cancer. Little is known about functional differences amongst RON isoforms RON155, RON160 and RON165. The purpose of this study was to determine the effect of various RON kinase isoforms on cell motility. Cell lines with stable expression of wtRON were generated by inserting the coding region of RON in pTagRFP (tagged red fluorescence protein plasmid). The expression constructs of RON variants (RON155, RON160 and RON165) were generated by creating a mutagenesis-based wtRON-pTag RFP plasmid and stably transfected into HEK 293 cells. The wound closure scratch assay was used to investigate the effect on cell migratory capacity of wild type RON and its variants. RON transfected cells demonstrated increased cell motility compared to HEK293 control cells. RON165 cell motility was significantly increased compared to RON160 (mean percentage of wound covered 37.37% vs. 32.40%; p = 0.03). RON tyrosine kinase isoforms have variable cell motility. This may reflect a difference in the behavior of malignant epithelial cells and their capacity for metastasis.

  7. Progenitor cells for regenerative medicine and consequences of ART and cloning-associated epimutations.

    Science.gov (United States)

    Laprise, Shari L

    2010-06-01

    The "holy grail" of regenerative medicine is the identification of an undifferentiated progenitor cell that is pluripotent, patient specific, and ethically unambiguous. Such a progenitor cell must also be able to differentiate into functional, transplantable tissue, while avoiding the risks of immune rejection. With reports detailing aberrant genomic imprinting associated with assisted reproductive technologies (ART) and reproductive cloning, the idea that human embryonic stem cells (hESCs) derived from surplus in vitro fertilized embryos or nuclear transfer ESCs (ntESCs) harvested from cloned embryos may harbor dangerous epigenetic errors has gained attention. Various progenitor cell sources have been proposed for human therapy, from hESCs to ntESCs, and from adult stem cells to induced pluripotent stem cells (iPS and piPS cells). This review highlights the advantages and disadvantages of each of these technologies, with particular emphasis on epigenetic stability.

  8. A method for autoradiographic studies of single clones of plaque forming cells

    International Nuclear Information System (INIS)

    Andersen, V.; Lefkovits, I.; Rigshospitalet, Copenhagen

    1977-01-01

    By limiting dilution of B lymphocytes from spleens of immunized mice, microcultures were obtained that contained only one clone of plaque forming cells (PFC). The cultured cells were labelled with [ 14 C]thymidine for varying period of time. Plaques were obtained in monolayers of sheep erythrocytes in plastic dishes. After fixation with glutaraldehyde, the bottoms of the dishes were stripped off and autoradiograms prepared. By this method, it is possible to determine the proportion of labelled PFC within a given clone and to quantitate the incorporation of label. The method described can be applied to study the incorporation of other labelled molecules and for cytochemical investigations

  9. Immunobiology of T cell responses to Mls-locus-disparate stimulator cells. III. Helper and cytolytic functions of cloned, Mls-reactive T cell lines

    International Nuclear Information System (INIS)

    Katz, M.E.; Tite, J.P.; Janeway, C.A. Jr.

    1986-01-01

    Mls-specific T cell clones derived by limiting dilution were tested for cytotoxic activity in a lectin-dependent 51 Cr-release assay. All the T cell clones tested were cytotoxic in such an assay in apparent contrast to previous reports (1, 2). However, only those target cells sensitive to cytolysis by other L3T4a + cytolytic T cells (3) were killed by Mls-specific T cell clones in short term 51 Cr-release assays, possibly explaining this discrepancy. All the T cell clones tested were L3T4a + ,Lyt-2 - and stimulated B cells from Mls strains of mice to proliferate and secrete immunoglobulin. Furthermore, lysis of innocent bystander targets was observed when the T cells were stimulated with Mls-disparate stimulator cells. These results are consistent with those obtained with L3T4a - T cells specific for protein antigen:self Ia and that express cytotoxic potential (3)

  10. GLUT3 is present in Clone 9 liver cells and translocates to the plasma membrane in response to insulin.

    Science.gov (United States)

    Defries, Danielle M; Taylor, Carla G; Zahradka, Peter

    2016-08-26

    Clone 9 cells have been reported to express only the GLUT1 facilitative glucose transporter; however, previous studies have not examined Clone 9 cells for GLUT3 content. The current study sought to profile the presence of glucose transporters in Clone 9 cells, H4IIE hepatoma cells, and L6 myoblasts and myotubes. While the other cell types contained the expected complement of transporters, Clone 9 cells had GLUT3 which was previously not reported. Interestingly, both GLUT3 mRNA and protein were detected in Clone 9 cells, but only mRNA for GLUT1 was detected. Glucose transport in Clone 9 cells was insulin-sensitive in a concentration-dependent manner, concomitant with the presence of GLUT3 in the plasma membrane after insulin treatment. Although basal glucose uptake was unaffected, insulin-stimulated glucose uptake was abolished with siRNA-mediated GLUT3 knockdown. These results contradict previous reports that Clone 9 cells exclusively express GLUT1 and suggest GLUT3 is a key insulin-sensitive glucose transporter required for insulin-stimulated glucose uptake by Clone 9 cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Introduction of the yeast DNA repair gene PHR1 into normal and xeroderma pigmentosum human cells

    International Nuclear Information System (INIS)

    Whyte, D.B.

    1988-01-01

    The goal of the work described herein is to determine how UV light kills and mutates human cells. Specifically, the hypothesis to be tested states that the major cause of cell death is the cyclobutane dimer. The yeast (S. cerevisiae) enzyme photolyase provides an elegant means of dissecting the biological effects of the two lesions. Photolyase, the product of the PHR1 gene, catalyzes the visible light-dependent reversal of cyclobutane pyrimidine dimers. Introducing the gene for photolyase into human cells, which do not have a functional photoreactivation mechanism, should allow specific repair of cyclobutane pyrimidine dimers. To express the yeast DNA repair gene in human cells, the yeast PHR1 coding sequence was cloned into the mammalian expression vector pRSV4NEO-I. The resulting plasmid, pRSVPHR1, contains the coding sequence of the yeast gene, under control of transcription signals recognized by mammalian cells, and the dominant selectable gene neo. pRSVPHR1 was introduced into normal and XP SV40-transformed fibroblasts by the calcium phosphate coprecipitation technique, and G418-resistant clones were isolated. The level of PHR1 expression was determined by cytoplasmic RNA dot blots. Two clones, XP-3B and GM-20A, had high levels of expression

  12. Antigen-specific T8+ human clone of cells with a nonspecific augmenting function on the T4 cell-B cell helper interaction

    International Nuclear Information System (INIS)

    Brines, R.D.; Sia, D.Y.; Lehner, T.

    1987-01-01

    The authors isolated a T8 + T3 + Ia + clone of cells from the peripheral blood mononuclear cells of a healthy subject. The clone was expanded and maintained with autologous feed cells, interleukin 2, and a streptococcal antigen. The T8 + clone of cells responded specifically to the streptococcal antigen, in the absence of accessory cells,and released a soluble factor. Both the cloned cells and the corresponding soluble factor expressed augmenting helper but not suppressor activity. The augmenting helper activity for B cell antibody synthesis was demonstrable only in the presence of autologous T 4 cells. Radioimmunoassay was used to measure antibodies. Although stimulation of the T8 + cloned cells was antigen-specific, the resulting soluble factor elicited nonspecific antibody synthesis in the presence of T4 and B cells. The T8 + cloned cell-derived factor was adsorbed by B cells but not by T4 cells. Preliminary studies suggest that the factor has the properties of a B cell growth factor. They suggest that the T8 + population consists of functionally heterogeneous cell subsets, some that have suppressor function and others that augment the T4 + helper-inducer activity in B cell antibody synthesis

  13. Human Cloning

    National Research Council Canada - National Science Library

    Johnson, Judith A; Williams, Erin D

    2006-01-01

    .... Scientists in other labs, including Harvard University and the University of California at San Francisco, intend to produce cloned human embryos in order to derive stem cells for medical research...

  14. Automatic cell cloning assay for determining the clonogenic capacity of cancer and cancer stem-like cells.

    Science.gov (United States)

    Fedr, Radek; Pernicová, Zuzana; Slabáková, Eva; Straková, Nicol; Bouchal, Jan; Grepl, Michal; Kozubík, Alois; Souček, Karel

    2013-05-01

    The clonogenic assay is a well-established in vitro method for testing the survival and proliferative capability of cells. It can be used to determine the cytotoxic effects of various treatments including chemotherapeutics and ionizing radiation. However, this approach can also characterize cells with different phenotypes and biological properties, such as stem cells or cancer stem cells. In this study, we implemented a faster and more precise method for assessing the cloning efficiency of cancer stem-like cells that were characterized and separated using a high-speed cell sorter. Cell plating onto a microplate using an automatic cell deposition unit was performed in a single-cell or dilution rank mode by the fluorescence-activated cell sorting method. We tested the new automatic cell-cloning assay (ACCA) on selected cancer cell lines and compared it with the manual approach. The obtained results were also compared with the results of the limiting dilution assay for different cell lines. We applied the ACCA to analyze the cloning capacity of different subpopulations of prostate and colon cancer cells based on the expression of the characteristic markers of stem (CD44 and CD133) and cancer stem cells (TROP-2, CD49f, and CD44). Our results revealed that the novel ACCA is a straightforward approach for determining the clonogenic capacity of cancer stem-like cells identified in both cell lines and patient samples. Copyright © 2013 International Society for Advancement of Cytometry.

  15. Treatment of porcine donor cells and reconstructed embryos with the antioxidant melatonin enhances cloning efficiency.

    Science.gov (United States)

    Pang, Yun-Wei; An, Lei; Wang, Peng; Yu, Yong; Yin, Qiu-Dan; Wang, Xiao-Hong; Xin-Zhang; Qian-Zhang; Yang, Mei-Ling; Min-Guo; Wu, Zhong-Hong; Tian, Jian-Hui

    2013-05-01

    This study was conducted to investigate the effect of melatonin during the culture of donor cells and cloned embryos on the in vitro developmental competence and quality of cloned porcine embryos. At concentrations of 10(-6 )M or 10(-8) M, melatonin significantly enhanced the proliferation of porcine fetal fibroblasts (PFFs), and the blastocyst rate was significantly increased in the 10(-10) M melatonin-treated donor cell group. Cloned embryo development was also improved in embryo culture medium that was supplemented with 10(-9) M or 10(-12) M melatonin. When both donor cells and cloned embryos were treated with melatonin, the cleavage rate and total cell number of blastocysts were not significantly affected; however, the blastocyst rate was increased significantly (20.0% versus 11.7%). TUNEL assays showed that combined melatonin treatment reduced the rate of apoptotic nuclei (3.6% versus 6.1%). Gene expression analysis of the apoptosis-related genes BAX, BCL2L1, and p53 showed that the expression of BCL2L1 was significantly elevated 2.7-fold relative to the control group, while the expression of BAX and p53 was significantly decreased by 3.7-fold and 23.2-fold, respectively. In addition, we detected the expression of two melatonin receptors (MT1 and MT2) in PFFs but not in porcine cloned embryos. We conclude that exogenous melatonin enhances the development of porcine cloned embryos and improves embryo quality by inhibiting p53-mediated apoptotic pathway. The proliferation of PFFs may be mediated by receptor binding, but the beneficial effects of melatonin on embryonic development may be receptor-independent, possibly through melatonin's ability to directly scavenge free radicals. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  16. T-cell clones from Th1, Th17 or Th1/17 lineages and their signature cytokines have different capacity to activate endothelial cells or synoviocytes.

    Science.gov (United States)

    Lavocat, Fabien; Maggi, Laura; Annunziato, Francesco; Miossec, Pierre

    2016-12-01

    To compare the direct effect of cytokines on synoviocytes and endothelial cells to the effects of supernatants from Th1, Th17 and Th1/17 clones and the direct cell-cell interactions with the same clones. Th17 and Th1/17 clones were obtained from the CD161+CCR6+ fraction and Th1 clones from the CD161-CCR6- fraction of human CD4+ T-cells. Endothelial cells or synoviocytes were cultured in the presence of either isolated pro-inflammatory cytokines (IL-17 and/or TNF-α) or supernatants from the T-cell clones or co-cultured with T-cell clones themselves. IL-6 and IL-8 expression and production were analyzed. IL-17 and TNF-α induced IL-6 and IL-8 expression, although IL-17 alone had a limited effect on endothelial cells compared to synoviocytes. Supernatants from activated T-helper clones also induced IL-6 and IL-8 expression but with discrepancies between endothelial cells and synoviocytes. Endothelial cells were mostly activated by Th1 clone supernatants whereas synoviocytes were activated by all T-cell subtypes. Finally, cell-cell contact experiments showed a great heterogeneity among cell clones, even from the same lineage. IL-6 expression was mostly induced by contact with Th1 clones both in endothelial and mesenchymal cells whereas IL-8 expression was induced by all T-cell clones whatever their phenotype. We showed that endothelial cells were much more sensitive to Th1 activation whereas synoviocytes were activated by all T-helper lineages. This work highlights the heterogeneity of interactions between T-cells and stromal cells through soluble factors or direct cell contact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Autoreactive T cell clones specific for class I and class II HLA antigens isolated from a human chimera

    NARCIS (Netherlands)

    Roncarolo, M. G.; Yssel, H.; Touraine, J. L.; Betuel, H.; de Vries, J. E.; Spits, H.

    1988-01-01

    T cell clones of donor origin that specifically react with recipient cells were obtained from a SCID patient successfully reconstituted by allogeneic fetal liver and thymus transplantation performed 10 yr ago. The majority of these clones displayed both cytotoxic and proliferative responses towards

  18. Generation of Five Human Lactoferrin Transgenic Cloned Goats Using Fibroblast Cells and Their Methylation Status of Putative Differential Methylation Regions of IGF2R and H19 Imprinted Genes

    Science.gov (United States)

    Sun, Yanyan; Zhang, Yanli; Wang, Ziyu; Song, Yang; Wang, Feng

    2013-01-01

    Background Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos. According to the studies on cattle and mice, DNA methylation of some imprinted genes, which plays a vital role in the reprogramming of embryo in NT maybe an underlying mechanism. Methodology/Principal Findings Fibroblast cells were derived from the ear of a two-month-old goat. The vector expressing hLF was constructed and transfected into fibroblasts. G418 selection, EGFP expression, PCR, and cell cycle distribution were applied sequentially to select transgenic cells clones. After NT and embryo transfer, five transgenic cloned goats were obtained from 240 cloned transgenic embryos. These transgenic goats were identified by 8 microsatellites genotyping and southern blot. Of the five transgenic goats, 3 were lived after birth, while 2 were dead during gestation. We compared differential methylation regions (DMR) pattern of two paternally imprinted genes (H19 and IGF2R) of the ear tissues from the lived transgenic goats, dead transgenic goats, and control goats from natural reproduction. Hyper-methylation pattern appeared in cloned aborted goats, while methylation status was relatively normal in cloned lived goats compared with normal goats. Conclusions/Significance In this study, we generated five hLF transgenic cloned goats by SCNT. This is the first time the DNA methylation of lived and dead transgenic cloned goats was compared. The results demonstrated that the methylation status of DMRs of H19 and IGF2R were different in lived and dead transgenic goats and therefore this may be potentially used to assess the reprogramming status of transgenic cloned goats. Understanding the pattern of gene imprinting may be useful to improve cloning techniques in future. PMID:24204972

  19. Novel Technology for Cloning Prostate Cancer Cell Markers

    National Research Council Canada - National Science Library

    Bancroft, F

    2002-01-01

    The purpose of the project is to employ probes isolated from the LNCaP series of human prostate cancer cells, to probe human cDNA microarrays, so as to investigate genes differentially expressed among these cell lines...

  20. Immortalization of human myogenic progenitor cell clone retaining multipotentiality

    International Nuclear Information System (INIS)

    Hashimoto, Naohiro; Kiyono, Tohru; Wada, Michiko R.; Shimizu, Shirabe; Yasumoto, Shigeru; Inagawa, Masayo

    2006-01-01

    Human myogenic cells have limited ability to proliferate in culture. Although forced expression of telomerase can immortalize some cell types, telomerase alone delays senescence of human primary cultured myogenic cells, but fails to immortalize them. In contrast, constitutive expression of both telomerase and the E7 gene from human papillomavirus type 16 immortalizes primary human myogenic cells. We have established an immortalized primary human myogenic cell line preserving multipotentiality by ectopic expression of telomerase and E7. The immortalized human myogenic cells exhibit the phenotypic characteristics of their primary parent, including an ability to undergo myogenic, osteogenic, and adipogenic terminal differentiation under appropriate culture conditions. The immortalized cells will be useful for both basic and applied studies aimed at human muscle disorders. Furthermore, immortalization by transduction of telomerase and E7 represents a useful method by which to expand human myogenic cells in vitro without compromising their ability to differentiate

  1. Cloning, Stem Cells, and the Current National Debate: Incorporating Ethics into a Large Introductory Biology Course

    Science.gov (United States)

    Fink, Rachel D.

    2002-01-01

    Discussing the ethical issues involved in topics such as cloning and stem cell research in a large introductory biology course is often difficult. Teachers may be wary of presenting material biased by personal beliefs, and students often feel inhibited speaking about moral issues in a large group. Yet, to ignore what is happening "out there"…

  2. Future issues in transplantation ethics: ethical and legal controversies in xenotransplantation, stem cell, and cloning research.

    Science.gov (United States)

    Shapiro, Robyn S

    2008-07-01

    With little prospect of developing a sufficient supply of human transplantable organs to meet the large and growing demand, attention has turned to xenotransplantation, as well as stem cell and cloning research, as possible approaches for alleviating this allograft shortage. This article explores ethical and legal issues that surround developments in these fields.

  3. Establishment and characterization of canine parvovirus-specific murine CD4+ T cell clones and their use for the delineation of T cell epitopes.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); R.W.J. van der Heijden (Roger); E.J. Tijhaar (Edwin); M.C.M. Poelen (Martien); J. Carlson; A.D.M.E. Osterhaus (Albert); F.G.C.M. Uytdehaag (Fons)

    1990-01-01

    textabstractCanine parvovirus (CPV)-specific T cell clones were generated by culturing lymph node cells from CPV-immunized BALB/c mice at limiting dilutions in the presence of CPV antigen and interleukin-2 (IL-2). All isolated T cell clones exhibited the cell surface phenotype Thy1+, CD4+, CD8- and

  4. Improvement of cloning efficiency in minipigs using post-thawed donor cells treated with roscovitine.

    Science.gov (United States)

    Hwang, Seongsoo; Oh, Keon Bong; Kwon, Dae-Jin; Ock, Sun-A; Lee, Jeong-Woong; Im, Gi-Sun; Lee, Sung-Soo; Lee, Kichoon; Park, Jin-Ki

    2013-11-01

    Massachusetts General Hospital miniature pigs (MGH minipigs) have been established for organ transplantation studies across the homozygous major histocompatibility complex, but cloning efficiency of MGH minipigs is extremely low. This study was designed to increase the productivity of MGH minipigs by nuclear transfer of post-thaw donor cells after 1 h co-incubation with roscovitine. The MGH minipig cells were genetically modified with GT KO (alpha1,3-galactosyltransferase knock-out) and hCD46 KI (human CD46 knock-in) and used as donor cells. The GT KO/hCD46 KI donor cells were cultured for either 3 days (control group) or 1 h after thawing with 15 μM roscovitine (experimental group) prior to the nuclear transfer. The relative percentage of the transgenic donor cells that entered into G0/G1 was 93.7 % (±2.54). This was different from the donor cells cultured for 1 h with the roscovitine-treated group (84.6 % ±4.6) (P cloning efficiency ranged from 0.74 to 2.54 %. In conclusion, gene-modified donor cells can be used for cloning of MGH minipigs if the cells are post-thawed and treated with roscovitine for 1 h prior to nuclear transfer.

  5. Human therapeutic cloning (NTSC): applying research from mammalian reproductive cloning.

    Science.gov (United States)

    French, Andrew J; Wood, Samuel H; Trounson, Alan O

    2006-01-01

    Human therapeutic cloning or nuclear transfer stem cells (NTSC) to produce patient-specific stem cells, holds considerable promise in the field of regenerative medicine. The recent withdrawal of the only scientific publications claiming the successful generation of NTSC lines afford an opportunity to review the available research in mammalian reproductive somatic cell nuclear transfer (SCNT) with the goal of progressing human NTSC. The process of SCNT is prone to epigenetic abnormalities that contribute to very low success rates. Although there are high mortality rates in some species of cloned animals, most surviving clones have been shown to have normal phenotypic and physiological characteristics and to produce healthy offspring. This technology has been applied to an increasing number of mammals for utility in research, agriculture, conservation, and biomedicine. In contrast, attempts at SCNT to produce human embryonic stem cells (hESCs) have been disappointing. Only one group has published reliable evidence of success in deriving a cloned human blastocyst, using an undifferentiated hESC donor cell, and it failed to develop into a hESC line. When optimal conditions are present, it appears that in vitro development of cloned and parthenogenetic embryos, both of which may be utilized to produce hESCs, may be similar to in vitro fertilized embryos. The derivation of ESC lines from cloned embryos is substantially more efficient than the production of viable offspring. This review summarizes developments in mammalian reproductive cloning, cell-to-cell fusion alternatives, and strategies for oocyte procurement that may provide important clues facilitating progress in human therapeutic cloning leading to the successful application of cell-based therapies utilizing autologous hESC lines.

  6. T cell epitopes on the 36K and 65K Mycobacterium leprae antigens defined by human T cell clones

    NARCIS (Netherlands)

    van Schooten, W. C.; Ottenhoff, T. H.; Klatser, P. R.; Thole, J.; de Vries, R. R.; Kolk, A. H.

    1988-01-01

    To identify the molecular localization and specificity of Mycobacterium leprae antigenic determinants inducing T cell activation, we studied the reactivity of M. leprae-reactive T cell clones from two tuberculoid leprosy patients towards a battery of different mycobacterial strains and purified

  7. Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression.

    Science.gov (United States)

    Nocarova, Eva; Fischer, Lukas

    2009-04-22

    Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with

  8. Molecular cloning and expression of Corynebacterium glutamicum genes for amino acid synthesis in Escherichia coli cells

    International Nuclear Information System (INIS)

    Beskrovnaya, O.Yu.; Fonshtein, M.Yu.; Kolibaba, L.G.; Yankovskii, N.K.; Debabov, V.G.

    1989-01-01

    Molecular cloning of Corynebacterium glutamicum genes for threonine and lysine synthesis has been done in Escherichia coli cells. The clonal library of EcoRI fragments of chromosomal DNA of C. glutamicum was constructed on the plasmid vector λpSL5. The genes for threonine and lysine synthesis were identified by complementation of E. coli mutations in thrB and lysA genes, respectively. Recombinant plasmids, isolated from independent ThrB + clone have a common 4.1-kb long EcoRI DNA fragment. Hybrid plasmids isolated from LysA + transductants of E. coli have common 2.2 and 3.3 kb long EcoRI fragments of C. glutamicum DNA. The hybrid plasmids consistently transduced the markers thrB + and lysA + . The Southern hybridization analysis showed that the cloned DNA fragments hybridized with the fragments of identical length in C. glutamicum chromosomes

  9. Development to term of cloned cattle derived from donor cells treated with valproic acid.

    Directory of Open Access Journals (Sweden)

    Juliano Rodrigues Sangalli

    Full Text Available Cloning of mammals by somatic cell nuclear transfer (SCNT is still plagued by low efficiency. The epigenetic modifications established during cellular differentiation are a major factor determining this low efficiency as they act as epigenetic barriers restricting reprogramming of somatic nuclei. In this regard, most factors that promote chromatin decondensation, including histone deacetylase inhibitors (HDACis, have been found to increase nuclear reprogramming efficiency, making their use common to improve SCNT rates. Herein we used valproic acid (VPA in SCNT to test whether the treatment of nuclear donor cells with this HDACi improves pre- and post-implantation development of cloned cattle. We found that the treatment of fibroblasts with VPA increased histone acetylation without affecting DNA methylation. Moreover, the treatment with VPA resulted in increased expression of IGF2R and PPARGC1A, but not of POU5F1. However, when treated cells were used as nuclear donors no difference of histone acetylation was found after oocyte reconstruction compared to the use of untreated cells. Moreover, shortly after artificial activation the histone acetylation levels were decreased in the embryos produced with VPA-treated cells. With respect to developmental rates, the use of treated cells as donors resulted in no difference during pre- and post-implantation development. In total, five clones developed to term; three produced with untreated cells and two with VPA-treated cells. Among the calves from treated group, one stillborn calf was delivered at day 270 of gestation whereas the other one was delivered at term but died shortly after birth. Among the calves from the control group, one died seven days after birth whereas the other two are still alive and healthy. Altogether, these results show that in spite of the alterations in fibroblasts resulting from the treatment with VPA, their use as donor cells in SCNT did not improve pre- and post

  10. Growth of single T cells and single thymocytes in a high cloning efficiency filler-cell free microculture system.

    Science.gov (United States)

    Chen, W F; Ewing, T; Scollay, R; Shortman, K

    1988-01-01

    A high cloning-efficiency microculture system is described in which single T cells, stimulated to divide by phorbol ester and calcium ionophore, grow rapidly under the influence of purified growth factors in the absence of other cells. The kinetics of clonal growth has been monitored over a five day period by phase-contrast microscopy. Mature peripheral T cells, and mature subpopulations from the thymus, responded with a cloning efficiency over 80%; they required IL-2 as a minimum but several other factors enhanced growth. Ly2+L3T4- thymocytes (mean doubling time 10.4 hr) grew more rapidly than Ly2-L3T4+ thymocytes (mean doubling time 15.2 hr). Early (Ly2-L3T4-) thymocytes responded with a cloning efficiency of 60%; their efficient growth was dependent on both IL-1 and IL-2. The typical Ly2+L3T4+ cortical thymocyte did not grow under these conditions.

  11. Primer sets for cloning the human repertoire of T cell Receptor Variable regions

    Directory of Open Access Journals (Sweden)

    Santoro Claudio

    2008-08-01

    Full Text Available Abstract Background Amplification and cloning of naïve T cell Receptor (TR repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Results Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT®, the ImMunoGeneTics information system®. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. Conclusion This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.

  12. Primer sets for cloning the human repertoire of T cell Receptor Variable regions.

    Science.gov (United States)

    Boria, Ilenia; Cotella, Diego; Dianzani, Irma; Santoro, Claudio; Sblattero, Daniele

    2008-08-29

    Amplification and cloning of naïve T cell Receptor (TR) repertoires or antigen-specific TR is crucial to shape immune response and to develop immuno-based therapies. TR variable (V) regions are encoded by several genes that recombine during T cell development. The cloning of expressed genes as large diverse libraries from natural sources relies upon the availability of primers able to amplify as many V genes as possible. Here, we present a list of primers computationally designed on all functional TR V and J genes listed in the IMGT, the ImMunoGeneTics information system. The list consists of unambiguous or degenerate primers suitable to theoretically amplify and clone the entire TR repertoire. We show that it is possible to selectively amplify and clone expressed TR V genes in one single RT-PCR step and from as little as 1000 cells. This new primer set will facilitate the creation of more diverse TR libraries than has been possible using currently available primer sets.

  13. Mammalian mediator 19 mediates H1299 lung adenocarcinoma cell clone conformation, growth, and metastasis.

    Science.gov (United States)

    Xu, Lu-Lu; Guo, Shu-Liang; Ma, Su-Ren; Luo, Yong-Ai

    2012-01-01

    Mammalian mediator (MED) is a multi-protein coactivator that has been identified by several research groups. The involvement of the MED complex subunit 19 (MED 19) in the metastasis of lung adenocarcinoma cell line (H1299), which expresses the MED 19 subunit, was here investigated. When MED 19 expression was decreased by RNA interference H1299 cells demonstrated reduced clone formation, arrest in the S phase of the cell cycle, and lowered metastatic capacity. Thus, MED 19 appears to play important roles in the biological behavior of non-small cell lung carcinoma cells. These findings may be important for the development of novel lung carcinoma treatments.

  14. Assessing cell fusion and cytokinesis failure as mechanisms of clone 9 hepatocyte multinucleation in vitro.

    Science.gov (United States)

    Simic, Damir; Euler, Catherine; Thurby, Christina; Peden, Mike; Tannehill-Gregg, Sarah; Bunch, Todd; Sanderson, Thomas; Van Vleet, Terry

    2012-08-01

    In this in vitro model of hepatocyte multinucleation, separate cultures of rat Clone 9 cells are labeled with either red or green cell tracker dyes (Red Cell Tracker CMPTX or Vybrant CFDA SE Cell Tracer), plated together in mixed-color colonies, and treated with positive or negative control agents for 4 days. The fluorescent dyes become cell-impermeant after entering cells and are not transferred to adjacent cells in a population, but are inherited by daughter cells after fusion. The mixed-color cultures are then evaluated microscopically for multinucleation and analysis of the underlying mechanism (cell fusion/cytokinesis). Multinucleated cells containing only one dye have undergone cytokinesis failure, whereas dual-labeled multinucleated cells have resulted from fusion. © 2012 by John Wiley & Sons, Inc.

  15. Molecular cloning of transcripts induced by UV-radiation in rodent cells

    International Nuclear Information System (INIS)

    Fornace, A.J. Jr.; Mitchell, J.B.

    1987-01-01

    Several inducible DNA repair genes have been well characterized in bacteria. In eukaryotes including mammalian cells, there is increasing evidence that similar events may occur. Recently, the authors have shown that hybridization subtraction can be used to enrich for sequences induced only several fold by a particular cell treatment such as heat shock. Chinese hamster V79 cells were UV-irradiated with 17 Jm/sup -2/ and cDNA was synthesized from the polyadenylated (poly A) RNA. This ''UV'' cDNA was hybridized with a 3 fold excess of polyA RNA from unirradiated cells and the nonhybridizing cDNA was isolated. With this approach, UV-induced sequences were enriched over 20 fold. This enriched cDNA was cloned into a high copy number plasmid and a cDNA library was constructed. By RNA dot blot and northern analysis, 42 clones from this library were found to represent transcripts induced 3 to 25 fold by UV. The most common isolates were found to be metallothionein transcripts by DNA sequencing. The metallothionein transcripts were found to be induced 10 to 25 fold by UV with maximum induction at 4-8 h after 10 Jm/sup -2/. A similar approach was also used with a Chinese hamster ovary line which does not express metallothionein and multiple clones were isolated which represented transcripts induced 3-15 fold by UV. Except for the metallothionein clones, the other Chinese hamster cDNA clones have not been identified, but it is probable that the protein products of at least some of these transcripts play a role in the cellular response to UV damage

  16. Complementation of the UV-sensitive phenotype of a xeroderma pigmentosum human cell line by transfection with a cDNA clone library

    International Nuclear Information System (INIS)

    Teitz, T.; Naiman, T.; Avissar, S.S.; Bar, S.; Okayama, H.; Canaani, D.

    1987-01-01

    In previous work, a xeroderma pigmentosum cell line belonging to complementation group C was established by transformation with origin-defective simian virus 40. We now report the complementation of the UV sensitivity of this cell line by gene transfer. A human cDNA clone library constructed in a mammalian expression vector, and itself incorporated in a lambda phage vector, was introduced into the cells as a calcium phosphate precipitate. Following selection to G418 resistance, provided by the neo gene of the vector, transformants were selected for UV resistance. Twenty-one cell clones were obtained with UV-resistance levels typical of normal human fibroblasts. All transformants contained vector DNA sequences in their nuclei. Upon further propagation in the absence of selection for G418 resistance, about half of the primary transformants remained UV-resistant. Secondary transformants were generated by transfection with a partial digest of total chromosomal DNA from one of these stable transformants. This resulted in 15 G418-resistant clones, 2 of which exhibited a UV-resistant phenotype. The other primary clones lost UV resistance rapidly when subcultured in the absence of G418. Importantly, several retained UV resistance under G418 selection pressure. The acquisition of UV resistance by secondary transformants derived by transfection of DNA from a stable primary transformant, and the linkage between G418 and UV resistances in the unstable primary transformants, strongly suggests that the transformants acquired UV resistance through DNA-mediated gene transfer and not by reversion

  17. Developments in stem cell research and therapeutic cloning: Islamic ethical positions, a review.

    Science.gov (United States)

    Fadel, Hossam E

    2012-03-01

    Stem cell research is very promising. The use of human embryos has been confronted with objections based on ethical and religious positions. The recent production of reprogrammed adult (induced pluripotent) cells does not - in the opinion of scientists - reduce the need to continue human embryonic stem cell research. So the debate continues. Islam always encouraged scientific research, particularly research directed toward finding cures for human disease. Based on the expectation of potential benefits, Islamic teachings permit and support human embryonic stem cell research. The majority of Muslim scholars also support therapeutic cloning. This permissibility is conditional on the use of supernumerary early pre-embryos which are obtained during infertility treatment in vitro fertilization (IVF) clinics. The early pre-embryos are considered in Islamic jurisprudence as worthy of respect but do not have the full sanctity offered to the embryo after implantation in the uterus and especially after ensoulment. In this paper the Islamic positions regarding human embryonic stem cell research and therapeutic cloning are reviewed in some detail, whereas positions in other religious traditions are mentioned only briefly. The status of human embryonic stem cell research and therapeutic cloning in different countries, including the USA and especially in Muslim countries, is discussed. © 2010 Blackwell Publishing Ltd.

  18. [Cloning of human CD45 gene and its expression in Hela cells].

    Science.gov (United States)

    Li, Jie; Xu, Tianyu; Wu, Lulin; Zhang, Liyun; Lu, Xiao; Zuo, Daming; Chen, Zhengliang

    2015-11-01

    To clone human CD45 gene PTPRC and establish Hela cells overexpressing recombinant human CD45 protein. The intact cDNA encoding human CD45 amplified using RT-PCR from the total RNA extracted from peripheral blood mononuclear cells (PBMCs) of a healthy donor was cloned into pMD-18T vector. The CD45 cDNA fragment amplified from the pMD-18T-CD45 by PCR was inserted to the coding region of the PcDNA3.1-3xflag vector, and the resultant recombinant expression vector PcDNA3.1-3xflag-CD45 was transfected into Hela cells. The expression of CD45 in Hela cells was detected by flow cytometry and Western blotting, and the phosphastase activity of CD45 was quantified using an alkaline phosphatase assay kit. The cDNA fragment of about 3 900 bp was amplified from human PBMCs and cloned into pMD-18T vector. The recombinant expression vector PcDNA3.1-3xflag-CD45 was constructed, whose restriction maps and sequence were consistent with those expected. The expression of CD45 in transfected Hela cells was detected by flow cytometry and Western blotting, and the expressed recombinant CD45 protein in Hela cells showed a phosphastase activity. The cDNA of human CD45 was successfully cloned and effectively expressed in Hela cells, which provides a basis for further exploration of the functions of CD45.

  19. Clonal analysis of T-cell responses to herpes simplex virus: isolation, characterization and antiviral properties of an antigen-specific helper T-cell clone.

    Science.gov (United States)

    Leung, K N; Nash, A A; Sia, D Y; Wildy, P

    1984-12-01

    A herpes simplex virus (HSV)-specific long-term T-cell clone has been established from the draining lymph node cells of BALB/c mice; the cells required repeated in vitro restimulation with UV-irradiated virus. The established T-cell clone expresses the Thy-1 and Lyt-1+2,3- surface antigens. For optimal proliferation of the cloned cells, both the presence of specific antigen and an exogenous source of T-cell growth factor are required. The proliferative response of the cloned T cells was found to be virus-specific but it did not distinguish between HSV-1 and HSV-2. Adoptive cell transfer of the cloned T cells helped primed B cells to produce anti-herpes antibodies: the response was antigen-specific and cell dose-dependent. The clone failed to produce a significant DTH reaction in vivo, but did produce high levels of macrophage-activating factor. Furthermore, the T-cell clone could protect from HSV infection, as measured by a reduction in local virus growth, and by enhanced survival following the challenge of mice with a lethal dose of virus. The mechanism(s) whereby this clone protects in vivo is discussed.

  20. Cloning and Expression of Luteinizing Hormone Subunits in Chinese Hamster Ovary Cell Line

    Directory of Open Access Journals (Sweden)

    Zeinab Soleimanifar

    2016-10-01

    Full Text Available Background: Luteinizing hormone (LH was secreted by the stimulating cells of the testes and ovaries in the anterior pituitary gland. The application of this hormone is in the treatment of men and women with infertility and amenorrhea respectively.Materials and Methods: In the present study the alpha and beta subunits of human LH gene were cloned into the pEGFP-N1 expression vector and produced the recombinant LH hormone in Chinese hamster ovary (CHO eukaryotic system.Results: Alpha and beta subunits of LH hormone were cloned between NheI and BamHI cut sites of pEGFP_N1 expression plasmid and confirmed by PCR.  Hormone expression was evaluated in CHO cell line by Western blotting using the specific antibody.Conclusion: Alpha and beta subunits of LH hormone were expressed in CHO cell line perfectly.

  1. A versatile system for USER cloning-based assembly of expression vectors for mammalian cell engineering.

    Directory of Open Access Journals (Sweden)

    Anne Mathilde Lund

    Full Text Available A new versatile mammalian vector system for protein production, cell biology analyses, and cell factory engineering was developed. The vector system applies the ligation-free uracil-excision based technique--USER cloning--to rapidly construct mammalian expression vectors of multiple DNA fragments and with maximum flexibility, both for choice of vector backbone and cargo. The vector system includes a set of basic vectors and a toolbox containing a multitude of DNA building blocks including promoters, terminators, selectable marker- and reporter genes, and sequences encoding an internal ribosome entry site, cellular localization signals and epitope- and purification tags. Building blocks in the toolbox can be easily combined as they contain defined and tested Flexible Assembly Sequence Tags, FASTs. USER cloning with FASTs allows rapid swaps of gene, promoter or selection marker in existing plasmids and simple construction of vectors encoding proteins, which are fused to fluorescence-, purification-, localization-, or epitope tags. The mammalian expression vector assembly platform currently allows for the assembly of up to seven fragments in a single cloning step with correct directionality and with a cloning efficiency above 90%. The functionality of basic vectors for FAST assembly was tested and validated by transient expression of fluorescent model proteins in CHO, U-2-OS and HEK293 cell lines. In this test, we included many of the most common vector elements for heterologous gene expression in mammalian cells, in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors.

  2. Rabies virus cross-reactive murine T cell clones: analysis of helper and delayed-type hypersensitivity function.

    NARCIS (Netherlands)

    H. Bunschoten; B. Dietzschold; I.J.Th.M. Claassen (Ivo); R. Klapmuts; F. UytdeHaag; A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractThree T cell clones derived from rabies virus-immunized BALB/c mice were analysed for specificity and function. The clones proved to be broadly cross-reactive by responding to different rabies virus isolates (PM, ERA, CVS, HEP) and other representatives of the genus Lyssavirus, like the

  3. Development of high-throughput phenotyping of metagenomic clones from the human gut microbiome for modulation of eukaryotic cell growth.

    Science.gov (United States)

    Gloux, Karine; Leclerc, Marion; Iliozer, Harout; L'Haridon, René; Manichanh, Chaysavanh; Corthier, Gérard; Nalin, Renaud; Blottière, Hervé M; Doré, Joël

    2007-06-01

    Metagenomic libraries derived from human intestinal microbiota (20,725 clones) were screened for epithelial cell growth modulation. Modulatory clones belonging to the four phyla represented among the metagenomic libraries were identified (hit rate, 0.04 to 8.7% depending on the screening cutoff). Several candidate loci were identified by transposon mutagenesis and subcloning.

  4. [Cloning goat producing human lactoferrin with genetically modified donor cells selected by single or dual markers].

    Science.gov (United States)

    An, Liyou; Yuan, Yuguo; Yu, Baoli; Yang, Tingjia; Cheng, Yong

    2012-12-01

    We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.

  5. Whole-organism clone tracing using single-cell sequencing

    NARCIS (Netherlands)

    Alemany, Anna; Florescu, Maria; Baron, Chloé S; Peterson-Maduro, Josi; van Oudenaarden, Alexander

    2018-01-01

    Embryonic development is a crucial period in the life of a multicellular organism, during which limited sets of embryonic progenitors produce all cells in the adult body. Determining which fate these progenitors acquire in adult tissues requires the simultaneous measurement of clonal history and

  6. Establishment of human induced pluripotent stem cell lines from normal fibroblast TIG-1.

    Science.gov (United States)

    Kumazaki, Tsutomu; Kurata, Sayaka; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2011-06-01

    Normal human cells have a replicative life span and therefore senesce. Usually, normal human cell strains are differentiated cells and reach a terminally differentiated state after a number of cell divisions. At present, definitive differences are not known between replicative senescence and terminal differentiation. TIG-1 is a human fibroblast strain established from fetal lung and has been used extensively in studies of cellular senescence, and numerous data were accumulated at the molecular level. Recently, a method for generating induced pluripotent stem cells (iPSCs) was developed. Using the method, we introduced four reprogramming genes to TIG-1 fibroblasts and succeeded in isolating colonies that had embryonic stem cell (ESC)-like morphologies. They showed alkaline phosphatase activity and expressed ESC markers, as shown by immunostaining of OCT4, SOX2, SSEA4, and TRA-1-81 as well as reverse-transcription polymerase chain reaction (RT-PCR) for OCT4 and NANOG transcripts. Thus, we succeeded in establishing iPSC clones from TIG-1. The iPSC clones could differentiate to cells originated from all three germ-cell layers, as shown by RT-PCR, for messenger RNA (mRNA) expression of α-fetoprotein (endoderm), MSX1 (mesoderm) and microtubule-associated protein 2 (ectoderm), and by immunostaining for α-fetoprotein (endoderm), α-smooth muscle actin (mesoderm), and β-III-tubulin (ectoderm). The iPSCs formed teratoma containing the structures developed from all three germ-cell layers in severe combined immune-deficiency mice. Thus, by comparing the aging process of parental TIG-1 cells and the differentiation process of iPSC-derived fibrocytes to fibroblasts, we can reveal the exact differences in processes between senescence and terminal differentiation.

  7. DNA amplification is rare in normal human cells

    International Nuclear Information System (INIS)

    Wright, J.A.; Watt, F.M.; Hudson, D.L.; Stark, G.R.; Smith, H.S.; Hancock, M.C.

    1990-01-01

    Three types of normal human cells were selected in tissue culture with three drugs without observing a single amplification event from a total of 5 x 10 8 cells. No drug-resistant colonies were observed when normal foreskin keratinocytes were selected with N-(phosphonacetyl)-L-aspartate or with hydroxyurea or when normal mammary epithelial cells were selected with methotrexate. Some slightly resistant colonies with limited potential for growth were obtained when normal diploid fibroblast cells derived from fetal lung were selected with methotrexate or hydroxyurea but careful copy-number analysis of the dihydrofolate reductase and ribonucleotide reductase genes revealed no evidence of amplification. The rarity of DNA amplification in normal human cells contrasts strongly with the situation in tumors and in established cell lines, where amplification of onogenes and of genes mediating drug resistance is frequent. The results suggest that tumors and cell lines have acquired the abnormal ability to amplify DNA with high frequency

  8. Genomic instability induced by 60Co γ ray radiation in normal human liver cells

    International Nuclear Information System (INIS)

    Gen Xiaohua; Guo Xianhua; Zuo Yahui; Wang Xiaoli; Wang Zhongwen

    2007-01-01

    Objective: To explore the genomic instability induced by 60 Co γ rays. Methods: The cloning efficiency and micronucleus efficiency of normal human liver cell irradiated by 60 Co γ rays were detected, and the method of single cell gel electrophoresis (SCGE) was carried out to measure DNA chains damage. The fast-growing cells were divided into different dose-groups and then irradiated by 60 Co γ rays. After 40 populations doubling, the progenies were secondly irradiated with 2 Gy 60 Co γ rays. Results: The cloning efficiency decreased with the increase of doses after the initial irradiation. After the survival cells were given second irradiation, both results of SCGE and micronucleus frequency showed that the second damage was correlated with the original irradiation doses. Conclusions: 60 Co γ rays can not only induce the immediate biological effects in liver cells, but also lead to the genomic instability in the descendants that leads to an enhanced frequency of genetic changes occurring among the progeny of the original irradiated cell. The expanding effect of second event helps to study the genomic instability. (authors)

  9. Cloning and Characterization of a Cell Senescence Gene for Breast Cancer Cells

    Science.gov (United States)

    2004-07-01

    have already established the inducible expression system in a retroviral vector for these studies. F. References 1. Hayflick , L. (1965). The limited ...CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF REPORT OF THIS PAGE OFABSTRACT Unclassified...13-14 Annual report A. Introduction Normal diploid mammalian cells display a limited proliferative life span in culture (1-3

  10. Normal and abnormal secretion by haemopoietic cells

    Science.gov (United States)

    STINCHCOMBE, JANE C; GRIFFITHS, GILLIAN M

    2001-01-01

    The secretory lysosomes found in haemopoietic cells provide a very efficient mechanism for delivering the effector proteins of many immune cells in response to antigen recognition. Although secretion shows some similarities to the secretion of specialized granules in other secretory cell types, some aspects of secretory lysosome release appear to be unique to melanocytes and cells of the haemopoietic lineage. Mast cells and platelets have provided excellent models for studying secretion, but recent advances in characterizing the immunological synapse allow a very fine dissection of the secretory process in T lymphocytes. These studies show that secretory lysosomes are secreted from the centre of the talin ring at the synapse. Proper secretion requires a series of Rab and cytoskeletal elements which play critical roles in the specialized secretion of lysosomes in haemopoietic cells. PMID:11380687

  11. Prevalence of polyreactive innate clones among graft--infiltrating B cells in human cardiac allograft vasculopathy.

    Science.gov (United States)

    Chatterjee, Debanjana; Moore, Carolina; Gao, Baoshan; Clerkin, Kevin J; See, Sarah B; Shaked, David; Rogers, Kortney; Nunez, Sarah; Veras, Yokarla; Addonizio, Linda; Givertz, Michael M; Naka, Yoshifumi; Mancini, Donna; Vasilescu, Rodica; Marboe, Charles; Restaino, Susan; Madsen, Joren C; Zorn, Emmanuel

    2018-03-01

    Cardiac allograft vasculopathy (CAV) has been associated with graft-infiltrating B cells, although their characteristics are still unclear. In this study we examined the frequency, localization and reactivity profile of graft-infiltrating B cells to determine their contribution to the pathophysiology of CAV. B cells, plasma cells and macrophages were examined by immunohistochemistry in 56 allografts with CAV, 49 native failed hearts and 25 autopsy specimens. A total of 102 B-cell clones were immortalized directly from the infiltrates of 3 fresh cardiac samples with CAV. Their secreted antibodies were assessed using enzyme-linked immunoassay and flow cytometry. B-cell infiltration was observed around coronary arteries in 93% of allograft explants with CAV. Comparatively, intragraft B cells were less frequent and less dense in the intraventricular myocardium from where routine biopsies are obtained. Plasma cells and macrophages were also detected in 85% and 95% of explants, respectively. Remarkably, B-cell infiltrates were not associated with circulating donor-specific antibodies (DSA) or prior episodes of antibody-mediated rejection (AMR). Among all B-cell clones generated from 3 explants with CAV, a majority secreted natural antibodies reactive to multiple autoantigens and apoptotic cells, a characteristic of innate B cells. Our study reveals a high frequency of infiltrating B cells around the coronary arteries of allografts with CAV, independent of DSA or AMR. These cells are enriched for innate B cells with a polyreactive profile. The findings shift the focus from conventional DSA-producing B cells to the potentially pathogenic polyreactive B cells in the development of clinical CAV. Copyright © 2018 International Society for the Heart and Lung Transplantation. Published by Elsevier Inc. All rights reserved.

  12. [Out of natural order: nature in discourses about cloning and stem cell research in Brazilian newspapers].

    Science.gov (United States)

    Medeiros, Flavia Natércia da Silva

    2013-11-30

    Different conceptions of nature influence media coverage and public opinion about biotechnology. This study reports on a discourse analysis of the ideas about nature and what is natural expressed in Brazilian media coverage of cloning and stem cell research. In the discourse against this research, the biotechnologies in question are placed outside the natural order of things and deemed immoral. In the discourse of those who defend it, nature is portrayed as indifferent to the fate of humans or even cruel, or else a barrier to be overcome, while cloning and embryonic stem cells are naturalized and Dolly the sheep is anthropomorphized. The mythifying or transcendental representations of nature do not just influence public opinion, but also have ethical and political implications.

