WorldWideScience

Sample records for noradrenergic mechanisms contribute

  1. Contribution of the dorsal noradrenergic bundle to the effect of amphetamine on acetylcholine turnover

    International Nuclear Information System (INIS)

    Robinson, S.E.

    1986-01-01

    In order to determine the contribution of the noradrenergic projections of the locus coeruleus to the action of amphetamine on cholinergic neurons in several areas of the brain, the dorsal noradrenergic bundle was selectively lesioned by injection of the neurotoxin 6-hydroxydopamine. The bundles of Equithesin-anesthetized male rats were lesioned bilaterally by stereotaxically-placed injections of 6-OHDA. The animals were killed in the microwave and constant rate infusion with phosphoryl ( 2 H 9 )-choline was begun. Levels of ACh and choline and TR /SUB ACh/ were determined by a mass fragmentographic technique. Rats not exhibiting the proper decrease in NE were excluded from all data calculations. It is shown that noradrenergic neurons travelling in the dorsal noradrenergic bundle do not exert a tonic action on cholinergic neurons in the cortex, hippocampus or hypothalamus

  2. Enhanced noradrenergic activity in the amygdala contributes to hyperarousal in an animal model of PTSD

    NARCIS (Netherlands)

    Ronzoni, G.; Arco, A. Del; Mora, F.; Segovia, G.

    2016-01-01

    Increased activity of the noradrenergic system in the amygdala has been suggested to contribute to the hyperarousal symptoms associated with post-traumatic stress disorder (PTSD). However, only two studies have examined the content of noradrenaline or its metabolites in the amygdala of rats

  3. One-single physical exercise session after object recognition learning promotes memory persistence through hippocampal noradrenergic mechanisms.

    Science.gov (United States)

    da Silva de Vargas, Liane; Neves, Ben-Hur Souto das; Roehrs, Rafael; Izquierdo, Iván; Mello-Carpes, Pâmela

    2017-06-30

    Previously we showed the involvement of the hippocampal noradrenergic system in the consolidation and persistence of object recognition (OR) memory. Here we show that one-single physical exercise session performed immediately after learning promotes OR memory persistence and increases norepinephrine levels in the hippocampus. Additionally, effects of exercise on memory are avoided by an intra-hippocampal beta-adrenergic antagonist infusion. Taken together, these results suggest that exercise effects on memory can be related to noradrenergic mechanisms and acute physical exercise can be a non-pharmacological intervention to assist memory consolidation and persistence, with few or no side effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Noradrenergic Dysfunction in Alzheimer's and Parkinson's Diseases—An Overview of Imaging Studies

    Directory of Open Access Journals (Sweden)

    Andrew C. Peterson

    2018-05-01

    Full Text Available Noradrenergic dysfunction contributes to cognitive impairment in Alzheimer's Disease (AD and Parkinson's Disease (PD. Conventional therapeutic strategies seek to enhance cholinergic and dopaminergic neurotransmission in AD and PD, respectively, and few studies have examined noradrenergic dysfunction as a target for medication development. We review the literature of noradrenergic dysfunction in AD and PD with a focus on human imaging studies that implicate the locus coeruleus (LC circuit. The LC sends noradrenergic projections diffusely throughout the cerebral cortex and plays a critical role in attention, learning, working memory, and cognitive control. The LC undergoes considerable degeneration in both AD and PD. Advances in magnetic resonance imaging have facilitated greater understanding of how structural and functional alteration of the LC may contribute to cognitive decline in AD and PD. We discuss the potential roles of the noradrenergic system in the pathogenesis of AD and PD with an emphasis on postmortem anatomical studies, structural MRI studies, and functional MRI studies, where we highlight changes in LC connectivity with the default mode network (DMN. LC degeneration may accompany deficient capacity in suppressing DMN activity and increasing saliency and task control network activities to meet behavioral challenges. We finish by proposing potential and new directions of research to address noradrenergic dysfunction in AD and PD.

  5. Drugs of abuse specifically sensitize noradrenergic and serotonergic neurons via a non-dopaminergic mechanism.

    Science.gov (United States)

    Lanteri, Christophe; Salomon, Lucas; Torrens, Yvette; Glowinski, Jacques; Tassin, Jean-Pol

    2008-06-01

    A challenge in drug dependence is to delineate long-term neurochemical modifications induced by drugs of abuse. Repeated d-amphetamine was recently shown to disrupt a mutual regulatory link between noradrenergic and serotonergic neurons, thus inducing long-term increased responses to d-amphetamine and para-chloroamphetamine, respectively. We show here that such a sensitization of noradrenergic and serotonergic neurons also occurs following repeated treatment with cocaine, morphine, or alcohol, three compounds belonging to main groups of addictive substances. In all cases, this sensitization is prevented by alpha 1b-adrenergic and 5-HT2A receptors blockade, indicating the critical role of these receptors on long-term effects of drugs of abuse. However, repeated treatments with two non-addictive antidepressants, venlafaxine, and clorimipramine, which nevertheless inhibit noradrenergic and serotonergic reuptake, do not induce noradrenergic and serotonergic neurons sensitization. Similarly, this sensitization does not occur following repeated treatments with a specific inhibitor of dopamine (DA) reuptake, GBR12783. Moreover, we show that the effects of SCH23390, a D1 receptor antagonist known to inhibit development of d-amphetamine behavioral sensitization, are due to its 5-HT2C receptor agonist property. SCH23390 blocks amphetamine-induced release of norepinephrine and RS102221, a 5-HT2C antagonist, can reverse this inhibition as well as inhibition of noradrenergic sensitization and development of behavioral sensitization induced by repeated d-amphetamine. We propose that noradrenergic/serotonergic uncoupling is a common neurochemical consequence of repeated consumption of drugs of abuse, unrelated with DA release. Our data also suggest that compounds able to restore the link between noradrenergic and serotonergic modulatory systems could represent important therapeutic targets for investigation.

  6. Noradrenergic dysfunction in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Mary eGannon

    2015-06-01

    Full Text Available The brain noradrenergic system supplies the neurotransmitter norepinephrine throughout the brain via widespread efferent projections, and plays a pivotal role in modulating cognitive activities in the cortex. Profound noradrenergic degeneration in Alzheimer’s disease (AD patients has been observed for decades, with recent research suggesting that the locus coeruleus (where noradrenergic neurons are mainly located is a predominant site where AD-related pathology begins. Mounting evidence indicate that the loss of noradrenergic innervation greatly exacerbates AD pathogenesis and progression, although the precise roles of noradrenergic components in AD pathogenesis remain unclear. The aim of this review is to summarize current findings on noradrenergic dysfunction in AD, as well as to point out deficiencies in our knowledge where more research is needed.

