WorldWideScience

Sample records for normal adult mice

  1. Development of intraepithelial T lymphocytes in the intestine of irradiated SCID mice by adult liver hematopoietic stem cells from normal mice

    International Nuclear Information System (INIS)

    Yamagiwa, Satoshi; Seki, Shuhji; Shirai, Katsuaki; Yoshida, Yuhei; Miyaji, Chikako; Watanabe, Hisami; Abo, Toru

    1999-01-01

    Background/Aims: We recently reported the adult mouse liver to contain c-kit + stem cells that can give rise to multilineage leukocytes. This study was designed to determine whether or not adult mouse liver stem cells can generate intraepithelial T cells in the intestine as well as to examine the possibility that adult liver c-kit + stem cells originate from the fetal liver. Methods: Adult liver mononuclear cells, bone marrow (BM) cells, liver c-kit + cells or bone BM c-kit + cells of BALB/c mice were i.v. transferred into 4 Gy irradiated CB17/-SCID mice. In other experiments, fetal liver cells from Ly5.1 C57BL/6 mice and T cell depleted adult BM cells from Ly5.2 C57BL/6 mice were simultaneously transferred into irradiated C57BL/6 SCID mice (Ly5.2). At 1 to 8 weeks after cell transfer, the SCID mice were examined. Results: Not only BM cells and BM c-kit + cells but also liver mononuclear cells and liver c-kit + cells reconstituted γδT cells, CD4 + CD8 + double-positive T cells and CDiα + β - T cells of intestinal intraepithelial lymphocytes of SCID mice. Injection of a mixture of fetal liver cells from Ly5.1 C57BL/6 mice and adult BM cells from Ly5.2 C57BL/6 mice into Ly5.2 C57BL/6 SCID mice induced both Ly5.1 and Ly5.2 T cells, while also generating c-kit + cells of both Ly5.1 and Ly5.2 origins in the liver. Conclusions: Adult mouse liver stem cells were able to generate intestinal intraepithelial T cells of the SCID mice, and it is thus suggested that some adult liver stem cells may indeed be derived from the fetal liver. (au)

  2. Lepidium meyenii (Maca increases litter size in normal adult female mice

    Directory of Open Access Journals (Sweden)

    Gasco Manuel

    2005-05-01

    Full Text Available Abstract Background Lepidium meyenii, known as Maca, grows exclusively in the Peruvian Andes over 4000 m altitude. It has been used traditionally to increase fertility. Previous scientific studies have demonstrated that Maca increases spermatogenesis and epididymal sperm count. The present study was aimed to investigate the effects of Maca on several fertility parameters of female mice at reproductive age. Methods Adult female Balb/C mice were divided at random into three main groups: i Reproductive indexes group, ii Implantation sites group and iii Assessment of uterine weight in ovariectomized mice. Animals received an aqueous extract of lyophilized Yellow Maca (1 g/Kg BW or vehicle orally as treatment. In the fertility indexes study, animals received the treatment before, during and after gestation. The fertility index, gestation index, post-natal viability index, weaning viability index and sex ratio were calculated. Sexual maturation was evaluated in the female pups by the vaginal opening (VO day. In the implantation study, females were checked for implantation sites at gestation day 7 and the embryos were counted. In ovariectomized mice, the uterine weight was recorded at the end of treatment. Results Implantation sites were similar in mice treated with Maca and in controls. All reproductive indexes were similar in both groups of treatment. The number of pups per dam at birth and at postnatal day 4 was significantly higher in the group treated with Maca. VO day occurred earlier as litter size was smaller. Maca did not affect VO day. In ovariectomized mice, the treatment with Maca increased significantly the uterine weights in comparison to their respective control group. Conclusion Administration of aqueous extract of Yellow Maca to adult female mice increases the litter size. Moreover, this treatment increases the uterine weight in ovariectomized animals. Our study confirms for the first time some of the traditional uses of Maca to

  3. Differentiation of adult-type Leydig cells occurs in gonadotrophin-deficient mice

    Directory of Open Access Journals (Sweden)

    Charlton HM

    2003-02-01

    Full Text Available Abstract During mammalian testis development distinct generations of fetal and adult Leydig cells arise. Luteinising hormone (LH is required for normal adult Leydig cell function and for the establishment of normal adult Leydig cell number but its role in the process of adult Leydig cell differentiation has remained uncertain. In this study we have examined adult Leydig cell differentiation in gonadotrophin-releasing hormone (GnRH-null mice which are deficient in circulating gonadotrophins. Adult Leydig cell differentiation was assessed by measuring expression of mRNA species encoding four specific markers of adult Leydig cell differentiation in the mouse. Each of these markers (3β-hydroxysteroid dehydrogenase type VI (3βHSD VI, 17β-hydroxysteroid dehydrogenase type III (17βHSD III, prostaglandin D (PGD-synthetase and oestrogen sulphotransferase (EST is expressed only in the adult Leydig cell lineage in the normal adult animal. Real-time PCR studies showed that all four markers are expressed in adult GnRH-null mice. Localisation of 3βHSD VI and PGD-synthetase expression by in situ hybridisation confirmed that these genes are expressed in the interstitial tissue of the GnRH-null mouse. Treatment of animals with human chorionic gonadotrophin increased expression of 3βHSD VI and 17βHSD III within 12 hours further indicating that differentiated, but unstimulated cells already exist in the GnRH-null mouse. Thus, while previous studies have shown that LH is required for adult Leydig cell proliferation and activity, results from the present study show that adult Leydig cell differentiation will take place in animals deficient in LH.

  4. Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice

    Institute of Scientific and Technical Information of China (English)

    TIAN Bei; LI Xiao-xin; SHEN Li; ZHAO Min; YU Wen-zhen

    2010-01-01

    Background Hematopoietic stem cells (HSCs) can be used to deliver functionally active angiostatic molecules to the retinal vasculature by targeting active astrocytes and may be useful in targeting pre-angiogenic retinal lesions. We sought to determine whether HSC mobilization can ameliorate early diabetic retinopathy in mice.Methods Mice were devided into four groups: normal mice control group, normal mice HSC-mobilized group, diabetic mice control group and diabetic mice HSC mobilized group. Murine stem cell growth factor (murine SCF) and recombined human granulocyte colony stimulating factor (rhG-csf) were administered to the mice with diabetes and without diabetes for continuous 5 days to induce autologous HSCs mobilization, and subcutaneous injection of physiological saline was used as control. Immunohistochemical double staining was conducted with anti-mouse rat CD31 monoclonal antibody and anti-BrdU rat antibody.Results Marked HSCs clearly increased after SCF plus G-csf-mobilization. Non-mobilized diabetic mice showed more HSCs than normal mice (P=0.032), and peripheral blood significantly increased in both diabetic and normal mice (P=0.000).Diabetic mice showed more CD31 positive capillary vessels (P=0.000) and accelerated endothelial cell regeneration. Only diabetic HSC-mobilized mice expressed both BrdU and CD31 antigens in the endothelial cells of new capillaries.Conclusion Auto-mobilized adult hematopoietic stem cells advance neovasculature in diabetic retinopathy of mice.

  5. Nuclei pulposi formation from the embryonic notochord occurs normally in GDF-5-deficient mice.

    Science.gov (United States)

    Maier, Jennifer A; Harfe, Brian D

    2011-11-15

    The transition of the mouse embryonic notochord into nuclei pulposi was determined ("fate mapped") in vivo in growth and differentiating factor-5 (GDF-5)-null mice using the Shhcre and R26R alleles. To determine whether abnormal nuclei pulposi formation from the embryonic notochord was responsible for defects present in adult nuclei pulposi of Gdf-5-null mice. The development, maintenance, and degeneration of the intervertebral disc are not understood. Previously, we demonstrated that all cells in the adult nucleus pulposus of normal mice are derived from the embryonic notochord. Gdf-5-null mice have been reported to contain intervertebral discs in which the nucleus pulposus is abnormal. It is currently unclear if disc defects in Gdf-5-null mice arise during the formation of nuclei pulposi from the notochord during embryogenesis or result from progressive postnatal degeneration of nuclei pulposi. Gdf-5 messenger RNA expression was examined in the discs of wild-type embryos by RNA in situ hybridization to determine when and where this gene was expressed. To examine nucleus pulposus formation in Gdf-5-null mice, intervertebral discs in which embryonic notochord cells were marked were analyzed in newborn and 24-week-old mice. Our Gdf-5 messenger RNA in situ experiments determined that this gene is localized to the annulus fibrosus and not the nucleus pulposus in mouse embryos. Notochord fate-mapping experiments revealed that notochord cells in Gdf-5-null mice correctly form nuclei pulposi. Our data suggest that the defects reported in the nucleus pulposus of adult Gdf-5-null mice do not result from abnormal patterning of the embryonic notochord. The use of mouse alleles to mark cells that produce all cell types that reside in the adult nucleus pulposus will allow for a detailed examination of disc formation in other mouse mutants that have been reported to contain disc defects.

  6. SEC23B is required for pancreatic acinar cell function in adult mice

    Science.gov (United States)

    Khoriaty, Rami; Vogel, Nancy; Hoenerhoff, Mark J.; Sans, M. Dolors; Zhu, Guojing; Everett, Lesley; Nelson, Bradley; Durairaj, Haritha; McKnight, Brooke; Zhang, Bin; Ernst, Stephen A.; Ginsburg, David; Williams, John A.

    2017-01-01

    Mice with germline absence of SEC23B die perinatally, exhibiting massive pancreatic degeneration. We generated mice with tamoxifen-inducible, pancreatic acinar cell–specific Sec23b deletion. Inactivation of Sec23b exclusively in the pancreatic acinar cells of adult mice results in decreased overall pancreatic weights from pancreatic cell loss (decreased pancreatic DNA, RNA, and total protein content), as well as degeneration of exocrine cells, decreased zymogen granules, and alterations in the endoplasmic reticulum (ER), ranging from vesicular ER to markedly expanded cisternae with accumulation of moderate-density content or intracisternal granules. Acinar Sec23b deletion results in induction of ER stress and increased apoptosis in the pancreas, potentially explaining the loss of pancreatic cells and decreased pancreatic weight. These findings demonstrate that SEC23B is required for normal function of pancreatic acinar cells in adult mice. PMID:28539403

  7. Residual haematopoietic damage in adult and 8 day-old mice exposed to 7 Gy of x-rays

    International Nuclear Information System (INIS)

    Grande, T.; Bueren, J.A.; Gaitan, S.; Tejero, C.

    1993-01-01

    The authors' experiments have focused on the analysis of residual haematopoietic damage in 8-day-old and 12-week-old mice X-irradiated with a single dose of 7 Gy. In the case of adult mice, analysis of femoral and splenic CFU-S, CFU-GM and BFU-E showed a persistent depletion of these haematopoietic progenitor cells after irradiation. In contrast, in 1-week-old irradiated mice, a progressive recovery of the femoral haematopoietic progenitors was observed, achieving essentially normal values 1 year after irradiation. The spleens of these mice, however, contained significantly less haematopoietic progenitors than the control group, mainly as a consequence of the size reduction of this organ. In the peripheral blood, normal cellularity values were observed in most cases, although in the adult group a decline in numbers or circulating cells was noted after the first year following irradiation. (author)

  8. Disrupting Jagged1-Notch signaling impairs spatial memory formation in adult mice.

    Science.gov (United States)

    Sargin, Derya; Botly, Leigh C P; Higgs, Gemma; Marsolais, Alexander; Frankland, Paul W; Egan, Sean E; Josselyn, Sheena A

    2013-07-01

    It is well-known that Notch signaling plays a critical role in brain development and growing evidence implicates this signaling pathway in adult synaptic plasticity and memory formation. The Notch1 receptor is activated by two subclasses of ligands, Delta-like (including Dll1 and Dll4) and Jagged (including Jag1 and Jag2). Ligand-induced Notch1 receptor signaling is modulated by a family of Fringe proteins, including Lunatic fringe (Lfng). Although Dll1, Jag1 and Lfng are critical regulators of Notch signaling, their relative contribution to memory formation in the adult brain is unknown. To investigate the roles of these important components of Notch signaling in memory formation, we examined spatial and fear memory formation in adult mice with reduced expression of Dll1, Jag1, Lfng and Dll1 plus Lfng. We also examined motor activity, anxiety-like behavior and sensorimotor gating using the acoustic startle response in these mice. Of the lines of mutant mice tested, we found that only mice with reduced Jag1 expression (mice heterozygous for a null mutation in Jag1, Jag1(+/-)) showed a selective impairment in spatial memory formation. Importantly, all other behavior including open field activity, conditioned fear memory (both context and discrete cue), acoustic startle response and prepulse inhibition, was normal in this line of mice. These results provide the first in vivo evidence that Jag1-Notch signaling is critical for memory formation in the adult brain. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  9. Normal Conducting RF Cavity for MICE

    International Nuclear Information System (INIS)

    Li, D.; DeMello, A.; Virostek, S.; Zisman, M.; Summers, D.

    2010-01-01

    Normal conducting RF cavities must be used for the cooling section of the international Muon Ionization Cooling Experiment (MICE), currently under construction at Rutherford Appleton Laboratory (RAL) in the UK. Eight 201-MHz cavities are needed for the MICE cooling section; fabrication of the first five cavities is complete. We report the cavity fabrication status including cavity design, fabrication techniques and preliminary low power RF measurements.

  10. Protein Degradation in Normal and Beige (Chediak-Higashi) Mice

    Science.gov (United States)

    Lyons, Robert T.; Pitot, Henry C.

    1978-01-01

    The beige mouse, C57BL/6 (bg/bg), is an animal model for the Chediak-Higashi syndrome in man, a disease characterized morphologically by giant lysosomes in most cell types. Half-lives for the turnover of [14C]bicarbonate-labeled total soluble liver protein were determined in normal and beige mice. No significant differences were observed between the normal and mutant strain for both rapidly and slowly turning-over classes of proteins. Glucagon treatment during the time-course of protein degradation had similar effects on both normal and mutant strains and led to the conclusion that the rate of turnover of endogenous intracellular protein in the beige mouse liver does not differ from normal. The rates of uptake and degradation of an exogenous protein were determined in normal and beige mice by intravenously injecting 125I-bovine serum albumin and following, in peripheral blood, the loss with time of phosphotungstic acid-insoluble bovine serum albumin and the parallel appearance of phosphotungstic acid-soluble (degraded) material. No significant differences were observed between beige and normal mice in the uptake by liver lysosomes of 125I-bovine serum albumin (t½ = 3.9 and 2.8 h, respectively). However, it was found that lysosomes from livers of beige mice released phosphotungstic acid-soluble radioactivity at a rate significantly slower than normal (t½ = 6.8 and 3.1 h, respectively). This defect in beige mice could be corrected by chronic administration of carbamyl choline (t½ = 3.5 h), a cholinergic agonist which raises intracellular cyclic GMP levels. However, no significant differences between normal and beige mice were observed either in the ability of soluble extracts of liver and kidney to bind [3H]cyclic GMP in vitro or in the basal levels of cyclic AMP in both tissues. The relevance of these observations to the presumed biochemical defect underlying the Chediak-Higashi syndrome is discussed. PMID:202611

  11. Myogenin regulates exercise capacity but is dispensable for skeletal muscle regeneration in adult mdx mice.

    Directory of Open Access Journals (Sweden)

    Eric Meadows

    Full Text Available Duchenne muscular dystrophy (DMD is the most prevalent inherited childhood muscle disorder in humans. mdx mice exhibit a similar pathophysiology to the human disorder allowing for an in-depth investigation of DMD. Myogenin, a myogenic regulatory factor, is best known for its role in embryonic myogenesis, but its role in adult muscle maintenance and regeneration is still poorly understood. Here, we generated an mdx:Myog(flox/flox mouse harboring a tamoxifen-inducible Cre recombinase transgene, which was used to conditionally delete Myog during adult life. After tamoxifen treatment, three groups of mice were created to study the effects of Myog deletion: mdx:Myog(flox/flox mice (mdx, Myog(flox/flox mice (wild-type, and mdx:Myog(floxΔ/floxΔ:Cre-ER mice (mdx:Myog-deleted. mdx:Myog-deleted mice exhibited no adverse phenotype and behaved normally. When run to exhaustion, mdx:Myog-deleted mice demonstrated an enhanced capacity for exercise compared to mdx mice, running nearly as far as wild-type mice. Moreover, these mice showed the same signature characteristics of muscle regeneration as mdx mice. Unexpectedly, we found that myogenin was dispensable for muscle regeneration. Factors associated with muscle fatigue, metabolism, and proteolysis were significantly altered in mdx:Myog-deleted mice, and this might contribute to their increased exercise capacity. Our results reveal novel functions for myogenin in adult muscle and suggest that reducing Myog expression in other muscle disease models may partially restore muscle function.

  12. Immunohistochemical Study of Expression of Sohlh1 and Sohlh2 in Normal Adult Human Tissues.

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    Full Text Available The expression pattern of Sohlh1 (spermatogenesis and oogenesis specific basic helix-loop-helix 1 and Sohlh2 in mice has been reported in previous studies. Sohlh1 and Sohlh2 are specifically expressed in spermatogonia, prespermatogonia in male mice and oocytes of primordial and primary follicles in female mice. In this report, we studied the expression pattern of Sohlh1 and Sohlh2 in human adult tissues. Immunohistochemical staining of Sohlh1 and Sohlh2 was performed in 5 samples of normal ovaries and testes, respectively. The results revealed that Sohlh genes are not only expressed in oocytes and spermatogonia, but also in granular cells, theca cells, Sertoli cells and Leydig cells, and in smooth muscles of blood vessel walls. To further investigate the expression of Sohlh genes in other adult human tissues, we collected representative normal adult tissues developed from three embryonic germ layers. Compared with the expression in mice, Sohlhs exhibited a much more extensive expression pattern in human tissues. Sohlhs were detected in testis, ovary and epithelia developed from embryonic endoderm, ectoderm and tissues developed from embryonic mesoderm. Sohlh signals were found in spermatogonia, Sertoli cells and also Leydig cells in testis, while in ovary, the expression was mainly in oocytes of primordial and primary follicles, granular cells and theca cells of secondary follicles. Compared with Sohlh2, the expression of Sohlh1 was stronger and more extensive. Our study explored the expression of Sohlh genes in human tissues and might provide insights for functional studies of Sohlh genes.

  13. Effects of Kerack used in addict Iranian people on fertility of adult mice

    Directory of Open Access Journals (Sweden)

    Mehdi Amini

    2013-08-01

    Full Text Available Background: Infertility is one of the most serious social problems. Illicit drug use can be an important cause of male factor infertility. Kerack which its use is rising up in Iran refers to a high purity street-level heroin (heroin Kerack. Heroin Kerack used in Iran is an opioid and has harmful effects on body organs. The aim of this study is to investigate the effects of Kerack used in Iran on fertility adult mice.Methods: In this study, 25 male mice were divided into five groups (control, sham and three experimental. Experimental groups of Kerack-dependent mice (received ascend-ing dose of Kerack for seven days were divided into three categories, experimental I, II and III. Experimental I was given Kerack at a dose of 5 mg/kg, experimental II 35 mg/kg and experimental III 70 mg/kg, intraperitoneally twice a day for a period of 35 days. The sham group received normal saline and lemon juice (2.6 µl/ml whilst the control group just received water and food. Mice were then scarified and sperm removed from cauda epididymis were analyzed for sperm count, motility, morphology (normal/abnormal and viability. Testes were also removed, weighed and processed for light microscopic studies.Results: The results showed that fertility were significantly decreased in addicted mice compared with control groups (P≤0.05. Epididymal sperm parameters and thickness of seminiferous epithelium were significantly decreased in experimental groups (dose-dependent compared with sham and control groups (P≤0.05. Gonadosomatic index was significantly reduced with high dose Kerack injected (70 mg/kg in comparison with control testes (P≤0.05.Conclusion: This study has shown the deleterious effects of Kerack used in addicted Iranian people on fertility for the first time. This effect is especially on epididymal sperm parameters in adult mice.

  14. Hypoglycemic effect of methanolic extract of Musa paradisiaca (Musaceae) green fruits in normal and diabetic mice.

    Science.gov (United States)

    Ojewole, J A O; Adewunmi, C O

    2003-01-01

    Diabetes mellitus is a debilitating hormonal disorder in which strict glycemic control and prevention of associated complications are of crucial importance. This study was designed to evaluate the hypoglycemic effect of methanolic extract of mature, green fruits of Musa paradisiaca (MEMP) in normal (normoglycemic) and streptozotocin (STZ)-treated, diabetic (hyperglycemic) mice, using chlorpropamide as the reference antidiabetic agent. MEMP (100-800 mg/kg p.o.) induced significant, dose-related (p < 0.05-0.001) reductions in the blood glucose concentrations of both normal and diabetic mice. Chlorpropamide (250 mg/kg p.o.) also produced significant (p < 0.01-0.001) reductions in the blood glucose concentrations of normal and diabetic mice. The results of this experimental study indicate that, in the mammalian model used, MEMP possesses hypoglycemic activity. Although the precise mechanism of the hypoglycemic action of MEMP is still unclear and will have to await further studies, it could be due, at least in part, to stimulation of insulin production and subsequent glucose utilization. Nevertheless, the findings of this experimental animal study indicate that MEMP possesses hypoglycemic activity, and thus lends credence to the suggested folkloric use of the plant in the management and/or control of adult-onset, type-2 diabetic mellitus among the Yoruba-speaking people of South-Western Nigeria.

  15. Growth restriction, leptin, and the programming of adult behavior in mice.

    Science.gov (United States)

    Meyer, Lauritz R; Zhu, Vivian; Miller, Alise; Roghair, Robert D

    2014-12-15

    Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4-14, C57BL/6 mice were randomized to daily injections of saline or leptin (80ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/-6s vs 87+/-7s for controls, phormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Body surface area prediction in normal, hypermuscular, and obese mice.

    Science.gov (United States)

    Cheung, Michael C; Spalding, Paul B; Gutierrez, Juan C; Balkan, Wayne; Namias, Nicholas; Koniaris, Leonidas G; Zimmers, Teresa A

    2009-05-15

    Accurate determination of body surface area (BSA) in experimental animals is essential for modeling effects of burn injury or drug metabolism. Two-dimensional surface area is related to three-dimensional body volume, which in turn can be estimated from body mass. The Meeh equation relates body surface area to the two-thirds power of body mass, through a constant, k, which must be determined empirically by species and size. We found older values of k overestimated BSA in certain mice; thus we determined empirically k for various strains of normal, obese, and hypermuscular mice. BSA was computed from digitally scanned pelts and nonlinear regression analysis was used to determine the best-fit k. The empirically determined k for C57BL/6J mice of 9.82 was not significantly different from other inbred and outbred mouse strains of normal body composition. However, mean k of the nearly spheroid, obese lepr(db/db) mice (k = 8.29) was significantly lower than for normals, as were values for dumbbell-shaped, hypermuscular mice with either targeted deletion of the myostatin gene (Mstn) (k = 8.48) or with skeletal muscle specific expression of a dominant negative myostatin receptor (Acvr2b) (k = 8.80). Hypermuscular and obese mice differ substantially from normals in shape and density, resulting in considerably altered k values. This suggests Meeh constants should be determined empirically for animals of altered body composition. Use of these new, improved Meeh constants will allow greater accuracy in experimental models of burn injury and pharmacokinetics.

  17. The normal acid-base status of mice.

    Science.gov (United States)

    Iversen, Nina K; Malte, Hans; Baatrup, Erik; Wang, Tobias

    2012-03-15

    Rodent models are commonly used for various physiological studies including acid-base regulation. Despite the widespread use of especially genetic modified mice, little attention have been made to characterise the normal acid-base status in these animals in order to reveal proper control values. Furthermore, several studies report blood gas values obtained in anaesthetised animals. We, therefore, decided to characterise blood CO(2) binding characteristic of mouse blood in vitro and to characterise normal acid-base status in conscious BALBc mice. In vitro CO(2) dissociation curves, performed on whole blood equilibrated to various PCO₂ levels in rotating tonometers, revealed a typical mammalian pK' (pK'=7.816-0.234 × pH (r=0.34)) and a non-bicarbonate buffer capacity (16.1 ± 2.6 slyke). To measure arterial acid-base status, small blood samples were taken from undisturbed mice with indwelling catheters in the carotid artery. In these animals, pH was 7.391 ± 0.026, plasma [HCO(3)(-)] 18.4 ± 0.83 mM, PCO₂ 30.3 ± 2.1 mm Hg and lactate concentration 4.6 ± 0.7 mM. Our study, therefore, shows that mice have an arterial pH that resembles other mammals, although arterial PCO₂ tends to be lower than in larger mammals. However, pH from arterial blood sampled from mice anaesthetised with isoflurane was significantly lower (pH 7.239 ± 0.021), while plasma [HCO(3)(-)] was 18.5 ± 1.4 mM, PCO₂ 41.9 ± 2.9 mm Hg and lactate concentration 4.48 ± 0.67 mM. Furthermore, we measured metabolism and ventilation (V(E)) in order to determine the ventilation requirements (VE/VO₂) to answer whether small mammals tend to hyperventilate. We recommend, therefore, that studies on acid-base regulation in mice should be based on samples taken for indwelling catheters rather than cardiac puncture of terminally anaesthetised mice. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Ratio of organs to blood of mercury during its uptake by normal and acatalasemic mice

    International Nuclear Information System (INIS)

    Ogata, M.; Aikoh, H.

    1987-01-01

    The brain/blood, liver/blood, and heart/blood ratios of acatalasemic mice after intraperitoneal injection of labelled metallic mercury or after exposure to labelled metallic mercury vapor were significantly higher than those of normal mice. These ratios of normal or acatalasemic mice after injection with metallic mercury or exposure to metallic mercury vapor were significantly higher than those of normal and acatalasemic mice injected with mercuric ion. The amount of metallic mercury exhaled from acatalasemic mice injected with metallic mercury was greater than that from normal mice, indicating that the level of metallic mercury in blood of the former was higher than that of the latter. Actually, metallic mercury in the blood of acatalasemic mice injected with metallic mercury is higher than that in the blood of normal mice, suggesting that metallic mercury is easily transferred from blood to brain, liver, kidney, and heart

  19. Kinetics of small lymphocytes in normal and nude mice after splenectomy

    DEFF Research Database (Denmark)

    Hougen, H P; Hansen, F; Jensen, E K

    1977-01-01

    Autoradiography and various quantitations on lymphoid tissues have been used to evaluate the kinetics of small lymphocytes in normal (+/nu or +/+) and congenitally athymic nude (nu/nu) NMRI mice 1 month after splenectomy or sham-splenectomy. The results indicate that splenectomy causes depressed...... thymic activity and diminished numbers of T lymphocytes in peripheral lymphoid tissues. The total number of cells in these tissues as well as the blast cell activity, were within normal limits. Bone marrow lymphocyte numbers and kinetics as well as blood lymphocyte levels in splenectomized and sham......-splenectomized normal animals were comparable. Blood lymphocyte numbers were at normal levels in splenectomized nude mice, in spite of reduced numbers of bone marrow and thoracic duct lymphocytes. It is suggested that increased number of newly-formed lymphocytes, found in lymph nodes and blood of splenectomized mice...

  20. Study of trace element metabolism in normal and cancerous mice using multitracer technique

    International Nuclear Information System (INIS)

    Wang Xiao; Kong Fuquan; Zhao Kui; Zhang Xiang; Qin Zhi

    2008-01-01

    A radioactive multitracer solution of the 24 elements, e.g. Be, Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Zn, Y, Zr, Mo, Nb, To, Ru, Ag and In, was obtained from the nuclear reaction of 25 MeV/u 40 Ar + Se with a series of chemical process. The multitracer solution was orally administered to normal and muscular turnout-bearing mice of male Balb/c mice. Urine and faeces samples of mice were collected. The two group mice were saerificed after 96 h. The uptake of 17 elements, Na, Rb, Ga, As, Sc, V, Cr, Mn, Co, Fe, Zn, Y, Zr, Tc, Ru, Ag and In, were simultaneously detected in normal mice while 15 elements, Na, Rb, Ga, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Tc, Ru, Ag and In, were simultaneously detected in tumour-bearing mice. Our results indicate that the majority of the detected elements were distributed in liver, kidney, pelt, turnout while a small fraction of the biotrace elements were distributed in heart and spleen. (tumour-bearing mice) in the two groups of mice. The higher concentrations of Fe, Na, Mn were detected in heart or kidney of normal mice. Na, Mn, Fe and Co showed better absorption in most tissues in the normal mice, except for Na and Mn in heart. (authors)

  1. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  2. Adrenal and liver in normal and cld/cld mice synthesize and secrete hepatic lipase, but the lipase is inactive in cld/cld mice.

    Science.gov (United States)

    Schultz, C J; Blanchette-Mackie, E J; Scow, R O

    2000-02-01

    Combined lipase deficiency (cld) is a recessive mutation in mice that causes a severe lack of lipoprotein lipase (LPL) and hepatic lipase (HL) activities, hyperlipemia, and death within 3 days after birth. Earlier studies showed that inactive LPL and HL were synthesized by cld/cld tissues and that LPL synthesized by cld/cld brown adipocytes was retained in their ER. We report here a study of HL in liver, adrenal, and plasma of normal newborn and cld/cld mice. Immunofluorescence studies showed HL was present in extracellular space, but not in cells, in liver and adrenal of both normal and cld/cld mice. When protein secretion was blocked with monensin, HL was retained intracellularly in liver cell cultures and in incubated adrenal tissues of both groups of mice. These findings demonstrated that HL was synthesized and secreted by liver and adrenal cells in normal newborn and cld/cld mice. HL activities in liver, adrenal, and plasma in cld/cld mice were very low, cld/cld cells was inactive. Livers of both normal newborn and cld/cld mice synthesized LPL, but the level of LPL activity in cld/cld liver was very low, cld/cld mice, indicating that LPL was synthesized but not secreted by cld/cld liver cells. Immunofluorescent LPL was not found in normal newborn liver cells unless the cells were treated with monensin, thus demonstrating that normal liver cells synthesized and secreted LPL. Livers of both groups of mice contained an unidentified alkaline lipase activity which accounted for 34-54% of alkaline lipase activity in normal and 65% of that in cld/cld livers. Our findings indicate that liver and adrenal cells synthesized and secreted HL in both normal newborn and cld/cld mice, but the lipase was inactive in cld/cld mice. That cld/cld liver cells secreted inactive HL while retaining inactive LPL indicates that these closely related lipases were processed differently.

  3. Mechanism of infectivity of a murine leukemia virus in adult mice

    International Nuclear Information System (INIS)

    Levy, R.L.; Barrington, M.H.; Lerner, R.A.; Dixon, F.J.

    1976-01-01

    Infection of adult BALB/c mice with murine leukemia virus (MuLV) induces typical thymic lymphomas. Expression of virus was measured by using a radioimmunoassay for murine P-30, a virion core protein. Nineteen days after injection of MuLV-S into adult mice, there were 0.3μg P-30/ml of serum. X-irradiation permitted the early expression of high levels of viremia, when given before or after MuLV-S administration, and it also hastened the development of lymphomas. Seventeen to 21 days after injection of MuLV-S into x-irradiated (600 rads) adult mice, there were 2.7 μg of P-30/ml of serum. The virus produced by infected adult mice was infectious and oncogenic when given to newborn mice. Several lines of evidence are presented that suggest the mechanism by which x-irradiation permits early expession of virion proteins and lymphomas is not immunosuppression

  4. Mice lacking the p75 receptor fail to acquire a normal complement of taste buds and geniculate ganglion neurons by adulthood

    OpenAIRE

    Krimm, Robin F.

    2006-01-01

    Brain derived neurotrophic factor and neurotrophin-4 are required for normal taste bud development. Although these neurotrophins normally function via the tyrosine kinase receptor, trkB, they also bind to the pan-neurotrophin receptor, p75. The goal of the present study was to determine whether the p75 receptor is required for the development or maintenance of a full complement of adult taste buds. Mice with p75 null mutations lose 34% of their circumvallate taste buds, 36% of their fungiform...

  5. Flt3 Ligand Regulates the Development of Innate Lymphoid Cells in Fetal and Adult Mice.

    Science.gov (United States)

    Baerenwaldt, Anne; von Burg, Nicole; Kreuzaler, Matthias; Sitte, Selina; Horvath, Edit; Peter, Annick; Voehringer, David; Rolink, Antonius G; Finke, Daniela

    2016-03-15

    Flt3 ligand (Flt3L) promotes survival of lymphoid progenitors in the bone marrow and differentiation of dendritic cells (DCs), but its role in regulating innate lymphoid cells (ILCs) during fetal and adult life is not understood. By using Flt3L knockout and transgenic mice, we demonstrate that Flt3L controls ILC numbers by regulating the pool of α4β7(-) and α4β7(+) lymphoid tissue inducer cell progenitors in the fetal liver and common lymphoid progenitors in the bone marrow. Deletion of flt3l severely reduced the number of fetal liver progenitors and lymphoid tissue inducer cells in the neonatal intestine, resulting in impaired development of Peyer's patches. In the adult intestine, NK cells and group 2 and 3 ILCs were severely reduced. This effect occurred independently of DCs as ILC numbers were normal in mice in which DCs were constitutively deleted. Finally, we could show that administration of Flt3L increased the number of NKp46(-) group 3 ILCs in wild-type and even in Il7(-/-) mice, which generally have reduced numbers of ILCs. Taken together, Flt3L significantly contributes to ILC and Peyer's patches development by targeting lymphoid progenitor cells during fetal and adult life. Copyright © 2016 by The American Association of Immunologists, Inc.

  6. Effect of maternal and post weaning folate supply on gene-specific DNA methylation in the small intestine of weaning and adult Apc+/Min and wild type mice.

    Directory of Open Access Journals (Sweden)

    Jill Ann Mckay

    2011-05-01

    Full Text Available Increasing evidence supports the developmental origins of adult health and disease hypothesis which argues for a causal relationship between adverse early life nutrition and increased disease risk in adulthood. Modulation of epigenetic marks, e.g. DNA methylation and consequential altered gene expression, has been proposed as a mechanism mediating these effects. Via its role as a methyl donor, dietary folate supply may influence DNA methylation. As aberrant methylation is an early event in colorectal cancer (CRC pathogenesis, we hypothesised low maternal and/or post-weaning folate intake may influence methylation of genes involved in CRC development. We investigated the effects of maternal folate depletion during pregnancy and lactation on selected gene methylation in the small intestine (SI of wild type (WT and Apc+/Min mice at weaning and as adults. We also investigated the effects of folate depletion post-weaning on gene methylation in adult mice. Female C57Bl6/J mice were fed low or normal folate diets from mating with Apc+/Min males to the end of lactation. A sub set of offspring were killed at weaning. Remaining offspring were weaned on to low or normal folate diets, resulting in 4 treatment groups of Apc+/Min and WT mice. p53 was more methylated in weaning and adult WT compared with Apc+/Min mice (p>0.001. Igf2 and Apc were hypermethylated in adult Apc+/Mi n compared with WT mice (p=0.004 & p=0.012 respectively. Low maternal folate reduced p53 methylation in adults (p=0.04. Low post-weaning folate increased Apc methylation in Apc+/Min mice only (p=0.008 for interaction. These observations demonstrate that folate depletion in early life can alter epigenetic marks in a gene specific manner. Also, the differential effects of altered folate supply on DNA methylation in WT and Apc+/Min mice suggest that genotype may modulate epigenetic responses to environmental cues and may have implications for the development of personalised nutrition.

  7. Dosimetric Studies in Normal Mice of 177Lu-DOTA-SP and 177Lu-DOTA-His2-MG

    International Nuclear Information System (INIS)

    Puerta Yepes, N.; Rojo, A.M.; Lopez Bularte, A.C.; Nevares, N.; Zapata, M.; Perez, J.H.; Crudo, J.

    2010-01-01

    DOTA-Substance-P (SP) and DOTA-minigastrin (His2-MG) labeled with 177 Lu could be used in peptide receptor radionuclide therapy (PRRT) for treatment of various tumour species. Biodistribution studies of both radiopharmaceuticals in normal mice were performed at different times. Absorbed doses in mouse organs were estimated and extrapolated to humans. Dosimetric calculations showed that kidneys received the highest dose, for both radiopharmaceuticals. The Maximum Tolerated Activity (MTA) of 177 Lu-DOTA-SP that can be administered without kidney toxicity are 414 and 422 MBq/kg for the standard adult man and woman, respectively. In the same way, the MTA of 177 Lu-DOTA-His2-MG are 488 and 518 MBq/kg for the standard adult man and woman, respectively. (authors)

  8. Suppression of adoptive antituberculosis immunity by normal recipient animals

    International Nuclear Information System (INIS)

    Lefford, M.J.

    1983-01-01

    Adoptive immunity is poorly expressed in normal syngeneic mice. This phenomenon was studied by using experimental antituberculosis immunity as a model system representing pure cell-mediated immunity. Expression of adoptive immunity was facilitated by pretreating recipients with sublethal ionizing radiation (500 rads) or high doses (200 mg/kg) of cyclophosphamide or by using adult thymectomized, lethally irradiated, bone-marrow-reconstituted (TXB) mice. Adult thymectomy was less effective, and a low dose of cyclophosphamide (20 mg/kg) was completely ineffective. The beneficial effect of sublethal irradiation was reduced over time; it persisted for 4 weeks and was absent after 8 weeks. Attempts to restore the suppressed state of normal mice to sublethally irradiated mice by using normal spleen or thymus cells did not succeed. Even in rats, which express adoptive antituberculosis immunity without immunosuppressive treatment, the use of sublethally irradiated or TXB recipients potentiated adoptive immunity. It was concluded that suppression of adoptive immunization in normal recipient mice is mediated predominantly, if not exclusively, by T lymphocytes that are sensitive to a number of immunosuppressive agents. The suppressor cells are long-lived and can be regenerated from precursors that are resistant to 500 but not to 900 rads of ionizing radiation

  9. Core temperature rhythms in normal and tumor-bearing mice.

    Science.gov (United States)

    Griffith, D J; Busot, J C; Lee, W E; Djeu, D J

    1993-01-01

    The core temperature temporal behavior of DBA/2 mice (11 normal and 13 with an ascites tumor) was studied using surgically implanted radio telemetry transmitters. Normal mice continuously displayed a stable 24 hour temperature rhythm. Tumor-bearers displayed a progressive deterioration of the temperature rhythm following inoculation with tumor cells. While such disruptions have been noted by others, details on the dynamics of the changes have been mostly qualitative, often due to time-averaging or steady-state analysis of the data. The present study attempts to quantify the dynamics of the disruption of temperature rhythm (when present) by continuously monitoring temperatures over periods up to a month. Analysis indicated that temperature regulation in tumor-bearers was adversely affected during the active period only. Furthermore, it appears that the malignancy may be influencing temperature regulation via pathways not directly attributable to the energy needs of the growing tumor.

  10. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice.

    Science.gov (United States)

    La Merrill, Michele A; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-11-01

    Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. We hypothesized that perinatal DDT exposure causes hypertension in adult mice. DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722-1727; http://dx.doi.org/10.1289/EHP164.

  11. Mast cell distribution in normal adult skin

    NARCIS (Netherlands)

    A.S. Janssens (Artiena Soe); R. Heide (Rogier); J.C. den Hollander (Jan); P.G.M. Mulder (P. G M); B. Tank (Bhupendra); A.P. Oranje (Arnold)

    2005-01-01

    markdownabstract__AIMS:__ To investigate mast cell distribution in normal adult skin to provide a reference range for comparison with mastocytosis. __METHODS:__ Mast cells (MCs) were counted in uninvolved skin adjacent to basal cell carcinomas and other dermatological disorders in adults.

  12. Diffraction enhanced imaging of normal and arthritic mice feet

    International Nuclear Information System (INIS)

    Crittell, Suzanne; Cheung, K.C.; Hall, Chris; Ibison, Mark; Nolan, Paul; Page, Robert; Scraggs, David; Wilkinson, Steve

    2007-01-01

    The aim of this experiment was to produce X-ray images of mice feet using the diffraction-enhanced imaging (DEI) system at the UK Synchrotron Radiation Source (SRS) at Daresbury. There were two broad types of mice feet samples studied: normal and arthritic. The two types of samples were imaged using several views and compared in order to determine whether it would be possible to detect the early morphological changes linked with this form of arthritis. We found that the DEI images produced were indeed of sufficient quality to show the presence of some osteoarthritic changes

  13. Effect of hormone treatment on spontaneous and radiation-induced chromosomal breakage in normal and dwarf mice

    International Nuclear Information System (INIS)

    Buul, P.P.W. van; Buul-Offers, S. van

    1982-01-01

    Treatment of dwarf mice with growth hormone, insulin and testosterone had no effect on the spontaneous frequencies of micronuclei (MN) in bone-marrow cells, whereas thyroxine decreased these frequencies. The induction of MN by X-rays and mitomycin C was significantly lower in dwarf mice than in normal mice. Treatment with thyroxine plus growth hormone restored normal radiosensitivity in dwarfs. (orig.)

  14. Characteristics of multi-organ lymphangiectasia resulting from temporal deletion of calcitonin receptor-like receptor in adult mice.

    Science.gov (United States)

    Hoopes, Samantha L; Willcockson, Helen H; Caron, Kathleen M

    2012-01-01

    Adrenomedullin (AM) and its receptor complexes, calcitonin receptor-like receptor (Calcrl) and receptor activity modifying protein 2/3, are highly expressed in lymphatic endothelial cells and are required for embryonic lymphatic development. To determine the role of Calcrl in adulthood, we used an inducible Cre-loxP system to temporally and ubiquitously delete Calcrl in adult mice. Following tamoxifen injection, Calcrl(fl/fl)/CAGGCre-ER™ mice rapidly developed corneal edema and inflammation that was preceded by and persistently associated with dilated corneoscleral lymphatics. Lacteals and submucosal lymphatic capillaries of the intestine were also dilated, while mesenteric collecting lymphatics failed to properly transport chyle after an acute Western Diet, culminating in chronic failure of Calcrl(fl/fl)/CAGGCre-ER™ mice to gain weight. Dermal lymphatic capillaries were also dilated and chronic edema challenge confirmed significant and prolonged dermal lymphatic insufficiency. In vivo and in vitro imaging of lymphatics with either genetic or pharmacologic inhibition of AM signaling revealed markedly disorganized lymphatic junctional proteins ZO-1 and VE-cadherin. The maintenance of AM signaling during adulthood is required for preserving normal lymphatic permeability and function. Collectively, these studies reveal a spectrum of lymphatic defects in adult Calcrl(fl/fl)/CAGGCre-ER™ mice that closely recapitulate the clinical symptoms of patients with corneal, intestinal and peripheral lymphangiectasia.

  15. Diversification of intrinsic motoneuron electrical properties during normal development and botulinum toxin-induced muscle paralysis in early postnatal mice.

    Science.gov (United States)

    Nakanishi, S T; Whelan, P J

    2010-05-01

    During early postnatal development, between birth and postnatal days 8-11, mice start to achieve weight-bearing locomotion. In association with the progression of weight-bearing locomotion there are presumed developmental changes in the intrinsic electrical properties of spinal -motoneurons. However, these developmental changes in the properties of -motoneuron properties have not been systematically explored in mice. Here, data are presented documenting the developmental changes of selected intrinsic motoneuron electrical properties, including statistically significant changes in action potential half-width, intrinsic excitability and diversity (quantified as coefficient of variation) of rheobase current, afterhyperpolarization half-decay time, and input resistance. In various adult mammalian preparations, the maintenance of intrinsic motoneuron electrical properties is dependent on activity and/or transmission-sensitive motoneuron-muscle interactions. In this study, we show that botulinum toxin-induced muscle paralysis led to statistically significant changes in the normal development of intrinsic motoneuron electrical properties in the postnatal mouse. This suggests that muscle activity during early neonatal life contributes to the development of normal motoneuron electrical properties.

  16. Activin receptor subunits in normal and dysfunctional adult human testis

    DEFF Research Database (Denmark)

    Dias, V; Meachem, S; Rajpert-De Meyts, E

    2008-01-01

    The cellular sites of activin action and its regulation in the normal and dysfunctional adult human testis are unknown.......The cellular sites of activin action and its regulation in the normal and dysfunctional adult human testis are unknown....

  17. The regenerative potential of parietal epithelial cells in adult mice

    NARCIS (Netherlands)

    Berger, K.; Schulte, K.; Boor, P.; Kuppe, C.; Kuppevelt, T.H. van; Floege, J.; Smeets, B.; Moeller, M.J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically

  18. Metabolic alterations due to caloric restriction and every other day feeding in normal and growth hormone receptor knockout mice.

    Science.gov (United States)

    Westbrook, Reyhan; Bonkowski, Michael S; Arum, Oge; Strader, April D; Bartke, Andrzej

    2014-01-01

    Mutations causing decreased somatotrophic signaling are known to increase insulin sensitivity and extend life span in mammals. Caloric restriction and every other day (EOD) dietary regimens are associated with similar improvements to insulin signaling and longevity in normal mice; however, these interventions fail to increase insulin sensitivity or life span in growth hormone receptor knockout (GHRKO) mice. To investigate the interactions of the GHRKO mutation with caloric restriction and EOD dietary interventions, we measured changes in the metabolic parameters oxygen consumption (VO2) and respiratory quotient produced by either long-term caloric restriction or EOD in male GHRKO and normal mice. GHRKO mice had increased VO2, which was unaltered by diet. In normal mice, EOD diet caused a significant reduction in VO2 compared with ad libitum (AL) mice during fed and fasted conditions. In normal mice, caloric restriction increased both the range of VO2 and the difference in minimum VO2 between fed and fasted states, whereas EOD diet caused a relatively static VO2 pattern under fed and fasted states. No diet significantly altered the range of VO2 of GHRKO mice under fed conditions. This provides further evidence that longevity-conferring diets cause major metabolic changes in normal mice, but not in GHRKO mice.

  19. AKAP13 Rho-GEF and PKD-binding domain deficient mice develop normally but have an abnormal response to β-adrenergic-induced cardiac hypertrophy.

    Directory of Open Access Journals (Sweden)

    Matthew J Spindler

    Full Text Available A-kinase anchoring proteins (AKAPs are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA and D (PKD and an active Rho-guanine nucleotide exchange factor (Rho-GEF domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown.To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction.These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy.

  20. Myosin heavy chain isoform expression in adult and juvenile mini-muscle mice bred for high-voluntary wheel running.

    Science.gov (United States)

    Talmadge, Robert J; Acosta, Wendy; Garland, Theodore

    2014-11-01

    The myosin heavy chain (MyHC) isoform composition of locomotor and non-locomotor muscles of mini-muscle mice were assessed at the protein and mRNA levels in both adult and juvenile (21 day old) mice. Mini-muscle mice are one outcome of a replicated artificial selection experiment in which four lines of mice were bred for high voluntary wheel running (HR lines). Two of the lines responded with an increase in frequency of a single nucleotide polymorphism in an intron in the MyHC-2b gene (myh4) that when homozygous causes a dramatic reduction in triceps surae mass. We found that both locomotor and non-locomotor muscles of adult mini-muscle mice displayed robust reductions, but not elimination, of the MyHC-2b isoform at both the protein and mRNA levels, with commensurate increases in MyHC-2x and sometimes MyHC-2a, as compared with either a line of HR mice that does not display the mini-muscle phenotype or inbred C57Bl6 mice. Immunohistochemical analyses revealed that locomotor muscles of mini-muscle mice contain fibers that express the MyHC-2b isoform, which migrates normally in SDS-PAGE gels. However, these MyHC-2b positive fibers are generally smaller than the surrounding fibers and smaller than the MyHC-2b positive fibers of non-mini-muscle mice, resulting in characteristically fast muscles that lack a substantial MyHC-2b positive (superficial) region. In contrast, the masseter, a non-locomotor muscle of mini-muscle mice contained MyHC-2b positive fibers that stained more lightly for MyHC-2b, but appeared normal in size and distribution. In adults, many of the MyHC-2b positive fibers in the mini-muscle mice also display central nuclei. Only a small proportion of small MyHC-2b fibers in mini-muscle mice stained positive for the neural cell adhesion molecule, suggesting that anatomical innervation was not compromised. In addition, weanling (21 day old), but not 5 day old mice, displayed alterations in MyHC isoform content at both the protein and mRNA levels, including

  1. Food restriction increases long-term memory persistence in adult or aged mice.

    Science.gov (United States)

    Talhati, F; Patti, C L; Zanin, K A; Lopes-Silva, L B; Ceccon, L M B; Hollais, A W; Bizerra, C S; Santos, R; Tufik, S; Frussa-Filho, R

    2014-04-03

    Food restriction (FR) seems to be the unique experimental manipulation that leads to a remarkable increase in lifespan in rodents. Evidences have suggested that FR can enhance memory in distinct animal models mainly during aging. However, only few studies systemically evaluated the effects FR on memory formation in both adult (3-month-old) and aged (18-24-month-old) mice. Thus, the aim of the present study was to investigate the effects of acute (12h) or repeated (12h/day for 2days) FR protocols on learning and memory of adult and aged mice evaluated in the plus-maze discriminative avoidance task (PM-DAT), an animal model that concurrently (but independently) evaluates learning and memory, anxiety and locomotion. We also investigated the possible role of FR-induced stress by the corticosterone concentration in adult mice. Male mice were kept at home cage with food ad libitum (CTRL-control condition) or subjected to FR during the dark phase of the cycle for 12h/day or 12h/2days. The FR protocols were applied before training, immediately after it or before testing. Our results demonstrated that only FR for 2days enhanced memory persistence when applied before training in adults and before testing in aged mice. Conversely, FR for 2days impaired consolidation and exerted no effects on retrieval irrespective of age. These effects do not seem to be related to corticosterone concentration. Collectively, these results indicate that FR for 2days can promote promnestic effects not only in aged mice but also in adults. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Neurologic function during developmental and adult stages in Dab1(scm) (scrambler) mutant mice.

    Science.gov (United States)

    Jacquelin, C; Strazielle, C; Lalonde, R

    2012-01-01

    Homozygous Dab1(scm) mouse mutants with cell ectopias in cerebellar cortex, hippocampus, and neocortex were compared to non-ataxic controls on the SHIRPA primary screening battery on postnatal days 8, 15, and 22, as well as in the adult period. Dab1(scm) mutants were distinguished from non-ataxic controls as early as postnatal day 8 based on body tremor, gait anomalies, and body weight. On postnatal day 15, motor coordination deficits were evident on horizontal bar and inclined or vertical grid tests in association with a weaker grip strength. Likewise, mutants were distinguished from controls on drop righting and hindpaw clasping tests. Further differences were detected on postnatal day 22 in the form of fewer visual placing, touch escape, trunk curl, freezing, and vocalization responses, as well as squares traversed in the open-field. Evaluation at the adult age demonstrated similar impairments, indicative of permanent motor alterations. Neuronal metabolic activity was estimated by cytochrome oxidase histochemistry on cerebellar sections. Cerebellar cortical layers and efferent deep nuclei of Dab1(scm) mice appeared hypometabolic relative to non-ataxic mice despite normal metabolism in both regular and ectopic Purkinje cells. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Neurokinin B is critical for normal timing of sexual maturation but dispensable for adult reproductive function in female mice.

    Science.gov (United States)

    True, Cadence; Nasrin Alam, Sayeda; Cox, Kimberly; Chan, Yee-Ming; Seminara, Stephanie B

    2015-04-01

    Humans carrying mutations in neurokinin B (NKB) or the NKB receptor fail to undergo puberty due to decreased secretion of GnRH. Despite this pubertal delay, many of these patients go on to achieve activation of their hypothalamic-pituitary-gonadal axis in adulthood, a phenomenon termed reversal, indicating that NKB signaling may play a more critical role for the timing of pubertal development than adult reproductive function. NKB receptor-deficient mice are hypogonadotropic but have no defects in the timing of sexual maturation. The current study has performed the first phenotypic evaluation of mice bearing mutations in Tac2, the gene encoding the NKB ligand, to determine whether they have impaired sexual development similar to their human counterparts. Male Tac2-/- mice showed no difference in the timing of sexual maturation or fertility compared with wild-type littermates and were fertile. In contrast, Tac2-/- females had profound delays in sexual maturation, with time to vaginal opening and first estrus occurring significantly later than controls, and initial abnormalities in estrous cycles. However, cycling recovered in adulthood and Tac2-/- females were fertile, although they produced fewer pups per litter. Thus, female Tac2-/- mice parallel humans harboring NKB pathway mutations, with delayed sexual maturation and activation of the reproductive cascade later in life. Moreover, direct comparison of NKB ligand and receptor-deficient females confirmed that only NKB ligand-deficient animals have delayed sexual maturation, suggesting that in the absence of the NKB receptor, NKB may regulate the timing of sexual maturation through other tachykinin receptors.

  4. Lyplal1 is dispensable for normal fat deposition in mice

    Directory of Open Access Journals (Sweden)

    Rachel A. Watson

    2017-12-01

    Full Text Available Genome-wide association studies (GWAS have detected association between variants in or near the Lysophospholipase-like 1 (LYPLAL1 locus and metabolic traits, including central obesity, fatty liver and waist-to-hip ratio. LYPLAL1 is also known to be upregulated in the adipose tissue of obese patients. However, the physiological role of LYPLAL1 is not understood. To investigate the function of Lyplal1 in vivo we investigated the phenotype of the Lyplal1tm1a(KOMPWtsi homozygous mouse. Body composition was unaltered in Lyplal1 knockout mice as assessed by dual-energy X-ray absorptiometry (DEXA scanning, both on normal chow and on a high-fat diet. Adipose tissue distribution between visceral and subcutaneous fat depots was unaltered, with no change in adipocyte cell size. The response to both insulin and glucose dosing was normal in Lyplal1tm1a(KOMPWtsi homozygous mice, with normal fasting blood glucose concentrations. RNAseq analysis of liver, muscle and adipose tissue confirmed that Lyplal1 expression was ablated with minimal additional changes in gene expression. These results suggest that Lyplal1 is dispensable for normal mouse metabolic physiology and that despite having been maintained through evolution Lyplal1 is not an essential gene, suggesting possible functional redundancy. Further studies will be required to clarify its physiological role.

  5. Characteristics of multi-organ lymphangiectasia resulting from temporal deletion of calcitonin receptor-like receptor in adult mice.

    Directory of Open Access Journals (Sweden)

    Samantha L Hoopes

    Full Text Available Adrenomedullin (AM and its receptor complexes, calcitonin receptor-like receptor (Calcrl and receptor activity modifying protein 2/3, are highly expressed in lymphatic endothelial cells and are required for embryonic lymphatic development. To determine the role of Calcrl in adulthood, we used an inducible Cre-loxP system to temporally and ubiquitously delete Calcrl in adult mice. Following tamoxifen injection, Calcrl(fl/fl/CAGGCre-ER™ mice rapidly developed corneal edema and inflammation that was preceded by and persistently associated with dilated corneoscleral lymphatics. Lacteals and submucosal lymphatic capillaries of the intestine were also dilated, while mesenteric collecting lymphatics failed to properly transport chyle after an acute Western Diet, culminating in chronic failure of Calcrl(fl/fl/CAGGCre-ER™ mice to gain weight. Dermal lymphatic capillaries were also dilated and chronic edema challenge confirmed significant and prolonged dermal lymphatic insufficiency. In vivo and in vitro imaging of lymphatics with either genetic or pharmacologic inhibition of AM signaling revealed markedly disorganized lymphatic junctional proteins ZO-1 and VE-cadherin. The maintenance of AM signaling during adulthood is required for preserving normal lymphatic permeability and function. Collectively, these studies reveal a spectrum of lymphatic defects in adult Calcrl(fl/fl/CAGGCre-ER™ mice that closely recapitulate the clinical symptoms of patients with corneal, intestinal and peripheral lymphangiectasia.

  6. The Regenerative Potential of Parietal Epithelial Cells in Adult Mice

    OpenAIRE

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H.; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J.

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman’s capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glo...

  7. Does open-field exposure during infancy influence open-field behavior of the same adult mice?

    OpenAIRE

    Vidal Gómez, José

    2013-01-01

    The goal of this report is to find out whether early exposure of mice to the open-field results in altered behavior of the same adult mice in the same open-field. Early exposure to the open-field was carried out between birth and weaning; two control groups were included: control 2 (mice exposed to a reduced dark space) and control 1 (mice left undisturbed). The (male and female) mice were of the Balb/c and C57Bl/6 strains. Adult C57Bl/6 female mice of the openfield and control 2 groups ambul...

  8. Effect of extract of Hibiscus on the ultrastructure of the testis in adult mice.

    Science.gov (United States)

    Mahmoud, Yomna Ibrahim

    2012-07-01

    Hibiscus sabdariffa extract is a popular beverage in many tropical and sub-tropical countries. Although, Hibiscus tea is known for its medicinal effects for thousands of years, scientific evidence of its systemic safety is very limited. The current study aimed to assess the potential adverse effects of H. sabdariffa extract on sperm morphology and testicular ultrastructure of albino mice. Thirty adult male albino mice were divided into three equal groups and were given: (a) distilled water, (b) cold Hibiscus aqueous extract, and (c) boiled Hibiscus aqueous extract. Hibiscus extract was administered orally daily for 4 weeks in a dose of 200 mg/kg body weight/mouse. Twenty-four hours after the last treatment, mice were decapitated and the testes and epididymides were excised and processed for transmission electron microscopy to assess ultrastructural and sperm abnormalities. The results clearly demonstrate that aqueous extracts from dried calyx of H. sabdariffa, either cold or boiled, alter normal sperm morphology and testicular ultrastructure and adversely influence the male reproductive fertility in albino mice. The current data suggest that Hibiscus extract should be consumed with caution, and reasonable estimates of the human risk associated with its consumption should be provided. Copyright © 2011 Elsevier GmbH. All rights reserved.

  9. Effect of Tamoxifen on Seminiferous Tubules Structure during Pregnancy in Adult Mice

    Directory of Open Access Journals (Sweden)

    J Soleimani Rad

    2016-03-01

    Full Text Available Introduction: Tamoxifen is a nonsteroidal drug which mainly treats breast cancer. It is also applied for stimulation of ovulation and remedy of infertility. Regarding the tamoxifen binding to estrogen receptors and the possible role of estrogens in spermatogenesis, the present study aimed to histologically evaluate spermatogenesis in the seminiferous ducts of mice, whose mothers had received tamoxifen during pregnancy. Methods: In the present study, 30 female and 15 male mice of NMRI race were selected for mating. Since 13th day of pregnancy, the experimental group received tamoxifen with the dosage of 5 mg/kg intra-peritoneally for 7 days, wherease the control group received normal saline. After childbirth of the mated mice, male infants were selected and monitored in the standard laboratory conditions. After reaching the age of puberty (6-8Weeks, adult mice were sacrificed by the cervical dislocation, and the testes were removed for histological evaluation of spermatogenesis. After routine histological processing, the samples were studied by the light microscope. Results: Histological studies showed that spermatogenic and Sertoli cells in the seminiferous tubules in control and experimental groups were significantly different, though no difference was observed in the number of Leydig cells in the both groups. Conclusion: The findings of the present study showed that tamoxifen exposure during development can cause histological changes in the seminiferous tubules, which can lead to infertility in the male rat.

  10. Adaptation of enterovirus 71 to adult interferon deficient mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Caine

    Full Text Available Non-polio enteroviruses, including enterovirus 71 (EV71, have caused severe and fatal cases of hand, foot and mouth disease (HFMD in the Asia-Pacific region. The development of a vaccine or antiviral against these pathogens has been hampered by the lack of a reliable small animal model. In this study, a mouse adapted EV71 strain was produced by conducting serial passages through A129 (α/β interferon (IFN receptor deficient and AG129 (α/β, γ IFN receptor deficient mice. A B2 sub genotype of EV71 was inoculated intraperitoneally (i.p. into neonatal AG129 mice and brain-harvested virus was subsequently passaged through 12 and 15 day-old A129 mice. When tested in 10 week-old AG129 mice, this adapted strain produced 100% lethality with clinical signs including limb paralysis, eye irritation, loss of balance, and death. This virus caused only 17% mortality in same age A129 mice, confirming that in the absence of a functional IFN response, adult AG129 mice are susceptible to infection by adapted EV71 isolates. Subsequent studies in adult AG129 and young A129 mice with the adapted EV71 virus examined the efficacy of an inactivated EV71 candidate vaccine and determined the role of humoral immunity in protection. Passive transfer of rabbit immune sera raised against the EV71 vaccine provided protection in a dose dependent manner in 15 day-old A129 mice. Intramuscular injections (i.m. in five week-old AG129 mice with the alum adjuvanted vaccine also provided protection against the mouse adapted homologous strain. No clinical signs of disease or mortality were observed in vaccinated animals, which received a prime-and-boost, whereas 71% of control animals were euthanized after exhibiting systemic clinical signs (P<0.05. The development of this animal model will facilitate studies on EV71 pathogenesis, antiviral testing, the evaluation of immunogenicity and efficacy of vaccine candidates, and has the potential to establish correlates of protection

  11. Inhibiting effect of plasma from normal and tumour bearing mice on the mitotic rate of regenerating liver.

    Science.gov (United States)

    Echave Llanos, J M; Moreno, F R; Badrán, A F

    1986-01-01

    Plasma from normal mice and from mice bearing the ES2 transplantable malignant tumour was injected intraperitoneally at a dose of 0.01 ml/g body weight in partially hepatectomized mice. Control animals were injected with a solution of sodium citrate in saline. The recipients were killed at the first (14:00 hours/48 h). These times are the time of day and the number of h after partial hepatectomy and second (14:00 hours/72 h) peak times after partial hepatectomy. The number of colchicine metaphases per 1000 nuclei was determined for hepatocytes and litoral cells. A different effect was obtained with plasma from tumour-bearing compared with normal mice. Plasma from both sources when injected 26 h after partial hepatectomy (16:00 hours/26 h) inhibited the mitotic activity of hepatocytes at the next peak of regenerative activity (14:00 hours/48 h). The plasma from tumour-bearing mice also inhibited the peak on the following day (14:00 hours/72 h), whereas plasma from normal mice had no inhibitory effect and, indeed, a compensatory wave was observed at this time. Furthermore, plasma from tumour-bearing mice also showed an inhibitory effect at the first peak (14:00 hours/48 h) when injected at the time of partial hepatectomy (14:00 hours/00 h) or at 22 h before partial hepatectomy (16:00 hours/-22 h) whereas the injection of plasma from normal mice at these times had no inhibitory effect. In the litoral cells the injection of plasma from tumour-bearing mice made 22 h before hepatectomy (16:00 hours/-22 h) led to a stimulation of mitotic activity which was controlled at 14:00 hours/48 h.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Tumor radiation responses and tumor oxygenation in aging mice

    International Nuclear Information System (INIS)

    Rockwell, S.

    1989-01-01

    EMT6 mouse mammary tumors transplanted into aging mice are less sensitive to radiation than tumors growing in young adult animals. The experiments reported here compare the radiation dose-response curves defining the survivals of tumor cells in aging mice and in young adult mice. Cell survival curves were assessed in normal air-breathing mice and in mice asphyxiated with N 2 to produce uniform hypoxia throughout the tumors. Analyses of survival curves revealed that 41% of viable malignant cells were severely hypoxic in tumors in aging mice, while only 19% of the tumor cells in young adult animals were radiobiologically hypoxic. This did not appear to reflect anaemia in the old animals. Treatment of aging animals with a perfluorochemical emulsion plus carbogen (95% O 2 /5% CO 2 ) increased radiation response of the tumors, apparently by improving tumor oxygenation and decreasing the number of severely hypoxic, radiation resistant cells in the tumors. (author)

  13. Increasing the effectiveness of intracerebral injections in adult and neonatal mice: a neurosurgical point of view.

    Science.gov (United States)

    Mathon, Bertrand; Nassar, Mérie; Simonnet, Jean; Le Duigou, Caroline; Clemenceau, Stéphane; Miles, Richard; Fricker, Desdemona

    2015-12-01

    Intracerebral injections of tracers or viral constructs in rodents are now commonly used in the neurosciences and must be executed perfectly. The purpose of this article is to update existing protocols for intracerebral injections in adult and neonatal mice. Our procedure for stereotaxic injections in adult mice allows the investigator to improve the effectiveness and safety, and save time. Furthermore, for the first time, we describe a two-handed procedure for intracerebral injections in neonatal mice that can be performed by a single operator in a very short time. Our technique using the stereotaxic arm allows a higher precision than freehand techniques previously described. Stereotaxic injections in adult mice can be performed in 20 min and have >90% efficacy in targeting the injection site. Injections in neonatal mice can be performed in 5 min. Efficacy depends on the difficulty of precisely localizing the injection sites, due to the small size of the animal. We describe an innovative, effortless, and reproducible surgical protocol for intracerebral injections in adult and neonatal mice.

  14. Learning and memory deficits in male adult mice treated with a benzodiazepine sleep-inducing drug during the juvenile period

    Directory of Open Access Journals (Sweden)

    Yusuke Furukawa

    2016-07-01

    Full Text Available Gamma-aminobutyric acid (GABA, the major inhibitory neurotransmitter in the mammalian central nervous system, is also known to be important for brain development. Therefore, disturbances of GABA receptor (GABA-R mediated signaling (GABA-R signal during brain development may influence normal brain maturation and cause late-onset brain malfunctions. In this study, we examined whether the temporal stimulation of the GABA-R signal during brain development induces late-onset adverse effects on the brain in adult male mice. To stimulate the GABA-R signal, we used either the benzodiazepine sleep-inducing drug triazolam (TZ or the non-benzodiazepine drug zolpidem (ZP. We detected deficits in learning and memory in mice treated with TZ during the juvenile period, as seen in the fear conditioning test. On the other hand, ZP administration during the juvenile period had little effect. In addition, decreased protein expression of GluR1 and GluR4, which are excitatory neurotransmitter receptors, was detected in the hippocampi of mice treated with TZ during the juvenile period. We measured mRNA expression of the immediate early genes (IEGs, which are neuronal activity markers, in the hippocampus shortly after the administration of TZ or ZP to juvenile mice. Decreased IEG expression was detected in mice with juvenile TZ administration, but not in mice with juvenile ZP administration. Our findings demonstrate that TZ administration during the juvenile period can induce irreversible brain dysfunction in adult mice. It may need to take an extra care for the prescription of benzodiazepine sleep-inducing drugs to juveniles because it might cause late onset learning and memory defects.

  15. Effect of anti-sclerostin therapy and osteogenesis imperfecta on tissue-level properties in growing and adult mice while controlling for tissue age.

    Science.gov (United States)

    Sinder, Benjamin P; Lloyd, William R; Salemi, Joseph D; Marini, Joan C; Caird, Michelle S; Morris, Michael D; Kozloff, Kenneth M

    2016-03-01

    Bone composition and biomechanics at the tissue-level are important contributors to whole bone strength. Sclerostin antibody (Scl-Ab) is a candidate anabolic therapy for the treatment of osteoporosis that increases bone formation, bone mass, and bone strength in animal studies, but its effect on bone quality at the tissue-level has received little attention. Pre-clinical studies of Scl-Ab have recently expanded to include diseases with altered collagen and material properties such as osteogenesis imperfecta (OI). The purpose of this study was to investigate the role of Scl-Ab on bone quality by determining bone material composition and tissue-level mechanical properties in normal wild type (WT) tissue, as well as mice with a typical OI Gly➔Cys mutation (Brtl/+) in type I collagen. Rapidly growing (3-week-old) and adult (6-month-old) WT and Brtl/+ mice were treated for 5weeks with Scl-Ab. Fluorescent guided tissue-level bone composition analysis (Raman spectroscopy) and biomechanical testing (nanoindentation) were performed at multiple tissue ages. Scl-Ab increased mineral to matrix in adult WT and Brtl/+ at tissue ages of 2-4wks. However, no treatment related changes were observed in mineral to matrix levels at mid-cortex, and elastic modulus was not altered by Scl-Ab at any tissue age. Increased mineral-to-matrix was phenotypically observed in adult Brtl/+ OI mice (at tissue ages>3wks) and rapidly growing Brtl/+ (at tissue ages>4wks) mice compared to WT. At identical tissue ages defined by fluorescent labels, adult mice had generally lower mineral to matrix ratios and a greater elastic modulus than rapidly growing mice, demonstrating that bone matrix quality can be influenced by animal age and tissue age alike. In summary, these data suggest that Scl-Ab alters the matrix chemistry of newly formed bone while not affecting the elastic modulus, induces similar changes between Brtl/+ and WT mice, and provides new insight into the interaction between tissue age and

  16. Effects of recombinant human interleukin-8 (rhIL-8) on the bone marrow cells of normal BALB/c mice

    International Nuclear Information System (INIS)

    Liu Yulong; Zhou Jianying; Wang Guoquan; Dai Hong; Duan Yingying; Guo Xiaokui

    2001-01-01

    Objective: To observe the colony formation ability of recombinant human interleukin-8 (rhIL-8) on bone marrow cells (BMCs) of normal mice in vivo. Methods: By means of cells culture and flow cytometry (FCM), the colony-stimulating activity of rhIL-8 on BMCs of normal mice was studied. Results: The experimental studies in vivo demonstrated that rhIL-8 could not changed the counts of CFU-GM and distribution of cell cycle in BMCs. Conclusion: rhIL-8 has no colony-stimulating activity to BMCs of normal mice

  17. Characteristics and function of bone marrow stromal adherent cells in normal and irradiated mice and guinea pigs

    Energy Technology Data Exchange (ETDEWEB)

    Changyu, Zheng; Ji, Liu; Xiaoying, Bi

    1986-04-01

    It has been shown from cytochemical and other characteristic studies of bone marrow stromal cells in CFU-F that there are seven types of stromal cells in the stromal adherent cell layer of normal and irradiated C/sub 57/ mice whereas there are only six types in guinea pigs. On the other hand, a radioresistant cell subtype appears in adherent layer after irradiation of both C/sub 57/ mice and guinea pig since the supernatant of cultured CFU-F of the normal and irradiated C/sub 57/ mice can stimulate production of CFU-Gm. It is justifiable that the bone marrow stromal adherent cells of the C/sub 57/ mice could produce CSF.

  18. Global gene expression patterns in the post-pneumonectomy lung of adult mice

    Directory of Open Access Journals (Sweden)

    Ingenito Edward P

    2009-10-01

    Full Text Available Abstract Background Adult mice have a remarkable capacity to regenerate functional alveoli following either lung resection or injury that exceeds the regenerative capacity observed in larger adult mammals. The molecular basis for this unique capability in mice is largely unknown. We examined the transcriptomic responses to single lung pneumonectomy in adult mice in order to elucidate prospective molecular signaling mechanisms used in this species during lung regeneration. Methods Unilateral left pneumonectomy or sham thoracotomy was performed under general anesthesia (n = 8 mice per group for each of the four time points. Total RNA was isolated from the remaining lung tissue at four time points post-surgery (6 hours, 1 day, 3 days, 7 days and analyzed using microarray technology. Results The observed transcriptomic patterns revealed mesenchymal cell signaling, including up-regulation of genes previously associated with activated fibroblasts (Tnfrsf12a, Tnc, Eln, Col3A1, as well as modulation of Igf1-mediated signaling. The data set also revealed early down-regulation of pro-inflammatory cytokine transcripts and up-regulation of genes involved in T cell development/function, but few similarities to transcriptomic patterns observed during embryonic or post-natal lung development. Immunohistochemical analysis suggests that early fibroblast but not myofibroblast proliferation is important during lung regeneration and may explain the preponderance of mesenchymal-associated genes that are over-expressed in this model. This again appears to differ from embryonic alveologenesis. Conclusion These data suggest that modulation of mesenchymal cell transcriptome patterns and proliferation of S100A4 positive mesenchymal cells, as well as modulation of pro-inflammatory transcriptome patterns, are important during post-pneumonectomy lung regeneration in adult mice.

  19. Interleukin-6 Regulates Adult Neural Stem Cell Numbers during Normal and Abnormal Post-natal Development

    Directory of Open Access Journals (Sweden)

    Mekayla A. Storer

    2018-05-01

    Full Text Available Summary: Circulating systemic factors can regulate adult neural stem cell (NSC biology, but the identity of these circulating cues is still being defined. Here, we have focused on the cytokine interleukin-6 (IL-6, since increased circulating levels of IL-6 are associated with neural pathologies such as autism and bipolar disorder. We show that IL-6 promotes proliferation of post-natal murine forebrain NSCs and that, when the IL-6 receptor is inducibly knocked out in post-natal or adult neural precursors, this causes a long-term decrease in forebrain NSCs. Moreover, a transient circulating surge of IL-6 in perinatal or adult mice causes an acute increase in neural precursor proliferation followed by long-term depletion of adult NSC pools. Thus, IL-6 signaling is both necessary and sufficient for adult NSC self-renewal, and acute perturbations in circulating IL-6, as observed in many pathological situations, have long-lasting effects on the size of adult NSC pools. : In this report, Storer and colleagues demonstrate that the circulating cytokine IL-6, which is elevated in humans in different pathological situations, can perturb neural stem cell biology after birth. They show that IL-6 signaling is essential for self-renewal and maintenance of post-natal and adult NSCs in the murine forebrain under normal homeostatic conditions. Keywords: interleukin-6, neural stem cell, adult neurogenesis, CNS cytokines, postnatal brain development, stem cell depletion, neural stem cell niche, circulating stem cell factors, olfactory bulb

  20. Mice with ablated adult brain neurogenesis are not impaired in antidepressant response to chronic fluoxetine.

    Science.gov (United States)

    Jedynak, Paulina; Kos, Tomasz; Sandi, Carmen; Kaczmarek, Leszek; Filipkowski, Robert K

    2014-09-01

    The neurogenesis hypothesis of major depression has two main facets. One states that the illness results from decreased neurogenesis while the other claims that the very functioning of antidepressants depends on increased neurogenesis. In order to verify the latter, we have used cyclin D2 knockout mice (cD2 KO mice), known to have virtually no adult brain neurogenesis, and we demonstrate that these mice successfully respond to chronic fluoxetine. After unpredictable chronic mild stress, mutant mice showed depression-like behavior in forced swim test, which was eliminated with chronic fluoxetine treatment, despite its lack of impact on adult hippocampal neurogenesis in cD2 KO mice. Our results suggest that new neurons are not indispensable for the action of antidepressants such as fluoxetine. Using forced swim test and tail suspension test, we also did not observe depression-like behavior in control cD2 KO mice, which argues against the link between decreased adult brain neurogenesis and major depression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Pharmacokinetics and tissue distribution of five active ingredients of Eucommiae cortex in normal and ovariectomized mice by UHPLC-MS/MS.

    Science.gov (United States)

    An, Jing; Hu, Fangdi; Wang, Changhong; Zhang, Zijia; Yang, Li; Wang, Zhengtao

    2016-09-01

    1. Pinoresinol di-O-β-d-glucopyranoside (PDG), geniposide (GE), geniposidic acid (GA), aucubin (AN) and chlorogenic acid (CA) are the representative active ingredients in Eucommiae cortex (EC), which may be estrogenic. 2. The ultra high-performance liquid chromatography/tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of the five ingredients showed good linearity, low limits of quantification and high extraction recoveries, as well as acceptable precision, accuracy and stability in mice plasma and tissue samples (liver, spleen, kidney and uterus). It was successfully applied to the comparative study on pharmacokinetics and tissue distribution of PDG, GE, GA, AN and CA between normal and ovariectomized (OVX) mice. 3. The results indicated that except CA, the plasma and tissue concentrations of PDG, GE, GA in OVX mice were all greater than those in normal mice. AN could only be detected in the plasma and liver homogenate of normal mice, which was poorly absorbed in OVX mice and low in other measured tissues. PDG, GE and GA seem to be better absorbed in OVX mice than in normal mice proved by the remarkable increased value of AUC0-∞ and Cmax. It is beneficial that PDG, GE, GA have better plasma absorption and tissue distribution in pathological state.

  2. Mast cell distribution in normal adult skin.

    Science.gov (United States)

    Janssens, A S; Heide, R; den Hollander, J C; Mulder, P G M; Tank, B; Oranje, A P

    2005-03-01

    To investigate mast cell distribution in normal adult skin to provide a reference range for comparison with mastocytosis. Mast cells (MCs) were counted in uninvolved skin adjacent to basal cell carcinomas and other dermatological disorders in adults. There was an uneven distribution of MCs in different body sites using the anti-tryptase monoclonal antibody technique. Numbers of MCs on the trunk, upper arm, and upper leg were similar, but were significantly different from those found on the lower leg and forearm. Two distinct groups were formed--proximal and distal. There were 77.0 MCs/mm2 at proximal body sites and 108.2 MCs/mm2 at distal sites. Adjusted for the adjacent diagnosis and age, this difference was consistent. The numbers of MCs in uninvolved skin adjacent to basal cell carcinomas and other dermatological disorders were not different from those in the control group. Differences in the numbers of MCs between the distal and the proximal body sites must be considered when MCs are counted for a reliable diagnosis of mastocytosis. A pilot study in patients with mastocytosis underlined the variation in the numbers of MCs in mastocytosis and normal skin, but showed a considerable overlap. The observed numbers of MCs in adults cannot be extrapolated to children. MC numbers varied significantly between proximal and distal body sites and these differences must be considered when MCs are counted for a reliable diagnosis of mastocytosis. There was a considerable overlap between the numbers of MCs in mastocytosis and normal skin.

  3. Palatal shelf epithelium: a morphologic and histochemical study in X-irradiated and normal mice

    International Nuclear Information System (INIS)

    Gartner, L.P.; Hiatt, J.L.; Provenza, D.V.

    1978-01-01

    The palatal shelf epithelium of normal and irradiated mice was examined morphologically and histochemically, utilizing the periodic acid-Schiff (PAS) technique for the demonstration of the basement membrane and the Nitro BT method for succinate dehydrogenase activity in order to demonstrate the metabolic competence of its cells. The 'programmed cell death theory' was not supported by the present investigation, since the cells of the medial ridge epithelium retained their structural and metabolic integrity even subsequent to the formation of cell nests. Additionally, the medial ridge epithelium of mice with radiation-induced cleft palates demonstrated normal structural and metabolic integrity long past the prospective time of fusion. (author)

  4. Fast neutron irradiation deteriorates hippocampus-related memory ability in adult mice.

    Science.gov (United States)

    Yang, Miyoung; Kim, Hwanseong; Kim, Juhwan; Kim, Sung-Ho; Kim, Jong-Choon; Bae, Chun-Sik; Kim, Joong-Sun; Shin, Taekyun; Moon, Changjong

    2012-03-01

    Object recognition memory and contextual fear conditioning task performance in adult C57BL/6 mice exposed to cranial fast neutron irradiation (0.8 Gy) were examined to evaluate hippocampus-related behavioral dysfunction following acute exposure to relatively low doses of fast neutrons. In addition, hippocampal neurogenesis changes in adult murine brain after cranial irradiation were analyzed using the neurogenesis immunohistochemical markers Ki-67 and doublecortin (DCX). In the object recognition memory test and contextual fear conditioning, mice trained 1 and 7 days after irradiation displayed significant memory deficits compared to the sham-irradiated controls. The number of Ki-67- and DCX-positive cells decreased significantly 24 h post-irradiation. These results indicate that acute exposure of the adult mouse brain to a relatively low dose of fast neutrons interrupts hippocampal functions, including learning and memory, possibly by inhibiting neurogenesis.

  5. Altered pancreatic growth and insulin secretion in WSB/EiJ mice.

    Directory of Open Access Journals (Sweden)

    Maggie M Ho

    Full Text Available These data suggest that insulin secretion in WSB mice is blunted specifically in vivo, either due to a reduced insulin requirement and/or due to factors that are absent or destroyed in vitro. These studies also highlight the role of post-natal growth in determining adult β-cell mass. Mice are important animal models for the study of metabolic physiology and the genetics of complex traits. Wild-derived inbred mouse strains, such as WSB/EiJ (WSB, are unrelated to the commonly studied mouse strains and are valuable tools to identify novel genes that modify disease risk. We have previously shown that in contrast to C57BL/6J (B6 mice, WSB mice fed a high fat diet do not develop hyperinsulinemia or insulin resistance, and had nearly undetectable insulin secretion in response to an intraperitoneal glucose challenge. As hyperinsulinemia may drive obesity and insulin resistance, we examined whether defects in β-cell mass or function could contribute to the low insulin levels in WSB mice. In young WSB mice, β-cell mass was similar to B6 mice. However, we found that adult WSB mice had reduced β-cell mass due to reduced pancreatic weights. Pancreatic sizes were similar between the strains when normalized to body weight, suggesting their pancreatic size is appropriate to their body size in adults, but overall post-natal pancreatic growth was reduced in WSB mice compared to B6 mice. Islet architecture was normal in WSB mice. WSB mice had markedly increased insulin secretion from isolated islets in vitro. These data suggest that insulin secretion in WSB mice is blunted specifically in vivo, either due to a reduced insulin requirement and/or due to factors that are absent or destroyed in vitro. These studies suggest that WSB mice may provide novel insight into mechanisms regulating insulin secretion and also highlight the role of post-natal growth in determining adult β-cell mass.