  13. Attempt at cloning high-quality goldfish breed 'Ranchu' by fin-cultured cell nuclear transplantation.

    Science.gov (United States)

    Tanaka, Daisuke; Takahashi, Akito; Takai, Akinori; Ohta, Hiromi; Ueno, Koichi

    2012-02-01

    The viability of ornamental fish culture relies on the maintenance of high-quality breeds. To improve the profitability of culture operations we attempted to produce cloned fish from the somatic nucleus of the high-quality Japanese goldfish (Carassius auratus auratus) breed 'Ranchu'. We transplanted the nucleus of a cultured fin-cell from an adult Ranchu into the non-enucleated egg of the original goldfish breed 'Wakin'. Of the 2323 eggs we treated, 802 underwent cleavage, 321 reached the blastula stage, and 51 reached the gastrula stage. Two of the gastrulas developed until the hatching stage. A considerable number of nuclear transplants retained only the donor nucleus. Some of these had only a 2n nucleus derived from the same donor fish. Our results provide insights into the process of somatic cell nuclear transplantation in teleosts, and the cloning of Ranchu.

  14. In silico cloning and B/T cell epitope prediction of triosephosphate isomerase from Echinococcus granulosus.

    Science.gov (United States)

    Wang, Fen; Ye, Bin

    2016-10-01

    Cystic echinococcosis is a worldwide zoonosis caused by Echinococcus granulosus. Because the methods of diagnosis and treatment for cystic echinococcosis were limited, it is still necessary to screen target proteins for the development of new anti-hydatidosis vaccine. In this study, the triosephosphate isomerase gene of E. granulosus was in silico cloned. The B cell and T cell epitopes were predicted by bioinformatics methods. The cDNA sequence of EgTIM was composition of 1094 base pairs, with an open reading frame of 753 base pairs. The deduced amino acid sequences were composed of 250 amino acids. Five cross-reactive epitopes, locating on 21aa-35aa, 43aa-57aa, 94aa-107aa, 115-129aa, and 164aa-183aa, could be expected to serve as candidate epitopes in the development of vaccine against E. granulosus. These results could provide bases for gene cloning, recombinant expression, and the designation of anti-hydatidosis vaccine.

  15. Histone deacetylase inhibitor significantly improved the cloning efficiency of porcine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Yao, Chaogang; Zhou, Yang; Zhu, Jianguo; Lai, Liangxue; Ouyang, Hongsheng; Pang, Daxin

    2011-12-01

    Valproic acid (VPA), a histone deacetylase inbibitor, has been shown to generate inducible pluripotent stem (iPS) cells from mouse and human fibroblasts with a significant higher efficiency. Because successful cloning by somatic cell nuclear transfer (SCNT) undergoes a full reprogramming process in which the epigenetic state of a differentiated donor nuclear is converted into an embryonic totipotent state, we speculated that VPA would be useful in promoting cloning efficiency. Therefore, in the present study, we examined whether VPA can promote the developmental competence of SCNT embryos by improving the reprogramming state of donor nucleus. Here we report that 1 mM VPA for 14 to 16 h following activation significantly increased the rate of blastocyst formation of porcine SCNT embryos constructed from Landrace fetal fibroblast cells compared to the control (31.8 vs. 11.4%). However, we found that the acetylation level of Histone H3 lysine 14 and Histone H4 lysine 5 and expression level of Oct4, Sox2, and Klf4 was not significantly changed between VPA-treated and -untreated groups at the blastocyst stage. The SCNT embryos were transferred to 38 surrogates, and the cloning efficiency in the treated group was significantly improved compared with the control group. Taken together, we have demonstrated that VPA can improve both in vitro and in vivo development competence of porcine SCNT embryos.

  16. Improvement of mouse cloning using nuclear transfer-derived embryonic stem cells and/or histone deacetylase inhibitor.

    Science.gov (United States)

    Wakayama, Sayaka; Wakayama, Teruhiko

    2010-01-01

    Nuclear transfer-derived ES (ntES) cell lines can be established from somatic cell nuclei with a relatively high success rate. Although ntES cells have been shown to be equivalent to ES cells, there are ethical objections concerning human cells, such as the use of fresh oocyte donation from young healthy woman. In contrast, the use of induced pluripotent stem (iPS) cells for cloning poses few ethical problems and is a relatively easy technique compared with nuclear transfer. Therefore, although there are several reports proposing the use of ntES cells as a model of regenerative medicine, the use of these cells in preliminary medical research is waning. However, in theory, 5 to 10 donor cells can establish one ntES cell line and, once established, these cells will propagate indefinitely. These cells can be used to generate cloned animals from ntES cell lines using a second round of NT. Even in infertile and "unclonable" strains of mice, we can generate offspring from somatic cells by combining cloning with ntES technology. Moreover, cloned offspring can be generated potentially even from the nuclei of dead bodies or freeze-dried cells via ntES cells, such as from an extinct frozen animal. Currently, only the ntES technology is available for this purpose, because all other techniques, including iPS cell derivation, require significant numbers of living donor cells. This review describes how to improve the efficiency of cloning, the establishment of clone-derived embryonic stem cells and further applications.

  17. Animal cloning: problems and prospects.

    Science.gov (United States)

    Wells, D N

    2005-04-01

    An efficient animal cloning technology would provide many new opportunities for livestock agriculture, human medicine, and animal conservation. Nuclear cloning involves the production of animals that are genetically identical to the donor cells used in a technique known as nuclear transfer (NT). However, at present it is an inefficient process: in cattle, only around 6% of the embryos transferred to the reproductive tracts of recipient cows result in healthy, longterm surviving clones. Of concern are the high losses throughout gestation, during birth and in the post-natal period through to adulthood. Many of the pregnancy losses relate to failure of the placenta to develop and function correctly. Placental dysfunction may also have an adverse influence on postnatal health. These anomalies are probably due to incorrect epigenetic reprogramming of the donor genome following NT, leading to inappropriate patterns of gene expression during the development of clones. Whilst some physiological tests on surviving clones suggest normality, other reports indicate a variety of post-natal clone-associated abnormalities. This variability in outcome may reflect species-specific and/or cloning methodological differences. Importantly, to date it appears that these clone-associated phenotypes are not transmitted to offspring following sexual reproduction. This indicates that they represent epigenetic errors, rather than genetic errors, which are corrected during gametogenesis. Whilst this needs confirmation at the molecular level, it provides initial confidence in the first application of NT in agriculture, namely, the production of small numbers of cloned sires from genetically elite bulls, for natural mating, to effectively disseminate genetic gain. In addition to the animal welfare concerns with the technology, the underlying health of the animals and the consequential effect on food safety are critical aspects that require investigation to gain regulatory and consumer

  18. T Cell Receptor Vβ Staining Identifies the Malignant Clone in Adult T cell Leukemia and Reveals Killing of Leukemia Cells by Autologous CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Aileen G Rowan

    2016-11-01

    Full Text Available There is growing evidence that CD8+ cytotoxic T lymphocyte (CTL responses can contribute to long-term remission of many malignancies. The etiological agent of adult T-cell leukemia/lymphoma (ATL, human T lymphotropic virus type-1 (HTLV-1, contains highly immunogenic CTL epitopes, but ATL patients typically have low frequencies of cytokine-producing HTLV-1-specific CD8+ cells in the circulation. It remains unclear whether patients with ATL possess CTLs that can kill the malignant HTLV-1 infected clone. Here we used flow cytometric staining of TCRVβ and cell adhesion molecule-1 (CADM1 to identify monoclonal populations of HTLV-1-infected T cells in the peripheral blood of patients with ATL. Thus, we quantified the rate of CD8+-mediated killing of the putative malignant clone in ex vivo blood samples. We observed that CD8+ cells from ATL patients were unable to lyse autologous ATL clones when tested directly ex vivo. However, short in vitro culture restored the ability of CD8+ cells to kill ex vivo ATL clones in some donors. The capacity of CD8+ cells to lyse HTLV-1 infected cells which expressed the viral sense strand gene products was significantly enhanced after in vitro culture, and donors with an ATL clone that expressed the HTLV-1 Tax gene were most likely to make a detectable lytic CD8+ response to the ATL cells. We conclude that some patients with ATL possess functional tumour-specific CTLs which could be exploited to contribute to control of the disease.

  19. Efficient production of a gene mutant cell line through integrating TALENs and high-throughput cell cloning.

    Science.gov (United States)

    Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff

    2015-02-01

    Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.

  20. BIX-01294 increases pig cloning efficiency by improving epigenetic reprogramming of somatic cell nuclei.

    Science.gov (United States)

    Huang, Jiaojiao; Zhang, Hongyong; Yao, Jing; Qin, Guosong; Wang, Feng; Wang, Xianlong; Luo, Ailing; Zheng, Qiantao; Cao, Chunwei; Zhao, Jianguo

    2016-01-01

    Accumulating evidence suggests that faulty epigenetic reprogramming leads to the abnormal development of cloned embryos and results in the low success rates observed in all mammals produced through somatic cell nuclear transfer (SCNT). The aberrant methylation status of H3K9me and H3K9me2 has been reported in cloned mouse embryos. To explore the role of H3K9me2 and H3K9me in the porcine somatic cell nuclear reprogramming, BIX-01294, known as a specific inhibitor of G9A (histone-lysine methyltransferase of H3K9), was used to treat the nuclear-transferred (NT) oocytes for 14-16 h after activation. The results showed that the developmental competence of porcine SCNT embryos was significantly enhanced both in vitro (blastocyst rate 16.4% vs 23.2%, Pcloning rate 1.59% vs 2.96%) after 50 nm BIX-01294 treatment. BIX-01294 treatment significantly decreased the levels of H3K9me2 and H3K9me at the 2- and 4-cell stages, which are associated with embryo genetic activation, and increased the transcriptional expression of the pluripotency genes SOX2, NANOG and OCT4 in cloned blastocysts. Furthermore, the histone acetylation levels of H3K9, H4K8 and H4K12 in cloned embryos were decreased after BIX-01294 treatment. However, co-treatment of activated NT oocytes with BIX-01294 and Scriptaid rescued donor nuclear chromatin from decreased histone acetylation of H4K8 that resulted from exposure to BIX-01294 only and consequently improved the preimplantation development of SCNT embryos (blastocyst formation rates of 23.7% vs 21.5%). These results indicated that treatment with BIX-01294 enhanced the developmental competence of porcine SCNT embryos through improvements in epigenetic reprogramming and gene expression. © 2016 Society for Reproduction and Fertility.

  1. Cloning and characterization of rat density-enhanced phosphatase-1, a protein tyrosine phosphatase expressed by vascular cells.

    Science.gov (United States)

    Borges, L G; Seifert, R A; Grant, F J; Hart, C E; Disteche, C M; Edelhoff, S; Solca, F F; Lieberman, M A; Lindner, V; Fischer, E H; Lok, S; Bowen-Pope, D F

    1996-09-01

    We have cloned from cultured vascular smooth muscle cells a protein tyrosine phosphatase, rat density-enhanced phosphatase-1 (rDEP-1), which is a probable rat homologue of DEP-1/HPTP eta. rDEP-1 is encoded by an 8.7-kb transcript and is expressed as a 180- to 220-kD protein. The rDEP-1 gene is located on human chromosome 11 (region p11.2) and on mouse chromosome 2 (region 2E). The cDNA sequence predicts a transmembrane protein consisting of a single phosphatase catalytic domain in the intracellular region, a single transmembrane domain, and eight fibronectin type III repeats in the extracellular region (GenBank accession number U40790). In situ hybridization analysis demonstrates that rDEP-1 is widely expressed in vivo but that expression is highest in cells that form epithelioid monolayers. In cultured cells with epitheliod morphology, including endothelial cells and newborn smooth muscle cells, but not in fibroblast-like cells, rDEP-1 transcript levels are dramatically upregulated as population density increases. In vivo, quiescent endothelial cells in normal arteries express relatively high levels of rDEP-1. During repair of vascular injury, expression of rDEP-1 is downregulated in migrating and proliferating endothelial cells. In vivo, rDEP-1 transcript levels are present in very high levels in megakaryocytes, and circulating plates have high levels of the rDEP-1 protein. In vitro, initiation of differentiation of the human megakaryoblastic cell line CHRF-288-11 with phorbol 12-myristate 13-acetate leads to a very strong upregulation of rDEP-1 transcripts. The deduced structure and the regulation of expression of rDEP-1 suggest that it may play a role in adhesion and/or signaling events involving cell-cell and cell-matrix contact.

  2. Identification and cloning of a prethymic precursor T lymphocyte from a population of common acute lymphoblastic leukemia antigen (CALLA)-positive fetal bone marrow cells

    DEFF Research Database (Denmark)

    Hokland, P; Hokland, M; Daley, J

    1987-01-01

    We have cloned common acute lymphoblastic leukemia (CALLA)-positive cells from human fetal bone marrow containing less than 1 in 10,000 E-RFC in round-bottomed microtiter wells (one cell per well) using the autocloning unit of an EPICS-V cell sorter. Expansion of such cells (with IL-2 and heavily...... irradiated autologous thymocytes as feeder cells) resulted in growth in 6-14% of the wells (mean, 11%) with cells with mature T lymphocyte phenotype. Two-color fluorescence analysis of outgrowing cultures furthermore ascertained that these cells had differentiated through a phase of simultaneous expression...... of T4 and T8 antigens and at the same time expression of the thymocyte-associated T6 antigens. Thus, given the fact that 10-20% of T cell acute lymphoblastic leukemia (T-ALLs) are CALLA+, we have been able to identify a human prethymic T lymphocyte population that might be the normal counterpart...

  3. Highly active antiretroviral therapy normalizes the function of progenitor cells in human immunodeficiency virus-infected patients

    DEFF Research Database (Denmark)

    Dam Nielsen, S.; Ersbøll, A. K.; Mathiesen, L.

    1998-01-01

    -infected patients were determined prior to HAART and after 2, 4, 8, and 12 weeks of therapy. The mean number of colony-forming units (cells) per milliliter (cfu/mL) was 15.0 prior to HAART vs. 109.8 in healthy controls (P.../mL eliminated the differences between HIV-infected patients and controls. Significant increases in numbers of CD34 cells were not detected. Of importance, the cloning efficiency of CD34 cells increased from 1.7% prior to therapy to a peak at 18.7% (P=.003). In conclusion, HAART normalized CD34 cell function...

  4. Control of the proportion of inner cells by asymmetric divisions and the ensuing resilience of cloned rabbit embryos

    Science.gov (United States)

    Duranthon, Véronique

    2018-01-01

    ABSTRACT Mammalian embryo cloning by nuclear transfer has a low success rate. This is hypothesized to correlate with a high variability of early developmental steps that segregate outer cells, which are fated to extra-embryonic tissues, from inner cells, which give rise to the embryo proper. Exploring the cell lineage of wild-type embryos and clones, imaged in toto until hatching, highlights the respective contributions of cell proliferation, death and asymmetric divisions to phenotypic variability. Preferential cell death of inner cells in clones, probably pertaining to the epigenetic plasticity of the transferred nucleus, is identified as a major difference with effects on the proportion of inner cell. In wild type and clones, similar patterns of outer cell asymmetric divisions are shown to be essential to the robust proportion of inner cells observed in wild type. Asymmetric inner cell division, which is not described in mice, is identified as a regulator of the proportion of inner cells and likely gives rise to resilient clones. PMID:29567671

  5. New Approaches to Attenuated Hepatitis a Vaccine Development: Cloning and Sequencing of Cell-Culture Adapted Viral cDNA.

    Science.gov (United States)

    1987-10-13

    after multiple passages in vivo and in vitro. J. Gen. Virol. 67, 1741- 1744. Sabin , A.B. (1985). Oral poliovirus vaccine : history of its development...IN (N NEW APPROACHES TO ATTENUATED HEPATITIS A VACCINE DEVELOPMENT: Q) CLONING AND SEQUENCING OF CELL-CULTURE ADAPTED VIRAL cDNA I ANNUAL REPORT...6ll02Bsl0 A 055 11. TITLE (Include Security Classification) New Approaches to Attenuated Hepatitis A Vaccine Development: Cloning and Sequencing of Cell

  6. Different Donor Cell Culture Methods Can Influence the Developmental Ability of Cloned Sheep Embryos.

    Directory of Open Access Journals (Sweden)

    LiBing Ma

    Full Text Available It was proposed that arresting nuclear donor cells in G0/G1 phase facilitates the development of embryos that are derived from somatic cell nuclear transfer (SCNT. Full confluency or serum starvation is commonly used to arrest in vitro cultured somatic cells in G0/G1 phase. However, it is controversial as to whether these two methods have the same efficiency in arresting somatic cells in G0/G1 phase. Moreover, it is unclear whether the cloned embryos have comparable developmental ability after somatic cells are subjected to one of these methods and then used as nuclear donors in SCNT. In the present study, in vitro cultured sheep skin fibroblasts were divided into four groups: (1 cultured to 70-80% confluency (control group, (2 cultured to full confluency, (3 starved in low serum medium for 4 d, or (4 cultured to full confluency and then further starved for 4 d. Flow cytometry was used to assay the percentage of fibroblasts in G0/G1 phase, and cell counting was used to assay the viability of the fibroblasts. Then, real-time reverse transcription PCR was used to determine the levels of expression of several cell cycle-related genes. Subsequently, the four groups of fibroblasts were separately used as nuclear donors in SCNT, and the developmental ability and the quality of the cloned embryos were compared. The results showed that the percentage of fibroblasts in G0/G1 phase, the viability of fibroblasts, and the expression levels of cell cycle-related genes was different among the four groups of fibroblasts. Moreover, the quality of the cloned embryos was comparable after these four groups of fibroblasts were separately used as nuclear donors in SCNT. However, cloned embryos derived from fibroblasts that were cultured to full confluency combined with serum starvation had the highest developmental ability. The results of the present study indicate that there are synergistic effects of full confluency and serum starvation on arresting fibroblasts in

  7. Statement on Human Cloning

    Science.gov (United States)

    ... as our understanding of this technology advances. Support Stem Cell Research (including Research Cloning) AAAS supports stem cell research, including the use of nuclear transplantation techniques (also ...

  8. Production of a cloned calf from a fetal fibroblast cell line

    Directory of Open Access Journals (Sweden)

    Mello M.R.B.

    2003-01-01

    Full Text Available The present study examined the in vitro and in vivo development of bovine nuclear-transferred embryos. A bovine fetal fibroblast culture was established and used as nucleus donor. Slaughterhouse oocytes were matured in vitro for 18 h before enucleation. Enucleated oocytes were fused with fetal fibroblasts with an electric stimulus and treated with cytochalasin D and cycloheximide for 1 h followed by cycloheximide alone for 4 h. Reconstructed embryos were cultured for 7-9 days and those which developed to blastocysts were transferred to recipient cows. Of 191 enucleated oocytes, 83 (43.5% were successfully fused and 24 (28.9% developed to blastocysts. Eighteen freshly cloned blastocysts were transferred to 14 recipients, 5 (27.8% of which were pregnant on day 35 and 3 (16.7% on day 90. Of the three cows that reached the third trimester, one recipient died of hydrallantois 2 months before term, one aborted fetus was recovered at 8 months of gestation, and one delivered by cesarian section a healthy cloned calf. Today, the cloned calf is 15 months old and presents normal body development (378 kg and sexual behavior (libido and semen characteristics.

  9. Plurihormonal cells of normal anterior pituitary: Facts and conclusions

    OpenAIRE

    Mitrofanova, Lubov B.; Konovalov, Petr V.; Krylova, Julia S.; Polyakova, Victoria O.; Kvetnoy, Igor M.

    2017-01-01

    Introduction plurihormonality of pituitary adenomas is an ability of adenoma cells to produce more than one hormone. After the immunohistochemical analysis had become a routine part of the morphological study, a great number of adenomas appeared to be multihormonal in actual practice. We hypothesize that the same cells of a normal pituitary gland releases several hormones simultaneously. Objective To analyse a possible co-expression of hormones by the cells of the normal anterior pituitary of...

  10. Human somatic cell nuclear transfer and reproductive cloning: an Ethics Committee opinion.

    Science.gov (United States)

    2016-04-01

    This document presents arguments that conclude that it is unethical to use somatic cell nuclear transfer (SCNT) for infertility treatment due to concerns about safety; the unknown impact of SCNT on children, families, and society; and the availability of other ethically acceptable means of assisted reproduction. This document replaces the ASRM Ethics Committee report titled, "Human somatic cell nuclear transfer and cloning," last published in Fertil Steril 2012;98:804-7. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. MAdCAM-1 is needed for diabetes development mediated by the T cell clone, BDC-2·5

    Science.gov (United States)

    Phillips, Jenny M; Haskins, Kathryn; Cooke, Anne

    2005-01-01

    The NOD-derived islet-reactive CD4+ T cell clone, BDC-2·5, is able to transfer diabetes to neonatal non-obese diabetic (NOD) mice but is unable to transfer disease to either adult NOD or NOD scid recipients. Transfer of diabetes to adult recipients by BDC-2·5 is only accomplished by cotransfer of CD8+ T cells from a diabetic donor. To understand why this CD4+ T cell clone is able to mediate diabetes in neonatal but not the adult recipients we examined the ability of the clone to traffic in the different recipients. Our studies showed that MAdCAM-1 has a very different expression pattern in the neonatal and adult pancreas. Blockade of this addressin prevents the clone from transferring diabetes to neonatal mice, suggesting that the differential pancreatic expression of MAdCAM-1 in neonatal and adult pancreas provides an explanation of the differences in diabetes development. PMID:16313366

  12. Hypoosmotic cell swelling as a novel mechanism for modulation of cloned HCN2 channels

    DEFF Research Database (Denmark)

    Calloe, Kirstine; Elmedyb, Pernille; Olesen, Søren-Peter

    2005-01-01

    This work demonstrates cell swelling as a new regulatory mechanism for the cloned hyperpolarization-activated, cyclic nucleotide-gated channel 2 (HCN2). HCN2 channels were coexpressed with aquaporin1 in Xenopus laevis oocytes and currents were monitored using a two-electrode voltage-clamp. HCN2...... channels were activated by hyperpolarization to -100 mV and the currents were measured before and during hypoosmotic cell swelling. Cell swelling increased HCN2 currents by 30% without changing the kinetics of the currents. Injection of 50 nl intracellular solution resulted in a current increase of 20......%, indicating that an increase in cell volume also under isoosmotic conditions may lead to activation of HCN2. In the absence of aquaporin1 only negligible changes in oocyte cell volume occur during exposure to hypoosmotic media and no significant change in HCN2 channel activity was observed during perfusion...

  13. Cloning of Soluble Human Stem Cell Factor in pET-26b(+ Vector

    Directory of Open Access Journals (Sweden)

    Salman Asghari

    2014-03-01

    Full Text Available Purpose: Stem cell factor (SCF plays an important role in the survival, proliferation and differentiation of hematopoietic stem cells and progenitor cells. Potential therapeutic applications of SCF include hematopoietic stem cell mobilization, exvivo stem/progenitor cell expansion, gene therapy, and immunotherapy. Considering the cost and problem in accessibility of this product in Iran, clears the importance of indigenizing production of rhSCF. In the present work, we describe the construction of the soluble rhSCF expression vector in pET-26b (+ with periplasmic localization potential. Methods: Following PCR amplification of human SCF ORF, it is cloned in pET-26b (+ vector in NcoI and XhoI sites. The recombinant construct was transformed into BL21 (DE3 Ecoli strains. Results: The construction of recombinant vector was verified by colony PCR and sequence analysis of pET26b-hSCF vector. Sequence analyses proved that human SCF ORF has been inserted into NcoI and XhoI site with correct orientation downstream of strong T7 promotor and showed no nucleotide errors. Conclusion: The SCF ORF was successfully cloned in pET-26b (+ expression vector and is ready for future production of SCF protein.

  14. Cloning of Soluble Human Stem Cell Factor in pET-26b(+) Vector.

    Science.gov (United States)

    Asghari, Salman; Shekari Khaniani, Mahmoud; Darabi, Masood; Mansoori Derakhshan, Sima

    2014-01-01

    Stem cell factor (SCF) plays an important role in the survival, proliferation and differentiation of hematopoietic stem cells and progenitor cells. Potential therapeutic applications of SCF include hematopoietic stem cell mobilization, exvivo stem/progenitor cell expansion, gene therapy, and immunotherapy. Considering the cost and problem in accessibility of this product in Iran, clears the importance of indigenizing production of rhSCF. In the present work, we describe the construction of the soluble rhSCF expression vector in pET-26b (+) with periplasmic localization potential. Following PCR amplification of human SCF ORF, it is cloned in pET-26b (+) vector in NcoI and XhoI sites. The recombinant construct was transformed into BL21 (DE3) Ecoli strains. The construction of recombinant vector was verified by colony PCR and sequence analysis of pET26b-hSCF vector. Sequence analyses proved that human SCF ORF has been inserted into NcoI and XhoI site with correct orientation downstream of strong T7 promotor and showed no nucleotide errors. The SCF ORF was successfully cloned in pET-26b (+) expression vector and is ready for future production of SCF protein.

  15. Do early premalignant changes in normal breast epithelial cells predict cancer development?

    International Nuclear Information System (INIS)

    Clarke, Robert B; Bundred, Nigel J

    2005-01-01

    A recent report suggests that, in an in vitro model of premalignant breast cells (vHMECs), silencing of INK4A gene is accompanied by over-expression of cyclo-oxygenase (COX)-2. This suggests that COX-2 over-expression may be an early event in breast cancer aetiology permitting clones within the normal epithelium to evade apoptosis, to increase their numbers and perhaps acquire further changes that promote the formation of hyperplasias, and eventually carcinomas. While COX-2 expression in normal breast epithelium in vivo has not been proven to be linked to an increased risk of breast cancer, its over-expression in the premalignant model in vitro does provide preliminary evidence that COX-2 inhibition may be a useful chemoprevention strategy

  16. Cloning of a glutathione S-transferase decreasing during differentiation of HL60 cell line

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Chul; Park, In Kyu; Lee, Kyu Bo; Sohn, Sang Kyun; Kim, Moo Kyu; Kim, Jung Chul [College of Medicine, Kyungpook National Univ., Taegu (Korea, Republic of)

    1999-06-01

    By sequencing the Expressed Sequence Tags of human dermal papilla cDNA library, we identified a clone named K872 of which the expression decreased during differentiation of HL60 cell line. K872 plasmid DNA was isolated according to QIA plasmid extraction kit (Qiagen GmbH, Germany). The nucleotide sequencing was performed by Sanger's method with K872 plasmid DNA. The most updated GenBank EMBL necleic acid banks were searched through the internet by using BLAST (Basic Local Alignment Search Tools) program. Northern bots were performed using RNA isolated from various human tissues and cancer cell lines. The gene expression of the fusion protein was achieved by His-Patch Thiofusion expression system and the protein product was identified on SDS-PAGE. K872 clone is 1006 nucleotides long, and has a coding region of 675 nucleotides and a 3' non-coding region of 280 nucleotides. The presumed open reading frame starting at the 5' terminus of K872 encodes 226 amino acids, including the initiation methionine residue. The amino acid sequence deduced from the open reading frame of K872 shares 70% identity with that of rat glutathione S-transferase kappa 1 (rGSTK1). The transcripts were expressed inh a variety of human tissues and cancer cells. The levels of transcript were relatively high in those tissues such as heart, skeletal muscle, and peripheral blood leukocyte. It is noteworthy that K872 was found to be abundantly expressed in colorectal cancer and melanoma cell lines. Homology search result suggests that K872 clone is the human homolog of the rGSTK1 which is known to be involved in the resistance of cytotoxic therapy. We propose that meticulous functional analysis should be followed to confirm that.

  17. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    Directory of Open Access Journals (Sweden)

    Alamar Santiago

    2009-09-01

    Full Text Available Abstract Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new

  18. A new set of ESTs and cDNA clones from full-length and normalized libraries for gene discovery and functional characterization in citrus

    Science.gov (United States)

    Marques, M Carmen; Alonso-Cantabrana, Hugo; Forment, Javier; Arribas, Raquel; Alamar, Santiago; Conejero, Vicente; Perez-Amador, Miguel A

    2009-01-01

    Background Interpretation of ever-increasing raw sequence information generated by modern genome sequencing technologies faces multiple challenges, such as gene function analysis and genome annotation. Indeed, nearly 40% of genes in plants encode proteins of unknown function. Functional characterization of these genes is one of the main challenges in modern biology. In this regard, the availability of full-length cDNA clones may fill in the gap created between sequence information and biological knowledge. Full-length cDNA clones facilitate functional analysis of the corresponding genes enabling manipulation of their expression in heterologous systems and the generation of a variety of tagged versions of the native protein. In addition, the development of full-length cDNA sequences has the power to improve the quality of genome annotation. Results We developed an integrated method to generate a new normalized EST collection enriched in full-length and rare transcripts of different citrus species from multiple tissues and developmental stages. We constructed a total of 15 cDNA libraries, from which we isolated 10,898 high-quality ESTs representing 6142 different genes. Percentages of redundancy and proportion of full-length clones range from 8 to 33, and 67 to 85, respectively, indicating good efficiency of the approach employed. The new EST collection adds 2113 new citrus ESTs, representing 1831 unigenes, to the collection of citrus genes available in the public databases. To facilitate functional analysis, cDNAs were introduced in a Gateway-based cloning vector for high-throughput functional analysis of genes in planta. Herein, we describe the technical methods used in the library construction, sequence analysis of clones and the overexpression of CitrSEP, a citrus homolog to the Arabidopsis SEP3 gene, in Arabidopsis as an example of a practical application of the engineered Gateway vector for functional analysis. Conclusion The new EST collection denotes an

  19. Fidelity of DNA Replication in Normal and Malignant Human Breast Cells.

    Science.gov (United States)

    1997-08-01

    enzyme) into the multiple cloning site (MCS). This template will not only replicate inside a mammalian cell (utilizing the E-B virus origin), and...Maniatis, T. Commonly used techniques in molecular cloning . In: Molecular cloning : REFERENCES a laboratory manual, 2nd edition. Cold Spring Harbor...A vatit"Y Of DNA synthesis and the typt of DNA replica~tion Products " celular prca including DNA rsplicatlon. DNA repsair. R~NA formed in experiments

  20. Cell colony formation induced by Xenopus egg extract as a marker for improvement of cloned blastocyst formation in pig

    DEFF Research Database (Denmark)

    Liu, Ying; Østrup, Olga; Li, Juan

    2011-01-01

    method based on the colony formation of cells after extract treatment, and subsequent in vitro cloning efficiency using treated cells as chromatin donors. Porcine fetal fibroblasts were treated with each batch of extract, and cultured in embryonic stem cell (ES) medium for 12 days. The number of forming...

  1. Fungal invasion of normally non-phagocytic host cells.

    Directory of Open Access Journals (Sweden)

    Scott G Filler

    2006-12-01

    Full Text Available Many fungi that cause invasive disease invade host epithelial cells during mucosal and respiratory infection, and subsequently invade endothelial cells during hematogenous infection. Most fungi invade these normally non-phagocytic host cells by inducing their own uptake. Candida albicans hyphae interact with endothelial cells in vitro by binding to N-cadherin on the endothelial cell surface. This binding induces rearrangement of endothelial cell microfilaments, which results in the endocytosis of the organism. The capsule of Cryptococcus neoformans is composed of glucuronoxylomannan, which binds specifically to brain endothelial cells, and appears to mediate both adherence and induction of endocytosis. The mechanisms by which other fungal pathogens induce their own uptake are largely unknown. Some angioinvasive fungi, such as Aspergillus species and the Zygomycetes, invade endothelial cells from the abluminal surface during the initiation of invasive disease, and subsequently invade the luminal surface of endothelial cells during hematogenous dissemination. Invasion of normally non-phagocytic host cells has different consequences, depending on the type of invading fungus. Aspergillus fumigatus blocks apoptosis of pulmonary epithelial cells, whereas Paracoccidioides brasiliensis induces apoptosis of epithelial cells. This review summarizes the mechanisms by which diverse fungal pathogens invade normally non-phagocytic host cells and discusses gaps in our knowledge that provide opportunities for future research.

  2. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system.

    Science.gov (United States)

    Nakamura, Tsuyoshi; Omasa, Takeshi

    2015-09-01

    Therapeutic antibodies are commonly produced by high-expressing, clonal and recombinant Chinese hamster ovary (CHO) cell lines. Currently, CHO cells dominate as a commercial production host because of their ease of use, established regulatory track record, and safety profile. CHO-K1SV is a suspension, protein-free-adapted CHO-K1-derived cell line employing the glutamine synthetase (GS) gene expression system (GS-CHO expression system). The selection of high-producing mammalian cell lines is a crucial step in process development for the production of therapeutic antibodies. In general, cloning by the limiting dilution method is used to isolate high-producing monoclonal CHO cells. However, the limiting dilution method is time consuming and has a low probability of monoclonality. To minimize the duration and increase the probability of obtaining high-producing clones with high monoclonality, an automated single cell-based clone selector, the ClonePix FL system, is available. In this study, we applied the high-throughput ClonePix FL system for cell line development using CHO-K1SV cells and investigated efficient conditions for single cell-based clone selection. CHO-K1SV cell growth at the pre-picking stage was improved by optimizing the formulation of semi-solid medium. The efficiency of picking and cell growth at the post-picking stage was improved by optimization of the plating time without decreasing the diversity of clones. The conditions for selection, including the medium formulation, were the most important factors for the single cell-based clone selection system to construct a high-producing CHO cell line. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. The Fate of a Normal Human Cell Traversed by a Single Charged Particle

    Science.gov (United States)

    Fournier, C.; Zahnreich, S.; Kraft, D.; Friedrich, T.; Voss, K.-O.; Durante, M.; Ritter, S.

    2012-01-01

    The long-term “fate” of normal human cells after single hits of charged particles is one of the oldest unsolved issues in radiation protection and cellular radiobiology. Using a high-precision heavy-ion microbeam we could target normal human fibroblasts with exactly one or five carbon ions and measured the early cytogenetic damage and the late behaviour using single-cell cloning. Around 70% of the first cycle cells presented visible aberrations in mFISH after a single ion traversal, and about 5% of the cells were still able to form colonies. In one third of selected high-proliferative colonies we observed clonal (radiation-induced) aberrations. Terminal differentiation and markers of senescence (PCNA, p16) in the descendants of cells traversed by one carbon ion occurred earlier than in controls, but no evidence of radiation-induced chromosomal instability was found. We conclude that cells surviving single-ion traversal, often carrying clonal chromosome aberrations, undergo accelerated senescence but maintain chromosomal stability. PMID:22966418

  4. Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone

    International Nuclear Information System (INIS)

    Adachi, A.; Gendelman, H.E.; Koenig, S.; Folks, T.; Willey, R.; Rabson, A.; Martin, M.A.

    1986-01-01

    The authors considered an infectious molecular clone of acquired immunodeficiency syndrome-associated retrovirus. Upon transfection, this clone directed the production of infectious virus particles in a wide variety of cells in addition to human T4 cells. The progeny, infectious virions, were synthesized in mouse, mink, monkey, and several human non-T cell lines, indicating the absence of any intracellular obstacle to viral RNA or protein production or assembly. During the course of these studies, a human colon carcinoma cell line, exquisitely sensitive to DNA transfection, was identified

  5. Assay of mouse-cell clones for retrovirus p30 protein by use of an automated solid-state radioimmunoassay

    International Nuclear Information System (INIS)

    Kennel, S.J.; Tnnant, R.W.

    1979-01-01

    A solid-state radioimmunoassay system has been developed that is useful for automated analysis of samples in microtiter plates. Assays for interspecies and type-specific antigenic determinants of the C-type retrovirus protein, p30, have been used to identify clones of cells producing this protein. This method allows testing of at least 1000 clones a day, making it useful for studies of frequencies of virus protein induction, defective virus production, and formation of recombinant viruses

  6. Rabies virus-specific human T cell clones provide help for an in vitro antibody response against neutralizing antibody-inducing determinants of the viral glycoprotein.

    NARCIS (Netherlands)

    H. Bunschoten; R.J. Klapmuts; I.J.Th.M. Claassen (Ivo); S.D. Reijneveld; A.D.M.E. Osterhaus (Albert); F.G.C.M. Uytdehaag (Fons)

    1989-01-01

    textabstractHuman T cell clones were prepared from peripheral blood mononuclear cells from a vaccinated human donor and kept in culture in the presence of rabies virus antigen and growth factors. Phenotypic analysis of the T cell clones revealed expression of the CD3 and CD4 cell surface markers,

  7. Recovery of infectious pariacoto virus from cDNA clones and identification of susceptible cell lines.

    Science.gov (United States)

    Johnson, K N; Ball, L A

    2001-12-01

    Pariacoto virus (PaV) is a nodavirus that was recently isolated in Peru from the Southern armyworm, Spodoptera eridania. Virus particles are non enveloped and about 30 nm in diameter and have T=3 icosahedral symmetry. The 3.0-A crystal structure shows that about 35% of the genomic RNA is icosahedrally ordered, with the RNA forming a dodecahedral cage of 25-nucleotide (nt) duplexes that underlie the inner surface of the capsid. The PaV genome comprises two single-stranded, positive-sense RNAs: RNA1 (3,011 nt), which encodes the 108-kDa catalytic subunit of the RNA-dependent RNA polymerase, and RNA2 (1,311 nt), which encodes the 43-kDa capsid protein precursor alpha. In order to apply molecular genetics to the structure and assembly of PaV, we identified susceptible cell lines and developed a reverse genetic system for this virus. Cell lines that were susceptible to infection by PaV included those from Spodoptera exigua, Helicoverpa zea and Aedes albopictus, whereas cells from Drosophila melanogaster and Spodoptera frugiperda were refractory to infection. To recover virus from molecular clones, full-length cDNAs of PaV RNAs 1 and 2 were cotranscribed by T7 RNA polymerase in baby hamster kidney cells that expressed T7 RNA polymerase. Lysates of these cells were infectious both for cultured cells from Helicoverpa zea (corn earworm) and for larvae of Galleria mellonella (greater wax moth). The combination of infectious cDNA clones, cell culture infectivity, and the ability to produce milligram amounts of virus allows the application of DNA-based genetic methods to the study of PaV structure and assembly.

  8. Amniotic Fluid Cells Proliferation in Normal and Down Syndrome Subjects

    Directory of Open Access Journals (Sweden)

    Honcea Adina

    2016-02-01

    Full Text Available Down Syndrome/Trisomy 21 is the most common chromosomal anomaly, and it represents the most common congenital cause of infants’ intellectual disability. Subjects with this syndrome are affected by degenerative processes caused by accelerated aging or unknown ethyologies. In recent years, accumulating evidence revealed increased potential of amniotic fluid-derived stem cells to be used in regenerative therapy. Our aim was to assess differences in immunophenotype, cell morphology and proliferation of amniotic fluid cells from normal and Down Syndrome pregnancies using a quantitative cytometry approach. Results revealed the emergence of a population of small sized cells in Down Syndrome derived amniotic fluid cells that are readily visible upon microscopic inspection. Hence, the fluorescence–based quantitative image cytometry determinations showed a tendency of decrease in both cell and nuclei size in trisomy, with no significant modification in nuclei circularity, as measured following actin cytoskeleton and nuclei labeling. The propensity of Ki67 positive cells was found to be increased in Down Syndrome derived cells (48.92% as compared to normal specimens (28.68%. However, cells in S and G2/M cell cycle phases decreased from 32.91% to 4.49% in diseased cells. Further studies are devoted to understanding the molecular basis of the observed differences in the proliferation ability of Down Syndrome amniotic cells, in order to evaluate the potential therapeutic effect of amniotic fluid stem cells for tissue regeneration in subjects with trisomy and to find correlations between amniotic cells phenotype and patient prognosis.

  9. Immune-mediated bone marrow failure syndromes of progenitor and stem cells: molecular analysis of cytotoxic T cell clones.

    Directory of Open Access Journals (Sweden)

    Ramon Tiu

    2007-03-01

    Full Text Available The unique structure of the T cell receptor (TCR enables molecular identification of individual T cell clones and provides an unique opportunity for the design of molecular diagnostic tests based on the structure of the rearranged TCR chain e.g., using the TCR CDR3 region. Initially, clonal T cell malignancies, including T cell large granular lymphocyte leukemia (T-LGL, mucosis fungoides and peripheral T cell lymphoma were targets for the TCR-based analytic assays such as detection of clonality by T-gamma rearrangement using y-chain-specific PCR or Southern Blotting. Study of these disorders facilitated further analytic concepts and application of rational methods of TCR analysis to investigations of polyclonal T cell-mediated diseases. In hematology, such conditions include graft versus host disease (GvHD and immune-mediated bone marrow failure syndromes. In aplastic anemia (AA, myelodysplastic syndrome (MDS or paroxysmal nocturnal hemoglobinuria (PNH, cytotoxic T cell responses may be directed against certain antigens located on stem or more lineage-restricted progenitor cells in single lineage cytopenias. The nature of the antigenic targets driving polyclonal CTL responses remains unclear. Novel methods of TCR repertoire analysis, include VB flow cytometry, peptide-specific tetramer staining, in vitro stimulation assays and TCR CDR3-specific PCR. Such PCR assay can be either VB family-specific or multiplexed for all VB families. Amplified products can be characterized and quantitated to facilitate detection of the most immunodominant clonotypes. Such clonotypes may serve as markers for the global polyclonal T cell response. Identification of these clonotypes can be performed in blood and tissue biopsy material by various methods. Once immunodominant clonotypes corresponding to pathogenic CTL clones are identified they can serve as surrogate markers for the activity of the pathophysiologic process or even indicate the presence of specific

  10. Cloning and characterization of human RTVP-1b, a novel splice variant of RTVP-1 in glioma cells

    International Nuclear Information System (INIS)

    Xiang Cunli; Sarid, Ronit; Cazacu, Simona; Finniss, Susan; Lee, Hae-Kyung; Ziv-Av, Amotz; Mikkelsen, Tom; Brodie, Chaya

    2007-01-01

    Here, we report the cloning and characterization of RTVP-1b, a novel splice variant of human RTVP-1, which was isolated from the U87 glioma cell line. Sequence analysis revealed that RTVP-1b contains an additional 71 base exon between exons 2 and 3 that is missing in RTVP-1, leading to a frame-shift and a different putative protein. The deduced protein was 237 amino acids in length, sharing the N-terminal 141 amino acids with RTVP-1. RT-PCR analysis demonstrated that RTVP-1b was expressed in a wide range of tissues and that its expression was different from that of RTVP-1. In contrast, RTVP-1 and RTVP-1b showed similar patterns of expression in astrocytic tumors; highly expressed in glioblastomas as compared to normal brains, low-grade astrocytomas and anaplastic oligodendrogliomas. Overexpression of RTVP-1b increased glioma cell proliferation but did not affect cell migration. Our results suggest that RTVP-1b represents a potential prognostic marker and therapeutic target in gliomas

  11. Do endothelial cells belong to the primitive stem leukemic clone in CML? Role of extracellular vesicles.

    Science.gov (United States)

    Ramos, Teresa L; Sánchez-Abarca, Luis Ignacio; López-Ruano, Guillermo; Muntión, Sandra; Preciado, Silvia; Hernández-Ruano, Montserrat; Rosado, Belén; de las Heras, Natalia; Chillón, M Carmen; Hernández-Hernández, Ángel; González, Marcos; Sánchez-Guijo, Fermín; Del Cañizo, Consuelo

    2015-08-01

    The expression of BCR-ABL in hematopoietic stem cells is a well-defined primary event in chronic myeloid leukemia (CML). Some reports have described the presence of BCR-ABL on endothelial cells from CML patients, suggesting the origin of the disease in a primitive hemangioblastic cell. On the other hand, extracellular vesicles (EVs) released by CML leukemic cells are involved in the angiogenesis modulation process. In the current work we hypothesized that EVs released from BCR-ABL(+) cells may carry inside the oncogene that can be transferred to endothelial cells leading to the expression of both BCR-ABL transcript and the oncoprotein. EVs from K562 cells and plasma of newly diagnosed CML patients were isolated by ultracentrifugation. RT-PCR analysis detected the presence of BCR-ABL RNA in the EVs isolated from both K562 cells and plasma of CML patients. The incorporation of these EVs into endothelial cells was demonstrated by flow cytometry and fluorescence microscopy showed that after 24h of incubation most EVs were incorporated. BCR-ABL transcripts were detected in all experiments on endothelial cells incubated with EVs from both sources. The presence of BCR-ABL on endothelial cells incubated with Philadelphia(+) EVs was also confirmed by Western blot assays. In summary, endothelial cells acquire BCR-ABL RNA and the oncoprotein after incubation with EVs released from Ph(+) positive cells (either from K562 cells or from plasma of newly diagnosed CML patients). This results challenge the hypothesis that endothelial cells may be part of the Philadelphia(+) clone in CML. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Heterogeneity in cytokine profiles of Babesia bovis-specific bovine CD4+ T cells clones activated in vitro.

    OpenAIRE

    Brown, W C; Woods, V M; Dobbelaere, D A; Logan, K S

    1993-01-01

    The central role of T cells in the immune response against hemoprotozoan parasites, both as helper cells for T cell-dependent antibody production and as effector cells acting on intracellular parasites through the elaboration of cytokines, has prompted an investigation of the bovine cellular immune response against Babesia bovis antigens. CD4+ T helper (Th) cell clones generated from four B. bovis-immune cattle by in vitro stimulation with a soluble or membrane-associated merozoite antigen we...

  13. Detailed characterisation of STC-1 cells and the pGIP/Neo sub-clone suggests the incretin hormones are translationally regulated.

    Science.gov (United States)

    Gillespie, Anna L; Pan, Xiaobei; Marco-Ramell, Anna; Meharg, Caroline; Green, Brian D

    2017-10-01

    STC-1 is a heterogeneous plurihormonal cell line producing several prominent gut peptide hormones. pGIP/Neo is a genetically selected sub-clone of STC-1 with augmented levels of glucose-dependent insulinotropic peptide (GIP). Morphometric parameters, hormone concentrations, mRNA transcripts, hormone immunocytochemistry and nutrient utilisation/production of these two cell lines were compared. Proglucagon-derived peptides (Glucagon-like peptide-1 (GLP-1) and - 2(GLP-2)) were lower in sub-clone cells than progenitor cells. High Content Analysis found altered intracellular GLP-1, GIP, cholecystokinin (CCK) and peptide YY (PYY) levels and differing hormone co-localisation. The proportion pGIP/Neo cells containing GIP immunoreactivity (82%) was greater than STC-1 (65%), as were the proportion with 'GIP only', 'GLP-1+GIP' or 'GIP+PYY' immunoreactivity. Most surprisingly mRNA transcripts of the proglucagon and GIP genes were inversely correlated to the levels of their translated peptides. This strongly suggests that proglucagon and GIP are encoded on 'translationally regulated genes' - a characteristic possessed by other endocrine hormones. Metabolomic profiling revealed differences in cellular nutrient utilisation/production and that under normal culture conditions both cell lines exhibit signs of overflow metabolism. These studies provide an insight into the metabolism and properties of these valuable cells, suggesting for the first time that incretin hormone genes are translationally regulated. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis

    DEFF Research Database (Denmark)

    Roldan, A.L.; Cubellis, M.V.; Masucci, M.T.

    1990-01-01

    , and therefore the capacity of cells to migrate and invade neighboring tissues. We have isolated a 1.4 kb cDNA clone coding for the entire human uPAR. An oligonucleotide synthesized on the basis of the N-terminal sequence of the purified protein was used to screen a cDNA library made from SV40 transformed human......, a size very close to that of the cloned cDNA. Expression of the uPAR cDNA in mouse cells confirms that the clone is complete and expresses a functional uPA binding protein, located on the cell surface and with properties similar to the human uPAR. Caseinolytic plaque assay, immunofluorescence analysis......The surface receptor for urokinase plasminogen activator (uPAR) has been recognized in recent years as a key molecule in regulating plasminogen mediated extracellular proteolysis. Surface plasminogen activation controls the connections between cells, basement membrane and extracellular matrix...

  15. DNA-repair, cell killing and normal tissue damage

    International Nuclear Information System (INIS)

    Dahm-Daphi, J.; Dikomey, E.; Brammer, I.

    1998-01-01

    Background: Side effects of radiotherapy in normal tissue is determined by a variety of factors of which cellular and genetic contributions are described here. Material and methods: Review. Results: Normal tissue damage after irradiation is largely due to loss of cellular proliferative capacity. This can be due to mitotic cell death, apoptosis, or terminal differentiation. Dead or differentiated cells release cytokines which additionally modulate the tissue response. DNA damage, in particular non-reparable or misrepaired double-strand breaks are considered the basic lesion leading to G1-arrest and ultimately to cell inactivation. Conclusion: Evidence for genetic bases of normal tissue response, cell killing and DNA-repair capacity is presented. However, a direct link of all 3 endpoints has not yet been proved directly. (orig.) [de

  16. Determination of radioinduced delay in DNA synthesis in two-garlic-clones cells (Allium Sativum L.)

    International Nuclear Information System (INIS)

    Perez Lezcano, A.; Perez Talavera, S.