  7. Noradrenergic Modulation of Cognition in Health and Disease

    Directory of Open Access Journals (Sweden)

    Olga Borodovitsyna

    2017-01-01

    Full Text Available Norepinephrine released by the locus coeruleus modulates cellular processes and synaptic transmission in the central nervous system through its actions at a number of pre- and postsynaptic receptors. This transmitter system facilitates sensory signal detection and promotes waking and arousal, processes which are necessary for navigating a complex and dynamic sensory environment. In addition to its effects on sensory processing and waking behavior, norepinephrine is now recognized as a contributor to various aspects of cognition, including attention, behavioral flexibility, working memory, and long-term mnemonic processes. Two areas of dense noradrenergic innervation, the prefrontal cortex and the hippocampus, are particularly important with regard to these functions. Due to its role in mediating normal cognitive function, it is reasonable to expect that noradrenergic transmission becomes dysfunctional in a number of neuropsychiatric and neurodegenerative diseases characterized by cognitive deficits. In this review, we summarize the unique role that norepinephrine plays in prefrontal cortical and hippocampal function and how its interaction with its various receptors contributes to cognitive behaviors. We further assess the changes that occur in the noradrenergic system in Alzheimer’s disease, Parkinson’s disease, attention-deficit/hyperactivity disorder, and schizophrenia and how these changes contribute to cognitive decline in these pathologies.

  8. Noradrenergic deficits in Parkinson's disease

    DEFF Research Database (Denmark)

    Nahimi, A.; Sommerauer, M.; Ostergaard, K.

    2017-01-01

    Objectives: In vitro studies suggest that noradrenergic projections from locus coeruleus to subcortical and cortical brain structures, e.g., thalamus, undergo severe neurodegeneration in Parkinson’s disease (PD). Loss of noradrenergic projections may alter oscillatory activity that in turn may...... be associated with cognitive decline. To test this hypothesis of the origin of cognitive decline in this disease, we used positron emission tomography (PET) to quantify the density of noradrenergic projections in groups of PD patients and healthy controls (HC), in combination with neuropsychological assessment...... with cognitive performance, independent of premorbid cognitive function or disease. PD patients had significant slowing of qEEG, e.g., the background alpha rhythm, but only EEG reactivity upon eye opening correlated with thalamic 11C-MeNER BPND in PD patients. Conclusion: This is the first direct quantification...

  9. Adolescent social isolation increases anxiety-like behavior and ethanol intake and impairs fear extinction in adulthood: Possible role of disrupted noradrenergic signaling.

    Science.gov (United States)

    Skelly, M J; Chappell, A E; Carter, E; Weiner, J L

    2015-10-01

    Alcohol use disorder, anxiety disorders, and post-traumatic stress disorder (PTSD) are highly comorbid, and exposure to chronic stress during adolescence may increase the incidence of these conditions in adulthood. Efforts to identify the common stress-related mechanisms driving these disorders have been hampered, in part, by a lack of reliable preclinical models that replicate their comorbid symptomatology. Prior work by us, and others, has shown that adolescent social isolation increases anxiety-like behaviors and voluntary ethanol consumption in adult male Long-Evans rats. Here we examined whether social isolation also produces deficiencies in extinction of conditioned fear, a hallmark symptom of PTSD. Additionally, as disrupted noradrenergic signaling may contribute to alcoholism, we examined the effect of anxiolytic medications that target noradrenergic signaling on ethanol intake following adolescent social isolation. Our results confirm and extend previous findings that adolescent social isolation increases anxiety-like behavior and enhances ethanol intake and preference in adulthood. Additionally, social isolation is associated with a significant deficit in the extinction of conditioned fear and a marked increase in the ability of noradrenergic therapeutics to decrease ethanol intake. These results suggest that adolescent social isolation not only leads to persistent increases in anxiety-like behaviors and ethanol consumption, but also disrupts fear extinction, and as such may be a useful preclinical model of stress-related psychopathology. Our data also suggest that disrupted noradrenergic signaling may contribute to escalated ethanol drinking following social isolation, thus further highlighting the potential utility of noradrenergic therapeutics in treating the deleterious behavioral sequelae associated with early life stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Noradrenergic mechanisms and high blood pressure maintenance in genetic hypertension: The role of Gi proteins and voltage-dependent calcium channels

    Czech Academy of Sciences Publication Activity Database

    Zicha, Josef; Pintérová, Mária; Líšková, Silvia; Dobešová, Zdenka; Kuneš, Jaroslav

    2007-01-01

    Roč. 29, č. 4 (2007), s. 229-229 ISSN 1064-1963. [International symposium on SHR /12./. 20.10.2006-21.10.2006, Kyoto] R&D Projects: GA MZd(CZ) NR7786 Institutional research plan: CEZ:AV0Z50110509 Keywords : genetic hypertension * noradrenergic mechanisms * Gi proteins * voltage-dependent calcium channels Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  11. Evidence for a role of corticopetal, noradrenergic systems in the development of executive function.

    Science.gov (United States)

    Mokler, David J; Miller, Christine E; McGaughy, Jill A

    2017-09-01

    Adolescence is a period during which many aspects of executive function are maturing. Much of the literature has focused on discrepancies between sub-cortical and cortical development that is hypothesized to lead to over-processing of reinforcement related stimuli unchecked by fully matured response inhibition. Specifically, maturation of sub-cortical dopaminergic systems that terminate in the nucleus accumbens has been suggested to occur prior to the full maturation of corticopetal dopaminergic systems. However, converging evidence supports the hypothesis that many aspects of cognitive control are critically linked to cortical noradrenergic systems, that the effectiveness of drugs used to treat disorders of executive function, e.g. ADHD, may result primarily from increases in cortical norepinephrine (NE) and that cortical noradrenergic systems mature across adolescence. However, little attention has been given to the development of this system during adolescence or to its influence in executive function. In the present paper, we discuss the developmental trajectory of the noradrenergic system of the forebrain, highlight the interactions between noradrenergic and dopaminergic systems, and highlight the contribution of the immature corticopetal noradrenergic systems in the ontogeny of several aspects of executive function. Finally we compare data from adolescent rats to those gathered after selective depletion of NE in sub-regions of the prefrontal cortex with an emphasis on the similarities in performance of NE lesioned rats and adolescents. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Central serotonergic and noradrenergic receptors in functional dyspepsia

    Institute of Scientific and Technical Information of China (English)

    S O'Mahony; TG Dinan; PW Keeling; ASB Chua

    2006-01-01

    Functional dyspepsia is a symptom complex characterised by upper abdominal discomfort or pain, early satiety,motor abnormalities, abdominal bloating and nausea in the absence of organic disease. The central nervous system plays an important role in the conducting and processing of visceral signals. Alterations in brain processing of pain, perception and affective responses may be key factors in the pathogenesis of functional dyspepsia. Central serotonergic and noradrenergic receptor systems are involved in the processing of motor,sensory and secretory activities of the gastrointestinal tract. Visceral hypersensitivity is currently regarded as the mechanism responsible for both motor alterations and abdominal pain in functional dyspepsia. Some studies suggest that there are alterations in central serotonergic and noradrenergic systems which may partially explain some of the symptoms of functional dyspepsia. Alterations in the autonomic nervous system may be implicated in the motor abnormalities and increases in visceral sensitivity in these patients.Noradrenaline is the main neurotransmitter in the sympathetic nervous system and again alterations in the functioning of this system may lead to changes in motor function. Functional dyspepsia causes considerable burden on the patient and society. The pathophysiology of functional dyspepsia is not fully understood but alterations in central processing by the serotonergic and noradrenergic systems may provide plausible explanations for at least some of the symptoms and offer possible treatment targets for the future.