  6. Normal CT characteristics of the thymus in adults

    Energy Technology Data Exchange (ETDEWEB)

    Simanovsky, Natalia, E-mail: natalias@hadassah.org.il [Department of Medical Imaging, Hadassah - Hebrew University Medical Center, Jerusalem (Israel); Hiller, Nurith; Loubashevsky, Natali; Rozovsky, Katya [Department of Medical Imaging, Hadassah - Hebrew University Medical Center, Jerusalem (Israel)

    2012-11-15

    Background: The thymus changes with age. Its shape and the proportion of solid tissue and fat vary between individuals, yet there is no comprehensive work describing the size and morphology of the normal thymus on CT. As a result, many adults with some preserved soft tissue in the thymus may undergo extensive work-up to exclude mediastinal tumor. Our aim was to quantify CT characteristics of the normal thymus in an adult population. Methods: CT chest scans of 194 trauma patients aged 14-78 years (mean 52.6 years), were retrospectively reviewed. The density, volume, shape and predominant side of the thymus were recorded for 56 patients in whom some solid tissue was preserved. Statistical analysis of these characteristics according to the patient age and gender was performed. Results: Thymic density and volume decreased progressively with age. No solid tissue component was seen in the thymus in patients older than 54 years. In the majority of patients, the thymus had an arrowhead shape, with middle position. However, great variability in thymic shape and border were noted. There was a highly significant relationship between density and patient age (p < 0.0001). Conclusion: We hope that our work will help in the definition of normal thymic CT parameters in adults, help to prevent unnecessary and expensive imaging procedures, and reduce patient exposure to ionizing radiation.

  7. Normal CT characteristics of the thymus in adults

    International Nuclear Information System (INIS)

    Simanovsky, Natalia; Hiller, Nurith; Loubashevsky, Natali; Rozovsky, Katya

    2012-01-01

    Background: The thymus changes with age. Its shape and the proportion of solid tissue and fat vary between individuals, yet there is no comprehensive work describing the size and morphology of the normal thymus on CT. As a result, many adults with some preserved soft tissue in the thymus may undergo extensive work-up to exclude mediastinal tumor. Our aim was to quantify CT characteristics of the normal thymus in an adult population. Methods: CT chest scans of 194 trauma patients aged 14–78 years (mean 52.6 years), were retrospectively reviewed. The density, volume, shape and predominant side of the thymus were recorded for 56 patients in whom some solid tissue was preserved. Statistical analysis of these characteristics according to the patient age and gender was performed. Results: Thymic density and volume decreased progressively with age. No solid tissue component was seen in the thymus in patients older than 54 years. In the majority of patients, the thymus had an arrowhead shape, with middle position. However, great variability in thymic shape and border were noted. There was a highly significant relationship between density and patient age (p < 0.0001). Conclusion: We hope that our work will help in the definition of normal thymic CT parameters in adults, help to prevent unnecessary and expensive imaging procedures, and reduce patient exposure to ionizing radiation.

  8. Different perception levels of histamine-induced itch sensation in young adult mice.

    Science.gov (United States)

    Ji, Yeounjung; Jang, Yongwoo; Lee, Wook Joo; Yang, Young Duk; Shim, Won-Sik

    2018-05-01

    Itch is an unpleasant sensation that evokes behavioral responses such as scratching the skin. Interestingly, it is conceived that the perception of itch sensation is influenced by age. Indeed, accumulating evidence supports the idea that even children or younger adults show distinctive itch sensation depending on age. This evidence implies the presence of a mechanism that regulates the perception of itch sensation in an age-dependent fashion. Therefore, the purpose of the present study was to investigate a putative mechanism for the age-dependent perception of itch sensation by comparing histamine-induced scratching behaviors in 45-day old (D45) and 75-day old male "young adult" mice. The results indicated that, following histamine administration, the D75 mice spent a longer time scratching than D45 mice. However, the intensity of the calcium influx induced by histamine in primary culture of dorsal root ganglia (DRG) neurons was not different between D45 and D75 mice. Moreover, no apparent difference was observed in mRNA levels of a characteristic His-related receptor and ion channel. In contrast, the mRNA levels of Toll-Like Receptor 4 (TLR4) were increased approximately by two-fold in D75 DRG compared with D45 DRG. Additionally, D75-derived DRG neurons exhibited enhanced intracellular calcium increase by lipopolysaccharide (LPS, a TLR4 agonist) than those of D45 mice. Furthermore, intensities of calcium influx induced by histamine were significantly potentiated when co-treated with LPS in D75 DRG neurons, but not in those of D45 mice. Thus, it appears that D75 mice showed enhanced histamine-induced scratching behaviors not by increased expression levels of histamine-related genes, but probably due to augmented TLR4 expression in DRG neurons. Consequently, the current study found that different perception levels of histamine-induced itch sensation are present in different age groups of young adult mice. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Effect of nerve injury on the number of dorsal root ganglion neurons and autotomy behavior in adult Bax-deficient mice

    Directory of Open Access Journals (Sweden)

    Lyu C

    2017-08-01

    Full Text Available Chuang Lyu,1,2 Gong-Wei Lyu,3 Aurora Martinez,4 Tie-Jun Sten Shi4 1State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China; 2Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden; 3Department of Neurology, 1st Hospital of Harbin Medical University, Harbin, People’s Republic of China; 4Department of Biomedicine, University of Bergen, Bergen, Norway Background: The proapoptotic molecule BAX, plays an important role in mitochondrial apoptotic pathway. Dorsal root ganglion (DRG neurons depend on neurotrophic factors for survival at early developmental stages. Withdrawal of neurotrophic factors will induce apoptosis in DRG neurons, but this type of cell death can be delayed or prevented in neonatal Bax knockout (KO mice. In adult animals, evidence also shows that DRG neurons are less dependent upon neurotrophic factors for survival. However, little is known about the effect of Bax deletion on the survival of normal and denervated DRG neurons in adult mice. Methods: A unilateral sciatic nerve transection was performed in adult Bax KO mice and wild-type (WT littermates. Stereological method was employed to quantify the number of lumbar-5 DRG neurons 1 month post-surgery. Nerve injury-induced autotomy behavior was also examined on days 1, 3, and 7 post-surgery. Results: There were significantly more neurons in contralateral DRGs of KO mice as compared with WT mice. The number of neurons was reduced in ipsilateral DRGs in both KO and WT mice. No changes in size distributions of DRG neuron profiles were detected before or after nerve injury. Injury-induced autotomy behavior developed much earlier and was more serious in KO mice. Conclusion: Although postnatal death or loss of DRG neurons is partially prevented by Bax deletion, this effect cannot interfere with long-term nerve injury-induced neuronal loss. The exaggerated self

  10. Arachidonic acid metabolites in normal and autoimmune mice do not influence lymphocyte-high endothelial venule interactions.

    Science.gov (United States)

    Manolios, N; Bakiera, B; Geczy, C L; Schrieber, L

    1991-02-01

    In peripheral lymphoid organs the number of lymphocytes and the proportion of functional lymphocyte subsets are regulated by multiple factors including the control of lymphocyte migration by selective lymphocyte-high endothelial venule (HEV) interactions. In this study, prostaglandin E2 (PGE2) levels from normal and autoimmune mouse lymph node cells were measured. The contribution of eicosanoids to lymphocyte-HEV interactions in normal (CBA/T6) and autoimmune (MRL/n) mice was examined. There was no association between PGE2 production in normal or autoimmune mice and the age of onset of disease activity in the latter strains. Arachidonic acid metabolites, in particular PGE2 and leukotriene B4 (LTB4), did not have any effects on lymphocyte-HEV binding. Likewise, lymphocytes treated in vivo and/or in vitro with arachidonic acid metabolite inhibitors (acetyl salicylic acid, indomethacin, BW755C) did not alter lymphocyte-HEV binding interactions in both normal and autoimmune mice. No clinical significance could be attributed to lymph node PGE2 production and the age of onset of autoimmune disease. In summary, these findings cast doubt on the role of arachidonic acid metabolites in lymphocyte-HEV binding interactions.

  11. Radioprotection of normal tissues in tumor-bearing mice by troxerutin

    International Nuclear Information System (INIS)

    Maurya, D.K.; Salvi, V.P.; Krishnan Nair, C.K.

    2004-01-01

    The flavanoid derivative troxerutin, used clinically for treating venous disorders, protected biomembranes and cellular DNA against the deleterious effects of γ-radiation. The peroxidation of lipids (measured as thiobarbituric acid-reacting substances, or TBARS) in rat liver microsomal and mitochondrial membranes resulting from γ-irradiation up to doses of 500 Gy in vitro was prevented by 0.2 mM troxerutin. The administration of troxerutin (175 mg/kg body weight) to tumor-bearing mice by intraperitoneal (ip) one hour prior to 4 Gy whole-body γ-irradiation significantly decreased the radiation-induced peroxidation of lipids in tissues such as liver and spleen, but there was no reduction of lipid peroxidation in tumor. The effect of troxerutin in γ-radiation-induced DNA strand breaks in different tissues of tumor-bearing mice was studied by comet assay. The administration of troxerutin to tumor-bearing animals protected cellular DNA against radiation-induced strand breaks. This was evidenced from decreases in comet tail length, tail moment, and percent of DNA in the tails in cells of normal tissues such as blood leukocytes and bone marrow, and these parameters were not altered in cells of fibrosarcoma tumor. The results revealed that troxerutin could preferentially protect normal tissues against radiation-induced damages in tumor-bearing animals. (author)

  12. Transplantation of Normal Adipose Tissue Improves Blood Flow and Reduces Inflammation in High Fat Fed Mice With Hindlimb Ischemia

    Directory of Open Access Journals (Sweden)

    Liyuan Chen

    2018-03-01

    Full Text Available Background: Fat deposition is associated with peripheral arterial disease. Adipose tissue has recently been implicated in vascular remodeling and angiogenic activity. We hypothesized that the transplantation of adipose tissues from normal mice improves blood flow perfusion and neovascularization in high-fat diet fed mice.Methods: After 14 weeks of high-fat diet (HFD-fed mice, unilateral hind limb ischemia was performed. Subcutaneous white adipose tissue (WAT and brown adipose tissue (BAT fat pads were harvested from normal EGFP mice, and subcutaneously transplanted over the region of the adductor muscles of HFD mice. Blood flow was measured using Laser Doppler Scanner. Vascular density, macrophages infiltration, and macrophage polarization were examined by RT-qPCR, and immunohistochemistry.Results: We found that the transplantation of WAT derived from normal mice improved functional blood flow in HFD-fed mice compared to mice transplanted with BAT and sham-treated mice. WAT transplantation increased the recruitment of pericytes associated with nascent blood vessels, but did not affect capillary formation. Furthermore, transplantation of WAT ameliorated HFD-induced insulin resistance, M2 macrophage predominance and the release of arteriogenic factors in ischemic muscles. Mice receiving WAT also displayed a marked reduction in several proinflammatory cytokines. In contrast, mice transplanted with BAT were glucose intolerant and demonstrated increased IL-6 levels in ischemic muscles.Conclusion: These results indicate that transplantation of adipose tissue elicits improvements in blood perfusion and beneficial effects on systemic glucose homeostasis and could be a promising therapeutic option for the treatment of diabetic peripheral arterial disease.

  13. Position and width of normal adult optic chiasm as measured in coronal MRI

    International Nuclear Information System (INIS)

    Kim, Myung Soon; Park, Jin Sook

    1994-01-01

    To evaluate the position and transverse dimension of the adult optic chiasm in normal Korean adult. The authors analysed 3D coronal volume images (TR/TE=30/13, flip angle=30 .deg. ) of 136 normal adult subjects without known visual abnormality. All MRI examinations were performed using a 0.5T system. MRI was reviewed retrospectively to determine the position (horizontal and tilted) of the potic chiosm and the transverse dimension of the optic chiasm was measured. Seventy- five (55%) of the 136 normal subjects had horizontal position, and sixty-one (45%) had tilted position. Thirty- eight (62%) of 61 with tilted position showed higher position on the right side, and twenty-three (38%) showed higher position on the side. The average transverse dimension(mean SD) was 15.2 ± 0.7mm in men and 14.6 ± 1.0mm in women. The difference of transverse dimension between men and women was statistically significant. Tilted position of the adult optic chiasm on coronal MRI was seen in approximately half of normal adults. The average of transverse dimension of normal optic chiasm was 15mm

  14. Establishment of a tamoxifen-inducible Cre-driver mouse strain for widespread and temporal genetic modification in adult mice.

    Science.gov (United States)

    Ichise, Hirotake; Hori, Akiko; Shiozawa, Seiji; Kondo, Saki; Kanegae, Yumi; Saito, Izumu; Ichise, Taeko; Yoshida, Nobuaki

    2016-07-29

    Temporal genetic modification of mice using the ligand-inducible Cre/loxP system is an important technique that allows the bypass of embryonic lethal phenotypes and access to adult phenotypes. In this study, we generated a tamoxifen-inducible Cre-driver mouse strain for the purpose of widespread and temporal Cre recombination. The new line, named CM32, expresses the GFPneo-fusion gene in a wide variety of tissues before FLP recombination and tamoxifen-inducible Cre after FLP recombination. Using FLP-recombined CM32 mice (CM32Δ mice) and Cre reporter mouse lines, we evaluated the efficiency of Cre recombination with and without tamoxifen administration to adult mice, and found tamoxifen-dependent induction of Cre recombination in a variety of adult tissues. In addition, we demonstrated that conditional activation of an oncogene could be achieved in adults using CM32Δ mice. CM32Δ;T26 mice, which harbored a Cre recombination-driven, SV40 large T antigen-expressing transgene, were viable and fertile. No overt phenotype was found in the mice up to 3 months after birth. Although they displayed pineoblastomas (pinealoblastomas) and/or thymic enlargement due to background Cre recombination by 6 months after birth, they developed epidermal hyperplasia when administered tamoxifen. Collectively, our results suggest that the CM32Δ transgenic mouse line can be applied to the assessment of adult phenotypes in mice with loxP-flanked transgenes.

  15. Preparation of 177Lu-DTPA-BIS-BIOTIN and biodistribution evaluation in normal mice

    International Nuclear Information System (INIS)

    Deng Xinrong; Luo Zhifu; Du Jin

    2010-01-01

    The labeling method for 177 Lu-DTPA-BIS-BIOTIN was established, and the biodistribution of 177 Lu-DTPA-BIS-BIOTIN in normal mice was carried out as well. Under the optimal experimental condition (DTPA-BIS-BIOTIN 25 μg, pH=4.5 reacting at 80 degree C for 20 min), the labeling yield of 177 Lu-DTPA-BIS-BIOTIN is more than 99.0%. 177 Lu-DTPA-BIS-BIOTIN shows pretty good in vitro stability. The biodistribution of 177 Lu-DTPA-BIS-BIOTIN in normal mice shows a rapid blood clearance. The uptake of 177 Lu-DTPA-BIS-BIOTIN is mainly accumulated in liver, spleen and kidney. 177 Lu-DTPA-BIS-BIOTIN is excreted by kidney. The results provide the basis for further study on 177 Lu-DTPA-BIS-BIOTIN used in pretargeted radioimage and radiotherapy of cancer. (authors)

  16. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice.

    Directory of Open Access Journals (Sweden)

    Budd A Tucker

    2011-04-01

    Full Text Available This study was designed to determine whether adult mouse induced pluripotent stem cells (iPSCs, could be used to produce retinal precursors and subsequently photoreceptor cells for retinal transplantation to restore retinal function in degenerative hosts. iPSCs were generated using adult dsRed mouse dermal fibroblasts via retroviral induction of the transcription factors Oct4, Sox2, KLF4 and c-Myc. As with normal mouse ES cells, adult dsRed iPSCs expressed the pluripotency genes SSEA1, Oct4, Sox2, KLF4, c-Myc and Nanog. Following transplantation into the eye of immune-compromised retinal degenerative mice these cells proceeded to form teratomas containing tissue comprising all three germ layers. At 33 days post-differentiation a large proportion of the cells expressed the retinal progenitor cell marker Pax6 and went on to express the photoreceptor markers, CRX, recoverin, and rhodopsin. When tested using calcium imaging these cells were shown to exhibit characteristics of normal retinal physiology, responding to delivery of neurotransmitters. Following subretinal transplantation into degenerative hosts differentiated iPSCs took up residence in the retinal outer nuclear layer and gave rise to increased electro retinal function as determined by ERG and functional anatomy. As such, adult fibroblast-derived iPSCs provide a viable source for the production of retinal precursors to be used for transplantation and treatment of retinal degenerative disease.

  17. Juvenile spermatogonial depletion (jsd): a genetic defect of germ cell proliferation of male mice.

    Science.gov (United States)

    Beamer, W G; Cunliffe-Beamer, T L; Shultz, K L; Langley, S H; Roderick, T H

    1988-05-01

    Adult C57BL/6J male mice homozygous for the mutant gene, juvenile spermatogonial depletion (jsd/jsd), show azoosper4ia and testes reduced to one-third normal size, but are otherwise phenotypically normal. In contrast, adult jsd/jsd females are fully fertile. This feature facilitated mapping the jsd gene to the centromeric end of chromosome 1; the gene order is jsd-Isocitrate dehydrogenase-1 (Idh-1)-Peptidase-3 (Pep-3). Analysis of testicular histology from jsd/jsd mice aged 3-10 wk revealed that these mutant mice experience one wave of spermatogenesis, but fail to continue mitotic proliferation of type A spermatogonial cells at the basement membrane. As a consequence, histological sections of testes from mutant mice aged 8-52 wk showed tubules populated by modest numbers of Sertoli cells, with only an occasional spermatogonial cell. Some sperm with normal morphology and motility were observed in epididymides of 6.5- but not in 8-wk or older mutants. Treatment with retinol failed to alter the loss of spermatogenesis in jsd/jsd mice. Analyses of serum hormones of jsd/jsd males showed that testosterone levels were normal at all ages--a finding corroborated by normal seminal vesicle and vas deferens weights, whereas serum follicle-stimulating hormone levels were significantly elevated in mutant mice from 4 to 20 wk of age. We hypothesize the jsd/jsd male may be deficient in proliferative signals from Sertoli cells that are needed for spermatogenesis.

  18. Amyloid β Is Not the Major Factor Accounting for Impaired Adult Hippocampal Neurogenesis in Mice Overexpressing Amyloid Precursor Protein

    Directory of Open Access Journals (Sweden)

    Hongyu Pan

    2016-10-01

    Full Text Available Adult hippocampal neurogenesis was impaired in several Alzheimer's disease models overexpressing mutant human amyloid precursor protein (hAPP. However, the effects of wild-type hAPP on adult neurogenesis and whether the impaired adult hippocampal neurogenesis was caused by amyloid β (Aβ or APP remained unclear. Here, we found that neurogenesis was impaired in the dentate gyrus (DG of adult mice overexpressing wild-type hAPP (hAPP-I5 compared with controls. However, the adult hippocampal neurogenesis was more severely impaired in hAPP-I5 than that in hAPP-J20 mice, which express similar levels of hAPP mRNA but much higher levels of Aβ. Furthermore, reducing Aβ levels did not affect the number of doublecortin-positive cells in the DG of hAPP-J20 mice. Our results suggested that hAPP was more likely an important factor inhibiting adult neurogenesis, and Aβ was not the major factor affecting neurogenesis in the adult hippocampus of hAPP mice.

  19. 2-deoxyglucose tissue levels and insulin levels following tolazamide dosing in normal and obese mice

    International Nuclear Information System (INIS)

    Skillman, C.A.; Fletcher, H.P.

    1986-01-01

    The effect of tolazamide (TZ), a sulfonylurea, on 14 C-2-deoxyglucose ( 14 C-2DG) tissue distribution and insulin levels of normal and obese mice was investigated using an in vivo physiological method. Acute doses of TZ (50 mg/kg ip) increased 14 C-2DG levels in gastrocnemius muscle and retroperitoneal fat and produced a transient elevation of insulin which most likely accounts for the increased 14 C-2DG levels in muscle and fat. The results demonstrate that the in vivo 14 C-2DG method produced results consistent with known actions of sulfonylureas on in vitro hexose assimilation in muscle and fat. Subchronic treatment (7 days) with TZ 50 mg/kg ip twice daily did not result in increased insulin-stimulated 14 C-2DG tissue levels in normal mice when compared to saline treated controls. However, insulin levels were lower in mice treated subchronically with TZ compared to saline controls suggesting an enhancement of insulin action. Viable yellow obese mice represent a model of maturity onset obesity presenting with insulin resistance. The insulin resistance of this obese strain appears to reside in the fat tissue as assessed by comparing 14 C-2DG tissue levels of obese mice with lean littermate controls. Subchronic TZ treatment had no effect on 14 C-2DG uptake in fat or muscle tissue of viable yellow obese mice and did not alter their plasma insulin levels. It appears that genetically obese viable mice may be resistant to subchronic treatment with TZ. (author)

  20. Radiologic study of patellofemoral congruence in normal adults

    International Nuclear Information System (INIS)

    Diedrichs, L.C.

    1986-01-01

    In order to establish the normal position of the patella, in relation to the intercondilar sulcus, we have evaluated 72 adults patients, making use of the FICAT view in axial radiographys at 30 0 : a simple and accurate technique adopted to measure the congrunce angle in the detection of sub-luxation of the patella. The value of +9 0 was used as the normal pattern for the maximal lateral position of the patella in the intercondilar sulcus. (Author) [pt

  1. Dietary docosahexaenoic acid (DHA) as lysophosphatidylcholine, but not as free acid, enriches brain DHA and improves memory in adult mice

    OpenAIRE

    Sugasini, Dhavamani; Thomas, Riya; Yalagala, Poorna C. R.; Tai, Leon M.; Subbaiah, Papasani V.

    2017-01-01

    Docosahexaenoic acid (DHA) is uniquely concentrated in the brain, and is essential for its function, but must be mostly acquired from diet. Most of the current supplements of DHA, including fish oil and krill oil, do not significantly increase brain DHA, because they are hydrolyzed to free DHA and are absorbed as triacylglycerol, whereas the transporter at blood brain barrier is specific for phospholipid form of DHA. Here we show that oral administration of DHA to normal adult mice as lysopho...

  2. Normal mitochondrial respiratory function is essential for spatial remote memory in mice

    Directory of Open Access Journals (Sweden)

    Tanaka Daisuke

    2008-12-01

    Full Text Available Abstract Background Mitochondrial DNA (mtDNA with pathogenic mutations has been found in patients with cognitive disorders. However, little is known about whether pathogenic mtDNA mutations and the resultant mitochondrial respiration deficiencies contribute to the expression of cognitive alterations, such as impairments of learning and memory. To address this point, we used two groups of trans-mitochondrial mice (mito-mice with heteroplasmy for wild-type and pathogenically deleted (Δ mtDNA; the "low" group carried 50% or less ΔmtDNA, and the "high" group carried more than 50% ΔmtDNA. Results Both groups had normal phenotypes for not only spatial learning, but also memory at short retention delays, indicating that ΔmtDNA load did not affect learning and temporal memory. The high group, however, showed severe impairment of memory at long retention delays. In the visual cortex and dentate gyrus of these mice, we observed mitochondrial respiration deficiencies, and reduced Ca2+/calmodulin-dependent kinase II-α (α-CaMKII, a protein important for the establishment of spatial remote memory. Conclusion Our results indicated that normal mitochondrial respiratory function is necessary for retention and consolidation of memory trace; deficiencies in this function due to high loads of pathogenically mutated mtDNA are responsible for the preferential impairment of spatial remote memory.

  3. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo [Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, Jae Sung [Seoul national University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5{+-}3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis.

  4. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    International Nuclear Information System (INIS)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo; Lee, Jae Sung

    2002-01-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5±3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis

  5. Psychosocial Functioning of Adult Epileptic and MS Patients and Adult Normal Controls on the WPSI.

    Science.gov (United States)

    Tan, Siang-Yang

    1986-01-01

    Psychosocial functioning of adult epileptic outpatients as assessed by the Washington Psychosocial Seizure Inventory (WPSI) was compared to that of adult multiple sclerosis (MS) outpatients and normal subjects. When only valid WPSI profiles were considered, the only significant finding was that the epilepsy group and the MS group had more…

  6. Circadian Clock Genes Are Essential for Normal Adult Neurogenesis, Differentiation, and Fate Determination.

    Directory of Open Access Journals (Sweden)

    Astha Malik

    Full Text Available Adult neurogenesis creates new neurons and glia from stem cells in the human brain throughout life. It is best understood in the dentate gyrus (DG of the hippocampus and the subventricular zone (SVZ. Circadian rhythms have been identified in the hippocampus, but the role of any endogenous circadian oscillator cells in hippocampal neurogenesis and their importance in learning or memory remains unclear. Any study of stem cell regulation by intrinsic circadian timing within the DG is complicated by modulation from circadian clocks elsewhere in the brain. To examine circadian oscillators in greater isolation, neurosphere cultures were prepared from the DG of two knockout mouse lines that lack a functional circadian clock and from mPer1::luc mice to identify circadian oscillations in gene expression. Circadian mPer1 gene activity rhythms were recorded in neurospheres maintained in a culture medium that induces neurogenesis but not in one that maintains the stem cell state. Although the differentiating neural stem progenitor cells of spheres were rhythmic, evidence of any mature neurons was extremely sparse. The circadian timing signal originated in undifferentiated cells within the neurosphere. This conclusion was supported by immunocytochemistry for mPER1 protein that was localized to the inner, more stem cell-like neurosphere core. To test for effects of the circadian clock on neurogenesis, media conditions were altered to induce neurospheres from BMAL1 knockout mice to differentiate. These cultures displayed unusually high differentiation into glia rather than neurons according to GFAP and NeuN expression, respectively, and very few BetaIII tubulin-positive, immature neurons were observed. The knockout neurospheres also displayed areas visibly devoid of cells and had overall higher cell death. Neurospheres from arrhythmic mice lacking two other core clock genes, Cry1 and Cry2, showed significantly reduced growth and increased astrocyte

  7. Adolescent C57BL/6J mice show elevated alcohol intake, but reduced taste aversion, as compared to adult mice: a potential behavioral mechanism for binge drinking.

    Science.gov (United States)

    Holstein, Sarah E; Spanos, Marina; Hodge, Clyde W

    2011-10-01

    Binge alcohol drinking during adolescence is a serious health problem that may increase future risk of an alcohol use disorder. Although there are several different procedures by which to preclinically model binge-like alcohol intake, limited-access procedures offer the advantage of achieving high voluntary alcohol intake and pharmacologically relevant blood alcohol concentrations (BACs). Therefore, in the current study, developmental differences in binge-like alcohol drinking using a limited-access cycling procedure were examined. In addition, as alcohol drinking has been negatively correlated with sensitivity to the aversive properties of alcohol, we examined developmental differences in sensitivity to an alcohol-induced conditioned taste aversion (CTA). Binge-like alcohol consumption was investigated in adolescent (4 weeks) and adult (10 weeks) male C57BL/6J mice for 2 to 4 h/d for 16 days. Developmental differences in sensitivity to an alcohol-induced CTA were examined in adolescent and adult mice, with saline or alcohol (3 or 4 g/kg) repeatedly paired with the intake of a novel tastant (NaCl). Adolescent mice showed a significant increase in alcohol intake as compared to adults, with adolescents achieving higher BACs and increasing alcohol consumption over successive cycles of the binge procedure. Conversely, adolescent mice exhibited a dose-dependent reduction in sensitivity to the aversive properties of alcohol, as compared to adult mice, with adolescent mice failing to develop a CTA to 3 g/kg alcohol. Finally, extinction of an alcohol CTA was observed following conditioning with a higher dose of alcohol in adolescent, versus adult, mice. These results indicate that adolescent mice consume more alcohol, per kilogram body weight, than adults in a binge-like model of alcohol drinking and demonstrate a blunted sensitivity to the conditioned aversive effects of alcohol. Overall, this supports a behavioral framework by which heightened binge alcohol intake during

  8. Anti-diabetic effects of Inonotus obliquus polysaccharides-chromium (III) complex in type 2 diabetic mice and its sub-acute toxicity evaluation in normal mice.

    Science.gov (United States)

    Wang, Cong; Chen, Zhongqin; Pan, Yuxiang; Gao, Xudong; Chen, Haixia

    2017-10-01

    Polysaccharides are important bioactive ingredients from Inonotus obliquus. This study aimed to synthesize and characterize a novel I. obliquus polysaccharides-chromium (III) complex (UIOPC) and investigate the anti-diabetic effects in streptozotocin (STZ) induced type 2 diabetes mellitus (T2DM) mice and sub-acute toxicity in normal mice. The molecular weight of UIOPC was about 11.5 × 10 4  Da with the chromium content was 13.01% and the chromium was linked with polysaccharides through coordination bond. After treatment of UIOPC for four weeks, the body weight, fasting blood glucose (FBG) levels, plasma insulin levels of the diabetic mice were significantly reduced when compared with those of the diabetic mice (p < 0.05). The results on serum profiles and antioxidant enzymes activities revealed that UIOPC had a positive effect on hypoglycemic and antioxidant ability. Histopathology results showed that UIOPC could effectively alleviate the STZ-lesioned tissues in diabetic mice. Furthermore, high dose administration of UIOPC had no obviously influence on serum profiles levels and antioxidant ability of the normal mice and the organ tissues maintained organized and integrity in the sub-acute toxicity study. These results suggested that UIOPC might be a good candidate for the functional food or pharmaceuticals in the treatment of T2DM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Long-lasting Effects of Minocycline on Behavior in Young but not Adult Fragile X Mice

    Science.gov (United States)

    Dansie, Lorraine E.; Phommahaxay, Kelly; Okusanya, Ayodeji G.; Uwadia, Jessica; Huang, Mike; Rotschafer, Sarah E.; Razak, Khaleel A.; Ethell, Douglas W.; Ethell, Iryna M.

    2013-01-01

    Fragile X Syndrome (FXS) is the most common single-gene inherited form of intellectual disability with behaviors characteristic of autism. People with FXS display childhood seizures, hyperactivity, anxiety, developmental delay, attention deficits, and visual-spatial memory impairment, as well as a propensity for obsessive-compulsive disorder (OCD). Several of these aberrant behaviors and FXS-associated synaptic irregularities also occur in “fragile X mental retardation gene” knock-out (Fmr1 KO) mice. We previously reported that minocycline promotes the maturation of dendritic spines - postsynaptic sites for excitatory synapses - in the developing hippocampus of Fmr1 KO mice, which may underlie the beneficial effects of minocycline on anxiolytic behavior in young Fmr1 KO mice. In this study, we compared the effectiveness of minocycline treatment in young and adult Fmr1 KO mice, and determined the dependence of behavioral improvements on short-term versus long-term minocycline administration. We found that 4 and 8 week long treatments significantly reduced locomotor activity in both young and adult Fmr1 KO mice. Some behavioral improvements persisted in young mice post-treatment, but in adults the beneficial effects were lost soon after minocycline treatment was stopped. We also show, for the first time, that minocycline treatment partially attenuates the number and severity of audiogenic seizures in Fmr1 KO mice. This report provides further evidence that minocycline treatment has immediate and long-lasting benefits on FXS-associated behaviors in the Fmr1 KO mouse model. PMID:23660195

  10. Serum cholinesterases are differentially regulated in normal and dystrophin-deficient mutant mice

    Directory of Open Access Journals (Sweden)

    Andrea R. Durrant

    2012-06-01

    Full Text Available The cholinesterases, acetylcholinesterase and butyrylcholinesterase (pseudocholinesterase, are abundant in the nervous system and in other tissues. The role of acetylcholinesterase in terminating transmitter action in the peripheral and central nervous system is well understood. However, both knowledge of the function(s of the cholinesterases in serum, and of their metabolic and endocrine regulation under normal and pathological conditions, is limited. This study investigates acetylcholinesterase and butyrylcholinesterase in sera of dystrophin-deficient mdx mutant mice, an animal model for the human Duchenne muscular dystrophy and in control healthy mice. The data show systematic and differential variations in the concentrations of both enzymes in the sera, and specific changes dictated by alteration of hormonal balance in both healthy and dystrophic mice. While acetylcholinesterase in mdx-sera is elevated, butyrylcholinesterase is markedly diminished, resulting in an overall cholinesterase decrease compared to sera of healthy controls. The androgen testosterone (T is a negative modulator of butyrylcholinesterase, but not of acetylcholinesterase, in male mouse sera. T-removal elevated both butyrylcholinesterase activity and the butyrylcholinesterase/acetylcholinesterase ratio in mdx male sera to values resembling those in healthy control male mice. Mechanisms of regulation of the circulating cholinesterases and their impairment in the dystrophic mice are suggested, and clinical implications for diagnosis and treatment are considered.

  11. Behavioural Effects of Adult Vitamin D Deficiency in BALB/c Mice Are not Associated with Proliferation or Survival of Neurons in the Adult Hippocampus.

    Directory of Open Access Journals (Sweden)

    Natalie J Groves

    Full Text Available Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD deficiency in BALB/c mice was associated with (a adult hippocampal neurogenesis at baseline, b following 6 weeks of voluntary wheel running and (c a depressive-like phenotype on the forced swim test (FST, which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX, and incorporation of 5-Bromo-2'-Deoxyuridine (BrdU within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis.

  12. [Quantification of acetabular coverage in normal adult].

    Science.gov (United States)

    Lin, R M; Yang, C Y; Yu, C Y; Yang, C R; Chang, G L; Chou, Y L

    1991-03-01

    Quantification of acetabular coverage is important and can be expressed by superimposition of cartilage tracings on the maximum cross-sectional area of the femoral head. A practical Autolisp program on PC AutoCAD has been developed by us to quantify the acetabular coverage through numerical expression of the images of computed tomography. Thirty adults (60 hips) with normal center-edge angle and acetabular index in plain X ray were randomly selected for serial drops. These slices were prepared with a fixed coordination and in continuous sections of 5 mm in thickness. The contours of the cartilage of each section were digitized into a PC computer and processed by AutoCAD programs to quantify and characterize the acetabular coverage of normal and dysplastic adult hips. We found that a total coverage ratio of greater than 80%, an anterior coverage ratio of greater than 75% and a posterior coverage ratio of greater than 80% can be categorized in a normal group. Polar edge distance is a good indicator for the evaluation of preoperative and postoperative coverage conditions. For standardization and evaluation of acetabular coverage, the most suitable parameters are the total coverage ratio, anterior coverage ratio, posterior coverage ratio and polar edge distance. However, medial coverage and lateral coverage ratios are indispensable in cases of dysplastic hip because variations between them are so great that acetabuloplasty may be impossible. This program can also be used to classify precisely the type of dysplastic hip.

  13. Normal myogenic cells from newborn mice restore normal histology to degenerating muscles of the mdx mouse

    International Nuclear Information System (INIS)

    Morgan, J.E.; Hoffman, E.P.; Partridge, T.A.

    1990-01-01

    Dystrophin deficiency in skeletal muscle of the x-linked dystrophic (mdx) mouse can be partially remedied by implantation of normal muscle precursor cells (mpc). However, it is difficult to determine whether this biochemical rescue results in any improvement in the structure or function of the treated muscle, because the vigorous regeneration of mdx muscle more than compensates for the degeneration. By using x-ray irradiation to prevent mpc proliferation, it is possible to study loss of mdx muscle fibers without the complicating effect of simultaneous fiber regeneration. Thus, improvements in fiber survival resulting from any potential therapy can be detected easily. Here, we have implanted normal mpc, obtained from newborn mice, into such preirradiated mdx muscles, finding that it is far more extensively permeated and replaced by implanted mpc than is nonirradiated mdx muscle; this is evident both from analysis of glucose-6-phosphate isomerase isoenzyme markers and from immunoblots and immunostaining of dystrophin in the treated muscles. Incorporation of normal mpc markedly reduces the loss of muscle fibers and the deterioration of muscle structure which otherwise occurs in irradiated mdx muscles. Surprisingly, the regenerated fibers are largely peripherally nucleated, whereas regenerated mouse skeletal muscle fibers are normally centrally nucleated. We attribute this regeneration of apparently normal muscle to the tendency of newborn mouse mpc to recapitulate their neonatal ontogeny, even when grafted into 3-wk-old degenerating muscle

  14. Natural killer activity and suppressor cells in irradiated mice repopulated with a mixture of cells from normal and 89Sr-treated donors

    International Nuclear Information System (INIS)

    Levy, E.M.; Kumar, V.; Bennett, M.

    1981-01-01

    Mice that have been injected with 89 Sr have fairly normal B and T cell function, but are abnormal in that they lack natural killer (NK) activity and other functions that require an intact bone marrow. These mice also have an increased potential for suppressor cell activity. We had previously shown that spleen cells from 89 Sr-treated mice could transfer low NK activity and increased suppressor cell function to lethally irradiated syngeneic recipients. To investigate the mechanisms involved in perpetuating these defects, groups of normal spleen or bone marrow cells. Recipients were assayed for their NK activity and suppressor cell function 5 to 14 wk later. it was found that the addition of normal cells in the donor inoculum resulted in normal NK activity. This indicates that low NK activity in 89 Sr-treated mice was not due to the presence of a suppressor cell that prevented NK cell generation. It was additionally found that low NK activity in recipient mice could be boosted by interferon inducers. This would indicate that NK activity in the recipients was not due to a lack of interferon-sensitive pre-NK cells. Suppressor cell function in recipient mice depended on the type and number of normal cells in the donor inoculum. Bone marrow cells were very efficient in overcoming the tendency to produce suppressor cells. It took approximately 20 times more normal spleen cells to produce the same results. The implications of these findings are discussed

  15. The acyl-CoA binding protein is required for normal epidermal barrier function in mice

    DEFF Research Database (Denmark)

    Bloksgaard, Maria; Bek, Signe; Marcher, Ann-Britt

    2012-01-01

    (+/+) and ACBP(-/-) mice showed very similar composition, except for a significant and specific decrease in the very long chain free fatty acids (VLC-FFA) in stratum corneum of ACBP(-/-) mice. This finding indicates that ACBP is critically involved in the processes that lead to production of stratum corneum VLC......The acyl-CoA binding protein (ACBP) is a 10 kDa intracellular protein expressed in all eukaryotic species. Mice with targeted disruption of Acbp (ACBP(-/-) mice) are viable and fertile but present a visible skin and fur phenotype characterized by greasy fur and development of alopecia and scaling...... with age. Morphology and development of skin and appendages are normal in ACBP(-/-) mice; however, the stratum corneum display altered biophysical properties with reduced proton activity and decreased water content. Mass spectrometry analyses of lipids from epidermis and stratum corneum of ACBP...

  16. Dynamics of oligodendrocyte responses to anterograde axonal (Wallerian) and terminal degeneration in normal and TNF-transgenic mice

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Fenger, Christina; Nielsen, Helle H

    2004-01-01

    degeneration and lesion-induced axonal sprouting in the hippocampal dentate gyrus in TNF-transgenic mice with the response in genetically normal mice. Transectioning of the entorhino-dentate perforant path axonal projection increased hippocampal TNF mRNA expression in both types of mice, but to significantly...... larger levels in the TNF-transgenics. At 5 days after axonal transection, numbers of oligodendrocytes and myelin basic protein (MBP) mRNA expression in the denervated dentate gyrus in TNF-transgenic mice had increased to the same extent as in nontransgenic littermates. At this time, transgenics showed...

  17. An Early Postnatal Oxytocin Treatment Prevents Social and Learning Deficits in Adult Mice Deficient for Magel2, a Gene Involved in Prader-Willi Syndrome and Autism.

    Science.gov (United States)

    Meziane, Hamid; Schaller, Fabienne; Bauer, Sylvian; Villard, Claude; Matarazzo, Valery; Riet, Fabrice; Guillon, Gilles; Lafitte, Daniel; Desarmenien, Michel G; Tauber, Maithé; Muscatelli, Françoise

    2015-07-15

    Mutations of MAGEL2 have been reported in patients presenting with autism, and loss of MAGEL2 is also associated with Prader-Willi syndrome, a neurodevelopmental genetic disorder. This study aimed to determine the behavioral phenotype of Magel2-deficient adult mice, to characterize the central oxytocin (OT) system of these mutant mice, and to test the curative effect of a peripheral OT treatment just after birth. We assessed the social and cognitive behavior of Magel2-deficient mice, analyzed the OT system of mutant mice treated or not by a postnatal administration of OT, and determined the effect of this treatment on the brain. Magel2 inactivation induces a deficit in social recognition and social interaction and a reduced learning ability in adult male mice. In these mice, we reveal anatomical and functional modifications of the OT system and show that these defects change from birth to adulthood. Daily administration of OT in the first postnatal week was sufficient to prevent deficits in social behavior and learning abilities in adult mutant male mice. We show that this OT treatment partly restores a normal OT system. Thus, we report that an alteration of the OT system around birth has long-term consequences on behavior and on cognition. Importantly, an acute OT treatment of Magel2-deficient pups has a curative effect. Our study reveals that OT plays a crucial role in setting social behaviors during a period just after birth. An early OT treatment in this critical period could be a novel therapeutic approach for the treatment of neurodevelopmental disorders such as Prader-Willi syndrome and autism. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. CD4+ T regulatory cells from the colonic lamina propria of normal mice inhibit proliferation of enterobacteria-reactive, disease-inducing Th1-cells from scid mice with colitis

    DEFF Research Database (Denmark)

    Gad, M; Brimnes, J; Claesson, Mogens Helweg

    2003-01-01

    Adoptive transfer of CD4+ T cells into scid mice leads to a chronic colitis in the recipients. The transferred CD4+ T cells accumulate in the intestinal lamina propria (LP), express an activated Th1 phenotype and proliferate vigorously when exposed ex vivo to enteric bacterial antigens. As LP CD4......+ T cells from normal BALB/c mice do not respond to enteric bacterial antigens, we have investigated whether colonic LP-derived CD4+ T cells from normal mice suppress the antibacterial response of CD4+ T cells from scid mice with colitis. LP-derived CD4+ T cells cocultured with bone marrow......-derived dendritic cells effectively suppress the antibacterial proliferative response of CD4+ T cells from scid mice with colitis. The majority of these LP T-reg cells display a nonactivated phenotype and suppression is independent of antigen exposure, is partly mediated by soluble factor(s) different from IL-10...

  19. Uptake of elemental mercury and activity of catalase in rat, hamster, guinea-pig, normal and acatalasemic mice

    International Nuclear Information System (INIS)

    Eide, I.; Syversen, T.L.M.

    1982-01-01

    Uptake of elemental mercury after inhalation (3.5 mg/m 3 ) and the activity of catalase in brain, liver, kidney and blood were investigated in rat, hamster, guinea-pig, and normal and acatalasemic mice. The uptake of mercury in the species investigated varied considerably, being highest in the two strains of mice, followed by rat and hamster, and lowest in the guinea-pig. The uptake seemed to be more dependent on pulmonary ventilation than on the activity of catalase. The two strains of mice were exposed to a wide range of mercury concentrations in air (0.002-3.5 mg/m 3 ). The content of mercury in brain, liver and kidney was linearly dependent on the mercury concentration in the air, whereas in blood this relationship was exponential. At the lower concentraions of mercury in the inhaled air, the mercury level in blood was significantly lower, and in kidney higher in the acatalasemic mice compared to the normal ones. In acatalasemic mice the mercury content in the liver has higher at all concentrations investigated, whereas in brain no difference between the two strains was found. (author)

  20. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.

    Science.gov (United States)

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun; Krimm, Robin F

    2015-01-01

    Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood.

  1. Differential effects of social isolation in adolescent and adult mice on behavior and cortical gene expression.

    Science.gov (United States)

    Lander, Sharon S; Linder-Shacham, Donna; Gaisler-Salomon, Inna

    2017-01-01

    Intact function of the medial prefrontal cortex (mPFC) function relies on proper development of excitatory and inhibitory neuronal populations and on integral myelination processes. Social isolation (SI) affects behavior and brain circuitry in adulthood, but previous rodent studies typically induced prolonged (post-weaning) exposure and failed to directly compare between the effects of SI in adolescent and adulthood. Here, we assessed the impact of a 3-week SI period, starting in mid-adolescence (around the onset of puberty) or adulthood, on a wide range of behaviors in adult male mice. Additionally, we asked whether adolescent SI would differentially affect the expression of excitatory and inhibitory neuronal markers and myelin-related genes in mPFC. Our findings indicate that mid-adolescent or adult SI increase anxiogenic behavior and locomotor activity. However, SI in adolescence uniquely affects the response to the psychotomimetic drug amphetamine, social and novelty exploration and performance in reversal and attentional set shifting tasks. Furthermore, adolescent but not adult SI increased the expression of glutamate markers in the adult mPFC. Our results imply that adolescent social deprivation is detrimental for normal development and may be particularly relevant to the investigation of developmental psychopathology. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Diacylglycerol lipase a knockout mice demonstrate metabolic and behavioral phenotypes similar to those of cannabinoid receptor 1 knockout mice

    Directory of Open Access Journals (Sweden)

    David R Powell

    2015-06-01

    Full Text Available After creating >4650 knockouts (KOs of independent mouse genes, we screened them by high-throughput phenotyping and found that cannabinoid receptor 1 (Cnr1 KO mice had the same lean phenotype published by others. We asked if our KOs of DAG lipase a or b (Dagla or Daglb, which catalyze biosynthesis of the endocannabinoid (EC 2-Arachidonoylglycerol (2-AG, or Napepld, which catalyzes biosynthesis of the EC anandamide, shared the lean phenotype of Cnr1 KO mice. We found that Dagla KO mice, but not Daglb or Napepld KO mice, were among the leanest of 3651 chow-fed KO lines screened. In confirmatory studies, chow- or high fat diet-fed Dagla and Cnr1 KO mice were leaner than wild type (WT littermates; when data from multiple cohorts of adult mice were combined, body fat was 47% and 45% lower in Dagla and Cnr1 KO mice, respectively, relative to WT values. In contrast, neither Daglb nor Napepld KO mice were lean. Weanling Dagla KO mice ate less than WT mice and had body weight similar to pair-fed WT mice, and adult Dagla KO mice had normal activity and VO2 levels, similar to Cnr1 KO mice. Our Dagla and Cnr1 KO mice also had low fasting insulin, triglyceride and total cholesterol levels, and after a glucose challenge had normal glucose but very low insulin levels. Dagla and Cnr1 KO mice also showed similar responses to a battery of behavioral tests. These data suggest: 1 the lean phenotype of young Dagla and Cnr1 KO mice is mainly due to hypophagia; 2 in pathways where ECs signal through Cnr1 to regulate food intake and other metabolic and behavioral phenotypes observed in Cnr1 KO mice, Dagla alone provides the 2-AG that serves as the EC signal; and 3 small molecule Dagla inhibitors with a pharmacokinetic profile similar to that of Cnr1 inverse agonists are likely to mirror the ability of these Cnr1 inverse agonists to lower body weight and improve glycemic control in obese patients with type 2 diabetes, but may also induce undesirable neuropsychiatric

  3. Inducible knockdown of pregnancy-associated plasma protein-A gene expression in adult female mice extends life span.

    Science.gov (United States)

    Bale, Laurie K; West, Sally A; Conover, Cheryl A

    2017-08-01

    Pregnancy-associated plasma protein-A (PAPP-A) knockout (KO) mice, generated through homologous recombination in embryonic stem cells, have a significantly increased lifespan compared to wild-type littermates. However, it is unknown whether this longevity advantage would pertain to PAPP-A gene deletion in adult animals. In the present study, we used tamoxifen (Tam)-inducible Cre recombinase-mediated excision of the floxed PAPP-A (fPAPP-A) gene in mice at 5 months of age. fPAPP-A mice, which were either positive (pos) or negative (neg) for Tam-Cre, received Tam treatment with quarterly boosters. Only female mice could be used with this experimental design. fPAPP-A/neg and fPAPP-A/pos mice had similar weights at the start of the experiment and showed equivalent weight gain. We found that fPAPP-A/pos mice had a significant extension of life span (P = 0.005). The median life span was increased by 21% for fPAPP-A/pos compared to fPAPP-A/neg mice. Analysis of mortality in life span quartiles indicated that the proportion of deaths of fPAPP-A/pos mice were lower than fPAPP-A/neg mice at young adult ages (P = 0.002 for 601-800 days) and higher than fPAPP-A/neg mice at older ages (P = 0.004 for >1000 days). Thus, survival curves and age-specific mortality indicate that female mice with knockdown of PAPP-A gene expression as adults have an extended healthy life span. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  4. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    International Nuclear Information System (INIS)

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-01-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting 3 H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities

  5. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-03-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting /sup 3/H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities.

  6. Normal isometric strength of rotator cuff muscles in adults

    OpenAIRE

    Chezar, A.; Berkovitch, Y.; Haddad, M.; Keren, Y.; Soudry, M.; Rosenberg, N.

    2013-01-01

    Objectives The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. Methods A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for e...

  7. Extracellular signal-regulated kinase 1 and 2 are not required for GnRH neuron development and normal female reproductive axis function in mice.

    Science.gov (United States)

    Wierman, Margaret E; Xu, Mei; Pierce, A; Bliesner, B; Bliss, S P; Roberson, M S

    2012-01-01

    Selective deletion of extracellular signal-regulated kinase (ERK) 1 and ERK2 in the pituitary gonadotrope and ovarian granulosa cells disrupts female reproductive axis function. Thus, we asked if ERK1 and ERK2 are critical for GnRH neuron ontogeny or the central control of female reproductive function. GnRH-Cre-recombinase (Cre+) expressing mice were crossed with mice with a global deletion of ERK1 and a floxed ERK2 allele (Erk1-/Erk2fl/fl) to selectively delete ERK2 in GnRH neurons. Cre-recombinase mRNA was selectively expressed in the brain of Cre+ mice. GnRH neuron number and location were determined during embryogenesis and in the adult. GnRH neuron counts at E15 did not differ between experimental and control groups (1,198 ± 65 and 1,160 ± 80 respectively, p = NS). In adults, numbers of GnRH neurons in the GnRHCre+Erk1-/Erk2- mice (741 ± 157) were similar to those in controls (756 ± 7), without alteration in their distribution across the forebrain. ERK1 and 2 deficiency did not alter the timing of vaginal opening, age at first estrus, or estrous cyclicity. Although ERK1 and 2 are components of a dominant signaling pathway in GnRH neuronal cells that modulates survival and control of GnRH gene expression, other signaling pathways compensate for their deletion in vivo to allow GnRH neuron survival and targeting and normal onset of female sexual maturation and reproductive function. In contrast to effects at the pituitary and the ovary, ERK1 and ERK2 are dispensable at the level of the GnRH neuron. Copyright © 2011 S. Karger AG, Basel.

  8. Catalase induction in normal and tumorigenic mice using x-rays, clofibrate, ethanol, or hydrogen peroxide

    International Nuclear Information System (INIS)

    Alexander, L.; Oberley, L.

    1985-01-01

    The authors studied catalase induction in normal male Swiss mice as well as in male mice harboring H-6 hepatomas. The induction patterns many suggest reasons why tumor cells have lower catalase activity than normal cells. X-rays, hydrogen peroxide, ethanol, and clofibrate were used as inducing agents. X-rays interact with tissue and cause free radical formation. This results in an increase in hydrogen peroxide concentration, which ought to induce catalase. Oral administration of hydrogen peroxide should induce catalase similarly. Ethanol can be a substrate for catalase, forming acetalehyde; and as such may induce catalase. Ethanol can also restore inactive catalase compound II to useful catalase. Clofibrate is a hypolipidemic agent which induces catalase, most likely because of its ability to accelerate lipid breakdown, which raises peroxide concentration

  9. Screening of the residual normal ovarian tissue adjacent to orthotopic epithelial ovarian carcinomas in nude mice.

    Science.gov (United States)

    Zhu, G H; Wang, S T; Yao, M Z; Cai, J H; Chen, C Y; Yang, Z X; Hong, L; Yang, S Y

    2014-04-16

    The objective of this study was to explore the feasibility and methods of screening the residual normal ovarian tissue adjacent to orthotopic ovarian carcinomas in nude mice. Human epithelial ovarian cancer cells (OVCAR3) were subcutaneously implanted for a tumor source and ovarian orthotopic transplantation. The cancer tissue, proximal paraneoplastic tissue, middle paraneoplastic tissue, remote paraneoplastic tissue, and normal ovarian tissue were removed. CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was detected by reverse transcription polymerase chain reaction. We obtained 35 paraneoplastic residual ovarian tissues with normal biopsies from 40 cases of an orthotopic epithelial ovarian carcinoma model (87.5%). CK-7, CA125, p53, survivin, MMP-2, and TIMP-2 expression was lower in proximal paraneoplastic tissue than in cancer tissue (P tissue (P tissue as well as among residual normal ovarian tissues with different severity (P > 0.05). In ovarian tissues of 20 normal nude mice, the expression of CK- 7, CA125, p53, survivin, MMP-2, and TIMP-2 was negative. Overall, the expression levels of CK-7, CA125, p53, survivin, MMP-2, TIMP-2, and other molecular markers showed a decreasing trend in the non-cancer tissue direction. The expression levels can be used as standards to screen residual normal ovarian tissue. We can obtain relatively safe normal ovarian tissues adjacent to epithelial ovarian cancer.

  10. The Regenerative Potential of Parietal Epithelial Cells in Adult Mice

    Science.gov (United States)

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H.; Floege, Jürgen; Smeets, Bart

    2014-01-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman’s capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman’s capsule expressed podocyte markers, and cells on Bowman’s capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman’s capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman’s capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman’s capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans. PMID:24408873

  11. The regenerative potential of parietal epithelial cells in adult mice.

    Science.gov (United States)

    Berger, Katja; Schulte, Kevin; Boor, Peter; Kuppe, Christoph; van Kuppevelt, Toin H; Floege, Jürgen; Smeets, Bart; Moeller, Marcus J

    2014-04-01

    Previously, we showed that some podocytes in juvenile mice are recruited from cells lining Bowman's capsule, suggesting that parietal epithelial cells (PECs) are a progenitor cell population for podocytes. To investigate whether PECs also replenish podocytes in adult mice, PECs were genetically labeled in an irreversible fashion in 5-week-old mice. No significant increase in labeled podocytes was observed, even after 18 months. To accelerate a potential regenerative mechanism, progressive glomerular hypertrophy was induced by progressive partial nephrectomies. Again, no significant podocyte replenishment was observed. Rather, labeled PECs exclusively invaded segments of the tuft affected by glomerulosclerosis, consistent with our previous findings. We next reassessed PEC recruitment in juvenile mice using a different reporter mouse and confirmed significant recruitment of labeled PECs onto the glomerular tuft. Moreover, some labeled cells on Bowman's capsule expressed podocyte markers, and cells on Bowman's capsule were also directly labeled in juvenile podocyte-specific Pod-rtTA transgenic mice. In 6-week-old mice, however, cells on Bowman's capsule no longer expressed podocyte-specific markers. Similarly, in human kidneys, some cells on Bowman's capsule expressed the podocyte marker synaptopodin from 2 weeks to 2 years of age but not at 7 years of age. In summary, podocyte regeneration from PECs could not be detected in aging mice or models of glomerular hypertrophy. We propose that a small fraction of committed podocytes reside on Bowman's capsule close to the vascular stalk and are recruited onto the glomerular tuft during infancy to adolescence in mice and humans.

  12. Adult Gli2+/-;Gli3Δ699/+ Male and Female Mice Display a Spectrum of Genital Malformation.

    Directory of Open Access Journals (Sweden)

    Fei He

    Full Text Available Disorders of sexual development (DSD encompass a broad spectrum of urogenital malformations and are amongst the most common congenital birth defects. Although key genetic factors such as the hedgehog (Hh family have been identified, a unifying postnatally viable model displaying the spectrum of male and female urogenital malformations has not yet been reported. Since human cases are diagnosed and treated at various stages postnatally, equivalent mouse models enabling analysis at similar stages are of significant interest. Additionally, all non-Hh based genetic models investigating DSD display normal females, leaving female urogenital development largely unknown. Here, we generated compound mutant mice, Gli2+/-;Gli3Δ699/+, which exhibit a spectrum of urogenital malformations in both males and females upon birth, and also carried them well into adulthood. Analysis of embryonic day (E18.5 and adult mice revealed shortened anogenital distance (AGD, open ventral urethral groove, incomplete fusion of scrotal sac, abnormal penile size and structure, and incomplete testicular descent with hypoplasia in male mice, whereas female mutant mice displayed reduced AGD, urinary incontinence, and a number of uterine anomalies such as vaginal duplication. Male and female fertility was also investigated via breeding cages, and it was identified that male mice were infertile while females were unable to deliver despite becoming impregnated. We propose that Gli2+/-;Gli3Δ699/+ mice can serve as a genetic mouse model for common DSD such as cryptorchidism, hypospadias, and incomplete fusion of the scrotal sac in males, and a spectrum of uterine and vaginal abnormalities along with urinary incontinence in females, which could prove essential in revealing new insights into their equivalent diseases in humans.

  13. Effects of acute exposure to chlorpyrifos on cholinergic and non-cholinergic targets in normal and high-fat fed male C57BL/6J mice.

    Science.gov (United States)

    Kondakala, Sandeep; Lee, Jung Hwa; Ross, Matthew K; Howell, George E

    2017-12-15

    The prevalence of obesity is increasing at an alarming rate in the United States with 36.5% of adults being classified as obese. Compared to normal individuals, obese individuals have noted pathophysiological alterations which may alter the toxicokinetics of xenobiotics and therefore alter their toxicities. However, the effects of obesity on the toxicity of many widely utilized pesticides has not been established. Therefore, the present study was designed to determine if the obese phenotype altered the toxicity of the most widely used organophosphate (OP) insecticide, chlorpyrifos (CPS). Male C57BL/6J mice were fed normal or high-fat diet for 4weeks and administered a single dose of vehicle or CPS (2.0mg/kg; oral gavage) to assess cholinergic (acetylcholinesterase activities) and non-cholinergic (carboxylesterase and endocannabinoid hydrolysis) endpoints. Exposure to CPS significantly decreased red blood cell acetylcholinesterase (AChE) activity, but not brain AChE activity, in both diet groups. Further, CPS exposure decreased hepatic carboxylesterase activity and hepatic hydrolysis of a major endocannabinoid, anandamide, in a diet-dependent manner with high-fat diet fed animals being more sensitive to CPS-mediated inhibition. These in vivo studies were corroborated by in vitro studies using rat primary hepatocytes, which demonstrated that fatty acid amide hydrolase and CES activities were more sensitive to CPS-mediated inhibition than 2-arachidonoylglycerol hydrolase activity. These data demonstrate hepatic CES and FAAH activities in high-fat diet fed mice were more potently inhibited than those in normal diet fed mice following CPS exposure, which suggests that the obese phenotype may exacerbate some of the non-cholinergic effects of CPS exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Impaired spatial and contextual memory formation in galectin-1 deficient mice

    Directory of Open Access Journals (Sweden)

    Sakaguchi Masanori

    2011-09-01

    Full Text Available Abstract Galectins are a 15 member family of carbohydrate-binding proteins that have been implicated in cancer, immunity, inflammation and development. While galectins are expressed in the central nervous system, little is known about their function in the adult brain. Previously we have shown that galectin-1 (gal-1 is expressed in the adult hippocampus, and, in particular, in putative neural stem cells in the subgranular zone. To evaluate how gal-1 might contribute to hippocampal memory function here we studied galectin-1 null mutant (gal-1-/- mice. Compared to their wildtype littermate controls, gal-1-/- mice exhibited impaired spatial learning in the water maze and contextual fear learning. Interestingly, tone fear conditioning was normal in gal-1-/- mice suggesting that loss of gal-1 might especially impact hippocampal learning and memory. Furthermore, gal-1-/- mice exhibited normal motor function, emotion and sensory processing in a battery of other behavioral tests, suggesting that non-mnemonic performance deficits are unlikely to account for the spatial and contextual learning deficits. Together, these data reveal a role for galectin-carbohydrate signalling in hippocampal memory function.

  15. GSK-3beta is required for memory reconsolidation in adult brain.

    Directory of Open Access Journals (Sweden)

    Tetsuya Kimura

    Full Text Available Activation of GSK-3beta is presumed to be involved in various neurodegenerative diseases, including Alzheimer's disease (AD, which is characterized by memory disturbances during early stages of the disease. The normal function of GSK-3beta in adult brain is not well understood. Here, we analyzed the ability of heterozygote GSK-3beta knockout (GSK+/- mice to form memories. In the Morris water maze (MWM, learning and memory performance of GSK+/- mice was no different from that of wild-type (WT mice for the first 3 days of training. With continued learning on subsequent days, however, retrograde amnesia was induced in GSK+/- mice, suggesting that GSK+/- mice might be impaired in their ability to form long-term memories. In contextual fear conditioning (CFC, context memory was normally consolidated in GSK+/- mice, but once the original memory was reactivated, they showed reduced freezing, suggesting that GSK+/- mice had impaired memory reconsolidation. Biochemical analysis showed that GSK-3beta was activated after memory reactivation in WT mice. Intraperitoneal injection of a GSK-3 inhibitor before memory reactivation impaired memory reconsolidation in WT mice. These results suggest that memory reconsolidation requires activation of GSK-3beta in the adult brain.

  16. Mercury uptake in vivo by normal and acatalasemic mice exposed to metallic mercury vapor (203Hg degrees) and injected with metallic mercury or mercuric chloride (203HgCl2)

    International Nuclear Information System (INIS)

    Ogata, M.; Kenmotsu, K.; Hirota, N.; Meguro, T.; Aikoh, H.

    1985-01-01

    Levels of mercury in the brain and liver of acatalasemic mice immediately following exposure to metallic mercury vapor or injection of metallic mercury were higher than those found in normal mice. Acatalasemic mice had decreased levels of mercury in the blood and kidneys when the levels were compared with those of normal mice, which indicated that catalase plays a role in oxidizing and taking up mercury. Thus, the brain/blood or liver/blood ratio of mercury concentration in acatalasemic mice was significantly higher than that of normal mice. These results suggest that metallic mercury in the blood easily passed through the blood-brain or blood-liver barrier. The levels of mercury distribution to the kidneys of normal and acatalasemic mice, 1 hr after injection of mercuric chloride solution, were higher than that of normal and acatalasemic mice, respectively, 1 hr after injection of metallic mercury

  17. Bone marrow cellularity in normal and polycythemic mice estimated by DNA incorporation of /sup 3/H-TdR

    Energy Technology Data Exchange (ETDEWEB)

    Blackwell, L.H.; Ledney, G.D.

    1982-07-01

    Nucleated bone marrow cell numbers in normal and polycythemic mice were determined using /sup 3/H-thymidine (/sup 3/H-TdR). The cellularities were estimated by extrapolating the exponential disappearance of labeled cells after a single injection of /sup 3/H-TdR to the time of injection. Dermestid beetles (Anthrenus piceus) were used to prepare tissue-free skeletons labeled with /sup 3/H-TdR. The correlation between tritium activity in bone marrow DNA and tritium derived from the combusted skeleton was determined. The total skeletal cellularity determined by isotope dilution analysis in both normal and polycythemic mice was 2.6 x 10(8) cells/mouse or 17.6 x 10(9) cells/kg body weight. Although the red cell component of the marrow was reduced in the polycythemic mouse, the total numbers of nucleated cells in both types of animals were similar. The differential distribution of cells in the polycythemic animal showed a twofold increase in granulocytic cells, which may explain the identical nucleated cell count in normal and in polycythemic mice.

  18. Taste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds123

    Science.gov (United States)

    Meng, Lingbin; Ohman-Gault, Lisa; Ma, Liqun

    2015-01-01

    Abstract Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is regulated is a fundamental concern of gustatory system biology. We speculated that because brain-derived neurotrophic factor (BDNF) is required for taste bud innervation during development, it might function to maintain innervation during adulthood. If so, taste buds should lose innervation when Bdnf is deleted in adult mice. To test this idea, we first removed Bdnf from all cells in adulthood using transgenic mice with inducible CreERT2 under the control of the Ubiquitin promoter. When Bdnf was removed, approximately one-half of the innervation to taste buds was lost, and taste buds became smaller because of the loss of taste bud cells. Individual taste buds varied in the amount of innervation each lost, and those that lost the most innervation also lost the most taste bud cells. We then tested the idea that that the taste bud was the source of this BDNF by reducing Bdnf levels specifically in the lingual epithelium and taste buds. Taste buds were confirmed as the source of BDNF regulating innervation. We conclude that BDNF expressed in taste receptor cells is required to maintain normal levels of innervation in adulthood. PMID:26730405

  19. Behavioral neurotoxicity in adolescent and adult mice exposed to fenproporex during pregnancy.

    Science.gov (United States)

    Moreira, C Q; Faria, M J S S; Moreira, E G

    2005-08-01

    We investigated the effects of gestational exposure to fenproporex, one of the most used anorectic drugs in Brazil, on the behavior of adolescent and adult pups (30 and 60 days of age, respectively). Pregnant Swiss mice were treated daily, by gavage, with 15 mg/kg of fenproporex chloride or water during the whole gestational period. Male pups were submitted to open-field, forced swimming test, tail suspension test and fenproporex-induced stereotyped behavior. The results demonstrated that gestational exposure to fenproporex induces antidepressant-like effect and decreases fenproporex-induced stereotyped behavior in both adolescent and adult pups. Moreover, fenproporex-exposed adolescent pups tended (P= 0.06) to be more active than control pups. Our data show, for the first time, that gestational exposure to fenproporex leads to long-lasting behavioral toxicity in male mice characteristic of altered dopaminergic transmission.

  20. Safety of disclosing amyloid status in cognitively normal older adults.

    Science.gov (United States)

    Burns, Jeffrey M; Johnson, David K; Liebmann, Edward P; Bothwell, Rebecca J; Morris, Jill K; Vidoni, Eric D

    2017-09-01

    Disclosing amyloid status to cognitively normal individuals remains controversial given our lack of understanding the test's clinical significance and unknown psychological risk. We assessed the effect of amyloid status disclosure on anxiety and depression before disclosure, at disclosure, and 6 weeks and 6 months postdisclosure and test-related distress after disclosure. Clinicians disclosed amyloid status to 97 cognitively normal older adults (27 had elevated cerebral amyloid). There was no difference in depressive symptoms across groups over time. There was a significant group by time interaction in anxiety, although post hoc analyses revealed no group differences at any time point, suggesting a minimal nonsustained increase in anxiety symptoms immediately postdisclosure in the elevated group. Slight but measureable increases in test-related distress were present after disclosure and were related to greater baseline levels of anxiety and depression. Disclosing amyloid imaging results to cognitively normal adults in the clinical research setting with pre- and postdisclosure counseling has a low risk of psychological harm. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  1. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    Science.gov (United States)

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  2. Delayed puberty but normal fertility in mice with selective deletion of insulin receptors from Kiss1 cells.

    Science.gov (United States)

    Qiu, Xiaoliang; Dowling, Abigail R; Marino, Joseph S; Faulkner, Latrice D; Bryant, Benjamin; Brüning, Jens C; Elias, Carol F; Hill, Jennifer W

    2013-03-01

    Pubertal onset only occurs in a favorable, anabolic hormonal environment. The neuropeptide kisspeptin, encoded by the Kiss1 gene, modifies GnRH neuronal activity to initiate puberty and maintain fertility, but the factors that regulate Kiss1 neurons and permit pubertal maturation remain to be clarified. The anabolic factor insulin may signal nutritional status to these neurons. To determine whether insulin sensing plays an important role in Kiss1 neuron function, we generated mice lacking insulin receptors in Kiss1 neurons (IR(ΔKiss) mice). IR(ΔKiss) females showed a delay in vaginal opening and in first estrus, whereas IR(ΔKiss) males also exhibited late sexual maturation. Correspondingly, LH levels in IR(ΔKiss) mice were reduced in early puberty in both sexes. Adult reproductive capacity, body weight, fat composition, food intake, and glucose regulation were comparable between the 2 groups. These data suggest that impaired insulin sensing by Kiss1 neurons delays the initiation of puberty but does not affect adult fertility. These studies provide insight into the mechanisms regulating pubertal timing in anabolic states.

  3. Sonographic Measurement of Normal Splenic Length in Korean Adults

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Bum; Cheon, Byung Kook; Kim, Jong Min; Oh, Kyung Seoung; Jung, Gyoo Sik; Huh, Jin Do; Joh, Young Duk [Kosin University College of Medicine, Busan (Korea, Republic of)

    1996-12-15

    To establish upper limit of normal splenic length of Korean adults on ultrasonography and to determice the degree of interobserver and intraobserver variation. Ultrasonographic scans were performed to measure the maximum length of spleen in 105 of 150 adults selected by convenience sampling. Remained 45 cases with any conditions that could alter splenic size were excluded from this study. The maximum length of spleen was measured and correlated with body surface area, patient height, weight, age and sex. In 31 of the 105 adults we evaluated the interobserver and intraobserver variations in sonographic measurements of splenic length obtained by three radiologists in blind fashion. The mean splenic length in 105 adults was 8.56cm ({+-} 0.95). The splenic length positively correlated with body surface area, patient height and weight (P <0.001), and negatively correlated with patient age (P < 0.01). Male spleen (8.87 cm {+-} 1.07) was longer than female spleen (8.35 cm {+-} 0.81) (P < 0.05). The following guidelines are proposed for the upper limit of normal splenic length at different groups of body surface area: no longer than 10 cm at 1.20{approx}1.59 m{sup 2}, 11 cm at1.60{approx}1.79 m{sup 2}, and 12 cm at 1.80{approx}1.99 m{sup 2}. The mean interobserver variation between any two radiologists ranged from 0.32 cm ({+-} 0.29) to 0.39 cm ({+-} 0.33) and interobserver variations were within 1 cm in 96%. The mean intraobserver variations were within 0.5 cm in 91%. The splenic length closely correlated with body surface area, patient height, weight and age. Particularly the upper limit of normal splenic length changed according to body surface area. Interobserver variation about 1 cm and intraobserver variation about 0.5 cm should be considered in the measurement of the splenic length on ultrasonography

  4. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin Aα null mice.

    Directory of Open Access Journals (Sweden)

    Kirsten Madsen

    Full Text Available Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα-/- mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2 expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα-/- mice and the advances that are now possible with the use of adult, rescued knockout animals.

  5. Prenatal and lactational exposure to low-doses of bisphenol A alters adult mice behavior.

    Science.gov (United States)

    Nakamura, Keiko; Itoh, Kyoko; Dai, Hongmei; Han, Longzhe; Wang, Xiaohang; Kato, Shingo; Sugimoto, Tohru; Fushiki, Shinji

    2012-01-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical, widely used in dentistry and various industries. We previously reported that BPA affected murine neocortical development by accelerating neuronal differentiation/migration, resulting in abnormal neocortical architecture as well as aberrant thalamocortical connections in the brains of adult mice. The aim of this study was to investigate whether prenatal and lactational BPA exposure affected behavior in adult mice. Pregnant mice were injected subcutaneously with 20μg/kg of BPA daily from embryonic day 0 (E0) until postnatal day 21 (P21). Control animals received a vehicle alone. Behavioral tests (n=15-20) were conducted at postnatal 3weeks (P3W) and P10-15W. After an open-field test, an elevated plus maze and Morris water maze tests were performed. The total distance in the elevated plus maze test at P3W and in the open-field test at P10W was significantly decreased in the BPA-exposed group, compared with the control group. Significant sex differences were observed in the time spent in the central area in the open-field test at P3W and in the total distance in the elevated plus maze test at P11W. These results indicated that prenatal and lactational BPA exposure disturbed the murine behavior in the postnatal development period and the adult mice. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  6. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Science.gov (United States)

    Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  7. Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.

    Directory of Open Access Journals (Sweden)

    Soledad Bárez-López

    Full Text Available BACKGROUND: Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4 but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2. To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO did not find gross neurological alterations, possibly due to compensatory mechanisms. AIM: This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. RESULTS: Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice. No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction and skeletal muscle (33% reduction, but not in the cerebellum where other deiodinase (type 1 is expressed. CONCLUSIONS: The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.

  8. Role of radiation in chemical leukemogenesis in mice

    International Nuclear Information System (INIS)

    Kajitani, Takashi; Hamada, Katsutomo; Ito, Takaaki; Yokoro, Kenjiro

    1980-01-01

    Leukemia was induced in adult mice 6 to 8 months of age by the combined use of x-rays and N-nitrosoethylurea (NEU). Changes in thymocytes due to irradiation with x-rays were studied in order to determine the mechanism of leukemogenesis. The incidence of leukemia was 61.3% in mice given sucessive doses of NEU immediately after whole-body irradiation with x-rays and 18.8% in mice given successive doses of NEU 3 months after whole-body irradiation with x-rays. The thymus weight, the thymocyte count, the mitotic index in thymocytes, and the rate of DNA-synthesizing cells in the thymus decreased rapidly in both adult and young adult mice that underwent whole-body irradiation (400 R). The lowest values were observed 3 days after irradiation. The thymus weight and thymocyte count in the irradiated mice returned to within normal range 7 to 8 days after irradiation (the values were almost the same as those before irradiation). Rapid rebound phenomena were observed in the rate of DNA-synthesizing cells and mitotic index in the thymus 5 days after irradiation. The results suggest that there is a close relationship between the incidence of leukemia and thymocyte activity after irradiation with x-rays; that is, there is a large percentage of juvenile cells with energetic proliferation capacity. (Tsunoda, M.)

  9. Sex-specific positive and negative consequences of avoidance training during childhood on adult active avoidance learning in mice

    Directory of Open Access Journals (Sweden)

    Almuth eSpröwitz

    2013-10-01

    Full Text Available In humans and animals cognitive training during childhood plays an important role in shaping neural circuits and thereby determines learning capacity later in life. Using a negative feedback learning paradigm, the two-way active avoidance (TWA learning, we aimed to investigate in mice (i the age-dependency of TWA learning, (ii the consequences of pretraining in childhood on adult learning capacity and (iii the impact of sex on the learning paradigm in mice. Taken together, we show here for the first time that the beneficial or detrimental outcome of pretraining in childhood depends on the age during which TWA training is encountered, indicating that different, age-dependent long-term memory traces might be formed, which are recruited during adult TWA training and thereby either facilitate or impair adult TWA learning. While pretraining during infancy results in learning impairment in adulthood, pretraining in late adolescence improved avoidance learning.The experiments revealed a clear sex difference in the group of late-adolescent mice: female mice showed better avoidance learning during late adolescence compared to males, and the beneficial impact of late-adolescent pretraining on adult learning was more pronounced in females compared to males.

  10. P2Y2 receptor knock-out mice display normal NaCl absorption in medullary thick ascending limb

    Directory of Open Access Journals (Sweden)

    Rita Delgado Marques

    2013-10-01

    Full Text Available Local purinergic signals modulate renal tubular transport. Acute activation of renal epithelial P2 receptors causes inhibition of epithelial transport and thus, should favor increased water and salt excretion by the kidney. So far only a few studies have addressed the effects of extracellular nucleotides on ion transport in the thick ascending limb. In the medullary thick ascending limb (mTAL, basolateral P2X receptors markedly (~25% inhibit NaCl absorption. Although this segment does express both apical and basolateral P2Y2 receptors, acute activation of the basolateral P2Y2 receptors had no apparent effect on transepithelial ion transport. Here we studied, if the absence of the P2Y2 receptor causes chronic alterations in mTAL NaCl absorption by comparing basal and AVP-stimulated transepithelial transport rates. We used perfused mouse mTALs to electrically measure NaCl absorption in juvenile (35 days male mice. Using microelectrodes, we determined the transepithelial voltage (Vte and the transepithelial resistance (Rte and thus, transepithelial NaCl absorption (equivalent short circuit current, I’sc.We find that mTALs from adult wild type (WT mice have significantly lower NaCl absorption rates when compared to mTALs from juvenile WT mice. This could be attributed to significantly higher Rte values in mTALs from adult WT mice. This pattern was not observed in mTALs from P2Y2 receptor knockout (KO mice. In addition, adult P2Y2 receptor KO mTALs have significantly lower Vte values compared to the juvenile. No difference in absolute I´sc was observed when comparing mTALs from WT and KO mice. AVP stimulated the mTALs to similar increases of NaCl absorption irrespective of the absence of the P2Y2 receptor. No difference was observed in the medullary expression level of NKCC2 in between the genotypes.These data indicate that the lack of P2Y2 receptors does not cause substantial differences in resting and AVP-stimulated NaCl absorption in

  11. Static and dynamic postural control in low-vision and normal-vision adults.

    Science.gov (United States)

    Tomomitsu, Mônica S V; Alonso, Angelica Castilho; Morimoto, Eurica; Bobbio, Tatiana G; Greve, Julia M D

    2013-04-01

    This study aimed to evaluate the influence of reduced visual information on postural control by comparing low-vision and normal-vision adults in static and dynamic conditions. Twenty-five low-vision subjects and twenty-five normal sighted adults were evaluated for static and dynamic balance using four protocols: 1) the Modified Clinical Test of Sensory Interaction on Balance on firm and foam surfaces with eyes opened and closed; 2) Unilateral Stance with eyes opened and closed; 3) Tandem Walk; and 4) Step Up/Over. The results showed that the low-vision group presented greater body sway compared with the normal vision during balance on a foam surface (p≤0.001), the Unilateral Stance test for both limbs (p≤0.001), and the Tandem Walk test. The low-vision group showed greater step width (p≤0.001) and slower gait speed (p≤0.004). In the Step Up/Over task, low-vision participants were more cautious in stepping up (right p≤0.005 and left p≤0.009) and in executing the movement (p≤0.001). These findings suggest that visual feedback is crucial for determining balance, especially for dynamic tasks and on foam surfaces. Low-vision individuals had worse postural stability than normal-vision adults in terms of dynamic tests and balance on foam surfaces.

  12. The refinement of ipsilateral eye retinotopic maps is increased by removing the dominant contralateral eye in adult mice.

    Directory of Open Access Journals (Sweden)

    Spencer L Smith

    2010-03-01

    Full Text Available Shortly after eye opening, initially disorganized visual cortex circuitry is rapidly refined to form smooth retinotopic maps. This process asymptotes long before adulthood, but it is unknown whether further refinement is possible. Prior work from our lab has shown that the retinotopic map of the non-dominant ipsilateral eye develops faster when the dominant contralateral eye is removed. We examined whether input from the contralateral eye might also limit the ultimate refinement of the ipsilateral eye retinotopic map in adults. In addition, we examined whether the increased refinement involved the recruitment of adjacent cortical area.By surgically implanting a chronic optical window over visual cortex in mice, we repeatedly measured the degree of retinotopic map refinement using quantitative intrinsic signal optical imaging over four weeks. We removed the contralateral eye and observed that the retinotopic map for the ipsilateral eye was further refined and the maximum magnitude of response increased. However, these changes were not accompanied by an increase in the area of responsive cortex.Since the retinotopic map was functionally refined to a greater degree without taking over adjacent cortical area, we conclude that input from the contralateral eye limits the normal refinement of visual cortical circuitry in mice. These findings suggest that the refinement capacity of cortical circuitry is normally saturated.

  13. Normal macrophage function in copper deficient mice

    International Nuclear Information System (INIS)

    Lukasewycz, O.A.; Kolquist, K.L.; Prohaska, J.R.

    1986-01-01

    Copper deficiency (-Cu) was produced in C57 BL and C58 mice by feeding a low copper diet (modified AIN-76A) from birth. Mice given supplemental copper in the drinking water (+Cu) served as controls. Copper status was monitored by assay of ceruloplasmin (CP) activity. Macrophages (M0) were obtained from matched +Cu and -Cu male 7 week-old mice by peritoneal lavage 3 days after thioglycollate stimulation. M0 were assayed in terms of lipopolysaccharide-induced hexose monophosphate shunt activity by monitoring 14 CO 2 production from [1- 14 C]-glucose and by the determination of phagocytic index using fluorescein labelled latex bead ingestion. M0 from -Cu mice were equivalent to those of +Cu mice in both these parameters. However, superoxide dismutase and cytochrome oxidase activities were both significantly lower in -Cu M0, confirming a functional copper deficiency. Previous results from this laboratory have shown that -Cu mice have a decreased antibody response to sheep erythrocyte antigens and a diminished reactivity to B and T cell mitogens. These immunological insufficiencies appear to be proportional to the severity of copper depletion as determined by CP levels. Furthermore, -Cu lymphocytes exhibit depressed mixed lymphocyte reactivity consistent with alterations at the membrane surface. The present results suggest that M0/monocytes are less severely affected than lymphocytes in copper deficiency states

  14. Skeletal myofiber VEGF regulates contraction-induced perfusion and exercise capacity but not muscle capillarity in adult mice.