    1989-01-01

    To contribute to tech improvement of the use of ionizing radiations as an auxiliary tool in the fitoimprovement, dose-effect curves for the 'Martinez' and 'Sancti Spiritus-3' clones were stablished by using as effect the delay induced by radiations in DNA synthesis determined by the 'Martinez' clone which induces a delay of 50% in reference to the control is approximately 11 Gy, while the dose value for the 'Sancti Spiritus-3' clone is 18 Gy, thus the 'Martinez' clones has a higher sensitivity to radiations than the other clone, therefore it coincides with what we found for these clones other indexes are used as radiosensitivity criteria

  17. Somatic cell cloning in Buffalo (Bubalus bubalis): effects of interspecies cytoplasmic recipients and activation procedures.

    Science.gov (United States)

    Kitiyanant, Y; Saikhun, J; Chaisalee, B; White, K L; Pavasuthipaisit, K

    2001-01-01

    Successful nuclear transfer (NT) of somatic cell nuclei from various mammalian species to enucleated bovine oocytes provides a universal cytoplast for NT in endangered or extinct species. Buffalo fetal fibroblasts were isolated from a day 40 fetus and were synchronized in presumptive G(0) by serum deprivation. Buffalo and bovine oocytes from abattoir ovaries were matured in vitro and enucleated at 22 h. In the first experiment, we compared the ability of buffalo and bovine oocyte cytoplasm to support in vitro development of NT embryos produced by buffalo fetal fibroblasts as donor nuclei. There were no significant differences (p > 0.05) between the NT embryos derived from buffalo and bovine oocytes, in fusion (74% versus 71%) and cleavage (77% versus 75%) rates, respectively. No significant differences were also observed in blastocyst development (39% versus 33%) and the mean cell numbers of day 7 cloned blastocysts (88.5 +/- 25.7 versus 51.7 +/- 5.4). In the second experiment, we evaluated the effects of activation with calcium ionophore A23187 on development of NT embryos after electrical fusion. A significantly higher (p cloned buffalo blastocysts similar to those transferred into buffalo oocytes. Calcium ionophore used in conjunction with 6-DMAP effectively induces NT embryo development.

  18. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system.

    Science.gov (United States)

    Krebber, A; Bornhauser, S; Burmester, J; Honegger, A; Willuda, J; Bosshard, H R; Plückthun, A

    1997-02-14

    A prerequisite for the use of recombinant antibody technologies starting from hybridomas or immune repertoires is the reliable cloning of functional immunoglobulin genes. For this purpose, a standard phage display system was optimized for robustness, vector stability, tight control of scFv-delta geneIII expression, primer usage for PCR amplification of variable region genes, scFv assembly strategy and subsequent directional cloning using a single rare cutting restriction enzyme. This integrated cloning, screening and selection system allowed us to rapidly obtain antigen binding scFvs derived from spleen-cell repertoires of mice immunized with ampicillin as well as from all hybridoma cell lines tested to date. As representative examples, cloning of monoclonal antibodies against a his tag, leucine zippers, the tumor marker EGP-2 and the insecticide DDT is presented. Several hybridomas whose genes could not be cloned in previous experimental setups, but were successfully obtained with the present system, expressed high amounts of aberrant heavy and light chain mRNAs, which were amplified by PCR and greatly exceeded the amount of binding antibody sequences. These contaminating variable region genes were successfully eliminated by employing the optimized phage display system, thus avoiding time consuming sequencing of non-binding scFv genes. To maximize soluble expression of functional scFvs subsequent to cloning, a compatible vector series to simplify modification, detection, multimerization and rapid purification of recombinant antibody fragments was constructed.

  19. Normalization of cell responses in cat striate cortex

    Science.gov (United States)

    Heeger, D. J.

    1992-01-01

    Simple cells in the striate cortex have been depicted as half-wave-rectified linear operators. Complex cells have been depicted as energy mechanisms, constructed from the squared sum of the outputs of quadrature pairs of linear operators. However, the linear/energy model falls short of a complete explanation of striate cell responses. In this paper, a modified version of the linear/energy model is presented in which striate cells mutually inhibit one another, effectively normalizing their responses with respect to stimulus contrast. This paper reviews experimental measurements of striate cell responses, and shows that the new model explains a significantly larger body of physiological data.

  20. Human cloning. Fact or fiction

    International Nuclear Information System (INIS)

    Abushama, Mandy D.; Ahmed, Badreldeen I.

    2003-01-01

    Cloning is the production of one or more individual plants or animals that are genetically identical to other plant, animal or human. Scientists even demonstrated that they were able to clone frog tadpoles from frog embryonic cells using nuclear transfer.Many animals have been cloned from adult cells using nuclear transfer. Somatic cell nuclear transfer which refers to the transfer of the nucleous from a somatic cell to an egg cell. Article further deals with benefits and misuses of human cloning

  1. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Shin-Ichi, E-mail: shayashi@med.tottori-u.ac.jp [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan); Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan); Yasuda, Hisataka [Planning and Development, Bioindustry Division, Oriental Yeast Co., Ltd, Itabashi-Ku, Tokyo 174-8505 (Japan); Yoshino, Miya [Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, 86 Nishi-Cho, Yonago, Tottori 683-8503 (Japan)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer The frequency of C7 differentiation into osteoclast was low and constant. Black-Right-Pointing-Pointer Only extended C7 cell cultures exponentially increased osteoclast+ cultures. Black-Right-Pointing-Pointer C7 cell differentiation into committed osteoclast precursors is on 'autopilot'. Black-Right-Pointing-Pointer The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor {kappa}B ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on 'autopilot' rather than requiring specific signals to drive this process.

  2. Stochastic differentiation into an osteoclast lineage from cloned macrophage-like cells

    International Nuclear Information System (INIS)

    Hayashi, Shin-Ichi; Murata, Akihiko; Okuyama, Kazuki; Shimoda, Yuhki; Hikosaka, Mari; Yasuda, Hisataka; Yoshino, Miya

    2012-01-01

    Highlights: ► The frequency of C7 differentiation into osteoclast was low and constant. ► Only extended C7 cell cultures exponentially increased osteoclast+ cultures. ► C7 cell differentiation into committed osteoclast precursors is on ‘autopilot’. ► The system may maintain the stem cell self-renewal and differentiation. -- Abstract: Differentiation into osteoclasts is induced by a macrophage colony-stimulating factor and receptor activator of nuclear-factor κB ligand. The macrophage-like cell line, C7 has the potential to differentiate into osteoclasts when it is cultured with both factors for 6 days. Although C7 is an established cell line, the frequency of differentiation into this lineage was less than 10%, and the ratio was maintained at a constant level, even after repeated cloning. In this study, to increase the differentiation of C7 cells to osteoclasts, C7 derivative treatments with several activators and/or inhibitors were performed for 3 days prior to setting osteoclast induction analysis; however, a reagent to significantly up-regulate the frequency of differentiation was not found. Only extended cultures for osteoclastogenesis exponentially increased the frequency of osteoclast precursors. It is likely that C7 cell differentiation into committed osteoclast precursors is on ‘autopilot’ rather than requiring specific signals to drive this process.

  3. The production of lymphokines by primary alloreactive T-cell clones: a co-ordinate analysis of 233 clones in seven lymphokine assays.

    Science.gov (United States)

    Sanderson, C J; Strath, M; Warren, D J; O'Garra, A; Kirkwood, T B

    1985-01-01

    A total of 233 primary alloreactive T-cell clones have been tested for the production of interleukin-2 (IL-2), interleukin-3 (IL-3), immune(gamma) interferon (IFN) and granulocyte-macrophage colony-stimulating factor (CSF-2), B-cell growth factor I and II (BCGFI, BCGFII), and eosinophil differentiation factor (EDF). EDF was assayed by means of the eosinophil differentiation assay (EDA). Two principal correlations were observed: IL-3 was shown to be the major lymphokine detected in the bone marrow proliferation assay (BMPA) used to detect CSF-2, and there was a high correlation between the EDA and BCGFII. Subsequent work has suggested that this latter correlation is because a single factor is responsible for both activities. Apart from these two exceptions, and low level correlations probably due to the fact that different assays detect more than one lymphokine, there was no evidence for co-ordinate expression of lymphokines. There was a large variation in amounts of individual lymphokines produced. More clones produced multiple lymphokines than would be expected from independent control. Taken together, this pattern of regulation is consistent with the hypothesis that antigen stimulation of T cells results in the activation of all the lymphokine genes, but the amount of each produced is determined by secondary controlling mechanisms. PMID:3935571

  4. Three concepts of cloning in human beings.

    Science.gov (United States)

    Cui, Ke-Hui

    2005-07-01

    Human cloning, organ cloning and tissue cloning are various types of cloning that occur at different levels with different methodologies. According to three standards of terminology for an embryo (fertilization through germ cells, development in the uterus and having the potential to produce a human life), tissue cloning and type I organ cloning will not produce an embryo. In contrast, human cloning and type II organ cloning will produce an embryo. Thus, only non-germinal tissue cloning and type I organ cloning are beyond the ethical question and will not change human beings as a species. Using cloned tissues to make new tissues or organs is promising for the future of medicine.

  5. Human Cloning

    Science.gov (United States)

    2006-07-20

    Human Fertilization and Embryology Authority (HFEA). A team of scientists headed by Alison Murdoch at the University of Newcastle received permission...not yet reported success in isolating stem cells from a cloned human embryo. A research team headed by Ian Wilmut at the University of Edinburgh...research group, headed by Douglas Melton and Kevin Eggan, submitted their proposal to a Harvard committee composed of ethicists, scientists and public

  6. ddClone: joint statistical inference of clonal populations from single cell and bulk tumour sequencing data.

    Science.gov (United States)

    Salehi, Sohrab; Steif, Adi; Roth, Andrew; Aparicio, Samuel; Bouchard-Côté, Alexandre; Shah, Sohrab P

    2017-03-01

    Next-generation sequencing (NGS) of bulk tumour tissue can identify constituent cell populations in cancers and measure their abundance. This requires computational deconvolution of allelic counts from somatic mutations, which may be incapable of fully resolving the underlying population structure. Single cell sequencing (SCS) is a more direct method, although its replacement of NGS is impeded by technical noise and sampling limitations. We propose ddClone, which analytically integrates NGS and SCS data, leveraging their complementary attributes through joint statistical inference. We show on real and simulated datasets that ddClone produces more accurate results than can be achieved by either method alone.

  7. Radiosensitivity of normal human epidermal cells in culture

    International Nuclear Information System (INIS)

    Dover, R.; Potten, C.S.

    1983-01-01

    Using an in vitro culture system the authors have derived #betta#-radiation survival curves over a dose range 0-8 Gy for the clonogenic cells of normal human epidermis. The culture system used allows the epidermal cells to stratify and form a multi-layered sheet of keratinizing cells. The cultures appear to be a very good model for epidermis in vivo. The survival curves show a population which is apparently more sensitive than murine epidermis in vivo. It remains unclear whether this is an intrinsic difference between the species or is a consequence of the in vitro cultivation of the human cells. (author)

  8. Cloning of B cell-specific membrane tetraspanning molecule BTS possessing B cell proliferation-inhibitory function.

    Science.gov (United States)

    Suenaga, Tadahiro; Arase, Hisashi; Yamasaki, Sho; Kohno, Masayuki; Yokosuka, Tadashi; Takeuchi, Arata; Hattori, Takamichi; Saito, Takashi

    2007-11-01

    Lymphocyte proliferation is regulated by signals through antigen receptors, co-stimulatory receptors, and other positive and negative modulators. Several membrane tetraspanning molecules are also involved in the regulation of lymphocyte growth and death. We cloned a new B cell-specific tetraspanning (BTS) membrane molecule, which is similar to CD20 in terms of expression, structure and function. BTS is specifically expressed in the B cell line and its expression is increased after the pre-B cell stage. BTS is expressed in intracellular granules and on the cell surface. Overexpression of BTS in immature B cell lines induces growth retardation through inhibition of cell cycle progression and cell size increase without inducing apoptosis. This inhibitory function is mediated predominantly by the N terminus of BTS. The development of mature B cells is inhibited in transgenic mice expressing BTS, suggesting that BTS is involved in the in vivo regulation of B cells. These results indicate that BTS plays a role in the regulation of cell division and B cell growth.

  9. Cloning Mice.

    Science.gov (United States)

    Ogura, Atsuo

    2017-08-01

    Viable and fertile mice can be generated by somatic nuclear transfer into enucleated oocytes, presumably because the transplanted somatic cell genome becomes reprogrammed by factors in the oocyte. The first somatic cloned offspring of mice were obtained by directly injecting donor nuclei into recipient enucleated oocytes. When this method is used (the so-called Honolulu method of somatic cell nuclear transfer [SCNT]), the donor nuclei readily and completely condense within the enucleated metaphase II-arrested oocytes, which contain high levels of M-phase-promoting factor (MPF). It is believed that the condensation of the donor chromosomes promotes complete reprogramming of the donor genome within the mouse oocytes. Another key to the success of mouse cloning is the use of blunt micropipettes attached to a piezo impact-driving micromanipulation device. This system saves a significant amount of time during the micromanipulation of oocytes and thus minimizes the loss of oocyte viability in vitro. For example, a group of 20 oocytes can be enucleated within 10 min by an experienced operator. This protocol is composed of seven parts: (1) preparing micropipettes, (2) setting up the enucleation and injection micropipettes, (3) collecting and enucleating oocytes, (4) preparing nucleus donor cells, (5) injecting donor nuclei, (6) activating embryos and culturing, and (7) transferring cloned embryos. © 2017 Cold Spring Harbor Laboratory Press.

  10. Hand-made cloned goat (Capra hircus) embryos—a comparison of different donor cells and culture systems.

    Science.gov (United States)

    Akshey, Yogesh S; Malakar, Dhruba; De, Arun K; Jena, Manoj K; Garg, Shweta; Dutta, Rahul; Pawar, Sachin Kumar; Mukesh, Manisha

    2010-10-01

    Nuclear transfer is a very effective method for propagation of valuable, extinct, and endangered animals. Hand-made cloning (HMC) is an efficient alternative to the conventional micromanipulator-based technique in some domestic species. The present study was carried out for the selection of suitable somatic cells as a nuclear donor and development of an optimum culture system for in vitro culture of zona-free goat cloned embryos. Cleavage and blastocyst rates were observed 72.06 ± 2.94% and 0% for fresh cumulus cells, 81.95 ± 3.40% and 12.74 ± 2.12% for cultured cumulus cells, and 92.94 ± 0.91% and 23.78 ± 3.33% for fetal fibroblast cells, respectively. There was a significant (p cloned embryos and donor cells. In conclusion, the present study describes that the fetal fibroblast cell is a suitable candidate as nuclear donor, and the flat surface culture system is suitable for zona-free blastocyst development by the hand-made cloning technique in the goat.

  11. Cloning and regulation of rat tissue inhibitor of metalloproteinases-2 in osteoblastic cells

    Science.gov (United States)

    Cook, T. F.; Burke, J. S.; Bergman, K. D.; Quinn, C. O.; Jeffrey, J. J.; Partridge, N. C.

    1994-01-01

    Rat tissue inhibitor of metalloproteinases-2 (TIMP-2) was cloned from a UMR 106-01 rat osteoblastic osteosarcoma cDNA library. The 969-bp full-length clone demonstrates 98 and 86% sequence identity to human TIMP-2 at the amino acid and nucleic acid levels, respectively. Parathyroid hormone (PTH), at 10(-8) M, stimulates an approximately twofold increase in both the 4.2- and 1.0-kb transcripts over basal levels in UMR cells after 24 h of exposure. The PTH stimulation of TIMP-2 transcripts was not affected by the inhibitor of protein synthesis, cycloheximide (10(-5) M), suggesting a primary effect of the hormone. This is in contradistinction to regulation of interstitial collagenase (matrix metalloproteinase-1) by PTH in these same cells. Nuclear run-on assays demonstrate that PTH causes an increase in TIMP-2 transcription that parallels the increase in message levels. Parathyroid hormone, in its stimulation of TIMP-2 mRNA, appears to act through a signal transduction pathway involving protein kinase A (PKA) since the increase in TIMP-2 mRNA is reproduced by treatment with the cAMP analogue, 8-bromo-cAMP (5 x 10(-3) M). The protein kinase C and calcium pathways do not appear to be involved due to the lack of effect of phorbol 12-myristate 13-acetate (2.6 x 10(-6) M) and the calcium ionophore, ionomycin (10(-7) M), on TIMP-2 transcript abundance. In this respect, regulation of TIMP-2 and collagenase in osteoblastic cells by PTH are similar. However, we conclude that since stimulation of TIMP-2 transcription is a primary event, the PKA pathway must be responsible for a direct increase in transcription of this gene.

  12. Disease-causing mitochondrial heteroplasmy segregated within induced pluripotent stem cell clones derived from a patient with MELAS.

    Science.gov (United States)

    Folmes, Clifford D L; Martinez-Fernandez, Almudena; Perales-Clemente, Ester; Li, Xing; McDonald, Amber; Oglesbee, Devin; Hrstka, Sybil C; Perez-Terzic, Carmen; Terzic, Andre; Nelson, Timothy J

    2013-07-01

    Mitochondrial diseases display pathological phenotypes according to the mixture of mutant versus wild-type mitochondrial DNA (mtDNA), known as heteroplasmy. We herein examined the impact of nuclear reprogramming and clonal isolation of induced pluripotent stem cells (iPSC) on mitochondrial heteroplasmy. Patient-derived dermal fibroblasts with a prototypical mitochondrial deficiency diagnosed as mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) demonstrated mitochondrial dysfunction with reduced oxidative reserve due to heteroplasmy at position G13513A in the ND5 subunit of complex I. Bioengineered iPSC clones acquired pluripotency with multilineage differentiation capacity and demonstrated reduction in mitochondrial density and oxygen consumption distinguishing them from the somatic source. Consistent with the cellular mosaicism of the original patient-derived fibroblasts, the MELAS-iPSC clones contained a similar range of mtDNA heteroplasmy of the disease-causing mutation with identical profiles in the remaining mtDNA. High-heteroplasmy iPSC clones were used to demonstrate that extended stem cell passaging was sufficient to purge mutant mtDNA, resulting in isogenic iPSC subclones with various degrees of disease-causing genotypes. On comparative differentiation of iPSC clones, improved cardiogenic yield was associated with iPSC clones containing lower heteroplasmy compared with isogenic clones with high heteroplasmy. Thus, mtDNA heteroplasmic segregation within patient-derived stem cell lines enables direct comparison of genotype/phenotype relationships in progenitor cells and lineage-restricted progeny, and indicates that cell fate decisions are regulated as a function of mtDNA mutation load. The novel nuclear reprogramming-based model system introduces a disease-in-a-dish tool to examine the impact of mutant genotypes for MELAS patients in bioengineered tissues and a cellular probe for molecular features of individual

  13. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse

    International Nuclear Information System (INIS)

    Morgan, J.E.; Hoffman, E.P.; Partridge, T.A.

    1990-01-01

    Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc). However, it is difficult to determine whether this biochemical rescue results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration. By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily. Here, we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle

  14. Analysis of the factors in determining radiosensitivity in mammalian cells by using radio-sensitive and -resistant clones isolated from HeLa S3 cells in vitro

    International Nuclear Information System (INIS)

    Nikaido, Osamu; Horikawa, Masakatsu

    1976-01-01

    The factors in determining radiosensitivity of cultured mammalian cells were analysed by using two clones each having different radiosensitivities. The radiosensitive clones were isolated from HeLa S3 cells by the N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-treatment, X-irradiation (200 R) and 5-bromodeoxyuridine (BUdR)-visible light method. On the other hand, the radioresistant clone was isolated by single X-irradiation (2000 R) from MNNG-treated HeLa S3 cell population. The radiosensitivities expressed in D sub(o) and D sub(q) values were 110 and 140 R in radiosensitive SM-1a clone and 180 and 230 R in radioresistant RM-1b clone respectively. The biological and biochemical characteristics of both clones such as the distribution of chromosome numbers, formation and rejoining of single strand breaks in DNA caused by X-irradiation, non-protein sulfhydryl (NPSH) and apparent total sulfhydryl (APSH) contents were measured. Among the characteristics analysed, different contents of NPSH in the cell were well correlated to their daiosensitivities among the original HeLa S3 cells, SM-1a and RM-1b clone. Additionally, it was found that the radioresistant L.P3 Co-3 cells isolated by Tsuboi et al. from the original mouse L.P3 cells by means of serial irradiation with 60 Co γ-rays have more abundant NPSH than the original L.P3 cells. From these results, it can be concluded that the amount of NPSH play the main role in determining radiosensitivity in cultured mammalian cells. (auth.)

  15. Molecular cloning and expression in mammalian cells of ricin B chain

    International Nuclear Information System (INIS)

    Chang, M.

    1987-01-01

    In these studies, the cDNA encoding the B chain of ricin has been cloned and expressed in monkey kidney COS-M6 cells. The recombinant B chain was detected by labeling the transfected cells with 35 S-methionine and 35 S-cysteine and demonstrating secretion of a protein with a Mr of 30-32,000 which was not present in the medium of mock-transfected COS-M6 cells. This protein was specifically immunoprecipitated by an anti-ricin or anti-B chain antibody. The amount of recombinant B chain secreted by the COS-M6 cells was determined by radioimmunoassay to be 1-10 ng/ml of media. Virtually all the recombinant B chain formed active ricin when mixed with native A chain; it could also bind as effectively as native B chain to the galactose-containing glycoprotein, asialofetuin. These results indicate that the vast majority of recombinant B chains secreted into the medium of the COS-M6 cells retain biological function

  16. Difference in membrane repair capacity between cancer cell lines and a normal cell line

    DEFF Research Database (Denmark)

    Frandsen, Stine Krog; McNeil, Anna K.; Novak, Ivana

    2016-01-01

    repair was investigated by disrupting the plasma membrane using laser followed by monitoring fluorescent dye entry over time in seven cancer cell lines, an immortalized cell line, and a normal primary cell line. The kinetics of repair in living cells can be directly recorded using this technique...... cancer cell lines (p immortalized cell line (p

  17. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  18. Cell survival of human tumor cells compared with normal fibroblasts following 60Co gamma irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Henning, C.B.; Reynolds, S.D.; Holmblad, G.L.; Trier, J.E.

    1982-01-01

    Three tumor cell lines, two of which were shown to be HeLa cells, were irradiated with 60 Co gamma irradiation, together with two cell cultures of normal human diploid fibroblasts. Cell survival was studied in three different experiments over a dose range of 2 to 14 gray. All the tumor cell lines showed a very wide shoulder in the dose response curves in contrast to the extremely narrow shoulder of the normal fibroblasts. In addition, the D/sub o/ values for the tumor cell lines were somewhat greater. These two characteristics of the dose response curves resulted in up to 2 orders of magnitude less sensitivity for cell inactivation of HeLa cells when compared with normal cells at high doses (10 gray). Because of these large differences, the extrapolation of results from the irradiation of HeLa cells concerning the mechanisms of normal cell killing should be interpreted with great caution

  19. Specific Schistosoma mansoni rat T cell clones. I. Generation and functional analysis in vitro and in vivo.

    Science.gov (United States)

    Pestel, J; Dissous, C; Dessaint, J P; Louis, J; Engers, H; Capron, A

    1985-06-01

    In an attempt to determine the role of schistosome-specific T cells in the immune mechanisms developed during schistosomiasis, Schistosoma mansoni-specific T cells and clones were generated in vitro and some of their functions analyzed in vitro and in vivo in the fischer rat model. The data presented here can be summarized as follows: a) Lymph node cells (LNC) from rats primed with the excretory/secretory antigens-incubation products (IPSm) of adult worms proliferate in vitro only in response to the homologous schistosome antigens and not to unrelated antigens (Ag) such as ovalbumin (OVA) or Dipetalonema viteae and Fasciola hepatica parasite extracts. b) After in vitro restimulation of the primed LNC population with IPSm in the presence of antigen-presenting cells (APC) and maintenance in IL 2-containing medium, the frequency of IPSm-specific T cells is increased and the T cells can be restimulated only in the presence of APC possessing the same major histocompatibility complex (MHC) antigens. c) Following appropriate limiting dilution assays (LDA) (1 cell/well), 10 IPSm-specific T cell clones were obtained, and two of four maintained in culture were tested for their helper activity because they expressed only the W3/13+ W3/25+ surface phenotypes. d) The two highly proliferating IPSm-specific T cell clones (G5 and E23) exhibit an IPSm-dependent helper activity, as shown by the increase in IgG production by IPSm-primed B cells. e) IPSm-T cell clone (G5) as well as IPSm-T cell lines when injected in S. mansoni-infested rats can exert an in vivo helper activity, which is characterized by an accelerated production of IgG antibodies specific for the previously identified 30 to 40 kilodaltons (kd) schistosomula surface antigens (Ag). As recent studies have demonstrated that rat monoclonal antibodies recognize some incubation products of adult S. mansoni as well as one of the 30 to 40 kd schistosomula surface antigens, and taking into account the fact that the T cell

  20. [Analysis on clone in vitro and tumorigenic capacity in vivo of different subsets cells from the MCF-7 human breast cancer cell line].

    Science.gov (United States)

    Li, Zhi; Liu, Chun-ping; He, Yan-li; Tian, Yuan; Huang, Tao

    2008-07-01

    To investigate whether there are cancer stem cells in the MCF-7 human breast cancer cell line. Flow cytometry was applied to separate different subpopulation cells from MCF-7 cells, and their ability of clone in vitro and reconstruction tumor in vivo were determined. The ability of clone in vitro and reconstruction tumor in vivo were observed in some MCF-7 cells. Contrast with CD44+ CD24+ cells, the proportion of tumorigenic cancer cells in CD44+ CD24- cells is higher. Breast cancer stem cell exists in MCF-7 and it mainly locates the subpopulation of CD44+ CD24- cells, CD44+ CD24+ cell possibly is breast cancer progenitor cell.

  1. An alternative method for cDNA cloning from surrogate eukaryotic cells transfected with the corresponding genomic DNA.

    Science.gov (United States)

    Hu, Lin-Yong; Cui, Chen-Chen; Song, Yu-Jie; Wang, Xiang-Guo; Jin, Ya-Ping; Wang, Ai-Hua; Zhang, Yong

    2012-07-01

    cDNA is widely used in gene function elucidation and/or transgenics research but often suitable tissues or cells from which to isolate mRNA for reverse transcription are unavailable. Here, an alternative method for cDNA cloning is described and tested by cloning the cDNA of human LALBA (human alpha-lactalbumin) from genomic DNA. First, genomic DNA containing all of the coding exons was cloned from human peripheral blood and inserted into a eukaryotic expression vector. Next, by delivering the plasmids into either 293T or fibroblast cells, surrogate cells were constructed. Finally, the total RNA was extracted from the surrogate cells and cDNA was obtained by RT-PCR. The human LALBA cDNA that was obtained was compared with the corresponding mRNA published in GenBank. The comparison showed that the two sequences were identical. The novel method for cDNA cloning from surrogate eukaryotic cells described here uses well-established techniques that are feasible and simple to use. We anticipate that this alternative method will have widespread applications.

  2. Differential responses to radiation and hyperthermia of cloned cell lines derived from a single human melanoma xenograft

    International Nuclear Information System (INIS)

    Rofstad, E.K.; Brustad, T.

    1984-01-01

    One uncloned and five cloned cell lines were derived from a single human melanoma xenograft. Cells from passages 7-12 were exposed to either radiation or hyperthermia (42.5 0 C, pH = 7.4) under aerobic conditions and the colony forming ability of the cells was assayed in soft agar. The five cloned lines showed individual and characteristic responses to radiation as well as to hyperthermia. The variation in the response to radiation was mainly reflected in the size of the shoulders of the survival curves rather than in the D 0 -values. The variation in the response to hyperthermia was mainly reflected in the terminal slopes of the survival curves. The survival curve of cells from the uncloned line, both when exposed to radiation and hyperthermia, was positioned in the midst of those of the cloned lines. The response of the cloned lines to radiation did not correlate with the response to hyperthermia, indicating that tumor cell subpopulations which are resistant to radiation may respond well to hyperthermia

  3. Human papilloma virus DNAs immortalize normal human mammary epithelial cells and reduce their growth factor requirements

    International Nuclear Information System (INIS)

    Band, V.; Zajchowski, D.; Kulesa, V.; Sager, R.

    1990-01-01

    Human papilloma virus (HPV) types 16 and 18 are most commonly associated with cervical carcinoma in patients and induce immortalization of human keratinocytes in culture. HPV has not been associated with breast cancer. This report describes the immortalization of normal human mammary epithelial cells (76N) by plasmid pHPV18 or pHPV16, each containing the linearized viral genome. Transfectants were grown continuously for more than 60 passages, whereas 76N cells senesce after 18-20 passages. The transfectants also differ from 76N cells in cloning in a completely defined medium called D2 and growing a minimally supplemented defined medium (D3) containing epidermal growth factor. All transfectant tested contain integrated HPV DNA, express HPV RNA, and produce HPV E7 protein. HPV transfectants do not form tumors in a nude mouse assay. It is concluded that products of the HPV genome induce immortalization of human breast epithelial cells and reduce their growth factor requirements. This result raises the possibility that HPV might be involved in breast cancer. Furthermore, other tissue-specific primary epithelial cells that are presently difficult to grown and investigate may also be immortalized by HPV

  4. Transcript levels of several epigenome regulatory genes in bovine somatic donor cells are not correlated with their cloning efficiency.

    Science.gov (United States)

    Zhou, Wenli; Sadeghieh, Sanaz; Abruzzese, Ronald; Uppada, Subhadra; Meredith, Justin; Ohlrichs, Charletta; Broek, Diane; Polejaeva, Irina

    2009-09-01

    Among many factors that potentially affect somatic cell nuclear transfer (SCNT) embryo development is the donor cell itself. Cloning potentials of somatic donor cells vary greatly, possibly because the cells have different capacities to be reprogrammed by ooplasma. It is therefore intriguing to identify factors that regulate the reprogrammability of somatic donor cells. Gene expression analysis is a widely used tool to investigate underlying mechanisms of various phenotypes. In this study, we conducted a retrospective analysis investigating whether donor cell lines with distinct cloning efficiencies express different levels of genes involved in epigenetic reprogramming including histone deacetylase-1 (HDAC1), -2 (HDAC2); DNA methyltransferase-1 (DNMT1), -3a (DNMT3a),-3b (DNMT3b), and the bovine homolog of yeast sucrose nonfermenting-2 (SNF2L), a SWI/SNF family of ATPases. Cell samples from 12 bovine donor cell lines were collected at the time of nuclear transfer experiments and expression levels of the genes were measured using quantitative polymerase chain reaction (PCR). Our results show that there are no significant differences in expression levels of these genes between donor cell lines of high and low cloning efficiency defined as live calving rates, although inverse correlations are observed between in vitro embryo developmental rates and expression levels of HDAC2 and SNF2L. We also show that selection of stable reference genes is important for relative quantification, and different batches of cells can have different gene expression patterns. In summary, we demonstrate that expression levels of these epigenome regulatory genes in bovine donor cells are not correlated with cloning potential. The experimental design and data analysis method reported here can be applied to study any genes expressed in donor cells.

  5. Duchenne muscular dystrophy: normal ATP turnover in cultured cells

    International Nuclear Information System (INIS)

    Fox, I.H.; Bertorini, T.; Palmieri, G.M.A.; Shefner, R.

    1986-01-01

    This paper examines ATP metabolism in cultured muscle cells and fibroblasts from patients with Duchenne dystrophy. ATP and ADP levels were the same in cultured cells from normal subjects and patients and there was no difference in ATP synthesis or degradation. The ATP synthesis was measured by the incorporation of C 14-U-adenine into aTP and ADP. although there was a significant decrease in radioactively labelled ATP after incubation with deoxyglucose in Duchenne muscle cells, there was no difference in ATP concentration of ADP metabolism

  6. An allospecific murine T helper clone which can help both T and B cell responses in vitro and in vivo

    DEFF Research Database (Denmark)

    Crispe, I N; Gascoigne, N R; Owens, T

    1984-01-01

    . Here we describe an in vitro and in vivo study of this problem, using a Th clone, designated MTH-1. The clone carries the cell surface markers Thy-1 and L3T4a, but lacks Lyt-2. It recognizes a minor alloantigen shared by DBA/2, B10.D2 and NZB spleen cells, and such recognition is restricted by H-2Ed...... in the polyclonal activation and maturation of the B cells to secrete immunoglobulin; also, antigen-primed B cells are augmented in their in vivo synthesis of specific antibody to the Thy-1 X 1 alloantigen by around 10(5) MTH-1 cells. Taken together, these results suggest a single Th clone can help both B cells......Both B lymphocytes and cytotoxic T lymphocytes respond to signals from the T helper (Th) compartment, and such signals are mediated by a number of biochemically distinct factors. This raises the question whether help for B cells and T cells is a function of one or several different kinds of Th cell...

  7. The Glycome of Normal and Malignant Plasma Cells

    Science.gov (United States)

    Hose, Dirk; Andrulis, Mindaugas; Moreaux, Jèrôme; Hielscher, Thomas; Willhauck-Fleckenstein, Martina; Merling, Anette; Bertsch, Uta; Jauch, Anna; Goldschmidt, Hartmut; Klein, Bernard; Schwartz-Albiez, Reinhard

    2013-01-01

    The glycome, i.e. the cellular repertoire of glycan structures, contributes to important functions such as adhesion and intercellular communication. Enzymes regulating cellular glycosylation processes are related to the pathogenesis of cancer including multiple myeloma. Here we analyze the transcriptional differences in the glycome of normal (n = 10) and two cohorts of 332 and 345 malignant plasma-cell samples, association with known multiple myeloma subentities as defined by presence of chromosomal aberrations, potential therapeutic targets, and its prognostic impact. We found i) malignant vs. normal plasma cells to show a characteristic glycome-signature. They can ii) be delineated by a lasso-based predictor from normal plasma cells based on this signature. iii) Cytogenetic aberrations lead to distinct glycan-gene expression patterns for t(11;14), t(4;14), hyperdiploidy, 1q21-gain and deletion of 13q14. iv) A 38-gene glycome-signature significantly delineates patients with adverse survival in two independent cohorts of 545 patients treated with high-dose melphalan and autologous stem cell transplantation. v) As single gene, expression of the phosphatidyl-inositol-glycan protein M as part of the targetable glycosyl-phosphatidyl-inositol-anchor-biosynthesis pathway is associated with adverse survival. The prognostically relevant glycome deviation in malignant cells invites novel strategies of therapy for multiple myeloma. PMID:24386263

  8. The glycome of normal and malignant plasma cells.

    Directory of Open Access Journals (Sweden)

    Thomas M Moehler

    Full Text Available The glycome, i.e. the cellular repertoire of glycan structures, contributes to important functions such as adhesion and intercellular communication. Enzymes regulating cellular glycosylation processes are related to the pathogenesis of cancer including multiple myeloma. Here we analyze the transcriptional differences in the glycome of normal (n = 10 and two cohorts of 332 and 345 malignant plasma-cell samples, association with known multiple myeloma subentities as defined by presence of chromosomal aberrations, potential therapeutic targets, and its prognostic impact. We found i malignant vs. normal plasma cells to show a characteristic glycome-signature. They can ii be delineated by a lasso-based predictor from normal plasma cells based on this signature. iii Cytogenetic aberrations lead to distinct glycan-gene expression patterns for t(11;14, t(4;14, hyperdiploidy, 1q21-gain and deletion of 13q14. iv A 38-gene glycome-signature significantly delineates patients with adverse survival in two independent cohorts of 545 patients treated with high-dose melphalan and autologous stem cell transplantation. v As single gene, expression of the phosphatidyl-inositol-glycan protein M as part of the targetable glycosyl-phosphatidyl-inositol-anchor-biosynthesis pathway is associated with adverse survival. The prognostically relevant glycome deviation in malignant cells invites novel strategies of therapy for multiple myeloma.

  9. Olfactory granule cell development in normal and hyperthyroid rats.

    Science.gov (United States)

    Brunjes, P C; Schwark, H D; Greenough, W T

    1982-10-01

    Dendritic development was examined in olfactory bulbs of both normal 7-, 14-, 21- and 60-day-old rats and littermates treated on postnatal days 1-4 with 1 microgram/g body weight of L-thyroxine sodium. Tissue was processed via the Golgi-Cox technique and subjected to quantitative analyses of mitral and internal layer granule cell development. These populations of granule cells were selected because their pattern of late proliferation suggested potentially greater susceptibility to postnatal hormonal alterations. Although neonatal hyperthyroidism induces widespread acceleration of maturation, including precocious chemosensitivity, granule cell development was unaffected relative to littermate controls. Both normal and hyperthyroid groups exhibited an inverted U-shaped pattern of cellular development, with rapid dendritic dendritic growth and expansion occurring during the earliest ages tested, but with loss of processes and dendritic field size occurring after day 21.

  10. Corneal endothelial cell density and morphology in normal Iranian eyes

    Directory of Open Access Journals (Sweden)

    Fallah Mohammad

    2006-03-01

    Full Text Available Abstract Background We describe corneal endothelial cell density and morphology in normal Iranian eyes and compare endothelial cell characteristics in the Iranian population with data available in the literature for American and Indian populations. Methods Specular microscopy was performed in 525 eyes of normal Iranian people aged 20 to 85 years old. The studied parameters including mean endothelial cell density (MCD, mean cell area (MCA and coefficient of variation (CV in cell area were analyzed in all of the 525 eyes. Results MCD was 1961 ± 457 cell/mm2 and MCA was 537.0 ± 137.4 μm2. There was no statistically significant difference in MCD, MCA and CV between genders (Student t-test, P = 0.85, P = 0.97 and P = 0.15 respectively. There was a statistically significant decrease in MCD with age (P r = -0.64. The rate of cell loss was 0.6% per year. There was also a statistically significant increase in MCA (P r = 0.56 and CV (P r = 0.30 from 20 to 85 years of age. Conclusion The first normative data for the endothelium of Iranian eyes seems to confirm that there are no differences in MCD, MCA and CV between genders. Nevertheless, the values obtained in Iranian eyes seem to be different to those reported by the literature in Indian and American populations.

  11. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  12. Molecular cloning of L-methylmalonyl-CoA mutase: Gene transfer and analysis of mut cell lines

    International Nuclear Information System (INIS)

    Ledley, F.D.; Lumetta, M.; Nguyen, P.N.; Kolhouse, J.F.; Allen, R.H.

    1988-01-01

    L-Methylmalonyl-CoA mutase (MCM, EC 5.4.99.2) is a mitochondrial adenosylcobalamin-requiring enzyme that catalyzes the isomerization of L-methylmalonyl-CoA to succinyl-CoA. This enzyme is deficient in methylmalonic acidemia, an often fatal disorder of organic acid metabolism. Antibody against human placental MCM was used to screen human placenta and liver cDNA expression libraries for MCM cDNA clones. One clone expressed epitopes that could affinity-purify antibodies against MCM. A cDNA corresponding in length to the mRNA was obtained and introduced into COS cells by DNA-mediated gene transfer. Cells transformed with this clone expressed increased levels of MCM enzymatic activity. RNA blot analysis of cells genetically deficient in MCM indicates that several deficient cell lines have a specific decrease in the amount of hybridizable mRNA. These data confirm the authenticity of the MCM cDNA clone, establish the feasibility of constituting MCM activity by gene transfer for biochemical analysis and gene therapy, and provide a preliminary picture of the genotypic spectrum underlying MCM deficiency

  13. RF Breakdown in Normal Conducting Single-cell Structures

    CERN Document Server

    Dolgashev, Valery A; Higo, Toshiyasu; Nantista, Christopher D; Tantawi, Sami G

    2005-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials an...

  14. Genetic subclone architecture of tumor clone-initiating cells in colorectal cancer.

    Science.gov (United States)

    Giessler, Klara M; Kleinheinz, Kortine; Huebschmann, Daniel; Balasubramanian, Gnana Prakash; Dubash, Taronish D; Dieter, Sebastian M; Siegl, Christine; Herbst, Friederike; Weber, Sarah; Hoffmann, Christopher M; Fronza, Raffaele; Buchhalter, Ivo; Paramasivam, Nagarajan; Eils, Roland; Schmidt, Manfred; von Kalle, Christof; Schneider, Martin; Ulrich, Alexis; Scholl, Claudia; Fröhling, Stefan; Weichert, Wilko; Brors, Benedikt; Schlesner, Matthias; Ball, Claudia R; Glimm, Hanno

    2017-07-03

    A hierarchically organized cell compartment drives colorectal cancer (CRC) progression. Genetic barcoding allows monitoring of the clonal output of tumorigenic cells without prospective isolation. In this study, we asked whether tumor clone-initiating cells (TcICs) were genetically heterogeneous and whether differences in self-renewal and activation reflected differential kinetics among individual subclones or functional hierarchies within subclones. Monitoring genomic subclone kinetics in three patient tumors and corresponding serial xenografts and spheroids by high-coverage whole-genome sequencing, clustering of genetic aberrations, subclone combinatorics, and mutational signature analysis revealed at least two to four genetic subclones per sample. Long-term growth in serial xenografts and spheroids was driven by multiple genomic subclones with profoundly differing growth dynamics and hence different quantitative contributions over time. Strikingly, genetic barcoding demonstrated stable functional heterogeneity of CRC TcICs during serial xenografting despite near-complete changes in genomic subclone contribution. This demonstrates that functional heterogeneity is, at least frequently, present within genomic subclones and independent of mutational subclone differences. © 2017 Giessler et al.

  15. Production of Pigs by Hand-Made Cloning Using Mesenchymal Stem Cells and Fibroblasts.

    Science.gov (United States)

    Yang, Zhenzhen; Vajta, Gábor; Xu, Ying; Luan, Jing; Lin, Mufei; Liu, Cong; Tian, Jianing; Dou, Hongwei; Li, Yong; Liu, Tianbin; Zhang, Yijie; Li, Lin; Yang, Wenxian; Bolund, Lars; Yang, Huanming; Du, Yutao

    2016-08-01

    Mesenchymal stem cells (MSCs) exhibited self-renewal and less differentiation, making the MSCs promising candidates for adult somatic cell nuclear transfer (SCNT). In this article, we tried to produce genome identical pigs through hand-made cloning (HMC), with MSCs and adult skin fibroblasts as donor cells. MSCs were derived from either adipose tissue or peripheral blood (aMSCs and bMSCs, respectively). MSCs usually showed the expression pattern of CD29, CD73, CD90, and CD105 together with lack of expression of the hematopoietic markers CD34and CD45. Flow cytometry results demonstrated high expression of CD29 and CD90 in both MSC lines, while CD73, CD34, and CD45 expression were not detected. In contrary, in reverse transcription-polymerase chain reaction (RT-PCR) analysis, CD73 and CD34 were detected indicating that human antibodies CD73 and CD34 were not suitable to identify porcine cell surface markers and porcine MSC cellular surface markers of CD34 might be different from other species. MSCs also had potential to differentiate successfully into chondrocytes, osteoblasts, and adipocytes. After HMC, embryos reconstructed with aMSCs had higher blastocyst rate on day 5 and 6 than those reconstructed with bMSCs and fibroblasts (29.6% ± 1.3% and 41.1% ± 1.4% for aMSCs vs. 23.9% ± 1.2% and 35.5% ± 1.6% for bMSCs and 22.1% ± 0.9% and 33.3% ± 1.1% for fibroblasts, respectively). Live birth rate per transferred blastocyst achieved with bMSCs (1.59%) was the highest among the three groups. This article was the first report to compare the efficiency among bMSCs, aMSCs, and fibroblasts for boar cloning, which offered a realistic perspective to use the HMC technology for commercial breeding.

  16. Persistence and selection of an expanded B-cell clone in the setting of rituximab therapy for Sjögren’s syndrome

    Science.gov (United States)

    2014-01-01

    Introduction Subjects with primary Sjögren’s syndrome (SjS) have an increased risk of developing B-cell lymphoma and may harbor monoclonal B-cell expansions in the peripheral blood. Expanded B-cell clones could be pathogenic, and their persistence could exacerbate disease or predispose toward the development of lymphoma. Therapy with anti-CD20 (rituximab) has the potential to eliminate expanded B-cell clones and thereby potentially ameliorate disease. This study was undertaken to identify and track expanded B-cell clones in the blood of subjects with primary SjS who were treated with rituximab. Methods To determine whether circulating B-cell clones in subjects with primary SjS emerge or remain after B cell-depleting therapy with rituximab, we studied the antibody heavy-chain repertoire. We performed single-memory B-cell and plasmablast sorting and antibody heavy-chain sequencing in six rituximab-treated SjS subjects over the course of a 1-year follow-up period. Results Expanded B-cell clones were identified in four out of the six rituximab-treated SjS subjects, based upon the independent amplification of sequences with identical or highly similar VH, DH, and JH gene segments. We identified one SjS subject with a large expanded B-cell clone that was present prior to therapy and persisted after therapy. Somatic mutations in the clone were numerous but did not increase in frequency over the course of the 1-year follow-up, suggesting that the clone had been present for a long period of time. Intriguingly, a majority of the somatic mutations in the clone were silent, suggesting that the clone was under chronic negative selection. Conclusions For some subjects with primary SjS, these data show that (a) expanded B-cell clones are readily identified in the peripheral blood, (b) some clones are not eliminated by rituximab, and (c) persistent clones may be under chronic negative selection or may not be antigen-driven. The analysis of sequence variation among members of an

  17. Persistence and selection of an expanded B-cell clone in the setting of rituximab therapy for Sjögren's syndrome.

    Science.gov (United States)

    Hershberg, Uri; Meng, Wenzhao; Zhang, Bochao; Haff, Nancy; St Clair, E William; Cohen, Philip L; McNair, Patrice D; Li, Ling; Levesque, Marc C; Luning Prak, Eline T

    2014-02-11

    Subjects with primary Sjögren's syndrome (SjS) have an increased risk of developing B-cell lymphoma and may harbor monoclonal B-cell expansions in the peripheral blood. Expanded B-cell clones could be pathogenic, and their persistence could exacerbate disease or predispose toward the development of lymphoma. Therapy with anti-CD20 (rituximab) has the potential to eliminate expanded B-cell clones and thereby potentially ameliorate disease. This study was undertaken to identify and track expanded B-cell clones in the blood of subjects with primary SjS who were treated with rituximab. To determine whether circulating B-cell clones in subjects with primary SjS emerge or remain after B cell-depleting therapy with rituximab, we studied the antibody heavy-chain repertoire. We performed single-memory B-cell and plasmablast sorting and antibody heavy-chain sequencing in six rituximab-treated SjS subjects over the course of a 1-year follow-up period. Expanded B-cell clones were identified in four out of the six rituximab-treated SjS subjects, based upon the independent amplification of sequences with identical or highly similar VH, DH, and JH gene segments. We identified one SjS subject with a large expanded B-cell clone that was present prior to therapy and persisted after therapy. Somatic mutations in the clone were numerous but did not increase in frequency over the course of the 1-year follow-up, suggesting that the clone had been present for a long period of time. Intriguingly, a majority of the somatic mutations in the clone were silent, suggesting that the clone was under chronic negative selection. For some subjects with primary SjS, these data show that (a) expanded B-cell clones are readily identified in the peripheral blood, (b) some clones are not eliminated by rituximab, and (c) persistent clones may be under chronic negative selection or may not be antigen-driven. The analysis of sequence variation among members of an expanded clone may provide a novel means

  18. The A-myb transcription factor in neoplastic and normal B cells.

    Science.gov (United States)

    Golay, J; Facchinetti, V; Ying, G; Introna, M

    1997-07-01

    The myb family of transcription factors has been strongly implicated in the regulation of cell growth and differentiation in the haematopoietic system. The v-myb oncogene, carried by avian defective retroviruses, causes leukaemias in the chicken and transforms haematopoietic cells in vitro. Its normal cellular equivalent c-myb, has been shown to promote the proliferation and block the differentiation of haematopoietic cells in several experimental models and is required for fetal haematopoiesis. Two other members of the family have been cloned more recently, A-myb and B-myb, which show sequence homology with c-myb in several domains, of which the DNA binding domain as well as other regulatory domains. Both have been shown to be transcription factors. B-myb is also involved in the control of proliferation and differentiation, but, unlike c-myb, it is expressed in many cell types. The third member of the family, A-myb, shows the most restricted pattern of expression, suggesting a very specific role for this transcription factor. A-myb is expressed in a subpopulation of normal B lymphocytes activated in vivo and localised in the germinal center of peripheral lymphoid organs and is not detected at significant levels in all other mature or immature haematopoietic populations studied, including bone marrow cells, T lymphocytes, granulocytes, monocytes, either at rest or after in vitro activation. These studies indicate that A-myb plays a role during a narrow window of normal B cell differentiation. A-myb expression has also been studied in a wide range of neoplastic B cells, representing the whole spectrum of B cell differentiation. A-myb is strongly expressed in Burkitt's lymphomas (BL) and slg+ B-acute lymphoblastic leukaemias (B-ALL) and not in all other leukaemias/lymphomas tested, with the exception of a subset of CLL (about 25% of cases). It is intriguing that the A-myb genome has been localised relatively close to the c-myc gene on chromosome 8, suggesting that

  19. The cell agglutination agent, phytohemagglutinin-L, improves the efficiency of somatic nuclear transfer cloning in cattle (Bos taurus).