  13. Noradrenergic Stimulation Impairs Memory Generalization in Women.

    Science.gov (United States)

    Kluen, Lisa Marieke; Agorastos, Agorastos; Wiedemann, Klaus; Schwabe, Lars

    2017-07-01

    Memory generalization is essential for adaptive decision-making and action. Our ability to generalize across past experiences relies on medial-temporal lobe structures, known to be highly sensitive to stress. Recent evidence suggests that stressful events may indeed interfere with memory generalization. Yet, the mechanisms involved in this generalization impairment are unknown. We tested here whether a pharmacological elevation of major stress mediators-noradrenaline and glucocorticoids-is sufficient to disrupt memory generalization. In a double-blind, placebo-controlled design, healthy men and women received orally a placebo, hydrocortisone, the α2-adrenoceptor antagonist yohimbine that leads to increased noradrenergic stimulation, or both drugs, before they completed an associative learning task probing memory generalization. Drugs left learning performance intact. Yohimbine, however, led to a striking generalization impairment in women, but not in men. Hydrocortisone, in turn, had no effect on memory generalization, neither in men nor in women. The present findings indicate that increased noradrenergic activity, but not cortisol, is sufficient to disrupt memory generalization in a sex-specific manner, with relevant implications for stress-related mental disorders characterized by generalization deficits.

  14. Modulation of limbic noradrenergic circuits by cannabinoids

    OpenAIRE

    Carvalho, Ana Raquel Franky Gomes

    2010-01-01

    Tese de doutoramento Medicina The endocannabinoid system has been implicated in the regulation of several physiological functions. The widespread distribution of the endocannabinoid system in the central nervous system (CNS) accounts for many effects attributed to cannabinoids. Importantly, cannabinoids have been shown to modulate mood, cognition and memory. There is growing evidence suggesting that cannabinoids can interact with the noradrenergic system. Noradrenergic trans...

  15. The central noradrenergic system: an overview | Viljoen | African ...

    African Journals Online (AJOL)

    The central noradrenergic system belongs to a group of brainstem neuromodulatory systems previously referred to as the ascending reticular activating system. In this article a heuristic model is presented of the central noradrenergic system depicting the major projections to other cerebral areas, its interactions with other ...

  16. The central noradrenergic system

    African Journals Online (AJOL)

    2006-07-27

    Jul 27, 2006 ... recognition of a direct influence of the central noradrenergic system on peripheral ... influences on cerebral function and behavior it is impossible to imagine ... stimuli and to speed-up information processing.4. The influence of ...

  17. Noradrenergic Activation of the Basolateral Amygdala Enhances Object Recognition Memory and Induces Chromatin Remodeling in the Insular Cortex

    Directory of Open Access Journals (Sweden)

    Hassiba eBeldjoud

    2015-04-01

    Full Text Available It is well established that arousal-induced memory enhancement requires noradrenergic activation of the basolateral complex of the amygdala (BLA and modulatory influences on information storage processes in its many target regions. While this concept is well accepted, the molecular basis of such BLA effects on neural plasticity changes within other brain regions remains to be elucidated. The present study investigated whether noradrenergic activation of the BLA after object recognition training induces chromatin remodeling through histone post-translational modifications in the insular cortex (IC, a brain region that is importantly involved in object recognition memory. Male Sprague–Dawley rats were trained on an object recognition task, followed immediately by bilateral microinfusions of norepinephrine (1.0 µg or saline administered into the BLA. Saline-treated control rats exhibited poor 24-h retention, whereas norepinephrine treatment induced robust 24-h object recognition memory. Most importantly, this memory-enhancing dose of norepinephrine induced a global reduction in the acetylation levels of histone H3 at lysine 14, H2B and H4 in the IC 1 h later, whereas it had no effect on the phosphorylation of histone H3 at serine 10 or tri-methylation of histone H3 at lysine 27. Norepinephrine administered into the BLA of non-trained control rats did not induce any changes in the histone marks investigated in this study. These findings indicate that noradrenergic activation of the BLA induces training-specific effects on chromatin remodeling mechanisms, and presumably gene transcription, in its target regions, which may contribute to the understanding of the molecular mechanisms of stress and emotional arousal effects on memory consolidation.

  18. The noradrenergic paradox: implications in the management of depression and anxiety

    Directory of Open Access Journals (Sweden)

    Montoya A

    2016-03-01

    Full Text Available Alonso Montoya,1 Robert Bruins,1 Martin A Katzman,2 Pierre Blier3 1Eli Lilly Canada Inc, 2START Clinic for the Mood and Anxiety Disorders, Toronto, 3Mood Disorders Research Unit, Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada Abstract: Both major depressive disorder and the anxiety disorders are major causes of ­disability and markedly contribute to a significant global burden of the disease worldwide. In part because of the significant socioeconomic burden associated with these disorders, theories have been developed to specifically build clinical treatment approaches. One such theory, the monoaminergic hypothesis, has led to the development of several generations of selective and nonselective inhibitors of transporters of serotonin and norepinephrine, with the goal of augmenting monoaminergic transmission. These efforts have led to considerable success in the development of antidepressant therapeutics. However, there is a strong correlation between enhanced noradrenergic activity and fear and anxiety. Consequently, some physicians have expressed concerns that the same enhanced noradrenergic activity that alleviates depression could also promote anxiety. The fact that the serotonergic and noradrenergic reuptake inhibitors are successfully used in the treatment of anxiety and panic disorders seems paradoxical. This review was undertaken to determine if any clinical evidence exists to show that serotonergic and noradrenergic reuptake inhibitors can cause anxiety. The PubMed, EMBASE, and Cochrane Library databases were searched, and the results limited to randomized, double-blind, placebo-controlled studies performed in nongeriatric adults and with clear outcome measures were reported. Based on these criteria, a total of 52 studies were examined. Patients in these studies suffered from depression or anxiety disorders (generalized and social anxiety disorders, panic disorder, and posttraumatic stress disorder. The

  19. Paraquat and maneb co-exposure induces noradrenergic locus coeruleus neurodegeneration through NADPH oxidase-mediated microglial activation

    International Nuclear Information System (INIS)

    Hou, Liyan; Zhang, Cong; Wang, Ke; Liu, Xiaofang; Wang, Hongwei; Che, Yuning; Sun, Fuqiang; Zhou, Xueying; Zhao, Xiulan; Wang, Qingshan