    Science.gov (United States)

    Knapp, Amy E; Goldberg, Daniel; Delavar, Hamid; Trisko, Breanna M; Tang, Kechun; Hogan, Michael C; Wagner, Peter D; Breen, Ellen C

    2016-07-01

    A single bout of exhaustive exercise signals expression of vascular endothelial growth factor (VEGF) in the exercising muscle. Previous studies have reported that mice with life-long deletion of skeletal myofiber VEGF have fewer capillaries and a severe reduction in endurance exercise. However, in adult mice, VEGF gene deletion conditionally targeted to skeletal myofibers limits exercise capacity without evidence of capillary regression. To explain this, we hypothesized that adult skeletal myofiber VEGF acutely regulates skeletal muscle perfusion during muscle contraction. A tamoxifen-inducible skeletal myofiber-specific VEGF gene deletion mouse (skmVEGF-/-) was used to reduce skeletal muscle VEGF protein by 90% in adult mice. Three weeks after inducing deletion of the skeletal myofiber VEGF gene, skmVEGF-/- mice exhibited diminished maximum running speed (-10%, P Contraction-induced perfusion measured by optical imaging during a period of electrically stimulated muscle contraction was 85% lower in skmVEGF-/- than control mice. No evidence of capillary rarefication was detected in the soleus, gastrocnemius, and extensor digitorum longus (EDL) up to 8 wk after tamoxifen-induced VEGF ablation, and contractility and fatigue resistance of the soleus measured ex vivo were also unchanged. The force-frequency of the EDL showed a small right shift, but fatigue resistance did not differ between EDL from control and skmVEGF-/- mice. These data suggest myofiber VEGF is required for regulating perfusion during periods of contraction and may in this manner affect endurance capacity. Copyright © 2016 the American Physiological Society.

  15. Excessive Vitamin E Intake Does Not Cause Bone Loss in Male or Ovariectomized Female Mice Fed Normal or High-Fat Diets.

    Science.gov (United States)

    Ikegami, Hiroko; Kawawa, Rie; Ichi, Ikuyo; Ishikawa, Tomoko; Koike, Taisuke; Aoki, Yoshinori; Fujiwara, Yoko

    2017-10-01

    Background: Animal studies on the effects of vitamin E on bone health have yielded conflicting and inconclusive results, and to our knowledge, no studies have addressed the effect of vitamin E on bone in animals consuming a high-fat diet (HFD). Objective: This study aimed to evaluate the effect of excessive vitamin E on bone metabolism in normal male mice and ovariectomized female mice fed a normal diet (ND) or HFD. Methods: In the first 2 experiments, 7-wk-old male mice were fed an ND (16% energy from fat) containing 75 (control), 0 (vitamin E-free), or 1000 (high vitamin E) mg vitamin E/kg (experiment 1) or an HFD (46% energy from fat) containing 0, 200, 500, or 1000 mg vitamin E/kg (experiment 2) for 18 wk. In the third experiment, 7-wk-old sham-operated or ovariectomized female mice were fed the ND (75 mg vitamin E/kg) or HFD containing 0 or 1000 mg vitamin E/kg for 8 wk. At the end of the feeding period, blood and femurs were collected to measure bone turnover markers and analyze histology and microcomputed tomography. Results: In experiments 1 and 2, vitamin E intake had no effect on plasma alkaline phosphatase (ALP), tartrate-resistant acid phosphatase (TRAP) activity, or bone formation, resorption, or volume in femurs in mice fed the ND or HFDs. In experiment 3, bone volume was significantly reduced (85%) in ovariectomized mice compared with that in sham-operated mice ( P vitamin E/kg. Conclusions: The results suggest that excess vitamin E intake does not cause bone loss in normal male mice or in ovariectomized or sham-operated female mice, regardless of dietary fat content. © 2017 American Society for Nutrition.

  16. The effects of aerobic exercise on depression-like, anxiety-like, and cognition-like behaviours over the healthy adult lifespan of C57BL/6 mice.

    Science.gov (United States)

    Morgan, Julie A; Singhal, Gaurav; Corrigan, Frances; Jaehne, Emily J; Jawahar, Magdalene C; Baune, Bernhard T

    2018-01-30

    Preclinical studies have demonstrated exercise improves various types of behaviours such as anxiety-like, depression-like, and cognition-like behaviours. However, these findings were largely conducted in studies utilising short-term exercise protocols, and the effects of lifetime exercise on these behaviours remain unknown. This study investigates the behavioural effects of lifetime exercise in normal healthy ageing C57BL/6 mice over the adult lifespan. 12 week-old C57BL/6 mice were randomly assigned to voluntary wheel running or non-exercise (control) groups. Exercise commenced at aged 3 months and behaviours were assessed in young adult (Y), early middle age (M), and old (O) mice (n=11-17/group). The open field and elevated zero maze examined anxiety-like behaviours, depression-like behaviours were quantified with the forced swim test, and the Y maze and Barnes maze investigated cognition-like behaviours. The effects of lifetime exercise were not simply an extension of the effects of chronic exercise on anxiety-like, depression-like, and cognition-like behaviours. Exercise tended to reduce overt anxiety-like behaviours with ageing, and improved recognition memory and spatial learning in M mice as was expected. However, exercise also increased anxiety behaviours including greater freezing behaviour that extended spatial learning latencies in Y female mice in particular, while reduced distances travelled contributed to longer spatial memory and cognitive flexibility latencies in Y and O mice. Lifetime exercise may increase neurogenesis-associated anxiety. This could be an evolutionary conserved adaptation that nevertheless has adverse impacts on cognition-like function, with particularly pronounced effects in Y female mice with intact sex hormones. These issues require careful investigation in future rodent studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Studies by radioiodination of normal adult, fetal and leukemic cell membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kannourakis, G; Cauchi, M N [Department of Pathology and Immunology, Monash Medical School, Melbourne, Australia

    1978-01-01

    A comparison was made between cord blood lymphocytes, normal adult lymphocytes and leukemic cells after membrane iodination with lactoperoxidase. A double-labeling technique using lactoperoxidase iodination with /sup 125/I and /sup 131/I followed by analysis on polyacrylamide gel electrophoresis revealed a number of membrane differences between leukemic, normal and fetal cells. There was a reduction in the 70,000 molecular weight component in cord blood cells compared to adult lymphocytes, and an increase in membrane peptides with molecular weights of 35,000, 20,000, 9,000 and 4,000. Although smaller molecular weight peptides were also present in chronic lymphatic leukemia as well as acute myeloid leukemia, these were shown to be distinct from fetal type membrane components.

  18. A 201-MHz Normal Conducting RF Cavity for the International MICE Experiment

    International Nuclear Information System (INIS)

    Li, D.; DeMello, A.J.; Virostek, Steve; Zisman, Michael S.; Rimmer, Robert

    2008-01-01

    MICE is a demonstration experiment for the ionization cooling of muon beams. Eight RF cavities are proposed to be used in the MICE cooling channel. These cavities will be operated in a strong magnetic field; therefore, they must be normal conducting. The cavity design and construction are based on the successful experience and techniques developed for a 201-MHz prototype cavity for the US MUCOOL program. Taking advantage of a muon beamΛ s penetration property, the cavity employs a pair of curved thin beryllium windows to terminate conventional beam irises and achieve higher cavity shunt impedance. The cavity resembles a round, closed pillbox cavity. Two half-shells spun from copper sheets are joined by e-beam welding to form the cavity body. There are four ports on the cavity equator for RF couplers, vacuum pumping and field probes. The ports are formed by means of an extruding technique.

  19. Differentially Severe Cognitive Effects of Compromised Cerebral Blood Flow in Aged Mice: Association with Myelin Degradation and Microglia Activation

    Directory of Open Access Journals (Sweden)

    Gilly Wolf

    2017-06-01

    Full Text Available Bilateral common carotid artery stenosis (BCAS models the effects of compromised cerebral blood flow on brain structure and function in mice. We compared the effects of BCAS in aged (21 month and young adult (3 month female mice, anticipating a differentially more severe effect in the older mice. Four weeks after surgery there was a significant age by time by treatment interaction on the radial-arm water maze (RAWM; p = 0.014: on the first day of the test, latencies of old mice were longer compared to the latencies of young adult mice, independent of BCAS. However, on the second day of the test, latencies of old BCAS mice were significantly longer than old control mice (p = 0.049, while latencies of old controls were similar to those of the young adult mice, indicating more severe impairment of hippocampal dependent learning and working memory by BCAS in the older mice. Fluorescence staining of myelin basic protein (MBP showed that old age and BCAS both induced a significant decrease in fluorescence intensity. Evaluation of the number oligodendrocyte precursor cells demonstrated augmented myelin replacement in old BCAS mice (p < 0.05 compared with young adult BCAS and old control mice. While microglia morphology was assessed as normal in young adult control and young adult BCAS mice, microglia of old BCAS mice exhibited striking activation in the area of degraded myelin compared to young adult BCAS (p < 0.01 and old control mice (p < 0.05. These findings show a differentially more severe effect of cerebral hypoperfusion on cognitive function, myelin integrity and inflammatory processes in aged mice. Hypoperfusion may exacerbate degradation initiated by aging, which may induce more severe neuronal and cognitive phenotypes.

  20. The Intrauterine and Nursing Period Is a Window of Susceptibility for Development of Obesity and Intestinal Tumorigenesis by a High Fat Diet in Min/+ Mice as Adults

    Directory of Open Access Journals (Sweden)

    Ha Thi Ngo

    2015-01-01

    Full Text Available We studied how obesogenic conditions during various life periods affected obesity and intestinal tumorigenesis in adult C57BL/6J-Min (multiple intestinal neoplasia/+ mice. The mice were given a 10% fat diet throughout life (negative control or a 45% fat diet in utero, during nursing, during both in utero and nursing, during adult life, or during their whole life-span, and terminated at 11 weeks for tumorigenesis (Min/+ or 23 weeks for obesogenic effect (wild-type. Body weight at 11 weeks was increased after a 45% fat diet during nursing, during both in utero and nursing, and throughout life, but had normalized at 23 weeks. In the glucose tolerance test, the early exposure to a 45% fat diet in utero, during nursing, or during both in utero and nursing, did not affect blood glucose, whereas a 45% fat diet given to adults or throughout life did. However, a 45% fat diet during nursing or during in utero and nursing increased the number of small intestinal tumors. So did exposures to a 45% fat diet in adult life or throughout life, but without increasing the tumor numbers further. The intrauterine and nursing period is a window of susceptibility for dietary fat-induced obesity and intestinal tumor development.

  1. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation

    DEFF Research Database (Denmark)

    Thudium, Christian S; Moscatelli, Ilana; Flores, Carmen

    2014-01-01

    that osteoclasts are important for regulating osteoblast activity. To illuminate the role of the osteoclast in controlling bone remodeling, we transplanted irradiated skeletally mature 3-month old wild-type mice with hematopoietic stem cells (HSCs) to generate either an osteoclast-rich or osteoclast-poor adult......Osteopetrosis due to lack of acid secretion by osteoclasts is characterized by abolished bone resorption, increased osteoclast numbers, but normal or even increased bone formation. In contrast, osteoclast-poor osteopetrosis appears to have less osteoblasts and reduced bone formation, indicating...... osteopetrosis model. We used fetal liver HSCs from (1) oc/oc mice, (2) RANK KO mice, and (3) compared these to wt control cells. TRAP5b activity, a marker of osteoclast number and size, was increased in the oc/oc recipients, while a significant reduction was seen in the RANK KO recipients. In contrast, the bone...

  2. A high-fat, high-protein diet attenuates the negative impact of casein-induced chronic inflammation on testicular steroidogenesis and sperm parameters in adult mice.

    Science.gov (United States)

    Zhao, Jing-Lu; Zhao, Yu-Yun; Zhu, Wei-Jie

    2017-10-01

    The interaction between obesity and chronic inflammation has been studied. Diet-induced obesity or chronic inflammation could reduce the testicular functions of males. However, the mechanism underlying the reproductive effects of fattening foods in males with or without chronic inflammation still needs further discussion. This study was aimed to investigate the effects of high-fat, high-protein diet on testicular steroidogenesis and sperm parameters in adult mice under physiological and chronic inflammatory conditions. Because casein can trigger a non-infectious systemic inflammatory response, we used casein injection to induce chronic inflammation in male adult Kunming mice. Twenty-four mice were randomly and equally divided into four groups: (i) normal diet+saline (Control); (ii) normal diet+casein (ND+CS); (iii) high-fat, high-protein diet+saline (HFPD+SI); (iv) high-fat, high-protein diet+casein (HFPD+CS). After 8weeks, there was a significant increase in body weight for groups HFPD+SI and HFPD+CS and a decrease in group ND+CS compared with the control. The serum levels of tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10) and lipid profiles were increased markedly in groups ND+CS, HFPD+SI and HFPD+CS compared with the control. A remarkable reduction of serum adiponectin level occurred in group HFPD+CS compared with group ND+CS. Sperm parameters (sperm count, viability and abnormality) were also adversely affected in groups ND+CS and HFPD+SI. Groups ND+CS and HFPD+SI showed severe pathological changes in testicular tissues. Semiquantitative RT-PCR, Western blot and immunohistochemical staining also showed significant reductions in both testicular mRNA and protein levels of steroidogenic acute regulatory (StAR) and cytochrome P450scc (CYP11A1) in groups HFPD+SI and HFPD+CS compared with the control, whereas testicular mRNA and protein levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) in groups HFPD+SI and HFPD+CS significantly increased. The m

  3. Synthesis and biodistribution of 2-[123I]iodomelatonin in normal mice

    International Nuclear Information System (INIS)

    Al-Jammaz, I.; Al-Otaibi, B.; Aboul-Enein, H.; Amartey, J.K.

    2006-01-01

    Melatonin demands that this hormone and its receptors be well understood. With this aim in mind, synthetic melatonin was radioiodinated with no-carrier-added (n.c.a.) sodium iodide-123 using in situ generated peracetic acid as oxidizing agent for electrophilic iodination at room temperature. The radiochemical yield was typically greater than 80% after 20 min reaction time especially when relatively small amounts of activities were used (10 mCi). Biological evaluation was performed in normal mice. The distribution of the tracer did not reveal any specificity during the time frame studied. There was no significant retention in the whole brain

  4. Mice deficient in 11beta-hydroxysteroid dehydrogenase type 1 lack bone marrow adipocytes, but maintain normal bone formation

    DEFF Research Database (Denmark)

    Justesen, Jeannette; Mosekilde, Lis; Holmes, Megan

    2004-01-01

    Glucocorticoids (GCs) exert potent, but poorly characterized, effects on the skeleton. The cellular activity of GCs is regulated at a prereceptor level by 11beta-hydroxysteroid dehydrogenases (11betaHSDs). The type 1 isoform, which predominates in bone, functions as a reductase in intact cells...... and regenerates active cortisol (corticosterone) from circulating inert 11-keto forms. The aim of the present study was to investigate the role of this intracrine activation of GCs on normal bone physiology in vivo using mice deficient in 11betaHSD1 (HSD1(-/-)). The HSD1(-/-) mice exhibited no significant changes...... in cortical or trabecular bone mass compared with wild-type (Wt) mice. Aged HSD1(-/-) mice showed age-related bone loss similar to that observed in Wt mice. Histomorphometric analysis showed similar bone formation and bone resorption parameters in HSD1(-/-) and Wt mice. However, examination of bone marrow...

  5. Exposure to neonatal cigarette smoke causes durable lung changes but does not potentiate cigarette smoke–induced chronic obstructive pulmonary disease in adult mice

    Science.gov (United States)

    McGrath-Morrow, Sharon; Malhotra, Deepti; Lauer, Thomas; Collaco, J. Michael; Mitzner, Wayne; Neptune, Enid; Wise, Robert; Biswal, Shyam

    2016-01-01

    The impact of early childhood cigarette smoke (CS) exposure on CS-induced chronic obstructive pulmonary disease (COPD) is unknown. This study was performed to evaluate the individual and combined effects of neonatal and adult CS exposure on lung structure, function, and gene expression in adult mice. To model a childhood CS exposure, neonatal C57/B6 mice were exposed to 14 days of CS (Neo CS). At 10 weeks of age, Neo CS and control mice were exposed to 4 months of CS. Pulmonary function tests, bronchoalveolar lavage, and lung morphometry were measured and gene expression profiling was performed on lung tissue. Mean chord lengths and lung volumes were increased in neonatal and/or adult CS-exposed mice. Differences in immune, cornified envelope protein, muscle, and erythrocyte genes were found in CS-exposed lung. Neonatal CS exposure caused durable structural and functional changes in the adult lung but did not potentiate CS-induced COPD changes. Cornified envelope protein gene expression was decreased in all CS-exposed mice, whereas myosin and erythrocyte gene expression was increased in mice exposed to both neonatal and adult CS, suggesting an adaptive response. Additional studies may be warranted to determine the utility of these genes as biomarkers of respiratory outcomes. PMID:21649527

  6. [Calbindin and parvalbumin distribution in spinal cord of normal and rabies-infected mice].

    Science.gov (United States)

    Monroy-Gómez, Jeison; Torres-Fernández, Orlando

    2013-01-01

    Rabies is a fatal infectious disease of the nervous system; however, the knowledge about the pathogenic neural mechanisms in rabies is scarce. In addition, there are few studies of rabies pathology of the spinal cord. To study the distribution of calcium binding proteins calbindin and parvalbumin and assessing the effect of rabies virus infection on their expression in the spinal cord of mice. MATERIALES Y METHODS: Mice were inoculated with rabies virus, by intracerebral or intramuscular route. The spinal cord was extracted to perform some crosscuts which were treated by immunohistochemistry with monoclonal antibodies to reveal the presence of the two proteins in normal and rabies infected mice. We did qualitative and quantitative analyses of the immunoreactivity of the two proteins. Calbindin and parvalbumin showed differential distribution in Rexed laminae. Rabies infection produced a decrease in the expression of calbindin. On the contrary, the infection caused an increased expression of parvalbumin. The effect of rabies infection on the two proteins expression was similar when comparing both routes of inoculation. The differential effect of rabies virus infection on the expression of calbindin and parvalbumin in the spinal cord of mice was similar to that previously reported for brain areas. This result suggests uniformity in the response to rabies infection throughout the central nervous system. This is an important contribution to the understanding of the pathogenesis of rabies.

  7. Ontogeny of B lymphocyte function. IV. Kinetics of maturation of B lymphocytes from fetal and neonatal mice when transferred into adult irradiated hosts

    International Nuclear Information System (INIS)

    Sherr, D.; Szewczuk, M.R.; Siskind, G.W.

    1977-01-01

    Lethally irradiated mice reconstituted with adult T cells and neonatal or fetal B cells produce an anti-DNP response of restricted heterogeneity of affinity when compared with the response of mice reconstituted with T and B cells from adult donors. The capacity to reconstitute adult mice to give a heterogeneous response matures between 7 and 10 days after birth. The maturation of B cells from day-15 fetal or neonatal donors to produce a heterogeneous response was followed in the adult, cell transfer recipient by immunizing them at different times after cell transfer. It was found that B cells both from day-15 fetal mice and from neonatal mice acquire the capacity to produce a heterogeneous response within 3 days in the adult, cell transfer recipient. Thus, the B cell population matures more rapidly in the cell transfer recipient than in the intact donor. The kinetics of maturation in the adult recipient is the same for B cells from day-15 fetal and neonatal donors. The data imply that all information required to produce a fully heterogeneous response is already present in the day-15 fetus. In addition, the data strongly support the hypothesis that a factor in the adult mouse acts to induce this step in the maturation of the B lymphocyte population. Thus, the data seem to be inconsistent with the view that the timing of the occurrence of this differentiation event is precoded in an internal cell clock in the B lymphocyte line. Clearly, B cells from day-15 fetal mice are already capable of differentiating in response to the inducing factor which is present in the adult animal

  8. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    International Nuclear Information System (INIS)

    Kheradmand, Arash; Dezfoulian, Omid; Alirezaei, Masoud; Rasoulian, Bahram

    2012-01-01

    Highlights: ► Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. ► Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. ► Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. ► Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P 0.05). Upstream of Bax substance parallel to down-regulation of PCNA demonstrate that ghrelin may prevent massive accumulation of germ cells during normal spermatogenesis. These observations also indicate that ghrelin may be considered as a modulator of spermatogenesis in normal adult rats and could be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors.

  9. Paracetamol (acetaminophen) administration during neonatal brain development affects cognitive function and alters its analgesic and anxiolytic response in adult male mice.

    Science.gov (United States)

    Viberg, Henrik; Eriksson, Per; Gordh, Torsten; Fredriksson, Anders

    2014-03-01

    Paracetamol (acetaminophen) is one of the most commonly used drugs for the treatment of pain and fever in children, both at home and in the clinic, and is now also found in the environment. Paracetamol is known to act on the endocannabinoid system, involved in normal development of the brain. We examined if neonatal paracetamol exposure could affect the development of the brain, manifested as adult behavior and cognitive deficits, as well as changes in the response to paracetamol. Ten-day-old mice were administered a single dose of paracetamol (30 mg/kg body weight) or repeated doses of paracetamol (30 + 30 mg/kg body weight, 4h apart). Concentrations of paracetamol and brain-derived neurotrophic factor (BDNF) were measured in the neonatal brain, and behavioral testing was done when animals reached adulthood. This study shows that acute neonatal exposure to paracetamol (2 × 30 mg) results in altered locomotor activity on exposure to a novel home cage arena and a failure to acquire spatial learning in adulthood, without affecting thermal nociceptive responding or anxiety-related behavior. However, mice neonatally exposed to paracetamol (2 × 30 mg) fail to exhibit paracetamol-induced antinociceptive and anxiogenic-like behavior in adulthood. Behavioral alterations in adulthood may, in part, be due to paracetamol-induced changes in BDNF levels in key brain regions at a critical time during development. This indicates that exposure to and presence of paracetamol during a critical period of brain development can induce long-lasting effects on cognitive function and alter the adult response to paracetamol in mice.

  10. Relationship of metabolic and endocrine parameters to brain glucose metabolism in older adults: do cognitively-normal older adults have a particular metabolic phenotype?

    Science.gov (United States)

    Nugent, S; Castellano, C A; Bocti, C; Dionne, I; Fulop, T; Cunnane, S C

    2016-02-01

    Our primary objective in this study was to quantify whole brain and regional cerebral metabolic rates of glucose (CMRg) in young and older adults in order to determine age-normalized reference CMRg values for healthy older adults with normal cognition for age. Our secondary objectives were to--(i) report a broader range of metabolic and endocrine parameters including body fat composition that could form the basis for the concept of a 'metabolic phenotype' in cognitively normal, older adults, and (ii) to assess whether medications commonly used to control blood lipids, blood pressure or thyroxine affect CMRg values in older adults. Cognition assessed by a battery of tests was normal for age and education in both groups. Compared to the young group (25 years old; n = 34), the older group (72 years old; n = 41) had ~14% lower CMRg (μmol/100 g/min) specifically in the frontal cortex, and 18% lower CMRg in the caudate. Lower grey matter volume and cortical thickness was widespread in the older group. These differences in CMRg, grey matter volume and cortical thickness were present in the absence of any known evidence for prodromal Alzheimer's disease (AD). Percent total body fat was positively correlated with CMRg in many brain regions but only in the older group. Before and after controlling for body fat, HOMA2-IR was significantly positively correlated to CMRg in several brain regions in the older group. These data show that compared to a healthy younger adult, the metabolic phenotype of a cognitively-normal 72 year old person includes similar plasma glucose, insulin, cholesterol, triglycerides and TSH, higher hemoglobin A1c and percent body fat, lower CMRg in the superior frontal cortex and caudate, but the same CMRg in the hippocampus and white matter. Age-normalization of cognitive test results is standard practice and we would suggest that regional CMRg in cognitively healthy older adults should also be age-normalized.

  11. Sex-comparative study of mouse cerebellum physiology under adult-onset hypothyroidism: The significance of GC-MS metabolomic data normalization in meta-analysis.

    Science.gov (United States)

    Maga-Nteve, Christoniki; Vasilopoulou, Catherine G; Constantinou, Caterina; Margarity, Marigoula; Klapa, Maria I

    2017-01-15

    A systematic data quality validation and normalization strategy is an important component of the omic profile meta-analysis, ensuring comparability of the profiles and exclusion of experimental biases from the derived biological conclusions. In this study, we present the normalization methodology applied on the sets of cerebellum gas chromatography-mass spectrometry metabolic profiles of 124days old male and female animals in an adult-onset-hypothyroidism (AOH) mouse model before combining them into a sex-comparative analysis. The employed AOH model concerns the monitoring of the brain physiology of Balb/cJ mice after eight-week administration of 1%w/v KClO 4 in the drinking water, initiated on the 60th day of their life. While originating from the same animal study, the tissues of the two sexes were processed and their profiles acquired and analyzed at different time periods. Hence, the previously published profile set of male mice was first re-annotated based on the presently available resources. Then, after being validated as acquired under the same analytical conditions, both profiles sets were corrected for derivatization biases and filtered for low-confidence measurements based on the same criteria. The final normalized 73-metabolite profiles contribute to the currently few available omic datasets of the AOH effect on brain molecular physiology, especially with respect to sex differentiation. Multivariate statistical analysis indicated one (unknown) and three (succinate, benzoate, myristate) metabolites with significantly higher and lower, respectively, cerebellum concentration in the hypothyroid compared to the euthyroid female mice. The respective numbers for the males were two and 24. Comparison of the euthyroid cerebellum metabolic profiles between the two sexes indicated 36 metabolites, including glucose, myo- and scyllo-inositol, with significantly lower concentration in the females versus the males. This implies that the female mouse cerebellum has

  12. Esophageal Clearance Patterns in Normal Older Adults as Documented with Videofluoroscopic Esophagram

    Directory of Open Access Journals (Sweden)

    Janice Jou

    2009-01-01

    Full Text Available Normal esophageal bolus transport in asymptomatic healthy older adults has not been well defined, potentially leading to ambiguity in differentiating esophageal swallowing patterns of dysphagic and healthy individuals. This pilot study of 24 young (45–64 years and old (65+years men and women was designed to assess radiographic esophageal bolus movement patterns in healthy adults using videofluoroscopic recording. Healthy, asymptomatic adults underwent videofluoroscopic esophagram to evaluate for the presence of ineffective esophageal clearance, namely, intraesophageal stasis and intraesophageal reflux. Intraesophageal stasis and intraesophageal reflux were visualized radiographically in these normal subjects. Intraesophageal stasis occurred significantly more frequently with semisolid (96% compared with liquid (16% barium, suggesting that a variety of barium consistencies, as opposed to only the traditional fluids, would better define the spectrum of esophageal transport. Intraesophageal reflux was observed more frequently in older males than in their younger counterparts. The rates of intraesophageal stasis and intraesophageal reflux were potentially high given that successive bolus presentations were spaced 10 seconds apart. These findings suggest a need for a more comprehensive definition regarding the range of normal esophageal bolus transport to (a prevent misdiagnosis of dysphagia and (b to enhance generalization to functional eating, which involves solid foods in addition to liquids.

  13. Repeatability and consistency of individual behaviour in juvenile and adult Eurasian harvest mice

    Science.gov (United States)

    Schuster, Andrea C.; Carl, Teresa; Foerster, Katharina

    2017-04-01

    Knowledge on animal personality has provided new insights into evolutionary biology and animal ecology, as behavioural types have been shown to affect fitness. Animal personality is characterized by repeatable and consistent between-individual behavioural differences throughout time and across different situations. Behavioural repeatability within life history stages and consistency between life history stages should be checked for the independence of sex and age, as recent data have shown that males and females in some species may differ in the repeatability of behavioural traits, as well as in their consistency. We measured the repeatability and consistency of three behavioural and one cognitive traits in juvenile and adult Eurasian harvest mice ( Micromys minutus). We found that exploration, activity and boldness were repeatable in juveniles and adults. Spatial recognition measured in a Y Maze was only repeatable in adult mice. Exploration, activity and boldness were consistent before and after maturation, as well as before and after first sexual contact. Data on spatial recognition provided little evidence for consistency. Further, we found some evidence for a litter effect on behaviours by comparing different linear mixed models. We concluded that harvest mice express animal personality traits as behaviours were repeatable across sexes and consistent across life history stages. The tested cognitive trait showed low repeatability and was less consistent across life history stages. Given the rising interest in individual variation in cognitive performance, and in its relationship to animal personality, we suggest that it is important to gather more data on the repeatability and consistency of cognitive traits.

  14. Enhanced normal short-term human myelopoiesis in mice engineered to express human-specific myeloid growth factors.

    Science.gov (United States)

    Miller, Paul H; Cheung, Alice M S; Beer, Philip A; Knapp, David J H F; Dhillon, Kiran; Rabu, Gabrielle; Rostamirad, Shabnam; Humphries, R Keith; Eaves, Connie J

    2013-01-31

    Better methods to characterize normal human hematopoietic cells with short-term repopulating activity cells (STRCs) are needed to facilitate improving recovery rates in transplanted patients.We now show that 5-fold more human myeloid cells are produced in sublethally irradiated NOD/SCID-IL-2Receptor-γchain-null (NSG) mice engineered to constitutively produce human interleukin-3, granulocyte-macrophage colony-stimulating factor and Steel factor (NSG-3GS mice) than in regular NSG mice 3 weeks after an intravenous injection of CD34 human cord blood cells. Importantly, the NSG-3GS mice also show a concomitant and matched increase in circulating mature human neutrophils. Imaging NSG-3GS recipients of lenti-luciferase-transduced cells showed that human cells being produced 3 weeks posttransplant were heterogeneously distributed, validating the blood as a more representative measure of transplanted STRC activity. Limiting dilution transplants further demonstrated that the early increase in human granulopoiesis in NSG-3GS mice reflects an expanded output of differentiated cells per STRC rather than an increase in STRC detection. NSG-3GS mice support enhanced clonal outputs from human short-term repopulating cells (STRCs) without affecting their engrafting efficiency. Increased human STRC clone sizes enable their more precise and efficient measurement by peripheral blood monitoring.

  15. Morphological aspects of Schistosoma mansoni adult worms isolated from nourished and undernourished mice: a comparative analysis by confocal laser scanning microscopy

    Directory of Open Access Journals (Sweden)

    Neves Renata Heisler

    2001-01-01

    Full Text Available Malnutrition hampers the course of schistosomiasis mansoni infection just as normal growth of adult worms. A comparative morphometric study on adult specimens (male and female recovered from undernourished (fed with a low protein diet - regional basic diet and nourished (rodent commercial laboratory food, NUVILAB white mice was performed. Tomographic images and morphometric analysis of the oral and ventral suckers, reproductive system and tegument were obtained by means of confocal laser scanning microscopy. Undernourished male specimens presented smaller morphometric values (length and width of the reproductive system (first, third and last testicular lobes and thickness of the tegument than controls. Besides that, it was demonstrated that the dorsal surface of the male worms bears large tubercles unevenly distributed, but kept grouped and flat. At the subtegumental region, vacuolated areas were detected. It was concluded that the inadequate nutritional status of the vertebrate host has a negative influence mainly in the reproductive system and topographical somatic development of male adult Schistosoma mansoni, inducing some alterations on the structure of the parasite.

  16. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    Directory of Open Access Journals (Sweden)

    Dani Smith

    Full Text Available Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains.Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not.Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  17. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life.

    Science.gov (United States)

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P; Klein, Jonathan D; Chen, Gang; Lazarus, Philip; Collaco, Joseph M; McGrath-Morrow, Sharon A

    2015-01-01

    Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until delivery. After delivery, offspring and mothers were exposed to E-cigarette vapors for an additional 14 days from postnatal day 2 through 16. Following their last exposure serum cotinine levels were measured in female juvenile mice. Male mice underwent behavioral testing at 14 weeks of age to assess sensorimotor, affective, and cognitive functional domains. Adult male mice exposed to 2.4% nicotine/PG E-cigarette vapors had significantly more head dips in the zero maze test and higher levels of rearing activity in the open field test compared to 0% nicotine/PG exposed mice and untreated controls. In the water maze test after reversal training, the 2.4% nicotine/PG mice spent more than 25% of time in the new location whereas the other groups did not. Adult male mice exhibited increased levels of activity in the zero maze and open field tests when exposed to E-cigarette vapor containing nicotine during late prenatal and early postnatal life. These findings indicate that nicotine exposure from E-cigarettes may cause persistent behavioral changes when exposure occurs during a period of rapid brain growth.

  18. Discovery of a new strain of murine rotavirus that is consistently shed in large quantities after oral inoculation of adult mice

    International Nuclear Information System (INIS)

    McNeal, Monica M.; Belli, Janine; Basu, Mitali; Choi, Anthony H.-C.; Ward, Richard L.

    2004-01-01

    In 1990, we developed the adult mouse model for studies on active immunity against shedding of the EDIM strain of murine rotavirus. Low and inconsistent levels of EDIM shedding in some strains of adult mice, particularly those on C57BL/6 backgrounds, established the need for an alternative murine rotavirus strain for these studies. Fortuitously, such a rotavirus strain was obtained from mice housed within the conventional colony at Children's Hospital. This strain, named EMcN, was clearly distinguishable from EDIM based on electropherotype. Furthermore, sequence analyses of VP4 and VP7 genes of EMcN revealed non-identities in 5% of the amino acids of both proteins relative to EDIM but established EMcN as another G3P[16] strain of murine rotavirus. Subgroup analysis showed EMcN belonged to SG1 while EDIM was found to be non-SG1/SG2. Similarly, unlike EDIM, the EMcN strain was identified as serotype G3 based on neutralization by hyperimmune antisera developed against prototype human and simian G3 rotavirus strains. Although EDIM produced more days of diarrhea and was shed in greater quantities in neonatal BALB/c mice, EMcN was shed in much greater quantities in adult BALB/c mice. More importantly, in contrast to the EDIM strain, EMcN was shown to be consistently shed in large quantities in adult C57BL/6 mice and ko mice on this background. Therefore, it is recommended that the EMcN strain be used for future challenge studies with mice on this background

  19. Failure of post-natal ductus arteriosus closure in prostaglandin transporter-deficient mice

    Science.gov (United States)

    Chang, Hee-Yoon; Locker, Joseph; Lu, Run; Schuster, Victor L.

    2010-01-01

    Background Prostaglandin E2 (PGE2) plays a major role both in maintaining patency of the fetal ductus arteriosus (DA) and in closure of the DA after birth. The rate- limiting step in PGE2 signal termination is PGE2 uptake by the transporter PGT. Methods and results To determine the role of PGT in DA closure, we used a gene-targeting strategy to produce mice in which PGT exon 1 was flanked by loxP sites. Successful targeting was obtained since neither mice hypomorphic at the PGT allele (PGT Neo/Neo) nor global PGT knockout mice (PGT −/−) exhibited PGT protein expression; moreover, embryonic fibroblasts isolated from targeted mice failed to exhibit carrier-mediated PGE2 uptake. Although born in a normal Mendelian ratio, no PGT −/− mice survived past post-natal day 1, and no PGT Neo/Neo mice survived past post-natal day 2. Necropsy revealed patent DA with normal intimal thickening but with dilated cardiac chambers. Both PGT Neo/Neo and PGT −/− mice could be rescued through the post-natal period by giving the mother indomethacin before birth. Rescued mice grew normally and had no abnormalities by gross and microscopic post-mortem analysis. In accord with PGT’s known role in metabolizing PGE2, rescued adult PGT −/− mice had lower plasma PGE2 metabolite levels, and higher urinary PGE2 excretion rates, than wild type mice. Conclusions PGT plays a critical role in closure of the DA after birth by ensuring a reduction in local and/or circulating PGE2 concentrations. PMID:20083684

  20. Reaffirming normal: the high risk of pathologizing healthy adults when interpreting the MMPI-2-RF.

    Science.gov (United States)

    Odland, Anthony P; Lammy, Andrew B; Perle, Jonathan G; Martin, Phillip K; Grote, Christopher L

    2015-01-01

    Monte Carlo simulations were utilized to determine the proportion of the normal population expected to have scale elevations on the MMPI-2-RF when multiple scores are interpreted. Results showed that when all 40 MMPI-2-RF scales are simultaneously considered, approximately 70% of normal adults are likely to have at least one scale elevation at or above 65 T, and as many as 20% will have five or more elevated scales. When the Restructured Clinical (RC) Scales are under consideration, 34% of normal adults have at least one elevated score. Interpretation of the Specific Problem Scales and Personality Psychopathology Five Scales--Revised also yielded higher than expected rates of significant scores, with as many as one in four normal adults possibly being miscategorized as having features of a personality disorder by the latter scales. These findings are consistent with the growing literature on rates of apparently abnormal scores in the normal population due to multiple score interpretation. Findings are discussed in relation to clinical assessment, as well as in response to recent work suggesting that the MMPI-2-RF's multiscale composition does not contribute to high rates of elevated scores.

  1. Normal weight obesity among young adults in Trinidad and Tobago: prevalence and associated factors.

    Science.gov (United States)

    Ramsaran, Cherrita; Maharaj, Rohan G

    2017-04-01

    Patients with normal weight obesity (NWO) have a normal body mass index (BMI) but elevated body fat percentage (BF%), thereby increasing their risk of cardiovascular and metabolic disorders. The purpose of this research was to determine the prevalence of NWO and its associated factors in a sample of young adults in Trinidad and Tobago (T&T). A cross sectional study involving a convenience non-voluntary sample of participants with a normal BMI of 18.5-24.9 kg/m2 was conducted. The following information was collected: history, basic anthropometric measurements, including BF% via the Tanita Ironman Body Composition Analyzer (BC554), physical examination and basic blood investigations. Participants were divided into two groups; normal BF% (young adult population was found to have NWO. Long-term studies are recommended to study the full implications of these findings.

  2. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain-of-function mutations.

    Science.gov (United States)

    Galán-Díez, Marta; Isa, Adiba; Ponzetti, Marco; Nielsen, Morten Frost; Kassem, Moustapha; Kousteni, Stavroula

    2016-03-01

    Osteoblasts are emerging regulators of myeloid malignancies since genetic alterations in them, such as constitutive activation of β-catenin, instigate their appearance. The LDL receptor-related protein 5 (LRP5), initially proposed to be a co-receptor for Wnt proteins, in fact favors bone formation by suppressing gut-serotonin synthesis. This function of Lrp5 occurring in the gut is independent of β-catenin activation in osteoblasts. However, it is unknown whether Lrp5 can act directly in osteoblast to influence other functions that require β-catenin signaling, particularly, the deregulation of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5 mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate β-catenin signaling in osteoblasts. Consistent with a lack of β-catenin activation in their osteoblasts, Lrp5(A214V) mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation of β-catenin in osteoblasts (Ctnnb1(CAosb)), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5(A214V) mice. Likewise, peripheral blood count analysis in HBM patients showed normal hematopoiesis, normal percentage of myeloid cells, and lack of anemia. We conclude that Lrp5 GOF mutations do not activate β-catenin signaling in osteoblasts. As a result, myeloid lineage differentiation is normal in HBM patients and mice. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza. Published

  3. Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice

    Science.gov (United States)

    Batista, Thiago M.; Alonso-Magdalena, Paloma; Vieira, Elaine; Amaral, Maria Esmeria C.; Cederroth, Christopher R.; Nef, Serge; Quesada, Ivan; Carneiro, Everardo M.; Nadal, Angel

    2012-01-01

    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit. In conclusion, short-term treatment with low doses of BPA slows down whole body energy metabolism and disrupts insulin signaling in peripheral tissues. Thus, our findings support the notion that BPA can be considered a risk factor for the development of type 2 diabetes. PMID:22470480

  4. Bowman Capsule Volume and Related Factors in Adults With Normal Renal Function

    Directory of Open Access Journals (Sweden)

    Takaya Sasaki

    2018-03-01

    Conclusion: In the normal adult kidney, there may be an optimal BV to GV ratio for maintaining effective filtration in a variety of clinical situations, including advanced age, obesity, and hypertension.

  5. An Essential Physiological Role for MCT8 in Bone in Male Mice.

    Science.gov (United States)

    Leitch, Victoria D; Di Cosmo, Caterina; Liao, Xiao-Hui; O'Boy, Sam; Galliford, Thomas M; Evans, Holly; Croucher, Peter I; Boyde, Alan; Dumitrescu, Alexandra; Weiss, Roy E; Refetoff, Samuel; Williams, Graham R; Bassett, J H Duncan

    2017-09-01

    T3 is an important regulator of skeletal development and adult bone maintenance. Thyroid hormone action requires efficient transport of T4 and T3 into target cells. We hypothesized that monocarboxylate transporter (MCT) 8, encoded by Mct8 on the X-chromosome, is an essential thyroid hormone transporter in bone. To test this hypothesis, we determined the juvenile and adult skeletal phenotypes of male Mct8 knockout mice (Mct8KO) and Mct8D1D2KO compound mutants, which additionally lack the ability to convert the prohormone T4 to the active hormone T3. Prenatal skeletal development was normal in both Mct8KO and Mct8D1D2KO mice, whereas postnatal endochondral ossification and linear growth were delayed in both Mct8KO and Mct8D1D2KO mice. Furthermore, bone mass and mineralization were decreased in adult Mct8KO and Mct8D1D2KO mice, and compound mutants also had reduced bone strength. Delayed bone development and maturation in Mct8KO and Mct8D1D2KO mice is consistent with decreased thyroid hormone action in growth plate chondrocytes despite elevated serum T3 concentrations, whereas low bone mass and osteoporosis reflects increased thyroid hormone action in adult bone due to elevated systemic T3 levels. These studies identify an essential physiological requirement for MCT8 in chondrocytes, and demonstrate a role for additional transporters in other skeletal cells during adult bone maintenance.

  6. Motivation to Address Self-Reported Hearing Problems in Adults with Normal Hearing Thresholds

    Science.gov (United States)

    Alicea, Carly C. M.; Doherty, Karen A.

    2017-01-01

    Purpose: The purpose of this study was to compare the motivation to change in relation to hearing problems in adults with normal hearing thresholds but who report hearing problems and that of adults with a mild-to-moderate sensorineural hearing loss. Factors related to their motivation were also assessed. Method: The motivation to change in…

  7. Organotypic brain slice cultures of adult transgenic P301S mice--a model for tauopathy studies.

    Directory of Open Access Journals (Sweden)

    Agneta Mewes

    Full Text Available BACKGROUND: Organotypic brain slice cultures represent an excellent compromise between single cell cultures and complete animal studies, in this way replacing and reducing the number of animal experiments. Organotypic brain slices are widely applied to model neuronal development and regeneration as well as neuronal pathology concerning stroke, epilepsy and Alzheimer's disease (AD. AD is characterized by two protein alterations, namely tau hyperphosphorylation and excessive amyloid β deposition, both causing microglia and astrocyte activation. Deposits of hyperphosphorylated tau, called neurofibrillary tangles (NFTs, surrounded by activated glia are modeled in transgenic mice, e.g. the tauopathy model P301S. METHODOLOGY/PRINCIPAL FINDINGS: In this study we explore the benefits and limitations of organotypic brain slice cultures made of mature adult transgenic mice as a potential model system for the multifactorial phenotype of AD. First, neonatal (P1 and adult organotypic brain slice cultures from 7- to 10-month-old transgenic P301S mice have been compared with regard to vitality, which was monitored with the lactate dehydrogenase (LDH- and the MTT (3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assays over 15 days. Neonatal slices displayed a constant high vitality level, while the vitality of adult slice cultures decreased significantly upon cultivation. Various preparation and cultivation conditions were tested to augment the vitality of adult slices and improvements were achieved with a reduced slice thickness, a mild hypothermic cultivation temperature and a cultivation CO(2 concentration of 5%. Furthermore, we present a substantial immunohistochemical characterization analyzing the morphology of neurons, astrocytes and microglia in comparison to neonatal tissue. CONCLUSION/SIGNIFICANCE: Until now only adolescent animals with a maximum age of two months have been used to prepare organotypic brain slices. The current study

  8. Preparation, distribution, stability and tumor imaging properties of [62Zn] Bleomycin complex in normal and tumor-bearing mice

    International Nuclear Information System (INIS)

    Jalilian, A.R.; Fateh, B.; Ghergherehchi, M.; Karimian, A.; Matloobi, M.; Moradkhani, S.; Kamalidehghan, M.; Tabeie, F.

    2003-01-01

    Backgrounds: Bleomycin (BLM) has been labeled with radioisotopes and widely used in therapy and diagnosis. In this study BLM was labeled with [ 62 Zn] zinc chloride for oncologic PET studies. Materials and methods: The complex was obtained at the P H=2 normal saline at 90 d eg C in 60 min. Radio-TLC showed on overall radiochemical yield of 95-97% (radiochemical purity>97%). Stability of complex was checked in vitro in mice and human plasma/urine. Results: Preliminary in vitro studies performed to determined complex stability and distribution of [ 62 Zn] BLM in normal and fibrosarcoma tumors in mice according to bio-distribution/imaging studies. Conclusion: [ 62 Zn] BLM can be used in PET oncology studies due to its suitable physico-chemical propertied as a diagnostic complex behavior in higher animals

  9. Membrane potential dye imaging of ventromedial hypothalamus neurons from adult mice to study glucose sensing.

    Science.gov (United States)

    Vazirani, Reema P; Fioramonti, Xavier; Routh, Vanessa H

    2013-11-27

    Studies of neuronal activity are often performed using neurons from rodents less than 2 months of age due to the technical difficulties associated with increasing connective tissue and decreased neuronal viability that occur with age. Here, we describe a methodology for the dissociation of healthy hypothalamic neurons from adult-aged mice. The ability to study neurons from adult-aged mice allows the use of disease models that manifest at a later age and might be more developmentally accurate for certain studies. Fluorescence imaging of dissociated neurons can be used to study the activity of a population of neurons, as opposed to using electrophysiology to study a single neuron. This is particularly useful when studying a heterogeneous neuronal population in which the desired neuronal type is rare such as for hypothalamic glucose sensing neurons. We utilized membrane potential dye imaging of adult ventromedial hypothalamic neurons to study their responses to changes in extracellular glucose. Glucose sensing neurons are believed to play a role in central regulation of energy balance. The ability to study glucose sensing in adult rodents is particularly useful since the predominance of diseases related to dysfunctional energy balance (e.g. obesity) increase with age.

  10. Assessment of various hilar measurements on PA chest of Korean normal adults

    International Nuclear Information System (INIS)

    Ro, Hee Jeong; Kim, Hyun; Kang, Si Won; Park, Seog Hee; Bahk, Yong Whee

    1990-01-01

    Appreciation of the normal position of the hila is essential in screening and diagnosis of the diseases of the chest. Many authors assessed the hilar position in normal adults using PA chest roentgenograms. However there have been no previous publication regarding consolidated assessment of various measurements. The authors carried out the present study to evaluate various hilar measurements including hilar points, hilar distances, difference between both hilar heights, hilar height ratio, and the relationship between the level of the clavicle and hila on the 500 normal PA chest roentgenograms

  11. AAV-Mediated Administration of Myostatin Pro-Peptide Mutant in Adult Ldlr Null Mice Reduces Diet-Induced Hepatosteatosis and Arteriosclerosis

    Science.gov (United States)

    Guo, Wen; Wong, Siu; Bhasin, Shalender

    2013-01-01

    Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. Conclusions: AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes. PMID:23936482

  12. Immune competence in 90Sr-exposed, adult thymectomized and antilymphocyteglobulin-treated CBA mice. Pt. 1

    International Nuclear Information System (INIS)

    Bierke, P.

    1989-01-01

    CBA mice subjected to either adult thymectomy, internal exposure to 90 Sr or antilymphocyteglobulin treatment separately, or to combinations of the three were tested for cellular immune competence using their reaction to allogenic skin grafts. Peripheral blood white cell counts did not reveal any obvious correlation between the degree of mononuclear cell depletion and the ability to accept grafts, suggesting that the particular treatments depleted specific fractions of mononuclear cells, differing in their extent of involvement in the rejection process. No single treatment alone induced a significant prolongation in the time elapsed before graft rejection. Adult thymectomy followed by appropriate antilymphocyteglobulin treatment induced severe lymphocytopenia and a profound suppression of the cell-mediate immune system, as evidenced by the acceptance of allogenic skin grafts. When applied to 90 Sr-preexposed mice the same treatment induced lifelong acceptance of grafts, indicating a similar, though weaker immunosuppressive impact of 90 Sr. Hence it was possible to significantly enhance immunosuppression in 90 Sr-exposed mice. This in vivo model should be useful when investigating the role of immunological responsiveness in radiation carcinogenesis. (orig.)

  13. Carcinogenic and antitumor effects of aminotriazole on acatalasemic and normal catalase mice

    International Nuclear Information System (INIS)

    Feinstein, R.N.; Fry, R.J.M.; Staffeidt, E.F.

    1978-01-01

    Dietary 3-amino-1H-1,2,4-triazole (AT), although carcinogenic when administered alone, was an antitumor agent when combined with certain other carcinogenic stimuli. The carcinogenic effect was prominent in the livers of C3H mice; thyroid tumors were less common because they required a longer period of development, and the life-span of the animal was shortened by the AT diet. The antitumor effects of AT included: delay in appearance of mammary tumors, striking reduction in γ-radiation-induced lymphomas, and sharp reduction in neutron radiation-induced harderian gland and ovarian tumors. On an AT diet, the inbred C3H acatalasemic mouse substrain developed more liver tumors, starting earlier, than did the C3H normal catalase substrain. We suggest that our findings pointed to a possible relevance of catalase and H 2 O 2 in carcinogenesis. The most probable mechanism for the increased incidence of liver tumors in AT-treated acatalasemic mice was the diminished rate of degradation of endogenous H 2 O 2

  14. Radiation genetic injury and metabolic difference of tritiated thymidine in testis of young and adult mice

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Lun; Shoupeng, Zhu

    1990-04-01

    The radiogenetoxicological effects on the adult testis and the metabolic difference of tritiated thymidine between the testis of young and adult BALB/C mice were studied. When 0.037 MBq/g.b.w. of tritiated thymidine was given i.v. to mice, the initial burden of tritium in the adult was larger than that of tritium in the young. But the retention of tritium in testis of the young gradually become larger than that of tritium in the adult with the passing time. Tritiated thymidine which was incorporated into DNA of the male germ cell nuclei damaged the genetic materials and caused the rising of the rates of the dominant lethal and the dominant mutation which produced skeletal abnomalities in the offspring. The relationship between the dominant lethal mutation index (Y) and the injected activity of tritiated thymidine (I, MBq/g.b.w.) is described by Y = 74.13 + 80.20 I (r = 0.95). The relationship between the incidence of the dominant skeletal mutation in the offspring (B) and the injected activity is B = 0.16 + 0.079 I ( r = 0.85).

  15. Radiation genetic injury and metabolic difference of tritiated thymidine in testis of young and adult mice

    International Nuclear Information System (INIS)

    Lun Mingyue; Zhu Shoupeng.

    1990-01-01

    The radiogenetoxicological effects on the adult testis and the metabolic difference of tritiated thymidine between the testis of young and adult BALB/C mice were studied. When 0.037 MBq/g.b.w. of tritiated thymidine was given i.v. to mice, the initial burden of tritium in the adult was larger than that of tritium in the young. But the retention of tritium in testis of the young gradually become larger than that of tritium in the adult with the passing time. Tritiated thymidine which was incorporated into DNA of the male germ cell nuclei damaged the genetic materials and caused the rising of the rates of the dominant lethal and the dominant mutation which produced skeletal abnomalities in the offspring. The relationship between the dominant lethal mutation index (Y) and the injected activity of tritiated thymidine (I, MBq/g.b.w.) is described by Y = 74.13 + 80.20 I (r = 0.95). The relationship between the incidence of the dominant skeletal mutation in the offspring (B) and the injected activity is B = 0.16 + 0.079 I ( r = 0.85)

  16. Dietary enrichment with alpha-linolenic acid during pregnancy attenuates insulin resistance in adult offspring in mice.

    Science.gov (United States)

    Hollander, K S; Tempel Brami, C; Konikoff, F M; Fainaru, M; Leikin-Frenkel, A

    2014-07-01

    Our objective was to test the contribution of dietary enrichment in essential or saturated fatty acids, in normocaloric diets, on the lipid accumulation and insulin resistance in the adult offspring in a C57Bl6/J mice model. Pregnant mothers were fed normocaloric diets containing 6% fat enriched in essential fatty acids (EFA): alpha-linolenic (ALA-18:3, n-3), linoleic (LA-18:2, n-6), or saturated fatty acids (SFA). After a washing-out period with regular diet, the offspring received a high-fat diet before euthanization. Adult mice fed maternal ALA showed lower body weight gain and lower liver fat accumulation, lower HOMA index and lower stearoyl-CoA desaturase (SCD1) activity than those fed maternal SFA. The results observed using this novel model suggest that ALA in maternal diet may have the potential to inhibit insulin resistance in adult offspring.

  17. Oxytocin is implicated in social memory deficits induced by early sensory deprivation in mice.

    Science.gov (United States)

    Zhang, Jin-Bao; Chen, Ling; Lv, Zhu-Man; Niu, Xue-Yuan; Shao, Can-Can; Zhang, Chan; Pruski, Michal; Huang, Ying; Qi, Cong-Cong; Song, Ning-Ning; Lang, Bing; Ding, Yu-Qiang

    2016-12-13

    Early-life sensory input plays a crucial role in brain development. Although deprivation of orofacial sensory input at perinatal stages disrupts the establishment of the barrel cortex and relevant callosal connections, its long-term effect on adult behavior remains elusive. In this study, we investigated the behavioral phenotypes in adult mice with unilateral transection of the infraorbital nerve (ION) at postnatal day 3 (P3). Although ION-transected mice had normal locomotor activity, motor coordination, olfaction, anxiety-like behaviors, novel object memory, preference for social novelty and sociability, they presented deficits in social memory and spatial memory compared with control mice. In addition, the social memory deficit was associated with reduced oxytocin (OXT) levels in the hypothalamus and could be partially restored by intranasal administration of OXT. Thus, early sensory deprivation does result in behavioral alterations in mice, some of which may be associated with the disruption of oxytocin signaling.

  18. Synthesis and biodistribution of 2-[{sup 123}I]iodomelatonin in normal mice

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jammaz, I. [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211 (Saudi Arabia)]. E-mail: jammaz@kfshrc.edu.sa; Al-Otaibi, B. [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211 (Saudi Arabia); Aboul-Enein, H. [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211 (Saudi Arabia); Amartey, J.K. [Cyclotron and Radiopharmaceuticals Department, King Faisal Specialist Hospital and Research Centre, P.O. Box 3354, Riyadh 11211 (Saudi Arabia)

    2006-01-01

    Melatonin demands that this hormone and its receptors be well understood. With this aim in mind, synthetic melatonin was radioiodinated with no-carrier-added (n.c.a.) sodium iodide-123 using in situ generated peracetic acid as oxidizing agent for electrophilic iodination at room temperature. The radiochemical yield was typically greater than 80% after 20 min reaction time especially when relatively small amounts of activities were used (10 mCi). Biological evaluation was performed in normal mice. The distribution of the tracer did not reveal any specificity during the time frame studied. There was no significant retention in the whole brain.

  19. Transient postnatal fluoxetine decreases brain concentrations of 20-HETE and 15-epi-LXA4, arachidonic acid metabolites in adult mice.

    Science.gov (United States)

    Yuan, Zhi-Xin; Rapoport, Stanley I

    2015-10-01

    Transient postnatal exposure of rodents to the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine alters behavior and brain 5-HT neurotransmission during adulthood, and also reduces brain arachidonic (ARA) metabolic consumption and protein level of the ARA metabolizing enzyme, cytochrome P4504A (CYP4A). Brain 20-hydroxyeicosatetraenoic acid (20-HETE), converted by CYP4A from ARA, will be reduced in adult mice treated transiently and postnatally with fluoxetine. Male mice pups were injected i.p. daily with fluoxetine (10mg/kg) or saline during P4-P21. At P90 their brain was high-energy microwaved and analyzed for 20-HETE and six other ARA metabolites by enzyme immunoassay. Postnatal fluoxetine vs. saline significantly decreased brain concentrations of 20-HETE (-70.3%) and 15-epi-lipoxin A4 (-60%) in adult mice, but did not change other eicosanoid concentrations. Behavioral changes in adult mice treated postnatally with fluoxetine may be related to reduced brain ARA metabolism involving CYP4A and 20-HETE formation. Published by Elsevier Ltd.

  20. Toll-like receptor 2 mediates ischemia-reperfusion injury of the small intestine in adult mice.

    Directory of Open Access Journals (Sweden)

    Toshio Watanabe

    Full Text Available Toll-like receptor 2 (TLR2 recognizes conserved molecular patterns associated with both gram-negative and gram-positive bacteria, and detects some endogenous ligands. Previous studies demonstrated that in ischemia-reperfusion (I/R injury of the small intestine, the TLR2-dependent signaling exerted preventive effects on the damage in young mice, but did not have a significant effect in neonatal mice. We investigated the role of TLR2 in adult ischemia-reperfusion injury in the small intestine. Wild-type and TLR2 knockout mice at 16 weeks of age were subjected to intestinal I/R injury. Some wild-type mice received anti-Ly-6G antibodies to deplete circulating neutrophils. In wild-type mice, I/R induced severe small intestinal injury characterized by infiltration by inflammatory cells, disruption of the mucosal epithelium, and mucosal bleeding. Compared to wild-type mice, TLR2 knockout mice exhibited less severe mucosal injury induced by I/R, with a 35%, 33%, and 43% reduction in histological grading score and luminal concentration of hemoglobin, and the numbers of apoptotic epithelial cells, respectively. The I/R increased the activity of myeloperoxidase (MPO, a marker of neutrophil infiltration, and the levels of mRNA expression of tumor necrosis factor-α (TNF-α, intercellular adhesion molecule-1 (ICAM-1, and cyclooxygenase-2 (COX-2 in the small intestine of the wild-type mice by 3.3-, 3.2-, and 13.0-fold, respectively. TLR2 deficiency significantly inhibited the I/R-induced increase in MPO activity and the expression of mRNAs for TNF-α and ICAM-1, but did not affect the expression of COX-2 mRNA. I/R also enhanced TLR2 mRNA expression by 2.9-fold. TLR2 proteins were found to be expressed in the epithelial cells, inflammatory cells, and endothelial cells. Neutrophil depletion prevented intestinal I/R injury in wild-type mice. These findings suggest that TLR2 may mediate I/R injury of the small intestine in adult mice via induction of inflammatory

  1. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    Alessandro Ieraci

    2016-01-01

    Full Text Available Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice.

  2. Male aromatase-knockout mice exhibit normal levels of activity, anxiety and "depressive-like" symptomatology.

    Science.gov (United States)

    Dalla, C; Antoniou, K; Papadopoulou-Daifoti, Z; Balthazart, J; Bakker, J

    2005-09-08

    It is well known that estradiol derived from neural aromatization of testosterone plays a crucial role in the development of the male brain and the display of sexual behaviors in adulthood. It was recently found that male aromatase knockout mice (ArKO) deficient in estradiol due to a mutation in the aromatase gene have general deficits in coital behavior and are sexually less motivated. We wondered whether these behavioral deficits of ArKO males could be related to changes in activity, exploration, anxiety and "depressive-like" symptomatology. ArKO and wild type (WT) males were subjected to open field (OF), elevated plus maze (EPM), and forced swim tests (FST), after being exposed or not to chronic mild stress (CMS). CMS was used to evaluate the impact of chronic stressful procedures and to unveil possible differences between genotypes. There was no effect of genotype on OF, EPM and FST behavioral parameters. WT and ArKO mice exposed to CMS or not exhibited the same behavioral profile during these three types of tests. However, all CMS-exposed mice (ArKO and WT) spent less time in the center of the EPM. Additionally, floating duration measured in the FST increased between two tests in both WT and ArKO mice, though that increase was less prominent in mice previously subjected to CMS than in controls. Therefore, both ArKO and WT males displayed the same behavior and had the same response to CMS however CMS exposure slightly modified the behavior displayed by mice of both genotypes in the FST and EPM paradigms. These results show that ArKO males display normal levels of activity, exploration, anxiety and "depressive-like" symptomatology and thus their deficits in sexual behavior are specific in nature and do not result indirectly from other behavioral changes.

  3. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    Directory of Open Access Journals (Sweden)

    Saurabh Chattopadhyay

    Full Text Available Angiotensin-converting enzyme (ACE regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS. Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  4. Tissue-specific expression of transgenic secreted ACE in vasculature can restore normal kidney functions, but not blood pressure, of Ace-/- mice.

    Science.gov (United States)

    Chattopadhyay, Saurabh; Kessler, Sean P; Colucci, Juliana Almada; Yamashita, Michifumi; Senanayake, Preenie deS; Sen, Ganes C

    2014-01-01

    Angiotensin-converting enzyme (ACE) regulates normal blood pressure and fluid homeostasis through its action in the renin-angiotensin-system (RAS). Ace-/- mice are smaller in size, have low blood pressure and defective kidney structure and functions. All of these defects are cured by transgenic expression of somatic ACE (sACE) in vascular endothelial cells of Ace-/- mice. sACE is expressed on the surface of vascular endothelial cells and undergoes a natural cleavage secretion process to generate a soluble form in the body fluids. Both the tissue-bound and the soluble forms of ACE are enzymatically active, and generate the vasoactive octapeptide Angiotensin II (Ang II) with equal efficiency. To assess the relative physiological roles of the secreted and the cell-bound forms of ACE, we expressed, in the vascular endothelial cells of Ace-/- mice, the ectodomain of sACE, which corresponded to only the secreted form of ACE. Our results demonstrated that the secreted form of ACE could normalize kidney functions and RAS integrity, growth and development of Ace-/- mice, but not their blood pressure. This study clearly demonstrates that the secreted form of ACE cannot replace the tissue-bound ACE for maintaining normal blood pressure; a suitable balance between the tissue-bound and the soluble forms of ACE is essential for maintaining all physiological functions of ACE.

  5. Perinatal programming of depressive-like behavior by inflammation in adult offspring mice whose mothers were fed polluted eels: Gender selective effects.

    Science.gov (United States)

    Soualeh, Nidhal; Dridi, Imen; Eppe, Gauthier; Némos, Christophe; Soulimani, Rachid; Bouayed, Jaouad

    2017-07-01

    Several lines of evidence indicate that early-life inflammation may predispose to mental illness, including depression, in later-life. We investigated the impact of perinatal exposure to polluted eels on neonatal, postnatal, and adult brain inflammation, and on the resignation behavior of male and female adult offspring mice. The effects of maternal standard diet (laboratory food) were compared to the same diet enriched with low, intermediate, or highly polluted eels. Brain inflammatory markers including cytokines were assessed in offspring mice on the day of birth (i.e., on the postnatal day-PND 1), upon weaning (PND 21) and at adulthood (PND 100). Plasma myeloperoxidase and corticosterone levels were evaluated at PND 100. Immobility behavior of offspring was assessed in adulthood (i.e., at PNDs 95-100), using the tail suspension and forced swimming tests. Chronic brain inflammation was found in male and female offspring mice compared to controls, as assessed at PNDs 1, 21, and 100. The level of myeloperoxidase was found to be significantly higher in both adult males and females vs. control offspring. However, high corticosterone levels were only found in male offspring mice that were perinatally exposed to eels, suggesting a gender-selective dysregulation of the adult hypothalamic-pituitaryadrenal (HPA) axis. Gender-specific differences were also detected in adulthood in regard to offspring resignation behavior. Thus, compared to controls, males, but not females, whose mothers were fed eels during pregnancy and lactation exhibited a depressive-like behavior in adult age in both behavioral models of depression. Depressive symptoms were more pronounced in male mice perinatally exposed to either intermediate or highly polluted eels than those exposed to only lowly polluted eels. Our results indicate that early-life inflammatory insult is a plausible causative factor that induces the depressive phenotype exhibited by male adult offspring mice, most likely through a

  6. Effects of Early-Life Stress on Social and Anxiety-Like Behaviors in Adult Mice: Sex-Specific Effects

    Directory of Open Access Journals (Sweden)

    Natalya P. Bondar

    2018-01-01

    Full Text Available Stressful events in an early postnatal period have critical implications for the individual’s life and can increase later risk for psychiatric disorders. The aim of this study was to investigate the influence of early-life stress on the social behavior of adult male and female mice. C57Bl/6 mice were exposed to maternal separation (MS, 3 h once a day or handling (HD, 15 min once a day on postnatal day 2 through 14. Adult male and female mice were tested for social behavior in the social interaction test and for individual behavior in the plus-maze and open-field tests. Female mice exposed to maternal separation had increased social behavior and increased anxiety. MS male mice had no changes in social behavior but had significantly disrupted individual behavior, including locomotor and exploratory activity. Handling had positive effects on social behavior in males and females and decreased anxiety in males. Our results support the hypothesis that brief separation of pups from their mothers (handling, which can be considered as moderate stress, may result in future positive changes in behavior. Maternal separation has deleterious effects on individual behavior and significant sex-specific effects on social behavior.

  7. Erythroid differentiation of fetal, newborn and adult haemopoietic stem cells

    International Nuclear Information System (INIS)

    Rencricca, N.J.; Howard, D.; Kubanek, B.; Stohlman, F.; Department of Biological Sciences, University of Lowell, Lowell, Massachusetts, USA)

    1976-01-01

    Erythroid regeneration was studied in lethally irradiated mice given transplants containing equivalent numbers of haemopoietic stem cells (i.e. CFU) from fetal liver, neonatal marrow or adult marrow. Adult marrow was taken from normal control mice, whose CFU for the most part were not in active cell cycle, as well as from phenylhydrazine-treated groups whose CFU were in similar state of proliferation (i.e. approximately 40-50% in DNA synthesis) as those derived from fetal liver and neonatal marrow. Splenic and femoral radioiron ( 59 Fe) incorporation were measured at intervals after transplantation and were found to begin earliest in mice given fetal liver, then in animals given neonatal marrow and latest in recipients of adult marrow. Peripheral reticulocytes showed a similar pattern of recovery. The data reported herein suggest that the differences in erythroid regeneration evoked by transplants of fetal liver, neonatal marrow or adult marrow, are not solely attributed to the degree of proliferation in the pluripotential stem cell compartment. These data may, however, suggest a shorter doubling time for cells comprising the fetal and newborn committed erythroid compartments. (author)

  8. Erythroid differentiation of fetal, newborn, and adult haemopoietic stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Rencricca, N J; Howard, D; Kubanek, B; Stohlman, F [Boston Univ., Mass. (USA). School of Medicine; Department of Biological Sciences, University of Lowell, Lowell, Massachusetts, USA)

    1976-01-01

    Erythroid regeneration was studied in lethally irradiated mice given transplants containing equivalent numbers of haemopoietic stem cells (i.e. CFU) from fetal liver, neonatal marrow or adult marrow. Adult marrow was taken from normal control mice, whose CFU for the most part were not in active cell cycle, as well as from phenylhydrazine-treated groups whose CFU were in similar state of proliferation (i.e. approximately 40-50% in DNA synthesis) as those derived from fetal liver and neonatal marrow. Splenic and femoral radioiron (/sup 59/Fe) incorporation were measured at intervals after transplantation and were found to begin earliest in mice given fetal liver, then in animals given neonatal marrow and latest in recipients of adult marrow. Peripheral reticulocytes showed a similar pattern of recovery. The data reported herein suggest that the differences in erythroid regeneration evoked by transplants of fetal liver, neonatal marrow or adult marrow, are not solely attributed to the degree of proliferation in the pluripotential stem cell compartment. These data may, however, suggest a shorter doubling time for cells comprising the fetal and newborn committed erythroid compartments.

  9. Effects of combined dietary supplementation with fenofibrate and Schisandrae Fructus pulp on lipid and glucose levels and liver function in normal and hypercholesterolemic mice

    Directory of Open Access Journals (Sweden)

    Zhu PL

    2015-02-01

    Full Text Available Pei-Li Zhu,1 Si-Yuan Pan,1 Shu-Feng Zhou,2 Yi Zhang,1 Xiao-Yan Wang,1 Nan Sun,1 Zhu-Sheng Chu,1 Zhi-Ling Yu,3 Kam-Ming Ko41Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, People’s Republic of China; 4Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, People’s Republic of ChinaBackground: Currently, combined therapy using herbs and synthetic drugs has become a feasible therapeutic intervention against some diseases. The purpose of this study was to assess the effects of supplementation with fenofibrate (FF, a chemical drug used for the treatment of hyperlipidemia, and the aqueous extract of Schisandrae Fructus (SF, a Chinese herb pulp (AqSF-P or an SF-related synthetic analog, bicyclol (BY, on serum/hepatic lipid levels and liver status in normal and hypercholesterolemic (HCL mice.Methods: Male mice obtained from the Institute of Cancer Research (ICR were fed on a normal diet (ND or high cholesterol/bile salt (0.5%/0.15%, w/w diet (HCBD containing FF (0.03% or 0.1%, w/w with or without AqSF-P (0.3%-9.0%, based on crude herbal material, w/w or BY (0.025%, w/w for 10 days. Then serum lipid levels and alanine aminotransferase (ALT activity, as well as hepatic triglyceride (TG, total cholesterol (TC, and glucose levels, were measured.Results: Oral supplementation with FF significantly reduced serum and hepatic TG, TC, and hepatic glucose levels (approximately 79% in mice fed with ND or HCBD. FF supplementation combined with AqSF-P or BY increased FF-induced reduction in hepatic TC and TG contents in ND-fed mice (up to 67% and in HCBD-fed mice (up to 54%, when compared with FF supplementation alone. Hepatic glucose-lowering effect of FF was

  10. Effect of adult onset hypothyroidism on behavioral parameters and acetylcholinesterase isoforms activity in specific brain regions of male mice.

    Science.gov (United States)

    Vasilopoulou, Catherine G; Constantinou, Caterina; Giannakopoulou, Dimitra; Giompres, Panagiotis; Margarity, Marigoula

    2016-10-01

    Thyroid hormones (TH) are essential for normal development and function of mammalian central nervous system (CNS); TH dysregulation has been implicated in several cognitive and behavioral deficits related to dysfunctions of neurotransmitter systems. In the present study, we investigated the effects of adult onset hypothyroidism on the activity of acetylcholinesterase (AChE) and on related behavioral parameters. For this purpose we used adult male Balb/cJ mice that were divided randomly into euthyroid and hypothyroid animal groups. Animals were rendered hypothyroid through administration of 1% w/v KClO4 in their drinking water for 8weeks. At the end of the treatment, learning/memory procedures were examined through step-through passive avoidance task while fear/anxiety was assessed using elevated plus-maze (EPM) and open-field (OF) tests. AChE activity was determined colorimetrically in two different fractions, salt-soluble fraction (SS) (containing mainly the G1 isoform) and detergent-soluble fraction (DS) (containing mainly the G4 isoform) in cerebral cortex, cerebellum, midbrain, hippocampus and striatum. Our results indicate that adult onset hypothyroidism caused significant memory impairment and increased fear/anxiety. Moreover, the activity of both isoforms of AChE was reduced in all brain regions examined in a brain region- and isoform-specific manner. Copyright © 2016. Published by Elsevier Inc.

  11. Differential androgenesis in gamma irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jihyang; Yoon, Yongdal [Hanyang Univ., Seoul (Korea, Republic of); Kim, Jin Kyu [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2002-07-01

    The Leydig cells of the testis account for at least 75% of the total testosterone produced in the normal adult male. Whereas the production of estrogen from androgen is catalyzed by aromatase cytochrome P450, which is found in many tissues, including gonad, brain, adipose tissue, bone, and heart. The gamma-irradiation causes the impairment of spermatogenesis and steroidogenesis in male mice. The present study was performed to analyze changes in testosterone concentrations and expression of steroidogenic enzyme of mice after whole body gamma-irradiation. Eight-week-old male ICR mice were irradiated with 6.5 or 10 Gy. At days 1, 2, 3, 4, and 5 after irradiation, testes were removed and processed for paraffin sections and isolation of mRNA. We calculated the gonad index from body and testis weight, and checked the testis volume. Hormonal analysis was performed by means of radioimmunoassay (RIA) in serum and intratesticular fluid. Semiquantitative reverse transcription polymerase chain reaction (RT-PCR) was used to evaluate the expression kinetics of the apoptotic gene and the cytochrome P450 aromatase gene after irradiation. In gamma-irradiated mice, the body weight reduced in comparison to that of the control group. Therefore, gonad indices increased. The testosterone concentrations in serum and intratesticular fluid were significantly reduced. RT- PCR data represented that the expression of Fas, Fas ligand, and aromatase cytochrome P450 showed the specific patterns against control groups. These results indicated that gamma- irradiation of adult mice induced the alteration of androgenesis and suggested that might counteract the spermatogenesis.

  12. Normal isometric strength of rotatorcuff muscles in adults.

    Science.gov (United States)

    Chezar, A; Berkovitch, Y; Haddad, M; Keren, Y; Soudry, M; Rosenberg, N

    2013-01-01

    The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for each decade of life. Maximal isometric force was measured at standardised positions for supraspinatus, infraspinatus and subscapularis muscles in both shoulders in every person. Torque of the force was calculated and normalised to lean body mass. The profiles of mean torque-time curves for each age and gender group were compared. Our data showed that men gradually gained maximal strength in the fifth decade, and showed decreased strength in the sixth. In women the maximal strength was gained in the fourth decade with gradual decline to the sixth decade of life. The dominant arm was stronger in most of the tested groups. The torque profiles of the rotator cuff muscles in men at all ages were significantly higher than that in women. We found previously unrecognised variations of rotator cuff muscles' isometric strength according to age, gender and dominancy in a normal population. The presented data may serve as a basis for the future studies for identification of the abnormal patterns of muscle isometric strength in patients with pathology of the rotator cuff muscles. Cite this article: Bone Joint Res 2013;2:214-19.

  13. A study of several normal values of Korean healthy adults on chest roentgenograms

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Byung Chull [Choong Nam University College of Medicine, Taejeon (Korea, Republic of)

    1975-06-15

    Determination of several normal values were carried out healthy 1805 cases of Korean adults, 1436 cases of male and 369 cases of female, by the drawing and calculation on chest roentgenograms. In many instances, the change of normal values provides an important clinical values, and often is decisive to evaluate the diagnosis, treatment and prognosis of pulmonary, cardiac and mediastinal disease.

  14. Tumor necrosis factor-alpha during neonatal brain development affects anxiety- and depression-related behaviors in adult male and female mice.

    Science.gov (United States)

    Babri, Shirin; Doosti, Mohammad-Hossein; Salari, Ali-Akbar

    2014-03-15

    A nascent literature suggests that neonatal infection is a risk factor for the development of brain, behavior and hypothalamic-pituitary-adrenal axis which can affect anxiety- and depression-related behaviors in later life. It has been documented that neonatal infection raises the concentrations of tumor necrosis factor-alpha (TNF-α) in neonate rodents and such infections may result in neonatal brain injury, at least in part, through pro-inflammatory cytokines. In addition, previous studies have shown that TNF-α is involved in cellular differentiation, neurogenesis and programmed cell death during the development of the central nervous system. We investigated for the first time whether neonatal exposure to TNF-α can affect body weight, stress-induced corticosterone (COR), anxiety- and depression-related behaviors in adult mice. In the present study, neonatal mice were treated to recombinant mouse TNF-α (0.2, 0.4, 0.7 and 1 μg/kg) or saline on postnatal days 3 and 5, then adult male and female mice were exposed to different behavioral tests. The results indicated that neonatal TNF-α treatment reduced body weight in neonatal period in both sexes. In addition, this study presents findings indicating that high doses of TNF- increase stress-induced COR levels, anxiety- and depression-related behaviors in adult males, but increase levels of anxiety without significantly influencing depression in adult female mice [corrected]. Our findings suggest that TNF-α exposure during neonatal period can alter brain and behavior development in a dose and sex-dependent manner in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. UPLC-MS method for quantification of pterostilbene and its application to comparative study of bioavailability and tissue distribution in normal and Lewis lung carcinoma bearing mice.

    Science.gov (United States)

    Deng, Li; Li, Yongzhi; Zhang, Xinshi; Chen, Bo; Deng, Yulin; Li, Yujuan

    2015-10-10

    A UPLC-MS method was developed for determination of pterostilbene (PTS) in plasma and tissues of mice. PTS was separated on Agilent Zorbax XDB-C18 column (50 × 2.1 mm, 1.8 μm) with gradient mobile phase at the flow rate of 0.2 ml/min. The detection was performed by negative ion electrospray ionization in multiple reaction monitoring mode. The linear calibration curve of PTS in mouse plasma and tissues ranged from 1.0 to 5000 and 0.50 to 500 ng/ml (r(2)>0.9979), respectively, with lowest limits of quantification (LLOQ) were between 0.5 and 2.0 ng/ml, respectively. The accuracy and precision of the assay were satisfactory. The validated method was applied to the study of bioavailability and tissue distribution of PTS in normal and Lewis lung carcinoma (LLC) bearing mice. The bioavailability of PTS (dose 14, 28 and 56 mg/kg) in normal mice were 11.9%, 13.9% and 26.4%, respectively; and the maximum level (82.1 ± 14.2 μg/g) was found in stomach (dose 28 mg/kg). The bioavailability, peak concentration (Cmax), time to peak concentration (Tmax) of PTS in LLC mice was increased compared with normal mice. The results indicated the UPLC-MS method is reliable and bioavailability and tissue distribution of PTS in normal and LLC mice were dramatically different. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    Science.gov (United States)

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  17. Neonatal Whisker Trimming Impairs Fear/Anxiety-Related Emotional Systems of the Amygdala and Social Behaviors in Adult Mice.

    Directory of Open Access Journals (Sweden)

    Hitomi Soumiya

    Full Text Available Abnormalities in tactile perception, such as sensory defensiveness, are common features in autism spectrum disorder (ASD. While not a diagnostic criterion for ASD, deficits in tactile perception contribute to the observed lack of social communication skills. However, the influence of tactile perception deficits on the development of social behaviors remains uncertain, as do the effects on neuronal circuits related to the emotional regulation of social interactions. In neonatal rodents, whiskers are the most important tactile apparatus, so bilateral whisker trimming is used as a model of early tactile deprivation. To address the influence of tactile deprivation on adult behavior, we performed bilateral whisker trimming in mice for 10 days after birth (BWT10 mice and examined social behaviors, tactile discrimination, and c-Fos expression, a marker of neural activation, in adults after full whisker regrowth. Adult BWT10 mice exhibited significantly shorter crossable distances in the gap-crossing test than age-matched controls, indicating persistent deficits in whisker-dependent tactile perception. In contrast to controls, BWT10 mice exhibited no preference for the social compartment containing a conspecific in the three-chamber test. Furthermore, the development of amygdala circuitry was severely affected in BWT10 mice. Based on the c-Fos expression pattern, hyperactivity was found in BWT10 amygdala circuits for processing fear/anxiety-related responses to height stress but not in circuits for processing reward stimuli during whisker-dependent cued learning. These results demonstrate that neonatal whisker trimming and concomitant whisker-dependent tactile discrimination impairment severely disturbs the development of amygdala-dependent emotional regulation.