    Science.gov (United States)

    Du, Fuliang; Shen, Perng-Chih; Xu, Jie; Sung, Li-Ying; Jeong, B-Seon; Lucky Nedambale, Tshimangadzo; Riesen, John; Cindy Tian, X; Cheng, Winston T K; Lee, Shan-Nan; Yang, Xiangzhong

    2006-02-01

    One of the several factors that contribute to the low efficiency of mammalian somatic cloning is poor fusion between the small somatic donor cell and the large recipient oocyte. This study was designed to test phytohemagglutinin (PHA) agglutination activity on fusion rate, and subsequent developmental potential of cloned bovine embryos. The toxicity of PHA was established by examining its effects on the development of parthenogenetic bovine oocytes treated with different doses (Experiment 1), and for different durations (Experiment 2). The effective dose and duration of PHA treatment (150 microg/mL, 20 min incubation) was selected and used to compare membrane fusion efficiency and embryo development following somatic cell nuclear transfer (Experiment 3). Cloning with somatic donor fibroblasts versus cumulus cells was also compared, both with and without PHA treatment (150 microg/mL, 20 min). Fusion rate of nuclear donor fibroblasts, after phytohemagglutinin treatment, was increased from 33 to 61% (P cell nuclear donors. The nuclear transfer (NT) efficiency per oocyte used was improved following PHA treatment, for both fibroblast (13% versus 22%) as well as cumulus cells (17% versus 34%; P cloned embryos, both with and without PHA treatment, were subjected to vitrification and embryo transfer testing, and resulted in similar survival (approximately 90% hatching) and pregnancy rates (17-25%). Three calves were born following vitrification and embryo transfer of these embryos; two from the PHA-treated group, and one from non-PHA control group. We concluded that PHA treatment significantly improved the fusion efficiency of somatic NT in cattle, and therefore, increased the development of cloned blastocysts. Furthermore, within a determined range of dose and duration, PHA had no detrimental effect on embryo survival post-vitrification, nor on pregnancy or calving rates following embryo transfer.

  20. Single TCR-Vβ2 evaluation discloses the circulating T cell clone in Sezary syndrome: one family fits all!

    Science.gov (United States)

    Scala, Enrico; Abeni, Damiano; Pomponi, Debora; Russo, Nicoletta; Russo, Giandomenico; Narducci, Maria Grazia

    2015-08-01

    Sézary Syndrome (SS/L-CTCL) is a rare but aggressive variant of cutaneous T cell lymphoma (CTCL), characterized by erythroderma, lymphadenopathy, and the presence of a circulating memory CD4(+) T cell malignant clone with a skin homing behavior, lacking CD26 and CD49d and over-expressing CD60. The availability of a panel of monoclonal antibodies recognizing distinct TCR-Vβ families, allows to typify the clone by flow cytometry in about 70 % of cases. The TCR-Vβ repertoire of 533 individuals, comprising 308 patients affected by CTCL, 50 healthy donors, and subjects affected by various non-neoplastic dermatological affections was evaluated by flow cytometry. Statistical analyses were performed using the SPSS statistical software package for Microsoft Windows (SPSS, version 21, Chicago, IL). TCR-Vβ2 levels below 5.4 % or above 39.5 %, within total CD4(+) T cells, showed the best balance between sensitivity (98.1 %) and specificity (96 %) to identify the presence of a clone in the peripheral blood of patients affected by SS. Based on this observation, a "two-step" procedure in the detection of the malignant T cell clone in CTCLs is herein suggested. TCR-Vβ2 assessment in all cases (first step). In the case of TCR-Vβ2 levels above 39.5 %, the presence of a clonal expansion of this family is suggested, deserving further confirmation by means of T cell gene rearrangement evaluation. In patients having a TCR-Vβ2 reactivity below 5.4 % (second step), the entire TCR-Vβ repertoire should be evaluated to typify the expanded clone. In conclusion, the single TCR-Vβ2 expression check, instead of the entire repertoire assessment, represents an easy and cost-effective method for the recognition of CTCL aggressive leukemic variant.

  1. [Nuclear transfer and therapeutic cloning].

    Science.gov (United States)

    Xu, Xiao-Ming; Lei, An-Min; Hua, Jin-Lian; Dou, Zhong-Ying

    2005-03-01

    Nuclear transfer and therapeutic cloning have widespread and attractive prospects in animal agriculture and biomedical applications. We reviewed that the quality of oocytes and nuclear reprogramming of somatic donor cells were the main reasons of the common abnormalities in cloned animals and the low efficiency of cloning and showed the problems and outlets in therapeutic cloning, such as some basic problems in nuclear transfer affected clinical applications of therapeutic cloning. Study on isolation and culture of nuclear transfer embryonic stem (ntES) cells and specific differentiation of ntES cells into important functional cells should be emphasized and could enhance the efficiency. Adult stem cells could help to cure some great diseases, but could not replace therapeutic cloning. Ethics also impeded the development of therapeutic cloning. It is necessary to improve many techniques and reinforce the research of some basic theories, then somatic nuclear transfer and therapeutic cloning may apply to agriculture reproduction and benefit to human life better.

  2. Single cell analysis of normal and leukemic hematopoiesis.

    Science.gov (United States)

    Povinelli, Benjamin J; Rodriguez-Meira, Alba; Mead, Adam J

    2018-02-01

    The hematopoietic system is well established as a paradigm for the study of cellular hierarchies, their disruption in disease and therapeutic use in regenerative medicine. Traditional approaches to study hematopoiesis involve purification of cell populations based on a small number of surface markers. However, such population-based analysis obscures underlying heterogeneity contained within any phenotypically defined cell population. This heterogeneity can only be resolved through single cell analysis. Recent advances in single cell techniques allow analysis of the genome, transcriptome, epigenome and proteome in single cells at an unprecedented scale. The application of these new single cell methods to investigate the hematopoietic system has led to paradigm shifts in our understanding of cellular heterogeneity in hematopoiesis and how this is disrupted in disease. In this review, we summarize how single cell techniques have been applied to the analysis of hematopoietic stem/progenitor cells in normal and malignant hematopoiesis, with a particular focus on recent advances in single-cell genomics, including how these might be utilized for clinical application. Copyright © 2017. Published by Elsevier Ltd.

  3. Establishment and characterization of a spontaneously immortalized trophoblast cell line (HPT-8) and its hepatitis B virus-expressing clone.

    Science.gov (United States)

    Zhang, Lei; Zhang, Weilu; Shao, Chen; Zhang, Jingxia; Men, Ke; Shao, Zhongjun; Yan, Yongping; Xu, Dezhong

    2011-08-01

    Most trophoblast cell lines currently available to study vertical transmission of hepatitis B virus (HBV) are immortalized by viral transformation. Our goal was to establish and characterize a spontaneously immortalized human first-trimester trophoblast cell line and its HBV-expressing clone. Chorionic villi of Asian human first-trimester placentae were digested with trypsin and collagenase I to obtain the primary trophoblast cell culture. A spontaneously immortalized trophoblast cell line (HPT-8) was analyzed by scanning and transmission electron microscopy, cell cycle analysis, immunohistochemistry and immunofluorescence. HPT-8 cells were stably transfected with the adr subtype of HBV (HPT-8-HBV) and characterized by PCR and enzyme-linked immunosorbent assay. We obtained a clonal derivative of a spontaneously immortalized primary cell clone (HPT-8). HPT-8 cells were epithelioid and polygonal, and formed multinucleate, giant cells. They exhibited microvilli, distinct desmosomes between adjacent cells, abundant endoplasm, lipid inclusions and glycogen granules, which are all characteristic of cytotrophoblasts. HPT-8 cells expressed cytokeratin 7, cytokeratin 18, vimentin, cluster of differentiation antigen 9, epidermal growth factor receptor, stromal cell-derived factor 1 and placental alkaline phosphatase. They secreted prolactin, estradiol, progesterone and hCG, and were positive for HLA-G, a marker of extravillous trophoblasts. HPT-8-HBV cells were positive for HBV relaxed-circular, covalently closed circular DNA and pre-S sequence. HPT-8-HBV cells also produced and secreted HBV surface antigen and HBV e antigen. We established a trophoblast cell line, HPT-8 and its HBV-expressing clone which could be valuable in exploring the mechanism of HBV viral integration in human trophoblasts during intrauterine infection.

  4. Clone-specific expression, transcriptional regulation, and action of interleukin-6 in human colon carcinoma cells

    International Nuclear Information System (INIS)

    Brozek, Wolfgang; Bises, Giovanna; Fabjani, Gerhild; Cross, Heide S; Peterlik, Meinrad

    2008-01-01

    Many cancer cells produce interleukin-6 (IL-6), a cytokine that plays a role in growth stimulation, metastasis, and angiogenesis of secondary tumours in a variety of malignancies, including colorectal cancer. Effectiveness of IL-6 in this respect may depend on the quantity of basal and inducible IL-6 expressed as the tumour progresses through stages of malignancy. We therefore have evaluated the effect of IL-6 modulators, i.e. IL-1β, prostaglandin E 2 , 17β-estradiol, and 1,25-dihydroxyvitamin D 3 , on expression and synthesis of the cytokine at different stages of tumour progression. We utilized cultures of the human colon carcinoma cell clones Caco-2/AQ, COGA-1A and COGA-13, all of which expressed differentiation and proliferation markers typical of distinct stages of tumour progression. IL-6 mRNA and protein levels were assayed by RT-PCR and ELISA, respectively. DNA sequencing was utilized to detect polymorphisms in the IL-6 gene promoter. IL-6 mRNA and protein concentrations were low in well and moderately differentiated Caco-2/AQ and COGA-1A cells, but were high in poorly differentiated COGA-13 cells. Addition of IL-1β (5 ng/ml) to a COGA-13 culture raised IL-6 production approximately thousandfold via a prostaglandin-independent mechanism. Addition of 17β-estradiol (10 -7 M) reduced basal IL-6 production by one-third, but IL-1β-inducible IL-6 was unaffected. Search for polymorphisms in the IL-6 promoter revealed the presence of a single haplotype, i.e., -597A/-572G/-174C, in COGA-13 cells, which is associated with a high degree of transcriptional activity of the IL-6 gene. IL-6 blocked differentiation only in Caco-2/AQ cells and stimulated mitosis through up-regulation of c-myc proto-oncogene expression. These effects were inhibited by 10 -8 M 1,25-dihydroxyvitamin D 3 . In human colon carcinoma cells derived from well and moderately differentiated tumours, IL-6 expression is low and only marginally affected, if at all, by PGE 2 , 1,25-dihydroxyvitamin D

  5. Plurihormonal cells of normal anterior pituitary: Facts and conclusions

    Science.gov (United States)

    Mitrofanova, Lubov B.; Konovalov, Petr V.; Krylova, Julia S.; Polyakova, Victoria O.; Kvetnoy, Igor M.

    2017-01-01

    Introduction plurihormonality of pituitary adenomas is an ability of adenoma cells to produce more than one hormone. After the immunohistochemical analysis had become a routine part of the morphological study, a great number of adenomas appeared to be multihormonal in actual practice. We hypothesize that the same cells of a normal pituitary gland releases several hormones simultaneously. Objective To analyse a possible co-expression of hormones by the cells of the normal anterior pituitary of adult humans in autopsy material. Materials and methods We studied 10 pituitary glands of 4 women and 6 men with cardiovascular and oncological diseases. Double staining immunohistochemistry using 11 hormone combinations was performed in all the cases. These combinations were: prolactin/thyroid-stimulating hormone (TSH), prolactin/luteinizing hormone (LH), prolactin/follicle-stimulating hormone (FSH), prolactin/adrenocorticotropic hormone (ACTH), growth hormone (GH)/TSH, GH/LH, GH/FSH, GH/ACTH, TSH/LH, TSH/FSH, TSH/ACTH. Laser Confocal Scanning Microscopy with a mixture of primary antibodies was performed in 2 cases. These mixtures were ACTH/prolactin, FSH/prolactin, TSH/prolactin, ACTH/GH, and FSH/GH. Results We found that the same cells of the normal adenohypophysis can co-express prolactin with ACTH, TSH, FSH, LH; GH with ACTH, TSH, FSH, LH, and TSH with ACTH, FSH, LH. The comparison of the average co-expression coefficients of prolactin, GH and TSH with other hormones showed that the TSH co-expression coefficient was significantly the least (9,5±6,9%; 9,6±7,8%; 1,0±1,3% correspondingly). Conclusion Plurihormonality of normal adenohypophysis is an actually existing phenomenon. Identification of different hormones in pituitary adenomas enables to find new ways to improve both diagnostic process and targeted treatment. PMID:28418929

  6. Plurihormonal cells of normal anterior pituitary: Facts and conclusions.

    Science.gov (United States)

    Mitrofanova, Lubov B; Konovalov, Petr V; Krylova, Julia S; Polyakova, Victoria O; Kvetnoy, Igor M

    2017-04-25

    plurihormonality of pituitary adenomas is an ability of adenoma cells to produce more than one hormone. After the immunohistochemical analysis had become a routine part of the morphological study, a great number of adenomas appeared to be multihormonal in actual practice. We hypothesize that the same cells of a normal pituitary gland releases several hormones simultaneously. To analyse a possible co-expression of hormones by the cells of the normal anterior pituitary of adult humans in autopsy material. We studied 10 pituitary glands of 4 women and 6 men with cardiovascular and oncological diseases. Double staining immunohistochemistry using 11 hormone combinations was performed in all the cases. These combinations were: prolactin/thyroid-stimulating hormone (TSH), prolactin/luteinizing hormone (LH), prolactin/follicle-stimulating hormone (FSH), prolactin/adrenocorticotropic hormone (ACTH), growth hormone (GH)/TSH, GH/LH, GH/FSH, GH/ACTH, TSH/LH, TSH/FSH, TSH/ACTH. Laser Confocal Scanning Microscopy with a mixture of primary antibodies was performed in 2 cases. These mixtures were ACTH/prolactin, FSH/prolactin, TSH/prolactin, ACTH/GH, and FSH/GH. We found that the same cells of the normal adenohypophysis can co-express prolactin with ACTH, TSH, FSH, LH; GH with ACTH, TSH, FSH, LH, and TSH with ACTH, FSH, LH. The comparison of the average co-expression coefficients of prolactin, GH and TSH with other hormones showed that the TSH co-expression coefficient was significantly the least (9,5±6,9%; 9,6±7,8%; 1,0±1,3% correspondingly). Plurihormonality of normal adenohypophysis is an actually existing phenomenon. Identification of different hormones in pituitary adenomas enables to find new ways to improve both diagnostic process and targeted treatment.

  7. LET effects on normal and radiosensitive cell lines

    International Nuclear Information System (INIS)

    Geard, C.R.; Travisano, M.

    1986-01-01

    Charged particles in the track segment mode were produced by the RARAF Van de Graaff accelerator and used to irradiate two CHO cell lines, a radiosensitive hypermutable line EM9 and its normal parent AA8. Asynchronous cells were irradiated attached to 6 micrometer thick Mylar with protons, deuterons and helium-3 particles at LETs ranging from 10 to 150 keV per micrometer. A 50 kVp x-ray tube integrated into the track segment facility provided a low LET comparison. Following irradiation cells were monitored for clonogenicity, and in a separate series of experiments frequencies of sister chromatid exchanges. Up to 9 experiments were carried out at each LET, with a total of 8 radiations of different LETs being compared. The optimally effective LET for cell survival was between 80 and 120 keV per micrometer, with the 150 keV per micrometer particles indicating energy wastage. The differential between the normal and radiosensitive cell lines was maintained at all LETs

  8. What is Cloning?

    Science.gov (United States)

    Donate Home Cloning What is Cloning What is Cloning Clones are organisms that are exact genetic copies. ... clones made through modern cloning technologies. How Is Cloning Done? Many people first heard of cloning when ...

  9. In vitro stemness characterization of radio-resistant clones isolated from a medulloblastoma cell line ONS-76

    International Nuclear Information System (INIS)

    Sun, Lue; Suzuki, Kenshi; Gerelchuluun, Ariungerel; Hong, Zhengshan; Moritake, Takashi; Zenkoh, Junko; Tsuboi, Koji; Zheng, Yun-Wen; Taniguchi, Hideki

    2013-01-01

    One-third of patients with medulloblastoma die due to recurrence after various treatments including radiotherapy. Although it has been postulated that cancer stem-like cells are radio-resistant and play an important role in tumor recurrence, the 'stemness' of medulloblastoma cells surviving irradiation has not yet been elucidated. Using a medulloblastoma cell line ONS-76, cells that survived gamma irradiation were investigated on their 'stemness' in vitro. From 10 500 cells, 20 radio-resistant clones were selected after gamma ray irradiation (5 Gy x two fractions) using the replica micro-well technique. These 20 resistant clones were screened for CD133 positivity by flow cytometry followed by side population assay, tumor sphere formation assay and clonogenic survival assay. Results revealed CD133 fractions were significantly elevated in three clones, which also exhibited significantly increased levels of tumor sphere formation ability and side population fraction. Clonogenic survival assay demonstrated that their radio-resistance was significantly higher than the parental ONS-76. This may support the hypothesis that a small number of cancer stem-like cells (CSCs) are the main culprits in local recurrence after radiotherapy, and disruption of the resistance mechanism of these CSCs is a critical future issue in improving the outcome of patients with medulloblastoma. (author)

  10. Antigen-specific cytotoxic T cell and antigen-specific proliferating T cell clones can be induced to cytolytic activity by monoclonal antibodies against T3

    NARCIS (Netherlands)

    Spits, H.; Yssel, H.; Leeuwenberg, J.; de Vries, J. E.

    1985-01-01

    T3 is a human differentiation antigen expressed exclusively on mature T cells. In this study it is shown that anti-T3 monoclonal antibodies, in addition to their capacity to induce T cells to proliferate, are able to induce antigen-specific cytotoxic T lymphocyte clones to mediate antigen

  11. Stable radioresistance in ataxia-telangiectasia cells containing DNA from normal human cells

    International Nuclear Information System (INIS)

    Kapp, L.N.; Painter, R.B.

    1989-01-01

    SV40-transformed ataxia-telangiectasia (AT) cells were transfected with a cosmid containing a normal human DNA library and selectable marker, the neo gene, which endows successfully transformed mammalian cells with resistance to the antibiotic G418. Cells from this line were irradiated with 50 Gy of X-rays and fused with non-transfected AT cells. Among the G418-resistant colonies recovered was one stably resistant to radiation. Resistance to ionizing radiation of both primary transfectant line and its fusion derivative was intermediate between that of AT cells and normal cells, as assayed by colony-forming ability and measurement of radiation-induced G 2 chromatic aberrations; both cell lines retained AT-like radioresistant DNA synthesis. Results suggest that, because radioresistance in transfected cells was not as great as in normal human cells, two hallmarks of AT, radiosensitivity and radioresistant DNA synthesis, may still be the result of a single defective AT gene. (author)

  12. Normal function of immunologic stem cells from aged mice

    International Nuclear Information System (INIS)

    Harrison, D.E.; Doubleday, J.W.

    1975-01-01

    Marrow or spleen grafts from aged donor mice produced antibody-forming cells as effectively as did grafts from younger controls in recipients tested 3 to 10 months after the transplantation. All recipients were lethally irradiated, and the T6 chromosome marker was used to demonstrate that they were populated by donor cell lines. Recipients of aged or younger control grafts gave similar responses when stimulated with varying doses of antigen and when tested at different times after the transplantation except in two cases. Recipients of aged spleen grafts gave significantly lower responses than younger controls for the first few weeks after the transplantation. If recipients had been thymectomized before lethal irradiation, aged cell lines (pooled marrow and spleen cells) gave only 37 percent of the responses of younger controls. Given sufficient time and intact young recipients, immunologic stem cell lines from old donors populated recipients with cells having normal immune responses. These results suggest that age-related immunologic defects are not intrinsically timed in the precursor cell lines that populate the immune system. (U.S.)

  13. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity

    NARCIS (Netherlands)

    Vermeulen, L.; Todaro, M.; de Sousa E Melo, F.; Sprick, M. R.; Kemper, K.; Alea, M. Perez; Richel, D. J.; Stassi, G.; Medema, J. P.

    2008-01-01

    Colon carcinoma is one of the leading causes of death from cancer and is characterized by a heterogenic pool of cells with distinct differentiation patterns. Recently, it was reported that a population of undifferentiated cells from a primary tumor, so-called cancer stem cells (CSC), can

  14. Evidence for idiotypic- and antiidiotypic B-B cellular interaction with the use of cloned antiidiotypic B cell line.

    Science.gov (United States)

    Bitoh, S; Fujimoto, S; Yamamoto, H

    1990-03-15

    Immunization of BALB/c mice with MOPC104E myeloma protein induces antiidiotypic B lymphocytes that have Id-specific enhancing activity on antibody production. The B-B cell interaction was restricted to both Igh and class II MHC. However, anti-Thy-1 and C-treated splenic B cells were maintained for more than 1 y in a mixture of Con A-stimulated splenocyte culture supernatant and synthetic medium. In applying the long term culture method, we have established a cloned B cell line named B19-1d, B19-1d cells are specific to MOPC104E or J558 cross-reactive Id and they express surface mu, lambda but no Ly-1. B19-1d do not spontaneously secrete Ig but produce them upon stimulation with bacterial LPS. The effect of B19-1d cell line on idiotypic antibody production was tested. Addition of only 10 to 100 B19-1d cells into dextran-immune B cell culture greatly enhanced the Id+ antidextran antibody responses. On the contrary, the antidextran antibody production was suppressed by the higher doses of B19-1d cells. The effective cooperation between dextran-immune B cells and B19-1d cloned B cells was restricted to class II MHC. The role of idiotypic- and antiidiotypic B-B cell interaction in immune regulation and repertoire generation was suggested.

  15. Evaluation of porcine stem cells competence for somatic cell nuclear transfer and production of cloned animals

    DEFF Research Database (Denmark)

    Secher, Jan; Liu, Ying; Petkov, Stoyan

    2017-01-01

    Porcine somatic cell nuclear transfer (SCNT) has been used extensively to create genetically modified pigs, but the efficiency of the methodology is still low. It has been hypothesized that pluripotent or multipotent stem cells might result in increased SCNT efficacy as these cells are closer than...... somatic cells to the epigenetic state found in the blastomeres and therefore need less reprogramming. Our group has worked with porcine SCNT during the last 20 years and here we describe our experience with SCNT of 3 different stem cell lines. The porcine stem cells used were: Induced pluripotent stem...... cells (iPSCs) created by lentiviral doxycycline-dependent reprogramming and cultered with a GSK3β- and MEK-inhibitor (2i) and leukemia inhibitor factor (LIF) (2i LIF DOX-iPSCs), iPSCs created by a plasmid-based reprogramming and cultured with 2i and fibroblast growth factor (FGF) (2i FGF Pl...

  16. A method for the isolation and characterization of functional murine monoclonal antibodies by single B cell cloning.

    Science.gov (United States)

    Carbonetti, Sara; Oliver, Brian G; Vigdorovich, Vladimir; Dambrauskas, Nicholas; Sack, Brandon; Bergl, Emilee; Kappe, Stefan H I; Sather, D Noah

    2017-09-01

    Monoclonal antibody technologies have enabled dramatic advances in immunology, the study of infectious disease, and modern medicine over the past 40years. However, many monoclonal antibody discovery procedures are labor- and time-intensive, low efficiency, and expensive. Here we describe an optimized mAb discovery platform for the rapid and efficient isolation, cloning and characterization of monoclonal antibodies in murine systems. In this platform, antigen-binding splenic B cells from immunized mice are isolated by FACS and cocultured with CD40L positive cells to induce proliferation and mAb production. After 12days of coculture, cell culture supernatants are screened for antigen, and IgG positivity and RNA is isolated for reverse-transcription. Positive-well cDNA is then amplified by PCR and the resulting amplicons can be cloned into ligation-independent expression vectors, which are then used directly to transfect HEK293 cells for recombinant antibody production. After 4days of growth, conditioned medium can be screened using biolayer interferometry for antigen binding and affinity measurements. Using this method, we were able to isolate six unique, functional monoclonal antibodies against an antigen of the human malaria parasite Plasmodium falciparum. Importantly, this method incorporates several important advances that circumvent the need for single-cell PCR, restriction cloning, and large scale protein production, and can be applied to a wide array of protein antigens. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Antigen-specific murine T cell clones produce soluble interleukin 2 receptor on stimulation with specific antigens

    International Nuclear Information System (INIS)

    Wagner, D.K.; York-Jolley, J.; Malek, T.R.; Berzofsky, J.A.; Nelson, D.L.

    1986-01-01

    In this study, monoclonal antibodies were used to the murine IL 2 receptor (IL 2R) termed 3C7 and 7D4, which bind to different epitopes on the murine IL 2R, to develop an ELISA to measure soluble murine IL 2R. Surprisingly, stimulated murine spleen cells not only expressed cell-associated IL 2R, but also produced a considerable level of cellfree IL 2R in the culture supernatant fluid. To assess the fine specificity of this response, myoglobin-immune murine T cell clones were stimulated with appropriate or inappropriate antigen and syngeneic or allogeneic presenting cells. Proliferation, measured by [ 3 H] thymidine incorporation, and levels of soluble IL 2R were determined at day 4. The production of soluble IL2R displayed the same epitope fine specificity, genetic restriction, and antigen dose-response as the proliferative response. Indeed, in some cases there was sharper discrimination of epitope specificity and genetic restriction with the soluble IL 2R levels. There was also reproducible clone-to-clone variation in the amount of soluble receptor produced in response to antigen among 12 T cell clones and lines tested. In time course experiments, proliferation was greatest at day 3, whereas soluble IL 2R levels continued to rise in subsequent days. To the authors' knowledge, this is the first demonstration of release of secretion of soluble IL 2R by murine T cells, and the first demonstration of the fine specificity and genetic restriction of the induction of soluble IL 2R by specific antigen

  18. Identification of candidate vaccine antigens of bovine hemoparasites Theileria parva and Babesia bovis by use of helper T cell clones.

    Science.gov (United States)

    Brown, W C; Zhao, S; Logan, K S; Grab, D J; Rice-Ficht, A C

    1995-03-01

    Current vaccines for bovine hemoparasites utilize live attenuated organisms or virulent organisms administered concurrently with antiparasitic drugs. Although such vaccines can be effective, for most hemoparasites the mechanisms of acquired resistance to challenge infection with heterologous parasite isolates have not been clearly defined. Selection of potentially protective antigens has traditionally made use of antibodies to identify immunodominant proteins. However, numerous studies have indicated that induction of high antibody titers neither predicts the ability of an antigen to confer protective immunity nor correlates with protection. Because successful parasites have evolved antibody evasion tactics, alternative strategies to identify protective immunogens should be used. Through the elaboration of cytokines, T helper 1-(Th1)-like T cells and macrophages mediate protective immunity against many intracellular parasites, and therefore most likely play an important role in protective immunity against bovine hemoparasites. CD4+ T cell clones specific for soluble or membrane antigens of either Theileria parva schizonts or Babesia bovis merozoites were therefore employed to identify parasite antigens that elicit strong Th cell responses in vitro. Soluble cytosolic parasite antigen was fractionated by gel filtration, anion exchange chromatography or hydroxylapatite chromatography, or a combination thereof, and fractions were tested for the ability to induce proliferation of Th cell clones. This procedure enabled the identification of stimulatory fractions containing T. parva proteins of approximately 10 and 24 kDa. Antisera raised against the purified 24 kDa band reacted with a native schizont protein of approximately 30 kDa. Babesia bovis-specific Th cell clones tested against fractionated soluble Babesia bovis merozoite antigen revealed the presence of at least five distinct antigenic epitopes. Proteins separated by gel filtration revealed four patterns of

  19. Skewed X-inactivation in cloned mice

    International Nuclear Information System (INIS)

    Senda, Sho; Wakayama, Teruhiko; Yamazaki, Yukiko; Ohgane, Jun; Hattori, Naka; Tanaka, Satoshi; Yanagimachi, Ryuzo; Shiota, Kunio

    2004-01-01

    In female mammals, dosage compensation for X-linked genes is accomplished by inactivation of one of two X chromosomes. The X-inactivation ratio (a percentage of the cells with inactivated maternal X chromosomes in the whole cells) is skewed as a consequence of various genetic mutations, and has been observed in a number of X-linked disorders. We previously reported that phenotypically normal full-term cloned mouse fetuses had loci with inappropriate DNA methylation. Thus, cloned mice are excellent models to study abnormal epigenetic events in mammalian development. In the present study, we analyzed X-inactivation ratios in adult female cloned mice (B6C3F1). Kidneys of eight naturally produced controls and 11 cloned mice were analyzed. Although variations in X-inactivation ratio among the mice were observed in both groups, the distributions were significantly different (Ansary-Bradley test, P < 0.01). In particular, 2 of 11 cloned mice showed skewed X-inactivation ratios (19.2% and 86.8%). Similarly, in intestine, 1 of 10 cloned mice had a skewed ratio (75.7%). Skewed X-inactivation was observed to various degrees in different tissues of different individuals, suggesting that skewed X-inactivation in cloned mice is the result of secondary cell selection in combination with stochastic distortion of primary choice. The present study is the first demonstration that skewed X-inactivation occurs in cloned animals. This finding is important for understanding both nuclear transfer technology and etiology of X-linked disorders

  20. Longevity of a Paramecium cell clone in space: Hypergravity experiments as a basis for microgravity experiments

    Science.gov (United States)

    Kato, Yuko; Mogami, Yoshihiro; Baba, Shoji A.

    We proposed a space experiment aboard International Space Station to explore the effects of microgravity on the longevity of a Paramecium cell clone. Earlier space experiments in CYTOS and Space Lab D-1 demonstrated that Paramecium proliferated faster in space. In combination with the fact that aging process in Paramecium is largely related to the fission age, the results of the proliferation experiment in space may predict that the longevity of Paramecium decreases when measured by clock time. In preparation of the space experiment, we assessed the aging process under hypergravity, which is known to reduce the proliferation rate. As a result, the length of autogamy immaturity increased when measured by clock time, whereas it remained unchanged by fission age. It is therefore expected that autogamy immaturity in the measure of the clock time would be shortened under microgravity. Since the length of clonal life span of Paramecium is related to the length of autogamy immaturity, the result of hypergravity experiment supports the prediction that the clonal longevity of Paramecium under microgravity decreases. Effects of gravity on proliferation are discussed in terms of energetics of swimming during gravikinesis and gravitaxis of Paramecium.

  1. Altering histone acetylation status in donor cells with suberoylanilide hydroxamic acid does not affect dog cloning efficiency.

    Science.gov (United States)

    Kim, Min Jung; Oh, Hyun Ju; Kim, Geon A; Suh, Han Na; Jo, Young Kwang; Choi, Yoo Bin; Kim, Dong Hoon; Han, Ho Jae; Lee, Byeong Chun

    2015-10-15

    Although dog cloning technology has been applied to conservation of endangered canids, propagation of elite dogs, and production of transgenic dogs, the efficiency of cloning is still very low. To help overcome this problem, we evaluated the effect of treating donor cells with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on dog cloning efficiency. Relative messenger RNA expressions of the bax1/bcl2 ratio and Dnmt1 in fibroblasts treated with different concentrations (0, 1, 10, 50 μM) of SAHA and durations (0, 20, 44 hours) were compared. Treatment with 1 μM for 20 hours showed significantly lower bax1/bcl2 and Dnmt1 transcript abundance. Acetylation of H3K9 was significantly increased after SAHA treatment, but H4K5, H4K8 and H4K16 were not changed. After SCNT using control or donor cells treated with SAHA, a total of 76 and 64 cloned embryos were transferred to seven and five recipients, respectively. Three fetuses were diagnosed in both control and SAHA-treated groups by ultrasonography 29 days after the embryo transfer, but there was no significant difference in the pregnancy rate (4.2% vs. 4.3%). In conclusion, although SAHA treatment as used in this study significantly decreased bax1/bcl2 and Dnmt1 transcripts of donor nuclei, as well as increased H3 acetylation, it was not enough to increase in vivo developmental competence of cloned dog embryos. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effect of selenium compounds on murine B16 melanoma cells and pigmented cloned pB16 cells

    International Nuclear Information System (INIS)

    Siwek, B.; Bahbouth, E.; Serra, M.A.; Sabbioni, E.; Pauw-Gillet, M.C. de; Bassleer, R.

    1994-01-01

    The effects of selenium compounds such as sodium selenite, sodium selenate, seleno-DL-cystine and seleno-DL-methionine (100 μM and 10 μM) on B16 and pigmented cloned pB 16 murine melanoma cells were investigated in vitro. At the tested concentrations, B16 cells showed a greater sensitivity to the toxic effects of sodium selenite and seleno-DL-cystine than pB 16 cells, whereas no decrease of B 16 and pB 16 cell number was observed after incubation with sodium selenate or seleno-DL-methionine. Glutathione (GSH) percentages were strongly decreased only by selenite and seleno-DL-cystine; it was marked more in B 16 than in pB 16 cells. The pretreatment of B 16 cells with a GSH depleting agent (10 μM buthionine-[S,R]-sulfoximine) did not significantly influence the cytotoxic effects of selenite and seleno-DL-cystine. On both cell populations. GSH preincubation (50 μM) enhanced the cytotoxicity of selenite whereas the survival of seleno-DL-cystine treated cells was increased. Glutathione peroxidase (GSH-Px) activity in B 16 cells was more sensitive than in pB 16 cells to the activating effect of selenite, and particularly of seleno-DL-cystine; however, cell-free controls indicated that activation was mainly due to glutathione reductase. The rate of 75 Se (as sodium selenite) uptake in both cell populations was maximal within the first hour of incubation, with a preferential accumulation in the cytosol; after 24 h of incubation, the amount of 75 Se in cytosol and pellet was approximately the same. Gel filtration chromatography of lysed cells after incubation for 6 h with 10 μM 75 Se-selenite showed that the radioactivity was eluted as two peaks corresponding to low (4-9 kDa) and high (280-320 kDa) molecular weights. Possible toxicological mechanisms are discussed at molecular level. (orig./MG)

  3. RF Breakdown in Normal Conducting Single-Cell Structures

    International Nuclear Information System (INIS)

    Dolgashev, V.A.; Nantista, C.D.; Tantawi, S.G.; Higashi, Y.; Higo, T.

    2006-01-01

    Operating accelerating gradient in normal conducting accelerating structures is often limited by rf breakdown. The limit depends on multiple parameters, including input rf power, rf circuit, cavity shape and material. Experimental and theoretical study of the effects of these parameters on the breakdown limit in full scale structures is difficult and costly. We use 11.4 GHz single-cell traveling wave and standing wave accelerating structures for experiments and modeling of rf breakdown behavior. These test structures are designed so that the electromagnetic fields in one cell mimic the fields in prototype multicell structures for the X-band linear collider. Fields elsewhere in the test structures are significantly lower than that of the single cell. The setup uses matched mode converters that launch the circular TM 01 mode into short test structures. The test structures are connected to the mode launchers with vacuum rf flanges. This setup allows economic testing of different cell geometries, cell materials and preparation techniques with short turn-around time. Simple 2D geometry of the test structures simplifies modeling of the breakdown currents and their thermal effects

  4. Progesterone Upregulates Gene Expression in Normal Human Thyroid Follicular Cells

    Directory of Open Access Journals (Sweden)

    Ana Paula Santin Bertoni

    2015-01-01

    Full Text Available Thyroid cancer and thyroid nodules are more prevalent in women than men, so female sex hormones may have an etiological role in these conditions. There are no data about direct effects of progesterone on thyroid cells, so the aim of the present study was to evaluate progesterone effects in the sodium-iodide symporter NIS, thyroglobulin TG, thyroperoxidase TPO, and KI-67 genes expression, in normal thyroid follicular cells, derived from human tissue. NIS, TG, TPO, and KI-67 mRNA expression increased significantly after TSH 20 μUI/mL, respectively: 2.08 times, P<0.0001; 2.39 times, P=0.01; 1.58 times, P=0.0003; and 1.87 times, P<0.0001. In thyroid cells treated with 20 μUI/mL TSH plus 10 nM progesterone, RNA expression of NIS, TG, and KI-67 genes increased, respectively: 1.78 times, P<0.0001; 1.75 times, P=0.037; and 1.95 times, P<0.0001, and TPO mRNA expression also increased, though not significantly (1.77 times, P=0.069. These effects were abolished by mifepristone, an antagonist of progesterone receptor, suggesting that genes involved in thyroid cell function and proliferation are upregulated by progesterone. This work provides evidence that progesterone has a direct effect on thyroid cells, upregulating genes involved in thyroid function and growth.

  5. Cell swelling activates cloned Ca(2+)-activated K(+) channels: a role for the F-actin cytoskeleton

    DEFF Research Database (Denmark)

    Jorgensen, Nanna K; Pedersen, Stine F; Rasmussen, Hanne B

    2003-01-01

    Cloned Ca(2+)-activated K(+) channels of intermediate (hIK) or small (rSK3) conductance were expressed in HEK 293 cells, and channel activity was monitored using whole-cell patch clamp. hIK and rSK3 currents already activated by intracellular calcium were further increased by 95% and 125......%, respectively, upon exposure of the cells to a 33% decrease in extracellular osmolarity. hIK and rSK3 currents were inhibited by 46% and 32%, respectively, by a 50% increase in extracellular osmolarity. Cell swelling and channel activation were not associated with detectable increases in [Ca(2+)](i), evidenced...... by population and single-cell measurements. In addition, inhibitors of IK and SK channels significantly reduced the rate of regulatory volume decrease (RVD) in cells expressing these channels. Cell swelling induced a decrease, and cell shrinkage an increase, in net cellular F-actin content. The swelling...

  6. Cellular and molecular effects for mutation induction in normal human cells irradiated with accelerated neon ions

    International Nuclear Information System (INIS)

    Suzuki, Masao; Tsuruoka, Chizuru; Kanai, Tatsuaki; Kato, Takeshi; Yatagai, Fumio; Watanabe, Masami

    2006-01-01

    We investigated the linear energy transfer (LET) dependence of mutation induction on the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus in normal human fibroblast-like cells irradiated with accelerated neon-ion beams. The cells were irradiated with neon-ion beams at various LETs ranging from 63 to 335 keV/μm. Neon-ion beams were accelerated by the Riken Ring Cyclotron at the Institute of Physical and Chemical Research in Japan. Mutation induction at the HPRT locus was detected to measure 6-thioguanine-resistant clones. The mutation spectrum of the deletion pattern of exons of mutants was analyzed using the multiplex polymerase chain reaction (PCR). The dose-response curves increased steeply up to 0.5 Gy and leveled off or decreased between 0.5 and 1.0 Gy, compared to the response to 137 Cs γ-rays. The mutation frequency increased up to 105 keV/μm and then there was a downward trend with increasing LET values. The deletion pattern of exons was non-specific. About 75-100% of the mutants produced using LETs ranging from 63 to 335 keV/μm showed all or partial deletions of exons, while among γ-ray-induced mutants 30% showed no deletions, 30% partial deletions and 40% complete deletions. These results suggested that the dose-response curves of neon-ion-induced mutations were dependent upon LET values, but the deletion pattern of DNA was not

  7. EXPRESSION OF CELLULAR ADHESION MOLECULES IN LANGERHANS CELL HISTIOCYTOSIS AND NORMAL LANGERHANS CELLS

    NARCIS (Netherlands)

    DEGRAAF, JH; TAMMINGA, RYJ; KAMPS, WA; TIMENS, W

    1995-01-01

    Langerhans cell histiocytosis (LCH) is characterized by lesions with an accumulation and/or proliferation of Langerhans cells (LCs). Little is known of the etiology and pathogenesis of LCH. Although the relation between the LCH cell and normal LCs is currently uncertain, the localizations of the LCH

  8. Characterization of the env gene and long terminal repeat of molecularly cloned Friend mink cell focus-inducing virus DNA.

    OpenAIRE

    Adachi, A; Sakai, K; Kitamura, N; Nakanishi, S; Niwa, O; Matsuyama, M; Ishimoto, A

    1984-01-01

    The highly oncogenic erythroleukemia-inducing Friend mink cell focus-inducing (MCF) virus was molecularly cloned in phage lambda gtWES.lambda B, and the DNA sequences of the env gene and the long terminal repeat were determined. The nucleotide sequences of Friend MCF virus and Friend spleen focus-forming virus were quite homologous, supporting the hypothesis that Friend spleen focus-forming virus might be generated via Friend MCF virus from an ecotropic Friend virus mainly by some deletions. ...

  9. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids

    Energy Technology Data Exchange (ETDEWEB)

    Amos, T.A.S.; Lewis, J.L.; Grand, F.H.; Gooding, R.P.; Goldman, J.M.; Gordon, M.Y. [Royal Postgraduate Medical School, London (United Kingdom)

    1995-10-01

    Inhibition of apoptosis (genetically programmed active cell death) by p210 BCR-ABL expression is a mechanism that might contribute to clonal expansion in chronic myeloid leukaemia (CML). Since cell death following exposure to ionizing radiation and many chemotherapeutic agents can occur by the apoptotic pathway, inhibition of apoptosis would be expected to confer a relative resistance to these treatments. Similarly, cells deprived of growth factors in vitro die by apoptosis, and inhibition of apoptosis would therefore be expected to allow cells to survive better in growth factor-deprived conditions. We found that the survival of normal and CML myeloid progenitors was the same after in vitro incubation in deprived conditions and after treatment with X-irradiation or glucocorticoids. We also found that mature cells in colonies produced by CML progenitors (CFU-GM) did not survive better than those produced by normal progenitor cells. Flow cytometric analysis of propidium iodide-stained cells provided a direct indication that the degree of apoptosis may correspond to the degree of deprivation. These results suggest that inhibition of apoptosis may not be the primary mechanism whereby BCR-ABL influences the expansion of the malignant clone in CML. (Author).

  10. Apoptosis in chronic myeloid leukaemia: normal responses by progenitor cells to growth factor deprivation, X-irradiation and glucocorticoids

    International Nuclear Information System (INIS)

    Amos, T.A.S.; Lewis, J.L.; Grand, F.H.; Gooding, R.P.; Goldman, J.M.; Gordon, M.Y.

    1995-01-01

    Inhibition of apoptosis (genetically programmed active cell death) by p210 BCR-ABL expression is a mechanism that might contribute to clonal expansion in chronic myeloid leukaemia (CML). Since cell death following exposure to ionizing radiation and many chemotherapeutic agents can occur by the apoptotic pathway, inhibition of apoptosis would be expected to confer a relative resistance to these treatments. Similarly, cells deprived of growth factors in vitro die by apoptosis, and inhibition of apoptosis would therefore be expected to allow cells to survive better in growth factor-deprived conditions. We found that the survival of normal and CML myeloid progenitors was the same after in vitro incubation in deprived conditions and after treatment with X-irradiation or glucocorticoids. We also found that mature cells in colonies produced by CML progenitors (CFU-GM) did not survive better than those produced by normal progenitor cells. Flow cytometric analysis of propidium iodide-stained cells provided a direct indication that the degree of apoptosis may correspond to the degree of deprivation. These results suggest that inhibition of apoptosis may not be the primary mechanism whereby BCR-ABL influences the expansion of the malignant clone in CML. (Author)

  11. A Seminar on Human Cloning: Cloning in Reproductive Medicine

    OpenAIRE

    Illmensee, Karl

    2001-01-01

    This review article summarizes the historical development of mammalian cloning, presents current advances and presumed risk factors in the field of reproductive cloning, discusses possible clinical applications of therapeutic and diagnostic cloning and outlines prospective commercial trends in pharmacytical cloning. Predictable progress in biotechnology and stem cell engineering should prove to be advantageous for patients' health and for novel benefits in reproductive and regenerative medicine.

  12. Th1-like human T-cell clones recognizing Leishmania gp63 inhibit Leishmania major in human macrophages

    DEFF Research Database (Denmark)

    Kemp, M; Hey, A S; Bendtzen, K

    1994-01-01

    The major surface protease of Leishmania major, gp63, has been suggested as a vaccine candidate for cutaneous leishmaniasis. In this study gp63 was purified from L. major promastigotes. A panel of human T-cell clones recognizing this protein were generated from individuals who had previously had...... resembling Th1 cells. Autologous mononuclear cells and Epstein-Barr virus-transformed B cell lines were equally efficient in presenting the antigen to the T cells. The gp63 reactive T cells induced resistance to infection in cultured human macrophages by L. major. The data confirm that human CD4+ T cells...... recognizing gp63 can take part in the host defence against L. major infections....

  13. The role of Ca2+ and Mg2+ in the cytotoxic T lymphocyte reaction and in the secretion of N alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester-serine esterase by human T cell clones

    NARCIS (Netherlands)

    Blanchard, D.; Aubry, J. P.; de Vries, J. E.; Spits, H.

    1989-01-01

    Human T cell clones contain enzymes that can cleave the substrate N-alpha-benzyloxycarbonyl-L-lysine thiobenzyl ester (BLT). All CTL clones tested in this study secreted BLT-serine esterase activity, whereas only one of three tested non-cytolytic T cell clones secreted this enzymatic activity upon

  14. A protocol for adult somatic cell nuclear transfer in medaka fish (Oryzias latipes) with a high rate of viable clone formation.

    Science.gov (United States)

    Bubenshchikova, Ekaterina; Kaftanovskaya, Elena; Adachi, Tomoko; Hashimoto, Hisashi; Kinoshita, Masato; Wakamatsu, Yuko

    2013-12-01

    Previously, we successfully generated fully grown, cloned medaka (the Japanese rice fish, Oryzias latipes) using donor nuclei from primary culture cells of adult caudal fin tissue and nonenucleated recipient eggs that were heat shock-treated to induce diploidization of the nuclei. However, the mechanism of clone formation using this method is unknown, and the rate of adult clone formation is not high enough for studies in basic and applied sciences. To gain insight into the mechanism and increase the success rate of this method of clone formation, we tested two distinct nuclear transfer protocols. In one protocol, the timing of transfer of donor nuclei was changed, and in the other, the size of the donor cells was changed; each protocol was based on our original methodology. Ultimately, we obtained an unexpectedly high rate of adult clone formation using the protocol that differed with respect to the timing of donor nuclei transfer. Specifically, 17% of the transplants that developed to the blastula stage ultimately developed into adult clones. The success rate with this method was 13 times higher than that obtained using the original method. Analyses focusing on the reasons for this high success rate of clone formation will help to elucidate the mechanism of clone formation that occurs with this method.

  15. Cloning analysis of HBV-specific CD8 T cell receptor gene in patients with acute hepatitis B

    Directory of Open Access Journals (Sweden)

    Ning DING

    2011-05-01

    Full Text Available Objective To investigate the molecular mechanism of T cell receptor(TCR in CD8 T cell-mediated immune response to HBV in patients with acute hepatitis B(AHB.Methods Peripheral blood mononuclear cells(PBMCs were collected from HLA-A2-positive AHB patients.To determine HBsAg183-191 and HBsAg335-343-specific CD8 T cell frequencies,the PBMCs were stained by fluorescence-labeled anti-CD3,anti-CD8 and pentamers,and analyzed by flow cytometry.PBMCs from 6 patients were stimulated with epitopic peptide HBsAg335-343 in vitro for 3 to 4 weeks.HBV-specific CD8 T cells were isolated by magnetic activated cell sorting followed by flow florescence activated cell sorting.The mRNA of sorted cells was extracted after expanding by IL-2,anti-CD3 and anti-CD8.The full-length gene fragments of variable region of TCR α and β chains were gained by 5’-RACE,and then cloned and sequenced(≥50 clones for single chain of each sample.The gene families of TCR α and β chains were identified and the sequence characters of CDR3 were compared.Results Analysis of more than 600 cloned gene sequences of TCR α and β chains showed that the proliferated HBV-specific CD8 T cells from 6 AHB patients presented a predominant expression in TCR α and chains,with 2-4 α chain families and 1-4 chain families in each case.The α2,α14,α15,β3,β13 and 23 families were detected in more than one case.The chain genes were all 13 for all tested clones in one case.For the same α chain or-chain family,CDR3 sequences tended to be identical in one case but different among cases.Conclusions HBV-specific CD8 T cells with antigenic peptide-induced proliferation present predominance in the usage of TCR α and β chains.This property might be one of the important molecular factors influencing anti-HBV immunity.