    2017-01-01

    Highlights: • Microglial activation induced by paraquat and maneb precedes noradrenergic neurodegeneration in locus coeruleus. • NADPH oxidase activation contributes to microglia-mediated neuroinflammation and related noradrenergic neurodegeneration. • Inhibition of NADPH oxidase by apocynin protects noradrenergic neurons against paraquat and maneb-induced toxicity. - Abstract: Co-exposure to paraquat (PQ) and maneb (Mb) has been shown to increase the risk of Parkinson’s disease (PD) and dopaminergic (DA) neurodegeneration in the substantia nigra pars compacta (SNpc) is observed in PQ and Mb-treated experimental animals. The loss of noradrenergic locus coeruleus (LC/NE) neurons in brainstem is a common feature shared by multiple neurodegenerative diseases, including PD. However, whether PQ and Mb is able to damage LC/NE neurons remains undefined. In this study, mice treated with combined PQ and Mb displayed progressive LC/NE neurodegeneration. Time course studies revealed that the activation of microglia preceded LC/NE neurodegeneration. Mechanistically, the activation of NADPH oxidase contributed to microglial activation and subsequent LC/NE neurodegeneration. We found that PQ and Mb co-exposure induced activation of NADPH oxidase as shown by increased superoxide production and membrane translocation of p47 phox , a cytosolic subunit of NADPH oxidase. Inhibition of NADPH oxidase by apocynin, a widely used NADPH oxidase inhibitor, suppressed microglial activation and gene expressions of proinflammatory factors. Furthermore, reduced activation of nuclear factor-κB (NF-κB) pathway was observed in apocynin-treated mice. More importantly, inhibition of NADPH oxidase by apocynin afforded LC/NE neuroprotection against PQ and Mb-induced neurotoxicity. Thus, our findings revealed the critical role NADPH oxidase-mediated microglial activation in driving LC/NE neurodegeneration induced by PQ and Mb, providing new insights into the pathogenesis of environmental

  20. Noradrenergic control of gene expression and long-term neuronal adaptation evoked by learned vocalizations in songbirds.

    Directory of Open Access Journals (Sweden)

    Tarciso A F Velho

    Full Text Available Norepinephrine (NE is thought to play important roles in the consolidation and retrieval of long-term memories, but its role in the processing and memorization of complex acoustic signals used for vocal communication has yet to be determined. We have used a combination of gene expression analysis, electrophysiological recordings and pharmacological manipulations in zebra finches to examine the role of noradrenergic transmission in the brain's response to birdsong, a learned vocal behavior that shares important features with human speech. We show that noradrenergic transmission is required for both the expression of activity-dependent genes and the long-term maintenance of stimulus-specific electrophysiological adaptation that are induced in central auditory neurons by stimulation with birdsong. Specifically, we show that the caudomedial nidopallium (NCM, an area directly involved in the auditory processing and memorization of birdsong, receives strong noradrenergic innervation. Song-responsive neurons in this area express α-adrenergic receptors and are in close proximity to noradrenergic terminals. We further show that local α-adrenergic antagonism interferes with song-induced gene expression, without affecting spontaneous or evoked electrophysiological activity, thus dissociating the molecular and electrophysiological responses to song. Moreover, α-adrenergic antagonism disrupts the maintenance but not the acquisition of the adapted physiological state. We suggest that the noradrenergic system regulates long-term changes in song-responsive neurons by modulating the gene expression response that is associated with the electrophysiological activation triggered by song. We also suggest that this mechanism may be an important contributor to long-term auditory memories of learned vocalizations.

  1. Combined Effects of Glucocorticoid and Noradrenergic Activity on Loss Aversion.

    Science.gov (United States)

    Margittai, Zsofia; Nave, Gideon; Van Wingerden, Marijn; Schnitzler, Alfons; Schwabe, Lars; Kalenscher, Tobias

    2018-01-01

    Loss aversion is a well-known behavioral regularity in financial decision making, describing humans' tendency to overweigh losses compared to gains of the same amount. Recent research indicates that stress and associated hormonal changes affect loss aversion, yet the underlying neuroendocrine mechanisms are still poorly understood. Here, we investigated the causal influence of two major stress neuromodulators, cortisol and noradrenaline, on loss aversion during financial decision making. In a double-blind, placebo-controlled between-subject design, we orally administered either the α2-adrenergic antagonist yohimbine (increasing noradrenergic stimulation), hydrocortisone, both substances, or a placebo to healthy young men. We tested the treatments' influence on a financial decision-making task measuring loss aversion and risk attitude. We found that both drugs combined, relative to either drug by itself, reduced loss aversion in the absence of an effect on risk attitude or choice consistency. Our data suggest that concurrent glucocorticoid and noradrenergic activity prompts an alignment of reward- with loss-sensitivity, and thus diminishes loss aversion. Our results have implications for the understanding of the susceptibility to biases in decision making.

  2. Noradrenergic stimulation modulates activation of extinction-related brain regions and enhances contextual extinction learning without affecting renewal

    Directory of Open Access Journals (Sweden)

    Silke eLissek

    2015-02-01

    Full Text Available Renewal in extinction learning describes the recovery of an extinguished response if the extinction context differs from the context present during acquisition and recall. Attention may have a role in contextual modulation of behavior and contribute to the renewal effect, while noradrenaline is involved in attentional processing. In this functional magnetic resonance imaging (fMRI study we investigated the role of the noradrenergic system for behavioral and brain activation correlates of contextual extinction and renewal, with a particular focus upon hippocampus and ventromedial PFC, which have crucial roles in processing of renewal. Healthy human volunteers received a single dose of the NA reuptake inhibitor atomoxetine prior to extinction learning. During extinction of previously acquired cue-outcome associations, cues were presented in a novel context (ABA or in the acquisition context (AAA. In recall, all cues were again presented in the acquisition context. Atomoxetine participants (ATO showed significantly faster extinction compared to placebo (PLAC. However, atomoxetine did not affect renewal. Hippocampal activation was higher in ATO during extinction and recall, as was ventromedial PFC activation, except for ABA recall. Moreover, ATO showed stronger recruitment of insula, anterior cingulate, and dorsolateral/orbitofrontal PFC. Across groups, cingulate, hippocampus and vmPFC activity during ABA extinction correlated with recall performance, suggesting high relevance of these regions for processing the renewal effect. In summary, the noradrenergic system appears to be involved in the modification of established associations during extinction learning and thus has a role in behavioral flexibility. The assignment of an association to a context and the subsequent decision on an adequate response, however, presumably operate largely independently of noradrenergic mechanisms.