  18. Dichotic and dichoptic digit perception in normal adults.

    Science.gov (United States)

    Lawfield, Angela; McFarland, Dennis J; Cacace, Anthony T

    2011-06-01

    Verbally based dichotic-listening experiments and reproduction-mediated response-selection strategies have been used for over four decades to study perceptual/cognitive aspects of auditory information processing and make inferences about hemispheric asymmetries and language lateralization in the brain. Test procedures using dichotic digits have also been used to assess for disorders of auditory processing. However, with this application, limitations exist and paradigms need to be developed to improve specificity of the diagnosis. Use of matched tasks in multiple sensory modalities is a logical approach to address this issue. Herein, we use dichotic listening and dichoptic viewing of visually presented digits for making this comparison. To evaluate methodological issues involved in using matched tasks of dichotic listening and dichoptic viewing in normal adults. A multivariate assessment of the effects of modality (auditory vs. visual), digit-span length (1-3 pairs), response selection (recognition vs. reproduction), and ear/visual hemifield of presentation (left vs. right) on dichotic and dichoptic digit perception. Thirty adults (12 males, 18 females) ranging in age from 18 to 30 yr with normal hearing sensitivity and normal or corrected-to-normal visual acuity. A computerized, custom-designed program was used for all data collection and analysis. A four-way repeated measures analysis of variance (ANOVA) evaluated the effects of modality, digit-span length, response selection, and ear/visual field of presentation. The ANOVA revealed that performances on dichotic listening and dichoptic viewing tasks were dependent on complex interactions between modality, digit-span length, response selection, and ear/visual hemifield of presentation. Correlation analysis suggested a common effect on overall accuracy of performance but isolated only an auditory factor for a laterality index. The variables used in this experiment affected performances in the auditory modality to a

  19. Long-term Treatment with Low-Dose Caffeine Worsens BPSD-Like Profile in 3xTg-AD Mice Model of Alzheimer’s Disease and Affects Mice with Normal Aging

    Directory of Open Access Journals (Sweden)

    Raquel Baeta-Corral

    2018-02-01

    Full Text Available Coffee or caffeine has recently been suggested as prophylaxis for dementia. Although memory problems are hallmarks of Alzheimer’s disease, this dementia is also characterized by neuropsychiatric symptoms called Behavioral and Psychological Symptoms of Dementia (BPSD. The impact of preventive/therapeutic strategies on both cognitive and non-cognitive symptoms can be addressed in the 3xTg-AD mice, since they exhibit cognitive but also BPSD-like profiles. Here, we studied the long-term effects of a low dose of caffeine in male 3xTg-AD mice and as compared to age-matched non-transgenic (NTg counterparts with normal aging. Animals were treated (water or caffeine in drinking water from adulthood (6 months of age until middle-aged (13 months of age, that in 3xTg-AD mice correspond to onset of cognitive impairment and advanced stages, respectively. The low caffeine dosing used (0.3 mg/ml was previously found to give a plasma concentration profile in mice roughly equivalent to that of a human coffee drinker. There were significant effects of caffeine on most behavioral variables, especially those related to neophobia and other anxiety-like behaviors, emotionality, and cognitive flexibility. The 3xTg-AD and NTg mice were differently influenced by caffeine. Overall, the increase of neophobia and other anxiety-related behaviors resulted in an exacerbation of BPSD-like profile in 3xTg-AD mice. Learning and memory, strongly influenced by anxiety in 3xTg-AD mice, got little benefit from caffeine, only shown after a detailed analysis of navigation strategies. The worsened pattern in NTg mice and the use of search strategies in 3xTg-AD mice make both groups more similar. Circadian motor activity showed genotype differences, which were found to be enhanced by caffeine. Selective effects of caffeine on NTg were found in the modulation of behaviors related to emotional profile and risk assessment. Caffeine normalized splenomegaly of 3xTg-AD mice, a physical

  20. Age and Gender Effects on Wideband Absorbance in Adults with Normal Outer and Middle Ear Function

    Science.gov (United States)

    Mazlan, Rafidah; Kei, Joseph; Ya, Cheng Li; Yusof, Wan Nur Hanim Mohd; Saim, Lokman; Zhao, Fei

    2015-01-01

    Purpose: This study examined the effects of age and gender on wideband energy absorbance in adults with normal middle ear function. Method: Forty young adults (14 men, 26 women, aged 20-38 years), 31 middle-aged adults (16 men, 15 women, aged 42-64 years), and 30 older adults (20 men, 10 women, aged 65-82 years) were assessed. Energy absorbance…

  1. Mice Lacking Pannexin 1 Release ATP and Respond Normally to All Taste Qualities.

    Science.gov (United States)

    Vandenbeuch, Aurelie; Anderson, Catherine B; Kinnamon, Sue C

    2015-09-01

    Adenosine triphosphate (ATP) is required for the transmission of all taste qualities from taste cells to afferent nerve fibers. ATP is released from Type II taste cells by a nonvesicular mechanism and activates purinergic receptors containing P2X2 and P2X3 on nerve fibers. Several ATP release channels are expressed in taste cells including CALHM1, Pannexin 1, Connexin 30, and Connexin 43, but whether all are involved in ATP release is not clear. We have used a global Pannexin 1 knock out (Panx1 KO) mouse in a series of in vitro and in vivo experiments. Our results confirm that Panx1 channels are absent in taste buds of the knockout mice and that other known ATP release channels are not upregulated. Using a luciferin/luciferase assay, we show that circumvallate taste buds from Panx1 KO mice normally release ATP upon taste stimulation compared with wild type (WT) mice. Gustatory nerve recordings in response to various tastants applied to the tongue and brief-access behavioral testing with SC45647 also show no difference between Panx1 KO and WT. These results confirm that Panx1 is not required for the taste evoked release of ATP or for neural and behavioral responses to taste stimuli. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Effect of irradiation, cyclophosphamide, and etoposide (VP-16) on number of peripheral blood and peritoneal leukocytes in mice under normal conditions and during acute inflammatory reaction

    International Nuclear Information System (INIS)

    van't Wout, J.W.; Linde, I.; Leijh, P.C.; van Furth, R.

    1989-01-01

    In order to develop a suitable model for studying the role of granulocytes and monocytes in resistance against pathogenic microorganisms, we investigated the effect of irradiation and cytostatic treatment (cyclophosphamide and VP-16) on the number of both peripheral blood and peritoneal leukocytes in male Swiss mice. Irradiation and cyclophosphamide treatment severely decreased the number of both granulocytes and monocytes in peripheral blood, whereas VP-16 only lowered the number of blood monocytes to a significant degree and had little effect on the number of blood granulocytes or lymphocytes. When normal mice were injected intraperitoneally with newborn calf serum (NBCS) the number of peritoneal granulocytes rose about 100-fold within 6 h. In irradiated and cyclophosphamide-treated mice, this influx of granulocytes into the peritoneal cavity was virtually eliminated, as was the concomitant increase in the number of blood granulocytes; in VP-16-treated mice, on the other hand, the number of peripheral blood and peritoneal granulocytes increased to the same degree as in normal mice. An increase in the number of peripheral blood monocytes and peritoneal macrophages occurred 24-48 h after injection of NBCS in normal mice. This increase was significantly impaired by irradiation as well as by treatment with cyclophosphamide or VP-16

  3. Cerebral Blood Flow and Amyloid-β Interact to Affect Memory Performance in Cognitively Normal Older Adults

    Directory of Open Access Journals (Sweden)

    Katherine J. Bangen

    2017-06-01

    Full Text Available Cerebral blood flow (CBF alterations and amyloid-β (Aβ accumulation have been independently linked to cognitive deficits in older adults at risk for dementia. Less is known about how CBF and Aβ may interact to affect cognition in cognitively normal older adults. Therefore, we examined potential statistical interactions between CBF and Aβ status in regions typically affected in Alzheimer’s disease (AD within a sample of older adults from the Alzheimer’s Disease Neuroimaging Initiative (ADNI study. Sixty-two cognitively normal participants (mean age = 72 years underwent neuroimaging and memory testing. Arterial spin labeling magnetic resonance imaging was used to quantify CBF and florbetapir PET amyloid imaging was used to measure Aβ deposition. Aβ status (i.e., positivity versus negativity was determined based on established cutoffs (Landau et al., 2013. The Rey Auditory Verbal Learning Test was used to assess memory. Linear regression models adjusted for age, education, and sex, demonstrated significant interactions between CBF and Aβ status on memory performance. Among Aβ positive older adults, there were significant negative associations between higher CBF in hippocampus, posterior cingulate, and precuneus and poorer memory performance. In contrast, among Aβ negative older adults, there were no significant associations between CBF and cognition. Our findings extend previous CBF studies of dementia risk by reporting interactions between Aβ status and CBF on memory performance in a sample of well-characterized, cognitively normal older adults. Results suggest that differential CBF-cognition associations can be identified in healthy, asymptomatic Aβ positive older adults relative to Aβ negative individuals. Associations between higherCBF and poorer memory among Aβ positive older adults may reflect a cellular and/or vascular compensatory response to pathologic processes whereby higher CBF is needed to maintain normal memory

  4. In vivo P-31 MR spectroscopic studies of liver in normal adults and cirrhotic patients

    International Nuclear Information System (INIS)

    Ban, N.; Moriyasu, F.; Tamada, T.

    1986-01-01

    The author performed in vivo P-31 MR spectroscopic studies of normal and diseased human liver using an experimental 2.0-T whole-body MR imager. Then normal adults and ten cirrhotic patients in the fasting state were studied. Spatially localized in vivo P-31 MR spectra of human liver were obtained in combination with the use of a surface coil and gradient magnetic field. Six spectral peaks were observed in both groups and were assigned, from left to right, to phosphomonoester, inorganic phosphate, phosophodiester, γ-ATP, α-ATP, and β-ATP, on the basis of the chemical shifts. There were no definite differences between the spectral patterns of normal adults and those of cirrhotic patients in the fasting state

  5. Forebrain deletion of αGDI in adult mice worsens the pre-synaptic deficit at cortico-lateral amygdala synaptic connections.

    Directory of Open Access Journals (Sweden)

    Veronica Bianchi

    Full Text Available The GDI1 gene encodes αGDI, which retrieves inactive GDP-bound RAB from membranes to form a cytosolic pool awaiting vesicular release. Mutations in GDI1 are responsible for X-linked Intellectual Disability. Characterization of the Gdi1-null mice has revealed alterations in the total number and distribution of hippocampal and cortical synaptic vesicles, hippocampal short-term synaptic plasticity and specific short-term memory deficits in adult mice, which are possibly caused by alterations of different synaptic vesicle recycling pathways controlled by several RAB GTPases. However, interpretation of these studies is complicated by the complete ablation of Gdi1 in all cells in the brain throughout development. In this study, we generated conditionally gene-targeted mice in which the knockout of Gdi1 is restricted to the forebrain, hippocampus, cortex and amygdala and occurs only during postnatal development. Adult mutant mice reproduce the short-term memory deficit previously reported in Gdi1-null mice. Surprisingly, the delayed ablation of Gdi1 worsens the pre-synaptic phenotype at cortico-amygdala synaptic connections compared to Gdi1-null mice. These results suggest a pivotal role of αGDI via specific RAB GTPases acting specifically in forebrain regions at the pre-synaptic sites involved in memory formation.

  6. Response of mice liver to continuous beta-irradiation from tritiated water

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, A L; Gupta, M L; Singh, R P [Rajasthan Univ., Jaipur (India). Radiation Biology Lab.

    1978-09-01

    The low-level toxicity of the tritium has been studied on the adult mice liver. A group of adult mice was irradiated continuously at the radioactivity of 1.25 ..mu..Ci/ml of drinking water up to 30 days and the liver was studied on 1, 5, 7, 15 and 30 days after initiation of treatment. In early intervals, a gradual increase in the degree of damage in the form of histopathological lesions like cytoplasmic vacuolation and degranulation, pycnosis, hemorrhage and lymphocytic infiltration etc. was noticed which reaches to maximum on day 7, after which it was found a bit repaired on the following interval (15 days) and on 30th day exhibited almost a near-normal hepatic architecture with a few histopathological lesions viz. edema and leukocytic infiltration.

  7. Metformin normalizes the structural changes in glycogen preceding prediabetes in mice overexpressing neuropeptide Y in noradrenergic neurons.

    Science.gov (United States)

    Ailanen, Liisa; Bezborodkina, Natalia N; Virtanen, Laura; Ruohonen, Suvi T; Malova, Anastasia V; Okovityi, Sergey V; Chistyakova, Elizaveta Y; Savontaus, Eriika

    2018-04-01

    Hepatic insulin resistance and increased gluconeogenesis are known therapeutic targets of metformin, but the role of hepatic glycogen in the pathogenesis of diabetes is less clear. Mouse model of neuropeptide Y (NPY) overexpression in noradrenergic neurons (OE-NPY D βH ) with a phenotype of late onset obesity, hepatosteatosis, and prediabetes was used to study early changes in glycogen structure and metabolism preceding prediabetes. Furthermore, the effect of the anti-hyperglycemic agent, metformin (300 mg/kg/day/4 weeks in drinking water), was assessed on changes in glycogen metabolism, body weight, fat mass, and glucose tolerance. Glycogen structure was characterized by cytofluorometric analysis in isolated hepatocytes and mRNA expression of key enzymes by qPCR. OE-NPY D βH mice displayed decreased labile glycogen fraction relative to stabile fraction (the intermediate form of glycogen) suggesting enhanced glycogen cycling. This was supported by decreased filling of glucose residues in the 10th outer tier of the glycogen molecule, which suggests accelerated glycogen phosphorylation. Metformin reduced fat mass gain in both genotypes, but glucose tolerance was improved mostly in wild-type mice. However, metformin inhibited glycogen accumulation and normalized the ratio between glycogen structures in OE-NPY D βH mice indicating decreased glycogen synthesis. Furthermore, the presence of glucose residues in the 11th tier together with decreased glycogen phosphorylase expression suggested inhibition of glycogen degradation. In conclusion, structural changes in glycogen of OE-NPY D βH mice point to increased glycogen metabolism, which may predispose them to prediabetes. Metformin treatment normalizes these changes and suppresses both glycogen synthesis and phosphorylation, which may contribute to its preventive effect on the onset of diabetes.

  8. The Forkhead Transcription Factor, FOXP3, Is Required for Normal Pituitary Gonadotropin Expression in Mice1

    Science.gov (United States)

    Jung, Deborah O.; Jasurda, Jake S.; Egashira, Noboru; Ellsworth, Buffy S.

    2012-01-01

    ABSTRACT The hypothalamic-pituitary-gonadal axis is central to normal reproductive function. This pathway begins with the release of gonadotropin-releasing hormone in systematic pulses by the hypothalamus. Gonadotropin-releasing hormone is bound by receptors on gonadotroph cells in the anterior pituitary gland and stimulates the synthesis and secretion of luteinizing hormone and, to some extent, follicle-stimulating hormone. Once stimulated by these glycoprotein hormones, the gonads begin gametogenesis and the synthesis of sex hormones. In humans, mutations of the forkhead transcription factor, FOXP3, lead to an autoimmune disorder known as immunodysregulation, polyendocrinopathy, and enteropathy, X-linked syndrome. Mice with a mutation in the Foxp3 gene have a similar autoimmune syndrome and are infertile. To understand why FOXP3 is required for reproductive function, we are investigating the reproductive phenotype of Foxp3 mutant mice (Foxp3sf/Y). Although the gonadotroph cells appear to be intact in Foxp3sf/Y mice, luteinizing hormone beta (Lhb) and follicle-stimulating hormone beta (Fshb) expression are significantly decreased, demonstrating that these mice exhibit a hypogonadotropic hypogonadism. Hypothalamic expression of gonadotropin-releasing hormone is not significantly decreased in Foxp3sf/Y males. Treatment of Foxp3sf/Y males with a gonadotropin-releasing hormone receptor agonist does not rescue expression of Lhb or Fshb. Interestingly, we do not detect Foxp3 expression in the pituitary or hypothalamus, suggesting that the infertility seen in Foxp3sf/Y males is a secondary effect, possibly due to loss of FOXP3 in immune cells. Pituitary expression of glycoprotein hormone alpha (Cga) and prolactin (Prl) are significantly reduced in Foxp3sf/Y males, whereas the precursor for adrenocorticotropic hormone, pro-opiomelanocortin (Pomc), is increased. Human patients diagnosed with IPEX often exhibit thyroiditis due to destruction of the thyroid gland by

  9. Comparison of Fatty Acid and Gene Profiles in Skeletal Muscle in Normal and Obese C57BL/6J Mice before and after Blunt Muscle Injury

    Directory of Open Access Journals (Sweden)

    Jens-Uwe Werner

    2018-01-01

    Full Text Available Injury and obesity are two major health burdens affecting millions of people worldwide. Obesity is recognized as a state of chronic inflammation accompanied by various co-morbidities like T2D or cardiovascular diseases. There is increasing evidence that obesity impairs muscle regeneration, which is mainly due to chronic inflammation and to excessive accumulation of lipids in adipose and non-adipose tissue. To compare fatty acid profiles and changes in gene expression at different time points after muscle injury, we used an established drop tower-based model with a defined force input to damage the extensor iliotibialis anticus on the left hind limb of female C57BL/6J mice of normal weight and obese mice. Although most changes in fatty acid content in muscle tissue are diet related, levels of eicosaenoic (normal weight and DHG-linolenic acid (obese in the phospholipid and docosahexaenoic acid (normal weight in the triglyceride fraction are altered after injury. Furthermore, changes in gene transcription were detected in 3829 genes in muscles of normal weight mice, whereas only 287 genes were altered in muscles of obese mice after trauma. Alterations were found within several pathways, among them notch-signaling, insulin-signaling, sonic hedgehog-signaling, apoptosis related pathways, fat metabolism related cholesterol homeostasis, fatty acid biosynthetic process, fatty acid elongation, and acyl-CoA metabolic process. We could show that genes involved in fat metabolism are affected 3 days after trauma induction mostly in normal weight but not in obese mice. The strongest effects were observed in normal weight mice for Alox5ap, the activating protein for leukotriene synthesis, and Apobec1, an enzyme substantial for LDL synthesis. In summary, we show that obesity changes the fat content of skeletal muscle and generally shows a negative impact upon blunt muscle injury on various cellular processes, among them fatty acid related metabolism, notch

  10. Normal function of immunologic stem cells from aged mice

    International Nuclear Information System (INIS)

    Harrison, D.E.; Doubleday, J.W.

    1975-01-01

    Marrow or spleen grafts from aged donor mice produced antibody-forming cells as effectively as did grafts from younger controls in recipients tested 3 to 10 months after the transplantation. All recipients were lethally irradiated, and the T6 chromosome marker was used to demonstrate that they were populated by donor cell lines. Recipients of aged or younger control grafts gave similar responses when stimulated with varying doses of antigen and when tested at different times after the transplantation except in two cases. Recipients of aged spleen grafts gave significantly lower responses than younger controls for the first few weeks after the transplantation. If recipients had been thymectomized before lethal irradiation, aged cell lines (pooled marrow and spleen cells) gave only 37 percent of the responses of younger controls. Given sufficient time and intact young recipients, immunologic stem cell lines from old donors populated recipients with cells having normal immune responses. These results suggest that age-related immunologic defects are not intrinsically timed in the precursor cell lines that populate the immune system. (U.S.)

  11. Ontogeny of thymic independent antibody responses in vitro in normal mice and mice with an x-linked B cell defect

    Energy Technology Data Exchange (ETDEWEB)

    Mosier, D.E.; Mond, J.J.; Goldings, E.A.

    1977-12-01

    The primary in vitro antibody response of neonatal spleen cells to three thymic independent antigens has been examined. The time of onset of responsiveness to TNP-Brucella abortus and TNP-lipopolysaccharide was significantly earlier than the onset of responsiveness to TNP-Ficoll. This ontologic sequence was not affected by T cell depletion or antigen presentation on adult macrophages. In neonatal mice bearing the X-linked CBA/N defect, the response to TNP-Brucella abortus and TNP-lipopolysaccharide was much delayed and no response to TNP-Ficoll developed. We conclude that different thymic independent antigens address different subpopulations of B cells, one of which appears earlier in ontogeny than the other.

  12. Ontogeny of thymic independent antibody responses in vitro in normal mice and mice with an x-linked B cell defect

    International Nuclear Information System (INIS)

    Mosier, D.E.; Mond, J.J.; Goldings, E.A.

    1977-01-01

    The primary in vitro antibody response of neonatal spleen cells to three thymic independent antigens has been examined. The time of onset of responsiveness to TNP-Brucella abortus and TNP-lipopolysaccharide was significantly earlier than the onset of responsiveness to TNP-Ficoll. This ontologic sequence was not affected by T cell depletion or antigen presentation on adult macrophages. In neonatal mice bearing the X-linked CBA/N defect, the response to TNP-Brucella abortus and TNP-lipopolysaccharide was much delayed and no response to TNP-Ficoll developed. We conclude that different thymic independent antigens address different subpopulations of B cells, one of which appears earlier in ontogeny than the other

  13. Nutritional intervention restores muscle but not kidney phenotypes in adult calcineurin aα null mice

    DEFF Research Database (Denmark)

    Madsen, Kirsten; Reddy, Ramesh N; Price, S Russ

    2013-01-01

    to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα-/- mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional...... deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development...... and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal...

  14. Thyroid hormone interacts with the sympathetic nervous system to modulate bone mass and structure in young adult mice.

    Science.gov (United States)

    Fonseca, Tatiana L; Teixeira, Marilia B C G; Miranda-Rodrigues, Manuela; Rodrigues-Miranda, Manuela; Silva, Marcos V; Martins, Gisele M; Costa, Cristiane C; Arita, Danielle Y; Perez, Juliana D; Casarini, Dulce E; Brum, Patricia C; Gouveia, Cecilia H A

    2014-08-15

    To investigate whether thyroid hormone (TH) interacts with the sympathetic nervous system (SNS) to modulate bone mass and structure, we studied the effects of daily T3 treatment in a supraphysiological dose for 12 wk on the bone of young adult mice with chronic sympathetic hyperactivity owing to double-gene disruption of adrenoceptors that negatively regulate norepinephrine release, α(2A)-AR, and α(2C)-AR (α(2A/2C)-AR(-/-) mice). As expected, T3 treatment caused a generalized decrease in the areal bone mineral density (aBMD) of WT mice (determined by DEXA), followed by deleterious effects on the trabecular and cortical bone microstructural parameters (determined by μCT) of the femur and vertebra and on the biomechanical properties (maximum load, ultimate load, and stiffness) of the femur. Surprisingly, α(2A/2C)-AR(-/-) mice were resistant to most of these T3-induced negative effects. Interestingly, the mRNA expression of osteoprotegerin, a protein that limits osteoclast activity, was upregulated and downregulated by T3 in the bone of α(2A/2C)-AR(-/-) and WT mice, respectively. β1-AR mRNA expression and IGF-I serum levels, which exert bone anabolic effects, were increased by T3 treatment only in α(2A/2C)-AR(-/-) mice. As expected, T3 inhibited the cell growth of calvaria-derived osteoblasts isolated from WT mice, but this effect was abolished or reverted in cells isolated from KO mice. Collectively, these findings support the hypothesis of a TH-SNS interaction to control bone mass and structure of young adult mice and suggests that this interaction may involve α2-AR signaling. Finally, the present findings offer new insights into the mechanisms through which TH regulates bone mass, structure, and physiology. Copyright © 2014 the American Physiological Society.

  15. Brain regional uptake of radioactive Sc, Mn, Zn, Se, Rb and Zr tracers into normal mice during aging

    International Nuclear Information System (INIS)

    Amano, R.; Enomoto, S.

    2001-01-01

    Radioactive multitracer technique was applied to study the brain regional uptake of trace elements by the normal mice during aging. The brain regional radioactivities of 46 Sc, 54 Mn, 65 Zn, 75 Se, 83 Rb and 88 Zr were measured 48 hours after intraperitoneal injection of a solution in normal mice aged 6 to 52 weeks to evaluate the brain regional (corpus striatum, cerebellum, cerebral cortex, hippocampus, and pons and medulla) uptakes. The radioactive distributions of 46 Sc, 54 Mn and 88 Zr tracers were variable and region-specific in the brain, while those of 65 Zn, 75 Se and 83 Rb tracers were comparable among all regions of interest. The brain regional uptakes of all tracers slightly increased with age from 10 to 28 weeks, and then remained constant during aging after 28 weeks. These uptake variations may be involved in the functional degenerative process of the blood-brain barrier during aging. (author)

  16. Spatial encoding in spinal sensorimotor circuits differs in different wild type mice strains

    Directory of Open Access Journals (Sweden)

    Schouenborg Jens

    2008-05-01

    Full Text Available Abstract Background Previous studies in the rat have shown that the spatial organisation of the receptive fields of nociceptive withdrawal reflex (NWR system are functionally adapted through experience dependent mechanisms, termed somatosensory imprinting, during postnatal development. Here we wanted to clarify 1 if mice exhibit a similar spatial encoding of sensory input to NWR as previously found in the rat and 2 if mice strains with a poor learning capacity in various behavioural tests, associated with deficient long term potention, also exhibit poor adaptation of NWR. The organisation of the NWR system in two adult wild type mouse strains with normal long term potentiation (LTP in hippocampus and two adult wild type mouse strains exhibiting deficiencies in corresponding LTP were used and compared to previous results in the rat. Receptive fields of reflexes in single hindlimb muscles were mapped with CO2 laser heat pulses. Results While the spatial organisation of the nociceptive receptive fields in mice with normal LTP were very similar to those in rats, the LTP impaired strains exhibited receptive fields of NWRs with aberrant sensitivity distributions. However, no difference was found in NWR thresholds or onset C-fibre latencies suggesting that the mechanisms determining general reflex sensitivity and somatosensory imprinting are different. Conclusion Our results thus confirm that sensory encoding in mice and rat NWR is similar, provided that mice strains with a good learning capability are studied and raise the possibility that LTP like mechanisms are involved in somatosensory imprinting.

  17. ARGINASE ENZYMES IN ISOLATED AIRWAYS FROM NORMAL AND NITRIC OXIDE SYNTHASE 2-KNOCKOUT MICE EXPOSED TO OVALBUMIN

    Science.gov (United States)

    Bratt, Jennifer M.; Franzi, Lisa M.; Linderholm, Angela L.; Last, Michael S.; Kenyon, Nicholas J.; Last, Jerold A.

    2009-01-01

    Arginase has been suggested to compete with nitric oxide synthase (NOS) for their common substrate, L-arginine. To study the mechanisms underlying this interaction, we compared arginase expression in isolated airways and the consequences of inhibiting arginase activity in vivo with NO production, lung inflammation, and lung function in both C57BL/6 and NOS2 knockout mice undergoing ovalbumin-induced airway inflammation, a mouse model of asthma. Arginases I and II were measured by western blot in isolated airways from sensitized C57BL/6 mice exposed to ovalbumin aerosol. Physiological and biochemical responses---inflammation, lung compliance, airway hyperreactivity, exhaled NO concentration, arginine concentration--were compared with the responses of NOS2 knockout mice. NOS2 knockout mice had increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity. Both arginase I and arginase II were constitutively expressed in the airways of normal C57BL/6 mice. Arginase I was up-regulated approximately 8-fold in the airways of C57BL/6 mice exposed to ovalbumin. Expression of both arginase isoforms were significantly upregulated in NOS2 knockout mice exposed to ovalbumin, with about 40- and 4-fold increases in arginases I and II, respectively. Arginine concentration in isolated airways was not significantly different in any of the groups studied. Inhibition of arginase by systemic treatment of C57BL/6 mice with a competitive inhibitor, Nω-hydroxy-nor-L-arginine (nor-NOHA), significantly decreased the lung inflammatory response to ovalbumin in these animals. We conclude that NOS2 knockout mice are more sensitive to ovalbumin-induced airway inflammation and its sequelae than are C57BL/6 mice, as determined by increased total cells in lung lavage, decreased lung compliance, and increased airway hyperreactivity, and that these findings are strongly correlated with increased expression of both arginase isoforms in the airways of the NOS2

  18. Effect of acetylation on monoclonal antibody ZCE-025 Fab': Distribution in normal and tumor-bearing mice

    International Nuclear Information System (INIS)

    Tarburton, J.P.; Halpern, S.E.; Hagan, P.L.; Sudora, E.; Chen, A.; Fridman, D.M.; Pfaff, A.E.

    1990-01-01

    Studies were performed to determine in vitro and in vivo effects of acetylation on Fab' fragments of ZCE-025, a monoclonal anti-CEA antibody. Isoelectric focusing revealed a drop in isoelectric point of 1.7 pI units following acetylation. Biodistribution studies of acetylated and nonacetylated [111In]Fab' were performed in normal BALB/c mice and in nude mice bearing the T-380 CEA-producing human colon tumor. The acetylated fragments remained in the vascular compartment longer and had significantly diminished renal uptake of 111In compared to controls. While acetylation itself effected a 50% drop in immunoreactivity, tumor uptake of the acetylated and nonacetylated 111In-labeled Fab' fragments was comparable, with the exception of one data point, through 72 h

  19. Talker Differences in Clear and Conversational Speech: Perceived Sentence Clarity for Young Adults with Normal Hearing and Older Adults with Hearing Loss

    Science.gov (United States)

    Ferguson, Sarah Hargus; Morgan, Shae D.

    2018-01-01

    Purpose: The purpose of this study is to examine talker differences for subjectively rated speech clarity in clear versus conversational speech, to determine whether ratings differ for young adults with normal hearing (YNH listeners) and older adults with hearing impairment (OHI listeners), and to explore effects of certain talker characteristics…

  20. Seeing the Talker's Face Improves Free Recall of Speech for Young Adults with Normal Hearing but Not Older Adults with Hearing Loss

    Science.gov (United States)

    Rudner, Mary; Mishra, Sushmit; Stenfelt, Stefan; Lunner, Thomas; Rönnberg, Jerker

    2016-01-01

    Purpose: Seeing the talker's face improves speech understanding in noise, possibly releasing resources for cognitive processing. We investigated whether it improves free recall of spoken two-digit numbers. Method: Twenty younger adults with normal hearing and 24 older adults with hearing loss listened to and subsequently recalled lists of 13…

  1. Development of severe skeletal defects in induced SHP-2-deficient adult mice: a model of skeletal malformation in humans with SHP-2 mutations

    Directory of Open Access Journals (Sweden)

    Timothy J. Bauler

    2011-03-01

    SHP-2 (encoded by PTPN11 is a ubiquitously expressed protein tyrosine phosphatase required for signal transduction by multiple different cell surface receptors. Humans with germline SHP-2 mutations develop Noonan syndrome or LEOPARD syndrome, which are characterized by cardiovascular, neurological and skeletal abnormalities. To study how SHP-2 regulates tissue homeostasis in normal adults, we used a conditional SHP-2 mouse mutant in which loss of expression of SHP-2 was induced in multiple tissues in response to drug administration. Induced deletion of SHP-2 resulted in impaired hematopoiesis, weight loss and lethality. Most strikingly, induced SHP-2-deficient mice developed severe skeletal abnormalities, including kyphoses and scolioses of the spine. Skeletal malformations were associated with alterations in cartilage and a marked increase in trabecular bone mass. Osteoclasts were essentially absent from the bones of SHP-2-deficient mice, thus accounting for the osteopetrotic phenotype. Studies in vitro revealed that osteoclastogenesis that was stimulated by macrophage colony-stimulating factor (M-CSF and receptor activator of nuclear factor kappa B ligand (RANKL was defective in SHP-2-deficient mice. At least in part, this was explained by a requirement for SHP-2 in M-CSF-induced activation of the pro-survival protein kinase AKT in hematopoietic precursor cells. These findings illustrate an essential role for SHP-2 in skeletal growth and remodeling in adults, and reveal some of the cellular and molecular mechanisms involved. The model is predicted to be of further use in understanding how SHP-2 regulates skeletal morphogenesis, which could lead to the development of novel therapies for the treatment of skeletal malformations in human patients with SHP-2 mutations.

  2. Immunological investigations of antigens released by normal and irradiated schistosomasa mansoni cercariae in vitro. Part of a coordinated programme on preparation of irradiated vaccines against some human diseases

    International Nuclear Information System (INIS)

    Catty, D.

    1982-07-01

    S.mansoni cercariae were γ-irradiated at 1-15 K rads, syringe transformed, and injected into groups of 20 mice (200 dose), with unirradiated controls. Aliquots of 1,500 cercariae irradiated at 1-40 K rads (plus unirradiated controls) were cultured in serum-free medium. It was found that irradiation does not inhibit release of a broad spectrum of antigens in culture over 6 hours until 20 K rads is delivered. Mice used as hosts for the graded cercarial irradiation vaccine were subdivided into groups of 10 and either left unchallenged or challenged at 6 weeks with a normal infection of 200 cercariae. Serum samples were taken from every mouse at regular intervals and antibodies titrated by solid phase radioimmunoassay. Injected parasites, whether irradiated or normal, always gave higher antibody titres to cercarial and egg antigens than the equivalent dose of normal (challenge) parasites infecting by the natural route. Challenge infection depressed anti-cercarial responses in mice exposed to irradiated larvae but boosted the response to normal injected parasites. Antibodies to SEA were in lower titre in all groups but rose from week 7 (1 week post-challenge) in the groups injected with normal and 1 K rad-treated parasites, where adults were previously established in the hosts. At 12 weeks all mice were sacrificed and perfused for adults. Egg yields in liver and intestine were determined. There was no evidence of protective immunity to challenge infection induced by injected unirradiated or 1 K rad-irradiated, transformed, cercariae, even though both sources of parasite gave rise to egg-laying adults. By contrast, the 5, 10 and 15 K rad vaccines gave protection of 36-49%, even though they gave rise to no persistent adults or any deposited eggs. The protective (immunising) properties of irradiation-attenuated vaccines of S.mansoni cercariae can thus be clearly correlated with their capacity to release antigens in the immediate post irradiation period

  3. Incomplete development of the spleen and the deformity in the chimeras between asplenic mutant (Dominant hemimelia) and normal mice.

    Science.gov (United States)

    Suto, J; Wakayama, T; Imamura, K; Goto, S; Fukuta, K

    1995-08-01

    The semidominant gene Dh (Dominant hemimelia) induces skeletal and visceral abnormalities of various degrees and failure of the spleen in mice. The homozygous individual (Dh/Dh) seems to be lethal. The present experiment was designed to investigate the ability Dh cells to form a spleen and the genesis of the hind limb malformations by Dh/Dh and Dh/+ cells in chimeric mice. The Dh/Dh and Dh/+ embryos were produced in the F2 progeny of a cross between inbred strains of Dh/+ and DDD mice. They were aggregated with C3H/He or C57BL/6 embryos to make chimeras. Identification of Dh/Dh or Dh/+ embryos was carried out by Pep-3, and chimerism was analyzed by Gpi-1. Of 25 chimeras carrying the Dh gene, four mice formed a small spleen, two mice had a vestigial spleen, and the others no spleen. The tissues of the incompletely developed spleens were normal histologically and Dh cells were involved in the tissues of the spleen. In the chimeric mice, hindlimb malformation by the Dh gene was reduced in severity and the lethality of the homozygote (Dh/Dh) was rescued.

  4. Gastrointestinal absorption of plutonium and uranium in fed and fasted adult baboons and mice: application to humans

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Larsen, R.P.; Oldham, R.D.; Cohen, N.; Ralston, L.G.; Moretti, E.S.; Ayres, L.

    1989-01-01

    Gastrointestinal (GI) absorption values of plutonium and uranium were determined in fed and fasted adult baboons and mice. For both baboons and mice, the GI absorptions of plutonium and uranium were 10 to 20 times higher in 24 h fasted animals than in fed ones. For plutonium, GI absorption values in baboons were almost identical to those in mice for both fed and fasted conditions, and values for fed animals agreed with estimates for humans. For uranium, GI absorption values in fed and fasted baboons were 6 to 7 times higher than those in mice, and agreed well with those fed and fasted humans. For one baboon that was not given its morning meal, plutonium absorption 2 h after the start of the active phase was the same as that in the 24 h fasted animals. In contrast, for baboons that received a morning meal, plutonium absorption did not rise to the value of 24 h fasted baboons even 8 h after the meal. We conclude that GI absorption values for plutonium and uranium in adult baboons are good estimates of the values in humans and that the values for the fasted condition should be used to set standards for oral exposure of persons in the workplace. (author)

  5. Angiogenesis for tumor vascular normalization of Endostar on hepatoma 22 tumor-bearing mice is involved in the immune response.

    Science.gov (United States)

    Xu, Qingyu; Gu, Junfei; Lv, You; Yuan, Jiarui; Yang, Nan; Chen, Juan; Wang, Chunfei; Hou, Xuefeng; Jia, Xiaobin; Feng, Liang; Yin, Guowen

    2018-03-01

    Tumor vascular normalization involved in immune response is beneficial to the chemotherapy of tumors. Recombinant human endostatin (Endostar), an angiogenesis inhibitor, has been demonstrated to be effective in hepatocellular cancer (HCC). However, its vascular normalization in HCC and the role of the immune response in angiogenesis were unclear. In the present study, effects of Endostar on tumor vascular normalization were evaluated in hepatoma 22 (H22) tumor-bearing mice. Endostar was able to inhibit the proliferation and infiltration of tumor cells and improve α-fetoprotein, tumor necrosis factor-α and cyclic adenosine 5'-phosphate levels in the serum of H22-bearing mice, as well as the protein expression levels of the immune factors interferon-γ and cluster of differentiation (CD)86 in liver tissue. Endostar also exhibited more marked downregulation of the levels of vascular endothelial growth factor, CD31, matrix metalloproteinase (MMP)-2, MMP-9 and interleukin-17 during day 3-9 treatment, resulting in short-term normalization of tumor blood vessels. The period of vascular normalization was 3-9 days. The results of the present study demonstrated that Endostar was able to induce the period of vascular normalization, contributing to a more efficacious means of HCC treatment combined with other chemotherapy, and this effect was associated with the immune response. It may be concluded that Endostar inhibited immunity-associated angiogenesis behaviors of vascular endothelial cells in response to HCC. The results of the present study provided more reasonable possibility for the combination therapy of Endostar for the treatment of HCC.

  6. The research on biodistribution of 131I-iodosennoside A in normal mice and to evaluate myocardial activity

    International Nuclear Information System (INIS)

    Wang Junhu; Yin Zhiqi; Jiang Cuihua; Jiang Xiao; Li Yue; Zhang Jian; Sun Ziping; Ni Yicheng

    2013-01-01

    Purpose: The objective of this project is to evaluate biodistribution of [ 131 I]-Iodosennoside A in normal mice and explore the feasibility on the diagnosis of myocardial infarction. Methods: Iodogen method was used to radioiodinate sennoside A with 131 I. [ 131 I] Iodosennoside A was intravenously injected into mice. Three groups of mice were killed at 4 h, 24 h and 48 h post injection respectively and the radioactive uptake in major organs were calculated. Rats were subjected to left anterior descending (LAD) coronary artery ligation to induce acute myocardial infarction. Rat models of myocardial infarction were intravenously injected [ 131 I] iodosennoside A. 24 h after injection of [ 131 I] iodosennoside A, the regional distribution of radioiodinated sennoside A was determined by radioactivity counting technique. 2, 3, 5-triphenyl tetrazolium chloride (TTC) staining and autoradiography were per- formed with 2 mm thick sections of hearts for postmortem verifications. Results: The study showed high uptake of [ 131 I] iodosennoside A in kidneys and fast blood clearance. At 24 h post injection, radioactivity concentration in infarcted myocardium was over 11.9 times higher than in normal myocardium. Preferential uptake of the [ 131 I] iodosennoside A in necrotic tissue was confirmed by perfect match of images from TTC staining and autoradiography. Conclusion: The result proved that [ 131 I] iodosennoside A has myocardial necrosis affinity and may serve as a marker on the diagnosis of myocardial infarction. (authors)

  7. Rescue of Synaptic Phenotypes and Spatial Memory in Young Fragile X Mice.

    Science.gov (United States)

    Sun, Miao-Kun; Hongpaisan, Jarin; Alkon, Daniel L

    2016-05-01

    Fragile X syndrome (FXS) is characterized by synaptic immaturity, cognitive impairment, and behavioral changes. The disorder is caused by transcriptional shutdown in neurons of thefragile X mental retardation 1gene product, fragile X mental retardation protein. Fragile X mental retardation protein is a repressor of dendritic mRNA translation and its silencing leads to dysregulation of synaptically driven protein synthesis and impairments of intellect, cognition, and behavior, and FXS is a disorder that currently has no effective therapeutics. Here, young fragile X mice were treated with chronic bryostatin-1, a relatively selective protein kinase Cεactivator, which induces synaptogenesis and synaptic maturation/repair. Chronic treatment with bryostatin-1 rescues young fragile X mice from the disorder phenotypes, including normalization of most FXS abnormalities in 1) hippocampal brain-derived neurotrophic factor expression, 2) postsynaptic density-95 levels, 3) transformation of immature dendritic spines to mature synapses, 4) densities of the presynaptic and postsynaptic membranes, and 5) spatial learning and memory. The therapeutic effects were achieved without downregulation of metabotropic glutamate receptor (mGluR) 5 in the hippocampus and are more dramatic than those of a late-onset treatment in adult fragile X mice. mGluR5 expression was in fact lower in fragile X mice and its expression was restored with the bryostatin-1 treatment. Our results show that synaptic and cognitive function of young FXS mice can be normalized through pharmacological treatment without downregulation of mGluR5 and that bryostatin-1-like agents may represent a novel class of drugs to treat fragile X mental retardation at a young age and in adults. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Delivery of Human EV71 Receptors by Adeno-Associated Virus Increases EV71 Infection-Induced Local Inflammation in Adult Mice

    Directory of Open Access Journals (Sweden)

    Hung-Bo Hsiao

    2014-01-01

    Full Text Available Enterovirus71 (EV71 is now recognized as an emerging neurotropic virus in Asia and one major causative agent of hand-foot-mouth diseases (HFMD. However potential animal models for vaccine development are limited to young mice. In this study, we used an adeno-associated virus (AAV vector to introduce the human EV71 receptors P-selectin glycoprotein ligand-1 (hPSGL1 or a scavenger receptor class-B member-2 (hSCARB2 into adult ICR mice to change their susceptibility to EV71 infection. Mice were administered AAV-hSCARB2 or AAV-hPSGL1 through intravenous and oral routes. After three weeks, expression of human SCARB2 and PSGL1 was detected in various organs. After infection with EV71, we found that the EV71 viral load in AAV-hSCARB2- or AAV-hPSGL1-transduced mice was higher than that of the control mice in both the brain and intestines. The presence of EV71 viral particles in tissues was confirmed using immunohistochemistry analysis. Moreover, inflammatory cytokines were induced in the brain and intestines of AAV-hSCARB2- or AAV-hPSGL1-transduced mice after EV71 infection but not in wild-type mice. However, neurological disease was not observed in these animals. Taken together, we successfully infected adult mice with live EV71 and induced local inflammation using an AAV delivery system.

  9. Cutoff Values of Serum Carcinoembryonic Antigen (CEA) in Normal Korean Adults and Factors Influencing Serum CEA Level

    International Nuclear Information System (INIS)

    Kim, Jong Soon; Kim, Sun Wook; Chung, June Key; Lee, Dong Soo

    1994-01-01

    Carcinoembryonic Antigen is one of most frequently checked tumor markers in cancer management. We performed statistical analysis with serum CEA data of 2626 persons who received regular health examination and were thought to be free of active disease to determine the cutoff values of serum CEA level in normal Korean adults and to study the factors influencing serum CEA levels in normal subjects. 1) The cutoff values of serum CEA in normal Korean adults in general were 9.28 ng/ml for men, 5.90 ng/ml for women. 2) Serum CEA level was influenced by age, present smoking history, sex, and abnormal findings in chest X ray. 3) Serum CEA level had no correlation with the history of amount of alcohol consumption or obesity. 4) Cutoff values of serum CEA in normal Korean adults were tabulated according to age, sex, and smoking history. Serum CEA level was influenced by age, sex, present smoking history and abnormal findings in chest X ray and cutoff values of serum CEA were tabulated according to age, sex, and smoking history.

  10. Skeletal development of mice lacking bone sialoprotein (BSP--impairment of long bone growth and progressive establishment of high trabecular bone mass.

    Directory of Open Access Journals (Sweden)

    Wafa Bouleftour

    Full Text Available Adult Ibsp-knockout mice (BSP-/- display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice

  11. Fungiform Taste Bud Degeneration in C57BL/6J Mice Following Chorda-Lingual Nerve Transection

    OpenAIRE

    Guagliardo, Nick A.; Hill, David L.

    2007-01-01

    Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were ...

  12. Characterization of adult ghrelin and ghrelin receptor knockout mice under positive and negative energy balance

    Science.gov (United States)

    Ghrelin and the ghrelin receptor (GH secretagogue receptor, GHS-R) are believed to have important roles in energy homeostasis. We describe results from the first studies to be conducted in congenic (N10) adult ghrelin(-/-) and Ghsr(-/-) mice under conditions of both positive (high-fat diet) and nega...

  13. Ectopic norrin induces growth of ocular capillaries and restores normal retinal angiogenesis in Norrie disease mutant mice.

    Science.gov (United States)

    Ohlmann, Andreas; Scholz, Michael; Goldwich, Andreas; Chauhan, Bharesh K; Hudl, Kristiane; Ohlmann, Anne V; Zrenner, Eberhart; Berger, Wolfgang; Cvekl, Ales; Seeliger, Mathias W; Tamm, Ernst R

    2005-02-16

    Norrie disease is an X-linked retinal dysplasia that presents with congenital blindness, sensorineural deafness, and mental retardation. Norrin, the protein product of the Norrie disease gene (NDP), is a secreted protein of unknown biochemical function. Norrie disease (Ndp(y/-)) mutant mice that are deficient in norrin develop blindness, show a distinct failure in retinal angiogenesis, and completely lack the deep capillary layers of the retina. We show here that the transgenic expression of ectopic norrin under control of a lens-specific promoter restores the formation of a normal retinal vascular network in Ndp(y/-) mutant mice. The improvement in structure correlates with restoration of neuronal function in the retina. In addition, lenses of transgenic mice with ectopic expression of norrin show significantly more capillaries in the hyaloid vasculature that surrounds the lens during development. In vitro, lenses of transgenic mice in coculture with microvascular endothelial cells induce proliferation of the cells. Transgenic mice with ectopic expression of norrin show more bromodeoxyuridine-labeled retinal progenitor cells at embryonic day 14.5 and thicker retinas at postnatal life than wild-type littermates, indicating a putative direct neurotrophic effect of norrin. These data provide direct evidence that norrin induces growth of ocular capillaries and that pharmacologic modulation of norrin might be used for treatment of the vascular abnormalities associated with Norrie disease or other vascular disorders of the retina.

  14. Development of the adult neurogenic niche in the hippocampus of mice

    Directory of Open Access Journals (Sweden)

    Zeina eNicola

    2015-05-01

    Full Text Available When does adult hippocampal neurogenesis begin? We describe the development of the neurogenic niche in the subgranular zone (SGZ of the hippocampal dentate gyrus. We did so from the perspective of the situation in the adult.Ontogeny of the dentate gyrus is complex and results in an ectopic neurogenic niche that lifelong generates new granule cells. Neurogenesis during the fetal and early postnatal periods builds the dentate gyrus and gives way to activity-dependent adult neurogenesis. We used markers most relevant to adult neurogenesis research to describe this transition: Nestin, Sox2, BLBP, GFAP, Tbr2, Doublecortin (DCX, NeuroD1 and Prox1. We found that massive changes and a local condensation of proliferating precursor cells occurs between postnatal day 7 (P7, near the peak in proliferation, and P14. Before and around P7, the spatial distribution of cells and the co-localization of markers were distinct from the situation in the adult. Unlike the adult SGZ, the marker pair Nestin/Sox2 and the radial glial marker BLBP were not overlapping during embryonic development, presumably indicating different types of radial glia-like cells. Before P7 GFAP-positive cells in the hilus lacked the radial orientation that is characteristic of the adult type-1 cells. DCX, which is concentrated in type-2b and type-3 progenitor cells and early postmitotic neurons in the adult, showed diffuse expression before P7. Intermediate progenitor cell marker Tbr2 became restricted to the SGZ but was found in the granule cell layer and hilus before. Lineage markers NeuroD1 and Prox1 confirmed this pattern.We conclude that the neurogenic niche of adult neurogenesis is in place well before true adulthood. This might indicate that consistent with the hypothesized function of adult neurogenesis in activity-dependent plasticity, the early transition from postnatal neurogenesis to adult neurogenesis coincides with the time, when the young mice start to become active themselves.

  15. Long-Term Visual Training Increases Visual Acuity and Long-Term Monocular Deprivation Promotes Ocular Dominance Plasticity in Adult Standard Cage-Raised Mice.

    Science.gov (United States)

    Hosang, Leon; Yusifov, Rashad; Löwel, Siegrid

    2018-01-01

    For routine behavioral tasks, mice predominantly rely on olfactory cues and tactile information. In contrast, their visual capabilities appear rather restricted, raising the question whether they can improve if vision gets more behaviorally relevant. We therefore performed long-term training using the visual water task (VWT): adult standard cage (SC)-raised mice were trained to swim toward a rewarded grating stimulus so that using visual information avoided excessive swimming toward nonrewarded stimuli. Indeed, and in contrast to old mice raised in a generally enriched environment (Greifzu et al., 2016), long-term VWT training increased visual acuity (VA) on average by more than 30% to 0.82 cycles per degree (cyc/deg). In an individual animal, VA even increased to 1.49 cyc/deg, i.e., beyond the rat range of VAs. Since visual experience enhances the spatial frequency threshold of the optomotor (OPT) reflex of the open eye after monocular deprivation (MD), we also quantified monocular vision after VWT training. Monocular VA did not increase reliably, and eye reopening did not initiate a decline to pre-MD values as observed by optomotry; VA values rather increased by continued VWT training. Thus, optomotry and VWT measure different parameters of mouse spatial vision. Finally, we tested whether long-term MD induced ocular dominance (OD) plasticity in the visual cortex of adult [postnatal day (P)162-P182] SC-raised mice. This was indeed the case: 40-50 days of MD induced OD shifts toward the open eye in both VWT-trained and, surprisingly, also in age-matched mice without VWT training. These data indicate that (1) long-term VWT training increases adult mouse VA, and (2) long-term MD induces OD shifts also in adult SC-raised mice.

  16. Synthesis and kinetics of [18F]4'-fluoroantipyrine in normal mice

    International Nuclear Information System (INIS)

    Robbins, P.J.; Fortman, D.L.; Scholz, K.L.; Fusaro, G.A.; Sodd, V.J.

    1978-01-01

    Antipyrine labeled with radioiodine has proven useful for studying the symmetry of human brain perfusion by gamma-camera techniques. The feasibility of preparing F-18-labeled antipyrine for eventual use with a positron camera was investigated. The preparation of [ 18 F] 4'-fluoroantipyrine and its distribution in normal mice were used to evaluate this potential. 4'-Fluoroantipyrine was prepared in 7 to 20% chemical yield by the pyrolysis of the 4'-diazonium fluoroborate salt of antipyrine. This Schiemann salt was prepared by a five-step synthesis from 1-(4'-nitrophenyl)-3-methyl-5-chloro-pyrazole. Fluorine-18 labeling of the diazonium fluoroborate salt by exchange with aqueous F-18 and pyrolysis of the dried labeled salt produced [ 18 F] 4'-fluoroantipyrine with specific activities of 0.83 to 2.7 μCi/mg. The incorporated F-18 activity ranged from 0.53 to 1.9%. The labeling procedure took about 3 hr. The labeled antipyrine was administered by tail vein to fasting female Swiss-Cox mice. Distribution of F-18 at 12, 30, 60, and 120 sec, and 10 min, after injection showed that radioactivity persisted in the brain up to 120 sec at a level greater than that of the skin and the bone. (Skin and bone samples were chosen as representative of activities in the scalp and skull surrounding the brain.) Thus, perfusion imaging of the CNS should be possible when greater quantities of high-specific-activity F-18-labeled antipyrine becomes available

  17. Repeated social defeat and the rewarding effects of cocaine in adult and adolescent mice: dopamine transcription factors, proBDNF signaling pathways, and the TrkB receptor in the mesolimbic system.

    Science.gov (United States)

    Montagud-Romero, Sandra; Nuñez, Cristina; Blanco-Gandia, M Carmen; Martínez-Laorden, Elena; Aguilar, María A; Navarro-Zaragoza, Javier; Almela, Pilar; Milanés, Maria-Victoria; Laorden, María-Luisa; Miñarro, José; Rodríguez-Arias, Marta

    2017-07-01

    Repeated social defeat (RSD) increases the rewarding effects of cocaine in adolescent and adult rodents. The aim of the present study was to compare the long-term effects of RSD on the conditioned rewarding effects of cocaine and levels of the transcription factors Pitx3 and Nurr1 in the ventral tegmental area (VTA), the dopamine transporter (DAT), the D2 dopamine receptor (D2DR) and precursor of brain-derived neurotrophic factor (proBDNF) signaling pathways, and the tropomyosin-related kinase B (TrkB) receptor in the nucleus accumbens (NAc) in adult and adolescent mice. Male adolescent and young adult OF1 mice were exposed to four episodes of social defeat and were conditioned 3 weeks later with 1 mg/kg of cocaine. In a second set of mice, the expressions of the abovementioned dopaminergic and proBDNF and TrkB receptor were measured in VTA and NAc, respectively. Adolescent mice experienced social defeats less intensely than their adult counterparts and produced lower levels of corticosterone. However, both adult and adolescent defeated mice developed conditioned place preference for the compartment associated with this low dose of cocaine. Furthermore, only adolescent defeated mice displayed diminished levels of the transcription factors Pitx3 in the VTA, without changes in the expression of DAT and D2DR in the NAc. In addition, stressed adult mice showed a decreased expression of proBDNF and the TrkB receptor, while stressed adolescent mice exhibited increased expression of latter without changes in the former. Our findings suggest that dopaminergic pathways and proBDNF signaling and TrkB receptors play different roles in social defeat-stressed mice exposed to cocaine.

  18. Effects of cathodal trans-spinal direct current stimulation on lower urinary tract function in normal and spinal cord injury mice with overactive bladder

    Science.gov (United States)

    Ahmed, Zaghloul

    2017-10-01

    Objective. Lower urinary tract (LUT) dysfunction is a monumental problem affecting quality of life following neurotrauma, such as spinal cord injury (SCI). Proper function of the bladder and its associated structures depends on coordinated activity of the neuronal circuitry in the spinal cord and brain. Disconnection between the spinal and brain centers controlling the LUT causes fundamental changes in the mechanisms involved in the micturition and storage reflexes. We investigated the effects of cathodal trans-spinal direct current stimulation (c-tsDCS) of the lumbosacral spine on bladder and external urinary sphincter (EUS) functions. Approach. We used cystometry and electromyography (EMG), in mice with and without SCI. Main results. c-tsDCS caused initiation of the micturition reflex in urethane-anesthetized normal mice with depressed micturition reflexes. This effect was associated with normalized EUS-EMG activity. Moreover, in urethane-anesthetized normal mice with expressed micturition reflexes, c-tsDCS increased the firing frequency, amplitude, and duration of EUS-EMG activity. These effects were associated with increased maximum intravesical pressure (P max) and intercontraction interval (ICI). In conscious normal animals, c-tsDCS caused significant increases in P max, ICI, threshold pressure (P thres), baseline pressure (P base), and number and amplitude of non-voiding contractions (NVCnumb and P im, respectively). In conscious mice with severe contusive SCI and overactive bladder, c-tsDCS increased P max, ICI, and P thres, but decreased P base, NVCnumb, and P im. c-tsDCS reduced the detrusor-overactivity/cystometry ratio, which is a measure of bladder overactivity associated with renal deterioration. Significance. These results indicate that c-tsDCS induces robust modulation of the lumbosacral spinal-cord circuitry that controls the LUT.

  19. Sonographic determination of normal spleen size in an adult African population

    Energy Technology Data Exchange (ETDEWEB)

    Mustapha, Zainab; Tahir, Abdulrahman [Department of Radiology, University of Maiduguri Teaching Hospital, Maiduguri, Borno State (Nigeria); Tukur, Maisaratu [Department of Human Physiology, University of Maiduguri, Maiduguri, Borno State (Nigeria); Bukar, Mohammed [Department of Obstetrics and Gynaecology, University of Maiduguri Teaching Hospital, Maiduguri, Borno State (Nigeria); Lee, Wai-Kit, E-mail: leewk33@hotmail.co [Department of Medical Imaging, St. Vincent' s Hospital, University of Melbourne, 41 Victoria Parade, Fitzroy, Victoria 3065 (Australia)

    2010-07-15

    Objective: The purpose of this study was to determine the normal range of spleen size in an adult African population, and compare the findings to published data to determine any correlation with ethnicity. Materials and methods: Three hundred and seventy-four African adults without conditions that can affect the spleen or splenic abnormalities were evaluated with ultrasonography. Spleen length, width and thickness were measured and spleen volume calculated. Spleen size was correlated with age, gender, height, weight, and body mass index. Results: The mean spleen volume was 120 cm{sup 3}. Spleen volume correlated with spleen width (r = 0.85), thickness (r = 0.83) and length (r = 0.80). Men had a larger mean spleen volume than women. No correlation was found between spleen volume and age, weight, height, or body mass index. Conclusion: Mean spleen volume in African adults is smaller than data from Western sources, and cannot be explained by difference in body habitus.

  20. Administration of midazolam in infancy does not affect learning and memory of adult mice.

    Science.gov (United States)

    Xu, Hua; Liu, Zhi-Qiang; Liu, Yi; Zhang, Wei-Shi; Xu, Bo; Xiong, Yuan-Chang; Deng, Xiao-Ming

    2009-12-01

    1. Midazolam is a common fast-acting GABA(A) receptor agonist. Recent data suggest that exposure to midazolam in early life may cause long-term effects on brain function through stable epigenetic reprogramming. The aim of the present study was to determine whether the administration of midazolam to infant mice would affect their learning and memory in adulthood. 2. An open-field test was conducted before and then 3, 24, 48 and 72 h after administration of midazolam (50 mg/kg, i.p.) to infant mice. Saline control mice received an equal volume of saline i.p. 3 h before the open-field test. Total movements, total movement time, total movement distance and velocity were analysed. Novel object recognition (NOR), Morris water-maze and passive avoidance tests were performed when the treated mice grew to adulthood (105 days of age). 3. The results of open-field test showed that midazolam significantly reduced locomotor activity (total movements, total movement time, total movement distance and velocity) in infant mice 3 and 24 h after drug administration and that these effects had disappeared by 72 h after drug administration. The results of the water-maze, NOR and passive avoidance tests in adulthood (at 105 days of age) indicated that administration of midazolam in infancy had no long-term effects on the learning and memory behaviours of adult mice compared with the saline control. 4. Acute midazolam administration to infant mice affected spontaneous locomotor activity for approximately 2 days, but did not seem to have any significant impact on cognitive functioning that lasted into adulthood.

  1. Redox proteomic analysis of the gastrocnemius muscle from adult and old mice

    Directory of Open Access Journals (Sweden)

    Brian McDonagh

    2015-09-01

    Full Text Available The data provides information in support of the research article, “Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging”, Journal of Proteome Research, 2014, 13 (11, 2008–21 [1]. Raw data is available from ProteomeXchange [2] with identifier PDX001054. The proteome of gastrocnemius muscle from adult and old mice was analyzed by global label-free proteomics and the relative quantification of specific reduced and reversibly oxidized Cysteine (Cys residues was performed using Skyline [3]. Briefly, reduced Cysteine (Cys containing peptides was alkylated using N-ethylmalemide (d0-NEM. Samples were desalted and reversibly oxidized Cys residues were reduced using tris(2-carboxyethylphosphine (TCEP and the newly formed reduced Cys residues were labeled with heavy NEM( d5-NEM. Label-free analysis of the global proteome of adult (n=5 and old (n=4 gastrocnemius muscles was performed using Peaks7™ mass spectrometry data analysis software [4]. Relative quantification of Cys containing peptides that were identified as reduced (d(0 NEM labeled and reversibly oxidized d(5–NEM labeled was performed using the intensity of their precursor ions in Skyline. Results indicate that muscles from old mice show reduced redox flexibility particularly in proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response.

  2. Skewed X-inactivation in cloned mice

    International Nuclear Information System (INIS)

    Senda, Sho; Wakayama, Teruhiko; Yamazaki, Yukiko; Ohgane, Jun; Hattori, Naka; Tanaka, Satoshi; Yanagimachi, Ryuzo; Shiota, Kunio

    2004-01-01

    In female mammals, dosage compensation for X-linked genes is accomplished by inactivation of one of two X chromosomes. The X-inactivation ratio (a percentage of the cells with inactivated maternal X chromosomes in the whole cells) is skewed as a consequence of various genetic mutations, and has been observed in a number of X-linked disorders. We previously reported that phenotypically normal full-term cloned mouse fetuses had loci with inappropriate DNA methylation. Thus, cloned mice are excellent models to study abnormal epigenetic events in mammalian development. In the present study, we analyzed X-inactivation ratios in adult female cloned mice (B6C3F1). Kidneys of eight naturally produced controls and 11 cloned mice were analyzed. Although variations in X-inactivation ratio among the mice were observed in both groups, the distributions were significantly different (Ansary-Bradley test, P < 0.01). In particular, 2 of 11 cloned mice showed skewed X-inactivation ratios (19.2% and 86.8%). Similarly, in intestine, 1 of 10 cloned mice had a skewed ratio (75.7%). Skewed X-inactivation was observed to various degrees in different tissues of different individuals, suggesting that skewed X-inactivation in cloned mice is the result of secondary cell selection in combination with stochastic distortion of primary choice. The present study is the first demonstration that skewed X-inactivation occurs in cloned animals. This finding is important for understanding both nuclear transfer technology and etiology of X-linked disorders

  3. Intake of Wild Blueberry Powder Improves Episodic-Like and Working Memory during Normal Aging in Mice.

    Science.gov (United States)

    Beracochea, Daniel; Krazem, Ali; Henkouss, Nadia; Haccard, Guillaume; Roller, Marc; Fromentin, Emilie

    2016-08-01

    The number of Americans older than 65 years old is projected to more than double in the next 40 years. Cognitive changes associated to aging can affect an adult's day-to-day functioning. Among these cognitive changes, reasoning, episodic memory, working memory, and processing speed decline gradually over time. Early memory changes include a decline in both working and episodic memory. The aim of the present study was to determine whether chronic (up to 75 days) daily administration of wild blueberry extract or a wild blueberry full spectrum powder would help prevent memory failure associated with aging in tasks involving various forms of memory. Both blueberry ingredients were used in a study comparing young mice (6 months old) to aged mice (18 months old). At this age, mice exhibit memory decline due to aging, which is exacerbated first by a loss in working and contextual (episodic-like) memory. Contextual memory (episodic-like memory) was evaluated using the contextual serial discrimination test. Working and spatial memory were evaluated using the Morris-Water maze test and the sequential alternation test. Statistical analysis was performed using an ANOVA with the Bonferroni post-hoc test. Supplementation with wild blueberry full spectrum powder and wild blueberry extract resulted in significant improvement of contextual memory, while untreated aged mice experienced a decline in such memory. Only the wild blueberry full spectrum powder significantly contributed to an improvement of spatial and working memory versus untreated aged mice. These improvements of cognitive performance may be related to brain oxidative status, acetylcholinesterase activity, neuroprotection, or attenuation of immunoreactivity. Georg Thieme Verlag KG Stuttgart · New York.

  4. Changes in the pharmacokinetics of digoxin in polyuria in streptozotocin-induced diabetic mice and lithium carbonate-treated mice.

    Science.gov (United States)

    Ikarashi, Nobutomo; Kagami, Mai; Kobayashi, Yasushi; Ishii, Makoto; Toda, Takahiro; Ochiai, Wataru; Sugiyama, Kiyoshi

    2011-06-01

    In humans, digoxin is mainly eliminated through the kidneys unchanged, and renal clearance represents approximately 70% of the total clearance. In this study, we used the mouse models to examine digoxin pharmacokinetics in polyuria induced by diabetes mellitus and lithium carbonate (Li(2)CO(3)) administration, including mechanistic evaluation of the contribution of glomerular filtration, tubular secretion, and tubular reabsorption. After digoxin administration to streptozotocin (STZ)-induced diabetic mice, digoxin CL/F increased to approximately 2.2 times that in normal mice. After treatment with Li(2)CO(3) (0.2%) for 10 days, the CL/F increased approximately 1.1 times for normal mice and 1.6 times for STZ mice. Creatinine clearance (CLcr) and the renal mRNA expression levels of mdr1a did not differ significantly between the normal, STZ, and Li(2)CO(3)-treated mice. The urine volume of STZ mice was approximately 26 mL/day, 22 times that of normal mice. The urine volume of Li(2)CO(3)-treated mice increased approximately 7.3 times for normal mice and 2.3 times for STZ mice. These results suggest that the therapeutic effect of digoxin may be significantly reduced in the presence of polyuria either induced by diabetes mellitus or manifested as an adverse effect of Li(2)CO(3) in diabetic patients, along with increased urine volume.

  5. Subchronic Arsenic Exposure Induces Anxiety-Like Behaviors in Normal Mice and Enhances Depression-Like Behaviors in the Chemically Induced Mouse Model of Depression

    Directory of Open Access Journals (Sweden)

    Chia-Yu Chang

    2015-01-01

    Full Text Available Accumulating evidence implicates that subchronic arsenic exposure causes cerebral neurodegeneration leading to behavioral disturbances relevant to psychiatric disorders. However, there is still little information regarding the influence of subchronic exposure to arsenic-contaminated drinking water on mood disorders and its underlying mechanisms in the cerebral prefrontal cortex. The aim of this study is to assess the effects of subchronic arsenic exposure (10 mg/LAs2O3 in drinking water on the anxiety- and depression-like behaviors in normal mice and in the chemically induced mouse model of depression by reserpine pretreatment. Our findings demonstrated that 4 weeks of arsenic exposure enhance anxiety-like behaviors on elevated plus maze (EPM and open field test (OFT in normal mice, and 8 weeks of arsenic exposure augment depression-like behaviors on tail suspension test (TST and forced swimming test (FST in the reserpine pretreated mice. In summary, in this present study, we demonstrated that subchronic arsenic exposure induces only the anxiety-like behaviors in normal mice and enhances the depression-like behaviors in the reserpine induced mouse model of depression, in which the cerebral prefrontal cortex BDNF-TrkB signaling pathway is involved. We also found that eight weeks of subchronic arsenic exposure are needed to enhance the depression-like behaviors in the mouse model of depression. These findings imply that arsenic could be an enhancer of depressive symptoms for those patients who already had the attribute of depression.

  6. Exercise training and antioxidant supplementation independently improve cognitive function in adult male and female GFAP-APOE mice

    OpenAIRE

    Kiran Chaudhari; Jessica M. Wong; Philip H. Vann; Nathalie Sumien

    2014-01-01

    Purpose: The purpose of this study was to determine if antioxidant supplementation, moderate exercise, and the combination of both treatments could ameliorate cognitive performance in adult mice and whether the apolipoprotein E (APOE) genotype as well as sex could influence the functional outcomes of the treatments. Methods: For a period of 16 weeks, separate groups of male and female mice expressing either the human APOE3 or APOE4 isoforms were fed either a control diet (NIH-31) or the co...

  7. The effects of familiarity and complexity on appraisal of complex songs by cochlear implant recipients and normal hearing adults.

    Science.gov (United States)

    Gfeller, Kate; Christ, Aaron; Knutson, John; Witt, Shelley; Mehr, Maureen

    2003-01-01

    The purposes of this study were (a) to develop a test of complex song appraisal that would be suitable for use with adults who use a cochlear implant (assistive hearing device) and (b) to compare the appraisal ratings (liking) of complex songs by adults who use cochlear implants (n = 66) with a comparison group of adults with normal hearing (n = 36). The article describes the development of a computerized test for appraisal, with emphasis on its theoretical basis and the process for item selection of naturalistic stimuli. The appraisal test was administered to the 2 groups to determine the effects of prior song familiarity and subjective complexity on complex song appraisal. Comparison of the 2 groups indicates that the implant users rate 2 of 3 musical genres (country western, pop) as significantly more complex than do normal hearing adults, and give significantly less positive ratings to classical music than do normal hearing adults. Appraisal responses of implant recipients were examined in relation to hearing history, age, performance on speech perception and cognitive tests, and musical background.

  8. Normal hematopoiesis and lack of β-catenin activation in osteoblasts of patients and mice harboring Lrp5 gain of function mutations

    DEFF Research Database (Denmark)

    Galan-Diez, Marta; Isa, Adiba; Ponzetti, Marco

    2016-01-01

    of hematopoiesis and leukemogenic properties of β-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5...... mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate β-catenin signaling in osteoblasts. Consistent with a lack of β-catenin activation in their osteoblasts, Lrp5(A214V) mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation...... of β-catenin in osteoblasts (Ctnnb1(CAosb)), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5(A214V) mice. Likewise, peripheral blood count analysis in HBM...

  9. Oral candidosis by Candida albicans in normal and xerostomic mice Candidose oral por Candida albicans em camundongos normais e xerostômicos

    Directory of Open Access Journals (Sweden)

    Marilda Aparecida Gonçalves Totti

    2004-09-01

    Full Text Available The aim of this study was to analyze the effect of sialoadenectomy on the development of oral candidosis after one or four inoculations of Candida albicans. Initially, a suspension containing 10(8 cells/ml of C. albicans ATCC 36801 was prepared. Seventy-eight sialoadenectomized mice and a similar amount of mice with normal salivary flow received a single inoculation of C. albicans suspension. Another group with a similar number of mice received 4 inoculations. The control group consisted of 6 sialoadenectomized mice and 6 mice with normal salivary flow that were not inoculated with C. albicans. Candidosis development was studied histologically in the tongue of the animals 1, 2, 3, 5, and 8 days after inoculation and at 15-day intervals up to 165 days. According to the results obtained, it could be concluded that sialoadenectomy and a higher frequency of yeast inoculation influenced the presence and extension of candidosis lesions.O objetivo deste estudo foi analisar o efeito da sialoadenectomia sobre o desenvolvimento da candidose oral após uma ou quatro inoculações de Candida albicans. Inicialmente, uma suspensão contendo 10(8 células/ml de C. albicans ATCC 36801 foi preparada. Setenta e oito camundongos sialoadenectomizados e mesma quantidade de camundongos com fluxo salivar normal receberam uma única inoculação de suspensão de C. albicans. Outro grupo, com o mesmo número de camundongos, recebeu 4 inoculações. O grupo controle consistiu de 6 camundongos sialoadenectomizados e 6 com fluxo salivar normal que não foram inoculados com C. albicans. O desenvolvimento de candidose foi estudado histologicamente na língua dos animais em períodos de 1, 2, 3, 5 e 8 dias após a inoculação e em intervalos de 15 dias até 165 dias. De acordo com os resultados obtidos, conclui-se que a sialoadenectomia e uma maior freqüência de inoculação influenciaram na presença e extensão das lesões de candidose.

  10. Radioprotective Effect and Follow-up of Melatonin as Antifertility Drug in Male Adult Mice submitted to Whole-Body γ Irradiation

    International Nuclear Information System (INIS)

    Tawfik, S.S.; Mansour, H.H.; El-Shamy, E.; Sallam, M.H.

    2006-01-01

    Melatonin is universal antioxidant for both man and animals and a substance normally produced in the human body. Radioprotective and follow up of melatonin as anti-fertility drug in whole body γ-irradiated male adult mice were studied. The alterations occurred in reproductive system and biochemical aspects in mice were evaluated. Control group, melatonin treated (received 10 mg/kg body wt for 20 successive days), following up for melatonin treated (2 recovery periods; 60 and 120 days), irradiated (2 Gy-γ-rays), pre-treated (received melatonin before irradiation) and following up for pre-treated (2 recovery periods) groups were designed. Body and testes wt, micronucleus test (MN), chromosomal aberration (CA), seminal plasma melatonin, sperm quality (count, motility and abnormal forms) and hormonal assay in serum (melatonin, testosterone, FSH and prolactin) were recorded for fertility assessment. Oxidative parameters in testis tissue (malonaldehyde (MDA), superoxide dismutase (SOD), reduced glutathione (GSH) and nitric oxide (NO)) and biochemical assay (protein and lipid fractions in serum) were investigated for judgment melatonin radioprotective efficacy. Irradiation intensifies the processes of lipo peroxidation and oxidative modification of lipids and proteins with synchronized inhibition of the anti oxidative protection system. Melatonin administration against a background of radiation caused a distinctly expressed antioxidant effect

  11. Adult vitamin D deficiency exacerbates impairments caused by social stress in BALB/c and C57BL/6 mice.

    Science.gov (United States)

    Groves, Natalie J; Zhou, Mei; Jhaveri, Dhanisha J; McGrath, John J; Burne, Thomas H J

    2017-12-01

    Vitamin D deficiency is prevalent in adults throughout the world. Epidemiological studies have shown significant associations between vitamin D deficiency and an increased risk of various neuropsychiatric and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's disease and cognitive impairment. However, studies based on observational epidemiology cannot address questions of causality; they cannot determine if vitamin D deficiency is a causal factor leading to the adverse health outcome. The main aim of this study was to determine if AVD deficiency would exacerbate the effects of a secondary exposure, in this case social stress, in BALB/c mice and in the more resilient C57BL/6 mice. Ten-week old male BALB/c and C57BL/6 mice were fed a control or vitamin D deficient diet for 10 weeks, and the mice were further separated into one of two groups for social treatment, either Separated (SEP) or Social Defeat (DEF). SEP mice were placed two per cage with a perforated Plexiglas divider, whereas the DEF mice underwent 10days of social defeat prior to behavioural testing. We found that AVD-deficient mice were more vulnerable to the effects of social stress using a social avoidance test, and this was dependent on strain. These results support the hypothesis that vitamin D deficiency may exacerbate behavioural outcomes in mice vulnerable to stress, a finding that can help guide future studies. Importantly, these discoveries support the epidemiological link between vitamin D deficiency and neuropsychiatric and neurodegenerative disorders; and has provided clues that can guide future studies related to unravelling the mechanisms of action linking adult vitamin D deficiency and adverse brain related outcomes. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear.

    Science.gov (United States)

    Kilpatrick, L A; Li, Q; Yang, J; Goddard, J C; Fekete, D M; Lang, H

    2011-06-01

    Murine models are ideal for studying cochlear gene transfer, as many hearing loss-related mutations have been discovered and mapped within the mouse genome. However, because of the small size and delicate nature, the membranous labyrinth of the mouse is a challenging target for the delivery of viral vectors. To minimize injection trauma, we developed a procedure for the controlled release of adeno-associated viruses (AAVs) into the scala media of adult mice. This procedure poses minimal risk of injury to structures of the cochlea and middle ear, and allows for near-complete preservation of low and middle frequency hearing. In this study, transduction efficiency and cellular specificity of AAV vectors (serotypes 1, 2, 5, 6 and 8) were investigated in normal and drug-deafened ears. Using the cytomegalovirus promoter to drive gene expression, a variety of cell types were transduced successfully, including sensory hair cells and supporting cells, as well as cells in the auditory nerve and spiral ligament. Among all five serotypes, inner hair cells were the most effectively transduced cochlear cell type. All five serotypes of AAV vectors transduced cells of the auditory nerve, though serotype 8 was the most efficient vector for transduction. Our findings indicate that efficient AAV inoculation (via the scala media) can be performed in adult mouse ears, with hearing preservation a realistic goal. The procedure we describe may also have applications for intra-endolymphatic drug delivery in many mouse models of human deafness.

  13. Excretory/secretory products from Trichinella spiralis adult worms ameliorate DSS-induced colitis in mice.

    Directory of Open Access Journals (Sweden)

    Xiaodi Yang

    Full Text Available BACKGROUND: Many evidences show the inverse correlation between helminth infection and allergic or autoimmune diseases. Identification and characterization of the active helminth-derived products responsible for the beneficial effects on allergic or inflammatory diseases will provide another feasible approach to treat these diseases. METHODS AND FINDINGS: Colitis was induced in C57BL/6 mice by giving 3% DSS orally for 7 days. During this period, the mice were treated daily with the excretory/secretory products from T. spiralis adult worms (AES intraperitoneally. The severity of colitis was monitored by measuring body weight, stool consistency or bleeding, colon length and inflammation. To determine the T. spiralis AES product-induced immunological response, Th1, Th2, Th17 and regulatory cytokine profiles were measured in lymphocytes isolated from colon, mesenteric lymph nodes (MLN, and the spleen of treated mice. The CD4+ CD25+ FOXP3+ regulatory T cells (Tregs were also measured in the spleens and MLN of treated mice. Mice treated with AES significantly ameliorated the severity of the DSS-induced colitis indicated by the reduced disease manifestations, improved macroscopic and microscopic inflammation correlated with the up-regulation of Treg response (increased regulatory cytokines IL-10, TGF-beta and regulatory T cells and down-regulation of pro-inflammatory cytokines (IFN-gamma, IL-6 and IL-17 in the spleens, MLN and colon of treated mice. CONCLUSIONS: Our results provide direct evidences that T. spiralis AES have a therapeutic potential for alleviating inflammatory colitis in mice. This effect is possibly mediated by the immunomodulation of regulatory T cells to produce regulatory and anti-inflammatory cytokines and inhibit pro-inflammatory cytokines.

  14. Cellular origins of cold-induced brown adipocytes in adult mice.

    Science.gov (United States)

    Lee, Yun-Hee; Petkova, Anelia P; Konkar, Anish A; Granneman, James G

    2015-01-01

    This work investigated how cold stress induces the appearance of brown adipocytes (BAs) in brown and white adipose tissues (WATs) of adult mice. In interscapular brown adipose tissue (iBAT), cold exposure increased proliferation of endothelial cells and interstitial cells expressing platelet-derived growth factor receptor, α polypeptide (PDGFRα) by 3- to 4-fold. Surprisingly, brown adipogenesis and angiogenesis were largely restricted to the dorsal edge of iBAT. Although cold stress did not increase proliferation in inguinal white adipose tissue (ingWAT), the percentage of BAs, defined as multilocular adipocytes that express uncoupling protein 1, rose from undetectable to 30% of total adipocytes. To trace the origins of cold-induced BAs, we genetically tagged PDGFRα(+) cells and adipocytes prior to cold exposure, using Pdgfra-Cre recombinase estrogen receptor T2 fusion protein (CreER(T2)) and adiponectin-CreER(T2), respectively. In iBAT, cold stress triggered the proliferation and differentiation of PDGFRα(+) cells into BAs. In contrast, all newly observed BAs in ingWAT (5207 out of 5207) were derived from unilocular adipocytes tagged by adiponectin-CreER(T2)-mediated recombination. Surgical denervation of iBAT reduced cold-induced brown adipogenesis by >85%, whereas infusion of norepinephrine (NE) mimicked the effects of cold in warm-adapted mice. NE-induced de novo brown adipogenesis in iBAT was eliminated in mice lacking β1-adrenergic receptors. These observations identify a novel tissue niche for brown adipogenesis in iBAT and further define depot-specific mechanisms of BA recruitment. © FASEB.

  15. Disruption of growth hormone receptor gene causes diminished pancreatic islet size and increased insulin sensitivity in mice.

    Science.gov (United States)

    Liu, Jun-Li; Coschigano, Karen T; Robertson, Katie; Lipsett, Mark; Guo, Yubin; Kopchick, John J; Kumar, Ujendra; Liu, Ye Lauren

    2004-09-01

    Growth hormone, acting through its receptor (GHR), plays an important role in carbohydrate metabolism and in promoting postnatal growth. GHR gene-deficient (GHR(-/-)) mice exhibit severe growth retardation and proportionate dwarfism. To assess the physiological relevance of growth hormone actions, GHR(-/-) mice were used to investigate their phenotype in glucose metabolism and pancreatic islet function. Adult GHR(-/-) mice exhibited significant reductions in the levels of blood glucose and insulin, as well as insulin mRNA accumulation. Immunohistochemical analysis of pancreatic sections revealed normal distribution of the islets despite a significantly smaller size. The average size of the islets found in GHR(-/-) mice was only one-third of that in wild-type littermates. Total beta-cell mass was reduced 4.5-fold in GHR(-/-) mice, significantly more than their body size reduction. This reduction in pancreatic islet mass appears to be related to decreases in proliferation and cell growth. GHR(-/-) mice were different from the human Laron syndrome in serum insulin level, insulin responsiveness, and obesity. We conclude that growth hormone signaling is essential for maintaining pancreatic islet size, stimulating islet hormone production, and maintaining normal insulin sensitivity and glucose homeostasis.

  16. Chronic Giardia muris infection in anti-IgM-treated mice. I. Analysis of immunoglobulin and parasite-specific antibody in normal and immunoglobulin-deficient animals.

    Science.gov (United States)

    Snider, D P; Gordon, J; McDermott, M R; Underdown, B J

    1985-06-01

    To investigate the role of B cells and antibody in the immune response of mice to the murine intestinal parasite Giardia muris, we used mice treated from birth with rabbit anti-IgM antisera (aIgM). Such mice developed in serum and in gut secretions extreme Ig deficiency (IgM, IgA, and IgG) relative to control animals. The aIgM-treated mice showed no anti-G. muris antibody in serum or in gut wash material. Infections of G. muris in these mice were chronic, with a high load of parasite present in the small bowel, as reflected by prolonged cyst excretion (greater than 11 wk) and high trophozoite counts. In contrast, normal, untreated mice or NRS-treated animals developed anti-parasite IgA and IgG antibody in serum, demonstrated IgA antibody against the parasite in gut washings, and expelled the parasite within 9 wk. These effects of aIgM treatment on the murine response to primary infection with G. muris were demonstrated in two strains of mice: BALB/c and (C57BL/6 X C3H/He) F1. It was also observed that the response to G. muris infection in untreated animals was characterized by higher than normal total secretion of IgA into the gut and a concomitant increase in the serum polymeric IgA level. Mice treated with aIgM had a marked decrease of both monomeric and polymeric IgA in serum, and little detectable IgA in the intestinal lumen. These experiments provide the first demonstration that anti-IgM treatment suppresses a specific intestinal antibody response to antigen, and provide evidence that B cells and antibody play a role in the development of an effective response to a primary infection with G. muris in mice.