  16. Gene targeting and cloning in pigs using fetal liver derived cells.

    Science.gov (United States)

    Waghmare, Sanjeev K; Estrada, Jose; Reyes, Luz; Li, Ping; Ivary, Bess; Sidner, Richard A; Burlak, Chris; Tector, A Joseph

    2011-12-01

    Since there are no pig embryonic stem cells, pig genetic engineering is done in fetal fibroblasts that remain totipotent for only 3 to 5 wk. Nuclear donor cells that remain totipotent for longer periods of time would facilitate complicated genetic engineering in pigs. The goal of this study was to test the feasibility of using fetal liver-derived cells (FLDC) to perform gene targeting, and create a genetic knockout pig. FLDC were isolated and processed using a human liver stem cell protocol. Single copy α-1,3-galactosyl transferase knockout (GTKO) FLDCs were created using electroporation and neomycin resistant colonies were screened using PCR. Homozygous GTKO cells were created through loss of heterozygosity mutations in single GTKO FLDCs. Double GTKO FLDCs were used in somatic cell nuclear transfer (SCNT) to create GTKO pigs. FLDCs grew for more than 80 population doublings, maintaining normal karyotype. Gene targeting and loss of heterozygosity mutations produced homozygous GTKO FLDCs. FLDCs used in SCNT gave rise to homozygous GTKO pigs. FDLCs can be used in gene targeting and SCNT to produce genetically modified pigs. The increased life span in culture compared to fetal fibroblasts may facilitate genetic engineering in the pig. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Inhibition of clone formation as an assay for T cell-mediated cytotoxicity: short-term kinetics and comparison with 51Cr release

    International Nuclear Information System (INIS)

    Lees, R.K.; MacDonald, H.R.; Sinclair, N.R.; University of Western Ontario London

    1977-01-01

    The short-term kinetics of T cell-mediated cytotoxicity was investigated using a cloning inhibition assay. Murine cytotoxic thymus-derived lymphocytes generated in vitro in mixed leukocyte cultures were incubated for various periods of time at 37degC with allogeneic mastocytoma target cells. The mixtures were then plated in soft agar, and mastocytoma clone formation was assessed after 5-7 days incubation. Using this technique, it was demonstrated that events leading to the loss of cloning ability could be detected after 1-3 min incubation at 37degC, and after 20-30 min, 95% of the clone forming cells had been inactivated. When these results were compared directly with those obtained using the conventional 51 Cr-release assay, it was found that the events leading to loss of cloning ability occurred more rapidly than indicated by the isotope assay. However, a modification of the 51 Cr-release assay involving EDTA addition gave comparable result to the cloning inhibition assay. These results raise the possibility that the events leading to 51 Cr-release of tumor target cells may be related in time to those leading to the loss of cloning ability

  18. Human cloning: can it be made safe?

    Science.gov (United States)

    Rhind, Susan M; Taylor, Jane E; De Sousa, Paul A; King, Tim J; McGarry, Michelle; Wilmut, Ian

    2003-11-01

    There are continued claims of attempts to clone humans using nuclear transfer, despite the serious problems that have been encountered in cloning other mammals. It is known that epigenetic and genetic mechanisms are involved in clone failure, but we still do not know exactly how. Human reproductive cloning is unethical, but the production of cells from cloned embryos could offer many potential benefits. So, can human cloning be made safe?

  19. Comparison of the circadian variation in cell proliferation in normal and neoplastic colonic epithelial cells.

    Science.gov (United States)

    Kennedy, M F; Tutton, P J; Barkla, D H

    1985-09-15

    Circadian variations in cell proliferation in normal tissues have been recognised for many years but comparable phenomena in neoplastic tissues appear not to have been reported. Adenomas and carcinomas were induced in mouse colon by injection of dimethylhydrazine (DMH) and cell proliferation in these tumors was measured stathmokinetically. In normal intestine cell proliferation is fastest at night whereas in both adenomas and carcinomas it was found to be slower at night than in the middle of the day. Chemical sympathectomy was found to abolish the circadian variation in tumor cell proliferation.

  20. Effect of calf death loss on cloned cattle herd derived from somatic cell nuclear transfer: clones with congenital defects would be removed by the death loss.

    Science.gov (United States)

    Watanabe, Shinya

    2013-09-01

    To increase public understanding on cloned cattle derived from somatic cell nuclear transfer (SCNT), the present review describes the effect of calf death loss on an SCNT cattle herd. The incidence of death loss in SCNT cattle surviving more than 200 days reached the same level as that in conventionally bred cattle. This process could be considered as removal of SCNT cattle with congenital defects caused by calf death loss. As a result of comparative studies of SCNT cattle and conventionally bred cattle, the substantial equivalences in animal health status, milk and meat productive performance have been confirmed. Both sexes of SCNT cattle surviving to adulthood were fertile and their reproductive performance, including efficiency of progeny production, was the same as that in conventionally bred cattle. The presence of substantial equivalence between their progeny and conventionally bred cattle also existed. Despite these scientific findings, the commercial use of food products derived from SCNT cattle and their progeny has not been allowed by governments for reasons including the lack of public acceptance of these products and the low efficiency of animal SCNT. To overcome this situation, communication of the low risk of SCNT technology and research to improve SCNT efficiency are required. © 2013 Japanese Society of Animal Science.

  1. Significant improvement of pig cloning efficiency by treatment with LBH589 after somatic cell nuclear transfer.

    Science.gov (United States)

    Jin, Jun-Xue; Li, Suo; Gao, Qing-Shan; Hong, Yu; Jin, Long; Zhu, Hai-Ying; Yan, Chang-Guo; Kang, Jin-Dan; Yin, Xi-Jun

    2013-10-01

    The low success rate of animal cloning by somatic cell nuclear transfer (SCNT) associates with epigenetic aberrancy, including the abnormal acetylation of histones. Altering the epigenetic status by histone deacetylase inhibitors (HDACi) enhances the developmental potential of SCNT embryos. In the current study, we examined the effects of LBH589 (panobinostat), a novel broad-spectrum HDACi, on the nuclear reprogramming and development of pig SCNT embryos in vitro. In experiment 1, we compared the in vitro developmental competence of nuclear transfer embryos treated with different concentrations of LBH589. Embryos treated with 50 nM LBH589 for 24 hours showed a significant increase in the rate of blastocyst formation compared with the control or embryos treated with 5 or 500 nM LBH589 (32.4% vs. 11.8%, 12.1%, and 10.0%, respectively, P < 0.05). In experiment 2, we examined the in vitro developmental competence of nuclear transfer embryos treated with 50 nM LBH589 for various intervals after activation and 6-dimethylaminopurine. Embryos treated for 24 hours had higher rates of blastocyst formation than the other groups. In experiment 3, when the acetylation of H4K12 was examined in SCNT embryos treated for 6 hours with 50 nM LBH589 by immunohistochemistry, the staining intensities of these proteins in LBH589-treated SCNT embryos were significantly higher than in the control. In experiment 4, LBH589-treated nuclear transfer and control embryos were transferred into surrogate mothers, resulting in three (100%) and two (66.7%) pregnancies, respectively. In conclusion, LBH589 enhances the nuclear reprogramming and developmental potential of SCNT embryos by altering the epigenetic status and expression, and increasing blastocyst quality. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  2. Local stem cell depletion model for normal tissue damage

    International Nuclear Information System (INIS)

    Yaes, R.J.; Keland, A.

    1987-01-01

    The hypothesis that radiation causes normal tissue damage by completely depleting local regions of tissue of viable stem cells leads to a simple mathematical model for such damage. In organs like skin and spinal cord where destruction of a small volume of tissue leads to a clinically apparent complication, the complication probability is expressed as a function of dose, volume and stem cell number by a simple triple negative exponential function analogous to the double exponential function of Munro and Gilbert for tumor control. The steep dose response curves for radiation myelitis that are obtained with our model are compared with the experimental data for radiation myelitis in laboratory rats. The model can be generalized to include other types or organs, high LET radiation, fractionated courses of radiation, and cases where an organ with a heterogeneous stem cell population receives an inhomogeneous dose of radiation. In principle it would thus be possible to determine the probability of tumor control and of damage to any organ within the radiation field if the dose distribution in three dimensional space within a patient is known

  3. Latrunculin A treatment prevents abnormal chromosome segregation for successful development of cloned embryos.

    Directory of Open Access Journals (Sweden)

    Yukari Terashita

    Full Text Available Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA, an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2 could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene-essential for normal development but never before expressed in cloned embryos-was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning.

  4. Latrunculin A Treatment Prevents Abnormal Chromosome Segregation for Successful Development of Cloned Embryos

    Science.gov (United States)

    Terashita, Yukari; Yamagata, Kazuo; Tokoro, Mikiko; Itoi, Fumiaki; Wakayama, Sayaka; Li, Chong; Sato, Eimei; Tanemura, Kentaro; Wakayama, Teruhiko

    2013-01-01

    Somatic cell nuclear transfer to an enucleated oocyte is used for reprogramming somatic cells with the aim of achieving totipotency, but most cloned embryos die in the uterus after transfer. While modifying epigenetic states of cloned embryos can improve their development, the production rate of cloned embryos can also be enhanced by changing other factors. It has already been shown that abnormal chromosome segregation (ACS) is a major cause of the developmental failure of cloned embryos and that Latrunculin A (LatA), an actin polymerization inhibitor, improves F-actin formation and birth rate of cloned embryos. Since F-actin is important for chromosome congression in embryos, here we examined the relation between ACS and F-actin in cloned embryos. Using LatA treatment, the occurrence of ACS decreased significantly whereas cloned embryo-specific epigenetic abnormalities such as dimethylation of histone H3 at lysine 9 (H3K9me2) could not be corrected. In contrast, when H3K9me2 was normalized using the G9a histone methyltransferase inhibitor BIX-01294, the Magea2 gene—essential for normal development but never before expressed in cloned embryos—was expressed. However, this did not increase the cloning success rate. Thus, non-epigenetic factors also play an important role in determining the efficiency of mouse cloning. PMID:24205216

  5. RPE cell surface proteins in normal and dystrophic rats

    International Nuclear Information System (INIS)

    Clark, V.M.; Hall, M.O.

    1986-01-01

    Membrane-bound proteins in plasma membrane enriched fractions from cultured rat RPE were analyzed by two-dimensional gel electrophoresis. Membrane proteins were characterized on three increasingly specific levels. Total protein was visualized by silver staining. A maximum of 102 separate proteins were counted in silver-stained gels. Glycoproteins were labeled with 3H-glucosamine or 3H-fucose and detected by autoradiography. Thirty-eight fucose-labeled and 61-71 glucosamine-labeled proteins were identified. All of the fucose-labeled proteins were labeled with glucosamine-derived radioactivity. Proteins exposed at the cell surface were labeled by lactoperoxidase-catalyzed radioiodination prior to preparation of membranes for two-dimensional analysis. Forty separate 125I-labeled surface proteins were resolved by two-dimensional electrophoresis/autoradiography. Comparison with the glycoprotein map showed that a number of these surface labeled proteins were glycoproteins. Two-dimensional maps of total protein, fucose-labeled, and glucosamine-labeled glycoproteins, and 125I-labeled surface proteins of membranes from dystrophic (RCS rdy-p+) and normal (Long Evans or RCS rdy+p+) RPE were compared. No differences in the total protein or surface-labeled proteins were observed. However, the results suggest that a 183K glycoprotein is more heavily glycosylated with glucosamine and fucose in normal RPE membranes as compared to membranes from dystrophic RPE

  6. New castanospermine glycoside analogues inhibit breast cancer cell proliferation and induce apoptosis without affecting normal cells.

    Directory of Open Access Journals (Sweden)

    Ghada Allan

    Full Text Available sp²-Iminosugar-type castanospermine analogues have been shown to exhibit anti-tumor activity. However, their effects on cell proliferation and apoptosis and the molecular mechanism at play are not fully understood. Here, we investigated the effect of two representatives, namely the pseudo-S- and C-octyl glycoside 2-oxa-3-oxocastanospermine derivatives SO-OCS and CO-OCS, on MCF-7 and MDA-MB-231 breast cancer and MCF-10A mammary normal cell lines. We found that SO-OCS and CO-OCS inhibited breast cancer cell viability in a concentration- and time-dependent manner. This effect is specific to breast cancer cells as both molecules had no impact on normal MCF-10A cell proliferation. Both drugs induced a cell cycle arrest. CO-OCS arrested cell cycle at G1 and G2/M in MCF-7 and MDA-MB-231 cells respectively. In MCF-7 cells, the G1 arrest is associated with a reduction of CDK4 (cyclin-dependent kinase 4, cyclin D1 and cyclin E expression, pRb phosphorylation, and an overexpression of p21(Waf1/Cip1. In MDA-MB-231 cells, CO-OCS reduced CDK1 but not cyclin B1 expression. SO-OCS accumulated cells in G2/M in both cell lines and this blockade was accompanied by a decrease of CDK1, but not cyclin B1 expression. Furthermore, both drugs induced apoptosis as demonstrated by the increased percentage of annexin V positive cells and Bax/Bcl-2 ratio. Interestingly, in normal MCF-10A cells the two drugs failed to modify cell proliferation, cell cycle progression, cyclins, or CDKs expression. These results demonstrate that the effect of CO-OCS and SO-OCS is triggered by both cell cycle arrest and apoptosis, suggesting that these castanospermine analogues may constitute potential anti-cancer agents against breast cancer.

  7. Use of high throughput qPCR screening to rapidly clone low frequency tumour specific T-cells from peripheral blood for adoptive immunotherapy

    Directory of Open Access Journals (Sweden)

    Serrano Oscar K

    2008-10-01

    Full Text Available Abstract Background The adoptive transfer of autologous tumor reactive lymphocytes can mediate significant tumor regression in some patients with refractory metastatic cancer. However, a significant obstacle for this promising therapy has been the availability of highly efficient methods to rapidly isolate and expand a variety of potentially rare tumor reactive lymphocytes from the natural repertoire of cancer patients. Methods We developed a novel in vitro T cell cloning methodology using high throughput quantitative RT-PCR (qPCR assay as a rapid functional screen to detect and facilitate the limiting dilution cloning of a variety of low frequency T cells from bulk PBMC. In preclinical studies, this strategy was applied to the isolation and expansion of gp100 specific CD8+ T cell clones from the peripheral blood of melanoma patients. Results In optimization studies, the qPCR assay could detect the reactivity of 1 antigen specific T cell in 100,000 background cells. When applied to short term sensitized PBMC microcultures, this assay could detect T cell reactivity against a variety of known melanoma tumor epitopes. This screening was combined with early limiting dilution cloning to rapidly isolate gp100154–162 reactive CD8+ T cell clones. These clones were highly avid against peptide pulsed targets and melanoma tumor lines. They had an effector memory phenotype and showed significant proliferative capacity to reach cell numbers appropriate for adoptive transfer trials (~1010 cells. Conclusion This report describes a novel high efficiency strategy to clone tumor reactive T cells from peripheral blood for use in adoptive immunotherapy.

  8. Cell renewal of glomerular cell types in normal rats. An autoradiographic analysis

    International Nuclear Information System (INIS)

    Pabst, R.; Sterzel, R.B.

    1983-01-01

    Normal adult Sprague-Dawley rats received either a single or repetitive injection of the DNA precursor 3 H-thymidine ( 3 H-TdR). For autoradiography semi-thin sections were prepared 2 hr to 14 days after labeling. The majority of labeled cells noted in glomerular tufts were endothelial cells. Mesangial cells had a lower production rate. Podocytes revealed no evidence of proliferation. Bowman's capsule cells showed a higher labeling index than tuft cells at all times. Neither the urinary nor the vascular pole was found to be a proliferative zone for Bowman's capsule cells. The flash and repetitive labeling experiments demonstrated a constant rate of cell renewal of about 1% per day, resulting in a long life span for endothelial and mesangial cells as well as Bowman's capsule cells. These data provide a basis for cell kinetic studies in models of glomerular diseases

  9. Long-term effect on in vitro cloning efficiency after treatment of somatic cells with Xenopus egg extract in the pig.

    Science.gov (United States)

    Liu, Ying; Ostrup, Olga; Li, Rong; Li, Juan; Vajta, Gábor; Kragh, Peter M; Schmidt, Mette; Purup, Stig; Hyttel, Poul; Klærke, Dan; Callesen, Henrik

    2014-08-01

    In somatic cell nuclear transfer (SCNT), donor cell reprogramming is considered as a biologically important and vulnerable event. Various donor cell pre-treatments with Xenopus egg extracts can promote reprogramming. Here we investigated if the reprogramming effect of one treatment with Xenopus egg extract on donor cells was maintained for several cell passages. The extract treatment resulted in increased cell-colony formation from early passages in treated porcine fibroblasts (ExTES), and increased development of cloned embryos. Partial dedifferentiation was observed in ExTES cells, shown as a tendency towards upregulation of NANOG, c-MYC and KLF-4 and downregulation of DESMIM compared with ExTES at Passage 2. Compared with our routine SCNT, continuously increased development of cloned embryos was observed in the ExTES group, and ExTES cloned blastocysts displayed hypermethylated DNA patterns and hypermethylation of H3K4me3 and H3K27me3 in ICM compared with TE. All seven recipients became pregnant after transferral of ExTES cloned embryos and gave birth to 7-22 piglets per litter (average 12). In conclusion, our results demonstrate that one treatment of porcine fibroblasts with Xenopus egg extract can result in long-term increased ability of the cells to promote their in vitro function in subsequent SCNT. Finally these cells can also result in successful development of cloned embryos to term.

  10. A plasma cell differentiation quality control ablates B cell clones with biallelic Ig rearrangements and truncated Ig production.

    Science.gov (United States)

    Srour, Nivine; Chemin, Guillaume; Tinguely, Aurélien; Ashi, Mohamad Omar; Oruc, Zéliha; Péron, Sophie; Sirac, Christophe; Cogné, Michel; Delpy, Laurent

    2016-01-11

    Aberrantly rearranged immunoglobulin (Ig) alleles are frequent. They are usually considered sterile and innocuous as a result of nonsense-mediated mRNA decay. However, alternative splicing can yield internally deleted proteins from such nonproductively V(D)J-rearranged loci. We show that nonsense codons from variable (V) Igκ exons promote exon-skipping and synthesis of V domain-less κ light chains (ΔV-κLCs). Unexpectedly, such ΔV-κLCs inhibit plasma cell (PC) differentiation. Accordingly, in wild-type mice, rearrangements encoding ΔV-κLCs are rare in PCs, but frequent in B cells. Likewise, enforcing expression of ΔV-κLCs impaired PC differentiation and antibody responses without disturbing germinal center reactions. In addition, PCs expressing ΔV-κLCs synthesize low levels of Ig and are mostly found among short-lived plasmablasts. ΔV-κLCs have intrinsic toxic effects in PCs unrelated to Ig assembly, but mediated by ER stress-associated apoptosis, making PCs producing ΔV-κLCs highly sensitive to proteasome inhibitors. Altogether, these findings demonstrate a quality control checkpoint blunting terminal PC differentiation by eliminating those cells expressing nonfunctionally rearranged Igκ alleles. This truncated Ig exclusion (TIE) checkpoint ablates PC clones with ΔV-κLCs production and exacerbated ER stress response. The TIE checkpoint thus mediates selection of long-lived PCs with limited ER stress supporting high Ig secretion, but with a cost in terms of antigen-independent narrowing of the repertoire. © 2016 Srour et al.

  11. Generation and functional analysis of T cell lines and clones specific for schistosomula released products (SRP-A).

    Science.gov (United States)

    Damonneville, M; Velge, F; Verwaerde, C; Pestel, J; Auriault, C; Capron, A

    1987-01-01

    Antigens present in the products released by the larval stage of schistosome (SRP-A) were shown to induce a strong cytotoxic and protective IgE response both in the rat and the monkey. T cell lines and clones specific for SRP-A or 26 kD antigens which are the main target of the cytotoxic IgE have been derived. The passive transfer of SRP-A specific T lymphocytes into infected rats led to an increase of the IgE response, conferring a significant level of protection to the rats. In coculture assays in vitro, these cell lines significantly enhanced the production of IgE by SRP-A sensitized rat spleen cells. This helper effect on the IgE response was confirmed with 26 kD T cell clone supernatants. Moreover, supernatants obtained after stimulation with phorbol myristate acetate were able to enhance the IgE production of a hybridoma B cell line (B48-14) producing a monoclonal IgE antibody, cytotoxic for the schistosomula. PMID:3498590

  12. Generation and functional analysis of T cell lines and clones specific for schistosomula released products (SRP-A).

    Science.gov (United States)

    Damonneville, M; Velge, F; Verwaerde, C; Pestel, J; Auriault, C; Capron, A

    1987-08-01

    Antigens present in the products released by the larval stage of schistosome (SRP-A) were shown to induce a strong cytotoxic and protective IgE response both in the rat and the monkey. T cell lines and clones specific for SRP-A or 26 kD antigens which are the main target of the cytotoxic IgE have been derived. The passive transfer of SRP-A specific T lymphocytes into infected rats led to an increase of the IgE response, conferring a significant level of protection to the rats. In coculture assays in vitro, these cell lines significantly enhanced the production of IgE by SRP-A sensitized rat spleen cells. This helper effect on the IgE response was confirmed with 26 kD T cell clone supernatants. Moreover, supernatants obtained after stimulation with phorbol myristate acetate were able to enhance the IgE production of a hybridoma B cell line (B48-14) producing a monoclonal IgE antibody, cytotoxic for the schistosomula.

  13. Clonal analysis of the T-cell response to in vivo expressed Mycobacterium tuberculosis protein Rv2034, using a CD154 expression based T-cell cloning method.

    Directory of Open Access Journals (Sweden)

    Susanna Commandeur

    Full Text Available Tuberculosis (TB, caused by Mycobacterium tuberculosis (Mtb, remains a leading cause of death worldwide. A better understanding of the role of CD4+ and CD8+ T cells, which are both important to TB protection, is essential to unravel the mechanisms of protection and to identify the key antigens seen by these T cells. We have recently identified a set of in vivo expressed Mtb genes (IVE-TB which is expressed during in vivo pulmonary infection in mice, and shown that their encoded antigens are potently recognized by polyclonal T cells from tuberculin skin test-positive, in vitro ESAT-6/CFP10-responsive individuals. Here we have cloned T cells specific for one of these newly identified in vivo expressed Mtb (IVE-TB antigens, Rv2034. T cells were enriched based on the expression of CD154 (CD40L, which represents a new method for selecting antigen-specific (low frequency T cells independent of their specific function. An Rv2034-specific CD4+ T-cell clone expressed the Th1 markers T-bet, IFN-γ, TNF-α, IL-2 and the cytotoxicity related markers granzyme B and CD107a as measured by flow cytometry. The clone specifically recognized Rv2034 protein, Rv2034 peptide p81-100 and Mtb lysate. Remarkably, while the recognition of the dominant p81-100 epitope was HLA-DR restricted, the T-cell clone also recognized a neighboring epitope (p88-107 in an HLA-DR- as well as HLA-DQ1-restricted fashion. Importantly, the T-cell clone was able to inhibit Mtb outgrowth from infected monocytes significantly. The characterization of the polyfunctional and Mtb inhibitory T-cell response to IVE-TB Rv2034 at the clonal level provides detailed further insights into the potential of IVE-TB antigens as new vaccine candidate antigens in TB. Our new approach allowed the identification of T-cell subsets that likely play a significant role in controlling Mtb infection, and can be applied to the analysis of T-cell responses in patient populations.

  14. Cloning of smac gene and its overexpression effects on radiosensitivity of HeLa cells to γ-rays

    International Nuclear Information System (INIS)

    Zhao Baofeng; Tian Mei; Lei Hongwei; Su Xu

    2006-01-01

    Objective: To clone smac gene and construct eukaryocytic expression vector pcDNA3.1/ smac. The smac gene was transfected into HeLa cells to explore the effects of over-expression of extrinsic smac gene on radiosensitivity to γ-rays of HeLa cells. Methods: The full-length smac gene was amplified from total RNA of HeLa cells by RTPCR. The RTPCR product was ligated with the vector pcDNA3.1 and sequenced. The correct pcDNA3.1/smac was transfected into HeLa cells. The expression of smac gene was tested by RTPCR and Western blot. The cellular growth inhibition rates were evaluated by MTT 48 horns after irradiation with different doses of γ-rays. Results: Recombinant eukaryocytic expression vector pcDNA3.1/smac was successfully constructed. RTPCR and Western blot results indicated that the expression of smac gene of HeLa/smac cells was significantly enhanced compared with the expression of smac gene of HeLa/pcDNA3.1 and HeLa cells. 48 hours after different doses of γ-ray irradiation was significantly higher in pcDNA3.1/smac transfected HeLa/smac cells than those of non-transfected HeLa cells or pcDNA3.1 transfected HeLa/pcDNA3.1 cells, inhabitation rates were 38.85%, 17.64% and 20.32%, respectively. Conclusions: smac gene was successfully cloned. Extrinsic smac gene over-expression could significantly enhance radiosensitivity to γ-ray of HeLa cells, which would herald a new approach to improve radiosensitivity of cervical cancer. (authors)

  15. Effect of dioxin on normal and leukemic human hematopoietic cells

    Energy Technology Data Exchange (ETDEWEB)

    Lambertenghi-Deliliers, G.; Soligo, D. [Univ. degli Studi, Milan (Italy). Dipt. die Ematologia, Ospedale Maggiore Policlinico IRCCS; Fracchiolla, N.S. [Ospedale Maggiore Policlinico IRCCS, Milan (Italy). Dipt. di Ematologia; Servida, F. [Fondazione Matarelli, Milan (Italy); Bertazzi, P.A. [Istituti Clinici di Perfezionamento, Milan (Italy). Dipt. di Medicina del Lavoro

    2004-09-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) arises from chlorination of phenolic substrates or from partial combustion of organic materials in the presence of chlorine sources. TCDD has a large number of biological effects such as long-lasting skin disease, cardiovascular disease, diabete and cancer. TCDD is the prototypical agonist of the aryl hydrocarbon receptor (AhR), a member of the erb-A family that also includes the receptors for steroids, thyroid hormones, peroxisome proliferators and retinoids. When bound to dioxin, the AhR can bind to DNA and alter the expression of some genes including cytokines and growth factors. In this study, we analyzed the effect of escalating doses of TCDD on human CD34{sup +} progenitor cells from the leukapheresis of normal donors stimulated with G-CSF as well as the human myeloid leukemic cell lines HL60 (promyelocytic leukemia) and K562 (chronic myelogenous leukemia). The possible specific modulation of gene expression induced by the TCDD exposure was then tested by means of microarray analyses.

  16. Therapeutic cloning: The ethical limits

    International Nuclear Information System (INIS)

    Whittaker, Peter A.

    2005-01-01

    A brief outline of stem cells, stem cell therapy and therapeutic cloning is given. The position of therapeutic cloning with regard to other embryonic manipulations - IVF-based reproduction, embryonic stem formation from IVF embryos and reproductive cloning - is indicated. The main ethically challenging stages in therapeutic cloning are considered to be the nuclear transfer process including the source of eggs for this and the destruction of an embryo to provide stem cells for therapeutic use. The extremely polarised nature of the debate regarding the status of an early human embryo is noted, and some potential alternative strategies for preparing immunocompatible pluripotent stem cells are indicated

  17. Cloning, expression, and chromosome mapping of human galectin-7

    DEFF Research Database (Denmark)

    Madsen, Peder; Rasmussen, H H; Flint, T

    1995-01-01

    The galectins are a family of beta-galactoside-binding proteins implicated in modulating cell-cell and cell-matrix interactions. Here we report the cloning and expression of a novel member of this family (galectin-7) that correspond to IEF (isoelectric focusing) 17 (12,700 Da; pI, 7.6) in the human...... keratinocyte protein data base, and that is strikingly down-regulated in SV40 transformed keratinocytes (K14). The cDNA was cloned from a lambda gt11 cDNA expression library using degenerated oligodeoxyribonucleotides back-translated from an IEF 17 peptide sequence. The protein encoded by the galectin-7 clone......14 keratinocytes imply a role in cell-cell and/or cell-matrix interactions necessary for normal growth control. The galectin-7 gene was mapped to chromosome 19. Udgivelsesdato: 1995-Mar-17...

  18. MUC-1-ESA+ progenitor cells in normal benign and malignant human breast epithelial cells

    OpenAIRE

    Lu, Xinquan; Li, Huixiang; Xu, Kejia; Nesland, Jahn M.; Suo, Zhenhe

    2009-01-01

    The existence of mammary epithelial stem/progenitor cells has been demonstrated in MUC-1-/ ESA+ subpopulations of breast epithelial cells. However, knowledge about the expression and localization in benign and malignant breast lesions is unknown. Using a double-staining immunohistochemistry method, we investigated MUC-1-/ESA+ cells in 10 normal breast tissues, 49 cases with fibrocystic disease, 40 fibroadenomas, 36 invasive ductal carcinomas and the breast cancer ce...

  19. Functional pharmacology of cloned heterodimeric GABA-B receptors expressed in mammalian cells

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Krogsgaard-Larsen, P

    1999-01-01

    reported in different tissues, and this study thus provides a functional assay of cloned GABAB receptors which should be a valuable tool for further characterization of GABAB ligands. Finally, we can conclude that the functional pharmacological profiles of the two GABABR1 splice variants are very similar....

  20. Interclonal variations in the molecular karyotype of Trypanosoma cruzi: chromosome rearrangements in a single cell-derived clone of the G strain.

    Science.gov (United States)

    Lima, Fabio Mitsuo; Souza, Renata Torres; Santori, Fábio Rinaldo; Santos, Michele Fernandes; Cortez, Danielle Rodrigues; Barros, Roberto Moraes; Cano, Maria Isabel; Valadares, Helder Magno Silva; Macedo, Andréa Mara; Mortara, Renato Arruda; da Silveira, José Franco

    2013-01-01

    Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure.

  1. Somatic Cell Nuclear Transfer Followed by CRIPSR/Cas9 Microinjection Results in Highly Efficient Genome Editing in Cloned Pigs

    Directory of Open Access Journals (Sweden)

    Timothy P. Sheets

    2016-12-01

    Full Text Available The domestic pig is an ideal “dual purpose” animal model for agricultural and biomedical research. With the availability of genome editing tools such as clustered regularly interspaced short palindromic repeat (CRISPR and associated nuclease Cas9 (CRISPR/Cas9, it is now possible to perform site-specific alterations with relative ease, and will likely help realize the potential of this valuable model. In this article, we investigated for the first time a combination of somatic cell nuclear transfer (SCNT and direct injection of CRISPR/Cas ribonucleoprotein complex targeting GRB10 into the reconstituted oocytes to generate GRB10 ablated Ossabaw fetuses. This strategy resulted in highly efficient (100% generation of biallelic modifications in cloned fetuses. By combining SCNT with CRISPR/Cas9 microinjection, genome edited animals can now be produced without the need to manage a founder herd, while simultaneously eliminating the need for laborious in vitro culture and screening. Our approach utilizes standard cloning techniques while simultaneously performing genome editing in the cloned zygotes of a large animal model for agriculture and biomedical applications.

  2. Cell of origin associated classification of B-cell malignancies by gene signatures of the normal B-cell hierarchy.

    Science.gov (United States)

    Johnsen, Hans Erik; Bergkvist, Kim Steve; Schmitz, Alexander; Kjeldsen, Malene Krag; Hansen, Steen Møller; Gaihede, Michael; Nørgaard, Martin Agge; Bæch, John; Grønholdt, Marie-Louise; Jensen, Frank Svendsen; Johansen, Preben; Bødker, Julie Støve; Bøgsted, Martin; Dybkær, Karen

    2014-06-01

    Recent findings have suggested biological classification of B-cell malignancies as exemplified by the "activated B-cell-like" (ABC), the "germinal-center B-cell-like" (GCB) and primary mediastinal B-cell lymphoma (PMBL) subtypes of diffuse large B-cell lymphoma and "recurrent translocation and cyclin D" (TC) classification of multiple myeloma. Biological classification of B-cell derived cancers may be refined by a direct and systematic strategy where identification and characterization of normal B-cell differentiation subsets are used to define the cancer cell of origin phenotype. Here we propose a strategy combining multiparametric flow cytometry, global gene expression profiling and biostatistical modeling to generate B-cell subset specific gene signatures from sorted normal human immature, naive, germinal centrocytes and centroblasts, post-germinal memory B-cells, plasmablasts and plasma cells from available lymphoid tissues including lymph nodes, tonsils, thymus, peripheral blood and bone marrow. This strategy will provide an accurate image of the stage of differentiation, which prospectively can be used to classify any B-cell malignancy and eventually purify tumor cells. This report briefly describes the current models of the normal B-cell subset differentiation in multiple tissues and the pathogenesis of malignancies originating from the normal germinal B-cell hierarchy.

  3. Equivalency of Buffalo (Bubalus Bubalis) Embryonic Stem Cells Derived From Fertilized, Parthenogenetic, and Hand-Made Cloned Embryos

    Science.gov (United States)

    Muzaffar, Musharifa; Selokar, Naresh L.; Singh, Karn P.; Zandi, Mohammad; Singh, Manoj K.; Shah, Riaz A.; Chauhan, Manmohan S.; Singla, Suresh K.; Palta, Prabhat

    2012-01-01

    Abstract This study was aimed at establishing buffalo embryonic stem cells (ESCs) from in vitro fertilized (IVF), parthenogenetic, and hand-made cloned (HMC) embryos and to check their equivalency in terms of stem cell marker expression, longevity, proliferation, and differentiation pattern. ESCs derived from all three sources were found by immunofluorescence to express the pluripotency markers SSEA-4, TRA-1-60, TRA-1-81, OCT4, and SOX2 and were able to form embryoid bodies containing cells expressing genes specific to endoderm (AFP, HNF4, and GATA4), mesoderm (MSX1, BMP4, and ASA), and ectoderm (cytokeratin 8 and NF68). Reverse transcriptase PCR (RT-PCR) showed cells from all sources to be positive for pluripotency markers OCT4, SOX2, NANOG, STAT3, REX1, FOXD3, NUCLEOSTEMIN, and TELOMERASE. Pluripotency markers OCT4, SOX2, NANOG, and c-MYC were also analyzed by real-time PCR. No significant differences were observed among ESCs from all three sources for all these genes except NANOG, whose expression was higher (pcells (1.603±0.315 and 1±0, respectively). Pluripotent, stable buffalo ESC lines derived from IVF, parthenogenesis, and HMC embryos may be genetically manipulated to provide a powerful tool for studies involving embryonic development, genomic imprinting, gene targeting, cloning, chimera formation, and transgenic animal production. PMID:22582863

  4. A novel SIV gag-specific CD4(+)T-cell clone suppresses SIVmac239 replication in CD4(+)T cells revealing the interplay between antiviral effector cells and their infected targets.

    Science.gov (United States)

    Ayala, Victor I; Trivett, Matthew T; Coren, Lori V; Jain, Sumiti; Bohn, Patrick S; Wiseman, Roger W; O'Connor, David H; Ohlen, Claes; Ott, David E

    2016-06-01

    To study CD4(+)T-cell suppression of AIDS virus replication, we isolated nine rhesus macaque SIVGag-specific CD4(+)T-cell clones. One responding clone, Gag68, produced a typical cytotoxic CD8(+)T-cell response: induction of intracellular IFN-γ, MIP-1α, MIP-1β, and CD107a degranulation. Gag68 effectively suppressed the spread of SIVmac239 in CD4(+)T cells with a corresponding reduction of infected Gag68 effector cells, suggesting that CD4(+)effectors need to suppress their own infection in addition to their targets to be effective. Gag68 TCR cloning and gene transfer into CD4(+)T cells enabled additional experiments with this unique specificity after the original clone senesced. Our data supports the idea that CD4(+)T cells can directly limit AIDS virus spread in T cells. Furthermore, Gag68 TCR transfer into CD4(+)T-cell clones with differing properties holds promise to better understand the suppressive effector mechanisms used by this important component of the antiviral response using the rhesus macaque model. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership?

    DEFF Research Database (Denmark)

    Levin Andersen, Thomas; Boissy, Patrice; Sondergaard, T E

    2007-01-01

    through fusion between myeloma cells and osteoclasts. In conclusion, malignant cells contribute significantly to the formation of bone-resorbing osteoclasts in multiple myeloma. Osteoclast-myeloma clone hybrids reflect a previously unrecognized mechanism of bone destruction in which malignant cells...

  6. Glycosaminoglycan-sac formation in vitro. Interactions between normal and malignant cells

    OpenAIRE

    Logothetou-Rella, H.

    1994-01-01

    The interaction of monolayer normal human or normal rat cells with suspension Walker rat tumor cells was demonstrated cytologically, during a cocultivation period of thirty days. At ten days, Walker rat tumor cells were interiorized in the cytoplasm of the normal monolayer host cells. At twenty days, degeneration of the interiorized tumor cells followed by mucification led to glycosaminoglycan-sac formation. At thirty days, tumor nodules and protease (a,- c...

  7. Persistence of collagen type II-specific T-cell clones in the synovial membrane of a patient with rheumatoid arthritis

    International Nuclear Information System (INIS)

    Londei, M.; Savill, C.M.; Verhoef, A.; Brennan, F.; Leech, Z.A.; Feldmann, M.; Duance, V.; Maini, R.N.

    1989-01-01

    Rheumatoid arthritis is an autoimmune disease characterized by T-cell infiltration of the synovium of joints. Analysis of the phenotype and antigen specificity of the infiltrating cells may thus provide insight into the pathogenesis of rheumatoid arthritis. T cells were cloned with interleukin 2, a procedure that selects for in vivo-activated cells. All clones had the CD4 CDW29 phenotype. Their antigen specificity was tested by using a panel of candidate joint autoantigens. Four of 17 reacted against autologous blood mononuclear cells. Two clones proliferated in response to collagen type II. After 21 months, another set of clones was derived from synovial tissue of the same joint. One of eight clones tested showed a strong proliferative response against collagen type II. The uncloned synovial T cells of a third operation from another joint also responded to collagen type II. The persistence of collagen type II-specific T cells in active rheumatoid joints over a period of 3 years suggests that collagen type II could be one of the autoantigens involved in perpetuating the inflammatory process in rheumatoid arthritis

  8. ReMixT: clone-specific genomic structure estimation in cancer.

    Science.gov (United States)

    McPherson, Andrew W; Roth, Andrew; Ha, Gavin; Chauve, Cedric; Steif, Adi; de Souza, Camila P E; Eirew, Peter; Bouchard-Côté, Alexandre; Aparicio, Sam; Sahinalp, S Cenk; Shah, Sohrab P

    2017-07-27

    Somatic evolution of malignant cells produces tumors composed of multiple clonal populations, distinguished in part by rearrangements and copy number changes affecting chromosomal segments. Whole genome sequencing mixes the signals of sampled populations, diluting the signals of clone-specific aberrations, and complicating estimation of clone-specific genotypes. We introduce ReMixT, a method to unmix tumor and contaminating normal signals and jointly predict mixture proportions, clone-specific segment copy number, and clone specificity of breakpoints. ReMixT is free, open-source software and is available at http://bitbucket.org/dranew/remixt .

  9. Clip, connect, clone

    DEFF Research Database (Denmark)

    Fujima, Jun; Lunzer, Aran; Hornbæk, Kasper

    2010-01-01

    using three mechanisms: clipping of input and result elements from existing applications to form cells on a spreadsheet; connecting these cells using formulas, thus enabling result transfer between applications; and cloning cells so that multiple requests can be handled side by side. We demonstrate...

  10. Somatic donor cell type correlates with embryonic, but not extra-embryonic, gene expression in postimplantation cloned embryos.

    Directory of Open Access Journals (Sweden)

    Ryutaro Hirasawa

    Full Text Available The great majority of embryos generated by somatic cell nuclear transfer (SCNT display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts. The embryos retrieved from the uteri were separated into embryonic (epiblast and extraembryonic (extraembryonic ectoderm and ectoplacental cone tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs (>2-fold vs. controls than did the extraembryonic tissues (P<1.0 × 10(-26. In the embryonic tissues, one of the common abnormalities was upregulation of Dlk1, a paternally imprinted gene. This might be a potential cause of the occasional placenta-only conceptuses seen in SCNT-generated mouse embryos (1-5% per embryos transferred in our laboratory, because dysregulation of the same gene is known to cause developmental failure of embryos derived from induced pluripotent stem cells. There were also some DEGs in the extraembryonic tissues, which might explain the poor development of SCNT-derived placentas at early stages. These findings suggest that SCNT affects the embryonic and extraembryonic development differentially and might cause further deterioration in the embryonic lineage in a donor cell-specific manner. This could explain donor cell-dependent variations in cloning efficiency using SCNT.

  11. Post-death cloning of endangered Jeju black cattle (Korean native cattle): fertility and serum chemistry in a cloned bull and cow and their offspring.

    Science.gov (United States)

    Kim, Eun Young; Song, Dong Hwan; Park, Min Jee; Park, Hyo Young; Lee, Seung Eun; Choi, Hyun Yong; Moon, Jeremiah Jiman; Kim, Young Hoon; Mun, Seong Ho; Oh, Chang Eon; Ko, Moon Suck; Lee, Dong Sun; Riu, Key Zung; Park, Se Pill

    2013-12-17

    To preserve Jeju black cattle (JBC; endangered native Korean cattle), a pair of cattle, namely a post-death cloned JBC bull and cow, were produced by somatic cell nuclear transfer (SCNT) in a previous study. In the present study, we examined the in vitro fertilization and reproductive potentials of these post-death cloned animals. Sperm motility, in vitro fertilization and developmental capacity were examined in a post-death cloned bull (Heuk Oll Dolee) and an extinct nuclear donor bull (BK94-13). We assessed reproductive ability in another post-death cloned cow (Heuk Woo Sunee) using cloned sperm for artificial insemination (AI). There were no differences in sperm motility or developmental potential of in vitro fertilized embryos between the post-death cloned bull and its extinct nuclear donor bull; however, the embryo development ratio was slightly higher in the cloned sperm group than in the nuclear donor sperm group. After one attempt at AI, the post-death cloned JBC cow became pregnant, and gestation proceeded normally until day 287. From this post-death cloned sire and dam, a JBC male calf (Heuk Woo Dolee) was delivered naturally (weight, 25 kg). The genetic paternity/maternity of the cloned JBC bull and cow with regard to their offspring was confirmed using International Society for Animal Genetics standard microsatellite markers. Presently, Heuk Woo Dolee is 5 months of age and growing normally. In addition, there were no significant differences in blood chemistry among the post-death cloned JBC bull, the cow, their offspring and cattle bred by AI. This is the first report showing that a pair of cattle, namely, a post-death cloned JBC bull and cow, had normal fertility. Therefore, SCNT can be used effectively to increase the population of endangered JBC.

  12. Raman Spectroscopy of DNA Packaging in Individual Human Sperm Cells distinguishes Normal from Abnormal Cells

    Energy Technology Data Exchange (ETDEWEB)

    Huser, T; Orme, C; Hollars, C; Corzett, M; Balhorn, R

    2009-03-09

    Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with male infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modes that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization.

  13. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    International Nuclear Information System (INIS)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun

    2014-01-01

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further

  14. Production of rhesus monkey cloned embryos expressing monomeric red fluorescent protein by interspecies somatic cell nuclear transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo; Jin, Jun-Xue; Hong, Yu; Jin, Long; Guo, Qing; Gao, Qing-Shan; Yan, Chang-Guo; Yin, Xi-Jun, E-mail: yinxj33@msn.com

    2014-02-21

    Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesus monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.

  15. Academic Cloning.

    Science.gov (United States)

    Sikula, John P.; Sikula, Andrew F.

    1980-01-01

    The authors define "cloning" as an integral feature of all educational systems, citing teaching practices which reward students for closely reproducing the teacher's thoughts and/or behaviors and administrative systems which tend to promote like-minded subordinates. They insist, however, that "academic cloning" is not a totally…

  16. Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs

    Science.gov (United States)

    Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2014-01-01

    Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489

  17. Cell Survival and DNA Damage in Normal Prostate Cells Irradiated Out-of-Field.

    LENUS (Irish Health Repository)

    Shields, L

    2014-10-31

    Interest in out-of-field radiation dose has been increasing with the introduction of new techniques, such as volumetric modulated arc therapy (VMAT). These new techniques offer superior conformity of high-dose regions to the target compared to conventional techniques, however more normal tissue is exposed to low-dose radiation with VMAT. There is a potential increase in radiobiological effectiveness associated with lower energy photons delivered during VMAT as normal cells are exposed to a temporal change in incident photon energy spectrum. During VMAT deliveries, normal cells can be exposed to the primary radiation beam, as well as to transmission and scatter radiation. The impact of low-dose radiation, radiation-induced bystander effect and change in energy spectrum on normal cells are not well understood. The current study examined cell survival and DNA damage in normal prostate cells after exposure to out-of-field radiation both with and without the transfer of bystander factors. The effect of a change in energy spectrum out-of-field compared to in-field was also investigated. Prostate cancer (LNCaP) and normal prostate (PNT1A) cells were placed in-field and out-of-field, respectively, with the PNT1A cells being located 1 cm from the field edge when in-field cells were being irradiated with 2 Gy. Clonogenic and γ-H2AX assays were performed postirradiation to examine cell survival and DNA damage. The assays were repeated when bystander factors from the LNCaP cells were transferred to the PNT1A cells and also when the PNT1A cells were irradiated in-field to a different energy spectrum. An average out-of-field dose of 10.8 ± 4.2 cGy produced a significant reduction in colony volume and increase in the number of γ-H2AX foci\\/cell in the PNT1A cells compared to the sham-irradiated control cells. An adaptive response was observed in the PNT1A cells having first received a low out-of-field dose and then the bystander factors. The PNT1A cells showed a significant

  18. Mitogen-stimulated phospholipid synthesis in normal and immune-deficient human B cells

    International Nuclear Information System (INIS)

    Chien, M.M.; Yokoyama, W.M.; Ashman, R.F.

    1986-01-01

    Eight patients with common variable panhypogammaglobulinemia were shown in the in vitro Ig biosynthesis assay to have defective B cell responses to pokeweed mitogen (PWM). Phospholipid synthesis was assessed in the B cell plus monocyte fraction (MB) and irradiated T cells (T*) of patients and paired normal controls. Cell populations were studied separately and in the four possible combinations (1:1), with and without PWM, to reveal the effect of cell interactions. At 16 to 20 hr the mean stimulation index (SI) +/- standard error for MB cells alone was 1.01 +/- 0.02 for eight patients and 0.99 +/- 0.02 for the paired normals; the T* cell SI was 1.25 +/- 0.04 for patients and 1.28 +/- 0.05 for normals. Combinations of normal MB cells with normal T* cells showed significantly higher SI when compared with the combinations of normal MB cells with patient T* cells (p less than 0.005). However, the combination of patient MB cells with patient T* cells and the combination of patient MB cells with normal T* cells were not significantly different in SI (0.05 less than p less than 0.1). Isolation of patient and normal B cells, T* cells, and monocytes after the choline pulse showed that patient B cells gave a higher SI with normal T* help than with patient T* help. Of greatest interest is the finding that patient B cells that were defective in PWM-stimulated Ig production nevertheless showed a phospholipid synthesis response to PWM in the normal range, suggesting that the maturation defect in these B cells occurs later than the phospholipid synthesis acceleration step, or on a different pathway

  19. Failure of anti-T-cell receptor V beta antibodies to consistently identify a malignant T-cell clone in Sézary syndrome.

    Science.gov (United States)

    Bigler, R D; Boselli, C M; Foley, B; Vonderheid, E C

    1996-11-01

    Monoclonal antibodies (MAbs) reacting with the human T cell receptor (TCR) V beta or V alpha region have been shown to be almost as specific as a private idiotypic MAb in identifying T cell clones. When available, V beta-specific MAbs offer the ease of immunofluorescence analysis to identify and quantitate expanded malignant or nonmalignant T cell populations without requiring polymerase chain reaction (PCR) technology to evaluate expression of V beta gene families. The V beta expression of peripheral blood lymphocytes from twenty-three consecutive patients with Sézary syndrome has been analyzed by reverse transcriptase (RT)-PCR. Ten patients had malignant T cell clones that expressed a TCR V beta corresponding to a commercially available anti-V beta antibody. Immunofluorescence staining with anti-V beta MAbs showed a direct correlation with RT-PCR results in seven of ten patients. No false positive reactivity was noted on immunofluorescence staining with any MAb. Cells from three patients, however, did not react with the corresponding anti-V beta MAb. These three cases expressed a TCR V beta from gene families containing a single member, ie, V beta 14, V beta 18, and V beta 20, yet MAbs reported to be specific for these regions failed to react with the T cell clone from these patients. Sequencing of the PCR product in these cases confirmed the RT-PCR results. Cells from two patients expressed a TCR using V beta 5.1-D beta 1.1 genes with different J-C segments. One patient's cells reacted with an anti-V beta 5.1 MAb (LC4) whereas the other patient's cells bound one-tenth the amount of this same MAb. These results indicate that currently available anti-TCR V region MAbs may not react consistently with T cell clones expressing the corresponding V region or may react with a low affinity making detection difficult. Differences in the J-C junction or in CDR3 may influence the binding of these MAbs. Until the false negative rate is reduced and the fine specificity and

  20. CD4+ T-cell clones obtained from cattle chronically infected with Fasciola hepatica and specific for adult worm antigen express both unrestricted and Th2 cytokine profiles.