  3. The role of central noradrenergic dysregulation in anxiety disorders: evidence from clinical studies.

    Science.gov (United States)

    Kalk, N J; Nutt, D J; Lingford-Hughes, A R

    2011-01-01

    The nature of the noradrenergic dysregulation in clinical anxiety disorders remains unclear. In panic disorder, the predominant view has been that central noradrenergic neuronal networks and/or the sympathetic nervous system was normal in patients at rest, but hyper-reactive to specific stimuli, for example carbon dioxide. These ideas have been extended to other anxiety disorders, which share with panic disorder characteristic subjective anxiety and physiological symptoms of excess sympathetic activity. For example, Generalized Anxiety Disorder is characterized by chronic free-floating anxiety, muscle tension, palpitation and insomnia. It has been proposed that there is chronic central hypersecretion of noradrenaline in Generalized Anxiety Disorder, with consequent hyporesponsiveness of central post-synaptic receptors. With regards to other disorders, it has been suggested that there is noradrenergic involvement or derangement, but a more specific hypothesis has not been enunciated. This paper reviews the evidence for noradrenergic dysfunction in anxiety disorders, derived from indirect measures of noradrenergic function in clinical populations.

  4. Glucocorticoid enhancement of dorsolateral striatum-dependent habit memory requires concurrent noradrenergic activity.

    Science.gov (United States)

    Goodman, J; Leong, K-C; Packard, M G

    2015-12-17

    Previous findings indicate that post-training administration of glucocorticoid stress hormones can interact with the noradrenergic system to enhance consolidation of hippocampus- or amygdala-dependent cognitive/emotional memory. The present experiments were designed to extend these findings by examining the potential interaction of glucocorticoid and noradrenergic mechanisms in enhancement of dorsolateral striatum (DLS)-dependent habit memory. In experiment 1, different groups of adult male Long-Evans rats received training in two DLS-dependent memory tasks. In a cued water maze task, rats were released from various start points and were reinforced to approach a visibly cued escape platform. In a response-learning version of the water plus-maze task, animals were released from opposite starting positions and were reinforced to make a consistent egocentric body-turn to reach a hidden escape platform. Immediately post-training, rats received peripheral injections of the glucocorticoid corticosterone (1 or 3 mg/kg) or vehicle solution. In both tasks, corticosterone (3 mg/kg) enhanced DLS-dependent habit memory. In experiment 2, a separate group of animals received training in the response learning version of the water plus-maze task and were given peripheral post-training injections of corticosterone (3 mg/kg), the β-adrenoreceptor antagonist propranolol (3 mg/kg), corticosterone and propranolol concurrently, or control vehicle solution. Corticosterone injections again enhanced DLS-dependent memory, and this effect was blocked by concurrent administration of propranolol. Propranolol administration by itself (3 mg/kg) did not influence DLS-dependent memory. Taken together, the findings indicate an interaction between glucocorticoid and noradrenergic mechanisms in DLS-dependent habit memory. Propranolol administration may be useful in treating stress-related human psychopathologies associated with a dysfunctional DLS-dependent habit memory system. Copyright © 2015

  5. NORADRENERGIC AND ADRENERGIC FUNCTIONING IN AUTISM

    NARCIS (Netherlands)

    MINDERAA, RB; ANDERSON, GM; VOLKMAR, FR; AKKERHUIS, GW; COHEN, DJ

    1994-01-01

    A neurochemical assessment of noradrenergic and adrenergic functioning was carried out with autistic patients and normal control individuals. Norepinephrine and related compounds were measured in autistic (n = 17 unmedicated, 23 medicated; age range 9-29 years old) and normal controls (n = 27; age

  6. Critical role of somatostatin receptor 2 in the vulnerability of the central noradrenergic system

    DEFF Research Database (Denmark)

    Ádori, Csaba; Glück, Laura; Barde, Swapnali

    2015-01-01

    Alzheimer’s disease and other age-related neurodegenerative disorders are associated with deterioration of the noradrenergic locus coeruleus (LC), a probable trigger for mood and memory dysfunction. LC noradrenergic neurons exhibit particularly high levels of somatostatin binding sites. This is n......Alzheimer’s disease and other age-related neurodegenerative disorders are associated with deterioration of the noradrenergic locus coeruleus (LC), a probable trigger for mood and memory dysfunction. LC noradrenergic neurons exhibit particularly high levels of somatostatin binding sites...... morphometry and mRNA profiling in a cohort of Alzheimer’s and age-matched control brains in combination with genetic models of somatostatin receptor deficiency to establish causality between defunct somatostatin signalling and noradrenergic neurodegeneration. In Alzheimer’s disease, we found significantly....../IV and onwards, i.e., a process preceding advanced Alzheimer’s pathology. The loss of SSTR2 transcripts in the LC neurons appeared selective, since tyrosine hydroxylase, dopamine β-hydroxylase, galanin or galanin receptor 3 mRNAs remained unchanged. We modeled these pathogenic changes in Sstr2 −/− mice and...

  7. Co-expression of Cholinergic and Noradrenergic Phenotypes in Human and Non-Human Autonomic Nervous System

    OpenAIRE

    Weihe, Eberhard; Schütz, Burkhard; Hartschuh, Wolfgang; Anlauf, Martin; Schäfer, Martin K.; Eiden, Lee E.

    2005-01-01

    It has long been known that the sympathetic innervation of the sweat glands is cholinergic in most mammalian species, and that during development, rodent sympathetic cholinergic sweat gland innervation transiently expresses noradrenergic traits. We show here that some noradrenergic traits persist in cholinergic sympathetic innervation of the sweat glands in rodents, but that lack of expression of the vesicular monoamine transporter renders these cells functionally non-noradrenergic. Adult hum...

  8. Noradrenergic enhancement of amygdala responses to fear

    NARCIS (Netherlands)

    Onur, Oezguer A; Walter, Henrik; Schlaepfer, Thomas E; Rehme, Anne K; Schmidt, Christoph; Keysers, Christian; Maier, Wolfgang; Hurlemann, René

    Multiple lines of evidence implicate the basolateral amygdala (BLA) and the noradrenergic (norepinephrine, NE) system in responding to stressful stimuli such as fear signals, suggesting hyperfunction of both in the development of stress-related pathologies including anxiety disorders. However, no

  9. Noradrenergic modulation of neural erotic stimulus perception.

    Science.gov (United States)

    Graf, Heiko; Wiegers, Maike; Metzger, Coraline Danielle; Walter, Martin; Grön, Georg; Abler, Birgit