  17. Assessment of Metabolic Flexibility of Old and Adult Mice Using Three Noninvasive, Indirect Calorimetry-Based Treatments

    NARCIS (Netherlands)

    Duivenvoorde, L.P.M.; Schothorst, van E.M.; Swarts, J.J.M.; Keijer, J.

    2015-01-01

    Indirect calorimetry (InCa) can potentially be used to noninvasively assess metabolic and age-related flexibility. To assess the use of InCa for this purpose, we tested the sensitivity and response stability over time of three InCa-based treatments in old versus adult mice. Diurnal patterns of

  18. Recognition of "real-world" musical excerpts by cochlear implant recipients and normal-hearing adults.

    Science.gov (United States)

    Gfeller, Kate; Olszewski, Carol; Rychener, Marly; Sena, Kimberly; Knutson, John F; Witt, Shelley; Macpherson, Beth

    2005-06-01

    The purposes of this study were (a) to compare recognition of "real-world" music excerpts by postlingually deafened adults using cochlear implants and normal-hearing adults; (b) to compare the performance of cochlear implant recipients using different devices and processing strategies; and (c) to examine the variability among implant recipients in recognition of musical selections in relation to performance on speech perception tests, performance on cognitive tests, and demographic variables. Seventy-nine cochlear implant users and 30 normal-hearing adults were tested on open-set recognition of systematically selected excerpts from musical recordings heard in real life. The recognition accuracy of the two groups was compared for three musical genre: classical, country, and pop. Recognition accuracy was correlated with speech recognition scores, cognitive measures, and demographic measures, including musical background. Cochlear implant recipients were significantly less accurate in recognition of previously familiar (known before hearing loss) musical excerpts than normal-hearing adults (p genre. Implant recipients were most accurate in the recognition of country items and least accurate in the recognition of classical items. There were no significant differences among implant recipients due to implant type (Nucleus, Clarion, or Ineraid), or programming strategy (SPEAK, CIS, or ACE). For cochlear implant recipients, correlations between melody recognition and other measures were moderate to weak in strength; those with statistically significant correlations included age at time of testing (negatively correlated), performance on selected speech perception tests, and the amount of focused music listening following implantation. Current-day cochlear implants are not effective in transmitting several key structural features (i.e., pitch, harmony, timbral blends) of music essential to open-set recognition of well-known musical selections. Consequently, implant

  19. Adult neurogenesis affects motivation to obtain weak, but not strong, reward in operant tasks.

    Science.gov (United States)

    Karlsson, Rose-Marie; Wang, Alice S; Sonti, Anup N; Cameron, Heather A

    2018-04-16

    Decreased motivation to seek rewards is a key feature of mood disorders that correlates with severity and treatment outcome. This anhedonia, or apathy, likely reflects impairment in reward circuitry, but the specific neuronal populations controlling motivation are unclear. Granule neurons generated in the adult hippocampus have been implicated in mood disorders, but are not generally considered as part of reward circuits. We investigated a possible role of these new neurons in motivation to work for food and sucrose rewards in operant conditioning tasks using GFAP-TK pharmacogenetic ablation of adult neurogenesis in both rats and mice. Rats and mice lacking adult neurogenesis showed normal lever press responding during fixed ratio training, reward devaluation, and Pavlovian Instrumental Transfer, suggesting no impairment in learning. However, on an exponentially progressive ratio schedule, or when regular chow was freely available in the testing chamber, TK rats and mice showed less effort to gain sucrose tablets. When working for balanced food tablets, which rats and mice of both genotypes strongly preferred over sucrose, the genotype effects on behavior were lost. This decrease in effort under conditions of low reward suggests that loss of adult neurogenesis decreases motivation to seek reward in a manner that may model behavioral apathy. © 2018 Wiley Periodicals, Inc.

  20. Effects of ambient temperature on glucose tolerance and insulin sensitivity test outcomes in normal and obese C57 male mice.

    Science.gov (United States)

    Dudele, Anete; Rasmussen, Gitte Marie; Mayntz, David; Malte, Hans; Lund, Sten; Wang, Tobias

    2015-05-01

    Mice are commonly used as animal models to study human metabolic diseases, but experiments are typically performed at room temperature, which is far below their thermoneutral zone and is associated with elevated heart rate, food intake, and energy expenditure. We set out to study how ambient temperature affects glucose tolerance and insulin sensitivity in control and obese male mice. Adult male C57BL/6J mice were housed at room temperature (23°C) for 6 weeks and fed either control or high fat diet. They were then fasted for 6 h before glucose or insulin tolerance tests were performed at 15, 20, 25, or 30°C. To ensure that behavioral thermoregulation did not counterbalance the afflicted ambient temperatures, oxygen consumption was determined on mice with the same thermoregulatory opportunities as during the tests. Decreasing ambient temperatures increased oxygen consumption and body mass loss during fasting in both groups. Mice fed high fat diet had improved glucose tolerance at 30°C and increased levels of fasting insulin followed by successive decrease of fasting glucose. However, differences between control and high-fat diet mice were present at all temperatures. Ambient temperature did not affect glucose tolerance in control group and insulin tolerance in either of the groups. Ambient temperature affects glucose metabolism in mice and this effect is phenotype specific. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  1. Increased anxiety and fear memory in adult mice lacking type 2 deiodinase.

    Science.gov (United States)

    Bárez-López, Soledad; Montero-Pedrazuela, Ana; Bosch-García, Daniel; Venero, César; Guadaño-Ferraz, Ana

    2017-10-01

    A euthyroid state in the brain is crucial for its adequate development and function. Impairments in thyroid hormones (THs; T3 or 3,5,3'-triiodothyronine and T4 or thyroxine) levels and availability in brain can lead to neurological alterations and to psychiatric disorders, particularly mood disorders. The thyroid gland synthetizes mainly T4, which is secreted to circulating blood, however, most actions of THs are mediated by T3, the transcriptionally active form. In the brain, intracellular concentrations of T3 are modulated by the activity of type 2 (D2) and type 3 (D3) deiodinases. In the present work, we evaluated learning and memory capabilities and anxiety-like behavior at adult stages in mice lacking D2 (D2KO) and we analyzed the impact of D2-deficiency on TH content and on the expression of T3-dependent genes in the amygdala and the hippocampus. We found that D2KO mice do not present impairments in spatial learning and memory, but they display emotional alterations with increased anxiety-like behavior as well as enhanced auditory-cued fear memory and spontaneous recovery of fear memory following extinction. D2KO mice also presented reduced T3 content in the hippocampus and decreased expression of the T3-dependent gene Dio3 in the amygdala suggesting a hypothyroid status in this structure. We propose that the emotional dysfunctions found in D2KO mice can arise from the reduced T3 content in their brain, which consequently leads to alterations in gene expression with functional consequences. We found a downregulation in the gene encoding for the calcium-binding protein calretinin (Calb2) in the amygdala of D2KO mice that could affect the GABAergic transmission. The current findings in D2KO mice can provide insight into emotional disorders present in humans with DIO2 polymorphisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Protective effects of vitamin E and Cornus mas fruit extract on methotrexate-induced cytotoxicity in sperms of adult mice

    Directory of Open Access Journals (Sweden)

    Leila Zarei

    2014-03-01

    Full Text Available This study was aimed to assess the protective effects of Cornus mas fruit extract (CMFE and vitamin E (Vit E on sperm quality parameters in the methotrexate (MTX-treated mice. Forty-eight young adult male mice (8-12 weeks were randomly divided into six groups including control and test groups. The control group received normal saline orally , and the test groups were treated MTX (20 mg kg-1, ip, once weekly, MTX + CMFE (250 mg kg-1, MTX + CMFE (500 mg kg-1, MTX + CMFE (1000 mg kg-1, and MTX + Vit E (100 IU kg-1, po for 35 consecutive days. On day 35, after euthanasia the epididymal sperms were isolated. Then the total mean sperm count, sperm viability and motility were determined. The total antioxidant capacity (TAOC of all experimental groups were also evaluated. The MTX-treated animals showed a significant changes in all parameters of sperm quality assessment compared to the control group. Both Vit E and CMFE were able to protect from MTX-induced effects on sperm maturity and DNA damage. Co-administration of MTX and CMFE and/or Vit E resulted in protection from MTX-reduced TAOC. In conclusion, these data suggested that MTX administration could adversely affect the sperm quality. Moreover, the protective effect of Vit E and CMFE on MTX-induced sperm toxicity was also documented.

  3. Elevation of extracellular adenosine enhances haemopoiesis-stimulating effects of G-CSF in normal and gamma-irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, M.; Pospisil, M.; Netikiva, J.; Hola, J. [Institute of Biophysics, Academy of Sciences of the Czech Republic (Czech Republic)

    1997-03-01

    Effects of combined treatment with drugs elevating extracellular adenosine (dipyridamole /DP/, inhibiting the extracellular uptake of adenosine, and adenosine monophosphate /AMP/, an adenosine pro-drug), and G-CSF (granulocyte colony-stimulating factor) on haemopoiesis of normal and gamma-irradiated mice were ascertained. The agents were administered alone or in combination in a 4-day regimen. In normal, unirradiated animals, the haematological endpoints were determined 24 hours after the completion of the treatment. It was shown that the effects of G-CSF, i.e., increases in peripheral blood neutrophils, granulocyte-macrophage progenitor cells (GM-CFC) and morphologically recognizable granulocyte cells in femoral marrow and a decrease in the marrow erythroid cells, can be enhanced by the combination of DP plus AMP administrated 30 minutes before G-CSF. Furthermore, it was found that the stimulatory action of DP plus AMP was expressed particularly at lower doses of G-CSF (1.5, 3, and 4.5 {mu}g/d). In experiments with irradiated mice, when the 4-day therapeutic regimen was applied on days 3 to 6 following irradiation with the dose of 4 Gy, analogical stimulation of granulopoiesis was observed in the recovery phase on days 14 and 18 after irradiation. As example, see Fig. 1 for counts of granulocyte cells in femoral bone marrow. (authors)

  4. Elevation of extracellular adenosine enhances haemopoiesis-stimulating effects of G-CSF in normal and gamma-irradiated mice

    International Nuclear Information System (INIS)

    Hofer, M.; Pospisil, M.; Netikiva, J.; Hola, J.

    1997-01-01

    Effects of combined treatment with drugs elevating extracellular adenosine (dipyridamole /DP/, inhibiting the extracellular uptake of adenosine, and adenosine monophosphate /AMP/, an adenosine pro-drug), and G-CSF (granulocyte colony-stimulating factor) on haemopoiesis of normal and gamma-irradiated mice were ascertained. The agents were administered alone or in combination in a 4-day regimen. In normal, unirradiated animals, the haematological endpoints were determined 24 hours after the completion of the treatment. It was shown that the effects of G-CSF, i.e., increases in peripheral blood neutrophils, granulocyte-macrophage progenitor cells (GM-CFC) and morphologically recognizable granulocyte cells in femoral marrow and a decrease in the marrow erythroid cells, can be enhanced by the combination of DP plus AMP administrated 30 minutes before G-CSF. Furthermore, it was found that the stimulatory action of DP plus AMP was expressed particularly at lower doses of G-CSF (1.5, 3, and 4.5 μg/d). In experiments with irradiated mice, when the 4-day therapeutic regimen was applied on days 3 to 6 following irradiation with the dose of 4 Gy, analogical stimulation of granulopoiesis was observed in the recovery phase on days 14 and 18 after irradiation. As example, see Fig. 1 for counts of granulocyte cells in femoral bone marrow. (authors)

  5. Ablation of neurons expressing melanin-concentrating hormone (MCH) in adult mice improves glucose tolerance independent of MCH signaling.

    Science.gov (United States)

    Whiddon, Benjamin B; Palmiter, Richard D

    2013-01-30

    Melanin-concentrating hormone (MCH)-expressing neurons have been ascribed many roles based on studies of MCH-deficient mice. However, MCH neurons express other neurotransmitters, including GABA, nesfatin, and cocaine-amphetamine-regulated transcript. The importance of these other signaling molecules made by MCH neurons remains incompletely characterized. To determine the roles of MCH neurons in vivo, we targeted expression of the human diphtheria toxin receptor (DTR) to the gene for MCH (Pmch). Within 2 weeks of diphtheria toxin injection, heterozygous Pmch(DTR/+) mice lost 98% of their MCH neurons. These mice became lean but ate normally and were hyperactive, especially during a fast. They also responded abnormally to psychostimulants. For these phenotypes, ablation of MCH neurons recapitulated knock-out of MCH, so MCH appears to be the critical neuromodulator released by these neurons. In contrast, MCH-neuron-ablated mice showed improved glucose tolerance when compared with MCH-deficient mutant mice and wild-type mice. We conclude that MCH neurons regulate glucose tolerance through signaling molecules other than MCH.

  6. Developmental Stage-Specific Manifestations of Absent TPO/c-MPL Signalling in Newborn Mice.

    Science.gov (United States)

    Lorenz, Viola; Ramsey, Haley; Liu, Zhi-Jian; Italiano, Joseph; Hoffmeister, Karin; Bihorel, Sihem; Mager, Donald; Hu, Zhongbo; Slayton, William B; Kile, Benjamin T; Sola-Visner, Martha; Ferrer-Marin, Francisca

    2017-12-01

    Congenital amegakaryocytic thrombocytopaenia (CAMT) is a disorder caused by c-MPL mutations that impair thrombopoietin (TPO) signalling, resulting in a near absence of megakaryocytes (MKs). While this phenotype is consistent in adults, neonates with CAMT can present with severe thrombocytopaenia despite normal MK numbers. To investigate this, we characterized MKs and platelets in newborn c-MPL –/– mice. Liver MKs in c-MPL –/– neonates were reduced in number and size compared with wild-type (WT) age-matched MKs, and exhibited ultrastructural abnormalities not found in adult c-MPL –/– MKs. Platelet counts were lower in c-MPL –/– compared with WT mice at birth and did not increase over the first 2 weeks of life. In vivo biotinylation revealed a significant reduction in the platelet half-life of c-MPL –/– newborn mice (P2) compared with age-matched WT pups, which was not associated with ultrastructural abnormalities. Genetic deletion of the pro-apoptotic Bak did not rescue the severely reduced platelet half-life of c-MPL –/– newborn mice, suggesting that it was due to factors other than platelets entering apoptosis early. Indeed, adult GFP+ (green fluorescent protein transgenic) platelets transfused into thrombocytopenic c-MPL –/– P2 pups also had a shortened lifespan, indicating the importance of cell-extrinsic factors. In addition, neonatal platelets from WT and c-MPL –/– mice exhibited reduced P-selectin surface expression following stimulation compared with adult platelets of either genotype, and platelets from c-MPL –/– neonates exhibited reduced glycoprotein IIb/IIIa (GPIIb/IIIa) activation in response to thrombin compared with age-matched WT platelets. Taken together, our findings indicate that c-MPL deficiency is associated with abnormal maturation of neonatal MKs and developmental stage-specific defects in platelet function.

  7. Gender Dependence in Mouth Opening Dimensions in Normal Adult Malaysians Population

    OpenAIRE

    Shaari, Ramizu; Hwa, Teoh Eng; Rahman, Shaifulizan Abdul

    2011-01-01

    While measurement of mouth opening is an important clinica examination in diagnosis and management of oral disease, data on non-Western populations are limited. This study was therefore conducted to determine the range of mouth opening in normal Malaysian male and female adults. A total of 34 dental students of Universiti Sains Malaysia (USM) were chosen randomly and their maximum mouth opening was measured after being asked to open their mouth sufficiently to accommodate three fingers. Measu...

  8. Ghrelin modulates testicular germ cells apoptosis and proliferation in adult normal rats

    Energy Technology Data Exchange (ETDEWEB)

    Kheradmand, Arash, E-mail: arashkheradmand@yahoo.com [Department of Clinical Sciences, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Dezfoulian, Omid [Department of Pathobiology, School of Veterinary Medicine, Lorestan University, Khorram Abad (Iran, Islamic Republic of); Alirezaei, Masoud [Division of Biochemistry, School of Veterinary Medicine, Lorestan University, P.O. Box: 465, Khorram Abad (Iran, Islamic Republic of); Rasoulian, Bahram [Razi Herbal Medicine Research Center, Lorestan University of Medical Sciences, Khorram Abad (Iran, Islamic Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. Black-Right-Pointing-Pointer Numerous studies have documented the direct action of ghrelin in the modulation of apoptosis in different cell types. Black-Right-Pointing-Pointer Ghrelin may be considered as a modulator of spermatogenesis in normal adult rats. Black-Right-Pointing-Pointer Ghrelin may be potentially implicated for abnormal spermatogenesis in some testicular germ cell tumors. -- Abstract: Under normal condition in the most mammals, spermatogenesis is closely associated with the balance between germ cells proliferation and apoptosis. The present study was designed to determine the effects of ghrelin treatment on in vivo quality and quantity expression of apoptosis and proliferation specific indices in rat testicular germ cells. Twenty eight adult normal rats were subdivided into equal control and treatment groups. Treatment group received 3 nmol of ghrelin as subcutaneous injection for 30 consecutive days or vehicle to the control animals. The rats from each group (n = 7) were killed on days 10 and 30 and their testes were taken for immunocytochemical evaluation and caspase-3 assay. Immunohistochemical analysis indicated that the accumulations of Bax and PCNA peptides are generally more prominent in spermatocytes and spermatogonia of both groups. Likewise, the mean percentage of immunoreactive spermatocytes against Bax increased (P < 0.01) in the ghrelin-treated group on day 10, while despite of 30% increment in the Bax level of spermatocytes in the treated rats on day 30, however, it was not statistically significant. During the experimental period, only a few spermatogonia represented Bax expression and the changes of Bax immunolabling cells were negligible upon ghrelin treatment. Likewise, there were immunostaining cells against Bcl-2 in each germ cell neither in the control nor in the treated animals. In fact

  9. Combination of exercise training and diet restriction normalizes limited exercise capacity and impaired skeletal muscle function in diet-induced diabetic mice.

    Science.gov (United States)

    Suga, Tadashi; Kinugawa, Shintaro; Takada, Shingo; Kadoguchi, Tomoyasu; Fukushima, Arata; Homma, Tsuneaki; Masaki, Yoshihiro; Furihata, Takaaki; Takahashi, Masashige; Sobirin, Mochamad A; Ono, Taisuke; Hirabayashi, Kagami; Yokota, Takashi; Tanaka, Shinya; Okita, Koichi; Tsutsui, Hiroyuki

    2014-01-01

    Exercise training (EX) and diet restriction (DR) are essential for effective management of obesity and insulin resistance in diabetes mellitus. However, whether these interventions ameliorate the limited exercise capacity and impaired skeletal muscle function in diabetes patients remains unexplored. Therefore, we investigated the effects of EX and/or DR on exercise capacity and skeletal muscle function in diet-induced diabetic mice. Male C57BL/6J mice that were fed a high-fat diet (HFD) for 8 weeks were randomly assigned for an additional 4 weeks to 4 groups: control, EX, DR, and EX+DR. A lean group fed with a normal diet was also studied. Obesity and insulin resistance induced by a HFD were significantly but partially improved by EX or DR and completely reversed by EX+DR. Although exercise capacity decreased significantly with HFD compared with normal diet, it partially improved with EX and DR and completely reversed with EX+DR. In parallel, the impaired mitochondrial function and enhanced oxidative stress in the skeletal muscle caused by the HFD were normalized only by EX+DR. Although obesity and insulin resistance were completely reversed by DR with an insulin-sensitizing drug or a long-term intervention, the exercise capacity and skeletal muscle function could not be normalized. Therefore, improvement in impaired skeletal muscle function, rather than obesity and insulin resistance, may be an important therapeutic target for normalization of the limited exercise capacity in diabetes. In conclusion, a comprehensive lifestyle therapy of exercise and diet normalizes the limited exercise capacity and impaired muscle function in diabetes mellitus.

  10. Adult Behavior in Male Mice Exposed to E-Cigarette Nicotine Vapors during Late Prenatal and Early Postnatal Life

    OpenAIRE

    Smith, Dani; Aherrera, Angela; Lopez, Armando; Neptune, Enid; Winickoff, Jonathan P.; Klein, Jonathan D.; Chen, Gang; Lazarus, Philip; Collaco, Joseph M.; McGrath-Morrow, Sharon A.

    2015-01-01

    Nicotine exposure has been associated with an increased likelihood of developing attention deficit hyperactivity disorder (ADHD) in offspring of mothers who smoked during pregnancy. The goal of this study was to determine if exposure to E-cigarette nicotine vapors during late prenatal and early postnatal life altered behavior in adult mice. Methods: Timed-pregnant C57BL/6J mice were exposed to 2.4% nicotine in propylene glycol (PG) or 0% nicotine /PG once a day from gestational day 15 until d...

  11. Amyloid precursor protein is required for normal function of the rod and cone pathways in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Tracy Ho

    Full Text Available Amyloid precursor protein (APP is a transmembrane glycoprotein frequently studied for its role in Alzheimer's disease. Our recent study in APP knockout (KO mice identified an important role for APP in modulating normal neuronal development in the retina. However the role APP plays in the adult retina and whether it is required for vision is unknown. In this study we evaluated the role of APP in retinal function and morphology comparing adult wildtype (WT and APP-KO mice. APP was expressed on neuronal cells of the inner retina, including horizontal, cone bipolar, amacrine and ganglion cells in WT mice. The function of the retina was assessed using the electroretinogram and although the rod photoreceptor responses were similar in APP-KO and WT mice, the post-photoreceptor, inner retinal responses of both the rod and cone pathways were reduced in APP-KO mice. These changes in inner retinal function did not translate to a substantial change in visual acuity as assessed using the optokinetic response or to changes in the gross cellular structure of the retina. These findings indicate that APP is not required for basic visual function, but that it is involved in modulating inner retinal circuitry.

  12. Self-rated driving habits among older adults with clinically-defined mild cognitive impairment, clinically-defined dementia, and normal cognition.

    Science.gov (United States)

    O'Connor, Melissa L; Edwards, Jerri D; Bannon, Yvonne

    2013-12-01

    Older adults with clinically-defined dementia may report reducing their driving more than cognitively normal controls. However, it is unclear how these groups compare to individuals with clinically-defined mild cognitive impairment (MCI) in terms of driving behaviors. The current study investigated self-reported driving habits among adults age 60 and older with clinical MCI (n=41), clinical mild dementia (n=40), and normal cognition (n=43). Participants reported their driving status, driving frequency (days per week), and how often they avoided accessing the community, making left turns, driving at night, driving in unfamiliar areas, driving on high-traffic roads, and driving in bad weather. After adjusting for education, a MANCOVA revealed that participants with MCI and dementia avoided unfamiliar areas and high-traffic roads significantly more than normal participants. Participants with dementia also avoided left turns and accessing the community more than those with normal cognition and MCI (pdriving variables did not significantly differ between groups. Thus, older adults with clinically-defined MCI, as well as those with dementia, avoided some complex driving situations more than cognitively intact adults. However, all diagnostic groups had similar rates of driving cessation and frequency. Future research should examine the safety implications of such findings. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. EXPERIMENTAL-INFECTION IN MICE WITH BACILLUS-LICHENIFORMIS

    DEFF Research Database (Denmark)

    Agerholm, J.S.; Jensen, H.E.; Jensen, N.E.

    1995-01-01

    The pathogenicity of Bacillus licheniformis was assessed in normal and immunodepressed BALB/c mice. The animals were challenged intravenously with 4 x 10(7) colony forming units of B, licheniformis (ATCC 14580) and both normal and immunodepressed mice were susceptible. However, the infection...... was more severe in the immunosuppressed animals. In normal mice, lesions were restricted to the liver and kidneys, while lesions also occurred in other organs of immunodepressed mice. By crossed immunoelectrophoresis it was shown that antigens of B. licheniformis are potent immunogens, and the bacteria...

  14. Spatial delayed nonmatching-to-sample performances in long-living Ames dwarf mice.

    Science.gov (United States)

    Derenne, Adam; Brown-Borg, Holly M; Martner, Sarah; Wolff, Wendy; Frerking, Morgan

    2014-01-17

    Ames dwarf mice have an extended lifespan by comparison with normal mice. Behavioral testing has revealed that sometimes Ames dwarf mice also evince superior performances relative to normal mice, but in other cases they do not. In this experiment, Ames dwarf and normal mice were compared on a T-maze test and on a delayed nonmatching-to-sample variant of a T-maze test. On the simple T-maze, Ames dwarf and normal mice committed comparable numbers of errors. On the nonmatching-to-sample task, normal mice mastered the discrimination by the end of the experiment while Ames dwarf mice did not. The apparatus, distances traveled and session duration were equivalent between the two tasks. The poorer performances of Ames dwarf mice on the nonmatching-to-sample task suggests that Ames dwarf mice may not be as capable of learning relatively cognitively complex tasks as normal mice. © 2013.

  15. Digital ranges of motion: normal values in young adults.

    Science.gov (United States)

    Mallon, W J; Brown, H R; Nunley, J A

    1991-09-01

    Analysis of the range of motion of fingers was done in young (eighteen to thirty-five year old) adult volunteers with no history of previous injury to their hands. The data show that there are slight differences between the individual digits. Notably, metacarpophalangeal flexion and total active motion increase linearly in proceeding from the index to the small finger. There were also minor differences in comparing sexes. Women have greater extension at the metacarpophalangeal joint in both active and passive motion and have a greater total active motion at all digits as a result. A significant tenodesis effect was found at the distal interphalangeal joint in normal subjects. No differences were found that could be attributable to handedness.

  16. Subchronic Oral Bromocriptine Methanesulfonate Enhances Open Field Novelty-Induced Behavior and Spatial Memory in Male Swiss Albino Mice

    OpenAIRE

    Onaolapo, Olakunle James; Onaolapo, Adejoke Yetunde

    2012-01-01

    This study set out to assess the neurobehavioral effects of subchronic, oral bromocriptine methanesulfonate using the open field and the Y-maze in healthy male mice. Sixty adult Swiss albino mice were assigned into three groups. Controls received normal saline, while test groups received bromocriptine methanesulfonate at 2.5 and 5 mg/kg/day, respectively, for a period of 21 days. Neurobehavioral tests were carried out on days 1 and 21 after administration. Open field assessment on day 1 after...

  17. Hesperetin-5,7,3'-O-triacetate suppresses airway hyperresponsiveness in ovalbumin-sensitized and challenged mice without reversing xylazine/ketamine-induced anesthesia in normal mice.

    Science.gov (United States)

    Yang, You-Lan; Chen, Chi-Li; Chen, Chi-Ming; Ko, Wun-Chang

    2017-05-30

    We recently reported that hesperetin-5,7,3'-O-triacetate (HTA) dually inhibited phosphodiesterase (PDE)3/4 with a therapeutic ratio of 20.8. The application and development of PDE4 inhibitors for treating asthma or COPD are limited by their side effects, such as nausea, vomiting and gastric hypersecretion. PDE4 inhibitors were reported to reverse xylazine/ketamine-induced anesthesia in rats and triggered vomiting in ferrets. Thus the reversing effect of HTA on xylazine/ketamine-induced anesthesia in mice was studied to assess emetic effect of HTA. The aim of this study was to prove the therapeutic effect of HTA without vomiting effect at an effective dose for treating COPD. Ten female BALB/c mice in each group were sensitized by ovalbumin (OVA) on days 0 and 14. On day 21, these mice were emphasized the sensitization by Freund's complete adjuvant. Mice were challenged by 1% OVA nebulization on days 28, 29, and 30. Airway hyperresponsiveness (AHR) was assessed on day 32 in each group, using the FlexiVent system to determine airway resistance (R L ) and lung dynamic compliance (C dyn ) in anesthetized ovalbumin (OVA)-sensitized and challenged mice. Each group was orally administered HTA (10 ~ 100 μmol/kg), roflumilast (1 and 5 mg/kg) or vehicles (controls) 2 h before and 6 and 24 h after OVA provocation. For comparison, sham-treated mice were challenged with saline instead of 1% OVA. The ability to reverse xylazine/ketamine-induced anesthesia by HTA or roflumilast for 3 h was determined in normal mice. We used roflumilast, a selective PDE4 inhibitor and bronchodilator for severe COPD approved by the US Food and Drug Administration, as a reference drug. In the results, HTA (100 μmol/kg, p.o.) or roflumilast (5 mg/kg, p.o.) significantly suppressed all R L values of MCh at 0.78 ~ 25 mg/mL and enhanced C dyn values of MCh at 3.125 ~ 25 mg/mL compared to OVA-sensitized and -challenged control mice. Orally administered 1, 3 or 10 mg/kg roflumilast

  18. Automated Spatial Brain Normalization and Hindbrain White Matter Reference Tissue Give Improved [(18)F]-Florbetaben PET Quantitation in Alzheimer's Model Mice.

    Science.gov (United States)

    Overhoff, Felix; Brendel, Matthias; Jaworska, Anna; Korzhova, Viktoria; Delker, Andreas; Probst, Federico; Focke, Carola; Gildehaus, Franz-Josef; Carlsen, Janette; Baumann, Karlheinz; Haass, Christian; Bartenstein, Peter; Herms, Jochen; Rominger, Axel

    2016-01-01

    Preclinical PET studies of β-amyloid (Aβ) accumulation are of growing importance, but comparisons between research sites require standardized and optimized methods for quantitation. Therefore, we aimed to evaluate systematically the (1) impact of an automated algorithm for spatial brain normalization, and (2) intensity scaling methods of different reference regions for Aβ-PET in a large dataset of transgenic mice. PS2APP mice in a 6 week longitudinal setting (N = 37) and another set of PS2APP mice at a histologically assessed narrow range of Aβ burden (N = 40) were investigated by [(18)F]-florbetaben PET. Manual spatial normalization by three readers at different training levels was performed prior to application of an automated brain spatial normalization and inter-reader agreement was assessed by Fleiss Kappa (κ). For this method the impact of templates at different pathology stages was investigated. Four different reference regions on brain uptake normalization were used to calculate frontal cortical standardized uptake value ratios (SUVRCTX∕REF), relative to raw SUVCTX. Results were compared on the basis of longitudinal stability (Cohen's d), and in reference to gold standard histopathological quantitation (Pearson's R). Application of an automated brain spatial normalization resulted in nearly perfect agreement (all κ≥0.99) between different readers, with constant or improved correlation with histology. Templates based on inappropriate pathology stage resulted in up to 2.9% systematic bias for SUVRCTX∕REF. All SUVRCTX∕REF methods performed better than SUVCTX both with regard to longitudinal stability (d≥1.21 vs. d = 0.23) and histological gold standard agreement (R≥0.66 vs. R≥0.31). Voxel-wise analysis suggested a physiologically implausible longitudinal decrease by global mean scaling. The hindbrain white matter reference (R mean = 0.75) was slightly superior to the brainstem (R mean = 0.74) and the cerebellum (R mean = 0.73). Automated

  19. Attitudes of Overweight and Normal Weight Adults Regarding Exercise at a Health Club

    Science.gov (United States)

    Miller, Wayne C.; Miller, Todd A.

    2010-01-01

    Objective: To compare attitudes of overweight (OW) and normal weight (NW) adults regarding health club exercise. Design: A 46-item survey (23 pairs of attitude/value statements) measured attitudes toward exercising at a health club 30 minutes, twice a week, for a month. Setting: Survey posted on surveymonkey.com. Respondents (men = 730, women =…

  20. A study on normal value of eyeball protrusion in Korean adult using CT

    International Nuclear Information System (INIS)

    Song, Chi Sung; Chang, Kee Hyun

    1984-01-01

    CT may be valuably used in determination of proptosis. Normal value of eyeball protrusion was measured in normal Koreans using CT. Among 86 Koreans, 26 have normal both eyes, but 60 have one normal eye with one abnormal eye (chiefly, proptosis and and eyeball tumor). The results of 112 eyes are as follows: Absolute measurement of 'a', that is, the distance between cornea and IZL (interzygomatic line) is 16.0±3.4 mm in male (for 63 eye), 15.7±4.0 mm in female for 49 eyes. Ratio of 'a' over 'A' (A-P diameter of eyeball) is 57±12% is male (for 63 eye), 57±14% in female (for 49 eye) Discrepancy of eyeball protrusion between both eyes is 0.67±1.5 mm (for 26 adults). Practically, normal range of eyeball prtotrusion ('a') is 12.6 mm < male < 19.4 mm, 11.7 mm < female < 19.7 mm. 'a/A' ratio over 70% and over 2mm discrepancy between both eyes are also suggested as genuine exophthalmos

  1. Cellular and Behavioral Effects of Cranial Irradiation of the Subventricular Zone in Adult Mice

    Science.gov (United States)

    Lazarini, Françoise; Mouthon, Marc-André; Gheusi, Gilles; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Lamarque, Stéphanie; Abrous, Djoher Nora; Boussin, François D.; Lledo, Pierre-Marie

    2009-01-01

    Background In mammals, new neurons are added to the olfactory bulb (OB) throughout life. Most of these new neurons, granule and periglomerular cells originate from the subventricular zone (SVZ) lining the lateral ventricles and migrate via the rostral migratory stream toward the OB. Thousands of new neurons appear each day, but the function of this ongoing neurogenesis remains unclear. Methodology/Principal Findings In this study, we irradiated adult mice to impair constitutive OB neurogenesis, and explored the functional impacts of this irradiation on the sense of smell. We found that focal irradiation of the SVZ greatly decreased the rate of production of new OB neurons, leaving other brain areas intact. This effect persisted for up to seven months after exposure to 15 Gray. Despite this robust impairment, the thresholds for detecting pure odorant molecules and short-term olfactory memory were not affected by irradiation. Similarly, the ability to distinguish between odorant molecules and the odorant-guided social behavior of irradiated mice were not affected by the decrease in the number of new neurons. Only long-term olfactory memory was found to be sensitive to SVZ irradiation. Conclusion/Significance These findings suggest that the continuous production of adult-generated neurons is involved in consolidating or restituting long-lasting olfactory traces. PMID:19753118

  2. Cellular and behavioral effects of cranial irradiation of the subventricular zone in adult mice.

    Directory of Open Access Journals (Sweden)

    Françoise Lazarini

    2009-09-01

    Full Text Available In mammals, new neurons are added to the olfactory bulb (OB throughout life. Most of these new neurons, granule and periglomerular cells originate from the subventricular zone (SVZ lining the lateral ventricles and migrate via the rostral migratory stream toward the OB. Thousands of new neurons appear each day, but the function of this ongoing neurogenesis remains unclear.In this study, we irradiated adult mice to impair constitutive OB neurogenesis, and explored the functional impacts of this irradiation on the sense of smell. We found that focal irradiation of the SVZ greatly decreased the rate of production of new OB neurons, leaving other brain areas intact. This effect persisted for up to seven months after exposure to 15 Gray. Despite this robust impairment, the thresholds for detecting pure odorant molecules and short-term olfactory memory were not affected by irradiation. Similarly, the ability to distinguish between odorant molecules and the odorant-guided social behavior of irradiated mice were not affected by the decrease in the number of new neurons. Only long-term olfactory memory was found to be sensitive to SVZ irradiation.These findings suggest that the continuous production of adult-generated neurons is involved in consolidating or restituting long-lasting olfactory traces.

  3. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice

    Directory of Open Access Journals (Sweden)

    Ute Ulrike Botzenhart

    2016-01-01

    Full Text Available The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice.

  4. Dynamic of distribution of human bone marrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice.

    Science.gov (United States)

    Allers, Carolina; Sierralta, Walter D; Neubauer, Sonia; Rivera, Francisco; Minguell, José J; Conget, Paulette A

    2004-08-27

    The use of mesenchymal stem cells (MSC) for cell therapy relies on their capacity to engraft and survive long-term in the appropriate target tissue(s). Animal models have demonstrated that the syngeneic or xenogeneic transplantation of MSC results in donor engraftment into the bone marrow and other tissues of conditioned recipients. However, there are no reliable data showing the fate of human MSC infused into conditioned or unconditioned adult recipients. In the present study, the authors investigated, by using imaging, polymerase chain reaction (PCR), and in situ hybridization, the biodistribution of human bone marrow-derived MSC after intravenous infusion into unconditioned adult nude mice. As assessed by imaging (gamma camera), PCR, and in situ hybridization analysis, the authors' results demonstrate the presence of human MSC in bone marrow, spleen, and mesenchymal tissues of recipient mice. These results suggest that human MSC transplantation into unconditioned recipients represents an option for providing cellular therapy and avoids the complications associated with drugs or radiation conditioning.

  5. Clearance of a monoclonal anti-DNA antibody following administration of DNA in normal and autoimmune mice

    International Nuclear Information System (INIS)

    Jones, F.S.; Pisetsky, D.S.; Kurlander, R.J.

    1986-01-01

    To study the assembly of DNA-anti-DNA complexes in vivo, we have measured the clearance from blood and organ localization of a murine IgG2a monoclonal anti-DNA antibody, called 6/0, following the infusion of DNA intravenously or intraperitoneally. Intraperitoneal DNA caused a profound acceleration of 6/0 anti-DNA clearance that was dose dependent and demonstrable after the infusion of as little as 1.9 microgram per gram of body weight of single-stranded DNA. The antibody was cleared primarily in the liver without increased deposition in the kidney. Intraperitoneal infusions of DNA also accelerated the clearance of 6/0 in autoimmune MRL-lpr/lpr mice. In contrast, intravenous DNA given in comparable doses caused only a slight increase in 6/0 antibody clearance; this accelerated clearance was seen only at low antigen doses and only during the first 10 min following DNA infusion. Using double-radiolabeling techniques, 6/0 and Cl.18, an IgG2ak myeloma protein without anti-DNA activity, were found to disappear from blood at a comparable rate in both B6D2 mice and MRL-lpr/lpr mice. These results suggest that the DNA-anti-DNA immune complexes can form in vivo but that this process is profoundly affected by the manner in which DNA enters the circulation. In addition, the results suggest that DNA-dependent clearance is not a major pathway for anti-DNA metabolism in normal or at least one strain of autoimmune mice

  6. Synthesized Peptides from Yam Dioscorin Hydrolysis in Silico Exhibit Dipeptidyl Peptidase-IV Inhibitory Activities and Oral Glucose Tolerance Improvements in Normal Mice.

    Science.gov (United States)

    Lin, Yin-Shiou; Han, Chuan-Hsiao; Lin, Shyr-Yi; Hou, Wen-Chi

    2016-08-24

    RRDY, RL, and DPF were the top 3 of 21 peptides for inhibitions against dipeptidyl peptidase-IV (DPP-IV) from the pepsin hydrolysis of yam dioscorin in silico and were further investigated in a proof-of-concept study in normal ICR mice for regulating glucose metabolism by the oral glucose tolerance test (OGTT). The sample or sitagliptin (positive control) was orally administered by a feeding gauge; 30 min later, the glucose loads (2.5 g/kg) were performed. RRDY, yam dioscorin, or sitagliptin preload, but not DPF, lowered the area under the curve (AUC0-120) of blood glucose and DPP-IV activity and elevated the AUC0-120 of blood insulin, which showed significant differences compared to control (P dioscorin might be beneficial in glycemic control in normal mice and need further investigations in diabetic animal models.

  7. Cellular and Behavioral Effects of Cranial Irradiation of the Subventricular Zone in Adult Mice

    OpenAIRE

    Lazarini, Fran?oise; Mouthon, Marc-Andr?; Gheusi, Gilles; de Chaumont, Fabrice; Olivo-Marin, Jean-Christophe; Lamarque, St?phanie; Abrous, Djoher Nora; Boussin, Fran?ois D.; Lledo, Pierre-Marie

    2009-01-01

    International audience; BACKGROUND: In mammals, new neurons are added to the olfactory bulb (OB) throughout life. Most of these new neurons, granule and periglomerular cells originate from the subventricular zone (SVZ) lining the lateral ventricles and migrate via the rostral migratory stream toward the OB. Thousands of new neurons appear each day, but the function of this ongoing neurogenesis remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we irradiated adult mice to impair c...

  8. Inducible Activation of ERK5 MAP Kinase Enhances Adult Neurogenesis in the Olfactory Bulb and Improves Olfactory Function

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M.; Xu, Lihong; Storm, Daniel R.

    2015-01-01

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. PMID:25995470

  9. Repair of uv damaged DNA in systemic lupus erythematosus. [Mice

    Energy Technology Data Exchange (ETDEWEB)

    Beighlie, D J; Teplitz, R L

    1975-06-01

    The NZB NZW hybrid mouse is an animal model of human systemic lupus erythematosus (SLE). Two breeding schemes were devised using NZB, NZW, B/W, and CBA mice, which permit definitive decisions regarding genetic and/or viral origin of the disease. It is proposed that at least two factors must be involved: a genetic abnormality producing hyper-responsiveness to nucleic acid antigens, and a DNA repair defect which results in liberation of DNA and RNA when cells are lethally injured. Evidence is presented for a DNA repair deficit in human SLE lymphocytes following in vitro irradiation with ultraviolet (uv) light. Lymphocytes from adult New Zealand and control mice were found to lack normal amounts of endonuclease necessary for repairing uv damage.

  10. Genetic pharmacotherapy as an early CNS drug development strategy: testing glutaminase inhibition for schizophrenia treatment in adult mice

    Directory of Open Access Journals (Sweden)

    Susana eMingote

    2016-01-01

    Full Text Available Genetic pharmacotherapy is an early drug development strategy for the identification of novel CNS targets in mouse models prior to the development of specific ligands. Here for the first time, we have implemented this strategy to address the potential therapeutic value of a glutamate-based pharmacotherapy for schizophrenia involving inhibition of the glutamate recycling enzyme phosphate-activated glutaminase. Mice constitutively heterozygous for GLS1, the gene encoding glutaminase, manifest a schizophrenia resilience phenotype, a key dimension of which is an attenuated locomotor response to propsychotic amphetamine challenge. If resilience is due to glutaminase deficiency in adulthood, then glutaminase inhibitors should have therapeutic potential. However, this has been difficult to test given the dearth of neuroactive glutaminase inhibitors. So, we used genetic pharmacotherapy to test the therapeutic potential of glutaminase inhibition. We specifically asked whether adult induction of GLS1 heterozygosity would attenuate amphetamine responsiveness. We generated conditional floxGLS1 mice and crossed them with global CAG ERT2 cre/+ mice to produce GLS1 iHET mice, susceptible to tamoxifen induction of GLS1 heterozygosity. One month after tamoxifen treatment of adult GLS1 iHET mice, we found a 50% reduction in GLS1 allelic abundance and glutaminase mRNA levels in the brain. While GLS1 iHET mice showed some recombination prior to tamoxifen, there was no impact on mRNA levels. We then asked whether induction of GLS heterozygosity would attenuate the locomotor response to propsychotic amphetamine challenge. Before tamoxifen, control and GLS1 iHET mice did not differ in their response to amphetamine. One month after tamoxifen treatment, amphetamine-induced hyperlocomotion was blocked in GLS1 iHET mice. The block was largely maintained after 5 months. Thus, a genetically induced glutaminase reduction — mimicking pharmacological inhibition — strongly

  11. Adult exposure to tributyltin affects hypothalamic neuropeptide Y, Y1 receptor distribution, and circulating leptin in mice.

    Science.gov (United States)

    Bo, E; Farinetti, A; Marraudino, M; Sterchele, D; Eva, C; Gotti, S; Panzica, G

    2016-07-01

    Tributyltin (TBT), a pesticide used in antifouling paints, is toxic for aquatic invertebrates. In vertebrates, TBT may act in obesogen- inducing adipogenetic gene transcription for adipocyte differentiation. In a previous study, we demonstrated that acute administration of TBT induces c-fos expression in the arcuate nucleus. Therefore, in this study, we tested the hypothesis that adult exposure to TBT may alter a part of the nervous pathways controlling animal food intake. In particular, we investigated the expression of neuropeptide Y (NPY) immunoreactivity. This neuropeptide forms neural circuits dedicated to food assumption and its action is mediated by Y1 receptors that are widely expressed in the hypothalamic nuclei responsible for the regulation of food intake and energy homeostasis. To this purpose, TBT was orally administered at a dose of 0.025 mg/kg/day/body weight to adult animals [male and female C57BL/6 (Y1-LacZ transgenic mice] for 4 weeks. No differences were found in body weight and fat deposition, but we observed a significant increase in feed efficiency in TBT-treated male mice and a significant decrease in circulating leptin in both sexes. Computerized quantitative analysis of NPY immunoreactivity and Y1-related β-galactosidase activity demonstrated a statistically significant reduction in NPY and Y1 transgene expression in the hypothalamic circuit controlling food intake of treated male mice in comparison with controls. In conclusion, the present results indicate that adult exposure to TBT is profoundly interfering with the nervous circuits involved in the stimulation of food intake. © 2016 American Society of Andrology and European Academy of Andrology.

  12. Pre-existing weakness is critical for the occurrence of postoperative cognitive dysfunction in mice of the same age.

    Directory of Open Access Journals (Sweden)

    Yujie Tang

    Full Text Available Occurrence of postoperative cognitive dysfunction (POCD is age-dependent and heterogenous. Factors deciding the occurrence of POCD in patients of the same age undergone same surgeries remain unclear. Here we investigated the effects of pre-existing weakness on the occurrence of POCD in mice of the same age. Pre-existing weakness of mice was induced by intraperitoneal injection of lipopolysaccharide (8mg/kg and was evaluated by physical frailty index (by open field test, neuroinflammation level (by Iba1 immunostaining and inflammatory factors TNF-α and IL-1β, and neuronal activity (by p-CREB immunostaining. POCD was induced by partial hepatolobectomy and was evaluated by puzzle box test and Morris water maze test. The brains were collected to detect the levels of neuroinflammation, synaptophysin and NMDA receptor subunits NR2A, NR2B and NR1 (by western blot, and oxidative stress (by Dihydroethidium. Compared to the normal adult mice of the same age, LPS pretreated mice had increased physical frailty index, higher levels of neuroinflammation, and lower neuronal activity. Partial hepatolobectomy induced obvious impairments in executive function, learning and memory in LPS pretreated mice after surgery, but not in normal mice of the same age. Partial hepatolobectomy also induced heightened neuroinflammation, obvious loss of NMDA receptor subunits, strong oxidative stress in LPS pretreated mice on the 1st and 3rd postoperative day. However, the POCD-associated pathological changes didn't occur in normal mice of the same age after surgery. These results suggest that pre-existing weakness is critical for the occurrence of POCD in mice of the same age.

  13. 5' Rapid Amplification of cDNA Ends and Illumina MiSeq Reveals B Cell Receptor Features in Healthy Adults, Adults With Chronic HIV-1 Infection, Cord Blood, and Humanized Mice.

    Science.gov (United States)

    Waltari, Eric; Jia, Manxue; Jiang, Caroline S; Lu, Hong; Huang, Jing; Fernandez, Cristina; Finzi, Andrés; Kaufmann, Daniel E; Markowitz, Martin; Tsuji, Moriya; Wu, Xueling

    2018-01-01

    Using 5' rapid amplification of cDNA ends, Illumina MiSeq, and basic flow cytometry, we systematically analyzed the expressed B cell receptor (BCR) repertoire in 14 healthy adult PBMCs, 5 HIV-1+ adult PBMCs, 5 cord blood samples, and 3 HIS-CD4/B mice, examining the full-length variable region of μ, γ, α, κ, and λ chains for V-gene usage, somatic hypermutation (SHM), and CDR3 length. Adding to the known repertoire of healthy adults, Illumina MiSeq consistently detected small fractions of reads with high mutation frequencies including hypermutated μ reads, and reads with long CDR3s. Additionally, the less studied IgA repertoire displayed similar characteristics to that of IgG. Compared to healthy adults, the five HIV-1 chronically infected adults displayed elevated mutation frequencies for all μ, γ, α, κ, and λ chains examined and slightly longer CDR3 lengths for γ, α, and λ. To evaluate the reconstituted human BCR sequences in a humanized mouse model, we analyzed cord blood and HIS-CD4/B mice, which all lacked the typical SHM seen in the adult reference. Furthermore, MiSeq revealed identical unmutated IgM sequences derived from separate cell aliquots, thus for the first time demonstrating rare clonal members of unmutated IgM B cells by sequencing.

  14. Survival of adult neurons lacking cholesterol synthesis in vivo.

    Science.gov (United States)

    Fünfschilling, Ursula; Saher, Gesine; Xiao, Le; Möbius, Wiebke; Nave, Klaus-Armin

    2007-01-02

    Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1), which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  15. Survival of adult neurons lacking cholesterol synthesis in vivo

    Directory of Open Access Journals (Sweden)

    Möbius Wiebke

    2007-01-01

    Full Text Available Abstract Background Cholesterol, an essential component of all mammalian plasma membranes, is highly enriched in the brain. Both during development and in the adult, brain cholesterol is derived from local cholesterol synthesis and not taken up from the circulation. However, the contribution of neurons and glial cells to total brain cholesterol metabolism is unknown. Results Using conditional gene inactivation in the mouse, we disrupted the squalene synthase gene (fdft1, which is critical for cholesterol synthesis, in cerebellar granule cells and some precerebellar nuclei. Mutant mice showed no histological signs of neuronal degeneration, displayed ultrastructurally normal synapses, and exhibited normal motor coordination. This revealed that these adult neurons do not require cell-autonomous cholesterol synthesis for survival or function. Conclusion We conclude that at least some adult neurons no longer require endogenous cholesterol synthesis and can fully meet their cholesterol needs by uptake from their surrounding. Glia are a likely source of cholesterol in the central nervous system.

  16. Prefrontal Cortex Dysfunction in Fragile X Mice Depends on the Continued Absence of Fragile X Mental Retardation Protein in the Adult Brain.

    Science.gov (United States)

    Siegel, Jennifer J; Chitwood, Raymond A; Ding, James M; Payne, Clayton; Taylor, William; Gray, Richard; Zemelman, Boris V; Johnston, Daniel

    2017-08-02

    Fragile X Syndrome (FX) is generally considered a developmental disorder, arising from a mutation that disrupts the transcription of Fragile X Mental Retardation Protein (FMRP). However, FMRP regulates the transcription of other proteins and participates in an unknown number of protein-protein interactions throughout life. In addition to known developmental issues, it is thus likely that some dysfunction is also due to the ongoing absence of FMRP. Dissociating dysfunction due to developmental dysregulation from dysfunction due to the continued absence of FMRP is necessary to understand the different roles of FMRP and to treat patients effectively throughout life. We show here that FX model mice display substantial deficits in a PFC-dependent task. We then use conditional knock-out mice to eliminate FMRP only in the PFC alone of adult mice. We observe an increase in the proportion of nonlearners and a delay in the onset of learning in both FX and conditional knock-out mice. The results suggest that these deficits (1) are due to the absence of FMRP in the PFC alone and (2) are not the result of developmental dysregulation. Furthermore, PFC-associated deficits are rescued by initiating production of FMRP in adult conditional restoration mice, suggesting that PFC dysfunction may persist as long as FMRP is absent and therefore can be rescued after development. The data suggest that it is possible to dissociate the roles of FMRP in neural function from developmental dysregulation, and that PFC function can be restored in the adult FX brain. SIGNIFICANCE STATEMENT The absence of Fragile X Mental Retardation Protein (FMRP) from birth results in developmental disabilities and lifelong impairments. We show here that in mouse models PFC dysfunction in Fragile X Syndrome (FX) can be attributed to the continued absence of FMRP from the PFC, independent of FMRP status during development. Furthermore, initiation of FMRP production in the PFC of adult FX animals rescues PFC

  17. sirt1-null mice develop an autoimmune-like condition

    International Nuclear Information System (INIS)

    Sequeira, Jedon; Boily, Gino; Bazinet, Stephanie; Saliba, Sarah; He Xiaohong; Jardine, Karen; Kennedy, Christopher; Staines, William; Rousseaux, Colin; Mueller, Rudi; McBurney, Michael W.

    2008-01-01

    The sirt1 gene encodes a protein deacetylase with a broad spectrum of reported substrates. Mice carrying null alleles for sirt1 are viable on outbred genetic backgrounds so we have examined them in detail to identify the biological processes that are dependent on SIRT1. Sera from adult sirt1-null mice contain antibodies that react with nuclear antigens and immune complexes become deposited in the livers and kidneys of these animals. Some of the sirt1-null animals develop a disease resembling diabetes insipidus when they approach 2 years of age although the relationship to the autoimmunity remains unclear. We interpret these observations as consistent with a role for SIRT1 in sustaining normal immune function and in this way delaying the onset of autoimmune disease

  18. Hearts of dystonia musculorum mice display normal morphological and histological features but show signs of cardiac stress.

    Directory of Open Access Journals (Sweden)

    Justin G Boyer

    2010-03-01

    Full Text Available Dystonin is a giant cytoskeletal protein belonging to the plakin protein family and is believed to crosslink the major filament systems in contractile cells. Previous work has demonstrated skeletal muscle defects in dystonin-deficient dystonia musculorum (dt mice. In this study, we show that the dystonin muscle isoform is localized at the Z-disc, the H zone, the sarcolemma and intercalated discs in cardiac tissue. Based on this localization pattern, we tested whether dystonin-deficiency leads to structural defects in cardiac muscle. Desmin intermediate filament, microfilament, and microtubule subcellular organization appeared normal in dt hearts. Nevertheless, increased transcript levels of atrial natriuretic factor (ANF, 66% beta-myosin heavy chain (beta-MHC, 95% and decreased levels of sarcoplasmic reticulum calcium pump isoform 2A (SERCA2a, 26%, all signs of cardiac muscle stress, were noted in dt hearts. Hearts from two-week old dt mice were assessed for the presence of morphological and histological alterations. Heart to body weight ratios as well as left ventricular wall thickness and left chamber volume measurements were similar between dt and wild-type control mice. Hearts from dt mice also displayed no signs of fibrosis or calcification. Taken together, our data provide new insights into the intricate structure of the sarcomere by situating dystonin in cardiac muscle fibers and suggest that dystonin does not significantly influence the structural organization of cardiac muscle fibers during early postnatal development.

  19. Developmental and growth defects in mice with combined deficiency of CK2 catalytic genes.

    Science.gov (United States)

    Landesman-Bollag, Esther; Belkina, Anna; Hovey, Beth; Connors, Edward; Cox, Charles; Seldin, David C

    2011-10-01

    The CK2 α and α' catalytic gene products have overlapping biochemical activity, but in vivo, their functions are very different. Deletion of both alleles of CK2α leads to mid-gestational embryonic lethality, while deletion of both alleles of CK2α' does not interfere with viability or development of embryos; however, adult CK2α'-/-males are infertile. To further elucidate developmental roles of CK2, and analyze functional overlap between the two catalytic genes, mice with combined knockouts were bred. Mice bearing any two CK2 catalytic alleles were phenotypically normal. However, inheritance of a single CK2α allele, without either CK2α' allele, resulted in partial embryonic lethality. Such mice that survived through embryogenesis were smaller at birth than littermate controls, and weighed less throughout life. However, their cardiac function and lifespan were normal. Fibroblasts derived from CK2α+/-CK2α'-/- embryos grew poorly in culture. These experiments demonstrate that combined loss of one CK2α allele and both CK2α' alleles leads to unique abnormalities of growth and development.

  20. Neonatal androgenization of hypogonadal (hpg male mice does not abolish estradiol-induced FSH production and spermatogenesis

    Directory of Open Access Journals (Sweden)

    Kerr Jeffrey B

    2005-09-01

    Full Text Available Abstract Background Testicular development is arrested in the hypogonadal (hpg mouse due to a congenital deficiency in hypothalamic gonadotropin-releasing hormone (GnRH synthesis. Chronic treatment of male hpg mice with estradiol induces FSH synthesis and secretion, and causes testicular maturation and qualitatively normal spermatogenesis. As estradiol negative feedback normally inhibits FSH production in the male, this study tested whether this paradoxical response to estradiol in the male hpg mouse might be due to inadequate masculinisation or incomplete defeminization in the neonatal period. Previous studies have demonstrated that treatment of hpg mice with testosterone propionate in the immediate neonatal period is necessary to allow full reproductive behaviors to be expressed following suitable endocrine stimulation at adult ages. Methods Hpg mice were treated with 100 μg testosterone propionate or vehicle on postnatal day 2. At 35 days of age, subgroups of these mice were treated with silastic implants containing estradiol or cholesterol. Reproductive behavior was scored in tests with steroid-primed female mice, then testicular development was assessed histologically, and measures of pituitary FSH content made at 85 days of age. Results The neonatal testosterone propionate treatment successfully defeminized female litter mates, as revealed by impaired vaginal opening and deficiencies in lordosis behavior, and it allowed appropriate male reproductive behavior to be expressed in a proportion of the hpg males when tested at an adult age. However, neonatal androgen supplementation did not block or even reduce the subsequent actions of estradiol in increasing pituitary FSH content, nor did it affect the ability of estradiol to induce qualitatively normal spermatogenesis. Conclusion The ability of the hpg male to show a "female" neuroendocrine response to estradiol is not a result of inadequate androgenization during neonatal development, and

  1. Maternal exposure to Western diet affects adult body composition and voluntary wheel running in a genotype-specific manner in mice.

    Science.gov (United States)

    Hiramatsu, Layla; Kay, Jarren C; Thompson, Zoe; Singleton, Jennifer M; Claghorn, Gerald C; Albuquerque, Ralph L; Ho, Brittany; Ho, Brett; Sanchez, Gabriela; Garland, Theodore

    2017-10-01

    Some human diseases, including obesity, Type II diabetes, and numerous cancers, are thought to be influenced by environments experienced in early life, including in utero. Maternal diet during the perinatal period may be especially important for adult offspring energy balance, potentially affecting both body composition and physical activity. This effect may be mediated by the genetic background of individuals, including, for example, potential "protective" mechanisms for individuals with inherently high levels of physical activity or high basal metabolic rates. To examine some of the genetic and environmental factors that influence adult activity levels, we used an ongoing selection experiment with 4 replicate lines of mice bred for high voluntary wheel running (HR) and 4 replicate, non-selected control lines (C). Dams (half HR and half C) were fed a "Western" diet (WD, high in fat and sucrose) or a standard diet (SD) from 2weeks prior to mating until their pups could feed on solid food (14days of age). We analyzed dam and litter characteristics from birth to weaning, and offspring mass and physical activity into adulthood. One male offspring from each litter received additional metabolic and behavioral tests. Maternal WD caused pups to eat solid food significantly earlier for C litters, but not for HR litters (interaction of maternal environment and genotype). With dam mass as a covariate, mean pup mass was increased by maternal WD but litter size was unaffected. HR dams had larger litters and tended to have smaller pups than C dams. Home-cage activity of juvenile focal males was increased by maternal WD. Juvenile lean mass, fat mass, and fat percent were also increased by maternal WD, but food consumption (with body mass as a covariate) was unaffected (measured only for focal males). Behavior in an elevated plus maze, often used to indicate anxiety, was unaffected by maternal WD. Maximal aerobic capacity (VO 2 max) was also unaffected by maternal WD, but HR had

  2. Flow-regulated versus differential pressure-regulated shunt valves for adult patients with normal pressure hydrocephalus

    DEFF Research Database (Denmark)

    Ziebell, Morten; Wetterslev, Jørn; Tisell, Magnus

    2013-01-01

    Since 1965 many ventriculo-peritoneal shunt systems have been inserted worldwide to treat hydrocephalus. The most frequent indication in adults is normal pressure hydrocephalus (NPH), a condition that can be difficult to diagnose precisely. Surgical intervention with flow-regulated and differential...

  3. Psychiatric and psychosocial problems in adults with normal-intelligence autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Herbrecht Evelyn

    2009-06-01

    Full Text Available Abstract Background Individuals with autism spectrum disorders (ASDs often display symptoms from other diagnostic categories. Studies of clinical and psychosocial outcome in adult patients with ASDs without concomitant intellectual disability are few. The objective of this paper is to describe the clinical psychiatric presentation and important outcome measures of a large group of normal-intelligence adult patients with ASDs. Methods Autistic symptomatology according to the DSM-IV-criteria and the Gillberg & Gillberg research criteria, patterns of comorbid psychopathology and psychosocial outcome were assessed in 122 consecutively referred adults with normal intelligence ASDs. The subjects consisted of 5 patients with autistic disorder (AD, 67 with Asperger's disorder (AS and 50 with pervasive developmental disorder not otherwise specified (PDD NOS. This study group consists of subjects pooled from two studies with highly similar protocols, all seen on an outpatient basis by one of three clinicians. Results Core autistic symptoms were highly prevalent in all ASD subgroups. Though AD subjects had the most pervasive problems, restrictions in non-verbal communication were common across all three subgroups and, contrary to current DSM criteria, so were verbal communication deficits. Lifetime psychiatric axis I comorbidity was very common, most notably mood and anxiety disorders, but also ADHD and psychotic disorders. The frequency of these diagnoses did not differ between the ASD subgroups or between males and females. Antisocial personality disorder and substance abuse were more common in the PDD NOS group. Of all subjects, few led an independent life and very few had ever had a long-term relationship. Female subjects more often reported having been bullied at school than male subjects. Conclusion ASDs are clinical syndromes characterized by impaired social interaction and non-verbal communication in adulthood as well as in childhood. They also

  4. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells

    Science.gov (United States)

    Gaillard, Dany; Barlow, Linda A.

    2012-01-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of type I, II and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25 week-old mice compared to 10 week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. PMID:21328519

  5. Perinatal exposure to methoxychlor enhances adult cognitive responses and hippocampal neurogenesis in mice.

    Directory of Open Access Journals (Sweden)

    Mariangela eMartini

    2014-06-01

    Full Text Available During perinatal life, sex steroids, such as estradiol, have marked effects on the development and function of the nervous system. Environmental estrogens or xenoestrogens are man-made chemicals, which animal and human population encounter in the environment and which are able to disrupt the functioning of the endocrine system. Scientific interest in the effects of exposure to xenoestrogens has focused more on fertility and reproductive behaviors, while the effects on cognitive behaviors have received less attention. Therefore, the present study explored whether the organochlorine insecticide Methoxychlor (MXC, with known xenoestrogens properties, administered during the perinatal period (from gestational day 11 to postnatal day 8 to pregnant-lactating females, at an environmentally relevant dose (20µg/kg (body weight/day, would also affect learning and memory functions depending on the hippocampus of male and female offspring mice in adulthood. When tested in adulthood, MXC perinatal exposure led to an increase in anxiety-like behavior and in short-term spatial working memory in both sexes. Emotional learning was also assessed using a contextual fear paradigm and MXC treated male and female mice showed an enhanced freezing behavior compared to controls. These results were correlated with an increased survival of adult generated cells in the adult hippocampus. In conclusion, our results show that perinatal exposure to an environmentally relevant dose of MXC has an organizational effect on hippocampus-dependent memory and emotional behaviors.

  6. Validation of endogenous normalizing genes for expression analyses in adult human testis and germ cell neoplasms

    DEFF Research Database (Denmark)

    Svingen, T; Jørgensen, Anne; Rajpert-De Meyts, E

    2014-01-01

    to define suitable normalizing genes for specific cells and tissues. Here, we report on the performance of a panel of nine commonly employed normalizing genes in adult human testis and testicular pathologies. Our analyses revealed significant variability in transcript abundance for commonly used normalizers......, highlighting the importance of selecting appropriate normalizing genes as comparative measurements can yield variable results when different normalizing genes are employed. Based on our results, we recommend using RPS20, RPS29 or SRSF4 when analysing relative gene expression levels in human testis...... and associated testicular pathologies. OCT4 and SALL4 can be used with caution as second-tier normalizers when determining changes in gene expression in germ cells and germ cell tumour components, but the relative transcript abundance appears variable between different germ cell tumour types. We further...

  7. Sensory-motor relationships in speech production in post-lingually deaf cochlear-implanted adults and normal-hearing seniors: Evidence from phonetic convergence and speech imitation.

    Science.gov (United States)

    Scarbel, Lucie; Beautemps, Denis; Schwartz, Jean-Luc; Sato, Marc

    2017-07-01

    Speech communication can be viewed as an interactive process involving a functional coupling between sensory and motor systems. One striking example comes from phonetic convergence, when speakers automatically tend to mimic their interlocutor's speech during communicative interaction. The goal of this study was to investigate sensory-motor linkage in speech production in postlingually deaf cochlear implanted participants and normal hearing elderly adults through phonetic convergence and imitation. To this aim, two vowel production tasks, with or without instruction to imitate an acoustic vowel, were proposed to three groups of young adults with normal hearing, elderly adults with normal hearing and post-lingually deaf cochlear-implanted patients. Measure of the deviation of each participant's f 0 from their own mean f 0 was measured to evaluate the ability to converge to each acoustic target. showed that cochlear-implanted participants have the ability to converge to an acoustic target, both intentionally and unintentionally, albeit with a lower degree than young and elderly participants with normal hearing. By providing evidence for phonetic convergence and speech imitation, these results suggest that, as in young adults, perceptuo-motor relationships are efficient in elderly adults with normal hearing and that cochlear-implanted adults recovered significant perceptuo-motor abilities following cochlear implantation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Quantitative studies on the influence of radiophosphorus (P-32) on bone marrow in young mice

    International Nuclear Information System (INIS)

    Park, Il Young; Kwon, Dal Gwan

    1984-01-01

    This study was performed to observe the effect of internal radioactive source on the bone marrow of mice at various stages of development (1 day, 1,2,3, and 4 weeks). Radiophosphorus (P-32) was injected to mice intraperitoneally at the dose rate of 1.0 uCi/g body weight. Mice were autopsied at weekly intervals up to six weeks and observed on pronormoblats and normoblasts, granulocytes total and lymphocytes of bone marrow in 130 mice. 1. The erythroid cells show rapid decreases in their percentage due to their destruction. 2. The myeloid cells undergo accelerated maturation resulting in increased percentage of segmented form in bone marrow. 3. The percentage of lymphocytes is also decreased with some signs of their destruction. 4. The regeneration sets in and a normal picture is seen by the time the animals become adult

  9. Antibody-mediated allotype suppression in adult mice: the role of antigen, effector isotype and regulatory T cells.

    Science.gov (United States)

    Curling, E M; Dresser, D W

    1984-10-01

    It has been reported (Contemp. Top. Immunobiol. 1974. 3:41) that allotype-specific T suppressor cells can be induced after monoclonal anti-allotype treatment of neonatal (BALB/c X SJL)F1 (Igha/b) mice. Here we show that (BALB/c X CB20)F1 adult-derived spleen cells (SC) are, by contrast, potently suppressed by monoclonal allotype-specific reagents, (when transferred into irradiated BALB/c recipients) in the absence of primary T suppressor cell induction. Such suppression is only induced in activated B cells [exposed to lipopolysaccharide or sheep red blood cells (SRBC)], and is probably dependent on the isotype of the anti-allotype sera administered. For example, two independently produced IgG1 monoclonal reagents raised against the Igh-1b allotype were poorly suppressive or nonsuppressive, whereas an IgG3 and an IgG2a monoclonal antibody induced a 90% suppression of the target allotype in transferred adult SC. It was found that suppression was not due to a depletion of antigen-specific T cell help since: (a) the addition of SRBC-educated T cells did not break suppression and (b) suppressed SC were as good a source of T cell help as normal SC, in the response of virgin or memory B cell (Thy-1-depleted) responses to SRBC in vivo. Suppression was maintained in suppressed cells which had been rechallenged with SRBC after transfer into a second irradiated recipient, but was not induced in normal SC when these were admixed with an equal number from this suppressed SC population. These findings point to a possible mechanism for the regulation of B cell expression, through the formation of an antibody-Ig receptor complex at the surface of the B lymphocyte. After complexing the target cell is either deleted or inactivated. The response to SRBC was reduced or ablated for at least 70 days after treatment with a single dose of anti-allotype serum.

  10. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function.

    Science.gov (United States)

    Jain, Nidhi; Oswal, Neelam; Chawla, Amanpreet Singh; Agrawal, Tanvi; Biswas, Moanaro; Vrati, Sudhanshu; Rath, Satyajit; George, Anna; Bal, Vineeta; Medigeshi, Guruprasad R

    2017-02-01

    Following Japanese encephalitis virus (JEV) infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β-T cells (TCRβ-null) are highly susceptible and die over 10-18 day period as compared to the wild-type (WT) mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB). Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage.

  11. CD8 T cells protect adult naive mice from JEV-induced morbidity via lytic function.

    Directory of Open Access Journals (Sweden)

    Nidhi Jain

    2017-02-01

    Full Text Available Following Japanese encephalitis virus (JEV infection neutralizing antibodies are shown to provide protection in a significant proportion of cases, but not all, suggesting additional components of immune system might also contribute to elicit protective immune response. Here we have characterized the role of T cells in offering protection in adult mice infected with JEV. Mice lacking α/β-T cells (TCRβ-null are highly susceptible and die over 10-18 day period as compared to the wild-type (WT mice which are resistant. This is associated with high viral load, higher mRNA levels of proinflammatory cytokines and breach in the blood-brain-barrier (BBB. Infected WT mice do not show a breach in BBB; however, in contrast to TCRβ-null, they show the presence of T cells in the brain. Using adoptive transfer of cells with specific genetic deficiencies we see that neither the presence of CD4 T cells nor cytokines such as IL-4, IL-10 or interferon-gamma have any significant role in offering protection from primary infection. In contrast, we show that CD8 T cell deficiency is more critical as absence of CD8 T cells alone increases mortality in mice infected with JEV. Further, transfer of T cells from beige mice with defects in granular lytic function into TCRβ-null mice shows poor protection implicating granule-mediated target cell lysis as an essential component for survival. In addition, for the first time we report that γ/δ-T cells also make significant contribution to confer protection from JEV infection. Our data show that effector CD8 T cells play a protective role during primary infection possibly by preventing the breach in BBB and neuronal damage.

  12. Variation in normal and tumor tissue sensitivity of mice to ionizing radiation-induced DNA strand breaks in vivo

    International Nuclear Information System (INIS)

    Meyn, R.E.; Jenkins, W.T.

    1983-01-01

    The efficiency of DNA strand break formation in normal and tumor tissues of mice was measured using the technique of alkaline elution coupled with a microfluorometric determination of DNA. This methodology allowed measurement of the DNA strand breaks produced in tissues irradiated in vivo with doses of radiation comparable to those used in radiotherapy (i.e., 1.0 gray) without the necessity for the cells to be dividing and incorporating radioactive precursors to label the DNA. The results showed that substantial differences existed among various tissues in terms of the amount of DNA strand break damage produced for a given dose of radiation. Of the normal tissues, the most breaks were produced in bone marrow and the least were produced in gut. Furthermore, strand break production was relatively inefficient in the tumor compared to the normal tissues. The efficiency of DNA strand break formation measured in the cells from the tissues irradiated in vitro was much more uniform and considerably greater than that measured in vivo, suggesting that the normal tissues in the animal may be radiobiologically hypoxic

  13. Induced Ablation of Ghrelin Cells in Adult Mice Does Not Decrease Food Intake, Body Weight, or Response to High Fat Diet

    Science.gov (United States)

    McFarlane, Matthew R.; Brown, Michael S.; Goldstein, Joseph L.; Zhao, Tong-Jin

    2014-01-01

    SUMMARY Injection of the peptide hormone ghrelin stimulates food intake in mice and humans. However, mice born without ghrelin demonstrate no significant loss of appetite. This paradox suggests either that compensation develops in mice born without ghrelin or that ghrelin is not essential for appetite control. To distinguish these possibilities, we generated transgenic mice (Ghrl-DTR) that express the diphtheria toxin receptor in ghrelin-secreting cells. Injection of diphtheria toxin in adulthood ablated ghrelin cells and reduced plasma ghrelin by 80-95%. Ghrelin cell-ablated mice exhibited no loss of appetite or body weight and no resistance to a high fat diet. To stimulate food intake in mice by ghrelin injection, we had to raise plasma levels many-fold above normal. Like germline ghrelin-deficient mice, the ghrelin cell-ablated mice developed profound hypoglycemia when subjected to prolonged calorie restriction, confirming that ghrelin acts to maintain blood glucose under famine conditions. PMID:24836560

  14. 5′ Rapid Amplification of cDNA Ends and Illumina MiSeq Reveals B Cell Receptor Features in Healthy Adults, Adults With Chronic HIV-1 Infection, Cord Blood, and Humanized Mice

    Directory of Open Access Journals (Sweden)

    Eric Waltari

    2018-03-01

    Full Text Available Using 5′ rapid amplification of cDNA ends, Illumina MiSeq, and basic flow cytometry, we systematically analyzed the expressed B cell receptor (BCR repertoire in 14 healthy adult PBMCs, 5 HIV-1+ adult PBMCs, 5 cord blood samples, and 3 HIS-CD4/B mice, examining the full-length variable region of μ, γ, α, κ, and λ chains for V-gene usage, somatic hypermutation (SHM, and CDR3 length. Adding to the known repertoire of healthy adults, Illumina MiSeq consistently detected small fractions of reads with high mutation frequencies including hypermutated μ reads, and reads with long CDR3s. Additionally, the less studied IgA repertoire displayed similar characteristics to that of IgG. Compared to healthy adults, the five HIV-1 chronically infected adults displayed elevated mutation frequencies for all μ, γ, α, κ, and λ chains examined and slightly longer CDR3 lengths for γ, α, and λ. To evaluate the reconstituted human BCR sequences in a humanized mouse model, we analyzed cord blood and HIS-CD4/B mice, which all lacked the typical SHM seen in the adult reference. Furthermore, MiSeq revealed identical unmutated IgM sequences derived from separate cell aliquots, thus for the first time demonstrating rare clonal members of unmutated IgM B cells by sequencing.

  15. Genome-wide expression analysis comparing hypertrophic changes in normal and dysferlinopathy mice

    Directory of Open Access Journals (Sweden)

    Yun-Sil Lee

    2015-12-01

    Full Text Available Because myostatin normally limits skeletal muscle growth, there are extensive efforts to develop myostatin inhibitors for clinical use. One potential concern is that in muscle degenerative diseases, inducing hypertrophy may increase stress on dystrophic fibers. Our study shows that blocking this pathway in dysferlin deficient mice results in early improvement in histopathology but ultimately accelerates muscle degeneration. Hence, benefits of this approach should be weighed against these potential detrimental effects. Here, we present detailed experimental methods and analysis for the gene expression profiling described in our recently published study in Human Molecular Genetics (Lee et al., 2015. Our data sets have been deposited in the Gene Expression Omnibus (GEO database (GSE62945 and are available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62945. Our data provide a resource for exploring molecular mechanisms that are related to hypertrophy-induced, accelerated muscular degeneration in dysferlinopathy.

  16. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  17. Immunomodulatory activities of different solvent extracts from Tricholoma matsutake (S. Ito et S. Imai) singer (higher basidiomycetes) on normal mice.

    Science.gov (United States)

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai

    2012-01-01

    The immunomodulatory activities of different solvent extracts from the culinary-medicinal mushroom Tricholoma matsutake were studied in vivo in normal mice. The extracts were prepared using different solvents in an order of increasing polarity. The immunomodulatory activities were investigated by measuring the thymus and spleen index, phagocytic rate of macrophage phagocytosis, delayed-type hypersensitivity, plaque-forming cell, and proliferation of splenocytes. Results demonstrated that water extract (WE) and n-butyl alcohol extract (BAE) of T. matsutake could enhance the immunity of mice significantly compared with the control group. Main components of WE and BAE were polysaccharides, proteins, and flavonoids; we presume that these may be the main immunomodulating and immuno-enhancing agents in T. matsutake.

  18. Glycogen distribution in adult and geriatric mice brains

    KAUST Repository

    Alrabeh, Rana

    2017-05-01

    Astrocytes, the most abundant glial cell type in the brain, undergo a number of roles in brain physiology; among them, the energetic support of neurons is the best characterized. Contained within astrocytes is the brain’s obligate energy store, glycogen. Through glycogenolysis, glycogen, a storage form of glucose, is converted to pyruvate that is further reduced to lactate and transferred to neurons as an energy source via MCTs. Glycogen is a multi-branched polysaccharide synthesized from the glucose uptaken in astrocytes. It has been shown that glycogen accumulates with age and contributes to the physiological ageing process in the brain. In this study, we compared glycogen distribution between young adults and geriatric mice to understand the energy consumption of synaptic terminals during ageing using computational tools. We segmented and densely reconstructed neuropil and glycogen granules within six (three 4 month old old and three 24 month old) volumes of Layer 1 somatosensory cortex mice brains from FIB-SEM stacks, using a combination of semi-automated and manual tools, ilastik and TrakEM2. Finally, the 3D visualization software, Blender, was used to analyze the dataset using the DBSCAN and KDTree Nearest neighbor algorithms to study the distribution of glycogen granules compared to synapses, using a plugin that was developed for this purpose. The Nearest Neighbors and clustering results of 6 datasets show that glycogen clusters around excitatory synapses more than inhibitory synapses and that, in general, glycogen is found around axonal boutons more than dendritic spines. There was no significant accumulation of glycogen with ageing within our admittedly small dataset. However, there was a homogenization of glycogen distribution with age and that is consistent with published literature. We conclude that glycogen distribution in the brain is not a random process but follows a function distribution.

  19. A rare presentation of patent ductus arteriosus in an adult patient with normal pulmonary hypertension and limb edema

    Directory of Open Access Journals (Sweden)

    Bahram Pishgoo

    2014-09-01

    Full Text Available BACKGROUND: Patent ductus arteriosus (PDA at childhood is one of the five major and frequent congenital abnormalities, but it can be rarely seen in adults. Pulmonary hypertension (PHTN and other presentations such as heart failure and edema are the identified complications of longstanding PDA, but adult case with no permanent heart symptoms and PHTN was rare. We reported a rare case of with an obvious PDA and normal pulmonary pressure. CASE REPORT: A 61-year-old woman presented with dyspnea (New York Heart Association class 2, chest pain, and lower limb edema. Echocardiogram showed; normal left ventricular chamber size and function, normal size of both atria. Furthermore, an obvious PDA (diameter = 6-7 mm connecting the aortic arch to the pulmonary artery was reported in echocardiography. No lung congestion and evidence for PHTN was reported by computed tomographic angiography [Pulmonary capillary wedge pressure (PCWP = 30 mmHg]. The patient was treated with antihypertensive drugs and after 1 and 3 months follow-up, edema and other symptoms were resolved. CONCLUSION: Finally, we conclude that PDA in adulthood can present with nonspecific cardiovascular symptoms, and it seems that PHTN is not a fixed echocardiographic finding in these patients.   Keywords: Adults, Edema, Patent Ductus Arteriosus eri, Pulmonary Hypertension  Normal 0 false false false EN-US X-NONE AR-SA

  20. In-vivo tissue uptake and retention of Sn-117m(4+)DTPA in a human subject with metastatic bone pain and in normal mice

    International Nuclear Information System (INIS)

    Swailem, Fayez M.; Krishnamurthy, Gerbail T.; Srivastava, Suresh C.; Aguirre, Maria L.; Ellerson, Dawn L.; Walsh, T. Kent; Simpson, Laura

    1998-01-01

    Organ and tissue uptake and retention of Sn-117m(4+)DTPA were studied in a human subject treated for metastatic bone pain, and the results were compared with the biodistribution studies in five normal mice. The explanted organs from a patient who received a therapy dose of 18.6 mCi (688.2 MBq) Sn-117m(4+)DTPA and who died 47 days later were imaged with a γ-camera, and tissue samples were counted and also autoradiographed. Bone, muscle, liver, fat, lungs, kidneys, spleen, heart and pancreas tissue samples were assayed in a well counter for radioactivity. Regions of interest were drawn over bone and major organs to calculate and quantify clearance times using three in vivo Sn-117m(4+)DTPA whole-body scintigrams acquired at 1, 24 and 168 h after injection. Five normal mice injected with the same batch of Sn-117m(4+)DTPA as used for the human subject were sacrificed at 24 h, and tissue samples were collected and assayed for radioactivity for comparison with the human data. For the human subject, whole-body retention at 47 days postinjection was 81% of the injected dose, and the rest (19%) was excreted in urine. Of the whole-body retained activity at 47 days, 82.4% was in bone, 7.8% in the muscle and 1.5% in the liver, and the rest was distributed among other tissues. γ-Ray scintigrams and electron autoradiographs of coronal slices of the thoracolumbar vertebral body showed heterogenous metastatic involvement with normal bone between metastatic lesions. There was nonuniform distribution of radioactivity even within a single vertebral body, indicating normal bone between metastatic lesions. Lesion-to-nonlesion ratios ranged from 3 to 5. However, the osteoid-to-marrow cavity deposition ratio, from the microautoradiographs, was 11:1. The peak uptake in the human bone was seen at 137 h with no biological clearance. Soft tissues showed peak uptake at 1 h and exhibited three compartmental clearance components. Whole-body retention in normal mice was 38.7% of the injected

  1. Glucose transporters GLUT4 and GLUT8 are upregulated after facial nerve axotomy in adult mice.

    Science.gov (United States)

    Gómez, Olga; Ballester-Lurbe, Begoña; Mesonero, José E; Terrado, José

    2011-10-01

    Peripheral nerve axotomy in adult mice elicits a complex response that includes increased glucose uptake in regenerating nerve cells. This work analyses the expression of the neuronal glucose transporters GLUT3, GLUT4 and GLUT8 in the facial nucleus of adult mice during the first days after facial nerve axotomy. Our results show that whereas GLUT3 levels do not vary, GLUT4 and GLUT8 immunoreactivity increases in the cell body of the injured motoneurons after the lesion. A sharp increase in GLUT4 immunoreactivity was detected 3 days after the nerve injury and levels remained high on Day 8, but to a lesser extent. GLUT8 also increased the levels but later than GLUT4, as they only rose on Day 8 post-lesion. These results indicate that glucose transport is activated in regenerating motoneurons and that GLUT4 plays a main role in this function. These results also suggest that metabolic defects involving impairment of glucose transporters may be principal components of the neurotoxic mechanisms leading to motoneuron death. © 2011 The Authors. Journal of Anatomy © 2011 Anatomical Society of Great Britain and Ireland.