    Science.gov (United States)

    Brown, W C; Davis, W C; Dobbelaere, D A; Rice-Ficht, A C

    1994-01-01

    The well-established importance of helper T (Th)-cell subsets in immunity and immunoregulation of many experimental helminth infections prompted a detailed study of the cellular immune response against Fasciola hepatica in the natural bovine host. T-cell lines established from two cattle infected with F. hepatica were characterized for the expression of T-cell surface markers and proliferative responses against F. hepatica adult worm antigen. Parasite-specific T-cell lines contained a mixture of CD4+, CD8+, and gamma/delta T-cell-receptor-bearing T cells. However, cell lines containing either fewer than 10% CD8+ T cells or depleted of gamma/delta T cells proliferated vigorously against F. hepatica antigen, indicating that these T-cell subsets are not required for proliferative responses in vitro. Seventeen F. hepatica-specific CD4+ Th-cell clones were examined for cytokine expression following concanavalin A stimulation. Biological assays to measure interleukin-2 (IL-2) or IL-4, gamma interferon (IFN-gamma), and tumor necrosis factor and Northern (RNA) blot analysis to verify the expression of IL-2, IL-4, and IFN-gamma revealed that the Th-cell clones expressed a spectrum of cytokine profiles. Several Th-cell clones were identified as Th2 cells by the strong expression of IL-4 but little or no IL-2 or IFN-gamma mRNA. The majority of Th-cell clones were classified as Th0 cells by the expression of either all three cytokines or combinations of IL-2 and IL-4 or IL-4 and IFN-gamma. No Th1-cell clones were obtained. All of the Th-cell clones expressed a typical memory cell surface phenotype, characterized as CD45Rlow, and all expressed the lymph node homing receptor (L selectin). These results are the first to describe cytokine responses of F. hepatica-specific T cells obtained from infected cattle and extend our previous analysis of Th0 and Th1 cells from cattle immune to Babesia bovis (W. C. Brown, V. M. Woods, D. A. E. Dobbelaere, and K. S. Logan, Infect. Immun. 61

  1. Complete dissection of the Hb(64-76) determinant using T helper 1, T helper 2 clones, and T cell hybridomas

    DEFF Research Database (Denmark)

    Evavold, B D; Williams, S G; Hsu, B L

    1992-01-01

    We have generated cloned Th1 cells, Th2 cells, and T cell hybridomas specific for the single immunogenic peptide from the beta-chain of murine hemoglobin (Hb(64-76)). The availability of these various types of T cells provided us an unique opportunity to examine and dissect the T cell response...... to an immunogenic peptide. A panel of altered Hb peptides was made by replacing each amino acid in the Hb peptide (positions 64-76) with a conservative amino acid substitution or an alanine. Although none of the eleven T cell clones and hybridomas tested exhibited the same pattern of reactivity to the substituted...... Hb peptides, some general features were identified for all T cell responses. The primary T cell contact residue of Hb(64-76) was shown to be asparagine 72. For every Hb(64-76) specific T cell, no activation was observed using a peptide containing the conservative substitution of a glutamine...

  2. Revisiting the identification and cDNA cloning of T cell-replacing factor/interleukin-5

    Directory of Open Access Journals (Sweden)

    Kiyoshi eTakatsu

    2014-12-01

    Full Text Available This is a perspective based on the paper Cloning of complementary DNA encoding T cell replacing factor and identity with B cell growth factor II, by Kinashi T, Harada N, Severinson E, Tanabe T, Sideras P, Konishi M, Azuma C, Tominaga A, Bergstedt-Lindqvist S, Takahashi M, Matsuda F, Yaoita Y, Takatsu K, and Honjo, T. Nature (1986 32(6092: 70-3. We have been interested in understanding the molecular basis of T-B cell cooperation for antibody formation. Although many investigators had described a number of different soluble factors that appeared to have biological relevance to T-B cell interactions, molecular basis of such active substances remained unknown for a long period of time. In this perspective, I will briefly summarize the history of the initial discovery of T cell-replacing factor/B cell growth factor II that appeared to be involved in B-cell growth and differentiation, and outline the discovery and characterization of interleukin-5. Studies of interleukin-5 have provided strong evidence that a single cytokine exerts a variety of activities on diverse target cells.

  3. Transgenic mammalian species, generated by somatic cell cloning, in biomedicine, biopharmaceutical industry and human nutrition/dietetics--recent achievements.

    Science.gov (United States)

    Samiec, M; Skrzyszowska, M

    2011-01-01

    Somatic cell cloning technology in mammals promotes the multiplication of productively-valuable genetically engineered individuals, and consequently allows also for standardization of transgenic farm animal-derived products, which, in the context of market requirements, will have growing significance. Gene farming is one of the most promising areas in modern biotechnology. The use of live bioreactors for the expression of human genes in the lactating mammary gland of transgenic animals seems to be the most cost-effective method for the production/processing of valuable recombinant therapeutic proteins. Among the transgenic farm livestock species used so far, cattle, goats, sheep, pigs and rabbits are useful candidates for the expression of tens to hundreds of grams of genetically-engineered proteins or xenogeneic biopreparations in the milk. At the beginning of the new millennium, a revolution in the treatment of disease is taking shape due to the emergence of new therapies based on recombinant human proteins. The ever-growing demand for such pharmaceutical or nutriceutical proteins is an important driving force for the development of safe and large-scale production platforms. The aim of this paper is to present an overall survey of the state of the art in investigations which provide the current knowledge for deciphering the possibilities of practical application of the transgenic mammalian species generated by somatic cell cloning in biomedicine, the biopharmaceutical industry, human nutrition/dietetics and agriculture.

  4. CDDO-Me protects normal lung and breast epithelial cells but not cancer cells from radiation.

    Directory of Open Access Journals (Sweden)

    Mariam El-Ashmawy

    Full Text Available Although radiation therapy is commonly used for treatment for many human diseases including cancer, ionizing radiation produces reactive oxygen species that can damage both cancer and healthy cells. Synthetic triterpenoids, including CDDO-Me, act as anti-inflammatory and antioxidant modulators primarily by inducing the transcription factor Nrf2 to activate downstream genes containing antioxidant response elements (AREs. In the present series of experiments, we determined if CDDO-Me can be used as a radioprotector in normal non-cancerous human lung and breast epithelial cells, in comparison to lung and breast cancer cell lines. A panel of normal non-cancerous, partially cancer progressed, and cancer cell lines from both lung and breast tissue was exposed to gamma radiation with and without pre-treatment with CDDO-Me. CDDO-Me was an effective radioprotector when given ∼18 hours before radiation in epithelial cells (average dose modifying factor (DMF = 1.3, and Nrf2 function was necessary for CDDO-Me to exert these radioprotective effects. CDDO-Me did not protect cancer lines tested from radiation-induced cytotoxicity, nor did it protect experimentally transformed human bronchial epithelial cells (HBECs with progressive oncogenic manipulations. CDDO-Me also protected human lymphocytes against radiation-induced DNA damage. A therapeutic window exists in which CDDO-Me protects normal cells from radiation by activating the Nrf2 pathway, but does not protect experimentally transformed or cancer cell lines. This suggests that use of this oral available, non-toxic class of drug can protect non-cancerous healthy cells during radiotherapy, resulting in better outcomes and less toxicity for patients.

  5. Myths about Cloning

    Science.gov (United States)

    ... aging normally. In fact, the first cattle clones ever produced are alive, healthy, and are 10 years old as of January 2008. Back to the ... until we finish assessing their safety. To the best of our knowledge, they have done so. After years of detailed study and analysis, FDA has concluded ...

  6. Survival and mutation in clones derived from V79 Chinese hamster cells irradiated with multiple small exposures to far-UV and mid-UV

    International Nuclear Information System (INIS)

    Ikebuchi, M.; Osmak, M.; Hill, C.

    1987-01-01

    Clones were isolated from U81 and N80 cells that were established by irradiation of Chinese hamster V79-M12G cells on a once a day schedule with 81 and 80 fractions of 6 J m/sup -2/ far-UV and 150 Jm/sup -2/ mid-UV (UV-B), respectively. These clones were examined for UV sensitivity to cell lethality and induction of mutations at 6TG/sup r/ (resistance to 6-thioguanine) and Oua/sup R/ (resistance to ouabain) loci. Survival curves for these clones indicate that their UV sensitivities to lethality vary from that of M12G cells to that of U81 and N80 parental cells. Clones also show heterogeneity for mutability to mid-UV: For induction of 6TG/sup r/, for example, non-mutable (U814), hypomutable (U815) and hypermutable (U811) were isolated from U81 cells. The authors are investigating by chromosome analysis and repair experiments why resistance to far-UV and mid-UV cell killing in these cells appears to be induced but the resulting survivors have a heterogeneous response to mutation induction by further doses of UV light

  7. Derivation from an alloreactive T-cell line of a clone which cross-reacts with a self H2-E-restricted minor alloantigen

    DEFF Research Database (Denmark)

    Owens, T; Liddell, M E; Crispe, I N

    1984-01-01

    An alloreactive T-helper-cell line [(A.TH X Balb/c) anti-A.TL] was shown to recognize both H2-Ek and H2-Ed. Both proliferation and polyclonal B-cell activation (protein A plaques) were used in the analyses of specificity. On cloning, the H2-Ek/Ed cross-reaction was shown by one clonotype...

  8. Comparison of heat and/or radiation sensitivity and membrane composition of seven X-ray-transformed C3H 10T1/2 cell lines and normal C3H 10T1/2 cells

    International Nuclear Information System (INIS)

    Raaphorst, G.P.; Vadasz, J.A.; Azzam, E.I.; Sargent, M.D.; Borsa, J.; Einspenner, M.

    1985-01-01

    C3H 10T1/2 mouse embryo cells were transformed by X-irradiation, and seven transformed clones were isolated and propagated as cell lines. Some of these cell lines produced tumors in syngeneic mice and grew in agarose while the normal C3H 10T1/2 cell line did not possess these characteristics. Exponentially growing cell cultures with comparable cell-cycle distributions as measured by flow cytometry were tested for heat and X-ray sensitivity. The heat and X-ray sensitivity varied randomly compared to the normal cell line. One cell line was more heat resistant and one more heat sensitive than the normal cell line, and the others had sensitivities comparable to the normal cell line. Measurements on some of the biochemical parameters of the particulate fraction of cells after sonication and 24,000 X g centrifugation showed that altered thermal sensitivity was not correlated with protein, cholesterol, or phospholipid content of this fraction

  9. In vitro oocyte culture and somatic cell nuclear transfer used to produce a live-born cloned goat.

    Science.gov (United States)

    Ohkoshi, Katsuhiro; Takahashi, Seiya; Koyama, Shin-Ichiro; Akagi, Satoshi; Adachi, Noritaka; Furusawa, Tadashi; Fujimoto, Jun-Ichiro; Takeda, Kumiko; Kubo, Masanori; Izaike, Yoshiaki; Tokunaga, Tomoyuki

    2003-01-01

    The use of an in vitro culture system was examined for production of somatic cells suitable for nuclear transfer in the goat. Goat cumulus-oocyte complexes were incubated in tissue culture medium TCM-199 supplemented with 10% fetal bovine serum (FBS) for 20 h. In vitro matured (IVM) oocytes were enucleated and used as karyoplast recipients. Donor cells obtained from the anterior pituitary of an adult male were introduced into the perivitelline space of enucleated IVM oocytes and fused by an electrical pulse. Reconstituted oocytes were cultured in chemically defined medium for 9 days. Two hundred and twenty-eight oocytes (70%) were fused with donor cells. After in vitro culture, seven somatic cell nuclear transfer (SCNT) oocytes (3%) developed to the blastocyst stage. SCNT embryos were transferred to the oviducts of recipient females (four 8-cell embryos per female) or uterine horn (two blastocysts per female). One male clone (NT1) was produced at day 153 from an SCNT blastocyst and died 16 days after birth. This study demonstrates that nuclear transferred goat oocytes produced using an in vitro culture system could develop to term and that donor anterior pituitary cells have the developmental potential to produce term offspring. In this study, it suggested that the artificial control of endocrine system in domestic animal might become possible by the genetic modification to anterior pituitary cells.

  10. Increased blastocyst formation of cloned porcine embryos produced with donor cells pre-treated with Xenopus egg extract and/or digitonin

    DEFF Research Database (Denmark)

    Liu, Ying; Østrup, Olga; Li, Juan

    2012-01-01

    from Xenopus laevis eggs. In Experiment 1, fetal fibroblasts were permeabilized by digitonin, incubated in egg extract and, after re-sealing of cell membranes, cultured for 3 or 5 days before use as donor cells in handmade cloning (HMC). Controls were produced by HMC with non-treated donor cells....... The blastocyst rate for reconstructed embryos increased significantly when digitonin-permeabilized, extract-treated cells were used after 5 days of culture after re-sealing. In Experiment 2, fetal and adult fibroblasts were treated with digitonin alone before re-sealing the cell membranes, then cultured for 3...... cells after pre-treatment with permeabilization/re-sealing and Xenopus egg extract. Interestingly, we observe a similar increase in cloning efficiency by permeabilization/re-sealing of donor cells without extract treatment that seems to depend on choice of donor cell type. Thus, pre-treatment of donor...

  11. CD4+ T Cell Activation and Vascular Normalization: Two Sides of the Same Coin?

    Science.gov (United States)

    De Palma, Michele; Jain, Rakesh K

    2017-05-16

    Normalization of tumor blood vessels enhances the infiltration and functions of T cells. Tian et al. (2017) report that effector CD4 + T cells, in turn, support vascular normalization, highlighting intertwined roles for blood vessels and T cells in cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Delineation of canine parvovirus T cell epitopes with peripheral blood mononuclear cells and T cell clones from immunized dogs.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); M.C.M. Poelen (Martien); R.H. Meloen; J. Carlson; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractThree synthetic peptides derived from the amino acid sequence of VP2 of canine parvovirus (CPV) which were recently shown to represent three distinct T cell epitopes for BALB/c mice could prime BALB/c mice for a CPV-specific proliferative T cell response upon immunization. Proliferative

  13. The effect of cell passage on the susceptibility of BALB/3T3 clone A31-1-1 cells to 3-methylcholanthrene-induced morphological transformation.

    Science.gov (United States)

    Sheu, C W; Moreland, F M; Dunkel, V C

    1987-01-01

    The response of BALB/3T3 clone A31-1-1 cells to chemically induced morphological transformation was evaluated using 3-methylcholanthrene (MCA). Stock cultures were initiated from cryopreserved cells, grown in T25 flasks containing 5 ml of medium, and replated at subconfluency. Serially transferred cells were then subjected to transformation assay. After 24-hr seeding, cells were incubated 48 hr with MCA in a 5% CO2 incubator. They were then rinsed and incubated for an additional 4 weeks with twice weekly medium change. Type III foci were scored after fixation and staining with Giemsa. With serial passage from the frozen state, cells of passages 3-14 had a low level of spontaneous transformation; zero to 6 type III foci per 20 dishes were counted. In the MCA-treated cultures the number of transformed foci, however, increased with passage. Such passage-related sensitivity to MCA was demonstrated for cells cultured in two batches of sera: one from MA Bioproducts (Lot no. 2E052) and the other from Armour Pharmaceuticals (Lot no. Y65801). The passage-related increase in number of transformed foci was not related to doubling time, cloning efficiency, or MCA-induced growth inhibition.

  14. Generation of hiPSTZ16 (ISMMSi003-A cell line from normal human foreskin fibroblasts

    Directory of Open Access Journals (Sweden)

    Marion Dejosez

    2018-01-01

    Full Text Available Human foreskin fibroblasts from a commercial source were reprogrammed into induced pluripotent stem cells to establish a clonal stem cell line, hiPSTZ16 (ISMMSi003-A. These cells show a normal karyotype and full differentiation potential in teratoma assays. The described cells provide a useful resource in combination with other iPS cell lines generated from normal human foreskin fibroblasts to study source- and reprogramming method-independent effects in downstream applications.

  15. A cell clone strain from Mythimna separata (Lepidoptera: Noctuidae) highly susceptible to Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and M. separata NPV (MsNPV).

    Science.gov (United States)

    Meng, Xiang-Qian; Zheng, Gui-Ling; Zhao, Chuan-De; Wan, Fang-Hao; Li, Chang-You

    2017-08-01

    In this study, we describe a cell line, Ms-10C, cloned from the line QAU-Ms-E-10 (simplified Ms-10), an embryonic line from Mythimna separata. The cloned cell line was significantly more sensitive to nucleopolyhedrovirus (NPV). Ms-10C cells were mainly spherical with a diameter of 14.42 ± 2.23 μm. DNA amplification fingerprinting (DAF) confirmed the profile of PCR-amplified bands of the cloned cell line was consistent with those of the parental cell line, Ms-10. The sequencing result of the mitochondrial cytochrome c oxidase I (mtCO I) fragment confirmed that the amplified 636-bps mtCOI fragment was 100% identical to that of M. separata. Its chromosomes exhibited the typical characters of lepidopteran cell lines. Its population doubling time was 42.2 h at 27°C. Ms-10C was more sensitive than Ms-10 to both Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and M. separata nucleopolyhedrovirus (MsNPV). At 4 d post infection, the infection rates of two viruses reached 94.2 and 92.3%, respectively. The availability of this cell clone strain will provide a useful tool for the basic research on nucleopolyhedrovirus and for potential application in expression of recombinant proteins with baculovirus expression vector system.

  16. Why Clone?

    Science.gov (United States)

    ... than expected. Could we really clone dinosaurs? In theory? Yes. You would need: A well-preserved source ... it raises a number of ethical, legal, and social challenges that need to be considered. The vast ...

  17. Bioactive form of resveratrol in glioblastoma cells and its safety for normal brain cells

    Directory of Open Access Journals (Sweden)

    Xiao-Hong Shu

    2013-05-01

    Full Text Available ABSTRACTBackground: Resveratrol, a plant polyphenol existing in grapes and many other natural foods, possesses a wide range of biological activities including cancer prevention. It has been recognized that resveratrol is intracellularly biotransformed to different metabolites, but no direct evidence has been available to ascertain its bioactive form because of the difficulty to maintain resveratrol unmetabolized in vivo or in vitro. It would be therefore worthwhile to elucidate the potential therapeutic implications of resveratrol metabolism using a reliable resveratrol-sensitive cancer cells.Objective: To identify the real biological form of trans-resveratrol and to evaluate the safety of the effective anticancer dose of resveratrol for the normal brain cells.Methods: The samples were prepared from the condition media and cell lysates of human glioblastoma U251 cells, and were purified by solid phase extraction (SPE. The samples were subjected to high performance liquid chromatography (HPLC and liquid chromatography/tandem mass spectrometry (LC/MS analysis. According to the metabolite(s, trans-resveratrol was biotransformed in vitro by the method described elsewhere, and the resulting solution was used to treat U251 cells. Meanwhile, the responses of U251 and primarily cultured rat normal brain cells (glial cells and neurons to 100μM trans-resveratrol were evaluated by multiple experimental methods.Results: The results revealed that resveratrol monosulfate was the major metabolite in U251 cells. About half fraction of resveratrol monosulfate was prepared in vitro and this trans-resveratrol and resveratrol monosulfate mixture showed little inhibitory effect on U251 cells. It is also found that rat primary brain cells (PBCs not only resist 100μM but also tolerate as high as 200μM resveratrol treatment.Conclusions: Our study thus demonstrated that trans-resveratrol was the bioactive form in glioblastoma cells and, therefore, the biotransforming

  18. Evolution of normal and neoplastic tissue stem cells: progress after Robert Hooke.

    Science.gov (United States)

    Weissman, Irving

    2015-10-19

    The appearance of stem cells coincides with the transition from single-celled organisms to metazoans. Stem cells are capable of self-renewal as well as differentiation. Each tissue is maintained by self-renewing tissue-specific stem cells. The accumulation of mutations that lead to preleukaemia are in the blood-forming stem cell, while the transition to leukaemia stem cells occurs in the clone at a progenitor stage. All leukaemia and cancer cells escape being removed by scavenger macrophages by expressing the 'don't eat me' signal CD47. Blocking antibodies to CD47 are therapeutics for all cancers, and are currently being tested in clinical trials in the US and UK. © 2015 The Author(s).

  19. Cloning and Characterization of Sf9 Cell Lamin and the Lamin Conformational Changes during Autographa californica multiple nucleopolyhedrovirus Infection

    Directory of Open Access Journals (Sweden)

    Wenqiang Wei

    2016-05-01

    Full Text Available At present, the details of lamina alterations after baculovirus infection remain elusive. In this study, a lamin gene in the Sf9 cell line of Spodoptera frugiperda was cloned. The open reading frame (orf of the Sf9 lamin was 1860 bp and encoded a protein with a molecular weight of 70 kDa. A transfection assay with a red fluorescence protein (rfp-lamin fusion protein indicated that Sf9 lamin was localized in the nuclear rim. Transmission electron microscopy observations indicated that Autographa californica multiple nucleopolyhedrovirus (AcMNPV nucleocapsids may pass through the nuclear envelope. Immunofluorescence assay indicated that the lamina showed a ruffled staining pattern with the formation of invaginations in the Sf9 cells infected with AcMNPV, while it was evenly distributed at the nuclear periphery of mock-infected cells. Western blotting results indicated that the total amount of lamin in the baculovirus-infected Sf9 cells was significantly decreased compared with the mock-infected cells. These results imply that AcMNPV infection induces structural and biochemical rearrangements of lamina of Sf9 cells.

  20. Human T cell leukemia/lymphoma virus type I infection of a CD4+ proliferative/cytotoxic T cell clone progresses in at least two distinct phases based on changes in function and phenotype of the infected cells

    NARCIS (Netherlands)

    Yssel, H.; de Waal Malefyt, R.; Duc Dodon, M. D.; Blanchard, D.; Gazzolo, L.; de Vries, J. E.; Spits, H.

    1989-01-01

    The effect of human T cell leukemia/lymphoma virus type I (HTLV-I) infection on the function and the phenotype of a human proliferating/cytotoxic T cell clone, specific for tetanus toxin, was investigated. During the period after infection, two distinct phases were observed, based on growth

  1. DNA fragmentation: manifestation of target cell destruction mediated by cytotoxic T-cell lines, lymphotoxin-secreting helper T-cell clones, and cell-free lymphotoxin-containing supernatant

    International Nuclear Information System (INIS)

    Schmid, D.S.; Tite, J.P.; Ruddle, N.H.

    1986-01-01

    A Lyt-2 + , trinitrophenyl-specific, lymphotoxin-secreting, cytotoxic T-cell line, PCl 55, mediates the digestion of target cell DNA into discretely sized fragments. This phenomenon manifests itself within 30 min after effector cell encounter as measured by the release of 3 H counts from target cells prelabeled with [ 3 H]deoxythymidine and occurs even at very low effector to target cell ratios (0.25:1). A Lyt-1 + , ovalbumin-specific, lymphotoxin-secreting T-helper cell clone, 5.9.24, is also able to mediate fragmentation of target cell DNA over a time course essentially indistinguishable from the cytotoxic T lymphocyte-mediated hit. Cell-free lymphotoxin-containing supernatants also cause release of DNA from targets, although they require a longer time course, on the order of 24 hr. In contrast, lysis of cells by antibody plus complement or Triton X-100 does not result in DNA release even after extended periods of incubation (24 hr). All three treatments that result in the release of DNA from cells cause fragmentation of that DNA into discretely sized pieces that are multiples of 200 base pairs. The results thus suggest that cytotoxic T cells, lymphotoxin-secreting helper clones with cytolytic activity, and lymphotoxin all effect target cell destruction by means of a similar mechanism and that observed differences in time course and the absence of target cell specificity in killing mediated by lymphotoxin may simply reflect differences in the mode of toxin delivery

  2. TCR Translocations at the Normal-malignant T Cell Interface

    NARCIS (Netherlands)

    N.S.D. Larmonie (Nicole)

    2013-01-01

    textabstractHematopoiesis is the process leading to production and maturation of peripheral blood cells. All blood cells are derived from hematopoietic stem cells (HSCs) which reside in hematopoietic organs. In mammals, the site of hematopoiesis changes during development, which is sequentially

  3. Handmade Cloned Buffalo (Bubalus bubalis) Embryos Produced from Somatic Cells Isolated from Milk and Ear Skin Differ in Their Developmental Competence, Epigenetic Status, and Gene Expression.

    Science.gov (United States)

    Jyotsana, Basanti; Sahare, Amol A; Raja, Anuj K; Singh, Karn P; Singla, Suresh K; Chauhan, Manmohan S; Manik, Radhey S; Palta, Prabhat

    2015-10-01

    We compared the cloning efficiency of buffalo embryos produced by handmade cloning (HMC) using ear skin- and milk-derived donor cells. The blastocyst rate was lower (p  milk-derived blastocysts and that of NANOG was (p  milk-derived > skin-derived blastocysts. The expression level of all these genes, except NANOG, was lower (p < 0.05) in milk- than in skin-derived or IVF blastocysts. In conclusion, milk-derived cells can be used for producing HMC embryos of quality similar to that of skin-derived embryos, although with a lower blastocyst rate.

  4. The stability of induced compact mutant clones of Bramley's Seedling apple

    International Nuclear Information System (INIS)

    Lacey, C.N.D.

    1982-01-01

    Twelve selected, compact, clones of Bramley's Seedling induced by gamma radiation treatment were checked for stability. Representative trees were used as vegetative parents for large scale multiplication, and further buds were treated with gamma radiation to disrupt the structure of their meristems. The results indicate that seven of the clones are as stable as the original cultivar, and therefore probably homohistont, containing only cells with compact mutant genotype. The other five clones proved to be unstable and gave rise to a large proportion of apparently normal trees. It is hypothesized that in these clones the L 1 (epidermis) consists of normal unchanged tissue, while the bulk of the plant tissue layers are of mutant cells, i.e. that they are periclinal chimaeras with the genotypes of the different cell layers coded for different growth forms. (orig.)

  5. Establishment of ultra long-lived cell lines by transfection of TERT into normal human fibroblast TIG-1 and their characterization.

    Science.gov (United States)

    Kamada, Mizuna; Kumazaki, Tsutomu; Matsuo, Taira; Mitsui, Youji; Takahashi, Tomoko

    2012-06-01

    To establish useful human normal cell lines, TERT (telomerase reverse transcriptase) cDNA was transfected into normal female lung fibroblast, TIG-1. After long-term-sub-cultivation of 74 individual clones selected for resistance to G418, we obtained 55 cultures with normal range of life span [75 PDL (population doubling level)], 16 cultures with extended life span (75-140 PDL). In addition, 3 immortal cell strains and unexpectedly, one ultra long-lived cell line (ULT-1) with life span of 166 PDL were established. IMT-1, one of the immortal cell strains was confirmed to maintain long telomere length, high telomerase activity and an extremely low level of p16INK4A. They also showed moderate p53 and p21CIP1 expression, keeping vigorous growth rate even at 450 PDL. High level of fibronectin and collagen 1α expression confirmed IMT-1 as normal fibroblasts, although one X chromosome had been lost. ULT-1, however, kept a near normal karyotypes and had shortening of telomere length, high expression of p16INK4A, moderate levels of senescence associated-β-galactosidase positive cells and decreased growth rate only after 150 PDs (population doublings), and finally reached senescence at 166 PDL with morphology of normal senescent fibroblasts. As resources of standard normal human cell, abundant vials of early and middle passages of ULT-1 have been stocked. The use of the cell line is discussed, focusing on isograft of artificial skin and screening of anti-aging or safe chemical agents.

  6. Somatic Donor Cell Type Correlates with Embryonic, but Not Extra-Embryonic, Gene Expression in Postimplantation Cloned Embryos

    Science.gov (United States)

    Inoue, Kimiko; Ogura, Atsuo

    2013-01-01

    The great majority of embryos generated by somatic cell nuclear transfer (SCNT) display defined abnormal phenotypes after implantation, such as an increased likelihood of death and abnormal placentation. To gain better insight into the underlying mechanisms, we analyzed genome-wide gene expression profiles of day 6.5 postimplantation mouse embryos cloned from three different cell types (cumulus cells, neonatal Sertoli cells and fibroblasts). The embryos retrieved from the uteri were separated into embryonic (epiblast) and extraembryonic (extraembryonic ectoderm and ectoplacental cone) tissues and were subjected to gene microarray analysis. Genotype- and sex-matched embryos produced by in vitro fertilization were used as controls. Principal component analysis revealed that whereas the gene expression patterns in the embryonic tissues varied according to the donor cell type, those in extraembryonic tissues were relatively consistent across all groups. Within each group, the embryonic tissues had more differentially expressed genes (DEGs) (>2-fold vs. controls) than did the extraembryonic tissues (Pcloning efficiency using SCNT. PMID:24146866

  7. Analysis of epothilone B-induced cell death in normal ovarian cells.

    Science.gov (United States)

    Rogalska, Aneta; Gajek, Arkadiusz; Marczak, Agnieszka

    2013-12-01

    We have investigated the mode of cell death induced by a new microtubule-stabilizing agent, epothilone B (EpoB, patupilone), and a clinically used medicine, paclitaxel (PTX), in normal ovarian cells. Using fluorescence microscopy, polyacrylamide gel electrophoresis preceding Western blot analysis, as well as spectrofluorimetric and colorimetric detection, we demonstrate that, compared to EpoB, PTX induced high time-dependent morphological and biochemical changes typical of apoptosis. Induction of apoptosis followed an early increase in p53 levels. Apoptosis reached its maximum at 24-48 h. At the same time, there was a significant increase in caspase-9 and -3 activity and PARP fragmentation, which suggests that an intrinsic path was involved. Apoptosis in MM14 cells was increased more by PTX than EpoB, and also induced more necrosis responsible for inflammation (1.4-fold) than EpoB. © 2013 International Federation for Cell Biology.

  8. Lining cells on normal human vertebral bone surfaces

    International Nuclear Information System (INIS)

    Henning, C.B.; Lloyd, E.L.

    1982-01-01

    Thoracic vertebrae from two individuals with no bone disease were studied with the electron microscope to determine cell morphology in relation to bone mineral. The work was undertaken to determine if cell morphology or spatial relationships between the bone lining cells and bone mineral could account for the relative infrequency of bone tumors which arise at this site following radium intake, when compared with other sites, such as the head of the femur. Cells lining the vertebral mineral were found to be generally rounded in appearance with varied numbers of cytoplasmic granules, and they appeared to have a high density per unit of surface area. These features contrasted with the single layer of flattened cells characteristic of the bone lining cells of the femur. A tentative discussion of the reasons for the relative infrequency of tumors in the vertebrae following radium acquisition is presented

  9. Chronic Lymphocytic Leukemia B-Cell Normal Cellular Counterpart: Clues From a Functional Perspective.

    Science.gov (United States)

    Darwiche, Walaa; Gubler, Brigitte; Marolleau, Jean-Pierre; Ghamlouch, Hussein

    2018-01-01

    Chronic lymphocytic leukemia (CLL) is characterized by the clonal expansion of small mature-looking CD19+ CD23+ CD5+ B-cells that accumulate in the blood, bone marrow, and lymphoid organs. To date, no consensus has been reached concerning the normal cellular counterpart of CLL B-cells and several B-cell types have been proposed. CLL B-cells have remarkable phenotypic and gene expression profile homogeneity. In recent years, the molecular and cellular biology of CLL has been enriched by seminal insights that are leading to a better understanding of the natural history of the disease. Immunophenotypic and molecular approaches (including immunoglobulin heavy-chain variable gene mutational status, transcriptional and epigenetic profiling) comparing the normal B-cell subset and CLL B-cells provide some new insights into the normal cellular counterpart. Functional characteristics (including activation requirements and propensity for plasma cell differentiation) of CLL B-cells have now been investigated for 50 years. B-cell subsets differ substantially in terms of their functional features. Analysis of shared functional characteristics may reveal similarities between normal B-cell subsets and CLL B-cells, allowing speculative assignment of a normal cellular counterpart for CLL B-cells. In this review, we summarize current data regarding peripheral B-cell differentiation and human B-cell subsets and suggest possibilities for a normal cellular counterpart based on the functional characteristics of CLL B-cells. However, a definitive normal cellular counterpart cannot be attributed on the basis of the available data. We discuss the functional characteristics required for a cell to be logically considered to be the normal counterpart of CLL B-cells.

  10. Measurement of in vivo HGPRT-deficient mutant cell frequency using a modified method for cloning human peripheral blood T-lymphocytes

    International Nuclear Information System (INIS)

    Hakoda, Masayuki; Akiyama, Mitoshi; Kyoizumi, Seishi; Kobuke, Kyoko; Awa, A.A.

    1987-07-01

    Approximately 80 % of human peripheral blood T-lymphocytes could be cloned in the presence of crude Interleukin-2, phytohemagglutinin, and X-irradiated autologous lymphocytes and Raji B-cells. This modified cloning method was used to measure the in vivo frequency of HGPRT-deficient mutant T-lymphocytes. Repeated experiments using blood from the same individuals revealed that the frequency of mutant cells was almost constant for each individual even though the cloning efficiency of lymphocytes varied somewhat from experiment to experiment. Approximately 80 % of both wild-type unselected and 6-thioguanine-resistant colonies had helper/inducer and about 20 % had suppressor/cytotoxic T-lymphocyte markers. No difference was observed in the distribution of lymphocyte subsets between wild and mutant lymphocyte colonies. (author)

  11. A flexible multipurpose model for normal and transient cell kinetics

    International Nuclear Information System (INIS)

    Toivonen, Harri.

    1979-07-01

    The internal hypothetical compartments within the different phases of the cell cycle have been adopted as the basis of models dealing with various specific problems in cell kinetics. This approach was found to be of more general validity, extending from expanding cell populations to complex maturation processes. The differential equations describing the system were solved with an effective, commercially available library subroutine. Special attention was devoted to analysis of transient and feedback kinetics of cell populations encountered in diverse environmental and exposure conditions, for instance in cases of wounding and radiation damage. (author)

  12. DNA crosslinking and cytotoxicity in normal and transformed human cells treated with antitumor nitrosoureas.

    OpenAIRE

    Erickson, L C; Bradley, M O; Ducore, J M; Ewig, R A; Kohn, K W

    1980-01-01

    Normal (IMR-90) and simian virus 40-transformed (VA-13) human embryo cells were treated with antitumor nitrosoureas, and the effects on cell viability and cell DNA were compared. All six nitrosoureas tested were more toxic to VA-13 cells than to IMR-90 cells as measured by decrease in cell proliferation or in colony formation. The nitrosoureas capable of generating alkylisocyanates produced a smaller difference between the cell types than did derivatives lacking this capacity. DNA damage was ...

  13. Cell surface glycopeptides from human intestinal epithelial cell lines derived from normal colon and colon adenocarcinomas

    International Nuclear Information System (INIS)

    Youakim, A.; Herscovics, A.

    1985-01-01

    The cell surface glycopeptides from an epithelial cell line (CCL 239) derived from normal human colon were compared with those from three cell lines (HCT-8R, HCT-15, and CaCo-2) derived independently from human colonic adenocarcinomas. Cells were incubated with D-[2- 3 H]mannose or L-[5,6- 3 H]fucose for 24 h and treated with trypsin to release cell surface components which were then digested exhaustively with Pronase and fractionated on Bio-Gel P-6 before and after treatment with endo-beta-N-acetylglucosaminidase H. The most noticeable difference between the labeled glycopeptides from the tumor and CCL 239 cells was the presence in the former of an endo-beta-N-acetylglucosaminidase H-resistant high molecular weight glycopeptide fraction which was eluted in the void volume of Bio-Gel P-6. This fraction was obtained with both labeled mannose and fucose as precursors. However, acid hydrolysis of this fraction obtained after incubation with [2- 3 H]mannose revealed that as much as 60-90% of the radioactivity was recovered as fucose. Analysis of the total glycopeptides (cell surface and cell pellet) obtained after incubation with [2- 3 H]mannose showed that from 40-45% of the radioactivity in the tumor cells and less than 10% of the radioactivity in the CCL 239 cells was recovered as fucose. After incubation of the HCT-8R cells with D-[1,6- 3 H]glucosamine and L-[1- 14 C]fucose, strong acid hydrolysis of the labeled glycopeptide fraction excluded from Bio-Gel P-6 produced 3 H-labeled N-acetylglucosamine and N-acetylgalactosamine

  14. Developmental fate of hematopoietic stem cells: the study of individual hematopoietic clones at the level of antigen-responsive B lymphocytes.

    Science.gov (United States)

    Olovnikova, Natalia I; Drize, Nina J; Ershler, Maxim A; Nifontova, Irina N; Belkina, Elena V; Nikolaeva, Tatiana N; Proskurina, Natalia V; Chertkov, Joseph L

    2003-01-01

    We have shown previously that hematopoiesis in mice reconstituted with retrovirally marked hematopoietic stem cells (HSCs) is provided by multiple, mainly short-lived clones, as measured by retroviral insertion site analysis of individual spleen colony-forming unit (CFU-S)-derived colonies. However, the CFU-S is the relatively early progenitor and the contribution of each CFU-S in the steady-state hematopoiesis is uncertain. Here, we have studied the fate of individual mature B cells, as well as CFU-S, representing the progeny of retrovirally transduced marrow-repopulating cells (MRC). B-cells-generated hybridomas and CFU-S-derived colonies were used to determine the clonal composition of hematolymphopoiesis at the single-cell level. Bone marrow (BM) cells and splenocytes (approximately 1/3-1/2 of spleen at a time) from mice reconstituted with retrovirally marked syngeneic BM cells were repeatedly collected at 3, 10, and 16 months post-transplant. The percentage of retrovirally marked CFU-S and B-cell-produced hybridomas was about 50% at 3 months and decreased to 10-15% at 10 months after reconstitution in spite of stable degree of chimerism. The clonal origin of BM-derived CFU-S and spleen-derived B-cell hybridomas was detected by Southern blot analysis. Overall, DNA obtained from 159 retrovirally marked spleen colonies, 287 hybridomas and 43 BM samples were studied. Multiple simultaneously functioning clones of MRC-derived B cells were observed. The same individual clones among hybridomas and CFU-S were identified in three out of 11 mice. Thus, hematopoiesis is generated by multiple hematopoietic clones some of which can simultaneously contribute to both mature lymphoid cells and myeloid progenitors. These data establish that the stem cell compartment functions by continuously producing progeny, which fully but transiently repopulate all lineages.

  15. Production of bovine cloned embryos with donor cells frozen at a slow cooling rate in a conventional freezer (20 C)

    Science.gov (United States)

    Chacon, L.; Gomez, M.C.; Jenkins, J.A.; Leibo, S.P.; Wirtu, G.; Dresser, B.L.; Pope, C.E.

    2009-01-01

    Summary Usually, fibroblasts are frozen in dimethyl sulphoxide (DMSO, 10% v/v) at a cooling rate of 1 C/min in a low-temperature (80 C) freezer (LTF) before storage in liquid nitrogen (LN2); however, a LTF is not always available. The purpose of the present study was to evaluate apoptosis and viability of bovine fibroblasts frozen in a LTF or conventional freezer (CF; 20 C) and their subsequent ability for development to blastocyst stage after fusion with enucleated bovine oocytes. Percentages of live cells frozen in LTF (49.5%) and CF (50.6%) were similar, but significantly less than non-frozen control (88%). In both CF and LTF, percentages of live apoptotic cells exposed to LN2 after freezing were lower (4% and 5%, respectively) as compared with unexposed cells (10% and 18%, respectively). Cells frozen in a CF had fewer cell doublings/24 h (0.45) and required more days (9.1) to reach 100% confluence at the first passage (P) after thawing and plating as compared with cells frozen in a LTF (0.96 and 4.0 days, respectively). Hypoploidy at P12 was higher than at P4 in cells frozen in either a CF (37.5% vs. 19.2%) or in a LTF (30.0% vs. 15.4%). A second-generation cryo-solution reduced the incidence of necrosis (29.4%) at 0 h after thawing as compared with that of a first generation cryo-solution (DMEM + DMSO, 60.2%). The percentage of apoptosis in live cells was affected by cooling rate (CF = 1.9% vs. LFT = 0.7%). Development of bovine cloned embryos to the blastocyst stage was not affected by cooling rate or freezer type. ?? 2009 Cambridge University Press.

  16. Protein-free transfection of CHO host cells with an IgG-fusion protein: selection and characterization of stable high producers and comparison to conventionally transfected clones.

    Science.gov (United States)

    Lattenmayer, Christine; Loeschel, Martina; Schriebl, Kornelia; Steinfellner, Willibald; Sterovsky, Thomas; Trummer, Evelyn; Vorauer-Uhl, Karola; Müller, Dethardt; Katinger, Hermann; Kunert, Renate

    2007-04-15

    In order to improve the current techniques of cell cultivation in the absence of serum, we have developed a protein-free transfection protocol for CHO cells, based on the Nucleofector technology. After starting with a heterogeneous pool of primary transfectants which express the fusion protein EpoFc, we isolated single clones and compared them with parallel clones generated by lipofection in serum-dependent cultivation. Our intensive characterization program was based on determination of specific productivity (q(p)) and analysis of genetic parameters. In two nucleofection experiments, transfection with 5 microg of DNA resulted in best productivities of the primary cell pools. After subcloning, the q(p) could be raised up to 27 pg x cells(-1) x day(-1). While the serum-dependent transfectants exhibited specific productivities up to 57 pg x cells(-1) x day(-1) in serum-dependent cultivation, a significant decrease that resulted in the range of q(p) of the protein-free transfectants was observed after switching to protein-free conditions. Investigation of genetic parameters revealed higher mRNA levels and gene copy numbers (GCN) for the protein-free adapted serum-dependent transfectants. Therefore, we assume that problems during protein-free adaptation (PFA) lead to a less efficient translation machinery after serum deprivation. We describe the generation of stable-producing recombinant CHO clones by protein-free transfection of a protein-free adapted host cell line, which reduces the risk of adverse clonal changes after PFA. The main advantage of this approach is the earlier predictability of clone behavior, which makes the generation of production clones by protein-free transfection, a viable and highly efficient strategy for recombinant cell line development. (c) 2006 Wiley Periodicals, Inc.

  17. Overexpression of neurofilament H disrupts normal cell structure and function

    Science.gov (United States)

    Szebenyi, Gyorgyi; Smith, George M.; Li, Ping; Brady, Scott T.

    2002-01-01

    Studying exogenously expressed tagged proteins in live cells has become a standard technique for evaluating protein distribution and function. Typically, expression levels of experimentally introduced proteins are not regulated, and high levels are often preferred to facilitate detection. However, overexpression of many proteins leads to mislocalization and pathologies. Therefore, for normative studies, moderate levels of expression may be more suitable. To understand better the dynamics of intermediate filament formation, transport, and stability in a healthy, living cell, we inserted neurofilament heavy chain (NFH)-green fluorescent protein (GFP) fusion constructs in adenoviral vectors with tetracycline (tet)-regulated promoters. This system allows for turning on or off the synthesis of NFH-GFP at a selected time, for a defined period, in a dose-dependent manner. We used this inducible system for live cell imaging of changes in filament structure and cell shape, motility, and transport associated with increasing NFH-GFP expression. Cells with low to intermediate levels of NFH-GFP were structurally and functionally similar to neighboring, nonexpressing cells. In contrast, overexpression led to pathological alterations in both filament organization and cell function. Copyright 2002 Wiley-Liss, Inc.

  18. A novel cytochrome P450 gene from Catharanthus roseus cell line C20hi: cloning and characterization of expression

    Directory of Open Access Journals (Sweden)

    Lihong He

    2012-06-01

    Full Text Available An expressed sequence tag (EST obtained from a subtractive-suppression hybridization cDNA library constructed using Catharanthus roseus cell line C20hi and its parental cell line C20D was used to clone a full-length cytochrome P450 cDNA of cyp71d1. The encoded polypeptide contained 507 amino acids with 39–56% identity to other CYP71D subfamily members at the amino acid level. Expression characteristics of cyp71d1 were determined using semi-quantitative RT-PCR. The cyp71d1 transcript was expressed in all three cell lines with the highest level in the cell line C20hi. In the mature C. roseus plant, the cyp71d1 cDNA was highly expressed in petals, roots and stems, but very weakly expressed in young leaves. Its transcription level increased with the development of flowers. 2,4-D could down-regulate the transcription of cyp71d1, as did KT, but only to a minor degree. Neither light nor yeast elicitor could induce the transcription of cyp71d1.

  19. Effect of roscovitine treated donor cells and different activation methods on development of handmade cloned goat (Capra hircus) embryos.

    Science.gov (United States)

    Akshey, Y S; Malakar, D; De, A Kumar; Jena, M Kumar; Pawar, S Kumar; Dutta, R; Sahu, S

    2011-05-01

    The aim of the present investigation was to find out the effects of roscovitine treatment of donor cells and different activation methods on development of HMC goat embryos. Goat fetal fibroblast cells were cultured and divided into three treatment groups-contact inhibition group, roscovitine treatment group and serum starvation group. There was a significant decrease in blastocyst yield in serum starvation group (6.82%) compared to roscovitine treatment group (19.31%) and contact inhibition group (18.52%), however, no significant difference was found between roscovitine treatment group and contact inhibition group. To see the effect of different methods of activation, the reconstructed embryos were randomly divided into two groups and activated by two methods-one half by 2 μM Ca ionophore and another half by 2.31 kV/cm for 15 μSec electrical pulse. Subsequently, cloned embryos were cultured in TCM-199 based embryo development medium supplemented with 10 mg/mL bovine serum albumin in WOW culture system. There was a significant increase in the rate of cleavage and blastocyst production in electric pulse activation of 78.57% and 21.43% than Ca ionophore activation of 62.63% and 10.61% respectively. In conclusion, treatment of donor cells with roscovitine yields a significantly increased blastocyst than serum starved donor cells but equivalent blastocyst to contact inhibition group and electrical pulse activation (EPA) improves the production of HMC goat embryos. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Basic fibroblast growth factor is pro-adipogenic in rat skeletal muscle progenitor clone, 2G11 cells.

    Science.gov (United States)

    Nakano, Shin-ichi; Nakamura, Katsuyuki; Teramoto, Naomi; Yamanouchi, Keitaro; Nishihara, Masugi

    2016-01-01

    Intramuscular adipose tissue (IMAT) formation is a hallmark of marbling in cattle. IMAT is considered to originate from skeletal muscle progenitor cells with adipogenic potential. However, the mechanism involved in IMAT formation from these progenitor cells in vivo remains unclear. In the present study, among the growth factors tested, which were known to be expressed in skeletal muscle, we found only basic fibroblast growth factor (bFGF) has a pro-adipogenic effect on skeletal muscle derived adipogenic progenitor clone, 2G11 cells. Pre-exposure of 2G11 cells to bFGF did not affect initial gene expressions of CCAAT/enhancer-binding protein (C/EBP)β and C/EBPδ, while resulting in an enhancement of subsequent expressions of C/EBPα and proliferator-activated receptor gamma (PPARγ) during adipogenesis, indicating that bFGF is acting on the transcriptional regulation of C/EBPα and PPARγ. In addition, the effect of bFGF is mediated via two types of FGF receptor (FGFR) isoforms: FGFR1 and FGFR2 IIIc, and both receptors are prerequisite for bFGF to express its pro-adipogenic effect. These results suggest that bFGF plays an important role as a key trigger of IMAT formation in vivo. © 2015 Japanese Society of Animal Science.