    2017-09-01

    We recently investigated neuromodulatory effects of the noradrenergic agent reboxetine and the dopamine receptor affine amisulpride in healthy subjects on dynamic erotic stimulus processing. Whereas amisulpride left sexual functions and neural activations unimpaired, we observed detrimental activations under reboxetine within the caudate nucleus corresponding to motivational components of sexual behavior. However, broadly impaired subjective sexual functioning under reboxetine suggested effects on further neural components. We now investigated the same sample under these two agents with static erotic picture stimulation as alternative stimulus presentation mode to potentially observe further neural treatment effects of reboxetine. 19 healthy males were investigated under reboxetine, amisulpride and placebo for 7 days each within a double-blind cross-over design. During fMRI static erotic picture were presented with preceding anticipation periods. Subjective sexual functions were assessed by a self-reported questionnaire. Neural activations were attenuated within the caudate nucleus, putamen, ventral striatum, the pregenual and anterior midcingulate cortex and in the orbitofrontal cortex under reboxetine. Subjective diminished sexual arousal under reboxetine was correlated with attenuated neural reactivity within the posterior insula. Again, amisulpride left neural activations along with subjective sexual functioning unimpaired. Neither reboxetine nor amisulpride altered differential neural activations during anticipation of erotic stimuli. Our results verified detrimental effects of noradrenergic agents on neural motivational but also emotional and autonomic components of sexual behavior. Considering the overlap of neural network alterations with those evoked by serotonergic agents, our results suggest similar neuromodulatory effects of serotonergic and noradrenergic agents on common neural pathways relevant for sexual behavior. Copyright © 2017 Elsevier B.V. and

  10. Selective deficiencies in descending inhibitory modulation in neuropathic rats: implications for enhancing noradrenergic tone.

    Science.gov (United States)

    Patel, Ryan; Qu, Chaoling; Xie, Jennifer Y; Porreca, Frank; Dickenson, Anthony H

    2018-05-31

    Pontine noradrenergic neurones form part of a descending inhibitory system that influences spinal nociceptive processing. Weak or absent descending inhibition is a common feature of chronic pain patients. We examined the extent to which the descending noradrenergic system is tonically active, how control of spinal neuronal excitability is integrated into thalamic relays within sensory-discriminative projection pathways, and how this inhibitory control is altered after nerve injury. In vivo electrophysiology was performed in anaesthetised spinal nerve ligated (SNL) and sham-operated rats to record from wide dynamic range neurones in the ventral posterolateral thalamus (VPL). In sham rats, spinal block of α2-adrenoceptors with atipamezole resulted in enhanced stimulus-evoked and spontaneous firing in the VPL, and produced conditioned place avoidance. However, in SNL rats these conditioned avoidance behaviours were absent. Furthermore, inhibitory control of evoked neuronal responses was lost but spinal atipamezole markedly increased spontaneous firing. Augmenting spinal noradrenergic tone in neuropathic rats with reboxetine, a selective noradrenergic reuptake inhibitor, modestly reinstated inhibitory control of evoked responses in the VPL but had no effect on spontaneous firing. In contrast, clonidine, an α2 agonist, inhibited both evoked and spontaneous firing, and exhibited increased potency in SNL rats compared to sham controls. These data suggest descending noradrenergic inhibitory pathways are tonically active in sham rats. Moreover, in neuropathic states descending inhibitory control is diminished, but not completely absent, and distinguishes between spontaneous and evoked neuronal activity. These observations may have implications for how analgesics targeting the noradrenergic system provide relief.

  11. Noradrenergic System in Down Syndrome and Alzheimer's Disease A Target for Therapy.

    Science.gov (United States)

    Phillips, Cristy; Fahimi, Atoossa; Das, Devsmita; Mojabi, Fatemeh S; Ponnusamy, Ravikumar; Salehi, Ahmad

    2016-01-01

    Locus coeruleus (LC) neurons in the brainstem send extensive noradrenergic (NE)-ergic terminals to the majority of brain regions, particularly those involved in cognitive function. Both Alzheimer's disease (AD) and Down syndrome (DS) are characterized by similar pathology including significant LC degeneration and dysfunction of the NE-ergic system. Extensive loss of NE-ergic terminals has been linked to alterations in brain regions vital for cognition, mood, and executive function. While the mechanisms by which NE-ergic abnormalities contribute to cognitive dysfunction are not fully understood, emergent evidence suggests that rescue of NE-ergic system can attenuate neuropathology and cognitive decline in both AD and DS. Therapeutic strategies to enhance NE neurotransmission have undergone limited testing. Among those deployed to date are NE reuptake inhibitors, presynaptic α-adrenergic receptor antagonists, NE prodrugs, and β-adrenergic agonists. Here we examine alterations in the NE-ergic system in AD and DS and suggest that NE-ergic system rescue is a plausible treatment strategy for targeting cognitive decline in both disorders.

  12. The dorsal tegmental noradrenergic projection: an analysis of its role in maze learning.

    Science.gov (United States)

    Roberts, D C; Price, M T; Fibiger, H C

    1976-04-01

    The hypothesis that the noradrenergic projection from the locus coeruleus (LC) to the cerebral cortex and hippocampus is an important neural substrate for learning was evaluated. Maze performance was studied in rats receiving either electrolytic lesions of LC or 6-hydroxydopamine (6-OHDA) lesions of the dorsal tegmental noradrenergic projection. The LC lesions did not disrupt the acquisition of a running response for food reinforcement in an L-shaped runway, even though hippocampal-cortical norepinephrine (NE) was reduced to 29%. Greater telencephalic NE depletions (to 6% of control levels) produced by 6-OHDA also failed to disrupt the acquisition of this behavior or to impair the acquisition of a food-reinforced position habit in a T-maze. Neither locomotor activity nor habituation to a novel environment was affected by the 6-OHDA lesions. Rats with such lesions were, however, found to be significantly more distractible than were controls during the performance of a previously trained response. The hypothesis that telencephalic NE is of fundamental importance in learning was not supported. The data suggest that this system may participate in attentional mechanisms.

  13. Complementary neural correlates of motivation in dopaminergic and noradrenergic neurons of monkeys.

    Directory of Open Access Journals (Sweden)

    Sebastien eBouret

    2012-07-01

    Full Text Available Rewards have many influences on learning, decision-making and performance. All seem to rely on complementary actions of two closely related catecholaminergic neuromodulators, dopamine and noradrenaline. We compared single unit activity of dopaminergic neurons of the substantia nigra pars compacta and noradrenergic neurons of the locus coeruleus in monkeys performing a reward schedule task. Their motivation, indexed using operant performance, increased as they progressed through schedules ending in reward delivery. The responses of dopaminergic and noradrenergic neurons around the time of major task events, visual cues predicting trial outcome and operant action to complete a trial, were similar, in that they occurred at the same time. They were also similar in that they both responded most strongly to the first cues in schedules, which are the most informative cues. The neuronal responses around the time of the monkeys’ actions were different, in that the response intensity profiles changed in opposite directions. Dopaminergic responses were stronger around predictably rewarded correct actions whereas noradrenergic responses were greater around predictably unrewarded correct actions. The complementary response profiles related to the monkeys operant actions suggest that dopamine neurons might relate to the value of the current action whereas the noradrenergic neurons relate to the psychological cost of that action.

  14. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    NARCIS (Netherlands)

    Barsegyan, Areg; McGaugh, James L.; Roozendaal, Benno

    2014-01-01

    Noradrenergic activation of the basolateral complex of the amygdala (BLA) is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the

  15. Too much of a good thing: blocking noradrenergic facilitation in medial prefrontal cortex prevents the detrimental effects of chronic stress on cognition.