  2. Adult forebrain NMDA receptors gate social motivation and social memory.

    Science.gov (United States)

    Jacobs, Stephanie; Tsien, Joe Z

    2017-02-01

    Motivation to engage in social interaction is critical to ensure normal social behaviors, whereas dysregulation in social motivation can contribute to psychiatric diseases such as schizophrenia, autism, social anxiety disorders and post-traumatic stress disorder (PTSD). While dopamine is well known to regulate motivation, its downstream targets are poorly understood. Given the fact that the dopamine 1 (D1) receptors are often physically coupled with the NMDA receptors, we hypothesize that the NMDA receptor activity in the adult forebrain principal neurons are crucial not only for learning and memory, but also for the proper gating of social motivation. Here, we tested this hypothesis by examining sociability and social memory in inducible forebrain-specific NR1 knockout mice. These mice are ideal for exploring the role of the NR1 subunit in social behavior because the NR1 subunit can be selectively knocked out after the critical developmental period, in which NR1 is required for normal development. We found that the inducible deletion of the NMDA receptors prior to behavioral assays impaired, not only object and social recognition memory tests, but also resulted in profound deficits in social motivation. Mice with ablated NR1 subunits in the forebrain demonstrated significant decreases in sociability compared to their wild type counterparts. These results suggest that in addition to its crucial role in learning and memory, the NMDA receptors in the adult forebrain principal neurons gate social motivation, independent of neuronal development. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Negative psychosocial and heavy physical workloads associated with musculoskeletal pain interfering with normal life in older adults: cross-sectional analysis.

    Science.gov (United States)

    Lilje, Stina C; Skillgate, Eva; Anderberg, Peter; Berglund, Johan

    2015-07-01

    Pain is one of the most frequent reasons for seeking health care, and is thus a public health problem. Although there is a progressive increase in pain and impaired physical function with age, few studies are performed on older adults. The aim of this study was to investigate if there are associations between musculoskeletal pain interfering with normal life in older adults and physical and psychosocial workloads through life. The association of heavy physical workload and negative psychosocial workload and musculoskeletal pain interfering with normal life (SF 12) was analyzed by multiple logistic regression. The model was adjusted for eight background covariates: age, gender, growing-up environment, educational level, if living alone or not, obesity, smoking, and leisure physical activity. Negative psychosocial and heavy physical workloads were independently associated with musculoskeletal pain interfering with normal life (adjusted OR: 4.44, 95% CI: 2.84-6.92), and (adjusted OR: 1.88, 95% CI: 1.20-2.93), respectively. The background covariates female gender and higher education were also associated with musculoskeletal pain interfering with normal life, and physical leisure activity was inversely associated. The findings suggest that negative psychosocial and heavy physical workloads are strongly associated with musculoskeletal pain interfering with normal life in older adults. © 2015 the Nordic Societies of Public Health.

  4. Hemoglobin of mice with radiation-induced mutations at the hemoglobin loci

    Energy Technology Data Exchange (ETDEWEB)

    Popp, R A; Stratton, L P; Hawley, D K; Effron, K [Oak Ridge National Lab., TN (USA)

    1979-01-15

    Chemical analyses were done on the abnormal hemoglobins of the five (101 x SEC)F/sub 1/ offspring of X- irradiated adult SEC mice to determine which hemoglobin genes were expressed in each hemoglobin variant. Three offspring of irradiated SEC males did not express either of the two kinds of ..cap alpha..-chains normally found in all SEC mice. The deficient ..cap alpha..-chain synthesis caused these mice to exhibit an ..cap alpha..-thalassemia similar to human ..cap alpha..-thalassemia. Scanning electron microscopy was used to show that many erythrocytes of mice with ..cap alpha..-thalassemia have bizarre shapes; e.g. many erythrocytes appeared flattened or had thorny projections (acanthocytes). One mutant with a tandem duplication of a segment of chromosome 7 (site of locus determining ..beta..-chain structure) produced twice as much SEC as 101 ..beta..-chain polypeptides. One mutant that probably arose by non-disjunction of chromosome 7's in its unirradiated 101 mother and loss of chromosome 7 from the gamete of its irradiated SEC father did not express the SEC ..beta..-chain gene.

  5. Hemoglobin of mice with radiation-induced mutations at the hemoglobin loci

    International Nuclear Information System (INIS)

    Popp, R.A.; Stratton, L.P.; Hawley, D.K.; Effron, K.

    1979-01-01

    Chemical analyses were done on the abnormal hemoglobins of the five (101 x SEC)F 1 offspring of X- irradiated adult SEC mice to determine which hemoglobin genes were expressed in each hemoglobin variant. Three offspring of irradiated SEC males did not express either of the two kinds of α-chains normally found in all SEC mice. The deficient α-chain synthesis caused these mice to exhibit an α-thalassemia similar to human α-thalassemia. Scanning electron microscopy was used to show that many erythrocytes of mice with α-thalassemia have bizarre shapes; e.g. many erythrocytes appeared flattened or had thorny projections (acanthocytes). One mutant with a tandem duplication of a segment of chromosome 7 (site of locus determining β-chain structure) produced twice as much SEC as 101 β-chain polypeptides. One mutant that probably arose by non-disjunction of chromosome 7's in its unirradiated 101 mother and loss of chromosome 7 from the gamete of its irradiated SEC father did not express the SEC β-chain gene. (author)

  6. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice.

    Science.gov (United States)

    Luna, Rayana Leal; Kay, Vanessa R; Rätsep, Matthew T; Khalaj, Kasra; Bidarimath, Mallikarjun; Peterson, Nichole; Carmeliet, Peter; Jin, Albert; Croy, B Anne

    2016-02-01

    Placental growth factor (PGF) is expressed in the developing mouse brain and contributes to vascularization and vessel patterning. PGF is dynamically expressed in fetal mouse brain, particularly forebrain, and is essential for normal cerebrovascular development. PGF rises in maternal plasma over normal human and mouse pregnancy but is low in many women with the acute onset hypertensive syndrome, pre-eclampsia (PE). Little is known about the expression of PGF in the fetus during PE. Pgf  (-/-) mice appear normal but recently cerebral vascular defects were documented in adult Pgf  (-/-) mice. Here, temporal-spatial expression of PGF is mapped in normal fetal mouse brains and cerebral vasculature development is compared between normal and congenic Pgf  (-/-) fetuses to assess the actions of PGF during cerebrovascular development. Pgf/PGF, Vegfa/VEGF, Vegf receptor (Vegfr)1 and Vegfr2 expression were examined in the brains of embryonic day (E)12.5, 14.5, 16.5 and 18.5 C57BL/6 (B6) mice using quantitative PCR and immunohistochemistry. The cerebral vasculature was compared between Pgf  (-/-) and B6 embryonic and adult brains using whole mount techniques. Vulnerability to cerebral ischemia was investigated using a left common carotid ligation assay. Pgf/PGF and Vegfr1 are highly expressed in E12.5-14.5 forebrain relative to VEGF and Vegfr2. Vegfa/VEGF is relatively more abundant in hindbrain (HB). PGF and VEGF expression were similar in midbrain. Delayed HB vascularization was seen at E10.5 and 11.5 in Pgf  (-/-) brains. At E14.5, Pgf  (-/-) circle of Willis showed unilateral hypoplasia and fewer collateral vessels, defects that persisted post-natally. Functionally, adult Pgf  (-/-) mice experienced cerebral ischemia after left common carotid arterial occlusion while B6 mice did not. Since Pgf  (-/-) mice were used, consequences of complete absence of maternal and fetal PGF were defined. Therefore, the effects of maternal versus fetal PGF

  7. Neonatal immune activation during early and late postnatal brain development differently influences depression-related behaviors in adolescent and adult C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Jafar Majidi-Zolbanin

    2014-06-01

    Full Text Available Aim: Immune challenge during early and late neonatal periods can induce robust alterations in physiological and behavioral functions, resulting in greater risk for the development of neuropsychiatric disorders, such as anxiety and depression, later in life. In addition, previous studies concluded that increasing age correlates with increased depression behaviors in humans and rodents. This study aimed to investigate for the first time whether immune challenge with a viral mimic, synthetic double-stranded ribonucleic acid (Poly I: C during different neonatal periods can differently affect depression-related behaviors in adolescent and adult mice. Methods: Male C57BL/6 mice were treated with either saline or Poly I:C (1 mg/kg and 4 mg/kg on postnatal days (PND 3-5 (early neonatal phase or PND 14-16 (late neonatal phase, and then subjected to behavioral tests, including tail suspension test and forced swimming test, during adolescence (PND 35 or 40 and adulthood (PND 85 or 90. Results: The results demonstrated that early neonatal immune activation increases depression-related behaviors in both adolescent and adult mice, but late neonatal immune activation only increases depression in adult mice. In other words, these findings indicated that the nature of the offspring's neuropathology can depend on the severity of the insult, the pup's age at the time of the insult, and offspring age at the time of behavioral testing. Conclusion: These findings suggest that dose and timing of neonatal insult and offspring age may be important factors for evaluating neuropsychiatric disorders in adults who experienced early life infection.

  8. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function.

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M; Xu, Lihong; Storm, Daniel R; Xia, Zhengui

    2015-05-20

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. Copyright © 2015 the authors 0270-6474/15/357833-17$15.00/0.

  9. Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury

    Directory of Open Access Journals (Sweden)

    Chen Tao

    2009-12-01

    Full Text Available Abstract The anterior cingulate cortex (ACC is important for cognitive and sensory functions including memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the possible long-term changes in neuronal action potentials or intrinsic properties. In the present study, we characterized cingulate pyramidal cells in the layer II/III of the ACC in adult mice. We then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal cells according to their action potential firing pattern: (i regular spiking (RS cells (24.7%, intrinsic bursting (IB cells (30.9%, and intermediate (IM cells (44.4%. In a state of neuropathic pain, the population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5% and the single action potential properties of these three groups were indistinguishable from those in control mice. However, for repetitive action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with no change for the properties of RS and IB neurons from neuropathic pain mice. The present results provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal neurons in a cell type-specific manner.

  10. Concentration- and age-dependent effects of chronic caffeine on contextual fear conditioning in C57BL/6J mice

    Science.gov (United States)

    Poole, Rachel L.; Braak, David; Gould, Thomas J.

    2015-01-01

    Chronic caffeine exerts negligible effects on learning and memory in normal adults, but it is unknown whether this is also true for children and adolescents. The hippocampus, a brain region important for learning and memory, undergoes extensive structural and functional modifications during pre-adolescence and adolescence. As a result, chronic caffeine may have differential effects on hippocampus-dependent learning in pre-adolescents and adolescents compared with adults. Here, we characterized the effects of chronic caffeine and withdrawal from chronic caffeine on hippocampus-dependent (contextual) and hippocampus-independent (cued) fear conditioning in pre-adolescent, adolescent, and adult mice. The results indicate that chronic exposure to caffeine during pre-adolescence and adolescence enhances or impairs contextual conditioning depending on concentration, yet has no effect on cued conditioning. In contrast, withdrawal from chronic caffeine impairs contextual conditioning in pre-adolescent mice only. No changes in learning were seen for adult mice for either the chronic caffeine or withdrawal conditions. These findings support the hypothesis that chronic exposure to caffeine during pre-adolescence and adolescence can alter learning and memory and as changes were only seen in hippocampus-dependent learning, this suggests that the developing hippocampus may be sensitive to the effects of caffeine. PMID:25827925

  11. Concentration- and age-dependent effects of chronic caffeine on contextual fear conditioning in C57BL/6J mice.

    Science.gov (United States)

    Poole, Rachel L; Braak, David; Gould, Thomas J

    2016-02-01

    Chronic caffeine exerts negligible effects on learning and memory in normal adults, but it is unknown whether this is also true for children and adolescents. The hippocampus, a brain region important for learning and memory, undergoes extensive structural and functional modifications during pre-adolescence and adolescence. As a result, chronic caffeine may have differential effects on hippocampus-dependent learning in pre-adolescents and adolescents compared with adults. Here, we characterized the effects of chronic caffeine and withdrawal from chronic caffeine on hippocampus-dependent (contextual) and hippocampus-independent (cued) fear conditioning in pre-adolescent, adolescent, and adult mice. The results indicate that chronic exposure to caffeine during pre-adolescence and adolescence enhances or impairs contextual conditioning depending on concentration, yet has no effect on cued conditioning. In contrast, withdrawal from chronic caffeine impairs contextual conditioning in pre-adolescent mice only. No changes in learning were seen for adult mice for either the chronic caffeine or withdrawal conditions. These findings support the hypothesis that chronic exposure to caffeine during pre-adolescence and adolescence can alter learning and memory and as changes were only seen in hippocampus-dependent learning, which suggests that the developing hippocampus may be sensitive to the effects of caffeine. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Speech Recognition in Real-Life Background Noise by Young and Middle-Aged Adults with Normal Hearing

    OpenAIRE

    Lee, Ji Young; Lee, Jin Tae; Heo, Hye Jeong; Choi, Chul-Hee; Choi, Seong Hee; Lee, Kyungjae

    2015-01-01

    Background and Objectives People usually converse in real-life background noise. They experience more difficulty understanding speech in noise than in a quiet environment. The present study investigated how speech recognition in real-life background noise is affected by the type of noise, signal-to-noise ratio (SNR), and age. Subjects and Methods Eighteen young adults and fifteen middle-aged adults with normal hearing participated in the present study. Three types of noise [subway noise, vacu...

  13. Effects on normal tissues during radiosensitization of Dalton's Lymphoma by the DNA ligand Hoechst 33342 in Balb/c mice

    International Nuclear Information System (INIS)

    Kalra, Namita; Sampath, Swapna; Adhikari, J.S.; Dwarakanath, B.S.

    2014-01-01

    Hoechst 33342 is a bisbenzimidazole derivative with AT specific minor groove DNA binding ability. Scavenging of free radicals and stabilization of macromolecular structure resulting in reduced induction of DNA damage contributes to radioprotection afforded by the ligand. Their ability to inhibit topoisomerases I and II, which play important roles in damage response pathways including DNA repair has been shown to sensitize tumor cells in vitro and in vivo. Due to its mutagenic and clastogenic potentials, damage to vital normal tissues are a matter of concern in deploying the ligand as adjuvant in radiotherapy. Therefore, we investigated the effects of the ligand in Dalton's Lymphoma (DL) bearing Balb/c mice by studying the local tumor control and animal survival, besides damage to normal tissues like bone marrow, kidney and testis. Hoechst 33342 (10 mg/kg b wt) was administered (i.v.) 1 h before focal irradiation (10 Gy) of the tumor (∼ 500 mm 3 ) grown on the hind leg of the mice. Partial response with a growth delay of 16 days (3 x initial volume) was seen following irradiation, while a complete response (cure; tumor-free survival) was observed in 88% mice following the combined treatment (Hoechst 33342+radiation); ligand alone had no significant effect. Although the ligand induced marginal degree of chromosomal aberrations in the bone marrow, it did not enhance aberrations induced by radiation further. In testes, the proportions of diploid, haploid and hypo-haploid cells as well as resting primary spermatocytes (RPS) were not significantly altered by either. In kidney, Hoechst 33342 alone or in combination with radiation did not cause significant damage to the proximal tubules and glomeruli. These observations suggest that radiosensitization of tumor by the DNA ligand Hoechst 33342 may not be associated with enhanced toxicity to bone marrow as well as proximal normal tissues. (author)

  14. Meal parameters and vagal gastrointestinal afferents in mice that experienced early postnatal overnutrition.

    Science.gov (United States)

    Biddinger, Jessica E; Fox, Edward A

    2010-08-04

    Early postnatal overnutrition results in a predisposition to develop obesity due in part to hypothalamic and sympathetic dysfunction. Potential involvement of another major regulatory system component--the vagus nerve--has not been examined. Moreover, feeding disturbances have rarely been investigated prior to development of obesity when confounds due to obesity are minimized. To examine these issues, litters were culled on the day of birth to create small litters (SL; overnutrition), or normal size litters (NL; normal nutrition). Body weight, fat pad weight, meal patterns, and vagal sensory duodenal innervation were compared between SL and NL adult mice prior to development of obesity. Meal patterns were studied 18 h/day for 3 weeks using a balanced diet. Then vagal mechanoreceptors were labeled using anterograde transport of wheatgerm agglutinin-horseradish peroxidase injected into the nodose ganglion and their density and morphology were examined. Between postnatal day 1 and weaning, body weight of SL mice was greater than for NL mice. By young adulthood it was similar in both groups, whereas SL fat pad weight was greater in males, suggesting postnatal overnutrition produced a predisposition to obesity. SL mice exhibited increased food intake, decreased satiety ratio, and increased first meal rate (following mild food deprivation) compared to NL mice, suggesting postnatal overnutrition disrupted satiety. The density and structure of intestinal IGLEs appeared similar in SL and NL mice. Thus, although a vagal role cannot be excluded, our meal parameter and anatomical findings provided no evidence for significant postnatal overnutrition effects on vagal gastrointestinal afferents. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Changes in radiation dose with variations in human anatomy: larger and smaller normal-stature adults.

    Science.gov (United States)

    Marine, Patrick M; Stabin, Michael G; Fernald, Michael J; Brill, Aaron B

    2010-05-01

    A systematic evaluation has been performed to study how specific absorbed fractions (SAFs) vary with changes in adult body size, for persons of different size but normal body stature. A review of the literature was performed to evaluate how individual organ sizes vary with changes in total body weight of normal-stature individuals. On the basis of this literature review, changes were made to our easily deformable reference adult male and female total-body models. Monte Carlo simulations of radiation transport were performed; SAFs for photons were generated for 10th, 25th, 75th, and 90th percentile adults; and comparisons were made to the reference (50th) percentile SAF values. Differences in SAFs for organs irradiating themselves were between 0.5% and 1.0%/kg difference in body weight, from 15% to 30% overall, for organs within the trunk. Differences in SAFs for organs outside the trunk were not greater than the uncertainties in the data and will not be important enough to change calculated doses. For organs irradiating other organs within the trunk, differences were significant, between 0.3% and 1.1%/kg, or about 8%-33% overall. The differences are interesting and can be used to estimate how different patients' dosimetry might vary from values reported in standard dose tables.

  16. Taste bud cells of adult mice are responsive to Wnt/β-catenin signaling: implications for the renewal of mature taste cells.

    Science.gov (United States)

    Gaillard, Dany; Barlow, Linda A

    2011-04-01

    Wnt/β-catenin signaling initiates taste papilla development in mouse embryos, however, its involvement in taste cell turnover in adult mice has not been explored. Here we used the BATGAL reporter mouse model, which carries an engineered allele in which the LacZ gene is expressed in the presence of activated β-catenin, to determine the responsiveness of adult taste bud cells to canonical Wnt signaling. Double immunostaining with markers of differentiated taste cells revealed that a subset of Type I, II, and III taste cells express β-galactosidase. Using in situ hybridization, we showed that β-catenin activates the transcription of the LacZ gene mainly in intragemmal basal cells that are immature taste cells, identified by their expression of Sonic Hedgehog (Shh). Finally, we showed that β-catenin activity is significantly reduced in taste buds of 25-week-old mice compared with 10-week-old animals. Our data suggest that Wnt/β-catenin signaling may influence taste cell turnover by regulating cell differentiation. Reduced canonical Wnt signaling in older mice could explain in part the loss of taste sensitivity with aging, implicating a possible deficiency in the rate of taste cell renewal. More investigations are now necessary to understand if and how Wnt signaling regulates adult taste cell turnover. Copyright © 2011 Wiley-Liss, Inc.

  17. High frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice.

    Science.gov (United States)

    Hadden, Hélène

    2013-01-15

    We tested the hypothesis that high frequency ventilation affects respiratory system mechanical functions in C57BL/6J and BALB/c mice. We measured respiratory mechanics by the forced oscillation technique over 1h in anesthetized, intubated, ventilated BALB/c and C57BL/6J male mice. We did not detect any change in airway resistance, Rn, tissue damping, G, tissue elastance, H and hysteresivity, eta in BALB/c mice during 1h of ventilation at 150 or at 450 breaths/min; nor did we find a difference between BALB/c mice ventilated at 150 breaths/min compared with 450 breaths/min. Among C57BL/6J mice, except for H, all parameters remained unchanged over 1h of ventilation in mice ventilated at 150 breaths/min. However, after 10 and 30 min of ventilation at 450 breaths/min, Rn, and respiratory system compliance were lower, and eta was higher, than their starting value. We conclude that high frequency mechanical ventilation affects respiratory system mechanics differently in C57BL/6J and BALB/c adult mice. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Taste Bud Labeling in Whole Tongue Epithelial Sheet in Adult Mice.

    Science.gov (United States)

    Venkatesan, Nandakumar; Boggs, Kristin; Liu, Hong-Xiang

    2016-04-01

    Molecular labeling in whole-mount tissues provides an efficient way to obtain general information about the formation, maintenance, degeneration, and regeneration of many organs and tissues. However, labeling of lingual taste buds in whole tongue tissues in adult mice has been problematic because of the strong permeability barrier of the tongue epithelium. In this study, we present a simple method for labeling taste buds in the intact tongue epithelial sheet of an adult mouse. Following intralingual protease injection and incubation, immediate fixation of the tongue on mandible in 4% paraformaldehyde enabled the in situ shape of the tongue epithelium to be well maintained after peeling. The peeled epithelium was accessible to taste bud labeling with a pan-taste cell marker, keratin 8, and a type II taste cell marker, α-gustducin, in all three types of taste papillae, that is, fungiform, foliate, and circumvallate. Overnight incubation of tongue epithelial sheets with primary and secondary antibodies was sufficient for intense labeling of taste buds with both fluorescent and DAB visualizations. Labeled individual taste buds were easy to identify and quantify. This protocol provides an efficient way for phenotypic analyses of taste buds, especially regarding distribution pattern and number.

  19. Enriched expression of the ciliopathy gene Ick in cell proliferating regions of adult mice.

    Science.gov (United States)

    Tsutsumi, Ryotaro; Chaya, Taro; Furukawa, Takahisa

    2018-04-07

    Cilia are essential for sensory and motile functions across species. In humans, ciliary dysfunction causes "ciliopathies", which show severe developmental abnormalities in various tissues. Several missense mutations in intestinal cell kinase (ICK) gene lead to endocrine-cerebro-osteodysplasia syndrome or short rib-polydactyly syndrome, lethal recessive developmental ciliopathies. We and others previously reported that Ick-deficient mice exhibit neonatal lethality with developmental defects. Mechanistically, Ick regulates intraflagellar transport and cilia length at ciliary tips. Although Ick plays important roles during mammalian development, roles of Ick at the adult stage are poorly understood. In the current study, we investigated the Ick gene expression in adult mouse tissues. RT-PCR analysis showed that Ick is ubiquitously expressed, with enrichment in the retina, brain, lung, intestine, and reproductive system. In the adult brain, we found that Ick expression is enriched in the walls of the lateral ventricle, in the rostral migratory stream of the olfactory bulb, and in the subgranular zone of the hippocampal dentate gyrus by in situ hybridization analysis. We also observed that Ick staining pattern is similar to pachytene spermatocyte to spermatid markers in the mature testis and to an intestinal stem cell marker in the adult small intestine. These results suggest that Ick is expressed in proliferating regions in the adult mouse brain, testis, and intestine. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Germline stem cells and neo-oogenesis in the adult human ovary.

    Science.gov (United States)

    Liu, Yifei; Wu, Chao; Lyu, Qifeng; Yang, Dongzi; Albertini, David F; Keefe, David L; Liu, Lin

    2007-06-01

    It remains unclear whether neo-oogenesis occurs in postnatal ovaries of mammals, based on studies in mice. We thought to test whether adult human ovaries contain germline stem cells (GSCs) and undergo neo-oogenesis. Rather than using genetic manipulation which is unethical in humans, we took the approach of analyzing the expression of meiotic marker genes and genes for germ cell proliferation, which are required for neo-oogenesis, in adult human ovaries covering an age range from 28 to 53 years old, compared to testis and fetal ovaries served as positive controls. We show that active meiosis, neo-oogenesis and GSCs are unlikely to exist in normal, adult, human ovaries. No early meiotic-specific or oogenesis-associated mRNAs for SPO11, PRDM9, SCP1, TERT and NOBOX were detectable in adult human ovaries using RT-PCR, compared to fetal ovary and adult testis controls. These findings are further corroborated by the absence of early meiocytes and proliferating germ cells in adult human ovarian cortex probed with markers for meiosis (SCP3), oogonium (OCT3/4, c-KIT), and cell cycle progression (Ki-67, PCNA), in contrast to fetal ovary controls. If postnatal oogenesis is confirmed in mice, then this species would represent an exception to the rule that neo-oogenesis does not occur in adults.

  1. Immune competence in /sup 90/Sr-exposed, adult thymectomized and antilymphocyteglobulin-treated CBA mice. Pt. 1. Allogenic skin graft reaction

    Energy Technology Data Exchange (ETDEWEB)

    Bierke, P.

    1989-01-01

    CBA mice subjected to either adult thymectomy, internal exposure to /sup 90/Sr or antilymphocyteglobulin treatment separately, or to combinations of the three were tested for cellular immune competence using their reaction to allogenic skin grafts. Peripheral blood white cell counts did not reveal any obvious correlation between the degree of mononuclear cell depletion and the ability to accept grafts, suggesting that the particular treatments depleted specific fractions of mononuclear cells, differing in their extent of involvement in the rejection process. No single treatment alone induced a significant prolongation in the time elapsed before graft rejection. Adult thymectomy followed by appropriate antilymphocyteglobulin treatment induced severe lymphocytopenia and a profound suppression of the cell-mediate immune system, as evidenced by the acceptance of allogenic skin grafts. When applied to /sup 90/Sr-preexposed mice the same treatment induced lifelong acceptance of grafts, indicating a similar, though weaker immunosuppressive impact of /sup 90/Sr. Hence it was possible to significantly enhance immunosuppression in /sup 90/Sr-exposed mice. This in vivo model should be useful when investigating the role of immunological responsiveness in radiation carcinogenesis. (orig.).

  2. Skeletal muscles of aged male mice fail to adapt following contractile activity.

    Science.gov (United States)

    Vasilaki, A; Iwanejko, L M; McArdle, F; Broome, C S; Jackson, M J; McArdle, A

    2003-04-01

    Skeletal muscle adapts rapidly following exercise by the increased production of heat-shock proteins (HSPs). The aim of this study was to examine the ability of muscle from adult and aged mice to produce HSPs following non-damaging exercise. Adult and aged B6XSJL mice were anaesthetized and their hind limbs were subjected to isometric contractions. At different time points, muscles were analysed for HSP production by Western and Northern blotting and by electrophoretic mobility-shift assay. HSP protein and mRNA levels in muscles from adult mice increased significantly following exercise. This was not evident in muscles of aged mice. In contrast, binding of the transcription factor heat-shock factor 1 (HSF1) was not grossly altered in muscles of aged mice compared with adult mice. The data suggest that the inability of muscles of aged mice to produce HSPs appears to be due to alterations during gene transcription.

  3. Markers of Alzheimer’s Disease in Primary Visual Cortex in Normal Aging in Mice

    Directory of Open Access Journals (Sweden)

    Luis Fernando Hernández-Zimbrón

    2017-01-01

    Full Text Available Aging is the principal risk factor for the development of Alzheimer’s disease (AD. The hallmarks of AD are accumulation of the amyloid-β peptide 1–42 (Aβ42 and abnormal hyperphosphorylation of Tau (p-Tau protein in different areas of the brain and, more recently reported, in the visual cortex. Recently, Aβ42 peptide overproduction has been involved in visual loss. Similar to AD, in normal aging, there is a significant amyloid deposition related to the overactivation of the aforementioned mechanisms. However, the mechanisms associated with visual loss secondary to age-induced visual cortex affectation are not completely understood. Young and aged mice were used as model to analyze the presence of Aβ42, p-Tau, glial-acidic fibrillary protein (GFAP, and presenilin-2, one of the main enzymes involved in Aβ42 production. Our results show a significant increase of Aβ42 deposition in aged mice in the following cells and/or tissues: endothelial cells and blood vessels and neurons of the visual cortex; they also show an increase of the expression of GFAP and presenilin-2 in this region. These results provide a comprehensive framework for the role of Aβ42 in visual loss due to inflammation present with aging and offer some clues for fruitful avenues for the study of healthy aging.

  4. Seipin knockout in mice impairs stem cell proliferation and progenitor cell differentiation in the adult hippocampal dentate gyrus via reduced levels of PPARγ

    Directory of Open Access Journals (Sweden)

    Guoxi Li

    2015-12-01

    Full Text Available The seipin gene (BSCL2 was originally identified in humans as a loss-of-function gene associated with congenital generalized lipodystrophy type 2 (CGL2. Neuronal seipin-knockout (seipin-nKO mice display a depression-like phenotype with a reduced level of hippocampal peroxisome proliferator-activated receptor gamma (PPARγ. The present study investigated the influence of seipin deficiency on adult neurogenesis in the hippocampal dentate gyrus (DG and the underlying mechanisms of the effects. We show that the proliferative capability of stem cells in seipin-nKO mice was substantially reduced compared to in wild-type (WT mice, and that this could be rescued by the PPARγ agonist rosiglitazone (rosi. In seipin-nKO mice, neuronal differentiation of progenitor cells was inhibited, with the enhancement of astrogliogenesis; both of these effects were recovered by rosi treatment during early stages of progenitor cell differentiation. In addition, rosi treatment could correct the decline in hippocampal ERK2 phosphorylation and cyclin A mRNA level in seipin-nKO mice. The MEK inhibitor U0126 abolished the rosi-rescued cell proliferation and cyclin A expression in seipin-nKO mice. In seipin-nKO mice, the hippocampal Wnt3 protein level was less than that in WT mice, and there was a reduction of neurogenin 1 (Neurog1 and neurogenic differentiation 1 (NeuroD1 mRNA, levels of which were corrected by rosi treatment. STAT3 phosphorylation (Tyr705 was enhanced in seipin-nKO mice, and was further elevated by rosi treatment. Finally, rosi treatment for 10 days could alleviate the depression-like phenotype in seipin-nKO mice, and this alleviation was blocked by the MEK inhibitor U0126. The results indicate that, by reducing PPARγ, seipin deficiency impairs proliferation and differentiation of neural stem and progenitor cells, respectively, in the adult DG, which might be responsible for the production of the depression-like phenotype in seipin-nKO mice.

  5. Growing into obesity: patterns of height growth in those who become normal weight, overweight, or obese as young adults.

    Science.gov (United States)

    Stovitz, Steven D; Demerath, Ellen W; Hannan, Peter J; Lytle, Leslie A; Himes, John H

    2011-01-01

    To study whether patterns of height growth differ by adult obesity status, and determine the contribution of subcutaneous fatness as an explanatory variable for any differences. A multicenter, prospective longitudinal cohort assessed in 3rd grade (8.8 years), 5th grade (11.1 years), 8th grade (14.1 years), and 12th grade (18.3 years). Exposures were young adult obesity status classified by CDC adult BMI categories at 12th grade. Skinfolds were measured in third, fifth, and eighth grades. Outcome was mean height (cm) at the four measurements using repeated-measures ANCOVA for young adult obesity status, and height increments between grades by adult obesity status in sequential models including initial height and, secondarily, initial skinfolds. Adjusted for age, and race/ethnicity, young adult obesity status explained a small, but statistically significant amount of height growth among both females and males within each of the three intervals. Compared with normal weight young adults, overweight or obese young adults stood taller in childhood, but had relatively less growth in height throughout the teenage years. There was no association between adult height and weight status. Skinfolds explained only a small amount of the height patterns in the three weight groups. Childhood and adolescent height growth patterns differ between those who become young adults who are normal weight and those who become overweight or obese. Since differences in fatness explain only a small amount of these height growth patterns, research is needed to identify other determinants. Copyright © 2011 Wiley-Liss, Inc.

  6. Tremor severity and age: a cross-sectional, population-based study of 2,524 young and midlife normal adults.

    Science.gov (United States)

    Louis, Elan D; Hafeman, Danella; Parvez, Faruque; Liu, Xinhua; Alcalay, Roy N; Islam, Tariqul; Ahmed, Alauddin; Siddique, Abu Bakar; Patwary, Tazul Islam; Melkonian, Stephanie; Argos, Maria; Levy, Diane; Ahsan, Habibul

    2011-07-01

    Mild action tremor occurs in most normal people. Yet this tremor mainly has been studied within the context of advanced age rather than among the vast bulk of adults who are not elderly. Whether this tremor worsens during young and middle age is unknown. Using cross-sectional data from a large population-based study of young and midlife normal adults (age range, 18-60 years), we assessed whether increasing age is associated with more severe action tremor. Two thousand five hundred and twenty-four adults in Araihazar, Bangladesh, drew an Archimedes spiral with each hand. Tremor in spirals was rated (0-3) by a blinded neurologist, and a spiral score (range, 0-6) was assigned. Spiral score was correlated with age (r = 0.06, P = .004). With each advancing decade, the spiral score increased (P = .002) so that the spiral score in participants in the highest age group (age 60) was approximately twice that of participants in the youngest age group (age 18-19); P = .003. In the regression model that adjusted for potential confounders (sex, cigarettes, medications, asthma inhalers, and tea and betel nut use), spiral score was associated with age (P = .0045). In this cross-sectional, population-based study of more than 2500 young and midlife normal adults, there was a clear association between age and tremor severity. Although the magnitude of the correlation coefficient was modest, tremor severity was higher with each passing decade. These data suggest that age-dependent increase in tremor amplitude is not restricted to older people but occurs in all adult age groups. Copyright © 2011 Movement Disorder Society.

  7. Experimental study on acute toxicity of Qingnao tablet to mice

    Science.gov (United States)

    Xie, Guoqi; Wang, Huamin; Ma, Zhenzhen; Hao, Shaojun; Li, Jun; Wang, Hongyu; Wen, Zhonghua; Zhang, Zhengchen

    2018-04-01

    To investigate the effect of Qingnao tablets on acute toxicity in mice. Forty mice, half male and half female, were randomly divided into normal saline group and Qingnao tablet group. After fasting for 12 hours, the mice were given 0. 4 ml / 10 g in maximum volume. In 1st, the rats were perfused 3 times (every 8 hours). The rats in the saline group were perfused with the same volume of saline in the same way. The mice were observed continuously within 3 hours and then every hour. The mice were given a normal diet for 14 consecutive days, and the changes of autonomous activity, reaction, diet, stool, secretion, eye and nose were observed daily. The mice fasted on the 13th day and weighed on the 14th day. And then put the mice to death, The changes of the liver, heart, spleen, lung, kidney, stomach, intestines, and brain were observed by the naked eye. There was no obvious abnormality in normal saline group. The autonomous activity of mice in the administration group decreased after initial administration, and gradually returned to normal after 2 hours of administration. On the day of administration, the stool of the mice became dark brown, and the feces returned to normal after 1.1 days of normal urination. No other mice had abnormal secretion, reaction, eye nose, diet, etc. On the 14th day, there were no visible heart, liver, spleen, lung, kidney, gastrointestinal tract in normal saline group and Qingnao tablet group. Abnormal changes in brain and other organs (edema, color, etc.). In the normal saline group and Qingnao tablet group, the initial weight of the mice was: 21.70 ± 0.97N 21.71 ± 1.13, and the weight of the mice on the 7th day was 29.70 ± 2.4c28.65 ± 3.11. On the 14th day, the body weight was 32.38 ± 3.40, 33.77 ± 3.82. Qingnao tablet has no obvious toxicity to the main organs of mice, so it can be considered safe in clinical use.

  8. Long-Term Visual Training Increases Visual Acuity and Long-Term Monocular Deprivation Promotes Ocular Dominance Plasticity in Adult Standard Cage-Raised Mice

    OpenAIRE

    Hosang, Leon; Yusifov, Rashad; Löwel, Siegrid

    2018-01-01

    Abstract For routine behavioral tasks, mice predominantly rely on olfactory cues and tactile information. In contrast, their visual capabilities appear rather restricted, raising the question whether they can improve if vision gets more behaviorally relevant. We therefore performed long-term training using the visual water task (VWT): adult standard cage (SC)-raised mice were trained to swim toward a rewarded grating stimulus so that using visual information avoided excessive swimming toward ...

  9. Effects of 60Co γ-radiation on brain hippocampal tissue of adult mice

    International Nuclear Information System (INIS)

    Liu Yongbao; Rao Yongqing; Xu Luxi

    2000-01-01

    Objective: To study neuro-pathological changes of hippocampus tissue in adult mice following a series of irradiation with 60 Co γ-rays. Methods: Male mice of Kunming strain in experimental group (n = 8) were exposed total-bodily to 60 Co γ-rays at 2.0 Gy once every two days. A histopathological imaging analysis of the mouse brain tissue was carried out after paraffin embedding and a series of sections were made and stained with Nissl and Weil staining methods. Results: In the irradiation group (the cumulative dose = 26 Gy) loss of pyramidal cells in hippocampus was significant when compared with the control group. Neuro-pathological changes were characterised by reduced neuron size, nuclear pyknosis and karyolysis. The neurofibrillar density of the pyramidal layer in the irradiation group was much lower than that of the control group (P CA2>CA3>CA4 in the hippocampus. Conclusion: The neuronal damage in hippocampus after 60 Co irradiation could form a pathological basis in reduction of memorial and learning ability

  10. [Imprinting as a mechanism of information memorizing in the adult BALB/c mice].

    Science.gov (United States)

    Nikol'skaia, K A; Berezhnoĭ, D S

    2011-09-01

    Study of spatial learning in adult BALB/c mice revealed that a short exposition to the environment (from 3 to 8 minutes) could be enough for spatial information to be fixed in the long-term memory, and affected subsequent learning process in the new environment. Control group, learning in the same maze, followed the "shortest path" principle during formation of the optimal food-obtaining habit. Experimental animals, learning in a slightly changed environment, were unable to apply this rule due to persistent coupling of the new spatial information with the old memory traces which led to constant errors. The obtained effect was observed during the whole learning period and depended neither on frequency nor on interval of repetition during the initial information acquisition. The obtained data testify that memorizing in adult state share the properties with the imprinting process inherent in the early ontogeny. The memory fixation on all development stages seems to be based on a universal mechanism.

  11. ASCT2 (SLC1A5-Deficient Mice Have Normal B-Cell Development, Proliferation, and Antibody Production

    Directory of Open Access Journals (Sweden)

    Etienne Masle-Farquhar

    2017-05-01

    Full Text Available SLC1A5 (solute carrier family 1, member 5 is a small neutral amino acid exchanger that is upregulated in rapidly proliferating lymphocytes but also in many primary human cancers. Furthermore, cancer cell lines have been shown to require SLC1A5 for their survival in vitro. One of SLC1A5’s primary substrates is the immunomodulatory amino acid glutamine, which plays an important role in multiple key processes, such as energy supply, macromolecular synthesis, nucleotide biosynthesis, redox homeostasis, and resistance against oxidative stress. These processes are also essential to immune cells, including neutrophils, macrophages, B and T lymphocytes. We show here that mice with a stop codon in Slc1a5 have reduced glutamine uptake in activated lymphocytes and primary fibroblasts. B and T cell populations and maturation in resting mice were not affected by absence of SLC1A5. Antibody production in resting and immunized mice and the germinal center response to immunization were also found to be normal. SLC1A5 has been recently described as a novel target for the treatment of a variety of cancers, and our results indicate that inhibition of SLC1A5 in cancer therapy may be tolerated well by the immune system of cancer patients.

  12. Assessment of DNA synthesis in Islet-1+ cells in the adult murine heart

    International Nuclear Information System (INIS)

    Weinberger, Florian; Mehrkens, Dennis; Starbatty, Jutta; Nicol, Philipp; Eschenhagen, Thomas

    2015-01-01

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1 + ) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1 + cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ( 3 H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of 3 H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1 + cells. Whereas Islet − non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1 + cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes

  13. Colitis susceptibility in p47(phox-/-) mice is mediated by the microbiome.

    Science.gov (United States)

    Falcone, E Liana; Abusleme, Loreto; Swamydas, Muthulekha; Lionakis, Michail S; Ding, Li; Hsu, Amy P; Zelazny, Adrian M; Moutsopoulos, Niki M; Kuhns, Douglas B; Deming, Clay; Quiñones, Mariam; Segre, Julia A; Bryant, Clare E; Holland, Steven M

    2016-04-05

    Chronic granulomatous disease (CGD) is caused by defects in nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) complex subunits (gp91(phox) (a.k.a. Nox2), p47(phox), p67(phox), p22(phox), p40(phox)) leading to reduced phagocyte-derived reactive oxygen species production. Almost half of patients with CGD develop inflammatory bowel disease, and the involvement of the intestinal microbiome in relation to this predisposing immunodeficiency has not been explored. Although CGD mice do not spontaneously develop colitis, we demonstrate that p47(phox-/-) mice have increased susceptibility to dextran sodium sulfate colitis in association with a distinct colonic transcript and microbiome signature. Neither restoring NOX2 reactive oxygen species production nor normalizing the microbiome using cohoused adult p47(phox-/-) with B6Tac (wild type) mice reversed this phenotype. However, breeding p47(phox+/-) mice and standardizing the microflora between littermate p47(phox-/-) and B6Tac mice from birth significantly reduced dextran sodium sulfate colitis susceptibility in p47(phox-/-) mice. We found similarly decreased colitis susceptibility in littermate p47(phox-/-) and B6Tac mice treated with Citrobacter rodentium. Our findings suggest that the microbiome signature established at birth may play a bigger role than phagocyte-derived reactive oxygen species in mediating colitis susceptibility in CGD mice. These data further support bacteria-related disease in CGD colitis.

  14. Fluid Distribution Pattern in Adult-Onset Congenital, Idiopathic, and Secondary Normal-Pressure Hydrocephalus: Implications for Clinical Care.

    Science.gov (United States)

    Yamada, Shigeki; Ishikawa, Masatsune; Yamamoto, Kazuo

    2017-01-01

    In spite of growing evidence of idiopathic normal-pressure hydrocephalus (NPH), a viewpoint about clinical care for idiopathic NPH is still controversial. A continuous divergence of viewpoints might be due to confusing classifications of idiopathic and adult-onset congenital NPH. To elucidate the classification of NPH, we propose that adult-onset congenital NPH should be explicitly distinguished from idiopathic and secondary NPH. On the basis of conventional CT scan or MRI, idiopathic NPH was defined as narrow sulci at the high convexity in concurrent with enlargement of the ventricles, basal cistern and Sylvian fissure, whereas adult-onset congenital NPH was defined as huge ventricles without high-convexity tightness. We compared clinical characteristics and cerebrospinal fluid distribution among 85 patients diagnosed with idiopathic NPH, 17 patients with secondary NPH, and 7 patients with adult-onset congenital NPH. All patients underwent 3-T MRI examinations and tap-tests. The volumes of ventricles and subarachnoid spaces were measured using a 3D workstation based on T2-weighted 3D sequences. The mean intracranial volume for the patients with adult-onset congenital NPH was almost 100 mL larger than the volumes for patients with idiopathic and secondary NPH. Compared with the patients with idiopathic or secondary NPH, patients with adult-onset congenital NPH exhibited larger ventricles but normal sized subarachnoid spaces. The mean volume ratio of the high-convexity subarachnoid space was significantly less in idiopathic NPH than in adult-onset congenital NPH, whereas the mean volume ratio of the basal cistern and Sylvian fissure in idiopathic NPH was >2 times larger than that in adult-onset congenital NPH. The symptoms of gait disturbance, cognitive impairment, and urinary incontinence in patients with adult-onset congenital NPH tended to progress more slowly compared to their progress in patients with idiopathic NPH. Cerebrospinal fluid distributions and

  15. Comparison of the effects of bisphenol A alone and in a combination with X-irradiation on sperm count and quality in male adult and pubescent mice.

    Science.gov (United States)

    Dobrzyńska, Małgorzata M; Jankowska-Steifer, Ewa A; Tyrkiel, Ewa J; Gajowik, Aneta; Radzikowska, Joanna; Pachocki, Krzysztof A

    2014-11-01

    Bisphenol A (BPA) is employed in the manufacturing of epoxy, polyester-styrene, and polycarbonate resins, which are used for the production of baby and water bottles and reusable containers, food and beverage packing, dental fillings and sealants. The study was designed to examine the effects of 8-week exposure (a full cycle of spermatogenesis) to BPA alone and in a combination with X-irradiation on the reproductive organs and germ cells of adult and pubescent male mice. Pzh:Sfis male mice were exposed to BPA (5, 10, and 20 mg/kg) or X-rays (0.05 Gy) or to a combination of both (0.05 Gy + 5 mg/kg bw BPA). The following parameters were examined: sperm count, sperm motility, sperm morphology, and DNA damage in male gametes. Both BPA and X-rays alone diminished sperm quality. BPA exposure significantly reduced sperm count in pubescent males compared to adult mice, with degenerative changes detected in seminiferous epithelium. This may suggest a higher susceptibility of germ cells of younger males to BPA action. Combined BPA with X-ray treatment enhanced the harmful effect induced by BPA alone in male germ cells of adult males, whereas low-dose irradiation showed sometimes protective or additive effects in pubescent mice. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  16. Tubular overexpression of gremlin induces renal damage susceptibility in mice.

    Directory of Open Access Journals (Sweden)

    Alejandra Droguett

    Full Text Available A growing number of patients are recognized worldwide to have chronic kidney disease. Glomerular and interstitial fibrosis are hallmarks of renal progression. However, fibrosis of the kidney remains an unresolved challenge, and its molecular mechanisms are still not fully understood. Gremlin is an embryogenic gene that has been shown to play a key role in nephrogenesis, and its expression is generally low in the normal adult kidney. However, gremlin expression is elevated in many human renal diseases, including diabetic nephropathy, pauci-immune glomerulonephritis and chronic allograft nephropathy. Several studies have proposed that gremlin may be involved in renal damage by acting as a downstream mediator of TGF-β. To examine the in vivo role of gremlin in kidney pathophysiology, we generated seven viable transgenic mouse lines expressing human gremlin (GREM1 specifically in renal proximal tubular epithelial cells under the control of an androgen-regulated promoter. These lines demonstrated 1.2- to 200-fold increased GREM1 expression. GREM1 transgenic mice presented a normal phenotype and were without proteinuria and renal function involvement. In response to the acute renal damage cause by folic acid nephrotoxicity, tubule-specific GREM1 transgenic mice developed increased proteinuria after 7 and 14 days compared with wild-type treated mice. At 14 days tubular lesions, such as dilatation, epithelium flattening and hyaline casts, with interstitial cell infiltration and mild fibrosis were significantly more prominent in transgenic mice than wild-type mice. Tubular GREM1 overexpression was correlated with the renal upregulation of profibrotic factors, such as TGF-β and αSMA, and with increased numbers of monocytes/macrophages and lymphocytes compared to wild-type mice. Taken together, our results suggest that GREM1-overexpressing mice have an increased susceptibility to renal damage, supporting the involvement of gremlin in renal damage

  17. Hypolipidemic action of garlic unsaturated oils in irradiated mice

    International Nuclear Information System (INIS)

    Gupta, N.K.

    1988-01-01

    Adult male Swiss albino mice were injected with 74 KBq g -1 body weight of radiocalcium 45 Ca in the presence and absence of unsaturated oils of garlic, and changes in the total lipids and triglycerides contents of liver were observed at various intervals from 1 to 14 days. The results obtained indic ate that the garlic oils prevented rapid increase in hepatic total lipids and triglycerides induced by radiocalcium and the values reached normal values earlier in garlic-treated than in irradiated animals. Possible mechanism(s) underlying hypolipidemic action of garlic oil have been discussed. (author). 22 refs

  18. Perinatal exposure of mice to the pesticide DDT impairs energy expenditure and metabolism in adult female offspring.

    Directory of Open Access Journals (Sweden)

    Michele La Merrill

    Full Text Available Dichlorodiphenyltrichloroethane (DDT has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring.

  19. Perinatal Exposure of Mice to the Pesticide DDT Impairs Energy Expenditure and Metabolism in Adult Female Offspring

    Science.gov (United States)

    La Merrill, Michele; Karey, Emma; Moshier, Erin; Lindtner, Claudia; La Frano, Michael R.; Newman, John W.; Buettner, Christoph

    2014-01-01

    Dichlorodiphenyltrichloroethane (DDT) has been used extensively to control malaria, typhus, body lice and bubonic plague worldwide, until countries began restricting its use in the 1970s. Its use in malaria control continues in some countries according to recommendation by the World Health Organization. Individuals exposed to elevated levels of DDT and its metabolite dichlorodiphenyldichloroethylene (DDE) have an increased prevalence of diabetes and insulin resistance. Here we hypothesize that perinatal exposure to DDT disrupts metabolic programming leading to impaired metabolism in adult offspring. To test this, we administered DDT to C57BL/6J mice from gestational day 11.5 to postnatal day 5 and studied their metabolic phenotype at several ages up to nine months. Perinatal DDT exposure reduced core body temperature, impaired cold tolerance, decreased energy expenditure, and produced a transient early-life increase in body fat in female offspring. When challenged with a high fat diet for 12 weeks in adulthood, female offspring perinatally exposed to DDT developed glucose intolerance, hyperinsulinemia, dyslipidemia, and altered bile acid metabolism. Perinatal DDT exposure combined with high fat feeding in adulthood further impaired thermogenesis as evidenced by reductions in core temperature and in the expression of numerous RNA that promote thermogenesis and substrate utilization in the brown adipose tissue of adult female mice. These observations suggest that perinatal DDT exposure impairs thermogenesis and the metabolism of carbohydrates and lipids which may increase susceptibility to the metabolic syndrome in adult female offspring. PMID:25076055

  20. Tritiated thymidine incorporation and the development of an interstitial lesion in the bronchiolar-alveolar regions of the lungs of normal and complement deficient mice after inhalation of chrysotile asbestos

    International Nuclear Information System (INIS)

    McGavran, P.D.; Butterick, C.J.; Brody, A.R.

    1989-01-01

    Inhaled asbestos causes the proliferation of bronchiolar-alveolar epithelial and interstitial cells in rats and mice 19 to 72 hours after a single 5-hour exposure. This condition is associated with rapid macrophage accumulation and development of an interstitial fibrotic lesion at alveolar duct bifurcations. In an attempt to define the mechanisms mediating asbestos-induced cell proliferation and fibrogenesis, we studied mice exposed to chrysotile asbestos for five hours. The mice were normal and a congenic strain (B10.D2/oSn), deficient in the fifth component of complement (C5-). We knew that the latter exhibit a depressed asbestos-induced macrophage response and wanted to learn whether the depressed response correlated with measurements of cell proliferation and progression of an interstitial lesion. Sections of first alveolar duct bifurcations were prepared for light microscopic autoradiography and ultrastructural morphometry at varying times after animal exposure to asbestos. In sham-exposed C5+ and C5- animals, less than 1% of epithelial and interstitial cells of the terminal bronchioles and alveolar ducts incorporated tritiated thymidine (3H-TdR) at any time after exposure to asbestos. Between 19 and 72 hours after exposure, epithelial and interstitial cells in both strains of mice exhibited significantly increased levels of 3H-TdR incorporation. The response decreased by eight days postexposure, and 3H-TdR incorporation was normal one month after exposure. Similarly, morphometry showed that both the C5+ and C5- asbestos-exposed mice exhibited significant increases in the volume density of epithelial and interstitial cells 48 hours after exposure. However, one month after exposure, the normal C5+ asbestos-exposed mice developed a fibrotic lesion, whereas the C5- asbestos-exposed animals were no different from sham-exposed C5- controls

  1. Hematopoietic stem cell function in motheaten mice

    International Nuclear Information System (INIS)

    Shultz, L.D.; Bailey, C.L.; Coman, D.R.

    1983-01-01

    Mice homozygous for the autosomal recessive mutation ''motheaten'' have normal numbers of multipotential hematopoietic stem cells in the bone marrow and spleen as determined by spleen colony assay. Histologic examination shows no qualitative abnormality in morphology of stem cell colonies in recipients of bone marrow or spleen cells from motheaten mice. Despite the apparently normal ontogeny, distribution, and differentiative capacity of CFU stem cells, bone marrow and spleen cells from motheaten mice fail to save congenic +/+ lethally gamma-irradiated hosts. This impaired lifesparing capacity is not due to defective self-renewal but appears to be due in part to pulmonary hemorrhage from alveolar capillaries in the gamma-irradiated hosts. Treatment of motheaten mice with 500 R gamma-irradiation followed by reconstitution with normal bone marrow cells increases the lifespan of this mutant to 10 months of age. The early onset of pneumonitis and subsequent short lifespan of motheaten mice is determined at the level of progenitor cells in the bone marrow

  2. Spermatogenic Cell-Specific Gene Mutation in Mice via CRISPR-Cas9.

    Science.gov (United States)

    Bai, Meizhu; Liang, Dan; Wang, Yinghua; Li, Qing; Wu, Yuxuan; Li, Jinsong

    2016-05-20

    Tissue-specific knockout technology enables the analysis of the gene function in specific tissues in adult mammals. However, conventional strategy for producing tissue-specific knockout mice is a time- and labor-consuming process, restricting rapid study of the gene function in vivo. CRISPR-Cas9 system from bacteria is a simple and efficient gene-editing technique, which has enabled rapid generation of gene knockout lines in mouse by direct injection of CRISPR-Cas9 into zygotes. Here, we demonstrate CRISPR-Cas9-mediated spermatogenic cell-specific disruption of Scp3 gene in testes in one step. We first generated transgenic mice by pronuclear injection of a plasmid containing Hspa2 promoter driving Cas9 expression and showed Cas9 specific expression in spermatogenic cells. We then produced transgenic mice carrying Hspa2 promoter driven Cas9 and constitutive expressed sgRNA targeting Scp3 gene. Male founders were infertile due to developmental arrest of spermatogenic cells while female founders could produce progeny normally. Consistently, male progeny from female founders were infertile and females could transmit the transgenes to the next generation. Our study establishes a CRISPR-Cas9-based one-step strategy to analyze the gene function in adult tissues by a temporal-spatial pattern. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  3. Treatment with the GSK3-beta inhibitor Tideglusib improves hippocampal development and memory performance in juvenile, but not adult, Cdkl5 knockout mice.

    Science.gov (United States)

    Fuchs, Claudia; Fustini, Norma; Trazzi, Stefania; Gennaccaro, Laura; Rimondini, Roberto; Ciani, Elisabetta

    2018-05-01

    Cyclin-dependent kinase-like 5 (CDKL5) disorder is a severe neurodevelopmental disorder characterized by early-onset epileptic seizures, severe developmental delay, and intellectual disability. To date, no effective pharmacological treatments are available to improve the neurological phenotype that is due to mutations in the CDKL5 gene. Murine models of CDKL5 disorder have recently been generated, making the preclinical testing of pharmacological interventions possible. Using a Cdkl5 knockout (KO) mouse model, we recently demonstrated that deficiency of Cdkl5 causes defects in postnatal hippocampal development and hippocampus-dependent learning and memory. These defects were accompanied by an increased activity of GSK3β, an important inhibitory regulator of many neuronal functions. Pharmacological inhibition of GSK3β activity was able to recover hippocampal defects and cognitive performance in juvenile Cdkl5 KO mice, suggesting that GSK3β inhibitors might be a potential therapeutic option for CDKL5 disorder. As GSK3β inhibitors have been shown to have differential medication responses in young people and adults, this study was designed to examine whether GSK3β is a possible therapeutic target both in juvenile and in adult CDKL5 patients. We found that treatment with the GSK3β inhibitor Tideglusib during the juvenile period improved hippocampal development and hippocampus-dependent behaviors in Cdkl5 KO mice, while treatment later on in adulthood had no positive effects. These results suggest that pharmacological interventions aimed at normalizing impaired GSK3β activity might have different age-dependent outcomes in CDKL5 disorder. This is of utmost importance in the development of therapeutic approaches in CDKL5 patients and in the design of rational clinical trials. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Chronic early postnatal scream sound stress induces learning deficits and NMDA receptor changes in the hippocampus of adult mice.

    Science.gov (United States)

    Hu, Lili; Han, Bo; Zhao, Xiaoge; Mi, Lihua; Song, Qiang; Wang, Jue; Song, Tusheng; Huang, Chen

    2016-04-13

    Chronic scream sounds during adulthood affect spatial learning and memory, both of which are sexually dimorphic. The long-term effects of chronic early postnatal scream sound stress (SSS) during postnatal days 1-21 (P1-P21) on spatial learning and memory in adult mice as well as whether or not these effects are sexually dimorphic are unknown. Therefore, the present study examines the performance of adult male and female mice in the Morris water maze following exposure to chronic early postnatal SSS. Hippocampal NR2A and NR2B levels as well as NR2A/NR2B subunit ratios were tested using immunohistochemistry. In the Morris water maze, stress males showed greater impairment in spatial learning and memory than background males; by contrast, stress and background females performed equally well. NR2B levels in CA1 and CA3 were upregulated, whereas NR2A/NR2B ratios were downregulated in stressed males, but not in females. These data suggest that chronic early postnatal SSS influences spatial learning and memory ability, levels of hippocampal NR2B, and NR2A/NR2B ratios in adult males. Moreover, chronic early stress-induced alterations exert long-lasting effects and appear to affect performance in a sex-specific manner.

  5. Patent ductus arteriosus in mice with smooth muscle-specific Jag1 deletion

    Science.gov (United States)

    Feng, Xuesong; Krebs, Luke T.; Gridley, Thomas

    2010-01-01

    The ductus arteriosus is an arterial vessel that shunts blood flow away from the lungs during fetal life, but normally occludes after birth to establish the adult circulation pattern. Failure of the ductus arteriosus to close after birth is termed patent ductus arteriosus and is one of the most common congenital heart defects. Mice with smooth muscle cell-specific deletion of Jag1, which encodes a Notch ligand, die postnatally from patent ductus arteriosus. These mice exhibit defects in contractile smooth muscle cell differentiation in the vascular wall of the ductus arteriosus and adjacent descending aorta. These defects arise through an inability to propagate the JAG1-Notch signal via lateral induction throughout the width of the vascular wall. Both heterotypic endothelial smooth muscle cell interactions and homotypic vascular smooth muscle cell interactions are required for normal patterning and differentiation of the ductus arteriosus and adjacent descending aorta. This new model for a common congenital heart defect provides novel insights into the genetic programs that underlie ductus arteriosus development and closure. PMID:21068062

  6. Effect of Different Starvation Levels on Cognitive Ability in Mice

    Science.gov (United States)

    Li, Xiaobing; Zhi, Guoguo; Yu, Yi; Cai, Lingyu; Li, Peng; Zhang, Danhua; Bao, Shuting; Hu, Wenlong; Shen, Haiyan; Song, Fujuan

    2018-01-01

    Objective: To study the effect of different starvation levels on cognitive ability in mice. Method: Mice were randomly divided into four groups: normal group, dieting group A, dieting group B, dieting group C. The mice of normal group were given normal feeding amount, the rest of groups were given 3/4 of normal feeding amount, 2/4 of normal feeding amount and 1/4 of normal feeding amount. After feeding mice four days, the weight was observed and T-maze experiment, Morris water maze test, open field test and Serum Catalase activity were detected. Result: Compared with the normal group, the correct rate of the intervention group in the T-maze experiment was decreased and dieting group A> dieting group B> dieting group C. In the Morris water maze test, Compared with the normal group, the correct rate of the intervention group was increased. Among these three intervention groups, dieting group A had the highest correct rate and the difference of dieting group B and dieting group C were similar. In the open field test, Compared with the normal group, the exploration rate of the surrounding environment in the intervention group was increased. In the Serum Catalase test, Compared with the normal group, the activities of serum peroxidase in the intervention groups were decreased and dieting group A> dieting group B> dieting group C. Conclusion: A certain level of starvation could affect the cognitive ability of mice. In a certain range, the level of starvation is inversely proportional to cognitive ability in mice.

  7. Morphological study of tooth development in podoplanin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kenyo Takara

    Full Text Available Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  8. Morphological study of tooth development in podoplanin-deficient mice.

    Science.gov (United States)

    Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko

    2017-01-01

    Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  9. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Florian, E-mail: f.weinberger@uke.de; Mehrkens, Dennis, E-mail: dennis.mehrkens@uk-koeln.de; Starbatty, Jutta, E-mail: starbatty@uke.uni-hamburg.de; Nicol, Philipp, E-mail: Philipp.Nicol@gmx.de; Eschenhagen, Thomas, E-mail: t.eschenhagen@uke.de

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  10. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Pinchenko, Volodymyr

    2011-01-01

    Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe and prog......Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe...... and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which...... is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies...

  11. Activation of the Wnt/β-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    International Nuclear Information System (INIS)

    Chen, Yanchun; Guan, Yingjun; Liu, Huancai; Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei; Wang, Xin

    2012-01-01

    Highlights: ► Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. ► β-catenin translocated from the cell membrane to the nucleus in the ALS mice. ► Wnt3a, β-catenin and Cyclin D1 co-localized for astrocytes were all increased. ► BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. ► BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, β-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/β-catenin signaling pathway. We determined the expression of Wnt3a, β-catenin, and Cyclin D1 in the adult spinal cord of SOD1 G93A ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, β-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, β-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, β-catenin or Cyclin D1 in mature GFAP + astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that neurodegeneration activates the Wnt/β-catenin signaling pathway, which is associated with glial proliferation in the adult spinal cord of ALS transgenic mice. This

  12. Enhancement of Wound Healing in Normal and Diabetic Mice by Topical Application of Amorphous Polyphosphate. Superior Effect of a Host–Guest Composite Material Composed of Collagen (Host and Polyphosphate (Guest

    Directory of Open Access Journals (Sweden)

    Werner E.G. Müller

    2017-07-01

    Full Text Available The effect of polyphosphate (polyP microparticles on wound healing was tested both in vitro and in a mice model in vivo. Two approaches were used: pure salts of polyphosphate, fabricated as amorphous microparticles (MPs, consisting of calcium and magnesium salts of polyP, “Ca–polyp-MPs” and “Mg–polyp-MPs”, and host–guest composite particles, prepared from amorphous collagen (host and polyphosphate (guest, termed “col/polyp-MPs”. Animal experiments with polyP on healing of excisional wounds were performed using both normal mice and diabetic mice. After a healing period of 7 days “Ca–polyp-MP” significantly improved re-epithelialization in normal mice from 31% (control to 72% (polyP microparticle-treated. Importantly, in diabetic mice, particularly the host–guest particles “col/polyp-MP”, increased the rate of re-epithelialization to ≈40% (control, 23%. In addition, those particles increased the expression of COL-I and COL-III as well as the expression the α-smooth muscle actin and the plasminogen activator inhibitor-1. We propose that “Ca–polyp-MPs”, and particularly the host–guest “col/polyp-MPs” are useful for topical treatment of wounds.

  13. Testicular development in mice lacking receptors for follicle stimulating hormone and androgen.

    Directory of Open Access Journals (Sweden)

    Peter J O'Shaughnessy

    Full Text Available Post-natal testicular development is dependent on gonadotrophin and androgen stimulation. Follicle stimulating hormone (FSH acts through receptors (FSHR on the Sertoli cell to stimulate spermatogenesis while androgens promote testis growth through receptors (AR on the Sertoli cells, Leydig cells and peritubular myoid cells. In this study we have examined the effects on testis development of ablating FSHRs (FSHRKO mice and/or ARs ubiquitously (ARKO mice or specifically on the Sertoli cells (SCARKO mice. Cell numbers were measured using stereological methods. In ARKO mice Sertoli cell numbers were reduced at all ages from birth until adulthood. FSHR ablation also caused small reductions in Sertoli cell numbers up to day 20 with more marked effects seen in the adult. Germ cell numbers were unaffected by FSHR and/or AR ablation at birth. By day 20 ubiquitous AR or FSHR ablation caused a marked reduction in germ cell numbers with a synergistic effect of losing both receptors (germ cell numbers in FSHRKO.ARKO mice were 3% of control. Germ cell numbers in SCARKO mice were less affected. By adulthood, in contrast, clear synergistic control of germ cell numbers had become established between the actions of FSH and androgen through the Sertoli cells. Leydig cell numbers were normal on day 1 and day 5 in all groups. By day 20 and in adult animals total AR or FSHR ablation significantly reduced Leydig cell numbers but Sertoli cell specific AR ablation had no effect. Results show that, prior to puberty, development of most testicular parameters is more dependent on FSH action than androgen action mediated through the Sertoli cells although androgen action through other cells types is crucial. Post-pubertally, germ cell numbers and spermatogenesis are dependent on FSH and androgen action through the Sertoli cells.

  14. [Relationship between the Mandarin acceptable noise level and the personality traits in normal hearing adults].

    Science.gov (United States)

    Wu, Dan; Chen, Jian-yong; Wang, Shuo; Zhang, Man-hua; Chen, Jing; Li, Yu-ling; Zhang, Hua

    2013-03-01

    To evaluate the relationship between the Mandarin acceptable noise level (ANL) and the personality trait for normal-hearing adults. Eighty-five Mandarin speakers, aged from 21 to 27, participated in this study. ANL materials and the Eysenck Personality Questionnaire (EPQ) questionnaire were used to test the acceptable noise level and the personality trait for normal-hearing subjects. SPSS 17.0 was used to analyze the results. ANL were (7.8 ± 2.9) dB in normal hearing participants. The P and N scores in EPQ were significantly correlated with ANL (r = 0.284 and 0.318, P 0.05). Listeners with higher ANL were more likely to be eccentric, hostile, aggressive, and instabe, no ANL differences were found in listeners who were different in introvert-extravert or lying.

  15. Clinical dosing regimen of selinexor maintains normal immune homeostasis and T cell effector function in mice: implications for combination with immunotherapy

    Science.gov (United States)

    Tyler, Paul M.; Servos, Mariah M.; de Vries, Romy C.; Klebanov, Boris; Kashyap, Trinayan; Sacham, Sharon; Landesman, Yosef; Dougan, Michael; Dougan, Stephanie K.

    2017-01-01

    Selinexor (KPT-330) is a first in class nuclear transport inhibitor currently in clinical trials as an anti-cancer agent. To determine how selinexor might impact anti-tumor immunity, we analyzed immune homeostasis in mice treated with selinexor and found disruptions in T cell development, a progressive loss of CD8 T cells and increases in inflammatory monocytes. Antibody production in response to immunization was mostly normal. Precursor populations in bone marrow and thymus were unaffected by selinexor, suggesting that normal immune homeostasis could recover. We found that a high dose of selinexor given once per week preserved nearly normal immune functioning, whereas a lower dose given 3 times per week did not restore immune homeostasis. Both naïve and effector CD8 T cells cultured in vitro showed impaired activation in the presence of selinexor. These experiments suggest that nuclear exportins are required for T cell development and function. We determined the minimum concentration of selinexor required to block T cell activation, and showed that T cell inhibitory effects of selinexor occur at levels above 100nM, corresponding to the first 24 hours post-oral dosing. In a model of implantable melanoma, selinexor treatment at 10 mg/kg with a 5 day drug holiday led to intratumoral IFNγ+, granzyme B+ cytotoxic CD8 T cells that were comparable to vehicle treated mice. Overall, selinexor treatment leads to transient inhibition of T cell activation but clinically relevant once and twice weekly dosing schedules that incorporate sufficient drug holidays allow for normal CD8 T cell functioning and development of anti-tumor immunity. PMID:28148714

  16. Mutations in Mll2, an H3K4 Methyltransferase, Result in Insulin Resistance and Impaired Glucose Tolerance in Mice

    Science.gov (United States)

    Schröter, David; Matthews, Helen C.; Bogani, Debora; Moir, Lee; Long, Anna; Church, Christopher; Hugill, Alison; Anstee, Quentin M.; Goldin, Rob; Thursz, Mark; Hollfelder, Florian; Cox, Roger D.

    2013-01-01

    We employed a random mutagenesis approach to identify novel monogenic determinants of type 2 diabetes. Here we show that haplo-insufficiency of the histone methyltransferase myeloid-lineage leukemia (Mll2/Wbp7) gene causes type 2 diabetes in the mouse. We have shown that mice heterozygous for two separate mutations in the SET domain of Mll2 or heterozygous Mll2 knockout mice were hyperglycaemic, hyperinsulinaemic and developed non-alcoholic fatty liver disease. Consistent with previous Mll2 knockout studies, mice homozygous for either ENU mutation (or compound heterozygotes) died during embryonic development at 9.5–14.5 days post coitum. Heterozygous deletion of Mll2 induced in the adult mouse results in a normal phenotype suggesting that changes in chromatin methylation during development result in the adult phenotype. Mll2 has been shown to regulate a small subset of genes, a number of which Neurod1, Enpp1, Slc27a2, and Plcxd1 are downregulated in adult mutant mice. Our results demonstrate that histone H3K4 methyltransferase Mll2 is a component of the genetic regulation necessary for glucose homeostasis, resulting in a specific disease pattern linking chromatin modification with causes and progression of type 2 diabetes, providing a basis for its further understanding at the molecular level. PMID:23826075

  17. Mutations in Mll2, an H3K4 methyltransferase, result in insulin resistance and impaired glucose tolerance in mice.

    Directory of Open Access Journals (Sweden)

    Michelle Goldsworthy

    Full Text Available We employed a random mutagenesis approach to identify novel monogenic determinants of type 2 diabetes. Here we show that haplo-insufficiency of the histone methyltransferase myeloid-lineage leukemia (Mll2/Wbp7 gene causes type 2 diabetes in the mouse. We have shown that mice heterozygous for two separate mutations in the SET domain of Mll2 or heterozygous Mll2 knockout mice were hyperglycaemic, hyperinsulinaemic and developed non-alcoholic fatty liver disease. Consistent with previous Mll2 knockout studies, mice homozygous for either ENU mutation (or compound heterozygotes died during embryonic development at 9.5-14.5 days post coitum. Heterozygous deletion of Mll2 induced in the adult mouse results in a normal phenotype suggesting that changes in chromatin methylation during development result in the adult phenotype. Mll2 has been shown to regulate a small subset of genes, a number of which Neurod1, Enpp1, Slc27a2, and Plcxd1 are downregulated in adult mutant mice. Our results demonstrate that histone H3K4 methyltransferase Mll2 is a component of the genetic regulation necessary for glucose homeostasis, resulting in a specific disease pattern linking chromatin modification with causes and progression of type 2 diabetes, providing a basis for its further understanding at the molecular level.

  18. Increase in circulating holotranscobalamin after oral administration of cyanocobalamin or hydroxocobalamin in healthy adults with low and normal cobalamin status

    DEFF Research Database (Denmark)

    Greibe, Eva; Mahalle, Namita; Bhide, Vijayshri

    2017-01-01

    PURPOSE: To investigate the absorption of synthetic cyanocobalamin and natural occurring hydroxocobalamin in populations with low and normal cobalamin (vitamin B12) status. METHODS: We included adults with low (n = 59) and normal (n = 42) cobalamin status and measured the change in serum holotran...

  19. Delayed and transient increase of adult hippocampal neurogenesis by physical exercise in DBA/2 mice.

    Directory of Open Access Journals (Sweden)

    Rupert W Overall

    Full Text Available This study builds on the findings that physical activity, such as wheel running in mice, enhances cell proliferation and neurogenesis in the adult hippocampus of the common mouse strain C57BL/6, and that the baseline level of neurogenesis varies by strain, being considerably lower in DBA/2. Because C57BL/6 and DBA/2 are important as the parental strains of the BXD recombinant inbred cross which allows the detection of genetic loci regulating phenotypes such as adult neurogenesis, we performed the current study to investigate the gene x environment interactions regulating neurogenesis. At equal distances and times run DBA/2J mice lacked the acute increase in precursor cell proliferation known from C57BL/6. In DBA/2J proliferation even negatively correlated with the distance run. This was neither due to a stress response (to running itself or single housing nor differences in estrous cycle. DBA/2 animals exhibited a delayed and weaker pro-neurogenic response with a significant increase in numbers of proliferating cells first detectable after more than a week of wheel running. The proliferative response to running was transient in both strains, the effect being undetectable by 6 weeks. There was also a small transient increase in the production of new neurons in DBA/2J, although these extra cells did not survive. These findings indicate that the comparison between C57BL/6 and DBA/2, and by extension the BXD genetic reference population derived from these strains, should provide a powerful tool for uncovering the complex network of modifier genes affecting the activity-dependent regulation of adult hippocampal neurogenesis. More generally, our findings also describe how the external physical environment interacts with the internal genetic environment to produce different responses to the same behavioral stimuli.

  20. Exploring the Factor Structure of Financial Capacity in Cognitively Normal and Impaired Older Adults.

    Science.gov (United States)

    Gerstenecker, Adam; Triebel, Kristen; Eakin, Amanda; Martin, Roy; Marson, Daniel

    2018-01-01

    To investigate the factor structure of financial capacity using a direct-performance measure of financial skills (The Financial Capacity Instrument [FCI]) as a proxy for the financial capacity construct. The study sample was composed of 440 older adults who represented the cognitive spectrum from normal cognitive aging to mild cognitive impairment (MCI) to mild dementia: 179 healthy older adults, 149 participants with MCI, and 112 participants with mild Alzheimer's dementia (AD). Both Velicer's Minimum Average Partial test and Horn's parallel analysis supported a four-factor solution which accounted for 46% of variance. The four extracted factors were interpreted as: (1) Basic Monetary Knowledge and Calculation Skills, (2) Financial Judgment, (3) Financial Conceptual Knowledge, and (4) Financial Procedural Knowledge. The study findings represent an important first step in empirically articulating the financial capacity construct in aging. The four identified factors can guide both clinical practice and future instrument utilization and development. Cognitively impaired older adults with MCI and mild AD dementia are likely to show financial changes in one or more of the four identified financial factors. Clinicians working with older adults should routinely examine for potential changes in these four areas of financial function.

  1. Amyloid burden and incident depressive symptoms in cognitively normal older adults.

    Science.gov (United States)

    Harrington, Karra D; Gould, Emma; Lim, Yen Ying; Ames, David; Pietrzak, Robert H; Rembach, Alan; Rainey-Smith, Stephanie; Martins, Ralph N; Salvado, Olivier; Villemagne, Victor L; Rowe, Christopher C; Masters, Colin L; Maruff, Paul

    2017-04-01

    Several studies have reported that non-demented older adults with clinical depression show changes in amyloid-β (Aβ) levels in blood, cerebrospinal fluid and on neuroimaging that are consistent with those observed in patients with Alzheimer's disease. These findings suggest that Aβ may be one of the mechanisms underlying the relation between the two conditions. We sought to determine the relation between elevated cerebral Aβ and the presence of depression across a 54-month prospective observation period. Cognitively normal older adults from the Australian Imaging Biomarkers and Lifestyle study who were not depressed and had undergone a positron emission tomography scan to classify them as either high Aβ (n = 81) or low Aβ (n = 278) participated. Depressive symptoms were assessed using the Geriatric Depression Scale - Short Form at 18-month intervals over 54 months. Whilst there was no difference in probable depression between groups at baseline, incidence was 4.5 (95% confidence interval [CI] 1.3-16.4) times greater within the high Aβ group (9%) than the low Aβ group (2%) by the 54-month assessment. Results of this study suggest that elevated Aβ levels are associated with a 4.5-fold increased likelihood of developing clinically significant depressive symptoms on follow-up in preclinical Alzheimer's disease. This underscores the importance of assessing, monitoring and treating depressive symptoms in older adults with elevated Aβ. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. ERP C250 shows the elderly (cognitively normal, Alzheimer's disease) store more stimuli in short-term memory than Young Adults do.

    Science.gov (United States)

    Chapman, Robert M; Gardner, Margaret N; Mapstone, Mark; Klorman, Rafael; Porsteinsson, Anton P; Dupree, Haley M; Antonsdottir, Inga M; Kamalyan, Lily

    2016-06-01

    To determine how aging and dementia affect the brain's initial storing of task-relevant and irrelevant information in short-term memory. We used brain Event-Related Potentials (ERPs) to measure short-term memory storage (ERP component C250) in 36 Young Adults, 36 Normal Elderly, and 36 early-stage AD subjects. Participants performed the Number-Letter task, a cognitive paradigm requiring memory storage of a first relevant stimulus to compare it with a second stimulus. In Young Adults, C250 was more positive for the first task-relevant stimulus compared to all other stimuli. C250 in Normal Elderly and AD subjects was roughly the same to relevant and irrelevant stimuli in Intratrial Parts 1-3 but not 4. The AD group had lower C250 to relevant stimuli in part 1. Both normal aging and dementia cause less differentiation of relevant from irrelevant information in initial storage. There was a large aging effect involving differences in the pattern of C250 responses of the Young Adult versus the Normal Elderly/AD groups. Also, a potential dementia effect was obtained. C250 is a candidate tool for measuring short-term memory performance on a biological level, as well as a potential marker for memory changes due to normal aging and dementia. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  3. Age-dependent effect of apolipoprotein E4 on functional outcome after controlled cortical impact in mice.

    Science.gov (United States)

    Mannix, Rebekah C; Zhang, Jimmy; Park, Juyeon; Zhang, Xuan; Bilal, Kiran; Walker, Kendall; Tanzi, Rudolph E; Tesco, Giuseppina; Whalen, Michael J

    2011-01-01

    The apolipoprotein E4 (APOE4) gene leads to increased brain amyloid beta (Aβ) and poor outcome in adults with traumatic brain injury (TBI); however, its role in childhood TBI is controversial. We hypothesized that the transgenic expression of human APOE4 worsens the outcome after controlled cortical impact (CCI) in adult but not immature mice. Adult and immature APOE4 mice had worse motor outcome after CCI (P<0.001 versus wild type (WT)), but the Morris water maze performance was worse only in adult APOE4 mice (P=0.028 at 2 weeks, P=0.019 at 6 months versus WT), because immature APOE4 mice had performance similar to WT for up to 1 year after injury. Brain lesion size was similar in adult APOE4 mice but was decreased (P=0.029 versus WT) in injured immature APOE4 mice. Microgliosis was similar in all groups. Soluble brain Aβ(40) was increased at 48 hours after CCI in adult and immature APOE4 mice and in adult WT (P<0.05), and was dynamically regulated during the chronic period by APOE4 in adults but not immature mice. The data suggest age-dependent effects of APOE4 on cognitive outcome after TBI, and that therapies targeting APOE4 may be more effective in adults versus children with TBI.

  4. Inhibition of intestinal bile acid transporter Slc10a2 improves triglyceride metabolism and normalizes elevated plasma glucose levels in mice.

    Directory of Open Access Journals (Sweden)

    Thomas Lundåsen

    Full Text Available Interruption of the enterohepatic circulation of bile acids increases cholesterol catabolism, thereby stimulating hepatic cholesterol synthesis from acetate. We hypothesized that such treatment should lower the hepatic acetate pool which may alter triglyceride and glucose metabolism. We explored this using mice deficient of the ileal sodium-dependent BA transporter (Slc10a2 and ob/ob mice treated with a specific inhibitor of Slc10a2. Plasma TG levels were reduced in Slc10a2-deficient mice, and when challenged with a sucrose-rich diet, they displayed a reduced response in hepatic TG production as observed from the mRNA levels of several key enzymes in fatty acid synthesis. This effect was paralleled by a diminished induction of mature sterol regulatory element-binding protein 1c (Srebp1c. Unexpectedly, the SR-diet induced intestinal fibroblast growth factor (FGF 15 mRNA and normalized bile acid synthesis in Slc10a2-/- mice. Pharmacologic inhibition of Slc10a2 in diabetic ob/ob mice reduced serum glucose, insulin and TGs, as well as hepatic mRNA levels of Srebp1c and its target genes. These responses are contrary to those reported following treatment of mice with a bile acid binding resin. Moreover, when key metabolic signal transduction pathways in the liver were investigated, those of Mek1/2-Erk1/2 and Akt were blunted after treatment of ob/ob mice with the Slc10a2 inhibitor. It is concluded that abrogation of Slc10a2 reduces hepatic Srebp1c activity and serum TGs, and in the diabetic ob/ob model it also reduces glucose and insulin levels. Hence, targeting of Slc10a2 may be a promising strategy to treat hypertriglyceridemia and diabetes.