  1. Validation of endogenous normalizing genes for expression analyses in adult human testis and germ cell neoplasms

    DEFF Research Database (Denmark)

    Svingen, T; Jørgensen, Anne; Rajpert-De Meyts, E

    2014-01-01

    to define suitable normalizing genes for specific cells and tissues. Here, we report on the performance of a panel of nine commonly employed normalizing genes in adult human testis and testicular pathologies. Our analyses revealed significant variability in transcript abundance for commonly used normalizers......, highlighting the importance of selecting appropriate normalizing genes as comparative measurements can yield variable results when different normalizing genes are employed. Based on our results, we recommend using RPS20, RPS29 or SRSF4 when analysing relative gene expression levels in human testis...... and associated testicular pathologies. OCT4 and SALL4 can be used with caution as second-tier normalizers when determining changes in gene expression in germ cells and germ cell tumour components, but the relative transcript abundance appears variable between different germ cell tumour types. We further...

  2. Oxidative stress in normal hematopoietic stem cells and leukemia.

    Science.gov (United States)

    Samimi, Azin; Kalantari, Heybatullah; Lorestani, Marzieh Zeinvand; Shirzad, Reza; Saki, Najmaldin

    2018-04-01

    Leukemia is developed following the abnormal proliferation of immature hematopoietic cells in the blood when hematopoietic stem cells lose the ability to turn into mature cells at different stages of maturation and differentiation. Leukemia initiating cells are specifically dependent upon the suppression of oxidative stress in the hypoglycemic bone marrow (BM) environment to be able to start their activities. Relevant literature was identified by a PubMed search (2000-2017) of English-language literature using the terms 'oxidative stress,' 'reactive oxygen species,' 'hematopoietic stem cell,' and 'leukemia.' The generation and degradation of free radicals is a main component of the metabolism in aerobic organisms. A certain level of ROS is required for proper cellular function, but values outside this range will result in oxidative stress (OS). Long-term overactivity of reactive oxygen species (ROS) has harmful effects on the function of cells and their vital macromolecules, including the transformation of proteins into autoantigens and increased degradation of protein/DNA, which eventually leads to the change in pathways involved in the development of cancer and several other disorders. According to the metabolic disorders of cancer, the relationship between OS changes, the viability of cancer cells, and their response to chemotherapeutic agents affecting this pathway are undeniable. Recently, studies have been conducted to determine the effect of herbal agents and cancer chemotherapy drugs on oxidative stress pathways. By emphasizing the role of oxidative stress on stem cells in the incidence of leukemia, this paper attempts to state and summarize this subject. © 2018 APMIS. Published by John Wiley & Sons Ltd.

  3. Generation of a lentiviral vector producer cell clone for human Wiskott-Aldrich syndrome gene therapy

    Directory of Open Access Journals (Sweden)

    Matthew M Wielgosz

    Full Text Available We have developed a producer cell line that generates lentiviral vector particles of high titer. The vector encodes the Wiskott-Aldrich syndrome (WAS protein. An insulator element has been added to the long terminal repeats of the integrated vector to limit proto-oncogene activation. The vector provides high-level, stable expression of WAS protein in transduced murine and human hematopoietic cells. We have also developed a monoclonal antibody specific for intracellular WAS protein. This antibody has been used to monitor expression in blood and bone marrow cells after transfer into lineage negative bone marrow cells from WAS mice and in a WAS negative human B-cell line. Persistent expression of the transgene has been observed in transduced murine cells 12–20 weeks following transplantation. The producer cell line and the specific monoclonal antibody will facilitate the development of a clinical protocol for gene transfer into WAS protein deficient stem cells.

  4. Functional cloning of a gp100-reactive T-cell receptor from vitiligo patient skin

    NARCIS (Netherlands)

    Klarquist, Jared; Eby, Jonathan M.; Henning, Steven W.; Li, Mingli; Wainwright, Derek A.; Westerhof, Wiete; Luiten, Rosalie M.; Nishimura, Michael I.; Le Poole, I. Caroline

    2016-01-01

    We isolated gp100-reactive T cells from perilesional skin of a patient with progressive vitiligo with superior reactivity toward melanoma cells compared with tumor-infiltrating lymphocytes 1520, a melanoma-derived T-cell line reactive with the same cognate peptide. After dimer enrichment and limited

  5. Long term presence of a single predominant tyrosinase-specific T-cell clone associated with disease control in a patient with metastatic melanoma.

    Science.gov (United States)

    Ochsenreither, Sebastian; Fusi, Alberto; Busse, Antonia; Letsch, Anne; Haase, Doreen; Thiel, Eckhard; Scheibenbogen, Carmen; Keilholz, Ulrich

    2010-05-15

    In an earlier study, we described a patient who developed an anti-tyrosinase T-cell response leading to long-term tumor control. Here we analyzed this response with regard to T-cell receptor (TCR) Vbeta family usage and clonality in order to further elucidate the nature of the T cell response in this patient. For identification of expanded specific cytotoxic T-cell (CTL) clones, tetramer enrichment of tyrosinase reactive T-cells was followed by comparative quantitative reverse transcribed PCR (qRT PCR) quantification of all TCR Vbeta-families and sequencing of family Vbeta4 elevated in the enriched fraction. The predominant specific clone was quantified by clonotypic qRT PCR in multiple samples from blood, bone marrow, and tumor tissue. FACS analyses with staining of TYR.A2 and TCR Vbeta4 were performed. Epitope specific enrichment revealed an isolated increase of Vbeta-family 4. FACS analysis showed a shift of specific CTLs to Vbeta-family 4 during tumor regression with a maximum of 80% of all TYR.A2 specific cells belonging to this family. Sequencing revealed a single predominant clone against polyclonal background coding for identical CDR3 loops. The predominant clone was highly expressed in bone marrow and tumor tissue, and was detectable in blood over a period of ten years. Considering the results of previous studies showing a specific effector phenotype in blood and a specific memory compartment in bone marrow of this patient, this data implicate the predominant clone featured all attributes of a sufficient CTL response including homing capacity and memory formation resulting in long term clonal persistence and tumor control.

  6. Universal cytotoxic activity of a HTLV-1 Tax-specific T cell clone from an HLA-A*24:02⁺ patient with adult T-cell leukemia against a variety of HTLV-I-infected T-cells.

    Science.gov (United States)

    Tanaka, Yukie; Yamazaki, Rie; Terasako-Saito, Kiriko; Nakasone, Hideki; Akahoshi, Yu; Nakano, Hirofumi; Ugai, Tomotaka; Wada, Hidenori; Yamasaki, Ryoko; Ishihara, Yuko; Kawamura, Koji; Sakamoto, Kana; Ashizawa, Masahiro; Sato, Miki; Kimura, Shun-ichi; Kikuchi, Misato; Kako, Shinichi; Kanda, Junya; Tanihara, Aki; Nishida, Junji; Kanda, Yoshinobu

    2014-01-01

    Adult T cell leukemia/lymphoma (ATL) is an aggressive mature T cell malignancy that is causally associated with human T cell lymphotropic virus type 1 (HTLV-1) infection. The HTLV-1 regulatory protein Tax aggressively accelerates the proliferation of host cells and is also an important target antigen for CD8(+) cytotoxic T cells (CTLs). We previously reported that several predominant HLA-A*24:02-restricted HTLV-1 Tax301-309-specific CTL clones commonly expressed a particular amino acid sequence motif (P-D-R) in complementarity-determining region 3 of T-cell receptor (TCR)-β chain among unrelated ATL patients who underwent allogeneic stem cell transplantation (allo-HSCT). Furthermore, a PDR-motif(+) CTL clone persistently existed in a long-term survivor as a central CTL clone with strong CTL activities after HSCT. Although a larger analysis of the relationship between PDR-motif(+) CTLs and the clinical course is required, the expression of PDR-motif(+) TCR on CD8(+) T cells may play a critical role in the management of anti-HTLV-1 activities for HLA-A24:02(+) ATL patients. Therefore, in this study, we prepared an HTLV-1 Tax301-309 peptide-specific CTL clone (HT-9) expressing PDR-motif(+) TCR isolated from a long-term survivor after HSCT, and evaluated its CTL activity against a variety of HTLV-1-infected T-cells from HLA-A*24:02(+) ATL patients. Before the assay of CTL function, we confirmed that HT-9 expressed less-differentiated effector-memory phenotypes (CD45RA(-)CCR7(-)CD27(+)CD28(+/-)CD57(+/-)) and T-cell exhaustion marker PD-1(+). In assays of CTL function, HT-9 recognized HTLV-1 Tax in an HLA-restricted fashion and demonstrated strong CTL activities against a variety of HTLV-1-infected T-cells from HLA-A*24:02(+) ATL patients regardless of whether the sources were autologous or allogeneic, but not normal cells. These data indicate that PDR-motif(+) TCR could be an important TCR candidate for TCR-gene immunotherapy for HLA-A24:02(+) ATL patients, provided

  7. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response.

    Directory of Open Access Journals (Sweden)

    Emily C Moorefield

    Full Text Available Amniotic fluid stem (AFS cells are broadly multipotent, can be expanded extensively in culture, are not tumorigenic and can be readily cryopreserved for cell banking. Mesenchymal stem cells (MSC show immunomodulatory activity and secrete a wide spectrum of cytokines and chemokines that suppress inflammatory responses, block mixed lymphocyte reactions (MLR and other immune reactions, and have proven therapeutic against conditions such as graft-versus-host disease. AFS cells resemble MSCs in many respects including surface marker expression and differentiation potential. We therefore hypothesized that AFS cells may exhibit similar immunomodulatory capabilities. We present data to demonstrate that direct contact with AFS cells inhibits lymphocyte activation. In addition, we show that cell-free supernatants derived from AFS cells primed with total blood monocytes or IL-1β, a cytokine released by monocytes and essential in mediation of the inflammatory response, also inhibited lymphocyte activation. Further investigation of AFS cell-free supernatants by protein array revealed secretion of multiple factors in common with MSCs that are known to be involved in immune regulation including growth related oncogene (GRO and monocyte chemotactic protein (MCP family members as well as interleukin-6 (IL-6. AFS cells activated by PBMCs released several additional cytokines as compared to BM-MSCs, including macrophage inflammatory protein-3α (MIP-3α, MIP-1α and Activin. AFS cells also released higher levels of MCP-1 and lower levels of MCP-2 compared to BM-MSCs in response to IL-1β activation. This suggests that there may be some AFS-specific mechanisms of inhibition of lymphocyte activation. Our results indicate that AFS cells are able to suppress inflammatory responses in vitro and that soluble factors are an essential component in the communication between lymphocytes and AFS cells. Their extensive self-renewal capacity, possibility for banking and

  8. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer.

    Science.gov (United States)

    Lanza, R P; Cibelli, J B; Diaz, F; Moraes, C T; Farin, P W; Farin, C E; Hammer, C J; West, M D; Damiani, P

    2000-01-01

    Approximately 100 species become extinct a day. Despite increasing interest in using cloning to rescue endangered species, successful interspecies nuclear transfer has not been previously described, and only a few reports of in vitro embryo formation exist. Here we show that interspecies nuclear transfer can be used to clone an endangered species with normal karyotypic and phenotypic development through implantation and the late stages of fetal growth. Somatic cells from a gaur bull (Bos gaurus), a large wild ox on the verge of extinction, (Species Survival Plan cloned animals was gaurus in origin. The gaur nuclei were shown to direct normal fetal development, with differentiation into complex tissue and organs, even though the mitochondrial DNA (mtDNA) within all the tissue types evaluated was derived exclusively from the recipient bovine oocytes. These results suggest that somatic cell cloning methods could be used to restore endangered, or even extinct, species and populations.

  9. Human cloning and stem cell research: engaging in the political process. (Legislation review: prohibition of Human Cloning Act 2002 and the research involving Human Embryos Act).

    Science.gov (United States)

    Skene, Loane

    2008-03-01

    Committees appointed by governments to inquire into specific policy issues often have no further role when the Committee's report is delivered to government, but that is not always so. This paper describes the activities of members of the Australian Committee on human cloning and embryo research (the Lockhart Committee) to inform Parliament and the community about the Committee's recommendations after its report was tabled in Parliament. It explains their participation in the political process as their recommendations were debated and amending legislation was passed by Parliament. It illustrates a method of communication about scientific and policy issues that explores people's concerns and what they 'need to know' to make a judgment; and then responds to questions they raise, with the aim of facilitating discussion, not arguing for one view. The paper considers whether this type of engagement and communication is appropriate and could be used in other policy discussions.

  10. Cloning, identification, and functional analysis of bone marrow stromal cell antigen-2 from sika deer (Cervus nippon).

    Science.gov (United States)

    Wang, Jiawen; Bian, Shuai; Liu, Meichun; Zhang, Xin; Wang, Siming; Bai, Xueyuan; Zhao, Daqing; Zhao, Yu

    2018-06-30

    BST-2(tetherin/CD317/HM1.24) has been identified as a cellular antiviral factor that inhibits the release of a wide range of enveloped viruses from infected cells. Orthologs of BST-2 have been identified in several species including humans, monkeys, cows, sheep, pigs, and mice. In this study, we cloned the gene and characterized the protein of the BST-2 homolog from sika deer (Cervus nippon). cnBST-2 shares 37.8% and 74.2% identity with the BST-2 homologs from Homo sapiens and Ovis aries, respectively. The extracellular domain of cnBST-2 has two putative N-linked glycosylation sites and three potential dimerization sites. cnBST-2 was shown to be expressed on the cell surface, like human BST-2. Exogenous expression of cnBST-2 resulted in potent inhibition of HIV-1 particle release in 293T cells; however, this activity resisted antagonism by HIV-1 Vpu. Moreover, cnBST-2 was not able to activate nuclear factor-κB, in contrast to human BST-2. This study is the first report of the isolation and characterization of BST-2 from C. nippon. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Feedback regulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 via ATM/Chk2 pathway contributes to the resistance of MCF-7 breast cancer cells to cisplatin.

    Science.gov (United States)

    Lv, Juan; Qian, Ying; Ni, Xiaoyan; Xu, Xiuping; Dong, Xuejun

    2017-03-01

    The methyl methanesulfonate and ultraviolet-sensitive gene clone 81 protein is a structure-specific nuclease that plays important roles in DNA replication and repair. Knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 has been found to sensitize cancer cells to chemotherapy. However, the underlying molecular mechanism is not well understood. We found that methyl methanesulfonate and ultraviolet-sensitive gene clone 81 was upregulated and the ATM/Chk2 pathway was activated at the same time when MCF-7 cells were treated with cisplatin. By using lentivirus targeting methyl methanesulfonate and ultraviolet-sensitive gene clone 81 gene, we showed that knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 enhanced cell apoptosis and inhibited cell proliferation in MCF-7 cells under cisplatin treatment. Abrogation of ATM/Chk2 pathway inhibited cell viability in MCF-7 cells in response to cisplatin. Importantly, we revealed that ATM/Chk2 was required for the upregulation of methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 resulted in inactivation of ATM/Chk2 pathway in response to cisplatin. Meanwhile, knockdown of methyl methanesulfonate and ultraviolet-sensitive gene clone 81 activated the p53/Bcl-2 pathway in response to cisplatin. These data suggest that the ATM/Chk2 may promote the repair of DNA damage caused by cisplatin by sustaining methyl methanesulfonate and ultraviolet-sensitive gene clone 81, and the double-strand breaks generated by methyl methanesulfonate and ultraviolet-sensitive gene clone 81 may activate the ATM/Chk2 pathway in turn, which provide a novel mechanism of how methyl methanesulfonate and ultraviolet-sensitive gene clone 81 modulates DNA damage response and repair.

  12. Membrane associated ion transport enzymes in normal and transformed fibroblasts and epithelial cells

    International Nuclear Information System (INIS)

    Borek, C.

    1982-01-01

    In an effort to evaluate membrane changes associated with neoplastic transformation of fibroblasts and epithelial cells by radiation and chemicals, alterations in membrane-associated (Na + + K + )-ATPase and 5'-nucleotidase activities were investigated. Cell cultures consisted of normal and radiation transformed hamster embryo fibroblasts (HE) and mouse C3H 10T 1/2 fibroblasts, normal and chemically transformed adult rat liver epithelial cells (ARL), as well as hepatocarcinoma cells induced by the liver transformants. Transformed fibroblasts demonstrated a 1-2 fold increase in (Na + + K + )-ATPase activity over the normal, while the transformed liver epithelial cells and carcinoma cells showed a 60% and 40% decrease in activity compared to the normal values, respectively. The 5'-nucleotidase activity was 2 to 3 times higher in the transformed fibroblasts

  13. Palladium induced oxidative stress and cell death in normal ...

    African Journals Online (AJOL)

    Our findings clearly indicate that Pd induces reactive oxygen species (ROS) formation and oxidative stress, mitochondrial and lysosomal injury and finally cell death. These effects are reversed by antioxidants and ROS scavengers, mitochondrial permeability transmission [1] pore sealing agent, ATP progenitor, and ...

  14. Regulation of heme metabolism in normal and sideroblastic bone marrow cells in culture

    International Nuclear Information System (INIS)

    Ibraham, N.G.; Lutton, J.D.; Hoffman, R.; Levere, R.D.

    1985-01-01

    Heme metabolism was examined in developing in vitro erythroid colonies (CFUE) and in bone marrow samples taken directly from four normal donors and four patients with sideroblastic anemia. Maximum activities of delta-aminolevulinic acid synthase (ALAS), ALA dehydratase (ALAD), and 14 C-ALA incorporation into heme were achieved in normal marrow CFUE after 8 days of culture, whereas heme oxygenase progressively decreased to low levels of activity during the same period. Assays on nucleated bone marrow cells taken directly from patients revealed that ALAS activity was considerably reduced in idiopathic sideroblastic anemia (IASA) and X-linked sideroblastic anemia (X-SA) bone marrow specimens, whereas the activity increased more than twofold (normal levels) when cells were assayed from 8-day CFUE. In all cases, ALAD activity appeared to be within normal levels. Measurement of heme synthesis revealed that normal levels of 14 C-ALA incorporation into heme were achieved in IASA cells but were reduced in X-SA cells. In marked contrast to levels in normal cells, heme oxygenase was found to be significantly elevated (two- to fourfold) in bone marrow cells taken directly from patients with IASA and X-SA. Results from this study demonstrate that IASA and X-SA bone marrow cells have disturbances in ALAS and heme metabolism, and that erythropoiesis (CFUE) can be restored to normal levels when cells are cultured in methylcellulose

  15. Regulating stem-cell research and human cloning in an Australian context: an exercise in protecting the status of the human subject.

    Science.gov (United States)

    Harvey, Olivia

    2005-01-01

    Over 12 months prior to the recent United Nations decision to defer a decision about what type of international treaty should be developed in the global stem-cell research and human cloning debate, the Federal Parliament of Australia passed two separate pieces of legislation relating to both these concerns. After a five-year long process of community consultation, media spectacle and parliamentary debate, reproductive cloning has been banned in Australia and only embryos considered to be excess to assisted reproductive technologies in existence on the 5th of April 2002 are currently valid research material. This paper argues that underpinning both pieces of legislation is a profound belief in the disruptive potential of all types of human cloning for the very nature and integrity of human species being. A belief, moreover, that is based on a presumption that it is apparently possible to conceptualise what being human even means for all Australians.

  16. Skin Stem Cell Hypotheses and Long Term Clone Survival - Explored Using Agent-based Modelling

    OpenAIRE

    Li, X.; Upadhyay, A.K.; Bullock, A.J.; Dicolandrea, T.; Xu, J.; Binder, R.L.; Robinson, M.K.; Finlay, D.R.; Mills, K.J.; Bascom, C.C.; Kelling, C.K.; Isfort, R.J.; Haycock, J.W.; MacNeil, S.; Smallwood, R.H.

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epiderm...

  17. [Scientific ethics of human cloning].

    Science.gov (United States)

    Valenzuela, Carlos Y

    2005-01-01

    True cloning is fission, budding or other types of asexual reproduction. In humans it occurs in monozygote twinning. This type of cloning is ethically and religiously good. Human cloning can be performed by twinning (TWClo) or nuclear transfer (NTClo). Both methods need a zygote or a nuclear transferred cell, obtained in vitro (IVTec). They are under the IVTec ethics. IVTecs use humans (zygotes, embryos) as drugs or things; increase the risk of malformations; increase development and size of abnormalities and may cause long-term changes. Cloning for preserving extinct (or almost extinct) animals or humans when sexual reproduction is not possible is ethically valid. The previous selection of a phenotype in human cloning violates some ethical principles. NTClo for reproductive or therapeutic purposes is dangerous since it increases the risk for nucleotide or chromosome mutations, de-programming or re-programming errors, aging or malignancy of the embryo cells thus obtained.

  18. Leishmania donovani-reactive Th1- and Th2-like T-cell clones from individuals who have recovered from visceral leishmaniasis

    DEFF Research Database (Denmark)

    Kemp, M; Kurtzhals, J A; Bendtzen, K

    1993-01-01

    analyzed in a panel of L. donovani-reactive CD4+ human T-cell clones generated from individuals who had recovered from VL after antimonial treatment. Two of the T-cell clones produced large amounts of IL-4 without production of IFN-gamma, seven clones produced both IFN-gamma and IL-4, and eight produced...... by interleukin-4 (IL-4)-producing Th2 cells, or cure may result by Th1 cells secreting gamma interferon (IFN-gamma). The present study examined the potential of human T cells to generate Th1 or Th2 responses to L. donovani. The profiles of IFN-gamma, IL-4, and lymphotoxin secretion after antigen stimulation were...... only IFN-gamma. This is the first report of a Th1- and Th2-type response in human leishmaniasis. These results suggest that in analogy with murine models, there is a dichotomy in the human T-cell response to L. donovani infections. Preferential activation of IL-4-producing Th2-like cells may...

  19. Responses of human normal osteoblast cells and osteoblast-like cell line, MG-63 cells, to pulse electromagnetic field (PEMF

    Directory of Open Access Journals (Sweden)

    Suttatip Kamolmatyakul

    2008-01-01

    Full Text Available The objective of this in vitro study is to investigate the effect of pulsed electromagnetic field (PEMF on cellular proliferation and osteocalcin production of osteoblast-like cell line, MG-63 cells, and human normal osteoblast cells (NHOC obtained from surgical bone specimens. The cells were placed in 24-well culture plates in the amount of 3x104 cell/wells with 2 ml αMEM media supplemented with 10% FBS. The experimental plates were placed between a pair of Helmoltz coils powered by a pulse generator (PEMF, 50 Hz, 1.5 mV/cm in the upper compartment of a dual incubator (Forma. The control plates were placed in the lower compartment of the incubator without Helmotz coils. After three days, the cell proliferation was measured by the method modified from Mossman (J. Immunol Methods 1983; 65: 55-63. Other sets of plates were used for osteocalcin production assessment. Media from these sets were collected after 6 days and assessed for osteocalcin production using ELISA kits. The data were analyzed using a one-way analysis of variance (ANOVA. The results showed that MG-63 cells from the experimental group proliferated significantly more than those from the control group (20% increase, p<0.05. No significant difference in osteocalcin production was detected between the two groups. On the other hand, NHOC from the experimental group produced larger amount of osteocalcin (25% increase, p<0.05 and proliferated significantly more than those from the control group (100% increase, p<0.05. In conclusion, PEMF effect on osteoblasts might depend on their cell type of origin. For osteoblast-like cell line, MG-63 cells, PEMF increased proliferation rate but not osteocalcin production of the cells. However, PEMF stimulation effect on human normal osteoblast cells was most likely associated with enhancement of both osteocalcin production and cell proliferation.

  20. Myb proteins: angels and demons in normal and transformed cells.

    Science.gov (United States)

    Zhou, Ye; Ness, Scott A

    2011-01-01

    A key regulator of proliferation, differentiation and cell fate, the c-Myb transcription factor regulates the expression of hundreds of genes and is in turn regulated by numerous pathways and protein interactions. However, the most unique feature of c-Myb is that it can be converted into an oncogenic transforming protein through a few mutations that completely change its activity and specificity. The c-Myb protein is a myriad of interactions and activities rolled up in a protein that controls proliferation and differentiation in many different cell types. Here we discuss the background and recent progress that have led to a better understanding of this complex protein, and outline the questions that have yet to be answered.

  1. Innate lymphoid cells in normal and disease: An introductory overview.

    Science.gov (United States)

    Moretta, Lorenzo; Locatelli, Franco

    2016-11-01

    Innate lymphoid cells (ILC) represent a novel group of lymphocytes that, different from T and B-lymphocytes lack recombinant activating genes (RAG-1 or RAG-2) and thus do not express rearranged antigen-specific receptors. Members of this family, i.e. NK cells, have been known since long time, while the other ILCs have been discovered only in recent years, possibly because of their predominant localization in tissues, primarily in mucosal tissues, skin and mucosa-associated lymphoid organs. ILC have been grouped in three major subsets on the basis of their phenotypic and functional features as well as of their dependency on given transcription factors (TF). Briefly, ILC-1 are dependent on T-bet TF and produce interferon (IFN)-γ. Group 2 ILC (ILC2) express GATA-3 TF and produce IL-5, IL-4 and IL-13 (Type 2) cytokines while group 3 ILC (ILC3) express RORγt TF and produce IL-17 and IL-22. ILC provide early defenses against pathogens and intervene in the repair of damaged tissues. ILC activation is mediated by cytokines (specifically acting on different ILC groups) and/or by activating receptors that are, at least in part, the same that had been previously identified in NK cells [1]. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  2. A Versatile System for USER Cloning-Based Assembly of Expression Vectors for Mammalian Cell Engineering

    DEFF Research Database (Denmark)

    Lund, Anne Mathilde; Kildegaard, Helene Faustrup; Petersen, Maja Borup Kjær

    2014-01-01

    , in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors....

  3. Mycobacterium leprae-specific protein antigens defined by cloned human helper T cells

    NARCIS (Netherlands)

    Ottenhoff, T. H.; Klatser, P. R.; Ivanyi, J.; Elferink, D. G.; de Wit, M. Y.; de Vries, R. R.

    1986-01-01

    Leprosy displays a remarkable spectrum of symptoms correlating with the T-cell-mediated immune reactivity of the host against the causative organism, Mycobacterium leprae. At one pole of this spectrum are lepromatous leprosy patients showing a M. leprae-specific T-cell unresponsiveness; at the other

  4. Skin Stem Cell Hypotheses and Long Term Clone Survival – Explored Using Agent-based Modelling

    Science.gov (United States)

    Li, X.; Upadhyay, A. K.; Bullock, A. J.; Dicolandrea, T.; Xu, J.; Binder, R. L.; Robinson, M. K.; Finlay, D. R.; Mills, K. J.; Bascom, C. C.; Kelling, C. K.; Isfort, R. J.; Haycock, J. W.; MacNeil, S.; Smallwood, R. H.

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation. PMID:23712735

  5. Skin stem cell hypotheses and long term clone survival--explored using agent-based modelling.

    Science.gov (United States)

    Li, X; Upadhyay, A K; Bullock, A J; Dicolandrea, T; Xu, J; Binder, R L; Robinson, M K; Finlay, D R; Mills, K J; Bascom, C C; Kelling, C K; Isfort, R J; Haycock, J W; MacNeil, S; Smallwood, R H

    2013-01-01

    Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation.

  6. The cell wall and cell division gene cluster in the Mra operon of Pseudomonas aeruginosa: cloning, production, and purification of active enzymes.

    Science.gov (United States)

    Azzolina, B A; Yuan, X; Anderson, M S; El-Sherbeini, M

    2001-04-01

    We have cloned the Pseudomonas aeruginosa cell wall biosynthesis and cell division gene cluster that corresponds to the mra operon in the 2-min region of the Escherichia coli chromosome. The organization of the two chromosomal regions in P. aeruginosa and E. coli is remarkably similar with the following gene order: pbp3/pbpB, murE, murF, mraY, murD, ftsW, murG, murC, ddlB, ftsQ, ftsA, ftsZ, and envA/LpxC. All of the above P. aeruginosa genes are transcribed from the same strand of DNA with very small, if any, intragenic regions, indicating that these genes may constitute a single operon. All five amino acid ligases, MurC, MurD, MurE, MurF, and DdlB, in addition to MurG and MraY were cloned in expression vectors. The four recombinant P. aeruginosa Mur ligases, MurC, MurD, MurE, and MurF were overproduced in E. coli and purified as active enzymes. Copyright 2001 Academic Press.

  7. Regulation of normal B-cell differentiation and malignant B-cell survival by OCT2.

    Science.gov (United States)

    Hodson, Daniel J; Shaffer, Arthur L; Xiao, Wenming; Wright, George W; Schmitz, Roland; Phelan, James D; Yang, Yandan; Webster, Daniel E; Rui, Lixin; Kohlhammer, Holger; Nakagawa, Masao; Waldmann, Thomas A; Staudt, Louis M

    2016-04-05

    The requirement for the B-cell transcription factor OCT2 (octamer-binding protein 2, encoded by Pou2f2) in germinal center B cells has proved controversial. Here, we report that germinal center B cells are formed normally after depletion of OCT2 in a conditional knockout mouse, but their proliferation is reduced and in vivo differentiation to antibody-secreting plasma cells is blocked. This finding led us to examine the role of OCT2 in germinal center-derived lymphomas. shRNA knockdown showed that almost all diffuse large B-cell lymphoma (DLBCL) cell lines are addicted to the expression of OCT2 and its coactivator OCA-B. Genome-wide chromatin immunoprecipitation (ChIP) analysis and gene-expression profiling revealed the broad transcriptional program regulated by OCT2 that includes the expression of STAT3, IL-10, ELL2, XBP1, MYC, TERT, and ADA. Importantly, genetic alteration of OCT2 is not a requirement for cellular addiction in DLBCL. However, we detected amplifications of the POU2F2 locus in DLBCL tumor biopsies and a recurrent mutation of threonine 223 in the DNA-binding domain of OCT2. This neomorphic mutation subtly alters the DNA-binding preference of OCT2, leading to the transactivation of noncanonical target genes including HIF1a and FCRL3 Finally, by introducing mutations designed to disrupt the OCT2-OCA-B interface, we reveal a requirement for this protein-protein interface that ultimately might be exploited therapeutically. Our findings, combined with the predominantly B-cell-restricted expression of OCT2 and the absence of a systemic phenotype in our knockout mice, suggest that an OCT2-targeted therapeutic strategy would be efficacious in both major subtypes of DLBCL while avoiding systemic toxicity.

  8. Diatom-derived polyunsaturated aldehydes activate cell death in human cancer cell lines but not normal cells.

    Directory of Open Access Journals (Sweden)

    Clementina Sansone

    Full Text Available Diatoms are an important class of unicellular algae that produce bioactive polyunsaturated aldehydes (PUAs that induce abortions or malformations in the offspring of invertebrates exposed to them during gestation. Here we compare the effects of the PUAs 2-trans,4-trans-decadienal (DD, 2-trans,4-trans-octadienal (OD and 2-trans,4-trans-heptadienal (HD on the adenocarcinoma cell lines lung A549 and colon COLO 205, and the normal lung/brunch epithelial BEAS-2B cell line. Using the viability MTT/Trypan blue assays, we show that PUAs have a toxic effect on both A549 and COLO 205 tumor cells but not BEAS-2B normal cells. DD was the strongest of the three PUAs tested, at all time-intervals considered, but HD was as strong as DD after 48 h. OD was the least active of the three PUAs. The effect of the three PUAs was somewhat stronger for A549 cells. We therefore studied the death signaling pathway activated in A549 showing that cells treated with DD activated Tumor Necrosis Factor Receptor 1 (TNFR1 and Fas Associated Death Domain (FADD leading to necroptosis via caspase-3 without activating the survival pathway Receptor-Interacting Protein (RIP. The TNFR1/FADD/caspase pathway was also observed with OD, but only after 48 h. This was the only PUA that activated RIP, consistent with the finding that OD causes less damage to the cell compared to DD and HD. In contrast, cells treated with HD activated the Fas/FADD/caspase pathway. This is the first report that PUAs activate an extrinsic apoptotic machinery in contrast to other anticancer drugs that promote an intrinsic death pathway, without affecting the viability of normal cells from the same tissue type. These findings have interesting implications also from the ecological viewpoint considering that HD is one of the most common PUAs produced by diatoms.

  9. CDK2 differentially controls normal cell senescence and cancer cell proliferation upon exposure to reactive oxygen species

    International Nuclear Information System (INIS)

    Hwang, Chae Young; Lee, Seung-Min; Park, Sung Sup; Kwon, Ki-Sun

    2012-01-01

    Highlights: ► H 2 O 2 differently adjusted senescence and proliferation in normal and cancer cells. ► H 2 O 2 exposure transiently decreased PCNA levels in normal cells. ► H 2 O 2 exposure transiently increased CDK2 activity in cancer cells. ► p21 Cip1 is likely dispensable when H 2 O 2 induces senescence in normal cells. ► Suggestively, CDK2 and PCNA play critical roles in H 2 O 2 -induced cell fate decision. -- Abstract: Reactive oxygen species modulate cell fate in a context-dependent manner. Sublethal doses of H 2 O 2 decreased the level of proliferating cell nuclear antigen (PCNA) in normal cells (including primary human dermal fibroblasts and IMR-90 cells) without affecting cyclin-dependent kinase 2 (CDK2) activity, leading to cell cycle arrest and subsequent senescence. In contrast, exposure of cancer cells (such as HeLa and MCF7 cells) to H 2 O 2 increased CDK2 activity with no accompanying change in the PCNA level, leading to cell proliferation. A CDK2 inhibitor, CVT-313, prevented H 2 O 2 -induced cancer cell proliferation. These results support the notion that the cyclin/CDK2/p21 Cip1 /PCNA complex plays an important role as a regulator of cell fate decisions.

  10. Effects of D2O on biochemical parameters of normal cells and tumour cells

    International Nuclear Information System (INIS)

    Biesewig, G.

    1975-01-01

    The influence of high temperatures (Hyperthermia) on normal tissue and Ehrlich-Ascites tumour cells ('ATZ') was examined under several conditions with regard to the application of deuterium oxide as a stabilising factor. It was proven that the DNA-synthesis of normal tissue (liver, mouse) is not sensitive to temperature. This effect of hyperthermia only occurs when the tissue is damaged, e.g. by trypsinising. The influence of hyperthermia on several biochemical parameters and on morphological changes of the Ascites cells was examined. The findings show that deuterium oxide (D 2 O) is able to reduce both the thermal and the ureal denaturation of enzymes. Thus tests were carried out to find out if D 2 O also reduces toxic influence in complicated biological systems. The assumption of high D 2 O concentrations to prevent several reactions was confirmed. When the Ascites tumour cells in the H 2 O-buffer were exposed to the damaging influence of hyperthermia, the high degree of damage was seen with the decreasing DNA synthesis, reduced aerobic glycose capacity, a drop in the ATP values and breakdown of the permeability of the membrane. Deuterium oxide was able under high temperature (from appr. 44 0 C on) to reduce the degree of damage to DNA synthesis, while auto-effects (inhibition of synthesis) of D 2 O predominate in the lower region. Aerobic glycolysis was damaged in both cases to the same degree, however. In D 2 O after hyperthermia the ATP-level dropped faster than in H 2 O. D 2 O not only reduces the thermal denaturation of the Ascites tumour cells, but it also eliminates the toxic influence of the zytostaticum TRENIMONsup(R) (under 38 0 or 46 0 C incubation). (orig./AJ) [de

  11. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells.

    Science.gov (United States)

    Vander Griend, Donald J; Karthaus, Wouter L; Dalrymple, Susan; Meeker, Alan; DeMarzo, Angelo M; Isaacs, John T

    2008-12-01

    Resolving the specific cell of origin for prostate cancer is critical to define rational targets for therapeutic intervention and requires the isolation and characterization of both normal human prostate stem cells and prostate cancer-initiating cells (CIC). Single epithelial cells from fresh normal human prostate tissue and prostate epithelial cell (PrEC) cultures derived from them were evaluated for the presence of subpopulations expressing stem cell markers and exhibiting stem-like growth characteristics. When epithelial cell suspensions containing cells expressing the stem cell marker CD133+ are inoculated in vivo, regeneration of stratified human prostate glands requires inductive prostate stromal cells. PrEC cultures contain a small subpopulation of CD133+ cells, and fluorescence-activated cell sorting-purified CD133+ PrECs self-renew and regenerate cell populations expressing markers of transit-amplifying cells (DeltaNp63), intermediate cells (prostate stem cell antigen), and neuroendocrine cells (CD56). Using a series of CD133 monoclonal antibodies, attachment and growth of CD133+ PrECs requires surface expression of full-length glycosylated CD133 protein. Within a series of androgen receptor-positive (AR+) human prostate cancer cell lines, CD133+ cells are present at a low frequency, self-renew, express AR, generate phenotypically heterogeneous progeny negative for CD133, and possess an unlimited proliferative capacity, consistent with CD133+ cells being CICs. Unlike normal adult prostate stem cells, prostate CICs are AR+ and do not require functional CD133. This suggests that (a) AR-expressing prostate CICs are derived from a malignantly transformed intermediate cell that acquires "stem-like activity" and not from a malignantly transformed normal stem cell and (b) AR signaling pathways are a therapeutic target for prostate CICs.

  12. The morphological classification of normal and abnormal red blood cell using Self Organizing Map

    Science.gov (United States)

    Rahmat, R. F.; Wulandari, F. S.; Faza, S.; Muchtar, M. A.; Siregar, I.

    2018-02-01

    Blood is an essential component of living creatures in the vascular space. For possible disease identification, it can be tested through a blood test, one of which can be seen from the form of red blood cells. The normal and abnormal morphology of the red blood cells of a patient is very helpful to doctors in detecting a disease. With the advancement of digital image processing technology can be used to identify normal and abnormal blood cells of a patient. This research used self-organizing map method to classify the normal and abnormal form of red blood cells in the digital image. The use of self-organizing map neural network method can be implemented to classify the normal and abnormal form of red blood cells in the input image with 93,78% accuracy testing.

  13. Radiosensitivity of hemopoietic stem cells on cloning in bone marrow and spleen

    International Nuclear Information System (INIS)

    Shvets, V.N.; Shafirkin, A.V.

    1979-01-01

    It was shown that population of stem cells from bone marrow of mice is heterogenous by radiosensitivity. A 55%-survival of CFU is exponential function of radiation dose (D 0 -9 rad). A dose-effect curve for radioresistant part of the population (D 0 =180 rad) is sygmoid (Dsub(q)=130 rad). Radiosensitive CFU are suggested to represent a primarily committed fraction of half-semi cells, and radioresistant CFU are referable to a pool of pluripotent stem cells. Heterogenous nature of CFU population is proved with different modifications of radiation effect and interactions of CFU with T-lymphocytes

  14. Improved cloning efficiency and developmental potential in bovine somatic cell nuclear transfer with the oosight imaging system.

    Science.gov (United States)

    Kim, Eun Young; Park, Min Jee; Park, Hyo Young; Noh, Eun Ji; Noh, Eun Hyung; Park, Kyoung Sik; Lee, Jun Beom; Jeong, Chang Jin; Riu, Key Zung; Park, Se Pill

    2012-08-01

    In somatic cell nuclear transfer (SCNT) procedures, exquisite enucleation of the recipient oocyte is critical to cloning efficiency. The purpose of this study was to compare the effects of two enucleation systems, Hoechst staining and UV irradiation (hereafter, irradiation group) and Oosight imaging (hereafter, Oosight group), on the in vitro production of bovine SCNT embryos. In the Oosight group, the apoptotic index (2.8 ± 0.5 vs. 7.3 ± 1.2) was lower, and the fusion rate (75.6% vs. 62.9%), cleavage rate (78.0% vs. 63.7%), blastocyst rate (40.2% vs. 29.2%), and total cell number (128.3±4.8 vs. 112.2 ± 7.6) were higher than those in the irradiation group (all p<0.05). The overall efficiency after SCNT was twice as high in the Oosight group as that in the irradiation group (p<0.05). The relative mRNA expression levels of Oct4, Nanog, Interferon-tau, and Dnmt3A were higher and those of Caspase-3 and Hsp70 were lower in the Oosight group compared with the irradiation group (p<0.05). This is the first report to show the positive effect of the Oosight imaging system on molecular gene expression in the SCNT embryo. The Oosight imaging system may become the preferred choice for enucleation because it is less detrimental to the developmental potential of bovine SCNT embryos.

  15. Cell-surface glycoproteins of human sarcomas: differential expression in normal and malignant tissues and cultured cells

    International Nuclear Information System (INIS)

    Rettig, W.F.; Garin-Chesa, P.; Beresford, H.R.; Oettgen, H.F.; Melamed, M.R.; Old, L.J.

    1988-01-01

    Normal differentiation and malignant transformation of human cells are characterized by specific changes in surface antigen phenotype. In the present study, the authors have defined six cell-surface antigens of human sarcomas and normal mesenchymal cells, by using mixed hemadsorption assays and immunochemical methods for the analysis of cultured cells and immunohistochemical staining for the analysis of normal tissues and > 200 tumor specimens. Differential patterns of F19, F24, G171, G253, S5, and Thy-1 antigen expression were found to characterize (i) subsets of cultured sarcoma cell lines, (ii) cultured fibroblasts derived from various organs, (iii) normal resting and activated mesenchymal tissues, and (iv) sarcoma and nonmesenchymal tumor tissues. These results provide a basic surface antigenic map for cultured mesenchymal cells and mesenchymal tissues and permit the classification of human sarcomas according to their antigenic phenotypes

  16. A dominant negative mutant of TLK1 causes chromosome missegregation and aneuploidy in normal breast epithelial cells

    Directory of Open Access Journals (Sweden)

    Williams Briana

    2003-10-01

    Full Text Available Abstract Background In Arabidopsis thaliana, the gene Tousled encodes a protein kinase of unknown function, but mutations in the gene lead to flowering and leaf morphology defects. We have recently cloned a mammalian Tousled-Like Kinase (TLK1B and found that it phosphorylates specifically histone H3, in vitro and in vivo. We now report the effects that overexpression of a kinase-dead mutant of TLK1B mediates in a normal diploid cell line. Results Expression of a kinase-dead mutant resulted in reduction of phosphorylated histone H3, which could have consequences in mitotic segregation of chromosomes. When analyzed by FACS and microscopy, these cells displayed high chromosome number instability and aneuploidy. This phenomenon was accompanied by less condensed chromosomes at mitosis; failure of a number of chromosomes to align properly on the metaphase plate; failure of some chromosomes to attach to microtubules; and the occasional presentation of two bipolar spindles. We also used a different method (siRNA to reduce the level of endogenous TLK1, but in this case, the main result was a strong block of cell cycle progression suggesting that TLK1 may also play a role in progression from G1. This block in S phase progression could also offer a different explanation of some of the later mitotic defects. Conclusions TLK1 has a function important for proper chromosome segregation and maintenance of diploid cells at mitosis in mammalian cells that could be mediated by reduced phosphorylation of histone H3 and condensation of chromosomes, although other explanations to the phenotype are possible.

  17. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells

    Directory of Open Access Journals (Sweden)

    Misako Yajima

    2018-04-01

    Full Text Available Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.

  18. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells.

    Science.gov (United States)

    Yajima, Misako; Ikuta, Kazufumi; Kanda, Teru

    2018-04-03

    Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.

  19. Effects of JP-8 Jet Fuel on Homeostasis of Clone 9 Rat Liver Cells

    Science.gov (United States)

    Wilson, C. L.; Barhoumi, R.; Burghardt, R.; Miladi, A.; Jung, A.

    2000-01-01

    Chronic exposure to JP-8 and other kerosene-based petroleum distillates has been associated with hepatic, renal, neurologic, pulmonary, and immune toxicity. However, the effects of kerosene-type jet fuels on cellular homeostasis hitherto have not been reported. Fluorescence imaging using a Meridian Ultima laser scanning fluorescence microscope was used to evaluate the effect of JP-8 jet fuel on a communication competent rat liver cell line. Several endpoints of cellular function were measured including gap junctional intercellular communication (GJIC), mitochondrial and plasma membrane potential (MMP and PMP, respectively), intracellular glutathione (GSH) concentration, glutathione-S-transferase (GST) activity, and reactive oxygen species (ROS) generation. Cells were treated with JP-8 (0.01 to 2% in ethanol (EtOH)) for the following time points: 1 h, 24 h, 48 h, and analysis immediately after addition of jet fuel. GJIC analyzed directly after addition of 1% JP-8 was reduced 4.9-fold relative to EtOH-dosed control groups and further reduction (12.6-fold) was observed in cells treated for 1 h. Moreover, GJIC was not recoverable in cells treated with 1% JP-8 for 1 h and subsequently washed and incubated in fresh medium for 1 h. Significant changes in GSH content and GST activity were observed in cells analyzed directly after addition of 1% JP-8. GSH content increased in cells treated for 1 h with less than 2% JP-8 whereas treatment with 2% JP-8 for 1 h resulted in a 50% reduction in intracellular GSH relative to EtOH-dosed controls. Cells treated with 1% JP-8 for 48 h exhibited changes in GSH levels. However, higher JP-8 concentrations exhibited more pronounced changes in GSH and GST, which led to suppression of GSH synthesis. ROS increased in a dose-responsive fashion at JP-8 concentrations up to 1%, but decreased to 80% of control values at 2% and 3% JP-8. A 25% reduction in PMP was observed in cells treated for 1 h with 1% JP-8. In contrast, cells treated for 48 h

  20. [Ethical aspects of regenerative medicine, with special reference to embryonic stem cells and therapeutic cloning].

    Science.gov (United States)

    Imura, Hiroo

    2003-03-01

    Regenerative medicine is expected to be new therapeutic means for treating incurable diseases but requires serious bioethical consideration. Embryonic stem(ES) cells, that are pleuripotent cells suitable to regenerative medicine, can be used in Japan for investigative use under a strict control by guide-lines. On the other hand, use of embryo produced by nuclear transfer has not been allowed in Japan and further serious consideration is required. Some other ethical aspects of regenerative medicine are also discussed.

  1. 3T3 fibroblasts induce cloned interleukin 3-dependent mouse mast cells to resemble connective tissue mast cells in granular constituency

    International Nuclear Information System (INIS)

    Dayton, E.T.; Pharr, P.; Ogawa, M.; Serafin, W.E.; Austen, K.F.; Levi-Schaffer, F.; Stevens, R.L.

    1988-01-01

    As assessed by ultrastructure, histochemical staining, and T-cell dependency, in vitro-differentiated interleukin 3-dependent mouse mast cells are comparable to the mast cells that reside in the gastrointestinal mucosa but not in the skin or the serosal cavity of the mouse. The authors now demonstrate that when cloned interleukin 3-dependent mast cells are cocultured with mouse skin-derived 3T3 fibroblasts in the presence of WEHI-3 conditioned medium for 28 days, the mast cells acquire the ability to stain with safranin, increase their histamine content ∼ 50-fold and their carboxypeptidase. A content ∼ 100-fold, and augment ∼ their biosynthesis of proteoglycans bearing 35 S-labeled haparin relative to 35 S-labeled chondroitin sulfate glycosaminoglycans. Thus, fibroblasts induce interleukin 3-dependent mouse mast cells to change phenotype from mucosal-like to connective tissue-like, indicating that the biochemical and functional characteristics of this mast cell type are strongly influenced by the connective tissue microenvironment

  2. Therapeutic cloning in the mouse

    Science.gov (United States)

    Mombaerts, Peter

    2003-01-01

    Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of derivation of embryonic stem cell lines via nuclear transfer is remarkably consistent among these reports. However, the efficiency is so low that, in its present form, the concept is unlikely to become widespread in clinical practice. PMID:12949262

  3. DNA crosslinking and cytotoxicity in normal and transformed human cells treated with antitumor nitrosoureas.

    Science.gov (United States)

    Erickson, L C; Bradley, M O; Ducore, J M; Ewig, R A; Kohn, K W

    1980-01-01

    Normal (IMR-90) and simian virus 40-transformed (VA-13) human embryo cells were treated with antitumor nitrosoureas, and the effects on cell viability and cell DNA were compared. All six nitrosoureas tested were more toxic to VA-13 cells than to IMR-90 cells as measured by decrease in cell proliferation or in colony formation. The nitrosoureas capable of generating alkylisocyanates produced a smaller difference between the cell types than did derivatives lacking this capacity. DNA damage was measured by alkaline elution in cells treated with four chloroethylnitrosoureas. Whereas VA-13 cells exhibited dose-dependent interstrand crosslinking, little or none was detected in IMR-90 cells. The IMR-90 cells, however, exhibited at least as much DNA-protein crosslinking as did VA-13 cells. The results can be interpreted in terms of a possible difference in DNA repair between the cell lines. PMID:6928639

  4. Immunologic analyses of mouse cystathionase in normal and leukemic cells

    International Nuclear Information System (INIS)

    Bikel, I.; Faibes, D.; Uren, J.R.; Livingston, D.M.

