WorldWideScience

Sample records for norethandrolone

  1. 17α-Ethyl-5β-estrane-3α,17β-diol, a biological marker for the abuse of norethandrolone and ethylestrenol in slaughter cattle

    NARCIS (Netherlands)

    Puymbroeck, M. van; Kuilman, M.E.M.; Maas, R.F.M.; Witkamp, R.F.; Leyssens, L.; Miert, A.S.J.P.A.M. van; Hendriks, L.; Zande, D.J.M. van der; Adriaensens, P.; Jacobs, M.-P.; Raus, J.

    1999-01-01

    The metabolism of the illegal growth promoter ethylestrenol (EES) was evaluated in bovine liver cells and subcellular fractions of bovine liver preparations. Incubations with bovine microsomal preparations revealed that EES is extensively biotransformed into norethandrolone (NE), another illegal

  2. The metabolism of anabolic-androgenic steroids in the greyhound.

    Science.gov (United States)

    McKinney, Andrew R; Cawley, Adam T; Young, E Bruce; Kerwick, Carmel M; Cunnington, Karen; Stewart, Rhiannon T; Ambrus, Joseph I; Willis, Anthony C; McLeod, Malcolm D

    2013-04-01

    Effective control of the use of anabolic-androgenic steroids (AASs) in animal sports is essential in order to ensure both animal welfare and integrity. In order to better police their use in Australian and New Zealand greyhound racing, thorough metabolic studies have been carried out on a range of registered human and veterinary AASs available in the region. Canine metabolic data are presented for the AASs boldenone, danazol, ethylestrenol, mesterolone, methandriol, nandrolone and norethandrolone. The principal Phase I metabolic processes observed were the reduction of A-ring unsaturations and/or 3-ketones with either 3α,5β- or 3β,5α-stereochemistry, the oxidation of secondary 17β-hydroxyl groups and 16α-hydroxylation. The Phase II β-glucuronylation of sterol metabolites was extensive. The presented data have enabled the effective analysis of AASs and their metabolites in competition greyhound urine samples.

  3. Online turbulent flow extraction coupled with liquid chromatography-tandem mass spectrometry for high throughput screening of anabolic steroids in horse urine.

    Science.gov (United States)

    Shin, Hyun Du; Suh, Joon Hyuk; Kim, Junghyun; Cho, Hyun-Deok; Lee, Su Duk; Han, Kwan Seok; Wang, Yu; Han, Sang Beom

    2017-10-25

    A high throughput method for simultaneous screening of anabolic steroids and their metabolites (4-esterendione, trenbolone, boldenone, oxandrolone, nandrolone, methandrostenolone, testosterone, 1-androstendione, ethisterone, normethandrolone, methyltestosterone, 16β-Hydroxystanozolol, epitestosterone, bolasterone, norethandrolone, danazol, stanozolol and androstadienone) in equine urine by online turbulent flow extraction coupled with liquid chromatography-tandem mass spectrometry was developed. The use of turbulent flow chromatography could simplify pretreatment of horse urine, which has complex matrices as well as high viscosity. The urine was extracted by mixed-mode cation exchange solid phase extraction, and hydrolyzed using β-glucuronidase/arylsulfatase. Then, the sample was automatically loaded on the TurboFlow Cyclone extraction column for removal of further matrix, followed by separation on a fused core C18 column before MS/MS detection. Optimization and validation of the method were discussed in detail. All analytes were rapidly detected within 10min with high sensitivity (picogram to nanogram per milliliter level), and no interference was observed. The linearity range was from 0.1-10ng/mL for nine steroids and 1.0-50ng/mL for the others, with correlation of coefficient values over 0.995. Precision and accuracy ranged from 0.1 to 14.5% and 1.7 to 12.4%, respectively. The developed method was successfully applied to the analysis of anabolic steroids in horse urine after administration of a model drug. Copyright © 2017 Elsevier B.V. All rights reserved.