  5. Adolescent social defeat induced alterations in anxious behavior and cognitive flexibility in adult mice: effects of developmental stage and social condition

    Directory of Open Access Journals (Sweden)

    Fang Zhang

    2016-07-01

    Full Text Available Negative social experiences during adolescence increase the risk of psychiatric disorders in adulthood. Using resident-intruder stress, the present study aimed to investigate the effects of adolescent social defeat on emotional and cognitive symptoms associated with psychiatric disorders during adulthood and the effects of the developmental stage and social condition on this process. In experiment 1, animals were exposed to social defeat or manipulation for 10 days during early adolescence (EA, PND 28-37, late adolescence (LA, PND 38-47, and adulthood (ADULT, PND 70-79 and then singly housed until the behavioral tests. Behaviors, including social avoidance of the defeat context and cortically mediated cognitive flexibility in an attentional set-shifting task (AST, were assessed during the week following stress or after 6 weeks during adulthood. We determined that social defeat induced significant and continuous social avoidance across age groups at both time points. The mice that experienced social defeat during adulthood exhibited short-term impairments in reversal learning on the AST that dissipated after 6 weeks. In contrast, social defeat during EA but not LA induced a delayed deficit in extra-dimensional set-shifting in adulthood but not during adolescence. In experiment 2, we further examined the effects of social condition (isolation or social housing after stress on the alterations induced by social defeat during EA in adult mice. The adult mice that had experienced stress during EA exhibited social avoidance similar to the avoidance identified in experiment 1 regardless of the isolation or social housing after the stress. However, social housing after the stress ameliorated the cognitive flexibility deficits induced by early adolescent social defeat in the adult mice, and the social condition had no effect on cognitive function. These findings suggest that the effects of social defeat on emotion and cognitive function are differentially

  6. In vivo imaging of oxidative stress in the kidney of diabetic mice and its normalization by angiotensin II type 1 receptor blocker

    International Nuclear Information System (INIS)

    Sonta, Toshiyo; Inoguchi, Toyoshi; Matsumoto, Shingo; Yasukawa, Keiji; Inuo, Mieko; Tsubouchi, Hirotaka; Sonoda, Noriyuki; Kobayashi, Kunihisa; Utsumi, Hideo; Nawata, Hajime

    2005-01-01

    This study was undertaken to evaluate oxidative stress in the kidney of diabetic mice by electron spin resonance (ESR) imaging technique. Oxidative stress in the kidney was evaluated as organ-specific reducing activity with the signal decay rates of carbamoyl-PROXYL probe using ESR imaging. The signal decay rates were significantly faster in corresponding image pixels of the kidneys of streptozotocin-induced diabetic mice than in those of controls. This technique further demonstrated that administration of angiotensin II type 1 receptor blocker (ARB), olmesartan (5 mg/kg), completely restored the signal decay rates in the diabetic kidneys to control values. In conclusion, this study provided for the first time the in vivo evidence for increased oxidative stress in the kidneys of diabetic mice and its normalization by ARB as evaluated by ESR imaging. This technique would be useful as a means of further elucidating the role of oxidative stress in diabetic nephropathy

  7. Autoradiographic study of new fat cell formation in adipose tissue in adult mice during malnutrition and refeeding

    Energy Technology Data Exchange (ETDEWEB)

    Kasubuchi, Y; Mino, M; Yoshioka, H; Kusunoki, T [Kyoto Prefectural Univ. of Medicine (Japan)

    1979-10-01

    The renewal of adipose cells in adult mice has been autoradiographically studied. The number of adipose cells was diminished by eighty percent during malnutrition and the same number of adipose cells proliferated during the refeeding stage. The results of our study showed that adipose tissue, which had previously been believed to be stable in cell number, has the capacity for cell proliferation according to changes in nutritional status.

  8. Exercise training and antioxidant supplementation independently improve cognitive function in adult male and female GFAP-APOE mice

    Directory of Open Access Journals (Sweden)

    Kiran Chaudhari

    2014-09-01

    Conclusion: Exercise was the most effective treatment at improving cognitive function in both genotypes and sex, while antioxidants seemed to be effective only in the APOE4. In young adult mice only non-spatial learning and memory were improved. The combination of the two treatments did not yield further improvement in cognition, and there was no antagonistic action of the antioxidant supplementation on the beneficial effects of exercise.

  9. Scaffold-Free Coculture Spheroids of Human Colonic Adenocarcinoma Cells and Normal Colonic Fibroblasts Promote Tumorigenicity in Nude Mice

    Directory of Open Access Journals (Sweden)

    Jong-il Park

    2016-02-01

    Full Text Available The aim of this study was to form a scaffold-free coculture spheroid model of colonic adenocarcinoma cells (CACs and normal colonic fibroblasts (NCFs and to use the spheroids to investigate the role of NCFs in the tumorigenicity of CACs in nude mice. We analysed three-dimensional (3D scaffold-free coculture spheroids of CACs and NCFs. CAC Matrigel invasion assays and tumorigenicity assays in nude mice were performed to examine the effect of NCFs on CAC invasive behaviour and tumorigenicity in 3D spheroids. We investigated the expression pattern of fibroblast activation protein-α (FAP-α by immunohistochemical staining. CAC monocultures did not form densely-packed 3D spheroids, whereas cocultured CACs and NCFs formed 3D spheroids. The 3D coculture spheroids seeded on a Matrigel extracellular matrix showed higher CAC invasiveness compared to CACs alone or CACs and NCFs in suspension. 3D spheroids injected into nude mice generated more and faster-growing tumors compared to CACs alone or mixed suspensions consisting of CACs and NCFs. FAP-α was expressed in NCFs-CACs cocultures and xenograft tumors, whereas monocultures of NCFs or CACs were negative for FAP-α expression. Our findings provide evidence that the interaction between CACs and NCFs is essential for the tumorigenicity of cancer cells as well as for tumor propagation.

  10. Fibroblast activation protein is dispensable in the anti-influenza immune response in mice.

    Directory of Open Access Journals (Sweden)

    Sioh-Yang Tan

    Full Text Available Fibroblast activation protein alpha (FAP is a unique dual peptidase of the S9B serine protease family, being capable of both dipeptidyl peptidase and endopeptidase activities. FAP is expressed at low level in healthy adult organs including the pancreas, cervix, uterus, submaxillary gland and the skin, and highly upregulated in embryogenesis, chronic inflammation and tissue remodelling. It is also expressed by cancer-associated stromal fibroblasts in more than 90% of epithelial tumours. FAP has enzymatic and non-enzymatic functions in the growth, immunosuppression, invasion and cell signalling of tumour cells. FAP deficient mice are fertile and viable with no gross abnormality, but little data exist on the role of FAP in the immune system. FAP is upregulated in association with microbial stimulation and chronic inflammation, but its function in infection remains unknown. We showed that major populations of immune cells including CD4+ and CD8+ T cells, B cells, dendritic cells and neutrophils are generated and maintained normally in FAP knockout mice. Upon intranasal challenge with influenza virus, FAP mRNA was increased in the lungs and lung-draining lymph nodes. Nonetheless, FAP deficient mice showed similar pathologic kinetics to wildtype controls, and were capable of supporting normal anti-influenza T and B cell responses. There was no evidence of compensatory upregulation of other DPP4 family members in influenza-infected FAP-deficient mice. FAP appears to be dispensable in anti-influenza adaptive immunity.

  11. Comparison between β-thalassemia minor and normal individuals using the Wechsler Adult Intelligence Scale.

    Science.gov (United States)

    Zangiabadi, Nasser; Yarahmadi, Fahimeh; Darekordi, Ali; Shabani, Mohammad; Dadgar, Mehrak Memaran

    2013-01-01

    The present study aimed at investigating and comparing patients suffering from β-thalassemia (β-thal) minor with normal individuals in regard to their performances in the short version of the Wechsler Adult Intelligence Scale (WAIS) test. Patients with β-thal minor are carriers of β-thal genes. They have mild microcytic and hypochromic anemia and are usually asymptomatic. In this cross-sectional study, a total of 60 individuals were divided into two equal groups of β-thal minor and normal subjects; they were then studied by the WAIS subscales. The mean performance scores of the normal group in the subtests of arithmetic and vocabulary (p <0.01) and picture completion (p <0.05) were higher than those of the thalassemia group. The mean performance score and ability of the normal group on the verbal scale was higher in comparison to the thalassemia group (p <0.05), while on the non verbal scale, there was no significant difference between the two groups. It can be concluded that β-thal minor negatively influences verbal fluency, reasoning and conceptualization, and sequencing tasks, perceptual skill, prediction of social situations and abstract thinking.

  12. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  13. Effect of virtual reality exercise using the nintendo wii fit on muscle activities of the trunk and lower extremities of normal adults.

    Science.gov (United States)

    Park, Jungseo; Lee, Daehee; Lee, Sangyong

    2014-02-01

    [Purpose] The present study aimed to determine the effect of virtual reality exercise using the Nintendo Wii Fit on the muscle activities of the trunk and lower extremities of normal adults. [Subjects] The subjects of the study were 24 normal adults who were divided into a virtual reality exercise group (VREG, n=12) and a stable surface exercise group (SEG, n=12). [Methods] The exercises of the VREG using the Nintendo Wii Fit and the SEG using a stable surface were conducted three times a week for six weeks. Electromyography was used to measure the muscle activities of the tibialis anterior (TA), medial gastrocnemius (MG), erector spinae (ES), and rectus abdominal (RA) muscles. [Results] VREG showed significant within group differences in TA and MG muscle activities, while the SEG showed a significant difference in the muscle activity of the MG. [Conclusion] Virtual reality exercise using the Nintendo Wii Fit was an effective intervention for the muscle activities of the TA and MG of normal adults.

  14. Clinical Dosing Regimen of Selinexor Maintains Normal Immune Homeostasis and T-cell Effector Function in Mice: Implications for Combination with Immunotherapy.

    Science.gov (United States)

    Tyler, Paul M; Servos, Mariah M; de Vries, Romy C; Klebanov, Boris; Kashyap, Trinayan; Sacham, Sharon; Landesman, Yosef; Dougan, Michael; Dougan, Stephanie K

    2017-03-01

    Selinexor (KPT-330) is a first-in-class nuclear transport inhibitor currently in clinical trials as an anticancer agent. To determine how selinexor might affect antitumor immunity, we analyzed immune homeostasis in mice treated with selinexor and found disruptions in T-cell development, a progressive loss of CD8 T cells, and increases in inflammatory monocytes. Antibody production in response to immunization was mostly normal. Precursor populations in bone marrow and thymus were unaffected by selinexor, suggesting that normal immune homeostasis could recover. We found that a high dose of selinexor given once per week preserved nearly normal immune functioning, whereas a lower dose given 3 times per week did not restore immune homeostasis. Both naïve and effector CD8 T cells cultured in vitro showed impaired activation in the presence of selinexor. These experiments suggest that nuclear exportins are required for T-cell development and function. We determined the minimum concentration of selinexor required to block T-cell activation and showed that T-cell-inhibitory effects of selinexor occur at levels above 100 nmol/L, corresponding to the first 24 hours post-oral dosing. In a model of implantable melanoma, selinexor treatment at 10 mg/kg with a 4-day drug holiday led to intratumoral IFNγ + , granzyme B + cytotoxic CD8 T cells that were comparable with vehicle-treated mice. Overall, selinexor treatment leads to transient inhibition of T-cell activation, but clinically relevant once and twice weekly dosing schedules that incorporate sufficient drug holidays allow for normal CD8 T-cell functioning and development of antitumor immunity. Mol Cancer Ther; 16(3); 428-39. ©2017 AACR See related article by Farren et al., p. 417 . ©2017 American Association for Cancer Research.

  15. Adult opossums (Didelphis virginiana) demonstrate near normal locomotion after spinal cord transection as neonates.

    Science.gov (United States)

    Wang, X M; Basso, D M; Terman, J R; Bresnahan, J C; Martin, G F

    1998-05-01

    When the thoracic spinal cord of the North American opossum (Didelphis virginiana) is transected on postnatal day (PD) 5, the site of injury becomes bridged by histologically recognizable spinal cord and axons which form major long tracts grow through the lesion. In the present study we asked whether opossums lesioned on PD5 have normal use of the hindlimbs as adults and, if so, whether that use is dependent upon axons which grow through the lesion site. The thoracic spinal cord was transected on PD5 and 6 months later, hindlimb function was evaluated using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. All animals supported their weight with the hindlimbs and used their hindlimbs normally during overground locomotion. In some cases, the spinal cord was retransected at the original lesion site or just caudal to it 6 months after the original transection and paralysis of the hindlimbs ensued. Surprisingly, however, these animals gradually recovered some ability to support their weight and to step with the hindlimbs. Similar recovery was not seen in animals transected only as adults. In order to verify that descending axons which grew through the lesion during development were still present in the adult animal, opossums subjected to transection of the thoracic cord on PD5 were reoperated and Fast blue was injected several segments caudal to the lesion. In all cases, neurons were labeled rostral to the lesion in each of the spinal and supraspinal nuclei labeled by comparable injections in unlesioned, age-matched controls. The results of orthograde tracing studies indicated that axons which grew through the lesion innervated areas that were appropriate for them. Copyright 1998 Academic Press.

  16. Liver regeneration in mice bearing a transplanted hepatoma.

    Science.gov (United States)

    Badran, A F; Moreno, F R; Echave Llanos, J M

    1984-01-01

    The hepatocyte mitotic index curve in hepatectomized hepatoma-bearing mice, rises earlier, has a greater amplitude and is less synchronized than that of normal hepatectomized mice. This indicates a stimulation (more mitosis in a shorter time period) produced by the presence of the tumors. The sinusoid litoral cells mitotic index curve in hepatectomized hepatoma-bearing mice appears earlier and is much less synchronized than that of normal hepatectomized mice. Nevertheless both curves have the same amplitude for the whole sampling period and the early stimulation is quickly compensated by lower values (apparent inhibition) appearing in the resting (light) period.

  17. Effect of parsley (Petroselinum crispum, Apiaceae) juice against cadmium neurotoxicity in albino mice (Mus musculus).

    Science.gov (United States)

    Maodaa, Saleh N; Allam, Ahmed A; Ajarem, Jamaan; Abdel-Maksoud, Mostafa A; Al-Basher, Gadah I; Wang, Zun Yao

    2016-02-04

    Parsley was employed as an experimental probe to prevent the behavioral, biochemical and morphological changes in the brain tissue of the albino mice following chronic cadmium (Cd) administration. Non-anesthetized adult male mice were given parsley juice (Petroselinum crispum, Apiaceae) daily by gastric intubation at doses of 10 and 20 g/kg/day. The animals were divided into six groups: Group A, mice were exposed to saline; Groups B and C, were given low and high doses of parsley juice, respectively; Group D, mice were exposed to Cd; Groups E and F, were exposed to Cd and concomitantly given low and high doses of parsley, respectively. Cd intoxication can cause behavioral abnormalities, biochemical and histopathological disturbances in treated mice. Parsley juice has significantly improved the Cd-associated behavioral changes, reduced the elevation of lipid peroxidation and normalized the Cd effect on reduced glutathione and peroxidase activities in the brain of treated mice. Histological data have supported these foundations whereas Cd treatment has induced neuronal degeneration, chromatolysis and pyknosis in the cerebrum, cerebellum and medulla oblongata. The low dose (5 g/kg/day) of parsley exhibited beneficial effects in reducing the deleterious changes associated with Cd treatment on the behavior, neurotransmitters level, oxidative stress and brain neurons of the Cd-treated mice.

  18. Select cognitive deficits in Vasoactive Intestinal Peptide deficient mice

    Directory of Open Access Journals (Sweden)

    Hagopian Arkady

    2008-07-01

    Full Text Available Abstract Background The neuropeptide vasoactive intestinal peptide (VIP is widely distributed in the adult central nervous system where this peptide functions to regulate synaptic transmission and neural excitability. The expression of VIP and its receptors in brain regions implicated in learning and memory functions, including the hippocampus, cortex, and amygdala, raise the possibility that this peptide may function to modulate learned behaviors. Among other actions, the loss of VIP has a profound effect on circadian timing and may specifically influence the temporal regulation of learning and memory functions. Results In the present study, we utilized transgenic VIP-deficient mice and the contextual fear conditioning paradigm to explore the impact of the loss of this peptide on a learned behavior. We found that VIP-deficient mice exhibited normal shock-evoked freezing behavior and increases in corticosterone. Similarly, these mutant mice exhibited no deficits in the acquisition or recall of the fear-conditioned behavior when tested 24-hours after training. The VIP-deficient mice exhibited a significant reduction in recall when tested 48-hours or longer after training. Surprisingly, we found that the VIP-deficient mice continued to express circadian rhythms in the recall of the training even in those individual mice whose wheel running wheel activity was arrhythmic. One mechanistic explanation is suggested by the finding that daily rhythms in the expression of the clock gene Period2 continue in the hippocampus of VIP-deficient mice. Conclusion Together these data suggest that the neuropeptide VIP regulates the recall of at least one learned behavior but does not impact the circadian regulation of this behavior.

  19. Life shortening and carcinogenesis in mice irradiated at the perinatal period with gamma rays

    International Nuclear Information System (INIS)

    Sasaki, S.; Kasuga, T.

    1986-01-01

    This study elucidates the life-span radiation effects in mice irradiated at the perinatal period in comparison to mice irradiated at the young adult period. B6C3F 1 female mice were irradiated at 17 days of prenatal age, at 0 days of postnatal age, or as young adults at 15 weeks of age with 190, 380, or 570 rads of 137 Cs gamma rays. Mice irradiated at the late fetal period showed dose-dependent life shortening of somewhat lesser magnitude than that seen after neonatal or young adult irradiation. Mice exposed at the late fetal period were highly susceptible to induction of pituitary tumors for which the latent period was the longest of all induced neoplasms. Incidence of lung tumors in mice irradiated at the late fetal period with 190 and 380 rads was higher than in controls. Malignant lymphomas of the lymphocytic type developed in excess, after a short latent period, in mice irradiated fetally with the highest dose; susceptibility of prenatally exposed mice was lower than that of early postnatally exposed mice. Liver tumors developed more frequently in mice irradiated in utero than in controls; susceptibility to induction of this type of neoplasm was highest at the neonatal period. In general, carcinogenic response of mice exposed at the late fetal period resembled that of neonatally exposed mice but was quite different from that of young adult mice. Mice exposed as young adults have no, or low, susceptibility to induction of pituitary, lung, and liver tumors; and a higher susceptibility to induction of myeloid leukemias and Harderian gland tumors. 19 refs., 4 figs., 3 tabs

  20. The influences of silent cerebral infarction and hypertension on brain atrophy in normal adults

    International Nuclear Information System (INIS)

    Zhefeng, Quan; Bokura, Hirokazu; Iijima, Kenichi; Oguro, Hiroaki; Yamaguchi, Shuhei

    2008-01-01

    We studied the influences of silent brain infarction (SBI) and hypertension on brain atrophy and its longitudinal progression in healthy adults. MRI scans were performed on 109 neurologically normal adults (mean age, 58.6±5.8 years), with follow-up at an average of 4.9 years later. Patient histories of hypertension, smoking habits, and alcohol consumption were examined. We evaluated brain atrophy using the brain atrophy index (BAI; the ratio of the brain area to the intracranial area) and the ventricular atrophy index (VAI; the ratio of the ventricular area to the brain area) on MRI T1-weighted images at the levels of the basal ganglia and lateral ventricle in horizontal sections. There were no differences in age, sex, dyslipidemia, body mass index (BMI), smoking habit, and alcohol consumption between the normal group and the SBI or hypertension group. The BAI was significantly lower at entry for the SBI (+) group than for the SBI (-) group at both the basal ganglia and lateral ventricle levels (basal ganglia level, p=0.02; and lateral ventricle level, p=0.05). Moreover, the VAI was significantly higher at entry for the SBI (+) group than for the SBI (-) group at the lateral ventricle level (p=0.03). Furthermore, the BAI was significantly lower at entry for the hypertensive group than for the non-hypertensive group at the basal ganglia level (p=0.007). There were no significant differences in the annual variations of the BAI and VAI between the normal group and the SBI (+) or hypertensive group. The present results suggest that the SBI and hypertension are accelerating factors for brain atrophy and ventricular dilatation. (author)

  1. The influences of silent cerebral infarction and hypertension on brain atrophy in normal adults

    Energy Technology Data Exchange (ETDEWEB)

    Zhefeng, Quan; Bokura, Hirokazu; Iijima, Kenichi; Oguro, Hiroaki; Yamaguchi, Shuhei [Shimane Univ., Faculty of Medicine, Izumo, Shimane (Japan)

    2008-03-15

    We studied the influences of silent brain infarction (SBI) and hypertension on brain atrophy and its longitudinal progression in healthy adults. MRI scans were performed on 109 neurologically normal adults (mean age, 58.6{+-}5.8 years), with follow-up at an average of 4.9 years later. Patient histories of hypertension, smoking habits, and alcohol consumption were examined. We evaluated brain atrophy using the brain atrophy index (BAI; the ratio of the brain area to the intracranial area) and the ventricular atrophy index (VAI; the ratio of the ventricular area to the brain area) on MRI T1-weighted images at the levels of the basal ganglia and lateral ventricle in horizontal sections. There were no differences in age, sex, dyslipidemia, body mass index (BMI), smoking habit, and alcohol consumption between the normal group and the SBI or hypertension group. The BAI was significantly lower at entry for the SBI (+) group than for the SBI (-) group at both the basal ganglia and lateral ventricle levels (basal ganglia level, p=0.02; and lateral ventricle level, p=0.05). Moreover, the VAI was significantly higher at entry for the SBI (+) group than for the SBI (-) group at the lateral ventricle level (p=0.03). Furthermore, the BAI was significantly lower at entry for the hypertensive group than for the non-hypertensive group at the basal ganglia level (p=0.007). There were no significant differences in the annual variations of the BAI and VAI between the normal group and the SBI (+) or hypertensive group. The present results suggest that the SBI and hypertension are accelerating factors for brain atrophy and ventricular dilatation. (author)

  2. Activation of the Wnt/{beta}-catenin signaling pathway is associated with glial proliferation in the adult spinal cord of ALS transgenic mice

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yanchun [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Guan, Yingjun, E-mail: guanyj@wfmc.edu.cn [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong (China); Liu, Huancai [Department of Orthopedic, Affiliated Hospital, Weifang Medical University, Weifang, Shandong (China); Wu, Xin; Yu, Li; Wang, Shanshan; Zhao, Chunyan; Du, Hongmei [Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong (China); Wang, Xin, E-mail: xwang@rics.bwh.harvard.edu [Department of Neurosurgery, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States)

    2012-04-06

    Highlights: Black-Right-Pointing-Pointer Wnt3a and Cyclin D1 were upregulated in the spinal cord of the ALS mice. Black-Right-Pointing-Pointer {beta}-catenin translocated from the cell membrane to the nucleus in the ALS mice. Black-Right-Pointing-Pointer Wnt3a, {beta}-catenin and Cyclin D1 co-localized for astrocytes were all increased. Black-Right-Pointing-Pointer BrdU/Cyclin D1 double-positive cells were increased in the spinal cord of ALS mice. Black-Right-Pointing-Pointer BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. -- Abstract: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive and fatal loss of motor neurons. In ALS, there is a significant cell proliferation in response to neurodegeneration; however, the exact molecular mechanisms of cell proliferation and differentiation are unclear. The Wnt signaling pathway has been shown to be involved in neurodegenerative processes. Wnt3a, {beta}-catenin, and Cyclin D1 are three key signaling molecules of the Wnt/{beta}-catenin signaling pathway. We determined the expression of Wnt3a, {beta}-catenin, and Cyclin D1 in the adult spinal cord of SOD1{sup G93A} ALS transgenic mice at different stages by RT-PCR, Western blot, and immunofluorescence labeling techniques. We found that the mRNA and protein of Wnt3a and Cyclin D1 in the spinal cord of the ALS mice were upregulated compared to those in wild-type mice. In addition, {beta}-catenin translocated from the cell membrane to the nucleus and subsequently activated transcription of the target gene, Cyclin D1. BrdU and Cyclin D1 double-positive cells were increased in the spinal cord of these mice. Moreover, Wnt3a, {beta}-catenin, and Cyclin D1 were also expressed in both neurons and astrocytes. The expression of Wnt3a, {beta}-catenin or Cyclin D1 in mature GFAP{sup +} astrocytes increased. Moreover, BrdU/Cyclin D1/GFAP triple-positive cells were detected in the ALS mice. Our findings suggest that

  3. Age-related changes in normal adult pancreas: MR imaging evaluation

    International Nuclear Information System (INIS)

    Sato, Tomohiro; Ito, Katsuyoshi; Tamada, Tsutomu; Sone, Teruki; Noda, Yasufumi; Higaki, Atsushi; Kanki, Akihiko; Tanimoto, Daigo; Higashi, Hiroki

    2012-01-01

    Objective: To investigate age-related changes in normal adult pancreas as identified by magnetic resonance imaging (MRI). Materials and methods: We examined 115 patients without pancreatic diseases (21–90 years) who underwent upper abdominal MRI to evaluate the normal pancreatic MRI findings related to aging. The parameters examined were the pancreatic anteroposterior (AP) diameter, pancreatic lobulation, pancreatic signal intensity (SI), depiction of the main pancreatic duct (MPD), grade of the visual SI decrease on the opposed-phase T1-weighted images compared with in-phase images, and enhancement effect of the pancreas in the arterial phase of dynamic imaging. Results: The pancreatic AP diameter significantly reduced (head, p = 0.0172; body, p = 0.0007; tail, p < 0.0001), and lobulation (p < 0.0001) and parenchymal fatty change (p < 0.0001) became more evident with aging. No significant correlation was observed between aging and pancreatic SI, however the SI on the in-phase T1-weighted images tended to decrease with aging. No significant correlation was observed between aging and the depiction of the MPD as well as aging and contrast enhancement. Conclusion: MRI findings of pancreatic atrophy, lobulation, and fatty degeneration are characteristic changes related to aging, and it is necessary to recognize these changes in the interpretation of abdominal MRI in patients with and without pancreatic disease

  4. Normal reference values for vertebral artery flow volume by color Doppler sonography in Korean adults

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Hyun Sook; Cha, Jang Gyu; Park, Seong Jin; Joh, Joon Hee; Park, Jai Soung; Kim, Dae Ho; Lee, Hae Kyung; Ahn, Hyun Cheol [Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of)

    2003-09-15

    Vertebrobasilar ischemia has been attributed to a reduction of net vertebral artery flow volume. This study was to establish the reference values for the flow volume of the vertebral artery using color Doppler sonography in the normal Korea adults. Thirty five normal Korea adults without any underlying disease including hypertension, hyperlipidemia, diabetes, heart disease, obesity (body mas index>30), or carotid artery stenosis was included. There were 17 males and 18 females, age ranged from 20 to 53 years (average=32.86 years). Flow velocities and vessel diameters were recorded in the intertransverse (V2) segment, usually at C5-6 level, bilaterally. The flow volume (Q) was calculated. (Q=time averaged mean velocity x cross sectional area of vessel) A lower Flow velocity and smaller vessel diameter were measured on the right side compared to those of the left side, resulting in a lower flow volume. The calculated flow volumes using the equation were 77.0 +- 39.7 ml/min for the right side and 127.6 +- 71.0 ml/min for the left side (p=0.0001) while the net vertebral artery flow volume was 204.6 +- 81.8 ml/min. Decrease in the vertebral artery flow volume was statistically significant with advanced age. (r=-0.36, p=0.032). Vertebral artery blood flow volume was 191.20 +- 59.19 ml/min in male, and 217.28 +- 98.67 ml/min in female (p=0.6). The normal range for the net vertebral artery flow volume defined by the 5th to 95th percentiles was between 110.06 and 364.1 ml/min. The normal range for the net vertebral artery flow volume was between 110.06 and 364.1 ml/min. Vertebral artery flow volume decreased with the increase of age. However, gender did not affect the blood flow volume.

  5. Normal reference values for vertebral artery flow volume by color Doppler sonography in Korean adults

    International Nuclear Information System (INIS)

    Hong, Hyun Sook; Cha, Jang Gyu; Park, Seong Jin; Joh, Joon Hee; Park, Jai Soung; Kim, Dae Ho; Lee, Hae Kyung; Ahn, Hyun Cheol

    2003-01-01

    Vertebrobasilar ischemia has been attributed to a reduction of net vertebral artery flow volume. This study was to establish the reference values for the flow volume of the vertebral artery using color Doppler sonography in the normal Korea adults. Thirty five normal Korea adults without any underlying disease including hypertension, hyperlipidemia, diabetes, heart disease, obesity (body mas index>30), or carotid artery stenosis was included. There were 17 males and 18 females, age ranged from 20 to 53 years (average=32.86 years). Flow velocities and vessel diameters were recorded in the intertransverse (V2) segment, usually at C5-6 level, bilaterally. The flow volume (Q) was calculated. (Q=time averaged mean velocity x cross sectional area of vessel) A lower Flow velocity and smaller vessel diameter were measured on the right side compared to those of the left side, resulting in a lower flow volume. The calculated flow volumes using the equation were 77.0 ± 39.7 ml/min for the right side and 127.6 ± 71.0 ml/min for the left side (p=0.0001) while the net vertebral artery flow volume was 204.6 ± 81.8 ml/min. Decrease in the vertebral artery flow volume was statistically significant with advanced age. (r=-0.36, p=0.032). Vertebral artery blood flow volume was 191.20 ± 59.19 ml/min in male, and 217.28 ± 98.67 ml/min in female (p=0.6). The normal range for the net vertebral artery flow volume defined by the 5th to 95th percentiles was between 110.06 and 364.1 ml/min. The normal range for the net vertebral artery flow volume was between 110.06 and 364.1 ml/min. Vertebral artery flow volume decreased with the increase of age. However, gender did not affect the blood flow volume.

  6. Late gestational intermittent hypoxia induces metabolic and epigenetic changes in male adult offspring mice.

    Science.gov (United States)

    Khalyfa, Abdelnaby; Cortese, Rene; Qiao, Zhuanhong; Ye, Honggang; Bao, Riyue; Andrade, Jorge; Gozal, David

    2017-04-15

    Late gestation during pregnancy has been associated with a relatively high prevalence of obstructive sleep apnoea (OSA). Intermittent hypoxia, a hallmark of OSA, could impose significant long-term effects on somatic growth, energy homeostasis and metabolic function in offspring. Here we show that late gestation intermittent hypoxia induces metabolic dysfunction as reflected by increased body weight and adiposity index in adult male offspring that is paralleled by epigenomic alterations and inflammation in visceral white adipose tissue. Fetal perturbations by OSA during pregnancy impose long-term detrimental effects manifesting as metabolic dysfunction in adult male offspring. Pregnancy, particularly late gestation (LG), has been associated with a relatively high prevalence of obstructive sleep apnoea (OSA). Intermittent hypoxia (IH), a hallmark of OSA, could impose significant long-term effects on somatic growth, energy homeostasis, and metabolic function in offspring. We hypothesized that IH during late pregnancy (LG-IH) may increase the propensity for metabolic dysregulation and obesity in adult offspring via epigenetic modifications. Time-pregnant female C57BL/6 mice were exposed to LG-IH or room air (LG-RA) during days 13-18 of gestation. At 24 weeks, blood samples were collected from offspring mice for lipid profiles and insulin resistance, indirect calorimetry was performed and visceral white adipose tissues (VWAT) were assessed for inflammatory cells as well as for differentially methylated gene regions (DMRs) using a methylated DNA immunoprecipitation on chip (MeDIP-chip). Body weight, food intake, adiposity index, fasting insulin, triglycerides and cholesterol levels were all significantly higher in LG-IH male but not female offspring. LG-IH also altered metabolic expenditure and locomotor activities in male offspring, and increased number of pro-inflammatory macrophages emerged in VWAT along with 1520 DMRs (P < 0.0001), associated with 693

  7. The chondrogenic response to exercise in the proximal femur of normal and mdx mice

    Directory of Open Access Journals (Sweden)

    Nye David J

    2010-09-01

    Full Text Available Abstract Background Submaximal exercise is used in the management of muscular dystrophy. The effects of mechanical stimulation on skeletal development are well understood, although its effects on cartilage growth have yet to be investigated in the dystrophic condition. The objective of this study was to investigate the chondrogenic response to voluntary exercise in dystrophin-deficient mice. Methods Control and dystrophin-deficient (mdx mice were divided into sedentary and exercise-treated groups and tested for chondral histomorphometric differences at the proximal femur. Results Control mice ran 7 km/week further than mdx mice on average, but this difference was not statistically significant (P > 0.05. However, exercised control mice exhibited significantly enlarged femur head diameter, articular cartilage thickness, articular cartilage tissue area, and area of calcified cartilage relative to sedentary controls and exercised mdx mice (P Conclusions Mdx mice exhibit a reduced chondrogenic response to increased mechanical stimulation relative to controls. However, no significant reduction in articular dimensions was found, indicating loss of chondral tissue may not be a clinical concern with dystrophinopathy.

  8. Regeneration of pancreatic non-β endocrine cells in adult mice following a single diabetes-inducing dose of streptozotocin.

    Directory of Open Access Journals (Sweden)

    Yanqing Zhang

    Full Text Available The non-β endocrine cells in pancreatic islets play an essential counterpart and regulatory role to the insulin-producing β-cells in the regulation of blood-glucose homeostasis. While significant progress has been made towards the understanding of β-cell regeneration in adults, very little is known about the regeneration of the non-β endocrine cells such as glucagon-producing α-cells and somatostatin producing δ-cells. Previous studies have noted the increase of α-cell composition in diabetes patients and in animal models. It is thus our hypothesis that non-β-cells such as α-cells and δ-cells in adults can regenerate, and that the regeneration accelerates in diabetic conditions. To test this hypothesis, we examined islet cell composition in a streptozotocin (STZ-induced diabetes mouse model in detail. Our data showed the number of α-cells in each islet increased following STZ-mediated β-cell destruction, peaked at Day 6, which was about 3 times that of normal islets. In addition, we found δ-cell numbers doubled by Day 6 following STZ treatment. These data suggest α- and δ-cell regeneration occurred rapidly following a single diabetes-inducing dose of STZ in mice. Using in vivo BrdU labeling techniques, we demonstrated α- and δ-cell regeneration involved cell proliferation. Co-staining of the islets with the proliferating cell marker Ki67 showed α- and δ-cells could replicate, suggesting self-duplication played a role in their regeneration. Furthermore, Pdx1(+/Insulin(- cells were detected following STZ treatment, indicating the involvement of endocrine progenitor cells in the regeneration of these non-β cells. This is further confirmed by the detection of Pdx1(+/glucagon(+ cells and Pdx1(+/somatostatin(+ cells following STZ treatment. Taken together, our study demonstrated adult α- and δ-cells could regenerate, and both self-duplication and regeneration from endocrine precursor cells were involved in their regeneration.

  9. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Li; Wu, Zhou; Baba, Masashi [Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582 (Japan); Peters, Christoph [Institute fuer Molekulare Medizin und Zellforshung, Albert-Ludwings-Universitaet Freiburg, D-79104 Freiburg (Germany); Uchiyama, Yasuo [Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo (Japan); Nakanishi, Hiroshi, E-mail: nakan@dent.kyushu-u.ac.jp [Department of Aging Science and Pharmacology, Faculty of Dental Sciences, Kyushu University, Maidashi 3-1-1, Fukuoka 812-8582 (Japan)

    2010-08-27

    Research highlights: {yields} Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. {yields} CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. {yields} CB-deficiency significantly increased the mean survival ratio of injured neurons. {yields} Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy

  10. Cathepsin B-dependent motor neuron death after nerve injury in the adult mouse

    International Nuclear Information System (INIS)

    Sun, Li; Wu, Zhou; Baba, Masashi; Peters, Christoph; Uchiyama, Yasuo; Nakanishi, Hiroshi

    2010-01-01

    Research highlights: → Cathepsin B (CB), a lysosomal cysteine protease, is expressed in neuron and glia. → CB increased in hypogrossal nucleus neurons after nerve injury in adult mice. → CB-deficiency significantly increased the mean survival ratio of injured neurons. → Thus, CB plays a critical role in axotomy-induced neuronal death in adult mice. -- Abstract: There are significant differences in the rate of neuronal death after peripheral nerve injury between species. The rate of neuronal death of motor neurons after nerve injury in the adult rats is very low, whereas that in adult mice is relatively high. However, the understanding of the mechanism underlying axotomy-induced motor neuron death in adult mice is limited. Cathepsin B (CB), a typical cysteine lysosomal protease, has been implicated in three major morphologically distinct pathways of cell death; apoptosis, necrosis and autophagic cell death. The possible involvement of CB in the neuronal death of hypogrossal nucleus (HGN) neurons after nerve injury in adult mice was thus examined. Quantitative analyses showed the mean survival ratio of HGN neurons in CB-deficient (CB-/-) adult mice after nerve injury was significantly greater than that in the wild-type mice. At the same time, proliferation of microglia in the injured side of the HGN of CB-/- adult mice was markedly reduced compared with that in the wild-type mice. On the injured side of the HGN in the wild-type adult mice, both pro- and mature forms of CB markedly increased in accordance with the increase in the membrane-bound form of LC3 (LC3-II), a marker protein of autophagy. Furthermore, the increase in CB preceded an increase in the expression of Noxa, a major executor for axotomy-induced motor neuron death in the adult mouse. Conversely, expression of neither Noxa or LC3-II was observed in the HGN of adult CB-/- mice after nerve injury. These observations strongly suggest that CB plays a critical role in axotomy-induced mortor neuron

  11. Developmental exposure to second-hand smoke increases adult atherogenesis and alters mitochondrial DNA copy number and deletions in apoE(-/- mice.

    Directory of Open Access Journals (Sweden)

    Jessica L Fetterman

    Full Text Available Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m(3 total suspended particulate of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i in utero from gestation days 1-19, or (ii from birth until 3 weeks of age (neonatal. Subsequently, all animals were exposed to filtered air and sacrificed at 12-14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis.

  12. Developmental exposure to second-hand smoke increases adult atherogenesis and alters mitochondrial DNA copy number and deletions in apoE(-/-) mice.

    Science.gov (United States)

    Fetterman, Jessica L; Pompilius, Melissa; Westbrook, David G; Uyeminami, Dale; Brown, Jamelle; Pinkerton, Kent E; Ballinger, Scott W

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m(3) total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1-19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12-14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis.

  13. Folate and S-adenosylmethionine modulate synaptic activity in cultured cortical neurons: acute differential impact on normal and apolipoprotein-deficient mice

    International Nuclear Information System (INIS)

    Serra, Michael; Chan, Amy; Dubey, Maya; Shea, Thomas B; Gilman, Vladimir

    2008-01-01

    Folate deficiency is accompanied by a decline in the cognitive neurotransmitter acetylcholine and a decline in cognitive performance in mice lacking apolipoprotein E (ApoE−/− mice), a low-density lipoprotein that regulates aspects of lipid metabolism. One direct consequence of folate deficiency is a decline in S-adenosylmethionine (SAM). Since dietary SAM supplementation maintains acetylcholine levels and cognitive performance in the absence of folate, we examined herein the impact of folate and SAM on neuronal synaptic activity. Embryonic cortical neurons from mice expressing or lacking ApoE (ApoE+/+ or −/−, respectively) were cultured for 1 month on multi-electrode arrays, and signaling was recorded. ApoE+/+ cultures displayed significantly more frequent spontaneous signals than ApoE−/− cultures. Supplementation with 166 µm SAM (not normally present in culture medium) increased signal frequency and decreased signal amplitude in ApoE+/+ cultures. SAM also increased the frequency of tightly clustered signal bursts. Folate deprivation reversibly reduced signal frequency in ApoE+/+ cultures; SAM supplementation maintained signal frequency despite folate deprivation. These findings support the importance of dietary supplementation with folate and SAM on neuronal health. Supplementation with 166 µm SAM did not alter signaling in ApoE−/− cultures, which may be a reflection of the reduced SAM levels in ApoE−/− mice. The differential impact of SAM on ApoE+/+ and −/− neurons underscores the combined impact of nutritional and genetic deficiencies on neuronal homeostasis. (communication)

  14. Radioprotective effect of colony-stimulating factor on mice irradiated with 60Co γ-rays

    International Nuclear Information System (INIS)

    Zhang Junning; Wang Tao; Xu Changshao; Wang Hongyun

    1995-01-01

    Adult male mice were irradiated with γ-rays 6 Gy once or 3 Gy three times in 7 days and intraperitoneally injected with colony-stimulating factor (CSF) in high doses or low doses. Mice of the control group were injected with normal saline only. Within 30 days after irradiation, the survival rate of mice irradiated with 6 Gy γ-rays once and treated with high dose CSF was 9/25, while that in the control group was 2/25. The survival rate of mice irradiated with 3 Gy three times and treated with high dose CSF was 10/13, while that in the control group was 4/13. Moreover, the survival times of both irradiated groups treated with high dose CSF were much longer than the control groups (p<0.01). This experiment also showed that CSF could reduce the lowering of peripheral blood white blood cell counts and promote their recovery. The number of CFU-S in mice treated with CSF was much higher (23.8 +- 4.82) than in the control group (9.4 +- 4.39) (p<0.01). Therefore, CSF could recover and reconstruct the hematopoietic function of bone marrow, and prolong the survival of irradiated mice

  15. Nigral dopaminergic neuron replenishment in adult mice through VE-cadherin-expressing neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Abir A Rahman

    2017-01-01

    Full Text Available The function of dopaminergic neurons in the substantia nigra is of central importance to the coordination of movement by the brain's basal ganglia circuitry. This is evidenced by the loss of these neurons, resulting in the cardinal motor deficits associated with Parkinson's disease. In order to fully understand the physiology of these key neurons and develop potential therapies for their loss, it is essential to determine if and how dopaminergic neurons are replenished in the adult brain. Recent work has presented evidence for adult neurogenesis of these neurons by Nestin+/Sox2– neural progenitor cells. We sought to further validate this finding and explore a potential atypical origin for these progenitor cells. Since neural progenitor cells have a proximal association with the vasculature of the brain and subsets of endothelial cells are Nestin+, we hypothesized that dopaminergic neural progenitors might share a common cell lineage. Therefore, we employed a VE-cadherin promoter-driven CREERT2:THlox/THlox transgenic mouse line to ablate the tyrosine hydroxylase gene from endothelial cells in adult animals. After 26 weeks, but not 13 weeks, following the genetic blockade of tyrosine hydroxylase expression in VE-cadherin+ cells, we observed a significant reduction in tyrosine hydroxylase+ neurons in the substantia nigra. The results from this genetic lineage tracing study suggest that dopaminergic neurons are replenished in adult mice by a VE-cadherin+ progenitor cell population potentially arising from an endothelial lineage.

  16. Peri-adolescent asthma symptoms cause adult anxiety-related behavior and neurobiological processes in mice.

    Science.gov (United States)

    Caulfield, Jasmine I; Caruso, Michael J; Michael, Kerry C; Bourne, Rebecca A; Chirichella, Nicole R; Klein, Laura C; Craig, Timothy; Bonneau, Robert H; August, Avery; Cavigelli, Sonia A

    2017-05-30

    Human and animal studies have shown that physical challenges and stressors during adolescence can have significant influences on behavioral and neurobiological development associated with internalizing disorders such as anxiety and depression. Given the prevalence of asthma during adolescence and increased rates of internalizing disorders in humans with asthma, we used a mouse model to test if and which symptoms of adolescent allergic asthma (airway inflammation or labored breathing) cause adult anxiety- and depression-related behavior and brain function. To mimic symptoms of allergic asthma in young BALB/cJ mice (postnatal days [P] 7-57; N=98), we induced lung inflammation with repeated intranasal administration of house dust mite extract (most common aeroallergen for humans) and bronchoconstriction with aerosolized methacholine (non-selective muscarinic receptor agonist). Three experimental groups, in addition to a control group, included: (1) "Airway inflammation only", allergen exposure 3 times/week, (2) "Labored breathing only", methacholine exposure once/week, and (3) "Airway inflammation+Labored breathing", allergen and methacholine exposure. Compared to controls, mice that experienced methacholine-induced labored breathing during adolescence displayed a ∼20% decrease in time on open arms of the elevated plus maze in early adulthood (P60), a ∼30% decrease in brainstem serotonin transporter (SERT) mRNA expression and a ∼50% increase in hippocampal serotonin receptor 1a (5Htr1a) and corticotropin releasing hormone receptor 1 (Crhr1) expression in adulthood (P75). This is the first evidence that experimentally-induced clinical symptoms of adolescent asthma alter adult anxiety-related behavior and brain function several weeks after completion of asthma manipulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Toxicity of benzyl alcohol in adult and neonatal mice

    International Nuclear Information System (INIS)

    McCloskey, S.E.

    1987-01-01

    Benzyl alcohol (BA) is an aromatic alcohol, which is used as a bacteriostat in a variety of parenteral preparations. In 1982, it was implicated as the agent responsible for precipitating The Gasping Syndrome in premature neonates. The investigate further this toxicity, BA was administered, intraperiotoneally, to adult and neonatal CD-1 male mice. Gross behavioral changes were monitored. Low doses produced minimal toxic effects within an initial 4 hour observation period. At the end of this time, the LD 50 was determined to be 1000 mg/kg for both age groups. Death was due to respiratory arrest in all cases. Rapid absorption and conversion of BA to its primary metabolite, benzaldehyde, was demonstrated by gas chromatographic analysis of plasma from both experimental groups. The conversion of BA to benzaldehyde was confirmed in in vitro by using both horse-liver and mouse liver ADH. The inhibition of alcohol dehydrogenase (ADH) by pyrazole was similarly demonstrated in both enzyme systems. 14 C-labelled BA was utilized to determine the distribution of BA and its metabolites in the body, and to possibly pinpoint a target organ of toxicity

  18. Establishment of Demodex canis on canine skin engrafted onto scid-beige mice.

    Science.gov (United States)

    Caswell, J L; Yager, J A; Barta, J R; Parker, W

    1996-12-01

    A small animal model of canine demodicosis is described. Normal canine skin was engrafted onto scid (severe combined immunodeficient)-beige mice, which lack functional B and T lymphocytes and have reduced natural killer cell activity. The xenografts were later infected with Demodex canis collected from a dog with demodicosis. At 30-112 days following infection, mites were seen histologically in the canine hair follicles of the engrafted skin. Demodex canis adults, nymphs, larvae, and eggs were present in samples macerated in sodium hydroxide. Mite infestations could not be demonstrated in the mouse skin, nor were mites passed from the infected graft to uninfected skin grafts on in-contact mice. This model may be utilized to assess the efficacy of miticidal treatments, to evaluate the importance of specific components of the immune response, and to study the biology of D. canis.

  19. The influence of chronic stress on anxiety-like behavior and cognitive function in different human GFAP-ApoE transgenic adult male mice.

    Science.gov (United States)

    Meng, Fan-Tao; Zhao, Jun; Fang, Hui; Liu, Ya-Jing

    2015-01-01

    The apolipoprotein E (ApoE) ɛ4 allele (ApoE4) is an important genetic risk factor for the pathogenesis of Alzheimer's disease (AD). In addition to genetic factors, environmental factors such as stress may play a critical role in AD pathogenesis. This study was designed to investigate the anxiety-like behavioral and cognitive changes in different human glial fibrillary acidic protein (GFAP)-ApoE transgenic adult male mice under chronic stress conditions. On the open field test, anxiety-like behavior was increased in the non-stressed GFAP-ApoE4 transgenic mice relative to the corresponding GFAP-ApoE3 (ApoE ɛ3 allele) mice. Anxiety-like behavior was increased in the stressed GFAP-ApoE3 mice relative to non-stressed GFAP-ApoE3 mice, but was unexpectedly decreased in the stressed GFAP-ApoE4 mice relative to non-stressed GFAP-ApoE4 mice. On the novel object recognition task, both GFAP-ApoE4 and GFAP-ApoE3 mice exhibited long-term non-spatial memory impairment after chronic stress. Interestingly, short-term non-spatial memory impairment (based on the novel object recognition task) was observed only in the stressed GFAP-ApoE4 male mice relative to non-stressed GFAP-ApoE4 transgenic mice. In addition, short-term spatial memory impairment was observed in the stressed GFAP-ApoE3 transgenic male mice relative to non-stressed GFAP-ApoE3 transgenic male mice; however, short-term spatial memory performance of GFAP-ApoE4 transgenic male mice was not reduced compared to non-stressed control mice based on the Y-maze task. In conclusion, our findings suggested that chronic stress affects anxiety-like behavior and spatial and non-spatial memory in GFAP-ApoE transgenic mice in an ApoE isoform-dependent manner.

  20. Chronic minocycline treatment improves social recognition memory in adult male Fmr1 knockout mice.

    Science.gov (United States)

    Yau, Suk Yu; Chiu, Christine; Vetrici, Mariana; Christie, Brian R

    2016-10-01

    Fragile X syndrome (FXS) is caused by a mutation in the Fmr1 gene that leads to silencing of the gene and a loss of its gene product, Fragile X mental retardation protein (FMRP). Some of the key behavioral phenotypes for FXS include abnormal social anxiety and sociability. Here we show that Fmr1 knock-out (KO) mice exhibit impaired social recognition when presented with a novel mouse, and they display normal social interactions in other sociability tests. Administering minocycline to Fmr1 KO mice throughout critical stages of neural development improved social recognition memory in the novel mouse recognition task. To determine if synaptic changes in the prefrontal cortex (PFC) could have played a role in this improvement, we examined PSD-95, a member of the membrane-associated guanylate kinase family, and signaling molecules (ERK1/2, and Akt) linked to synaptic plasticity in the PFC. Our analyses indicated that while minocycline treatment can enhance behavioral performance, it does not enhance expression of PSD-95, ERK1/2 or Akt in the PFC. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effects of cigarette smoking on cerebral blood flow in normal adults

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Takao [Tokyo Medical Coll. (Japan)

    1997-11-01

    To elucidate the pharmacological effects of cigarette smoking on cerebral function and blood flow in normal adults, cerebral blood flow (CBF) was measured by positron emission tomography (PET) in 10 right-handed male healthy volunteers with a smoking habit after 12-hour abstinence. By the oxygen-15 intravenous injection method, quantitative CBF was measured repeatedly 6 times; during normal breathing (baseline), 5% CO{sub 2} inhalation and cigarette smoking. Sham smoking was performed during baseline and CO{sub 2} inhalation. To eliminate the effects from PaCO{sub 2}, CBF was adjusted based on the vascular reactivity to CO{sub 2} and PaCO{sub 2} during smoking. Pulse rate, systemic blood pressure and arterial nicotine level were increased during smoking. In the overall comparison, there was no significant change in the mean CBF during smoking as compared with baseline. Out of 19 sessions, CBF increased significantly in 7 sessions, while CBF decreased in 7 sessions and was unchanged in 5 sessions. The arterial concentration of nicotine correlated inversely with CBF. When the baseline CBF was relatively low, CBF increased during smoking, while it decreased when the baseline value was high. In the 3-dimensional statistical analysis of normalized CBF, a significant increase was seen in the nucleus accumbens, which is assumed to be related to the drug habits or addiction in previous studies. In the first smoking after abstinence, CBF increased in the orbitofrontal gyri, and this can be linked to reward or relaxation. By contrast, a significant decrease was observed in the occipital lobes and paracentral areas. (author)

  2. Effects of cigarette smoking on cerebral blood flow in normal adults

    International Nuclear Information System (INIS)

    Shinohara, Takao

    1997-01-01

    To elucidate the pharmacological effects of cigarette smoking on cerebral function and blood flow in normal adults, cerebral blood flow (CBF) was measured by positron emission tomography (PET) in 10 right-handed male healthy volunteers with a smoking habit after 12-hour abstinence. By the oxygen-15 intravenous injection method, quantitative CBF was measured repeatedly 6 times; during normal breathing (baseline), 5% CO 2 inhalation and cigarette smoking. Sham smoking was performed during baseline and CO 2 inhalation. To eliminate the effects from PaCO 2 , CBF was adjusted based on the vascular reactivity to CO 2 and PaCO 2 during smoking. Pulse rate, systemic blood pressure and arterial nicotine level were increased during smoking. In the overall comparison, there was no significant change in the mean CBF during smoking as compared with baseline. Out of 19 sessions, CBF increased significantly in 7 sessions, while CBF decreased in 7 sessions and was unchanged in 5 sessions. The arterial concentration of nicotine correlated inversely with CBF. When the baseline CBF was relatively low, CBF increased during smoking, while it decreased when the baseline value was high. In the 3-dimensional statistical analysis of normalized CBF, a significant increase was seen in the nucleus accumbens, which is assumed to be related to the drug habits or addiction in previous studies. In the first smoking after abstinence, CBF increased in the orbitofrontal gyri, and this can be linked to reward or relaxation. By contrast, a significant decrease was observed in the occipital lobes and paracentral areas. (author)

  3. Neural androgen receptors affect the number of surviving new neurones in the adult dentate gyrus of male mice.

    Science.gov (United States)

    Swift-Gallant, A; Duarte-Guterman, P; Hamson, D K; Ibrahim, M; Monks, D A; Galea, L A M

    2018-04-01

    Adult hippocampal neurogenesis occurs in many mammalian species. In rats, the survival of new neurones within the hippocampus is modulated by the action of androgen via the androgen receptor (AR); however, it is not known whether this holds true in mice. Furthermore, the evidence is mixed regarding whether androgens act in neural tissue or via peripheral non-neural targets to promote new neurone survival in the hippocampus. We evaluated whether the action of androgen via AR underlies the survival of new neurones in mice, and investigated whether increasing AR selectively in neural tissue would increase new neurone survival in the hippocampus. We used the cre-loxP system to overexpress AR only in neural tissues (Nestin-AR). These males were compared with wild-type males, as well as control males with 1 of the 2 mutations required for overexpression. Mice were gonadectomised and injected with the DNA synthesis marker, bromodeoxyuridine (BrdU) and for 37 days (following BrdU injection), mice were treated with oil or dihydrotestosterone (DHT). Using immunohistochemistry, proliferation (Ki67) and survival (BrdU) of new neurones were both evaluated in the dorsal and ventral dentate gyrus. Dihydrotestosterone treatment increased the survival of new neurones in the entire hippocampus in wild-type mice and control mice that only have 1 of 2 necessary mutations for transgenic expression. However, DHT treatment did not increase the survival of new neurones in mice that overexpressed AR in neural tissue. Cell proliferation (Ki67) and cell death (pyknotic cells) were not affected by DHT treatment in wild-type or transgenic males. These results suggest that androgens act via neural AR to affect hippocampal neurogenesis by promoting cell survival; however, the relationship between androgen dose and new neurone survival is nonlinear. © 2018 British Society for Neuroendocrinology.

  4. An autoradiographic study of new fat cell formation in adipose tissue in adult mice during malnutrition and refeeding

    International Nuclear Information System (INIS)

    Kasubuchi, Yasuo; Mino, Masahiro; Yoshioka, Hiroshi; Kusunoki, Tomoichi

    1979-01-01

    The renewal of adipose cells in adult mice has been autoradiographically studied. The number of adipose cells was diminished by eighty percent during malnutrition and the same number of adipose cells proliferated during the refeeding stage. The results of our study showed that adipose tissue, which had previously been believed to be stable in cell number, has the capacity for cell proliferation according to changes in nutritional status. (author)

  5. Phenobarbital Treatment at a Neonatal Age Results in Decreased Efficacy of Omeprazole in Adult Mice.

    Science.gov (United States)

    Tien, Yun-Chen; Piekos, Stephanie C; Pope, Chad; Zhong, Xiao-Bo

    2017-03-01

    Drug-drug interactions (DDIs) occur when the action of one drug interferes with or alters the activity of another drug taken concomitantly. This can lead to decreased drug efficacy or increased toxicity. Because of DDIs, physicians in the clinical practice attempt to avoid potential interactions when multiple drugs are coadministrated; however, there is still a large knowledge gap in understanding how drugs taken in the past can contribute to DDIs in the future. The goal of this study was to investigate the consequence of neonatal drug exposure on efficacy of other drugs administered up through adult life. We selected a mouse model to test phenobarbital exposure at a neonatal age and its impact on efficacy of omeprazole in adult life. The results of our experiment show an observed decrease in omeprazole's ability to raise gastric pH in adult mice that received single or multiple doses of phenobarbital at a neonatal age. This effect may be associated with the permanent induction of cytochrome P450 enzymes in adult liver after neonatal phenobarbital treatment. Our data indicates that DDIs may result from drugs administered in the past in an animal model and should prompt re-evaluation of how DDIs are viewed and how to avoid long-term DDIs in clinical practice. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Effect of ground cinnamon on postprandial blood glucose concentration in normal-weight and obese adults.

    Science.gov (United States)

    Magistrelli, Ashley; Chezem, Jo Carol

    2012-11-01

    In healthy normal-weight adults, cinnamon reduces blood glucose concentration and enhances insulin sensitivity. Insulin resistance, resulting in increased fasting and postprandial blood glucose and insulin levels, is commonly observed in obese individuals. The objective of the study was to compare declines in postprandial glycemic response in normal-weight and obese subjects with ingestion of 6 g ground cinnamon. In a crossover study, subjects consumed 50 g available carbohydrate in instant farina cereal, served plain or with 6 g ground cinnamon. Blood glucose concentration, the main outcome measure, was assessed at minutes 0, 15, 30, 45, 60, 90, and 120. Repeated-measures analysis of variance evaluated the effects of body mass index (BMI) group, dietary condition, and time on blood glucose. Paired t-test assessed blood glucose at individual time points and glucose area under the curve (AUC) between dietary conditions. Thirty subjects between the ages of 18 and 30 years, 15 with BMIs between 18.5 and 24.9 and 15 with BMIs of 30.0 or more, completed the study. There was no significant difference in blood glucose between the two BMI groups at any time point. However, in a combined analysis of all subjects, the addition of cinnamon to the cereal significantly reduced 120-minute glucose AUC (P=0.008) and blood glucose at 15 (P=0.001), 30 (Pblood glucose was significantly higher with cinnamon consumption (Pglucose response in normal weight and obese adults. Copyright © 2012 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  7. Roentgenographic studies of Korean adults profile with normal occlusion

    Energy Technology Data Exchange (ETDEWEB)

    Park, Tae Won [College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1972-11-15

    A roentgraphic cephalometric study was made on the soft and hard tissue profile of Korean adults. The subject consisted of 52 males and 54 females from 17 to 22 years of age and with normal occlusion and acceptable profile. Twenty one landmarks were plotted and two oriented lines named SnH line and SnV line were drawn on the tracings of all cephalograms. The means and the standard deviations from the subjects were calculated in each measuring category and the means were compared with those of male and female samples. The results were obtained as follow: 1. In depth and height, individual variations and sex differences of the lower facial profile were larger than the upper face. 2. The sex differences of upper facial profile were larger in height than depth. 3. The individual variations and sex differences of the top of nose were the smallest in all measuring points. 4. The thickness of the soft tissue of upper face and upper lip in male sample were larger than those of female, but the same matter were not found in mental region.

  8. Obese adults with primary growth hormone resistance (Laron Syndrome) have normal endothelial function.

    Science.gov (United States)

    Shechter, M; Ginsberg, S; Scheinowitz, M; Feinberg, M S; Laron, Z

    2007-04-01

    Classic Laron Syndrome (LS) is a recessive disease of insulin-like growth factor I (IGF-I) deficiency and primary growth hormone insensitivity, clinically characterized by dwarfism and marked obesity. The aim of the current study was to investigate the impact of long-term IGF-I deficiency on flow-mediated dilation (FMD) in 11 non-IGF-I-treated LS adults with long-term IGF-I deficiency who on stress echocardiography were found to have reduced cardiac dimensions and output, but normal left ventricular (LV) ejection fraction at rest and LV contractile reserve following stress. Following an overnight fast we assessed percent improvement in endothelium-dependent FMD (%FMD) and endothelium-independent nitroglycerin (%NTG)-mediated vasodilation non-invasively in the brachial artery, using high resolution ultrasound in 11 non-treated adult patients with LS without known coronary artery disease, and compared them to 11 age- and sex-matched healthy controls. All subjects underwent symptom-limited exercise testing (Bruce protocol). LS patients had a significantly higher body mass index (29+/-6 vs. 25+/-2 kg/m(2), p=0.04), lower low-density lipoprotein cholesterol (142+/-28 vs. 176+/-12 mg/dl, p=0.03) and a smaller mean brachial artery diameter (4.63+/-0.72 vs. 5.70+/-1.06 mm, p=0.01) compared to controls. However, brachial artery %FMD and %NTG were not significantly different between the LS patients and controls (13.1+/-6.2% vs. 15.4+/-5.2%, p=0.28 and 22.3+/-6.0% vs. 18.9+/-6.2%, p=0.30; respectively). Cardiac performance, assessed by exercise duration time and metabolic equivalents (METs), was significantly greater in control subjects than in LS patients (10.3+/-2.0 vs. 6.0+/-1.4 min, p<0.01 and 10.2+/-2.0 vs. 7.2+/-1.4 METs, p<0.01; respectively). FMD was found to be within normal limits in non-IGF-I-treated adult patients with LS, despite congenital absence of IGF-I and obesity.

  9. A Foxp2 mutation implicated in human speech deficits alters sequencing of ultrasonic vocalizations in adult male mice

    Directory of Open Access Journals (Sweden)

    Jonathan Chabout

    2016-10-01

    Full Text Available Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here we performed a systematic study of ultrasonic vocalizations (USVs of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans.

  10. Subregion-Specific Proteomic Signature in the Hippocampus for Recognition Processes in Adult Mice

    Directory of Open Access Journals (Sweden)

    Lukas M. von Ziegler

    2018-03-01

    Full Text Available Summary: The hippocampal formation is a brain structure essential for higher-order cognitive functions. It has a complex anatomical organization and cellular composition, and hippocampal subregions have different properties and functional roles. In this study, we used SWATH-MS to determine whether the proteomes of hippocampus areas CA1 and CA3 can explain the commonalities or specificities of these subregions in basal conditions and after recognition memory. We show that the proteomes of areas CA1 and CA3 are largely different in basal conditions and that differential changes and dynamics in protein expression are induced in these areas after recognition of an object or object location. While changes are consistent across both recognition paradigms in area CA1, they are not in area CA3, suggesting distinct proteomic responses in areas CA1 and CA3 for memory formation. : How does the proteome differ in hippocampus areas CA1 and CA3? von Ziegler et al. identify the proteomes of areas CA1 and CA3 and characterize their dynamics during different recognition processes in adult mice. Keywords: hippocampus, areas CA1 and CA3, proteome, dynamics, object memory, object location memory, mass spectrometry, SWATH-MS, mice, bioinformatic tools

  11. Human HMGA2 protein overexpressed in mice induces precursor T-cell lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Efanov, A; Zanesi, N; Coppola, V; Nuovo, G; Bolon, B; Wernicle-Jameson, D; Lagana, A; Hansjuerg, A; Pichiorri, F; Croce, C M

    2014-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a neoplasia of thymocytes characterized by the rapid accumulation of the precursors of T lymphocytes. HMGA2 (high-mobility group AT-hook 2) gene expression is extremely low in normal adult tissues, but it is overexpressed in many tumors. To identify the biological function of HMGA2, we generated transgenic mice carrying the human HMGA2 gene under control of the V H promoter/Eμ enhancer. Approximately 90% of Eμ-HMGA2 transgenic mice became visibly sick between 4 and 8 months due to the onset and progression of a T-ALL-like disease. Characteristic features included severe alopecia (30% of mice); enlarged lymph nodes and spleen; and profound immunological abnormalities (altered cytokine levels, hypoimmunoglobulinemia) leading to reduced immune responsiveness. Immunophenotyping showed accumulation of CD5+CD4+, CD5+CD8+ or CD5+CD8+CD4+ T-cell populations in the spleens and bone marrow of sick animals. These findings show that HMGA2-driven leukemia in mice closely resembles spontaneous human T-ALL, indicating that HMGA2 transgenic mice should serve as an important model for investigating basic mechanisms and potential new therapies of relevance to human T-ALL

  12. Raman spectroscopy analysis of differences in composition of spent culture media of in vitro cultured preimplantation embryos isolated from normal and fat mice dams.

    Science.gov (United States)

    Fabian, Dušan; Kačmarová, Martina; Kubandová, Janka; Čikoš, Štefan; Koppel, Juraj

    2016-06-01

    The aim of the present study was to compare overall patterns of metabolic activity of in vitro cultured preimplantation embryos isolated from normal and fat mice dams by means of non-invasive profiling of spent culture media using Raman spectroscopy. To produce females with two different types of body condition (normal and fat), a previously established two-generation model was used, based on overfeeding of experimental mice during prenatal and early postnatal development. Embryos were isolated from spontaneously ovulating and naturally fertilized dams at the 2-cell stage of development and cultured to the blastocyst stage in synthetic oviductal medium KSOMaa. Embryos from fat mice (displaying significantly elevated body weight and fat) showed similar developmental capabilities in vitro as embryos isolated from normal control dams (displaying physiological body weight and fat). The results show that alterations in the composition of culture medium caused by the presence of developing mouse preimplantation embryos can be detected using Raman spectroscopy. Metabolic activity of embryos was reflected in evident changes in numerous band intensities in the 1620-1690cm(-1) (amide I) region and in the 1020-1140cm(-1) region of the Raman spectrum for KSOMaa. Moreover, multivariate analysis of spectral data proved that the composition of proteins and other organic compounds in spent samples obtained after the culture of embryos isolated from fat dams was different from that in spent samples obtained after the culture of embryos from control dams. This study demonstrates that metabolic activity of cultured preimplantation embryos might depend on the body condition of their donors. Copyright © 2016 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Metabolic impact of adult-onset, isolated, growth hormone deficiency (AOiGHD due to destruction of pituitary somatotropes.

    Directory of Open Access Journals (Sweden)

    Raul M Luque

    2011-01-01

    Full Text Available Growth hormone (GH inhibits fat accumulation and promotes protein accretion, therefore the fall in GH observed with weight gain and normal aging may contribute to metabolic dysfunction. To directly test this hypothesis a novel mouse model of adult onset-isolated GH deficiency (AOiGHD was generated by cross breeding rat GH promoter-driven Cre recombinase mice (Cre with inducible diphtheria toxin receptor mice (iDTR and treating adult Cre(+/-,iDTR(+/- offspring with DT to selectively destroy the somatotrope population of the anterior pituitary gland, leading to a reduction in circulating GH and IGF-I levels. DT-treated Cre(-/-,iDTR(+/- mice were used as GH-intact controls. AOiGHD improved whole body insulin sensitivity in both low-fat and high-fat fed mice. Consistent with improved insulin sensitivity, indirect calorimetry revealed AOiGHD mice preferentially utilized carbohydrates for energy metabolism, as compared to GH-intact controls. In high-fat, but not low-fat fed AOiGHD mice, fat mass increased, hepatic lipids decreased and glucose clearance and insulin output were impaired. These results suggest the age-related decline in GH helps to preserve systemic insulin sensitivity, and in the context of moderate caloric intake, prevents the deterioration in metabolic function. However, in the context of excess caloric intake, low GH leads to impaired insulin output, and thereby could contribute to the development of diabetes.

  14. Bone growth and turnover in progesterone receptor knockout mice.

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, David J.; Iwaniec, Urszula T.; Evans, Glenda; Hefferan, Theresa E.; Hunter, Jaime C.; Waters, Katrina M.; Lydon, John P.; O' Malley, Bert W.; Khosla, Sundeep; Spelsberg, Thomas C.; Turner, Russell T.

    2008-05-01

    The role of progesterone receptor (PR) signaling in skeletal metabolism is controversial. To address whether signaling through the PR is necessary for normal bone growth and turnover, we performed histomorphometric and mCT analyses of bone from homozygous female PR knockout (PRKO) mice at 6, 12, and 26 weeks of age. These mice possess a null mutation of the PR locus, which blocks the gene expression of A and B isoforms of PR. Body weight gain, uterine weight gain and tibia longitudinal bone growth was normal in PRKO mice. In contrast, total and cortical bone mass were increased in long bones of post-pubertal (12 and 26-week-old) PRKO mice, whereas cancellous bone mass was normal in the tibia but increased in the humerus. The striking 57% decrease in cancellous bone from the proximal tibia metaphysis which occurred between 6 and 26 weeks in WT mice was abolished in PRKO mice. The improved bone balance in aging PRKO mice was associated with elevated bone formation and a tendency toward reduced osteoclast perimeter. Taken together, these findings suggest that PR signaling in mice attenuates the accumulation of cortical bone mass during adolescence and is required for early age-related loss of cancellous bone.

  15. Radiation Dose Estimates in Indian Adults in Normal and Pathological Conditions due to 99Tcm-Labelled Radiopharmaceuticals

    International Nuclear Information System (INIS)

    Tyagi, K.; Jain, S.C.; Jain, P.C.

    2001-01-01

    ICRP Publications 53, 62 and 80 give organ dose coefficients and effective doses to ICRP Reference Man and Child from established nuclear medicine procedures. However, an average Indian adult differs significantly from the ICRP Reference Man as regards anatomical, physiological and metabolic characteristics, and is also considered to have different tissue weighting factors (called here risk factors). The masses of total body and most organs are significantly lower for the Indian adult than for his ICRP counterpart (e.g. body mass 52 and 70 kg respectively). Similarly, the risk factors are lower by 20-30% for 8 out of the 13 organs and 30-60% higher for 3 organs. In the present study, available anatomical data of Indians and their risk factors have been utilised to estimate the radiation doses from administration of commonly used 99 Tc m -labelled radiopharmaceuticals under normal and certain pathological conditions. The following pathological conditions have been considered for phosphates/phosphonates - high bone uptake and severely impaired kidney function; IDA - parenchymal liver disease, occlusion of cystic duct, and occlusion of bile duct; DTPA - abnormal renal function; large colloids - early to intermediate diffuse parenchymal liver disease, intermediate to advanced parenchymal liver disease; small colloids - early to intermediate parenchymal liver disease, intermediate to advanced parenchymal liver disease; and MAG3 - abnormal renal function, acute unilateral renal blockage. The estimated 'effective doses' to Indian adults are 14-21% greater than the ICRP value from administration of the same activity of radiopharmaceutical under normal physiological conditions based on anatomical considerations alone, because of the smaller organ masses for the Indian; for some pathological conditions the effective doses are 11-22% more. When tissue risk factors are considered in addition to anatomical considerations, the estimated effective doses are still found to be

  16. Magnetic resonance imaging of the normal and chronically injured adult rat spinal cord in vivo

    International Nuclear Information System (INIS)

    Guizar-Sahagun, G.; Rivera, F.; Babinski, E.; Berlanga, E.; Madrazo, M.; Franco-Bourland, R.; Grijalva, I.; Gonzalez, J.; Contreras, B.; Madrazo, I.

    1994-01-01

    We assessed the capacity of MRI to show and characterise the spinal cord (SC) in vivo in normal and chronically injured adult rats. In the chronically injured animals the SC was studied by MRI and histological examination. MRI was performed at 1.5 T, using gradient-echo and spin-echo (SE) sequences, the latter with and without gadolinium-DTPA (Gd-DTPA). Several positions were tried for good alignment and to diminish interference by respiratory movements. Images of the SC were obtained in sagittal, coronal, and axial planes. Normal SC was observed as a continuous intensity in both sequences, although contrast resolution was better using SE; it was not possible to differentiate the grey and white matter. Low signal was seen in the damaged area in chronically injured rats, which corresponded to cysts, trabeculae, mononuclear infiltrate, and fibroglial wall on histological examination. Gd-DTPA failed to enhance the SC in normal or chronically injured rats. It did, however, cause enhancement of the lesion after acute SC injury. (orig.)

  17. Magnetic resonance imaging of the normal and chronically injured adult rat spinal cord in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guizar-Sahagun, G [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Inst. Mexicano del Seguro Social, Mexico City (Mexico); Rivera, F [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico); Babinski, E [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico); Berlanga, E [Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico); Madrazo, M [Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico); Franco-Bourland, R [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Biochemistry, Inst. Nacional de la Nutricion, Mexico City (Mexico); Grijalva, I [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo

    1994-08-01

    We assessed the capacity of MRI to show and characterise the spinal cord (SC) in vivo in normal and chronically injured adult rats. In the chronically injured animals the SC was studied by MRI and histological examination. MRI was performed at 1.5 T, using gradient-echo and spin-echo (SE) sequences, the latter with and without gadolinium-DTPA (Gd-DTPA). Several positions were tried for good alignment and to diminish interference by respiratory movements. Images of the SC were obtained in sagittal, coronal, and axial planes. Normal SC was observed as a continuous intensity in both sequences, although contrast resolution was better using SE; it was not possible to differentiate the grey and white matter. Low signal was seen in the damaged area in chronically injured rats, which corresponded to cysts, trabeculae, mononuclear infiltrate, and fibroglial wall on histological examination. Gd-DTPA failed to enhance the SC in normal or chronically injured rats. It did, however, cause enhancement of the lesion after acute SC injury. (orig.)

  18. Differentiation of bone marrow cells to functional T lymphocytes following implantation of thymus grafts and thymic stroma in nude and ATxBM mice

    International Nuclear Information System (INIS)

    Splitter, G.A.; McGuire, T.C.; Davis, W.C.

    1977-01-01

    Cardiac allografts were used to compare the immunologic capacity of nude mice and adult, thymectomized, lethally irradiated, bone marrow-reconstituted (AT x BM) mice. Neither nude nor AT x BM mice were able to reject cardiac allografts of any party. However, both rejected grafts of any party following implantation of neonatal thymus or thymus from 3-week-old syngeneic mice. Irradiated syngeneic thymus grafts (800 R) were equally effective in restoring host responsiveness against allografts. In contrast, allogeneic thymus grafts restored the capacity to reject second-party heart grafts only in AT x BM mice. Second-party grafts persisted indefintely when placed on nude mice implanted with an allogeneic, unirradiated thymus graft. Third-party grafts transplanted 17 weeks after reconstitution, however, were rejected. Irradiated nude mice given normal littermate bone marrow and simultaneously grafted with second-party thymus and heart allografts also failed to reject their second-party heart grafts. The difference in ultimate capacity to respond between AT x BM and nude mice suggests that a maturational defect exists in the nude mouse environment which impedes development of precursor T lymphocytes

  19. Subchronic Oral Bromocriptine Methanesulfonate Enhances Open Field Novelty-Induced Behavior and Spatial Memory in Male Swiss Albino Mice

    Directory of Open Access Journals (Sweden)

    Olakunle James Onaolapo

    2013-01-01

    Full Text Available This study set out to assess the neurobehavioral effects of subchronic, oral bromocriptine methanesulfonate using the open field and the Y-maze in healthy male mice. Sixty adult Swiss albino mice were assigned into three groups. Controls received normal saline, while test groups received bromocriptine methanesulfonate at 2.5 and 5 mg/kg/day, respectively, for a period of 21 days. Neurobehavioral tests were carried out on days 1 and 21 after administration. Open field assessment on day 1 after administration revealed significant increase in grooming at 2.5 and 5 mg/kg, while horizontal and vertical locomotion showed no significant changes. Day 1 also showed no significant changes in Y-maze alternation. On day 21, horizontal locomotion, rearing, and grooming were increased significantly at 2.5 and 5 mg/kg doses after administration; also, spatial memory was significantly enhanced at 2.5 mg/kg. In conclusion, the study demonstrates the ability of oral bromocriptine to affect neurobehavior in normal mice. It also suggests that there is a cumulative effect of oral bromocriptine on the behaviors studied with more changes being seen after subchronic administration rather than after a single oral dose.

  20. Subchronic Oral Bromocriptine Methanesulfonate Enhances Open Field Novelty-Induced Behavior and Spatial Memory in Male Swiss Albino Mice.

    Science.gov (United States)

    Onaolapo, Olakunle James; Onaolapo, Adejoke Yetunde

    2013-01-01

    This study set out to assess the neurobehavioral effects of subchronic, oral bromocriptine methanesulfonate using the open field and the Y-maze in healthy male mice. Sixty adult Swiss albino mice were assigned into three groups. Controls received normal saline, while test groups received bromocriptine methanesulfonate at 2.5 and 5 mg/kg/day, respectively, for a period of 21 days. Neurobehavioral tests were carried out on days 1 and 21 after administration. Open field assessment on day 1 after administration revealed significant increase in grooming at 2.5 and 5 mg/kg, while horizontal and vertical locomotion showed no significant changes. Day 1 also showed no significant changes in Y-maze alternation. On day 21, horizontal locomotion, rearing, and grooming were increased significantly at 2.5 and 5 mg/kg doses after administration; also, spatial memory was significantly enhanced at 2.5 mg/kg. In conclusion, the study demonstrates the ability of oral bromocriptine to affect neurobehavior in normal mice. It also suggests that there is a cumulative effect of oral bromocriptine on the behaviors studied with more changes being seen after subchronic administration rather than after a single oral dose.

  1. The bumetanide prodrug BUM5, but not bumetanide, potentiates the antiseizure effect of phenobarbital in adult epileptic mice.

    Science.gov (United States)

    Erker, Thomas; Brandt, Claudia; Töllner, Kathrin; Schreppel, Philipp; Twele, Friederike; Schidlitzki, Alina; Löscher, Wolfgang

    2016-05-01

    The loop diuretic bumetanide has been reported to potentiate the antiseizure activity of phenobarbital in rodent models of neonatal seizures, most likely as a result of inhibition of the chloride importer Na-K-Cl cotransporter isoform 1 (NKCC1) in the brain. In view of the intractability of neonatal seizures, the preclinical findings prompted a clinical trial in neonates on bumetanide as an add-on to phenobarbital, which, however, had to be terminated because of ototoxicity and lack of efficacy. We have recently shown that bumetanide penetrates only poorly into the brain, so that we developed lipophilic prodrugs such as BUM5, the N,N-dimethylaminoethylester of bumetanide, which penetrate more easily into the brain and are converted to bumetanide. In the present study, we used a new strategy to test whether BUM5 is more potent than bumetanide in potentiating the antiseizure effect of phenobarbital. Adult mice were made epileptic by pilocarpine, and the antiseizure effects of bumetanide, BUM5, and phenobarbital alone or in combination were determined by the maximal electroshock seizure threshold test. In nonepileptic mice, only phenobarbital exerted seizure threshold-increasing activity, and this was not potentiated by the NKCC1 inhibitors. In contrast, a marked potentiation of phenobarbital by BUM5, but not bumetanide, was determined in epileptic mice. Thus, bumetanide is not capable of potentiating phenobarbital's antiseizure effect in an adult mouse model, which, however, can be overcome by using the prodrug BUM5. These data substantiate that BUM5 is a promising tool compound for target validation and proof-of-concept studies on the role of NKCC1 in brain diseases. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  2. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    Science.gov (United States)

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice.

    Directory of Open Access Journals (Sweden)

    Alice Chaplin

    Full Text Available The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat or a high-fat (HF, 43% kJ content as fat diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.

  4. Conjugated Linoleic Acid Supplementation under a High-Fat Diet Modulates Stomach Protein Expression and Intestinal Microbiota in Adult Mice.

    Science.gov (United States)

    Chaplin, Alice; Parra, Pilar; Serra, Francisca; Palou, Andreu

    2015-01-01

    The gastrointestinal tract constitutes a physiological interface integrating nutrient and microbiota-host metabolism. Conjugated linoleic acids (CLA) have been reported to contribute to decreased body weight and fat accretion. The modulation by dietary CLA of stomach proteins related to energy homeostasis or microbiota may be involved, although this has not been previously analysed. This is examined in the present study, which aims to underline the potential mechanisms of CLA which contribute to body weight regulation. Adult mice were fed either a normal fat (NF, 12% kJ content as fat) or a high-fat (HF, 43% kJ content as fat) diet. In the latter case, half of the animals received daily oral supplementation of CLA. Expression and content of stomach proteins and specific bacterial populations from caecum were analysed. CLA supplementation was associated with an increase in stomach protein expression, and exerted a prebiotic action on both Bacteroidetes/Prevotella and Akkermansia muciniphila. However, CLA supplementation was not able to override the negative effects of HF diet on Bifidobacterium spp., which was decreased in both HF and HF+CLA groups. Our data show that CLA are able to modulate stomach protein expression and exert a prebiotic effect on specific gut bacterial species.