    Science.gov (United States)

    Jett, Julianne D; Morilak, David A

    2013-03-01

    Cognitive impairments associated with dysfunction of the medial prefrontal cortex (mPFC) are prominent in stress-related psychiatric disorders. We have shown that enhancing noradrenergic tone acutely in the rat mPFC facilitated extra-dimensional (ED) set-shifting on the attentional set-shifting test (AST), whereas chronic unpredictable stress (CUS) impaired ED. In this study, we tested the hypothesis that the acute facilitatory effect of norepinephrine (NE) in mPFC becomes detrimental when activated repeatedly during CUS. Using microdialysis, we showed that the release of NE evoked in mPFC by acute stress was unchanged at the end of CUS treatment. Thus, to then determine if repeated elicitation of this NE activity in mPFC during CUS may have contributed to the ED deficit, we infused a cocktail of α(1)-, β(1)-, and β(2)-adrenergic receptor antagonists into the mPFC prior to each CUS session, then tested animals drug free on the AST. Antagonist treatment prevented the CUS-induced ED deficit, suggesting that NE signaling during CUS compromised mPFC function. We confirmed that this was not attributable to sensitization of adrenergic receptor function following chronic antagonist treatment, by administering an additional microinjection into the mPFC immediately prior to ED testing. Acute antagonist treatment did not reverse the beneficial effects of chronic drug treatment during CUS, nor have any effect on baseline ED performance in chronic vehicle controls. Thus, we conclude that blockade of noradrenergic receptors in mPFC protected against the detrimental cognitive effects of CUS, and that repeated elicitation of noradrenergic facilitatory activity is one mechanism by which chronic stress may promote mPFC cognitive dysfunction.

  16. Noradrenergic enhancement of associative fear memory in humans

    NARCIS (Netherlands)

    Soeter, M.; Kindt, M.

    2011-01-01

    Ample evidence in animals and humans supports the noradrenergic modulation in the formation of emotional memory. However, in humans the effects of stress on emotional memory are traditionally investigated by declarative memory tests (e.g., recall, recognition) for non-associative emotional stimuli

  17. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities.

    Science.gov (United States)

    Katayama, K; Yamada, K; Ornthanalai, V G; Inoue, T; Ota, M; Murphy, N P; Aruga, J

    2010-02-01

    Mutations in SLITRK1 are found in patients with Tourette's syndrome and trichotillomania. SLITRK1 encodes a transmembrane protein containing leucine-rich repeats that is produced predominantly in the nervous system. However, the role of this protein is largely unknown, except that it can modulate neurite outgrowth in vitro. To clarify the role of Slitrk1 in vivo, we developed Slitrk1-knockout mice and analyzed their behavioral and neurochemical phenotypes. Slitrk1-deficient mice exhibited elevated anxiety-like behavior in the elevated plus-maze test as well as increased immobility time in forced swimming and tail suspension tests. Neurochemical analysis revealed that Slitrk1-knockout mice had increased levels of norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol. Administration of clonidine, an alpha2-adrenergic agonist that is frequently used to treat patients with Tourette's syndrome, attenuated the anxiety-like behavior of Slitrk1-deficient mice in the elevated plus-maze test. These results lead us to conclude that noradrenergic mechanisms are involved in the behavioral abnormalities of Slitrk1-deficient mice. Elevated anxiety due to Slitrk1 dysfunction may contribute to the pathogenesis of neuropsychiatric diseases such as Tourette's syndrome and trichotillomania.

  18. Localization of endogenous amyloid-β to the coeruleo-cortical pathway: consequences of noradrenergic depletion.

    Science.gov (United States)

    Ross, Jennifer A; Reyes, Beverly A S; Thomas, Steven A; Van Bockstaele, Elisabeth J

    2018-01-01

    The locus coeruleus (LC)-norepinephrine (NE) system is an understudied circuit in the context of Alzheimer's disease (AD), and is thought to play an important role in neurodegenerative and neuropsychiatric diseases involving catecholamine neurotransmitters. Understanding the expression and distribution of the amyloid beta (Aβ) peptide, a primary component of AD, under basal conditions and under conditions of NE perturbation within the coeruleo-cortical pathway may be important for understanding its putative role in pathological states. Thus, the goal of this study is to define expression levels and the subcellular distribution of endogenous Aβ with respect to noradrenergic profiles in the rodent LC and medial prefrontal cortex (mPFC) and, further, to determine the functional relevance of NE in modulating endogenous Aβ 42 levels. We report that endogenous Aβ 42 is localized to tyrosine hydroxylase (TH) immunoreactive somatodendritic profiles of the LC and dopamine-β-hydroxylase (DβH) immunoreactive axon terminals of the infralimbic mPFC (ILmPFC). Male and female naïve rats have similar levels of amyloid precursor protein (APP) cleavage products demonstrated by western blot, as well as similar levels of endogenous Aβ 42 as determined by enzyme-linked immunosorbent assay. Two models of NE depletion, DSP-4 lesion and DβH knockout (KO) mice, were used to assess the functional relevance of NE on endogenous Aβ 42 levels. DSP-4 lesioned rats and DβH-KO mice show significantly lower levels of endogenous Aβ 42 . Noradrenergic depletion did not change APP-cleavage products resulting from β-secretase processing. Thus, resultant decreases in endogenous Aβ 42 may be due to decreased neuronal activity of noradrenergic neurons, or, by decreased stimulation of adrenergic receptors which are known to contribute to Aβ 42 production by enhancing γ-secretase processing under normal physiological conditions.

  19. Noradrenergic lesioning with an anti-dopamine beta-hydroxylase immunotoxin

    Science.gov (United States)

    Picklo, M. J.; Wiley, R. G.; Lappi, D. A.; Robertson, D.

    1994-01-01

    Sympathectomy has been achieved by a variety of methods but each has its limitations. These include lack of tissue specificity, incomplete lesioning, and the age range of susceptibility to the lesioning. To circumvent these drawbacks, an immunotoxin was constructed using a monoclonal antibody against the noradrenergic specific enzyme dopamine beta-hydroxylase (D beta H) coupled via a disulfide bond to saporin, a ribosomal inactivating protein. Three days after intravenous injection of the anti-D beta H immunotoxin (50 micrograms) into adult Sprague-Dawley rats, 66% of neurons in the superior cervical ganglia were chromatolytic. Superior cervical ganglia neurons were poisoned in 1 day old and 1 week old (86% of neurons) neonatal rats following subcutaneous injection of 3.75 and 15 micrograms, respectively. The anti-D beta H immunotoxin will be a useful tool in the study of the peripheral noradrenergic system in adult and neonatal animals.

  20. Stimulation of the noradrenergic system during memory formation impairs extinction learning but not the disruption of reconsolidation

    NARCIS (Netherlands)

    Soeter, M.; Kindt, M.