    1978-01-01

    Rabbit antisera have been raised against mouse liver cystathionase and shown to possess enzyme neutralizing activity. Agar gel double immunodiffusion analyses demonstrated that both mouse liver cystathionase and rat liver cystathionase react with the antisera, the latter enzyme being completely cross-reactive with the former. Following radioiodination of the purified rat liver enzyme, a double antibody radioimmunoassay was developed in which greater than 90% of the labeled protein could be specifically precipitated with the anti-mouse cystathionase antibodies. In this test the purified rat liver and mouse liver enzymes were virtually indistinguishable, generating superimposable competition displacement curves on a protein mass basis. These results indicate that both enzymes are immunologically identical, thus validating the use of the rat in lieu of the murine liver enzyme as radiolabeled tracer in an assay for mouse cystathionase. In addition, competition radioimmunoassays demonstrated that the immunological reactivities of both the purified rat liver and mouse liver enzymes were equally heat sensitive. The sensitivity of the assay was determined to be 1 ng of enzyme protein/0.22 mL of assay mixture, and the assay could be used to detect the presence of enzyme protein in tissue homogenates of single mouse organs. Mouse or rat cross-reactivity with human liver cystathionase was incomplete; but, with the exception of heart and spleen, parallel radioimmunoassay competition displacement curves were obtained for cystathionase from different mouse organs including thymus. Extracts of 7-, 9-, and 10-month-old spontaneous AKR mouse thymomas were tested in the radioimmunoassay along with extracts of age-matched thymuses which were grossly tumor free. A reaction of nonidentity was observed for all of the tumor extracts while a reaction identical with that of the pure liver enzyme was found with all of the normal thymus extracts

  5. Diversity in host clone performance within a Chinese hamster ovary cell line.

    Science.gov (United States)

    O'Callaghan, Peter M; Berthelot, Maud E; Young, Robert J; Graham, James W A; Racher, Andrew J; Aldana, Dulce

    2015-01-01

    Much effort has been expended to improve the capabilities of individual Chinese hamster ovary (CHO) host cell lines to synthesize recombinant therapeutic proteins (rPs). However, given the increasing variety in rP molecular types and formats it may be advantageous to employ a toolbox of CHO host cell lines in biomanufacturing. Such a toolbox would contain a panel of hosts with specific capabilities to synthesize certain molecular types at high volumetric concentrations and with the correct product quality (PQ). In this work, we examine a panel of clonally derived host cell lines isolated from CHOK1SV for the ability to manufacture two model proteins, an IgG4 monoclonal antibody (Mab) and an Fc-fusion protein (etanercept). We show that these host cell lines vary in their relative ability to synthesize these proteins in transient and stable pool production format. Furthermore, we examined the PQ attributes of the stable pool-produced Mab and etanercept (by N-glycan ultra performance liquid chromatography (UPLC) and liquid chromatography - tandem mass spectrometry (LC-MS/MS), respectively), and uncovered substantial variation between the host cell lines in Mab N-glycan micro-heterogeneity and etanercept N and O-linked macro-heterogeneity. To further investigate the capabilities of these hosts to act as cell factories, we examined the glycosylation pathway gene expression profiles as well as the levels of endoplasmic reticulum (ER) and mitochondria in the untransfected hosts. We uncovered a moderate correlation between ER mass and the volumetric product concentration in transient and stable pool Mab production. This work demonstrates the utility of leveraging diversity within the CHOK1SV pool to identify new host cell lines with different performance characteristics. © 2015 American Institute of Chemical Engineers.

  6. The US FDA and animal cloning: risk and regulatory approach.

    Science.gov (United States)

    Rudenko, Larisa; Matheson, John C

    2007-01-01

    The Food and Drug Administration's (FDA's) Center for Veterinary Medicine issued a voluntary request to producers of livestock clones not to introduce food from clones or their progeny into commerce until the agency had assessed whether production of cattle, swine, sheep, or goats by somatic cell nuclear transfer (SCNT) posed any unique risks to the animal(s) involved in the process, humans, or other animals by consuming food from those animals, compared with any other assisted reproductive technology (ART) currently in use. Following a comprehensive review, no anomalies were observed in animals produced by cloning that have not also been observed in animals produced by other ARTs and natural mating. Further systematic review on the health of, and composition of meat and milk from, cattle, swine, and goat clones and the progeny of cattle and sheep did not result in the identification of any food-consumption hazards. The agency therefore concluded that food from cattle, swine, and goat clones was as safe to eat as food from animals of those species derived by conventional means. The agency also concluded that food from the progeny of the clone of any species normally consumed for food is as safe to eat as those animals. The article also describes the methodology used by the agency to analyze data and draw these conclusions, the plans the agency has proposed to manage any identified risks, and the risk communication approaches the agency has used.

  7. Sensitivity to radiation of human normal, hyperthyroid, and neoplastic thyroid epithelial cells in primary culture

    International Nuclear Information System (INIS)

    Miller, R.C.; Hiraoka, Toshio; Kopecky, K.J.; Nakamura, Nori; Jones, M.P.; Ito, Toshio; Clifton, K.H.

    1986-09-01

    Samples of thyroid tissue removed surgically from 63 patients were cultured in vitro and X-irradiated to investigate the radiosensitivities of various types of thyroid epithelial cells. A total of 76 samples were obtained, including neoplastic cells from patients with papillary carcinoma (PC) or follicular adenoma (FA), cells from hyperthyroidism (HY) patients, and normal cells from the surgical margins of PC and FA patients. Culturing of the cells was performed in a manner which has been shown to yield a predominance of epithelial cells. Results of colony formation assays indicated that cells from HY and FA patients were the least radiosensitive: when adjusted to the overall geometric mean plating efficiency of 5.5 %, the average mean lethal dose D 0 was 97.6 cGy for HY cells, and 96.7 cGy and 94.3 cGy, respectively, for neoplastic and normal cells from FA patients. Cells from PC patients were more radiosensitive, normal cells having an adjusted average D 0 of 85.0 cGy and PC cells a significantly (p = .001) lower average D 0 of 74.4 cGy. After allowing for this variation by cell type, in vitro radiosensitivity was not significantly related to age at surgery (p = .82) or sex (p = .10). These results suggest that malignant thyroid cells may be especially radiosensitive. (author)

  8. Generation of B-cell chronic lymphocytic leukemia (B-CLL)-reactive T-cell lines and clones from HLA class I-matched donors using modified B-CLL cells as stimulators: implications for adoptive immunotherapy.

    Science.gov (United States)

    Hoogendoorn, M; Wolbers, J Olde; Smit, W M; Schaafsma, M R; Barge, R M Y; Willemze, R; Falkenburg, J H F

    2004-07-01

    Allogeneic stem cell transplantation following reduced-intensity conditioning is being evaluated in patients with advanced B-cell chronic lymphocytic leukemia (B-CLL). The curative potential of this procedure is mediated by donor-derived alloreactive T cells, resulting in a graft-versus-leukemia effect. However, B-CLL may escape T-cell-mediated immune reactivity since these cells lack expression of costimulatory molecules. We examined the most optimal method to transform B-CLL cells into efficient antigen-presenting cells (APC) using activating cytokines, by triggering toll-like receptors (TLRs) using microbial pathogens and by CD40 stimulation with CD40L-transfected fibroblasts. CD40 activation in the presence of IL-4 induced strongest upregulation of costimulatory and adhesion molecules on B-CLL cells and induced the production of high amounts of IL-12 by the leukemic cells. In contrast to primary B-CLL cells as stimulator cells, these malignant APCs were capable of inducing the generation of B-CLL-reactive CD8(+) CTL lines and clones from HLA class I-matched donors. These CTL lines and clones recognized and killed primary B-CLL as well as patient-derived lymphoblasts, but not donor cells. These results show the feasibility of ex vivo generation of B-CLL-reactive CD8(+) CTLs. This opens new perspectives for adoptive immunotherapy, following allogeneic stem cell transplantation in patients with advanced B-CLL.

  9. Patterns of proliferation and differentiation of irradiated haemopoietic stem cells cultured on normal 'stromal' cell colonies in vitro

    International Nuclear Information System (INIS)

    Mori, K.J.

    1981-01-01

    Experiments were designed to elucidate whether or not the irradiated bone marrow cells receive any stimulation for the self-replication and differentiation from normal 'stromal' cell colonies in the bone marrow cell culture in vitro. When irradiated or unirradiated bone marrow cells were overlaid on the normal adherent cell colonies, the proliferation of haemopoietic stem cells was supported, the degree of the stimulation depending on the starting cellular concentration. There was, however, no significant changes in the concentration of either CFUs or CFUc regardless of the dose of irradiation on the bone marrow cells overlaid. This was a great contrast to the dose-dependent decrease of CFUs or CFUc within the culture in which both the stem cells and stromal cells were simultaneously irradiated. These results suggest that the balance of self-replication and differentiation of the haemopoietic stem cells is affected only when haemopoietic microenvironment is perturbed. (author)

  10. Culture of normal human blood cells in a diffusion chamber system II. Lymphocyte and plasma cell kinetics

    International Nuclear Information System (INIS)

    Chikkappa, G.; Carsten, A.L.; Chanana, A.D.; Cronkite, E.P.

    1979-01-01

    Normal human blood leukocytes were cultured in Millipore diffusion chambers implanted into the peritoneal cavities of irradiated mice. The evaluation of survival and proliferation kinetics of cells in lymphyocytic series suggested that the lymphoid cells are formed from transition of small and/or large lymphocytes, and the lymphoblasts from the lymphoid cells. There was also evidence indicating that some of the cells in these two compartments are formed by proliferation. The evaluation of plasmacytic series suggested that the plasma cells are formed from plasmacytoid-lymphocytes by transition, and the latter from the transition of lymphocytes. In addition, relatively a small fraction of cells in these two compartments are formed by proliferation. mature plasma cells do not and immature plasma cells do proliferate. Estimation of magnitude of plasma cells formed in the cultures at day 18 indicated that at least one plasma cell is formed for every 6 normal human blood lymphocytes introduced into the culture

  11. Ubiquitous expression of MAKORIN-2 in normal and malignant hematopoietic cells and its growth promoting activity.

    Directory of Open Access Journals (Sweden)

    King Yiu Lee

    Full Text Available Makorin-2 (MKRN2 is a highly conserved protein and yet its functions are largely unknown. We investigated the expression levels of MKRN2 and RAF1 in normal and malignant hematopoietic cells, and leukemia cell lines. We also attempted to delineate the role of MKRN2 in umbilical cord blood CD34+ stem/progenitor cells and K562 cell line by over-expression and inhibition of MKRN2 through lentivirus transduction and shRNA nucleofection, respectively. Our results provided the first evidence on the ubiquitous expression of MKRN2 in normal hematopoietic cells, embryonic stem cell lines, primary leukemia and leukemic cell lines of myeloid, lymphoid, erythroid and megakaryocytic lineages. The expression levels of MKRN2 were generally higher in primary leukemia samples compared with those in age-matched normal BM cells. In all leukemia subtypes, there was no significant correlation between expression levels of MKRN2 and RAF1. sh-MKRN2-silenced CD34+ cells had a significantly lower proliferation capacity and decreased levels of the early stem/progenitor subpopulation (CFU-GEMM compared with control cultures. Over-expression of MKRN2 in K562 cells increased cell proliferation. Our results indicated possible roles of MKRN2 in normal and malignant hematopoiesis.

  12. The use of a cloned bacterial gene to study mutation in mammalian cells

    International Nuclear Information System (INIS)

    Thacker, J.; Debenham, P.G.; Stretch, A.; Webb, M.B.T.

    1983-01-01

    The recombinant DNA molecule pSV2-gpt, which contains the bacterial gene coding for xanthine-guanine phosphoribosyl transferase (XGPRT) activity, was introduced into a hamster cell line lacking the equivalent mammalian enzyme (HGPRT). Hamster cell sublines were found with stable expression of XGPRT activity and were used to study mutation of the integrated pSV2-gpt DNA sequence. Mutants were selected by their resistance to 6-thioguanine (TG) under optimal conditions which were found to be very similar to those for selection of HGPRT-deficient mutants of mammalian cells. The frequency of XGPRT-deficient mutants was increased by treatment with X-rays, ethyl methanesulphonate and ethyl nitrosourea. X-Ray induction of mutants increased approximately linearly with dose up to about 500 rad, but the frequency of mutants per rad was very much higher than that usually found for 'native' mammalian genes. (orig./AJ)

  13. Transfer of stem cells carrying engineered chromosomes with XY clone laser system.

    Science.gov (United States)

    Sinko, Ildiko; Katona, Robert L

    2011-01-01

    Current transgenic technologies for gene transfer into the germline of mammals cause a random integration of exogenous naked DNA into the host genome that can generate undesirable position effects as well as insertional mutations. The vectors used to generate transgenic animals are limited by the amount of foreign DNA they can carry. Mammalian artificial chromosomes have large DNA-carrying capacity and ability to replicate in parallel with, but without integration into, the host genome. Hence they are attractive vectors for transgenesis, cellular protein production, and gene therapy applications as well. ES cells mediated chromosome transfer by conventional blastocyst injection has a limitation in unpredictable germline transmission. The demonstrated protocol of laser-assisted microinjection of artificial chromosome containing ES cells into eight-cell mouse embryos protocol described here can solve the problem for faster production of germline transchromosomic mice.

  14. Response of cultured normal human mammary epithelial cells to X rays

    International Nuclear Information System (INIS)

    Yang, T.C.; Stampfer, M.R.; Smith, H.S.

    1983-01-01

    The effect of X rays on the reproductive death of cultured normal human mammary epithelial cells was examined. Techniques were developed for isolating and culturing normal human mammary epithelial cells which provide sufficient cells at second passage for radiation studies, and an efficient clonogenic assay suitable for measuring radiation survival curves. It was found that the survival curves for epithelial cells from normal breast tissue were exponential and had D 0 values of about 109-148 rad for 225 kVp X rays. No consistent change in cell radiosensitivity with the age of donor was observed, and no sublethal damage repair in these cells could be detected with the split-dose technique

  15. Cdx2 modulates proliferation in normal human intestinal epithelial crypt cells

    International Nuclear Information System (INIS)

    Escaffit, Fabrice; Pare, Frederic; Gauthier, Remy; Rivard, Nathalie; Boudreau, Francois; Beaulieu, Jean-Francois

    2006-01-01

    The homeobox gene Cdx2 is involved in the regulation of the expression of intestine specific markers such as sucrase-isomaltase and lactase-phlorizin hydrolase. Previous studies performed with immortalized or transformed intestinal cell lines have provided evidence that Cdx2 can promote morphological and functional differentiation in these experimental models. However, no data exist concerning the implication of this factor in normal human intestinal cell physiology. In the present work, we have investigated the role of Cdx2 in normal human intestinal epithelial crypt (HIEC) cells that lack this transcription factor. The establishment of HIEC cells expressing Cdx2 in an inducible manner shows that forced expression of Cdx2 significantly alters the proliferation of intestinal crypt cells and stimulates dipeptidylpeptidase IV expression but is not sufficient to trigger intestinal terminal differentiation. These observations suggest that Cdx2 requires additional factors to activate the enterocyte differentiation program in normal undifferentiated cells

  16. Nuclear localization of the mitochondrial ncRNAs in normal and cancer cells.

    Science.gov (United States)

    Landerer, Eduardo; Villegas, Jaime; Burzio, Veronica A; Oliveira, Luciana; Villota, Claudio; Lopez, Constanza; Restovic, Franko; Martinez, Ronny; Castillo, Octavio; Burzio, Luis O

    2011-08-01

    We have previously shown a differential expression of a family of mitochondrial ncRNAs in normal and cancer cells. Normal proliferating cells and cancer cells express the sense mitochondrial ncRNA (SncmtRNA). In addition, while normal proliferating cells express two antisense mitochondrial ncRNAs (ASncmtRNAs-1 and -2), these transcripts seem to be universally down-regulated in cancer cells. In situ hybridization (ISH) of some normal and cancer tissues reveals nuclear localization of these transcripts suggesting that they are exported from mitochondria. FISH and confocal microscopy, in situ digestion with RNase previous to ISH and electron microscopy ISH was employed to confirm the extra-mitochondrial localization of the SncmtRNA and the ASncmtRNAs in normal proliferating and cancer cells of human and mouse. In normal human kidney and mouse testis the SncmtRNA and the ASncmtRNAs were found outside the organelle and especially localized in the nucleus associated to heterochromatin. In cancer cells, only the SncmtRNA was expressed and was found associated to heterochromatin and nucleoli. The ubiquitous localization of these mitochondrial transcripts in the nucleus suggests that they are new players in the mitochondrial-nuclear communication pathway or retrograde signaling. Down regulation of the ASncmtRNAs seems to be an important step on neoplastic transformation and cancer progression.

  17. In a patient with biclonal Waldenstrom macroglobulinemia only one clone expands in three-dimensional culture and includes putative cancer stem cells.

    Science.gov (United States)

    Kirshner, Julia; Thulien, Kyle J; Kriangkum, Jitra; Motz, Sarah; Belch, Andrew R; Pilarski, Linda M

    2011-02-01

    A small percentage of cases of Waldenstrom macroglobulinemia (WM) present with biclonality, defined here as the rearrangement of two distinct VDJ gene segments. Here we investigated the expansion of two clones from a patient with WM expressing molecularly detectable clonotypic gene rearrangements, one V(H)3 and one V(H)4. Biclonality was determined in blood and bone marrow mononuclear cells using real-time quantitative PCR (RQ-PCR). V(H)4 expressing cells but not V(H)3 expressing cells underwent clonal expansion in 3-D culture of reconstructed WM bone marrow. After 3-D culture, secondary culture in a colony forming unit assay, and RQ-PCR, only the V(H)4 clone was shown to harbor a subpopulation with characteristics of cancer stem cells, including proliferative quiescence, self-regeneration, and the ability to generate clonotypic progeny, suggesting that the V(H)4, but not the V(H)3, clone is clinically significant. Enrichment of potential WM stem cells in 3-D cultures holds promise for monitoring their response to treatment and for testing new therapies.

  18. SENIEUR status of the originating cell donor negates certain 'anti-immunosenescence' effects of ebselen and N-acetyl cysteine in human T cell clone cultures.

    Science.gov (United States)

    Marthandan, Shiva; Freeburn, Robin; Steinbrecht, Susanne; Pawelec, Graham; Barnett, Yvonne

    2014-01-01

    Damage to T cells of the immune system by reactive oxygen species may result in altered cell function or cell death and thereby potentially impact upon the efficacy of a subsequent immune response. Here, we assess the impact of the antioxidants Ebselen and N-acetyl cysteine on a range of biological markers in human T cells derived from a SENIEUR status donor. In addition, the impact of these antioxidants on different MAP kinase pathways in T cells from donors of different ages was also examined. T cell clones were derived from healthy 26, 45 and SENIEUR status 80 year old people and the impact of titrated concentrations of Ebselen or N-acetyl cysteine on their proliferation and in vitro lifespan, GSH:GSSG ratio as well as levels of oxidative DNA damage and on MAP kinase signaling pathways was examined. In this investigation neither Ebselen nor N-acetyl cysteine supplementation had any impact on the biological endpoints examined in the T cells derived from the SENIEUR status 80 year old donor. This is in contrast to the anti-immunosenescent effects of these antioxidants on T cells from donors of 26 or 45 years of age. The analysis of MAP kinases showed that pro-apoptotic pathways become activated in T cells with increasing in vitro age and that Ebselen or N-acetyl cysteine could decrease activation (phosphorylation) in T cells from 26 or 45 year old donors, but not from the SENIEUR status 80 year old donor. The results of this investigation demonstrate that the biological phenotype of SENIEUR status derived human T cells negates the anti-immunosenescence effects of Ebselen and also N-acetyl cysteine. The results highlight the importance of pre-antioxidant intervention evaluation to determine risk-benefit.

  19. Cloning, chromosomal localization, and functional expression of the alpha 1 subunit of the L-type voltage-dependent calcium channel from normal human heart

    NARCIS (Netherlands)

    Schultz, D; Mikala, G; Yatani, A; Engle, D B; Iles, D E; Segers, B; Sinke, R J; Weghuis, D O; Klöckner, U; Wakamori, M

    1993-01-01

    A unique structural variant of the cardiac L-type voltage-dependent calcium channel alpha 1 subunit cDNA was isolated from libraries derived from normal human heart mRNA. The deduced amino acid sequence shows significant homology to other calcium channel alpha 1 subunits. However, differences from

  20. Molecular cloning of cDNAs which are highly overexpressed in mitoxantrone-resistant cells

    DEFF Research Database (Denmark)

    Miyake, K; Mickley, L; Litman, Thomas

    1999-01-01

    mitoxantrone-resistant S1-M1-80 human colon carcinoma cells was screened by differential hybridization. Two cDNAs of different lengths were isolated and designated MXR1 and MXR2. Sequencing revealed a high degree of homology for the cDNAs with Expressed Sequence Tag sequences previously identified as belonging...... to an ATP binding cassette transporter. Homology to the Drosophila white gene and its homologues was found for the predicted amino acid sequence. Using either cDNA as a probe in a Northern analysis demonstrated high levels of expression in the S1-M1-80 cells and in the human breast cancer subline, MCF-7 Ad......Vp3000. Levels were lower in earlier steps of selection, and in partial revertants. The gene is amplified 10-12-fold in the MCF-7 AdVp3000 cells, but not in the S1-M1-80 cells These studies are consistent with the identification of a new ATP binding cassette transporter, which is overexpressed...

  1. Chromosomal Aberrations in Normal and AT Cells Exposed to High Dose of Low Dose Rate Irradiation

    Science.gov (United States)

    Kawata, T.; Shigematsu, N.; Kawaguchi, O.; Liu, C.; Furusawa, Y.; Hirayama, R.; George, K.; Cucinotta, F.

    2011-01-01

    Ataxia telangiectasia (A-T) is a human autosomally recessive syndrome characterized by cerebellar ataxia, telangiectases, immune dysfunction, and genomic instability, and high rate of cancer incidence. A-T cell lines are abnormally sensitive to agents that induce DNA double strand breaks, including ionizing radiation. The diverse clinical features in individuals affected by A-T and the complex cellular phenotypes are all linked to the functional inactivation of a single gene (AT mutated). It is well known that cells deficient in ATM show increased yields of both simple and complex chromosomal aberrations after high-dose-rate irradiation, but, less is known on how cells respond to low-dose-rate irradiation. It has been shown that AT cells contain a large number of unrejoined breaks after both low-dose-rate irradiation and high-dose-rate irradiation, however sensitivity for chromosomal aberrations at low-dose-rate are less often studied. To study how AT cells respond to low-dose-rate irradiation, we exposed confluent normal and AT fibroblast cells to up to 3 Gy of gamma-irradiation at a dose rate of 0.5 Gy/day and analyzed chromosomal aberrations in G0 using fusion PCC (Premature Chromosomal Condensation) technique. Giemsa staining showed that 1 Gy induces around 0.36 unrejoined fragments per cell in normal cells and around 1.35 fragments in AT cells, whereas 3Gy induces around 0.65 fragments in normal cells and around 3.3 fragments in AT cells. This result indicates that AT cells can rejoin breaks less effectively in G0 phase of the cell cycle? compared to normal cells. We also analyzed chromosomal exchanges in normal and AT cells after exposure to 3 Gy of low-dose-rate rays using a combination of G0 PCC and FISH techniques. Misrejoining was detected in the AT cells only? When cells irradiated with 3 Gy were subcultured and G2 chromosomal aberrations were analyzed using calyculin-A induced PCC technique, the yield of unrejoined breaks decreased in both normal and AT

  2. Resveratrol imparts photoprotection of normal cells and enhances the efficacy of radiation therapy in cancer cells.

    Science.gov (United States)

    Reagan-Shaw, Shannon; Mukhtar, Hasan; Ahmad, Nihal

    2008-01-01

    Solar radiation spans a whole range of electromagnetic spectrum including UV radiation, which are potentially harmful to normal cells as well as ionizing radiations which are therapeutically beneficial towards the killing of cancer cells. UV radiation is an established cause of a majority of skin cancers as well as precancerous conditions such as actinic keratosis. However, despite efforts to educate people about the use of sunscreens and protective clothing as preventive strategies, the incidence of skin cancer and other skin-related disorders are on the rise. This has generated an enormous interest towards finding alternative approaches for management of UV-mediated damages. Chemoprevention via nontoxic agents, especially botanical antioxidants, is one such approach that is being considered as a plausible strategy for prevention of photodamages including photocarcinogenesis. In this review, we have discussed the photoprotective effects of resveratrol, an antioxidant found in grapes and red wine, against UVB exposure-mediated damages in vitro and in vivo. In addition, we have also discussed studies showing that resveratrol can act as a sensitizer to enhance the therapeutic effects of ionizing radiation against cancer cells. Based on available literature, we suggest that resveratrol may be useful for (1) prevention of UVB-mediated damages including skin cancer and (2) enhancing the response of radiation therapies against hyperproliferative, precancerous and neoplastic conditions.

  3. Subcellular localization of YKL-40 in normal and malignant epithelial cells of the breast

    DEFF Research Database (Denmark)

    Roslind, A.; Balslev, E.; Kruse, H.

    2008-01-01

    . YKL-40 protein expression was redistributed in carcinoma versus normal glandular tissue of the breast. A reduced expression of YKL-40 in relation to intermediate filaments and desmosomes was found in tumor cells. Changes in YKL-40 expression suggest that the function of YKL-40 in cells of epithelial......YKL-40 is a new prognostic biomarker in cancer. The biological function is only poorly understood. This study aimed at determining the subcellular localization of YKL-40, using immunogold labeling, in normal epithelial cells and in malignant tumor cells of the breast by immunoelectron microscopy...

  4. Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells.

    Directory of Open Access Journals (Sweden)

    Yukihiro Nishikawa

    Full Text Available Withaferin A (WA, a major bioactive component of the Indian herb Withania somnifera, induces cell death (apoptosis/necrosis in multiple types of tumor cells, but the molecular mechanism underlying this cytotoxicity remains elusive. We report here that 2 μM WA induced cell death selectively in androgen-insensitive PC-3 and DU-145 prostate adenocarcinoma cells, whereas its toxicity was less severe in androgen-sensitive LNCaP prostate adenocarcinoma cells and normal human fibroblasts (TIG-1 and KD. WA also killed PC-3 cells in spheroid-forming medium. DNA microarray analysis revealed that WA significantly increased mRNA levels of c-Fos and 11 heat-shock proteins (HSPs in PC-3 and DU-145, but not in LNCaP and TIG-1. Western analysis revealed increased expression of c-Fos and reduced expression of the anti-apoptotic protein c-FLIP(L. Expression of HSPs such as HSPA6 and Hsp70 was conspicuously elevated; however, because siRNA-mediated depletion of HSF-1, an HSP-inducing transcription factor, reduced PC-3 cell viability, it is likely that these heat-shock genes were involved in protecting against cell death. Moreover, WA induced generation of reactive oxygen species (ROS in PC-3 and DU-145, but not in normal fibroblasts. Immunocytochemistry and immuno-electron microscopy revealed that WA disrupted the vimentin cytoskeleton, possibly inducing the ROS generation, c-Fos expression and c-FLIP(L suppression. These observations suggest that multiple events followed by disruption of the vimentin cytoskeleton play pivotal roles in WA-mediated cell death.

  5. Gene expression signature of normal cell-of-origin predicts ovarian tumor outcomes.

    Directory of Open Access Journals (Sweden)

    Melissa A Merritt

    Full Text Available The potential role of the cell-of-origin in determining the tumor phenotype has been raised, but not adequately examined. We hypothesized that distinct cells-of-origin may play a role in determining ovarian tumor phenotype and outcome. Here we describe a new cell culture medium for in vitro culture of paired normal human ovarian (OV and fallopian tube (FT epithelial cells from donors without cancer. While these cells have been cultured individually for short periods of time, to our knowledge this is the first long-term culture of both cell types from the same donors. Through analysis of the gene expression profiles of the cultured OV/FT cells we identified a normal cell-of-origin gene signature that classified primary ovarian cancers into OV-like and FT-like subgroups; this classification correlated with significant differences in clinical outcomes. The identification of a prognostically significant gene expression signature derived solely from normal untransformed cells is consistent with the hypothesis that the normal cell-of-origin may be a source of ovarian tumor heterogeneity and the associated differences in tumor outcome.

  6. Discrimination Between Cervical Cancer Cells and Normal Cervical Cells Based on Longitudinal Elasticity Using Atomic Force Microscopy.

    Science.gov (United States)

    Zhao, Xueqin; Zhong, Yunxin; Ye, Ting; Wang, Dajing; Mao, Bingwei

    2015-12-01

    The mechanical properties of cells are considered promising biomarkers for the early diagnosis of cancer. Recently, atomic force microscopy (AFM)-based nanoindentation technology has been utilized for the examination of cell cortex mechanics in order to distinguish malignant cells from normal cells. However, few attempts to evaluate the biomechanical properties of cells have focused on the quantification of the non-homogeneous longitudinal elasticity of cellular structures. In the present study, we applied a variation of the method of Carl and Schillers to investigate the differences between longitudinal elasticity of human cervical squamous carcinoma cells (CaSki) and normal cervical epithelial cells (CRL2614) using AFM. The results reveal a three-layer heterogeneous structure in the probing volume of both cell types studied. CaSki cells exhibited a lower whole-cell stiffness and a softer nuclei zone compared to the normal counterpart cells. Moreover, a better differentiated cytoskeleton was found in the inner cytoplasm/nuclei zone of the normal CRL2614 cells, whereas a deeper cytoskeletal distribution was observed in the probing volume of the cancerous counterparts. The sensitive cortical panel of CaSki cells, with a modulus of 0.35~0.47 kPa, was located at 237~225 nm; in normal cells, the elasticity was 1.20~1.32 kPa at 113~128 nm. The present improved method may be validated using the conventional Hertz-Sneddon method, which is widely reported in the literature. In conclusion, our results enable the quantification of the heterogeneous longitudinal elasticity of cancer cells, in particular the correlation with the corresponding depth. Preliminary results indicate that our method may potentially be applied to improve the detection of cancerous cells and provide insights into the pathophysiology of the disease.

  7. The cytogenetic estimate of the radioprotective effect of antioxydant on normal and defected human cells

    International Nuclear Information System (INIS)

    Zvereva, S.V.; Mutovina, G.R.; Khandogina, E.K.; Marchenko, L.F.; Neudakhin, E.V.; Artamonov, R.G.; Akif'ev, A.P.

    1993-01-01

    In studying the radioprotective action of natural and synthesised antioxydants a decreased yield of chromosome aberrations with respect to those in untreated cells was noted in normal cells irradiated in phase G 1 whereas no radioprotective effect was found in cells irradiated in G 0 . The addition of antioxydants into the cell cultures from patients with Turner's syndrome did not change their radiosensitivity. No adaptive response was induced in lymphocytes from patients with Down's syndrome cultivated with vitamine E

  8. Biogenic amines as regulators of the proliferative activity of normal and neoplastic intestinal epithelial cells (review).

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1987-01-01

    The role of extracellular amines such as noradrenaline and serotonin and their interaction with cyclic nucleotides and intracellular polyamines in the regulation of intestinal epithelial cell proliferation is reviewed with particular reference to the differences between normal and neoplastic cells. In respect to the normal epithelium of the small intestine there is a strong case to support the notion that cell proliferation is controlled by, amongst other things, sympathetic nerves. In colonic carcinomas, antagonists for certain serotonin receptors, for histamine H2 receptors and for dopamine D2 receptors inhibit both cell division and tumour growth. Because of the reproducible variations between tumour lines in the response to these antagonists, this inhibition appears to be due to a direct effect on the tumour cells rather than an indirect effect via the tumour host or stroma. This conclusion is supported by the cytocidal effects of toxic congeners of serotonin on the tumour cells. The most salient difference between the amine responses of normal and neoplastic cells relates to the issue of amine uptake. Proliferation of crypt cells is promoted by amine uptake inhibitors, presumably because they block amine re-uptake by the amine secreting cells--sympathetic neurones and enteroendocrine cells. However, tumour cell proliferation is strongly inhibited by amine uptake inhibitors, suggesting that neoplastic cells can, and need to take up the amine before being stimulated by it. Recent revelations in the field of oncogenes also support an important association between amines, cyclic nucleotides and cell division. The ras oncogenes code for a protein that is a member of a family of molecules which relay information from extracellular regulators, such as biogenic amines, to the intracellular regulators, including cyclic nucleotides. Evidence is presented suggesting that enteroendocrine cells, enterocytes, carcinoid tumour cells and adenocarcinoma cells all have the same

  9. Laser Stimulated Genomic Exchange in Stem Cells. Laser Non-cloning Techniques

    Science.gov (United States)

    Stefan, V. Alexander

    2012-02-01

    I propose a novel technique for a pluripotent stem cell generation. Genomic exchange is stimulated by the beat-wave free electron laser, (B-W FEL), frequency matching with the frequencies of the DNAootnotetextJ.D. Watson and F. H. C. Crick, Nature, 171, 737-738 (1953). eigen-oscillations. B-W FEL-1ootnotetextV. Stefan, B.I.Cohen, C. Joshi Science, 243,4890, (Jan 27,1989); Stefan, et al., Bull. APS. 32, No. 9, 1713 (1987); Stefan, APS March-2011, #S1.143; APS- March-2009, #K1.276. scans entire stem cell; B-W FEL-2 probes the chromosomes. The scanning and probing lasers: 300-500nm and 100-300nm, respectively; irradiances: the order-of-10s mW/cm^2 (above the threshold value for a particular gene structure); repetition rate of few-100s Hz. A variety of genetic-matching conditions can be arranged. Genomic glitches, (the cell nucleus transferootnotetextScott Noggle et al. Nature, 478, 70-75 (06 October 2011).), can be hedged by the use of lasers.

  10. Clone DB: an integrated NCBI resource for clone-associated data

    Science.gov (United States)

    Schneider, Valerie A.; Chen, Hsiu-Chuan; Clausen, Cliff; Meric, Peter A.; Zhou, Zhigang; Bouk, Nathan; Husain, Nora; Maglott, Donna R.; Church, Deanna M.

    2013-01-01

    The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents. PMID:23193260

  11. Effect of radiation dosage changes on the cell viability and the apoptosis induction on normal and tumorigenic cells

    International Nuclear Information System (INIS)

    Park, In Woo; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk

    1999-01-01

    The study was aimed to detect the differences in the cell viability and the apoptosis induction after irradiation on normal and tumorigenic cells. The study, that was generated for two human normal cells (RHEK, HGF-1) and two human tumor cells (KB, HT-1080), was tested using MTT assay at 1 day and 3 day after irradiation and TUNEL assay under confocal laser scanning microscope at 1 day after irradiation. Single irradiation of 0.5, 1, 2, 4, and 8 Gy were applied to the cells. The two fractions of 1, 2, 4, and 8 Gy were separated with a 4 hour time interval. The irradiation was done with 5.38 Gy/min dose rate using Cs-137 irradiator at room temperature. 1. In 3-day group, the cell viability of HGF-1 cell was significantly decreased at 2, 4 and 8 Gy irradiation, the cell viability of KB cell was significantly decreased at 8 Gy irradiation and the cell viability of HT-1080 cell was significantly decreased at 4 and 8 Gy irradiation. 2. There was significant difference between RHEK and KB cell line in the cell viability of 3-day group at 8 Gy irradiation. There was significant difference between RHEK and HGF-1 cell line in the cell viability of 3-day group at 4 and 8 Gy irradiation. 3. There was a significantly decreased cell viability in 3-day group than those in 1-day group at 2, 4 and 8 Gy on HGF-1 cell, at 4 and 8 Gy on HT-1080 cell, at 8 Gy on KB cell.4. We could detect DNA fragmented cells only on KB cell. Number of apoptotic cells of KB cell was significantly increased at 4 and 8 Gy irradiation. However, there was no correlation between cell viability and apoptosis.5. On all 4 cell lines, there were no differences between single and split irradiation method in cell viability and apoptosis.

  12. Validation of endogenous normalizing genes for expression analyses in adult human testis and germ cell neoplasms.

    Science.gov (United States)

    Svingen, T; Jørgensen, A; Rajpert-De Meyts, E

    2014-08-01

    The measurement of gene expression levels in cells and tissues typically depends on a suitable point of reference for inferring biological relevance. For quantitative (or real-time) RT-PCR assays, the method of choice is often to normalize gene expression data to an endogenous gene that is stably expressed across the samples analysed: a so-called normalizing or housekeeping gene. Although this is a valid strategy, the identification of stable normalizing genes has proved challenging and a gene showing stable expression across all cells or tissues is unlikely to exist. Therefore, it is necessary to define suitable normalizing genes for specific cells and tissues. Here, we report on the performance of a panel of nine commonly employed normalizing genes in adult human testis and testicular pathologies. Our analyses revealed significant variability in transcript abundance for commonly used normalizers, highlighting the importance of selecting appropriate normalizing genes as comparative measurements can yield variable results when different normalizing genes are employed. Based on our results, we recommend using RPS20, RPS29 or SRSF4 when analysing relative gene expression levels in human testis and associated testicular pathologies. OCT4 and SALL4 can be used with caution as second-tier normalizers when determining changes in gene expression in germ cells and germ cell tumour components, but the relative transcript abundance appears variable between different germ cell tumour types. We further recommend that such studies should be accompanied by additional assessment of histology and cellularity of each sample. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Distinct p53 genomic binding patterns in normal and cancer-derived human cells

    Energy Technology Data Exchange (ETDEWEB)

    Botcheva K.; McCorkle S. R.; McCombie W. R.; Dunn J. J.; Anderson C. W.

    2011-12-15

    We report here genome-wide analysis of the tumor suppressor p53 binding sites in normal human cells. 743 high-confidence ChIP-seq peaks representing putative genomic binding sites were identified in normal IMR90 fibroblasts using a reference chromatin sample. More than 40% were located within 2 kb of a transcription start site (TSS), a distribution similar to that documented for individually studied, functional p53 binding sites and, to date, not observed by previous p53 genome-wide studies. Nearly half of the high-confidence binding sites in the IMR90 cells reside in CpG islands, in marked contrast to sites reported in cancer-derived cells. The distinct genomic features of the IMR90 binding sites do not reflect a distinct preference for specific sequences, since the de novo developed p53 motif based on our study is similar to those reported by genome-wide studies of cancer cells. More likely, the different chromatin landscape in normal, compared with cancer-derived cells, influences p53 binding via modulating availability of the sites. We compared the IMR90 ChIPseq peaks to the recently published IMR90 methylome1 and demonstrated that they are enriched at hypomethylated DNA. Our study represents the first genome-wide, de novo mapping of p53 binding sites in normal human cells and reveals that p53 binding sites reside in distinct genomic landscapes in normal and cancer-derived human cells.

  14. Transplantations and Cloning of an Immortal Cell Line from Rat SCN

    Science.gov (United States)

    1994-05-31

    8217 NTIS G•A&I DTIC TA• o t I It q 2 EXPERIMENTAL PROCEDURES Animals and Primary Cultures On separate occasions at day 15 and 16 of gestation, fetuses...for 30 minutes, primary antibody in PBS with 0.25% BSA for 48-72 hr at 50C, biotinylated donkey anti-rabbit immunoglobulin (IgG; Jackson Labs...for the first several weeks postinfection; cells were either singly isolated without companions or organized into small aggregates of no more than 4-5

  15. Survival of human osteosarcoma cells and normal human fibroblasts following alpha particle irradiation

    International Nuclear Information System (INIS)

    Lloyd, E.L.; Gemmell, M.A.

    1981-01-01

    Cell survival of human osteosarcoma cells in culture following alpha particle irradiation is reported here for the first time. The osteosarcoma cell line (TE-85) is found to be less sensitive to inactivation by 5.6 MeV alpha particles (LET 86 keV/μm) than normal diploid human fibroblasts (NFS). Values for the mean lethal doses were estimated to be 103 rads for the TE-85 cells compared with 68 rads for the NFS cultures irradiated under identical conditions. It is postulated that the aneuploidy of the tumor cells with increased DNA chromosomal material may confer a selective advantage for the survival of tumor cells relative to normal cells with diploid chromosomes

  16. Expression of a family of noncoding mitochondrial RNAs distinguishes normal from cancer cells.

    Science.gov (United States)

    Burzio, Verónica A; Villota, Claudio; Villegas, Jaime; Landerer, Eduardo; Boccardo, Enrique; Villa, Luisa L; Martínez, Ronny; Lopez, Constanza; Gaete, Fancy; Toro, Viviana; Rodriguez, Ximena; Burzio, Luis O

    2009-06-09

    We reported the presence in human cells of a noncoding mitochondrial RNA that contains an inverted repeat (IR) of 815 nucleotides (nt) covalently linked to the 5' end of the mitochondrial 16S RNA (16S mtrRNA). The transcript contains a stem-loop structure and is expressed in human proliferating cells but not in resting cells. Here, we demonstrate that, in addition to this transcript, normal human proliferating cells in culture express 2 antisense mitochondrial transcripts. These transcripts also contain stem-loop structures but strikingly they are down-regulated in tumor cell lines and tumor cells present in 17 different tumor types. The differential expression of these transcripts distinguishes normal from tumor cells and might contribute a unique vision on cancer biology and diagnostics.

  17. Comparison of radiosensitivity between tumor and normal tissue in terms of cell population kinetics

    International Nuclear Information System (INIS)

    Sugahara, Tsutomu; Utsumi, Hiroshi

    1975-01-01

    Puck and Marcus in 1956 established the in vitro colony formation of mammalian cells and demonstrated a dose-survival curve of mammalian cells well fitted to the target theory. Since then almost all of the work on the radiosensitivity of malignant and normal cells has been based on the reproductive integrity of cells. However, in the author's laboratory, a recent work was done on the effect of ionizing radiation on the differentiative trait, using clonal cell cultures developed by Coon (1966) in chick embryonic cartilage cells. This work demonstrated clearly that the differentiative trait is more radiosensitive than is reproduction. Based on this finding a new compartment model is proposed for a cell renewal system which demonstrates the difference between normal and malignant tissue. (author)

  18. Epidermal stem cells - role in normal, wounded and pathological psoriatic and cancer skin

    DEFF Research Database (Denmark)

    Kamstrup, M.; Faurschou, A.; Gniadecki, R.

    2008-01-01

    In this review we focus on epidermal stem cells in the normal regeneration of the skin as well as in wounded and psoriatic skin. Furthermore, we discuss current data supporting the idea of cancer stem cells in the pathogenesis of skin carcinoma and malignant melanoma. Epidermal stem cells present...... or transit amplifying cells constitute a primary pathogenetic factor in the epidermal hyperproliferation seen in psoriasis. In cutaneous malignancies mounting evidence supports a stem cell origin in skin carcinoma and malignant melanoma and a possible existence of cancer stem cells Udgivelsesdato: 2008/5...

  19. Single-cell cloning and expansion of human induced pluripotent stem cells by a microfluidic culture device.

    Science.gov (United States)

    Matsumura, Taku; Tatsumi, Kazuya; Noda, Yuichiro; Nakanishi, Naoyuki; Okonogi, Atsuhito; Hirano, Kunio; Li, Liu; Osumi, Takashi; Tada, Takashi; Kotera, Hidetoshi

    2014-10-10

    The microenvironment of cells, which includes basement proteins, shear stress, and extracellular stimuli, should be taken into consideration when examining physiological cell behavior. Although microfluidic devices allow cellular responses to be analyzed with ease at the single-cell level, few have been designed to recover cells. We herein demonstrated that a newly developed microfluidic device helped to improve culture conditions and establish a clonality-validated human pluripotent stem cell line after tracing its growth at the single-cell level. The device will be a helpful tool for capturing various cell types in the human body that have not yet been established in vitro. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    Science.gov (United States)

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  1. Age-Related Change in Vestibular Ganglion Cell Populations in Individuals With Presbycusis and Normal Hearing.

    Science.gov (United States)

    Gluth, Michael B; Nelson, Erik G

    2017-04-01

    We sought to establish that the decline of vestibular ganglion cell counts uniquely correlates with spiral ganglion cell counts, cochlear hair cell counts, and hearing phenotype in individuals with presbycusis. The relationship between aging in the vestibular system and aging in the cochlea is a topic of ongoing investigation. Histopathologic age-related changes the vestibular system may mirror what is seen in the cochlea, but correlations with hearing phenotype and the impact of presbycusis are not well understood. Vestibular ganglion cells, spiral ganglion cells, and cochlear hair cells were counted in specimens from individuals with presbycusis and normal hearing. These were taken from within a large collection of processed human temporal bones. Correlations between histopathology and hearing phenotype were investigated. Vestibular ganglion cell counts were positively correlated with spiral ganglion cell counts and cochlear hair cell counts and were negatively correlated with hearing phenotype. There was no statistical evidence on linear regression to suggest that the relationship between age and cell populations differed significantly according to whether presbycusis was present or not. Superior vestibular ganglion cells were more negatively correlated with age than inferior ganglion cells. No difference in vestibular ganglion cells was noted based on sex. Vestibular ganglion cell counts progressively deteriorate with age, and this loss correlates closely with changes in the cochlea, as well as hearing phenotype. However, these correlations do not appear to be unique in individuals with presbycusis as compared with those with normal hearing.

  2. Small copper fixed-point cells of the hybrid type to be used in place of normal larger cells

    Science.gov (United States)

    Battuello, M.; Girard, F.; Florio, M.

    2012-10-01

    Two small cells for the realization of the fixed point of copper were constructed and investigated at INRIM. They are of the same hybrid design generally adopted for the eutectic high-temperature fixed-point cells, namely a structure with a sacrificial graphite sleeve and a layer of flexible carbon-carbon composite sheet (C/C sheet). Because of the largely different design with respect to the cells normally adopted for the construction of pure metal fixed points, they were compared and characterized with respect to the normal cells used at INRIM for the ITS-90 realization. Two different furnaces were used to compare hybrid and normal cells. One of the hybrid cells was also used in different configurations, i.e. without the C/C sheet and with two layers of sheet. The cells were compared with different operative conditions, i.e. temperature settings of the furnaces for inducing the freeze, and repeatability and reproducibility were investigated. Freezing temperature and shape of the plateaux obtained under the different conditions were analysed. As expected the duration of the plateaux obtained with the hybrid cells is considerably shorter than with the normal cell, but this does not affect the results in terms of freezing temperature. Measurements with the modified cell showed that the use of a double C/C sheet may improve both repeatability and reproducibility of the plateaux.

  3. Small copper fixed-point cells of the hybrid type to be used in place of normal larger cells

    International Nuclear Information System (INIS)

    Battuello, M; Girard, F; Florio, M

    2012-01-01

    Two small cells for the realization of the fixed point of copper were constructed and investigated at INRIM. They are of the same hybrid design generally adopted for the eutectic high-temperature fixed-point cells, namely a structure with a sacrificial graphite sleeve and a layer of flexible carbon–carbon composite sheet (C/C sheet). Because of the largely different design with respect to the cells normally adopted for the construction of pure metal fixed points, they were compared and characterized with respect to the normal cells used at INRIM for the ITS-90 realization. Two different furnaces were used to compare hybrid and normal cells. One of the hybrid cells was also used in different configurations, i.e. without the C/C sheet and with two layers of sheet. The cells were compared with different operative conditions, i.e. temperature settings of the furnaces for inducing the freeze, and repeatability and reproducibility were investigated. Freezing temperature and shape of the plateaux obtained under the different conditions were analysed. As expected the duration of the plateaux obtained with the hybrid cells is considerably shorter than with the normal cell, but this does not affect the results in terms of freezing temperature. Measurements with the modified cell showed that the use of a double C/C sheet may improve both repeatability and reproducibility of the plateaux. (paper)

  4. Cloning and sequencing of Staphylococcus aureus murC, a gene essential for cell wall biosynthesis.

    Science.gov (United States)

    Lowe, A M; Deresiewicz, R L

    1999-01-01

    Staphylococcus aureus is a major human pathogen that is increasingly resistant to clinically useful antimicrobial agents. While screening for S. aureus genes expressed during mammalian infection, we isolated murC. This gene encodes UDP-N-acetylmuramoyl-L-alanine synthetase, an enzyme essential for cell wall biosynthesis in a number of bacteria. S. aureus MurC has a predicted mass 49,182 Da and complements the temperature-sensitive murC mutation of E. coli ST222. Sequence data on the DNA flanking staphylococcal murC suggests that the local gene organization there parallels that found in B. subtilis, but differs from that found in gram-negative bacterial pathogens. MurC proteins represent promising targets for broad spectrum antimicrobial drug development.

  5. Stem Cell Therapy to Reduce Radiation-Induced Normal Tissue Damage

    NARCIS (Netherlands)

    Coppes, Rob P.; van der Goot, Annemieke; Lombaert, Isabelle M. A.

    Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their

  6. The toxicity of saffron (Crocus sativus L. and its constituents against normal and cancer cells

    Directory of Open Access Journals (Sweden)

    Alireza Milajerdi

    2016-03-01

    Conclusio