  5. Hydroxysteroid (17β)-dehydrogenase 1-deficient female mice present with normal puberty onset but are severely subfertile due to a defect in luteinization and progesterone production.

    Science.gov (United States)

    Hakkarainen, Janne; Jokela, Heli; Pakarinen, Pirjo; Heikelä, Hanna; Kätkänaho, Laura; Vandenput, Liesbeth; Ohlsson, Claes; Zhang, Fu-Ping; Poutanen, Matti

    2015-09-01

    Hydroxysteroid (17β)-dehydrogenase type 1 (HSD17B1) catalyzes the conversion of low active 17-ketosteroids, androstenedione (A-dione) and estrone (E1) to highly active 17-hydroxysteroids, testosterone (T) and E2, respectively. In this study, the importance of HSD17B1 in ovarian estrogen production was determined using Hsd17b1 knockout (HSD17B1KO) mice. In these mice, the ovarian HSD17B enzyme activity was markedly reduced, indicating a central role of HSD17B1 in ovarian physiology. The lack of Hsd17b activity resulted in increased ovarian E1:E2 and A-dione:T ratios, but we also observed reduced progesterone concentration in HSD17B1KO ovaries. Accordingly with the altered steroid production, altered expression of Star, Cyp11a1, Lhcgr, Hsd17b7, and especially Cyp17a1 was observed. The ovaries of HSD17B1KO mice presented with all stages of folliculogenesis, while the corpus luteum structure was less defined and number reduced. Surprisingly, bundles of large granular cells of unknown origin appeared in the stroma of the KO ovaries. The HSD17B1KO mice presented with severe subfertility and failed to initiate pseudopregnancy. However, the HSD17B1KO females presented with normal estrous cycle defined by vaginal smears and normal puberty appearance. This study indicates that HSD17B1 is a key enzyme in ovarian steroidogenesis and has a novel function in initiation and stabilization of pregnancy. © FASEB.

  6. Normal width of the anterior commissure of true vocal cord in Korea adults measured by helical CT

    International Nuclear Information System (INIS)

    Lim, Woo Young; Lim, Dong Hoon; Moon, Jang Il; Ko, Yong Seok; Byeon, Joo Nam; Oh, Jae Hee

    1998-01-01

    To evaluate the mean width of anterior commissure of true vocal cord in Korean adults by measuring its dimension on spiral CT scans. We reviewed the CT scans of 53 Korean adults(age range, 23-73years; mean age 39.2 years;M:F=3D41:12) without laryngeal disorders. Soiral CT scanning was performed around the anterior commissure with 1mm slice thickness and table incrementation for 15 seconds. The anteroposterior width of the anterior commissure was measured on CT scan where the true vocal cord and arytenoid, cricoid and thyroid cartilages were all present. We determined the mean width of the anterior commissure and whether there was a relationship between age and the width of the anterior commissure. The width of the anterior commissure was between 0.9mm and 2.3mm;mean width was 1.60±0.38mm(mean±SD). Using two SDs above the mean would have defined 2.36mm as the upper limit of normal width. Statistically, no significant correlation existed between the age and the width of the anterior commissure(p>0.05). An awareuess of the normal width range of the anterior commissure in Korean adults evaluated by spiral CT enhances the possibility of early detection of invasion of the anterior commissure by glottic cancer.=20

  7. Toll-like receptor 2 promotes neurogenesis from the dentate gyrus after photothrombotic cerebral ischemia in mice.

    Science.gov (United States)

    Seong, Kyung-Joo; Kim, Hyeong-Jun; Cai, Bangrong; Kook, Min-Suk; Jung, Ji-Yeon; Kim, Won-Jae

    2018-03-01

    The subgranular zone (SGZ) of hippocampal dentate gyrus (HDG) is a primary site of adult neurogenesis. Toll-like receptors (TLRs), are involved in neural system development of Drosophila and innate immune response of mammals. TLR2 is expressed abundantly in neurogenic niches such as adult mammalian hippocampus. It regulates adult hippocampal neurogenesis. However, the role of TLR2 in adult neurogenesis is not well studied in global or focal cerebral ischemia. Therefore, this study aimed to investigate the role of TLR2 in adult neurogenesis after photochemically induced cerebral ischemia. At 7 days after photothrombotic ischemic injury, the number of bromodeoxyuridine (BrdU)-positive cells was increased in both TLR2 knock-out (KO) mice and wild-type (WT) mice. However, the increment rate of BrdU-positive cells was lower in TLR2 KO mice compared to that in WT mice. The number of doublecortin (DCX) and neuronal nuclei (NeuN)-positive cells in HDG was decreased after photothrombotic ischemia in TLR2 KO mice compared to that in WT mice. The survival rate of cells in HDG was decreased in TLR2 KO mice compared to that in WT mice. In contrast, the number of cleaved-caspase 3 (apoptotic marker) and the number of GFAP (glia marker)/BrdU double-positive cells in TLR2 KO mice were higher than that in WT mice. These results suggest that TLR2 can promote adult neurogenesis from neural stem cell of hippocampal dentate gyrus through increasing proliferation, differentiation, and survival from neural stem cells after ischemic injury of the brain.

  8. CT measurement of normal pericardial thickness in adults on computed tomography

    International Nuclear Information System (INIS)

    Choi, Young Woo; Park, Chan Sup; Jeon, Yong Sun; Bae, In Young; Choi, Sung Gyu; Koo, Jin Hoe; Chung, Won Kyun

    1998-01-01

    The purpose of this study was to establish, using computed tomography, the normal thickness of the pericardium in adults. Materials and Methods: CT scans of 50 patients, including sections through the level of the heart, were reviewed. Patients were excluded if there were any suspicions of pericardial abnormality such as infectious or neoplastic diseases. Twenty-four of the 50 were men and 26 were women; their mean age was 47.0(range,18-76) years. We measured pericardial thickness at the level of the right ventricle, interventricular septum and left ventricle, and also compared pericardial thickness in terms of age and sex. Results: In all patients, the pericardium was observed in the right ventricular region; in 41 (82%) at the interventricular septum; and in 41 (82%) along the left ventricle. The mean thickness of normal pericardium at the level of the right ventricle, interventricular septum, and left ventricle was 1.8 mm ± 0.5 mm, 1.8 mm ± 0.4 mm, and 1.7 mm ± 0.5 mm, respectively. No statistically significant correlation was apparent between pericardial thickness and age group (p > 0.63, ANOVA test). Mean pericardial thickness was 1.9 mm ± 0.6 mm in males and 1.7 mm ± 0.4 mm in females; thus, no statistically significant correlation was apparent between pericardial thickness and sex (p >0.29, Student's t-test). Conclusion: The pericardium was best visualized in sections through the right ventricle.The mean thickness of normal pericardium was 1.8 mm ± 0.5 mm and pericardial thickness did not differ according to age or sex

  9. Experimental transmission of M. leprae into the testes of mice born from 60Co-irradiated pregnant mice

    International Nuclear Information System (INIS)

    Sushida, Kiyo; Tanemura, Mutsuko

    1979-01-01

    R 1 -mice, which were born from pregnant mice (R-P) irradiated with 60 CO 300 R were inoculated with leprosy bacilli into the testis. Recently, the author reported that the skin homograft survival duration in 60 CO-irradiated mice (R-P) was shown to be longer than the duration in the R 1 -F mice. The acid-fast bacilli, the so-called globi, were often found at the inoculated site of R-P mice, but not in the R 1 -F mice. The R 1 -F females bred with normal males and the R 2 -F females bred with normal males were both irradiated with 60 CO 300 R, and the R 2 -F male offspring from this R 1 -F and the R 3 -F male offspring from this R 2 -F showed the same increase in sensitivity to leprosy bacilli as the R-P generation. Acid-fast bacilli (globi, +G) were also found in the testes of the R 2 -F and R 3 -F males. IR-F mice which had received 131 I-Na 100 μci injections and also 60 CO 300 R irradiations during their fetus-term, showed few increase in sensitivity to infection of leprosy bacilli. (author)

  10. Exposure of BALB/c mice to diesel engine exhaust origin secondary organic aer-osol (DE-SOA during the developmental stages impairs the social behavior in adult life of the males

    Directory of Open Access Journals (Sweden)

    Tin-Tin eWin-Shwe

    2016-01-01

    Full Text Available Secondary organic aerosol (SOA is a component of particulate matter (PM 2.5 and formed in the atmosphere by oxidation of volatile organic compounds. Recently, we have reported that inhalation exposure to diesel engine exhaust (DE originated SOA (DE-SOA affect novel object recognition ability and impair maternal behavior in adult mice. However, it is not clear whether early life exposure to SOA during the de-velopmental stages affect social behavior in adult life or not. In the present study, to investigate the effects of early life exposure to DE-SOA during the gestational and lactation stages on the social behavior in the adult life, BALB/c mice were exposed to clean air (control, DE, DE-SOA and gas without any particulate matter in the inhala-tion chambers from gestational day 14 to postnatal day 21 for 5 h a day and 5 days per week. Then adult mice were examined for changes in their social behavior at the age of 13 week by a sociability and social novelty preference, social interaction with a juvenile mouse and light-dark transition test, hypothalamic mRNA expression levels of social behavior-related genes, estrogen receptor-alpha and oxytocin receptor as well as of the oxidative stress marker gene, heme oxygenase (HO-1 by real-time RT-PCR method. In addition, hypothalamic level of neuronal excitatory marker, glutamate was determined by ELISA method. We observed that sociability and social novelty pref-erence as well as social interaction were remarkably impaired, expression levels of es-trogen receptor-alpha, oxytocin receptor mRNAs were significantly decreased, ex-pression levels of HO-1 mRNAs and glutamate levels were significantly increased in adult male mice exposed to DE-SOA compared to the control ones. Findings of this study indicate early life exposure of BALB/c mice to DE-SOA may affect their late-onset hypothalamic expression of social behavior related genes, trigger neurotoxi-city and impair social behavior in the males.

  11. Cell-extrinsic defective lymphocyte development in Lmna(-/- mice.

    Directory of Open Access Journals (Sweden)

    J Scott Hale

    2010-04-01

    Full Text Available Mutations in the LMNA gene, which encodes all A-type lamins, result in a variety of human diseases termed laminopathies. Lmna(-/- mice appear normal at birth but become runted as early as 2 weeks of age and develop multiple tissue defects that mimic some aspects of human laminopathies. Lmna(-/- mice also display smaller spleens and thymuses. In this study, we investigated whether altered lymphoid organ sizes are correlated with specific defects in lymphocyte development.Lmna(-/- mice displayed severe age-dependent defects in T and B cell development which coincided with runting. Lmna(-/- bone marrow reconstituted normal T and B cell development in irradiated wild-type recipients, driving generation of functional and self-MHC restricted CD4(+ and CD8(+ T cells. Transplantation of Lmna(-/- neonatal thymus lobes into syngeneic wild-type recipients resulted in good engraftment of thymic tissue and normal thymocyte development.Collectively, these data demonstrate that the severe defects in lymphocyte development that characterize Lmna(-/- mice do not result directly from the loss of A-type lamin function in lymphocytes or thymic stroma. Instead, the immune defects in Lmna(-/- mice likely reflect indirect damage, perhaps resulting from prolonged stress due to the striated muscle dystrophies that occur in these mice.

  12. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    Science.gov (United States)

    Yokoi, Fumiaki; Chen, Huan-Xin; Dang, Mai Tu; Cheetham, Chad C; Campbell, Susan L; Roper, Steven N; Sweatt, J David; Li, Yuqing

    2015-01-01

    DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG) corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE)). Dyt1 ΔGAG heterozygous knock-in (KI) mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs) and normal theta-burst-induced long-term potentiation (LTP) in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE) does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO) mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs) were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  13. Behavioral and electrophysiological characterization of Dyt1 heterozygous knockout mice.

    Directory of Open Access Journals (Sweden)

    Fumiaki Yokoi

    Full Text Available DYT1 dystonia is an inherited movement disorder caused by mutations in DYT1 (TOR1A, which codes for torsinA. Most of the patients have a trinucleotide deletion (ΔGAG corresponding to a glutamic acid in the C-terminal region (torsinA(ΔE. Dyt1 ΔGAG heterozygous knock-in (KI mice, which mimic ΔGAG mutation in the endogenous gene, exhibit motor deficits and deceased frequency of spontaneous excitatory post-synaptic currents (sEPSCs and normal theta-burst-induced long-term potentiation (LTP in the hippocampal CA1 region. Although Dyt1 KI mice show decreased hippocampal torsinA levels, it is not clear whether the decreased torsinA level itself affects the synaptic plasticity or torsinA(ΔE does it. To analyze the effect of partial torsinA loss on motor behaviors and synaptic transmission, Dyt1 heterozygous knock-out (KO mice were examined as a model of a frame-shift DYT1 mutation in patients. Consistent with Dyt1 KI mice, Dyt1 heterozygous KO mice showed motor deficits in the beam-walking test. Dyt1 heterozygous KO mice showed decreased hippocampal torsinA levels lower than those in Dyt1 KI mice. Reduced sEPSCs and normal miniature excitatory post-synaptic currents (mEPSCs were also observed in the acute hippocampal brain slices from Dyt1 heterozygous KO mice, suggesting that the partial loss of torsinA function in Dyt1 KI mice causes action potential-dependent neurotransmitter release deficits. On the other hand, Dyt1 heterozygous KO mice showed enhanced hippocampal LTP, normal input-output relations and paired pulse ratios in the extracellular field recordings. The results suggest that maintaining an appropriate torsinA level is important to sustain normal motor performance, synaptic transmission and plasticity. Developing therapeutics to restore a normal torsinA level may help to prevent and treat the symptoms in DYT1 dystonia.

  14. Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection.

    Science.gov (United States)

    Guagliardo, Nick A; Hill, David L

    2007-09-10

    Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were smaller and more abundant on the anterior tip (taste buds were smaller and fewer on the side of the tongue ipsilateral to the transection and continued to decrease in both size and number until 15 days posttransection. Degenerating fungiform taste buds were smaller due to a loss of taste bud cells rather than changes in taste bud morphology. While almost all taste buds disappeared in more posterior fungiform papillae by 15 days posttransection, the anterior tip of the tongue retained nearly half of its taste buds compared to intact mice. Surviving taste buds could not be explained by an apparent innervation from the remaining intact nerves. Contralateral effects of nerve transection were also observed; taste buds were larger due to an increase in the number of taste bud cells. These data are the first to characterize adult mouse fungiform taste buds and subsequent degeneration after unilateral nerve transection. They provide the basis for more mechanistic studies in which genetically engineered mice can be used. (c) 2007 Wiley-Liss, Inc.

  15. Adolescent intake of caffeinated energy drinks does not affect adult alcohol consumption in C57BL/6 and BALB/c mice.

    Science.gov (United States)

    Robins, Meridith T; DeFriel, Julia N; van Rijn, Richard M

    2016-08-01

    The rise in marketing and mass consumption of energy drink products by adolescents poses a largely unknown risk on adolescent development and drug reward. Yet, with increasing reports of acute health issues present in young adults who ingest large quantities of energy drinks alone or in combination with alcohol, the need to elucidate these potential risks is pressing. Energy drinks contain high levels of caffeine and sucrose; therefore, exposure to energy drinks may lead to changes in drug-related behaviors since caffeine and sucrose consumption activates similar brain pathways engaged by substances of abuse. With a recent study observing that adolescent caffeine consumption increased cocaine sensitivity, we sought to investigate how prolonged energy drink exposure in adolescence alters alcohol use and preference in adulthood. To do so, we utilized three different energy drink exposure paradigms and two strains of male mice (C57BL/6 and BALB/c) to monitor the effect of caffeine exposure via energy drinks in adolescence on adult alcohol intake. These paradigms included two models of volitional consumption of energy drinks or energy drink-like substances and one model of forced consumption of sucrose solutions with different caffeine concentrations. Following adolescent exposure to these solutions, alcohol intake was monitored in a limited-access, two-bottle choice between water and increasing concentrations of alcohol during adulthood. In none of the three models or two strains of mice did we observe that adolescent 'energy drink' consumption or exposure was correlated with changes in adult alcohol intake or preference. While our current preclinical results suggest that exposure to large amounts of caffeine does not alter future alcohol intake, differences in caffeine metabolism between mice and humans need to be considered before translating these results to humans. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Olfactory marker protein: turnover and transport in normal and regenerating neurons

    International Nuclear Information System (INIS)

    Kream, R.M.; Margolis, F.L.

    1984-01-01

    A 19,000-dalton acidic protein designated olfactory marker protein (OMP) is a cell-specific marker of mature olfactory chemosensory neurons. Intranasal irrigation of mouse olfactory epithelium with [ 35 S]methionine labeled OMP to high specific activity. Turnover and transport characteristics of 35 S-labeled OMP were compared to those of 35 S-labeled global cytosol protein in groups of young, adult, and Triton-treated adult mice. The latter contained primarily large numbers of regenerating olfactory neurons. In olfactory epithelium of young and Triton-treated mice, the specific activity of OMP was three times that of global cytosol protein, whereas in adults the two measures were equal. In all three groups, however, the rate of degradation of OMP was roughly equal to that of cytosol protein (T1/2 . 5 to 6 days). By contrast, differences in T1/2 for OMP decline in the bulb of adult, young, and Triton-treated adult mice were highly significant (T1/2's of 9.3, 6.1, and 4 to 5 days, respectively; p . 0.001). The specific activity of [35S]methionine incorporated in OMP exceeded that of the free amino acid 5-fold, indicating minimal precursor reutilization during the course of our experiments. Turnover data indicate that increased isotope incorporation into OMP in the epithelium is matched by an accelerated rate of degradation in the bulb. This may be correlated with the physiological state or developmental age of the primary neurons since in young and Triton-treated adult mice, rapidly maturing ''young'' olfactory neurons represent a larger proportion of the total population than in adults. Thus, OMP behaves as a typical, relatively slowly transported soluble protein (v . 2 to 4 mm/day, slow component b)

  17. Normal appendix in adults: MDCT findings about the location, thickness and the presence or absence of intraluminal gas

    International Nuclear Information System (INIS)

    Oh, Kyoung Jin; Cho, June Sik; Shin, Kyung Sook; Kim, Ha Young; Lim, Sae Kyung; Ohm, Joon Young; Yoon, Chung Dae; Shin, Byung Seok

    2006-01-01

    We wanted to examine the usefulness of multi-detector CT (MDCT) with multiplanar reformations for evaluating the location, thickness and the presence or absence of intraluminal gas in the normal appendix of adults. From December 2004 to June 2005, we evaluated normal appendices in 427 consecutive adult patients who were scanned with 16-slice MDCT. All these patients had no clinical findings of appendicitis. There were 251 men and 176 women. The age range was 19-84 years (mean age: 55 years). The contrast-enhanced MDCT scans during the portal phase were obtained with 0.75 mm detector collimation and they were reviewed with using the multiplanar reconstruction images (3 mm section thickness). The MDCT images of normal appendices on a PACS monitor were retrospectively analyzed. We analyzed the location, thickness and the presence or absence of intraluminal gas by consensus of two abdominal radiologists. The positions of normal appendices were classified as type I (postileal and medial paracecal), type II (subcecal), type III (retrocecal and retrocolic or laterocolic), type IV (preileal and medical colic) and type V (lower pelvic cavity). The five types of appendiceal locations were as follows: type I (n = 187; 44%), type II (n 78; 18%), type III (n = 92, 22%), type IV (n = 39; 9%) and type V (n = 31; 7%). The appendiceal tips in 29 cases (7%) were unusually located in the right subhepatic space, the small bowel mesentery and the right adnexa. The mean thickness of 427 appendices was 5.8 ± 0.9 mm (range: 3.8-9.2 mm). The appendiceal mean thickness was 5.9 ± 0.9 mm in men and 5.7 ± 0.9 mm in women (ρ < 0.05). 384 (90%) of 427 appendices had intraluminal gas and 43 (10%) had no intraluminal gas, and their mean thickness was 5.9 mm (range: 3.8-9.2 mm) and 5.3 mm (3.8-7.3 mm), respectively (ρ < 0.05). MDCT with multiplanar reformations was useful for evaluating the location, thickness and the presence or absence of intraluminal gas in normal appendix of adults. These

  18. Effects of Lizhong Tang on gastrointestinal motility in mice.

    Science.gov (United States)

    Lee, Min Cheol; Ha, Wooram; Park, Jinhyeong; Kim, Junghoon; Jung, Yunjin; Kim, Byung Joo

    2016-09-14

    To investigate the effects of Lizhong Tang, a traditional Chinese medicine formula, on gastrointestinal motility in mice. The in vivo effects of Lizhong Tang on GI motility were investigated by measuring the intestinal transit rates (ITRs) and gastric emptying (GE) values in normal mice and in mice with experimentally induced GI motility dysfunction (GMD). In normal ICR mice, the ITR and GE values were significantly and dose-dependently increased by Lizhong Tang (ITR values: 54.4% ± 1.9% vs 65.2% ± 1.8%, P Tang and 54.4% ± 1.9% vs 83.8% ± 1.9%, P Tang; GE values: 60.7% ± 1.9% vs 66.8% ± 2.1%, P Tang and 60.7% ± 1.9% vs 72.5% ± 1.7%, P Tang). The ITRs of the GMD mice were significantly reduced compared with those of the normal mice, which were significantly and dose-dependently reversed by Lizhong Tang. Additionally, in loperamide- and cisplatin-induced models of GE delay, Lizhong Tang administration reversed the GE deficits. These results suggest that Lizhong Tang may be a novel candidate for development as a prokinetic treatment for the GI tract.

  19. Appropriate slice location to assess maximal cross-sectional area of individual rotator cuff muscles in normal adults and athletes

    International Nuclear Information System (INIS)

    Yanagisawa, Osamu; Dohi, Michiko; Okuwaki, Toru; Tawara, Noriyuki; Takahashi, Hideyuki; Niitsu, Mamoru

    2009-01-01

    We investigated appropriate slice locations for magnetic resonance (MR) imaging evaluation of the maximal cross-sectional area (CSA) of individual rotator cuff (RC) muscles in normal adults and athletes. We used a 1.5-tesla MR system with body-array and spine coils to obtain oblique sagittal T 1 -weighted shoulder images of 29 normal adults (16 men, 13 women); 6 national-level competitive swimmers (4 men, 2 women); 10 collegiate-level female badminton players; and 7 collegiate-level male rowers. We calculated the supraspinatus, infraspinatus, teres minor, and subscapularis CSAs at the 0-1 locations on the scapula (dividing scapula width into 11 locations), 0 representing the medial border of the scapula and 1, the glenoid fossa surface. We evaluated the differences in CSAs at relative locations on the scapula for each muscle in normal adults, swimmers, badminton players, and rowers using a one-way analysis of variance followed by the Tukey test (P<0.05). The supraspinatus CSAs were maximal at 0.7 for all groups. The infraspinatus CSAs were maximal at 0.5 for normal men and women and badminton players, 0.4- and 0.5 locations for swimmers, and 0.4 for rowers. The teres minor CSAs were maximal at 0.9 for all groups except the swimmers (1 location). The subscapularis CSAs were maximal at 0.7 in men, swimmers, and badminton players and 0.6 in women and rowers. The appropriate slice locations for evaluating maximal CSAs are slightly lateral to the center of the scapula for the supraspinatus and subscapularis, at approximately the center of the scapula for the infraspinatus, and near the glenoid fossa for the teres minor. These slice locations should be clinically useful for morphological and/or function-related assessments of shoulder RC muscles. (author)

  20. Memory-enhancing effects of Cuscuta japonica Choisy via enhancement of adult hippocampal neurogenesis in mice.

    Science.gov (United States)

    Moon, Minho; Jeong, Hyun Uk; Choi, Jin Gyu; Jeon, Seong Gak; Song, Eun Ji; Hong, Seon-Pyo; Oh, Myung Sook

    2016-09-15

    It is generally accepted that functional and structural changes within the hippocampus are involved in learning and memory and that adult neurogenesis in this region may modulate cognition. The extract of Cuscuta japonica Choisy (CJ) is a well-known traditional Chinese herbal medicine that has been used since ancient times as a rejuvenation remedy. The systemic effects of this herb are widely known and can be applied for the treatment of a number of physiological diseases, but there is a lack of evidence describing its effects on brain function. Thus, the present study investigated whether CJ would enhance memory function and/or increase hippocampal neurogenesis using mice orally administered with CJ water extract or vehicle for 21days. Performance on the novel object recognition and passive avoidance tests revealed that treatment with CJ dose-dependently improved the cognitive function of mice. Additionally, CJ increased the Ki-67-positive proliferating cells and the number of doublecortin-stained neuroblasts in the dentate gyrus (DG) of the hippocampus, and double labeling with 5-bromo-2-deoxyuridine and neuronal specific nuclear protein showed that CJ increased the number of mature neurons in the DG. Finally, CJ resulted in the upregulated expression of neurogenic differentiation factor, which is essential for the maturation and differentiation of granule cells in the hippocampus. Taken together, the present findings indicate that CJ stimulated neuronal cell proliferation, differentiation, and maturation, which are all processes associated with neurogenesis. Additionally, these findings suggest that CJ may improve learning and memory via the enhancement of adult hippocampal neurogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Diffuse traumatic axonal injury in mice induces complex behavioural alterations that are normalized by neutralization of interleukin-1β.

    Science.gov (United States)

    Ekmark-Lewén, Sara; Flygt, Johanna; Fridgeirsdottir, Gudrun A; Kiwanuka, Olivia; Hånell, Anders; Meyerson, Bengt J; Mir, Anis K; Gram, Hermann; Lewén, Anders; Clausen, Fredrik; Hillered, Lars; Marklund, Niklas

    2016-04-01

    Widespread traumatic axonal injury (TAI) results in brain network dysfunction, which commonly leads to persisting cognitive and behavioural impairments following traumatic brain injury (TBI). TBI induces a complex neuroinflammatory response, frequently located at sites of axonal pathology. The role of the pro-inflammatory cytokine interleukin (IL)-1β has not been established in TAI. An IL-1β-neutralizing or a control antibody was administered intraperitoneally at 30 min following central fluid percussion injury (cFPI), a mouse model of widespread TAI. Mice subjected to moderate cFPI (n = 41) were compared with sham-injured controls (n = 20) and untreated, naive mice (n = 9). The anti-IL-1β antibody reached the target brain regions in adequate therapeutic concentrations (up to ~30 μg/brain tissue) at 24 h post-injury in both cFPI (n = 5) and sham-injured (n = 3) mice, with lower concentrations at 72 h post-injury (up to ~18 μg/g brain tissue in three cFPI mice). Functional outcome was analysed with the multivariate concentric square field (MCSF) test at 2 and 9 days post-injury, and the Morris water maze (MWM) at 14-21 days post-injury. Following TAI, the IL-1β-neutralizing antibody resulted in an improved behavioural outcome, including normalized behavioural profiles in the MCSF test. The performance in the MWM probe (memory) trial was improved, although not in the learning trials. The IL-1β-neutralizing treatment did not influence cerebral ventricle size or the number of microglia/macrophages. These findings support the hypothesis that IL-1β is an important contributor to the processes causing complex cognitive and behavioural disturbances following TAI. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Growth factors and medium hyperglycemia induce Sox9+ ductal cell differentiation into β cells in mice with reversal of diabetes

    Science.gov (United States)

    Zhang, Mingfeng; Lin, Qing; Qi, Tong; Wang, Tiankun; Chen, Ching-Cheng; Riggs, Arthur D.; Zeng, Defu

    2016-01-01

    We previously reported that long-term administration of a low dose of gastrin and epidermal growth factor (GE) augments β-cell neogenesis in late-stage diabetic autoimmune mice after eliminating insulitis by induction of mixed chimerism. However, the source of β-cell neogenesis is still unknown. SRY (sex-determining region Y)-box 9+ (Sox9+) ductal cells in the adult pancreas are clonogenic and can give rise to insulin-producing β cells in an in vitro culture. Whether Sox9+ ductal cells in the adult pancreas can give rise to β cells in vivo remains controversial. Here, using lineage-tracing with genetic labeling of Insulin- or Sox9-expressing cells, we show that hyperglycemia (>300 mg/dL) is required for inducing Sox9+ ductal cell differentiation into insulin-producing β cells, and medium hyperglycemia (300–450 mg/dL) in combination with long-term administration of low-dose GE synergistically augments differentiation and is associated with normalization of blood glucose in nonautoimmune diabetic C57BL/6 mice. Short-term administration of high-dose GE cannot augment differentiation, although it can augment preexisting β-cell replication. These results indicate that medium hyperglycemia combined with long-term administration of low-dose GE represents one way to induce Sox9+ ductal cell differentiation into β cells in adult mice. PMID:26733677

  3. An anatomical study of normal variations of circle of Willis in 132 fetus, newborn and adult

    Directory of Open Access Journals (Sweden)

    Bateni F

    2009-09-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: Several studies have investigated the variations in the anatomy of each segment of circle of Willis whereas a few have addressed the variations of this arterial circle as a whole. In this study the entire circle of Willis and its variations were studied in a cohort of Iranian people and compared with previous reports."n"nMethods: Anatomical variations of the circle of Willis in 132 brains of Iranian cadavers (102 male adults and 30 fetuses and infants were studied. The dissection process was digitally filmed for further studies. Using computer software the external diameters of the vessels were measured and the circle variations were classified. The variations of the circle as a whole and segmental variations were compared with previous studies. "n"nResults: Uni-and bilateral hypoplasia of posterior communicating arteries (PcoAs constituted the most common variation in our study which was similar to previous works. Aplasia of the anterior cerebral artery (A1 and the posterior cerebral artery (P1 were not observed. In 3.3% of fetuses and infants and 3% of adult instances both right and left posterior communicating arteries were absent. There was one case of anterior communicating artery (AcoA aplasia in

  4. Vocal ontogeny in neotropical singing mice (Scotinomys.

    Directory of Open Access Journals (Sweden)

    Polly Campbell

    Full Text Available Isolation calls produced by dependent young are a fundamental form of communication. For species in which vocal signals remain important to adult communication, the function and social context of vocal behavior changes dramatically with the onset of sexual maturity. The ontogenetic relationship between these distinct forms of acoustic communication is surprisingly under-studied. We conducted a detailed analysis of vocal development in sister species of Neotropical singing mice, Scotinomys teguina and S. xerampelinus. Adult singing mice are remarkable for their advertisement songs, rapidly articulated trills used in long-distance communication; the vocal behavior of pups was previously undescribed. We recorded 30 S. teguina and 15 S. xerampelinus pups daily, from birth to weaning; 23 S. teguina and 11 S. xerampelinus were recorded until sexual maturity. Like other rodent species with poikilothermic young, singing mice were highly vocal during the first weeks of life and stopped vocalizing before weaning. Production of first advertisement songs coincided with the onset of sexual maturity after a silent period of ≧2 weeks. Species differences in vocal behavior emerged early in ontogeny and notes that comprise adult song were produced from birth. However, the organization and relative abundance of distinct note types was very different between pups and adults. Notably, the structure, note repetition rate, and intra-individual repeatability of pup vocalizations did not become more adult-like with age; the highly stereotyped structure of adult song appeared de novo in the first songs of young adults. We conclude that, while the basic elements of adult song are available from birth, distinct selection pressures during maternal dependency, dispersal, and territorial establishment favor major shifts in the structure and prevalence of acoustic signals. This study provides insight into how an evolutionarily conserved form of acoustic signaling provides

  5. Radioresistant CD4+ T cells in normal, unprimed mice, with verification of the Bergonie-Tribondeau law

    International Nuclear Information System (INIS)

    Makidono, Reiko; Ito, Akira.

    1997-01-01

    This is the first report on radioresistant CD4+ T cells found in normal, unprimed mice. After sublethal whole body irradiation, regular CD4+ as well as primitive NK1.1+ CD4+ T cells were enriched in the spleen. Since it has been well established that virgin T and B cells are highly radiosensitive, these cells were once assumed to be a unique lymphocyte population for which radiosensitivity does not follow the general law of radiation sensitivity for mammalian cells (Bergonie-Tribondeau law). These cells exhibited higher proliferative response to accessory cells than the non-irradiated control cells in the syngeneic mixed leukocyte reaction (SMLR). This indicated that virgin CD4+ T cells sensitized to, and readily respond to self-MHC class II molecules are radioresistant, and that their radioresistance, as activated cells, is consistent with the Bergonie-Tribondeau law. (author)

  6. Gestational Exposure to Bisphenol A Affects the Function and Proteome Profile of F1 Spermatozoa in Adult Mice.

    Science.gov (United States)

    Rahman, Md Saidur; Kwon, Woo-Sung; Karmakar, Polash Chandra; Yoon, Sung-Jae; Ryu, Buom-Yong; Pang, Myung-Geol

    2017-02-01

    Maternal exposure to the endocrine disruptor bisphenol A (BPA) has been linked to offspring reproductive abnormalities. However, exactly how BPA affects offspring fertility remains poorly understood. The aim of the present study was to evaluate the effects of gestational BPA exposure on sperm function, fertility, and proteome profile of F1 spermatozoa in adult mice. Pregnant CD-1 mice (F0) were gavaged with BPA at three different doses (50 μg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on embryonic days 7 to 14. We investigated the function, fertility, and related processes of F1 spermatozoa at postnatal day 120. We also evaluated protein profiles of F1 spermatozoa to monitor their functional affiliation to disease. BPA inhibited sperm count, motility parameters, and intracellular ATP levels in a dose-dependent manner. These effects appeared to be caused by reduced numbers of stage VIII seminiferous epithelial cells in testis and decreased protein kinase A (PKA) activity and tyrosine phosphorylation in spermatozoa. We also found that BPA compromised average litter size. Proteins differentially expressed in spermatozoa from BPA treatment groups are known to play a critical role in ATP generation, oxidative stress response, fertility, and in the pathogenesis of several diseases. Our study provides mechanistic support for the hypothesis that gestational exposure to BPA alters sperm function and fertility via down-regulation of tyrosine phosphorylation through a PKA-dependent mechanism. In addition, we anticipate that the BPA-induced changes in the sperm proteome might be partly responsible for the observed effects in spermatozoa. Citation: Rahman MS, Kwon WS, Karmakar PC, Yoon SJ, Ryu BY, Pang MG. 2017. Gestational exposure to bisphenol-A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ Health Perspect 125:238-245; http://dx.doi.org/10.1289/EHP378.

  7. Early and late effects of Ibuprofen on mouse sperm parameters, chromatin condensation, and DNA integrity in mice.

    Science.gov (United States)

    Roodbari, Fatemeh; Abedi, Nahid; Talebi, Ali Reza

    2015-11-01

    There are few studies indicating the detrimental effects of ibuprofen on sperm fertility potential and DNA integrity. To determine the effects of Ibuprofen on sperm parameters, chromatin condensation and DNA integrity of mice. In this experimental study, 36 adult male mice with average weight 37 gr were divided into three groups, including control (group I, n=12), normal dosage of ibuprofen (group II, n=12) and high dosage (group III, n=12). Ibuprofen with different doses was dissolved in daily water of animals. After 35, 70 and 105 days, the cauda epididymis of mice were cut and incubated in Ham's F10 media. Sperm samples were analyzed for parameters (motility, morphology and count), DNA integrity (SCD test) and chromatin condensation (chromomycin A3 and Aniline blue staining). After 35 days, in addition to above mentioned sperm parameters, all of the treated mice showed statistically significant increase in spermatozoa with immature chromatin (Psperm DNA fragmentation assessed by SCD was increased in group II (66.5±0.7) and the percentage of immature spermatozoa (AB(+) and CMA3(+)) was higher in group III (77.5±0.7 and 49.5±6.3 respectively) than other groups. After 105 days, the AB(+) spermatozoa were increased in both normal dose and high dose groups. Ibuprofen may cause a significant reduction in sperm parameters and sperm chromatin/DNA integrity in mice. It should be noted that these deleterious effects are dose-dependent and can be seen in early and late stage of drug treatments.

  8. Increasing adult hippocampal neurogenesis in mice after exposure to unpredictable chronic mild stress may counteract some of the effects of stress.

    Science.gov (United States)

    Culig, Luka; Surget, Alexandre; Bourdey, Marlene; Khemissi, Wahid; Le Guisquet, Anne-Marie; Vogel, Elise; Sahay, Amar; Hen, René; Belzung, Catherine

    2017-11-01

    Major depression is hypothesized to be associated with dysregulations of the hypothalamic-pituitary-adrenal (HPA) axis and impairments in adult hippocampal neurogenesis. Adult-born hippocampal neurons are required for several effects of antidepressants and increasing the rate of adult hippocampal neurogenesis (AHN) before exposure to chronic corticosterone is sufficient to protect against its harmful effects on behavior. However, it is an open question if increasing AHN after the onset of chronic stress exposure would be able to rescue behavioral deficits and which mechanisms might be involved in recovery. We investigated this question by using a 10-week unpredictable chronic mild stress (UCMS) model on a transgenic mouse line (iBax mice), in which the pro-apoptotic gene Bax can be inducibly ablated in neural stem cells following Tamoxifen injection, therefore enhancing the survival of newborn neurons in the adult brain. We did not observe any effect of our treatment in non-stress conditions, but we did find that increasing AHN after 2 weeks of UCMS is sufficient to counteract the effects of UCMS on certain behaviors (splash test and changes in coat state) and endocrine levels and thus to display some antidepressant-like effects. We observed that increasing AHN lowered the elevated basal corticosterone levels in mice exposed to UCMS. This was accompanied by a tamoxifen-induced reversal of the lack of stress-induced decrease in neuronal activation in the anteromedial division of the bed nucleus of the stria terminalis (BSTMA) after intrahippocampal dexamethasone infusion, pointing to a possible mechanism through which adult-born neurons might have exerted their effects. Our results contribute to the neurogenesis hypothesis of depression by suggesting that increasing AHN may be beneficial not just before, but also after exposure to stress by counteracting several of its effects, in part through regulating the HPA axis. Copyright © 2017 Elsevier Ltd. All rights

  9. Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice.

    Science.gov (United States)

    Quirin, Kayla A; Kwon, Jason J; Alioufi, Arafat; Factora, Tricia; Temm, Constance J; Jacobsen, Max; Sandusky, George E; Shontz, Kim; Chicoine, Louis G; Clark, K Reed; Mendell, Joshua T; Korc, Murray; Kota, Janaiah

    2018-03-16

    Recombinant adeno-associated virus (rAAV)-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9) expressing GFP in a self-complementary (sc) AAV vector under an EF1α promoter (scAAV.GFP) following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 10 12 viral genomes (vg). Intraductal delivery of 1 × 10 11 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 10 11 vg. In a Kras G12D -driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.

  10. Safety and Efficacy of AAV Retrograde Pancreatic Ductal Gene Delivery in Normal and Pancreatic Cancer Mice

    Directory of Open Access Journals (Sweden)

    Kayla A. Quirin

    2018-03-01

    Full Text Available Recombinant adeno-associated virus (rAAV-mediated gene delivery shows promise to transduce the pancreas, but safety/efficacy in a neoplastic context is not well established. To identify an ideal AAV serotype, route, and vector dose and assess safety, we have investigated the use of three AAV serotypes (6, 8, and 9 expressing GFP in a self-complementary (sc AAV vector under an EF1α promoter (scAAV.GFP following systemic or retrograde pancreatic intraductal delivery. Systemic delivery of scAAV9.GFP transduced the pancreas with high efficiency, but gene expression did not exceed >45% with the highest dose, 5 × 1012 viral genomes (vg. Intraductal delivery of 1 × 1011 vg scAAV6.GFP transduced acini, ductal cells, and islet cells with >50%, ∼48%, and >80% efficiency, respectively, and >80% pancreatic transduction was achieved with 5 × 1011 vg. In a KrasG12D-driven pancreatic cancer mouse model, intraductal delivery of scAAV6.GFP targeted acini, epithelial, and stromal cells and exhibited persistent gene expression 5 months post-delivery. In normal mice, intraductal delivery induced a transient increase in serum amylase/lipase that resolved within a day of infusion with no sustained pancreatic inflammation or fibrosis. Similarly, in PDAC mice, intraductal delivery did not increase pancreatic intraepithelial neoplasia progression/fibrosis. Our study demonstrates that scAAV6 targets the pancreas/neoplasm efficiently and safely via retrograde pancreatic intraductal delivery.

  11. Developmental Exposure to Second-Hand Smoke Increases Adult Atherogenesis and Alters Mitochondrial DNA Copy Number and Deletions in apoE−/− Mice

    Science.gov (United States)

    Fetterman, Jessica L.; Pompilius, Melissa; Westbrook, David G.; Uyeminami, Dale; Brown, Jamelle; Pinkerton, Kent E.; Ballinger, Scott W.

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality in the United States. While many studies have focused upon the effects of adult second-hand smoke exposure on cardiovascular disease development, disease development occurs over decades and is likely influenced by childhood exposure. The impacts of in utero versus neonatal second-hand smoke exposure on adult atherosclerotic disease development are not known. The objective of the current study was to determine the effects of in utero versus neonatal exposure to a low dose (1 mg/m3 total suspended particulate) of second-hand smoke on adult atherosclerotic lesion development using the apolipoprotein E null mouse model. Consequently, apolipoprotein E null mice were exposed to either filtered air or second-hand smoke: (i) in utero from gestation days 1–19, or (ii) from birth until 3 weeks of age (neonatal). Subsequently, all animals were exposed to filtered air and sacrificed at 12–14 weeks of age. Oil red-O staining of whole aortas, measures of mitochondrial damage, and oxidative stress were performed. Results show that both in utero and neonatal second-hand smoke exposure significantly increased adult atherogenesis in mice compared to filtered air controls. These changes were associated with changes in aconitase and mitochondrial superoxide dismutase activities consistent with increased oxidative stress in the aorta, changes in mitochondrial DNA copy number and deletion levels. These studies show that in utero or neonatal exposure to second-hand smoke significantly influences adult atherosclerotic lesion development and results in significant alterations to the mitochondrion and its genome that may contribute to atherogenesis. PMID:23825571

  12. Telomere erosion varies during in vitro aging of normal human fibroblasts from young and adult donors.

    Science.gov (United States)

    Figueroa, R; Lindenmaier, H; Hergenhahn, M; Nielsen, K V; Boukamp, P

    2000-06-01

    The life span of normal fibroblasts in vitro (Hayflick limit) depends on donor age, and telomere shortening has been proposed as a potential mechanism. By quantitative fluorescence in situ hybridization and Southern blot analysis, we show progressive telomere loss to about 5 kb mean telomere restriction fragment length in fibroblasts from two adult donors within 40 population doublings, whereas in fibroblasts from two infant donors, telomere erosion is reduced, leaving a mean telomere restriction fragment length of approximately 7 kb at senescence (after approximately 60 population doublings). Aging of fibroblasts from both infant and adult donors was not accompanied by chromosomal abnormalities but was correlated with increased telomere repeat-binding factor 2 expression at both the protein and transcriptional level.

  13. Prolongation of chemically-induced methemoglobinemia in mice lacking α-synuclein: A novel pharmacologic and toxicologic phenotype

    Directory of Open Access Journals (Sweden)

    Yien-Ming Kuo

    2015-01-01

    Full Text Available The protein α-synuclein is considered central to the pathogenesis of Parkinson disease (PD on genetic and histopathological grounds. It is widely expressed in fetal life and continues to be highly expressed in adult neural tissues, red blood cells and platelets, while the remainder of adult tissues are reported to have little or no expression. Despite cellular and molecular evidence for a role in neuronal function including synaptic vesicle trafficking, neurotransmitter release, mitochondrial function, lipid metabolism, neurogenesis, neuroprotection, and neuromelanin biosynthesis, mice ablated for the gene encoding α-synuclein (Snca have little or no neurological phenotype. Thus, nearly 20 years of intensive study have yet to reveal conclusively what the normal function of this highly abundant protein is in the nervous system. Interestingly, α-synuclein has also been shown to have enzymatic activity as a ferrireductase capable of reducing Fe+3 to Fe+2. Given its abundant expression in red blood cells, we set out to explore the role of α-synuclein in converting chemically-induced Fe+3 methemoglobin to normal Fe+2 hemoglobin. Initial in vivo experiments with the potent methemoglobin inducer, para-aminopropiophenone and its active metabolite, 4-hydroxy para-aminopropiophenone, demonstrated significantly greater and more prolonged methemoglobinemia in Snca−/− mice compared to Snca+/+ mice. In vitro experiments with red blood cells, however, and in vivo experiments in genetically engineered mouse strains that differ in their α-synuclein expression in various tissues, including the nervous system, red blood cells and liver, revealed that contrary to the initial hypothesis, a lack of expression of α-synuclein in red blood cells did not correlate with higher levels or more prolonged duration of methemoglobinemia. Instead, the greater sensitivity to chemically induced methemoglobinemia correlated with the absence of hepatic

  14. Acquisition of steady-state operant behavior in long-living Ames Dwarf mice.

    Science.gov (United States)

    Derenne, Adam; Brown-Borg, Holly; Feltman, Kathryn; Corbett, Grant; Lackman, Serena

    2011-10-24

    Ames dwarf mice have a Prop-1 mutation that has been identified with increased levels of IGF-I in the central nervous system, upregulation of neuroprotective systems, and increased lifespan. To elucidate the behavioral effects of the Prop-1 mutation, 8 Ames dwarf and 7 normal mice (all of whom were 8 months of age or younger) were compared on a differential-reinforcement-of-low-rate-of-responding schedule of reinforcement and a matching-to-sample task. On both tasks, nosepokes were reinforced with access to a saccharin solution. Comparisons were based on several measures of behavioral efficiency: pause durations, intertrial intervals, and numbers of responses. Ames dwarf mice were generally less efficient than normal mice. One possible cause of this outcome is that relatively young Ames dwarf mice show less cognitive development than age-matched normal mice. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Effect of Jiangzhi tablet on gastrointestinal propulsive function in mice

    Science.gov (United States)

    Wang, Xiangrong; Geng, Xiuli; Zhao, Jingsheng; Fan, Lili; Zhang, Zhengchen

    2018-04-01

    This paper aims to study the effect of lipid-lowering tablets on gastric emptying and small intestinal propulsion in mice. Mice were randomly divided into control group, Digestant Pill group, Jiangzhi tablet group, middle dose and small dose, the mice gastric emptying phenolsulfonphthalein, gastric residual rate of phenol red indicator to evaluate the gastric emptying rate, residual rate of detection in mouse stomach; small intestine propulsion and selection of carbon ink as the experimental index. Effects were observed to promote the function of normal mice gastric emptying and intestine. The gastric emptying and small intestinal motor function of normal mice were all promoted by each administration group, and the effect was most obvious in small dose group. The effect of reducing blood lipid on gastrointestinal motility of mice ware obviously enhanced.

  16. Changes in VEGF expression and DNA synthesis in hepatocytes from hepatectomized and tumour-bearing mice.

    Science.gov (United States)

    García, Marcela N; Andrini, Laura B; Inda, Ana María; Ronderos, Jorge R; Hijano, Julio C; Errecalde, Ana Lía

    2010-02-05

    Transplanted tumours could modify the intensity and temporal distribution of the cellular proliferation in normal cell populations, and partial hepatectomy alters the serum concentrations of substances involved in cellular proliferation, leading to the compensatory liver hyperplasia. The following experiments were designed in order to study the SI (S-phase index) and VEGF (vascular endothelial growth factor) expression in regenerating liver (after partial hepatectomy) of adult male mice bearing a hepatocellular carcinoma, throughout one complete circadian cycle. We used adult male C3H/S-strain mice. After an appropriate period of synchronization, the C3H/S-histocompatible ES2a hepatocellular carcinoma was grafted into the subcutaneous tissue of each animal's flank. To determine the index of SI and VEGF expression of hepatocytes, we used immunohistochemistry. The animals were divided into two experimental groups: Group I, control, hepatectomized animals; Group II, hepatectomized tumour-bearing animals. The statistical analysis of SI and VEGF expression was performed using Anova and Tukey as a postcomparison test. The results show that in the second group, the curve of SI changes the time points for maximum and minimum activity, and the peak of VEGF expression appears before the first group. In conclusion, in the hepatectomized mice, the increases of hepatic proliferation, measured by the SI index, may produce a rise in VEGF expression with the object of generating a vascular network for hepatic regeneration. Lastly, as we have mentioned, in hepatectomized and tumour-bearing mice, the peak of VEGF expression appears before the one of DNA synthesis.

  17. Effects of methamphetamine exposure on anxiety-like behavior in the open field test, corticosterone, and hippocampal tyrosine hydroxylase in adolescent and adult mice.

    Science.gov (United States)

    Struntz, Katelyn H; Siegel, Jessica A

    2018-08-01

    Methamphetamine (MA) is a psychomotor stimulant drug that can alter behavior, the stress response system, and the dopaminergic system. The effects of MA can be modulated by age, however relatively little research has examined the acute effects of MA in adolescents and how the effects compare to those found in adults. The hippocampal dopamine system is altered by MA exposure and can modulate anxiety-like behavior, but the effects of MA on the hippocampal dopamine system have not been well studied, especially in adolescent animals. In order to assess potential age differences in the effects of MA exposure, this research examined the effects of acute MA exposure on locomotor and anxiety-like behavior in the open field test, plasma corticosterone levels, and hippocampal total tyrosine hydroxylase and phosphorylated tyrosine hydroxylase levels in adolescent and adult male C57BL/6 J mice. Tyrosine hydroxylase is the rate limiting enzyme in the synthesis of dopamine and was used as a marker of the hippocampal dopaminergic system. Mice were exposed to saline or 4 mg/kg MA and locomotor and anxiety-like behavior were measured in the open field test. Serum and brains were collected immediately after testing and plasma corticosterone and hippocampal total tyrosine hydroxylase and phosphorylated tyrosine hydroxylase levels measured. MA-exposed mice showed increased locomotor activity and anxiety-like behavior in the open field test compared with saline controls, regardless of age. There was no effect of MA on plasma corticosterone levels or hippocampal total tyrosine hydroxylase or phosphorylated tyrosine hydroxylase levels in either adolescent or adult mice. These data suggest that acute MA exposure during adolescence and adulthood increases locomotor activity and anxiety-like behavior but does not alter plasma corticosterone levels or hippocampal total tyrosine hydroxylase or phosphorylated tyrosine hydroxylase levels, and that these effects are not modulated by age

  18. Distribution and ultrastructure of pigment cells in the skins of normal and albino adult turbot, Scophthalmus Maximus

    Institute of Scientific and Technical Information of China (English)

    GUO Huarong; HUANG Bing; QI Fei; ZHANG Shicui

    2007-01-01

    The distribution and ultrastructure of pigment cells in skins of normal and albino adult turbots were examined with transmission electron microscopy (TEM). Three types of pigment cells of melanophore, iridophore and xanthophore have been recognized in adult turbot skins. The skin color depends mainly on the amount and distribution of melanophore and iridophore, as xanthophore is quite rare. No pigment cells can be found in the epidermis of the skins. In the pigmented ocular skin of the turbot, melanophore and iridophore are usually co-localized in the dermis. This is quite different from the distribution in larvae skin. In albino and white blind skins of adult turbots, however, only iridophore monolayer still exists, while the melanophore monolayer disappears. This cytological evidence explains why the albino adult turbot, unlike its larvae, could never resume its body color no matter what environmental and nutritional conditions were provided. Endocytosis is quite active in the cellular membrane of the iridophore. This might be related to the formation of reflective platelet and stability of the iridophore.

  19. Glucose hypometabolism is highly localized, but lower cortical thickness and brain atrophy are widespread in cognitively normal older adults.

    Science.gov (United States)

    Nugent, Scott; Castellano, Christian-Alexandre; Goffaux, Philippe; Whittingstall, Kevin; Lepage, Martin; Paquet, Nancy; Bocti, Christian; Fulop, Tamas; Cunnane, Stephen C

    2014-06-01

    Several studies have suggested that glucose hypometabolism may be present in specific brain regions in cognitively normal older adults and could contribute to the risk of subsequent cognitive decline. However, certain methodological shortcomings, including a lack of partial volume effect (PVE) correction or insufficient cognitive testing, confound the interpretation of most studies on this topic. We combined [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography (PET) and magnetic resonance (MR) imaging to quantify cerebral metabolic rate of glucose (CMRg) as well as cortical volume and thickness in 43 anatomically defined brain regions from a group of cognitively normal younger (25 ± 3 yr old; n = 25) and older adults (71 ± 9 yr old; n = 31). After correcting for PVE, we observed 11-17% lower CMRg in three specific brain regions of the older group: the superior frontal cortex, the caudal middle frontal cortex, and the caudate (P ≤ 0.01 false discovery rate-corrected). In the older group, cortical volumes and cortical thickness were 13-33 and 7-18% lower, respectively, in multiple brain regions (P ≤ 0.01 FDR correction). There were no differences in CMRg between individuals who were or were not prescribed antihypertensive medication. There were no significant correlations between CMRg and cognitive performance or metabolic parameters measured in fasting plasma. We conclude that highly localized glucose hypometabolism and widespread cortical thinning and atrophy can be present in older adults who are cognitively normal, as assessed using age-normed neuropsychological testing measures. Copyright © 2014 the American Physiological Society.

  20. Validation of endogenous normalizing genes for expression analyses in adult human testis and germ cell neoplasms.

    Science.gov (United States)

    Svingen, T; Jørgensen, A; Rajpert-De Meyts, E

    2014-08-01

    The measurement of gene expression levels in cells and tissues typically depends on a suitable point of reference for inferring biological relevance. For quantitative (or real-time) RT-PCR assays, the method of choice is often to normalize gene expression data to an endogenous gene that is stably expressed across the samples analysed: a so-called normalizing or housekeeping gene. Although this is a valid strategy, the identification of stable normalizing genes has proved challenging and a gene showing stable expression across all cells or tissues is unlikely to exist. Therefore, it is necessary to define suitable normalizing genes for specific cells and tissues. Here, we report on the performance of a panel of nine commonly employed normalizing genes in adult human testis and testicular pathologies. Our analyses revealed significant variability in transcript abundance for commonly used normalizers, highlighting the importance of selecting appropriate normalizing genes as comparative measurements can yield variable results when different normalizing genes are employed. Based on our results, we recommend using RPS20, RPS29 or SRSF4 when analysing relative gene expression levels in human testis and associated testicular pathologies. OCT4 and SALL4 can be used with caution as second-tier normalizers when determining changes in gene expression in germ cells and germ cell tumour components, but the relative transcript abundance appears variable between different germ cell tumour types. We further recommend that such studies should be accompanied by additional assessment of histology and cellularity of each sample. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses.

    Science.gov (United States)

    Clark, Erica S; Flannery, Brenna M; Gardner, Elizabeth M; Pestka, James J

    2015-10-19

    Deoxynivalenol (DON), a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos) and adult (3 mos) mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg) and dietary (1, 2.5, 10 ppm) DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes.

  2. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses

    Directory of Open Access Journals (Sweden)

    Erica S. Clark

    2015-10-01

    Full Text Available Deoxynivalenol (DON, a trichothecene mycotoxin that commonly contaminates cereal grains, is a public health concern because of its adverse effects on the gastrointestinal and immune systems. The objective of this study was to compare effects of DON on anorectic responses in aged (22 mos and adult (3 mos mice. Aged mice showed increased feed refusal with both acute i.p. (1 mg/kg and 5 mg/kg and dietary (1, 2.5, 10 ppm DON exposure in comparison to adult mice. In addition to greater suppression of food intake from dietary DON exposure, aged mice also exhibited greater but transient body weight suppression. When aged mice were acutely exposed to 1 mg/kg bw DON i.p., aged mice displayed elevated DON and DON3GlcA tissue levels and delayed clearance in comparison with adult mice. Acute DON exposure also elicited higher proinflammatory cytokine and satiety hormone responses in the plasma of the aged group compared with the adult group. Increased susceptibility to DON-induced anorexia in aged mice relative to adult mice suggests that advanced life stage could be a critical component in accurate human risk assessments for DON and other trichothecenes.

  3. Normal levels of anticoagulant heparan sulfate are not essential for normal hemostasis

    Science.gov (United States)

    HajMohammadi, Sassan; Enjyoji, Keiichi; Princivalle, Marc; Christi, Patricia; Lech, Miroslav; Beeler, David; Rayburn, Helen; Schwartz, John J.; Barzegar, Samad; de Agostini, Ariane I.; Post, Mark J.; Rosenberg, Robert D.; Shworak, Nicholas W.

    2003-01-01

    Endothelial cell production of anticoagulant heparan sulfate (HSact) is controlled by the Hs3st1 gene, which encodes the rate-limiting enzyme heparan sulfate 3-O-sulfotransferase-1 (3-OST-1). In vitro, HSact dramatically enhances the neutralization of coagulation proteases by antithrombin. The in vivo role of HSact was evaluated by generating Hs3st1–/– knockout mice. Hs3st1–/– animals were devoid of 3-OST-1 enzyme activity in plasma and tissue extracts. Nulls showed dramatic reductions in tissue levels of HSact but maintained wild-type levels of tissue fibrin accumulation under both normoxic and hypoxic conditions. Given that vascular HSact predominantly occurs in the subendothelial matrix, mice were subjected to a carotid artery injury assay in which ferric chloride administration induces de-endothelialization and occlusive thrombosis. Hs3st1–/– and Hs3st1+/+ mice yielded indistinguishable occlusion times and comparable levels of thrombin•antithrombin complexes. Thus, Hs3st1–/– mice did not show an obvious procoagulant phenotype. Instead, Hs3st1–/– mice exhibited genetic background–specific lethality and intrauterine growth retardation, without evidence of a gross coagulopathy. Our results demonstrate that the 3-OST-1 enzyme produces the majority of tissue HSact. Surprisingly, this bulk of HSact is not essential for normal hemostasis in mice. Instead, 3-OST-1–deficient mice exhibited unanticipated phenotypes suggesting that HSact or additional 3-OST-1–derived structures may serve alternate biologic roles. PMID:12671048

  4. Exposure to chronic variable social stress during adolescence alters affect-related behaviors and adrenocortical activity in adult male and female inbred mice.

    Science.gov (United States)

    Caruso, Michael J; Kamens, Helen M; Cavigelli, Sonia A

    2017-09-01

    Rodent models provide valuable insight into mechanisms that underlie vulnerability to adverse effects of early-life challenges. Few studies have evaluated sex differences in anxiogenic or depressogenic effects of adolescent social stress in a rodent model. Furthermore, adolescent stress studies often use genetically heterogeneous outbred rodents which can lead to variable results. The current study evaluated the effects of adolescent social stress in male and female inbred (BALB/cJ) mice. Adolescent mice were exposed to repeat cycles of alternating social isolation and social novelty for 4 weeks. Adolescent social stress increased anxiety-related behaviors in both sexes and depression-related behavior in females. Locomotion/exploratory behavior was also decreased in both sexes by stress. Previously stressed adult mice produced less basal fecal corticosteroids than controls. Overall, the novel protocol induced sex-specific changes in anxiety- and depression-related behaviors and corticoid production in inbred mice. The chronic variable social stress protocol used here may be beneficial to systematically investigate sex-specific neurobiological mechanisms underlying adolescent stress vulnerability where genetic background can be controlled. © 2017 Wiley Periodicals, Inc.

  5. Loss of long-term depression in the insular cortex after tail amputation in adult mice.

    Science.gov (United States)

    Liu, Ming-Gang; Zhuo, Min

    2014-01-08

    The insular cortex (IC) is an important forebrain structure involved in pain perception and taste memory formation. Using a 64-channel multi-electrode array system, we recently identified and characterized two major forms of synaptic plasticity in the adult mouse IC: long-term potentiation (LTP) and long-term depression (LTD). In this study, we investigate injury-related metaplastic changes in insular synaptic plasticity after distal tail amputation. We found that tail amputation in adult mice produced a selective loss of low frequency stimulation-induced LTD in the IC, without affecting (RS)-3,5-dihydroxyphenylglycine (DHPG)-evoked LTD. The impaired insular LTD could be pharmacologically rescued by priming the IC slices with a lower dose of DHPG application, a form of metaplasticity which involves activation of protein kinase C but not protein kinase A or calcium/calmodulin-dependent protein kinase II. These findings provide important insights into the synaptic mechanisms of cortical changes after peripheral amputation and suggest that restoration of insular LTD may represent a novel therapeutic strategy against the synaptic dysfunctions underlying the pathophysiology of phantom pain.

  6. Detection of normal plantar fascia thickness in adults via the ultrasonographic method.

    Science.gov (United States)

    Abul, Kadir; Ozer, Devrim; Sakizlioglu, Secil Sezgin; Buyuk, Abdul Fettah; Kaygusuz, Mehmet Akif

    2015-01-01

    Heel pain is a prevalent concern in orthopedic clinics, and there are numerous pathologic abnormalities that can cause heel pain. Plantar fasciitis is the most common cause of heel pain, and the plantar fascia thickens in this process. It has been found that thickening to greater than 4 mm in ultrasonographic measurements can be accepted as meaningful in diagnoses. Herein, we aimed to measure normal plantar fascia thickness in adults using ultrasonography. We used ultrasonography to measure the plantar fascia thickness of 156 healthy adults in both feet between April 1, 2011, and June 30, 2011. These adults had no previous heel pain. The 156 participants comprised 88 women (56.4%) and 68 men (43.6%) (mean age, 37.9 years; range, 18-65 years). The weight, height, and body mass index of the participants were recorded, and statistical analyses were conducted. The mean ± SD (range) plantar fascia thickness measurements for subgroups of the sample were as follows: 3.284 ± 0.56 mm (2.4-5.1 mm) for male right feet, 3.3 ± 0.55 mm (2.5-5.0 mm) for male left feet, 2.842 ± 0.42 mm (1.8-4.1 mm) for female right feet, and 2.8 ± 0.44 mm (1.8-4.3 mm) for female left feet. The overall mean ± SD (range) thickness for the right foot was 3.035 ± 0.53 mm (1.8-5.1 mm) and for the left foot was 3.053 ± 0.54 mm (1.8-5.0 mm). There was a statistically significant and positive correlation between plantar fascia thickness and participant age, weight, height, and body mass index. The plantar fascia thickness of adults without heel pain was measured to be less than 4 mm in most participants (~92%). There was no statistically significant difference between the thickness of the right and left foot plantar fascia.

  7. Hypothalamic-pituitary thyroid axis alterations in female mice with deletion of the neuromedin B receptor gene.

    Science.gov (United States)

    Oliveira, Karen J; Paula, Gabriela S M; Império, Guinever E; Bressane, Nina O; Magalhães, Carolina M A; Miranda-Alves, Leandro; Ortiga-Carvalho, Tania M; Pazos-Moura, Carmen C

    2014-11-01

    Neuromedin B, a peptide highly expressed at the pituitary, has been shown to act as autocrine/paracrine inhibitor of thyrotropin (TSH) release. Here we studied the thyroid axis of adult female mice lacking neuromedin B receptor (NBR-KO), compared to wild type (WT) littermates. They exhibited slight increase in serum TSH (18%), with normal pituitary expression of mRNA coding for α-glycoprotein subunit (Cga), but reduced TSH β-subunit mRNA (Tshb, 41%), lower intra-pituitary TSH content (24%) and increased thyroid hormone transporter MCT-8 (Slc16a2, 44%) and thyroid hormone receptor β mRNA expression (Thrb, 39%). NBR-KO mice exhibited normal thyroxine (T4) and reduced triiodothyronine (T3) (30%), with no alterations in the intra-thyroidal content of T4 and T3 or thyroid morphological changes. Hypothalamic thyrotropin-releasing hormone (TRH) mRNA (Trh) was increased (68%), concomitant with a reduction in type 2 deiodinase mRNA (Dio2, 30%) and no changes in MCT-8 and thyroid hormone receptor mRNA expression. NBR-KO mice exhibited a 56% higher increase in serum TSH in response to an acute single intraperitoneal injection of TRH concomitant with a non-significant increase in pituitary TRH receptor (Trhr) mRNA at basal state. The phenotype of female NBR-KO mice at the hypothalamus-pituitary axis revealed alterations in pituitary and hypothalamic gene expression, associated with reduced serum T3, and higher TSH response to TRH, with apparently normal thyroid morphology and hormonal production. Thus, results confirm that neuromedin B pathways are importantly involved in secretory pathways of TSH and revealed its participation in the in vivo regulation of gene expression of TSH β-subunit and pituitary MCT8 and Thrb and hypothalamic TRH and type 2 deiodinase. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Generation and characterization of mice carrying a conditional allele of the Wwox tumor suppressor gene.

    Directory of Open Access Journals (Sweden)

    John H Ludes-Meyers

    2009-11-01

    Full Text Available WWOX, the gene that spans the second most common human chromosomal fragile site, FRA16D, is inactivated in multiple human cancers and behaves as a suppressor of tumor growth. Since we are interested in understanding WWOX function in both normal and cancer tissues we generated mice harboring a conditional Wwox allele by flanking Exon 1 of the Wwox gene with LoxP sites. Wwox knockout (KO mice were developed by breeding with transgenic mice carrying the Cre-recombinase gene under the control of the adenovirus EIIA promoter. We found that Wwox KO mice suffered from severe metabolic defect(s resulting in growth retardation and all mice died by 3 wk of age. All Wwox KO mice displayed significant hypocapnia suggesting a state of metabolic acidosis. This finding and the known high expression of Wwox in kidney tubules suggest a role for Wwox in acid/base balance. Importantly, Wwox KO mice displayed histopathological and hematological signs of impaired hematopoiesis, leukopenia, and splenic atrophy. Impaired hematopoiesis can also be a contributing factor to metabolic acidosis and death. Hypoglycemia and hypocalcemia was also observed affecting the KO mice. In addition, bone metabolic defects were evident in Wwox KO mice. Bones were smaller and thinner having reduced bone volume as a consequence of a defect in mineralization. No evidence of spontaneous neoplasia was observed in Wwox KO mice. We have generated a new mouse model to inactivate the Wwox tumor suppressor gene conditionally. This will greatly facilitate the functional analysis of Wwox in adult mice and will allow investigating neoplastic transformation in specific target tissues.

  9. Alternate day fasting impacts the brain insulin-signaling pathway of young adult male C57BL/6 mice.

    Science.gov (United States)

    Lu, Jianghua; E, Lezi; Wang, Wenfang; Frontera, Jennifer; Zhu, Hao; Wang, Wen-Tung; Lee, Phil; Choi, In Young; Brooks, William M; Burns, Jeffrey M; Aires, Daniel; Swerdlow, Russell H

    2011-04-01

    Dietary restriction (DR) has recognized health benefits that may extend to brain. We examined how DR affects bioenergetics-relevant enzymes and signaling pathways in the brains of C57BL/6 mice. Five-month-old male mice were placed in ad libitum or one of two repeated fasting and refeeding (RFR) groups, an alternate day (intermittent fed; IF) or alternate day plus antioxidants (blueberry, pomegranate, and green tea extracts) (IF + AO) fed group. During the 24-h fast blood glucose levels initially fell but stabilized within 6 h of starting the fast, thus avoiding frank hypoglycemia. DR in general appeared to enhance insulin sensitivity. After six weeks brain AKT and glycogen synthase kinase 3 beta phosphorylation were lower in the RFR mice, suggesting RFR reduced brain insulin-signaling pathway activity. Pathways that mediate mitochondrial biogenesis were not activated; AMP kinase phosphorylation, silent information regulator 2 phosphorylation, peroxisomal proliferator-activated receptor-gamma coactivator 1 alpha levels, and cytochrome oxidase subunit 4 levels did not change. ATP levels also did not decline, which suggests the RFR protocols did not directly impact brain bioenergetics. Antioxidant supplementation did not affect the brain parameters we evaluated. Our data indicate in young adult male C57BL/6 mice, RFR primarily affects brain energy metabolism by reducing brain insulin signaling, which potentially results indirectly as a consequence of reduced peripheral insulin production. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  10. Normally occurring intersexuality and testosterone induced plasticity in the copulatory system of adult leopard geckos.

    Science.gov (United States)

    Holmes, Melissa M; Putz, Oliver; Crews, David; Wade, Juli

    2005-04-01

    The copulatory neuromuscular system of lizards is highly sexually dimorphic. Adult males possess bilateral penises called hemipenes, which are independently controlled by two muscles, the retractor penis magnus (RPM) and transversus penis (TPN). These structures are not obvious in adult females. However, in adult female leopard geckos (Eublepharis macularius), testosterone induces hemipene growth. We investigated whether these structures develop de novo in adulthood or are histologically present as rudimentary structures in the female leopard gecko. We also investigated the extent of sexual dimorphisms and plasticity in the associated neuromuscular components. To do this, we compared copulatory morphology (sizes of hemipenes, RPM and TPN muscle fibers, and associated motoneurons, as well as motoneuron and RPM fiber number) in adult females treated with testosterone, control females, and control males. All of the geckos possessed hemipenes, RPMs and TPNs, but these structures were indeed vestigial in control females. Testosterone induced striking increases in hemipene and copulatory muscle fiber size in females, but not to levels equivalent to control males. In parallel, males with increased levels of androgenic activity had larger hemipenes, suggesting naturally occurring steroid-induced plasticity. Copulatory motoneurons were not sexually dimorphic in size or number, and these measures did not respond to testosterone. The data demonstrate that the copulatory system of leopard geckos, in which gonadal sex is determined by egg incubation temperature, differs from that of many species (both reptilian and mammalian) with genotypic sex determination. Indeed, the system is remarkable in that adult females have normally occurring intersex characteristics and they exhibit substantial steroid-induced morphological plasticity in adulthood.

  11. Maternal separation exacerbates Alzheimer's disease-like behavioral and pathological changes in adult APPswe/PS1dE9 mice.

    Science.gov (United States)

    Hui, Jianjun; Feng, Gaifeng; Zheng, Caifeng; Jin, Hui; Jia, Ning

    2017-02-01

    Alzheimer's disease (AD), the most common neurodegenerative disorder that gradually destroys memory and cognitive abilities in the elderly, makes a huge emotional and economic burden on the patients and their families. The presence of senile plaques and the loss of cholinergic neurons in the brain are two neuropathological hallmarks of AD. Maternal separation (MS) is an animal paradigm designed to make early life stress. Studies on wild type rodents showed that MS could induce AD-like cognitive deficit and pathological changes. However, the effects of MS on AD susceptible population or AD animal models are still unclear. In the present study, male APPswe/PS1dE9 transgenic mice were separated from dam and pups 3h per day from postnatal day 2 to day 21. After weaning, all animals were housed under normal conditions (4 mice per cage). At 9-month age, MWM tests were performed to evaluate the learning and memory abilities. Then the pathological changes in the brain were measured by histology staining. The results showed MS mice had more severe deficit of learning and memory. Compared to the control, there were more senile plaques in cortex and hippocampus, fewer cholinergic neurons in nucleus basalis of Meynert in MS mice. These results indicate that MS exacerbates Alzheimer's disease-like behavioral and pathological changes in APPswe/PS1dE9 mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effects of curcumin (Curcuma longa) on learning and spatial memory as well as cell proliferation and neuroblast differentiation in adult and aged mice by upregulating brain-derived neurotrophic factor and CREB signaling.

    Science.gov (United States)

    Nam, Sung Min; Choi, Jung Hoon; Yoo, Dae Young; Kim, Woosuk; Jung, Hyo Young; Kim, Jong Whi; Yoo, Miyoung; Lee, Sanghee; Kim, Chul Jung; Yoon, Yeo Sung; Hwang, In Koo

    2014-06-01

    Aging is a progressive process, and it may lead to the initiation of neurological diseases. In this study, we investigated the effects of wild Indian Curcuma longa using a Morris water maze paradigm on learning and spatial memory in adult and D-galactose-induced aged mice. In addition, the effects on cell proliferation and neuroblast differentiation were assessed by immunohistochemistry for Ki67 and doublecortin (DCX) respectively. The aging model in mice was induced through the subcutaneous administration of D-galactose (100 mg/kg) for 10 weeks. C. longa (300 mg/kg) or its vehicle (physiological saline) was administered orally to adult and D-galactose-treated mice for the last three weeks before sacrifice. The administration of C. longa significantly shortened the escape latency in both adult and D-galactose-induced aged mice and significantly ameliorated D-galactose-induced reduction of cell proliferation and neuroblast differentiation in the subgranular zone of hippocampal dentate gyrus. In addition, the administration of C. longa significantly increased the levels of phosphorylated CREB and brain-derived neurotrophic factor in the subgranular zone of dentate gyrus. These results indicate that C. longa mitigates D-galactose-induced cognitive impairment, associated with decreased cell proliferation and neuroblast differentiation, by activating CREB signaling in the hippocampal dentate gyrus.

  13. Fibroblast growth factor 10-fibroblast growth factor receptor 2b mediated signaling is not required for adult glandular stomach homeostasis.

    Directory of Open Access Journals (Sweden)

    Allison L Speer

    Full Text Available The signaling pathways that are essential for gastric organogenesis have been studied in some detail; however, those that regulate the maintenance of the gastric epithelium during adult homeostasis remain unclear. In this study, we investigated the role of Fibroblast growth factor 10 (FGF10 and its main receptor, Fibroblast growth factor receptor 2b (FGFR2b, in adult glandular stomach homeostasis. We first showed that mouse adult glandular stomach expressed Fgf10, its receptors, Fgfr1b and Fgfr2b, and most of the other FGFR2b ligands (Fgf1, Fgf7, Fgf22 except for Fgf3 and Fgf20. Fgf10 expression was mesenchymal whereas FGFR1 and FGFR2 expression were mostly epithelial. Studying double transgenic mice that allow inducible overexpression of Fgf10 in adult mice, we showed that Fgf10 overexpression in normal adult glandular stomach increased epithelial proliferation, drove mucous neck cell differentiation, and reduced parietal and chief cell differentiation. Although a similar phenotype can be associated with the development of metaplasia, we found that Fgf10 overexpression for a short duration does not cause metaplasia. Finally, investigating double transgenic mice that allow the expression of a soluble form of Fgfr2b, FGF10's main receptor, which acts as a dominant negative, we found no significant changes in gastric epithelial proliferation or differentiation in the mutants. Our work provides evidence, for the first time, that the FGF10-FGFR2b signaling pathway is not required for epithelial proliferation and differentiation during adult glandular stomach homeostasis.

  14. The effects of methylmercury exposure on behavior and biomarkers of oxidative stress in adult mice.

    Science.gov (United States)

    Kirkpatrick, Meg; Benoit, Janina; Everett, Wyll; Gibson, Jennifer; Rist, Michael; Fredette, Nicholas

    2015-09-01

    Methylmercury (MeHg) is a widely distributed environmental neurotoxin with established effects on locomotor behaviors and cognition in both human populations and animal models. Despite well-described neurobehavioral effects, the mechanisms of MeHg toxicity are not completely understood. Previous research supports a role for oxidative stress in the toxic effects of MeHg. However, comparing findings across studies has been challenging due to differences in species, methodologies (in vivo or in vitro studies), dosing regimens (acute vs. long-term) and developmental life stage. The current studies assess the behavioral effects of MeHg in adult mice in conjunction with biochemical and cellular indicators of oxidative stress using a consistent dosing regimen. In Experiment 1, adult male C57/BL6 mice were orally administered 5 mg/kg/day MeHg or the vehicle for 28 days. Impact of MeHg exposure was assessed on inverted screen and Rotor-Rod behaviors as well as on biomarkers of oxidative stress (thioredoxin reductase (TrxR), glutathione reductase (GR) and glutathione peroxidase (GPx)) in brain and liver. In Experiment 2, brain tissue was immunohistochemically labeled for 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidation and an indicator of oxidative stress, following the same dosing regimen. 8-OHdG immunoreactivity was measured in the motor cortex, the magnocellular red nucleus (RMC) and the accessory oculomotor nucleus (MA3). Significant impairments were observed in MeHg-treated animals on locomotor behaviors. TrxR and GPx was significantly inhibited in brain and liver, whereas GR activity decreased in liver and increased in brain tissue of MeHg-treated animals. Significant MeHg-induced alterations in DNA oxidation were observed in the motor cortex, the RMC and the MA3. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Differential neurotoxic effects of in utero and lactational exposure to hydroxylated polychlorinated biphenyl (OH-PCB 106) on spontaneous locomotor activity and motor coordination in young adult male mice.

    Science.gov (United States)

    Haijima, Asahi; Lesmana, Ronny; Shimokawa, Noriaki; Amano, Izuki; Takatsuru, Yusuke; Koibuchi, Noriyuki

    2017-01-01

    We investigated whether in utero or lactational exposure to 4-hydroxy-2',3,3',4',5'-pentachlorobiphenyl (OH-PCB 106) affects spontaneous locomotor activity and motor coordination in young adult male mice. For in utero exposure, pregnant C57BL/6J mice received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from gestational day 10 to 18. For lactational exposure, the different groups of dams received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from postpartum day 3 to 13. At 6-7 weeks of age, the spontaneous locomotor activities of male offspring were evaluated for a 24-hr continuous session in a home cage and in an open field for 30-min. Motor coordination function on an accelerating rotarod was also measured. Mice exposed prenatally to OH-PCB 106 showed increased spontaneous locomotor activities during the dark phase in the home cage and during the first 10-min in the open field compared with control mice. Mice exposed lactationally to OH-PCB 106, however, did not show a time-dependent decrease in locomotor activity in the open field. Instead, their locomotor activity increased significantly during the second 10-min block. In addition, mice exposed lactationally to OH-PCB 106 displayed impairments in motor coordination in the rotarod test. These results suggest that perinatal exposure to OH-PCB 106 affects motor behaviors in young adult male mice. Depending on the period of exposure, OH-PCB 106 may have different effects on neurobehavioral development.

  16. Rearrangement of RAG-1 recombinase gene in radiation-sensitive ''wasted'' mice

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Weaver, P.

    1994-01-01

    The recent cloning and characterization of recombinase genes (RAG- 1/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice (wst). Our results revealed expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/sm-bullet mice). In thymus tissue, a small RAG-1 transcript was detected in wst/wst mice that was not evident in thymus from control mice. In wst/lg-bullet mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/sm-bullet and not from wst;/wst or parental control BCF 1 mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage

  17. Normal pressure hydrocephalus

    Science.gov (United States)

    Hydrocephalus - occult; Hydrocephalus - idiopathic; Hydrocephalus - adult; Hydrocephalus - communicating; Dementia - hydrocephalus; NPH ... Ferri FF. Normal pressure hydrocephalus. In: Ferri FF, ed. ... Elsevier; 2016:chap 648. Rosenberg GA. Brain edema and disorders ...

  18. Human paraoxonase and HDL-cholesterol in pakistan patients with acute myocardial infarction and normal healthy adults

    International Nuclear Information System (INIS)

    Iqbal, I.P.; Khan, A.H.; Mehboobali, N.

    2007-01-01

    Human serum paraoxonase is a high density lipoprotein (HDL)-bound enzyme exhibiting antiatherogenic properties. The aim of this study was to investigate any relationship between serum paraoxonase activity and serum levels of HDL-cholesterol in Pakistani patients with acute myocardial infarction (AMI) compared to normal healthy subjects and to examine possible association between serum paraoxonase activity and AMI in Pakistani population. In a case-control study, serum paraoxonase activity and serum levels of HDL-cholesterol and LDL-cholesterol were monitored in 164 Pakistani patients with AMI and 106 normal healthy adults matched for gender, BMI and age within 10 years. Mean serum concentration of HDL-cholesterol and mean serum paraoxonase activity in AMI patients were not significantly different from the corresponding values in normal healthy subjects. Mean serum paraoxonase activity value was significantly lower in normal healthy subjects with low HDL-cholesterol (serum levels < 40mg/dl) compared to the value in those with normal levels of HDL-cholesterol (P=0.04). In AMI patients, paraoxonase activity was lower in subjects with low HDL-cholesterol compared to those with normal levels of HDL-cholesterol, however, the decrease was not statistically significant. Correlation analyses of the data revealed a moderate association of paraoxonase activity with HDL-cholesterol (Pearson's r= 0.225, P<0.01 for AMI patients and r=0.281, P<0.01 for normal healthy controls). Seventy three percent of normal healthy subjects and 65% of AMI patients in this study had low HDL-cholesterol. Low serum paraoxonase activity and high prevalence of low HDL-cholesterol in Pakistani population could be contributing to the high rates of coronary heart disease in this population. (author)

  19. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    Directory of Open Access Journals (Sweden)

    Jose Luis Ramirez-GarciaLuna

    Full Text Available In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1 mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2 re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3 the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.

  20. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    Science.gov (United States)

    Ramirez-GarciaLuna, Jose Luis; Chan, Daniel; Samberg, Robert; Abou-Rjeili, Mira; Wong, Timothy H; Li, Ailian; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Henderson, Janet E; Martineau, Paul A

    2017-01-01

    In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh) implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT) and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1) mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2) re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3) the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.