    2012-01-01

    The noradrenergic system plays a critical role in the ‘consolidation’ of emotional memory. If we are to target ‘reconsolidation’ in patients with anxiety disorders, the noradrenergic strengthening of fear memory should not impair the disruption of reconsolidation. In Experiment I, we addressed this

  1. Functional neuroanatomy of the central noradrenergic system.

    Science.gov (United States)

    Szabadi, Elemer

    2013-08-01

    The central noradrenergic neurone, like the peripheral sympathetic neurone, is characterized by a diffusely arborizing terminal axonal network. The central neurones aggregate in distinct brainstem nuclei, of which the locus coeruleus (LC) is the most prominent. LC neurones project widely to most areas of the neuraxis, where they mediate dual effects: neuronal excitation by α₁-adrenoceptors and inhibition by α₂-adrenoceptors. The LC plays an important role in physiological regulatory networks. In the sleep/arousal network the LC promotes wakefulness, via excitatory projections to the cerebral cortex and other wakefulness-promoting nuclei, and inhibitory projections to sleep-promoting nuclei. The LC, together with other pontine noradrenergic nuclei, modulates autonomic functions by excitatory projections to preganglionic sympathetic, and inhibitory projections to preganglionic parasympathetic neurones. The LC also modulates the acute effects of light on physiological functions ('photomodulation'): stimulation of arousal and sympathetic activity by light via the LC opposes the inhibitory effects of light mediated by the ventrolateral preoptic nucleus on arousal and by the paraventricular nucleus on sympathetic activity. Photostimulation of arousal by light via the LC may enable diurnal animals to function during daytime. LC neurones degenerate early and progressively in Parkinson's disease and Alzheimer's disease, leading to cognitive impairment, depression and sleep disturbance.

  2. Ilex paraguariensis Promotes Orofacial Pain Relief After Formalin Injection: Involvement of Noradrenergic Pathway.

    Science.gov (United States)

    de Carvalho, Eudislaine Fonseca; de Oliveira, Simone Kobe; Nardi, Viviane Koepp; Gelinski, Tathiana Carla; Bortoluzzi, Marcelo Carlos; Maraschin, Marcelo; Nardi, Geisson Marcos

    2016-03-01

    Drinking mate or chimarrão, a hot infusion of Ilex paraguariensis (ILEX) leaves, is a common habit in Southern South America that has a social and almost ritualistic role. It has been used as a stimulant beverage in South America and analgesic in regions of Argentina for treatment of headache and others painful inflammatory conditions such as arthritis and rheumatism. The aim of this study was to evaluate the pharmacological activity of I. paraguariensis infusion (ILEX) on orofacial nociception model induced by formalin, and study its mechanism of action. The analgesic effect of ILEX was assessed through writhing test, paw formalin test, paw edema induced by carrageenan, and orofacial pain induced by formalin. To study the action mechanism of ILEX, opioidergic, dopaminergic, nitrergic, and adrenergic pathways were investigated. The high-performance liquid chromatography analysis of ILEX infusion revealed caffeine and theobromine. The treatment with ILEX reduced the number of writhing. However, it was effective neither in the formalin paw test nor in the paw edema induced by carrageenan. Different from formalin paw test, ILEX was able to reduce the orofacial reactivity to formalin in 31.8% (70.4 ± 2.5 s; first phase), and 20% (127.3 ± 18.9 s; second phase). The analgesic effect of ILEX results from the modulation of noradrenergic pathways since prazosin (α1-adrenoceptor antagonist, 0.15 mg/kg; intraperitoneal) reversed the analgesic effect of ILEX. The present report demonstrates that analgesic effect of ILEX in orofacial formalin test is due mainly to modulation of noradrenergic pathways. Ilex paraguariensis (ILEX) has been used as a stimulant beverage in South America and analgesic in regions of Argentina for the treatment of headache and others painful inflammatory conditions such arthritis and rheumatism.The aim of this study was to evaluate the pharmacological activity of ILEX on orofacial nociception model induced by formalin, and study its mechanism of

  3. Chlorotoxin-mediated disinhibition of noradrenergic locus coeruleus neurons using a conditional transgenic approach.

    Science.gov (United States)

    Salbaum, J Michael; Cirelli, Chiara; Walcott, Elisabeth; Krushel, Les A; Edelman, Gerald M; Tononi, Giulio

    2004-07-30

    The noradrenergic locus coeruleus (LC) has been implicated in the promotion of arousal, in focused attention and learning, and in the regulation of the sleep/waking cycle. The complex biological functions of the central noradrenergic system have been investigated largely through electrophysiological recordings and neurotoxic lesions of LC neurons. Activation of LC neurons through electrical or chemical stimulation has also led to important insights, although these techniques have limited cellular specificity and short-term effects. Here, we describe a novel method aimed at stimulating the central noradrenergic system in a highly selective manner for prolonged periods of time. This was achieved through the conditional expression of a transgene for chlorotoxin (Cltx) in the LC of adult mice. Chlorotoxin is a component of scorpion venom that partially blocks small conductance chloride channels. In this manner, the influence of GABAergic and glycinergic inhibitory inputs on LC cells is greatly reduced, while their ability to respond to excitatory inputs is unaffected. We demonstrate that the unilateral induction of Cltx expression in the LC is associated with a concomitant ipsilateral increase in the expression of markers of noradrenergic activity in LC neurons. Moreover, LC disinhibition is associated with the ipsilateral induction of the immediate early gene NGFI-A in cortical and subcortical target areas. Unlike previous gain of function approaches, transgenic disinhibition of LC cells is highly selective and persists for at least several weeks. This method represents a powerful new tool to assess the long-term effects of LC activation and is potentially applicable to other neuronal systems.

  4. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    OpenAIRE

    Barsegyan, Areg; McGaugh, James L.; Roozendaal, Benno

    2014-01-01

    Noradrenergic activation of the basolateral complex of the amygdala (BLA) is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the consolidation of object-in-context recognition memory, a low-arousing training task assessing episodic-like memory. Male Sprague-Dawley rats were exposed to two identical objects in one context for either 3 ...

  5. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons

    Directory of Open Access Journals (Sweden)

    Vitor Fortuna

    2015-06-01

    Full Text Available The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs develop in close proximity to the dorsal aorta (DA and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA differentiation of SN precursors temporally coincides with vascular mural cell (VMC recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation.

  6. Neuropeptide S interacts with the basolateral amygdala noradrenergic system in facilitating object recognition memory consolidation.

    Science.gov (United States)

    Han, Ren-Wen; Xu, Hong-Jiao; Zhang, Rui-San; Wang, Pei; Chang, Min; Peng, Ya-Li; Deng, Ke-Yu; Wang, Rui

    2014-01-01

    The noradrenergic activity in the basolateral amygdala (BLA) was reported to be involved in the regulation of object recognition memory. As the BLA expresses high density of receptors for Neuropeptide S (NPS), we investigated whether the BLA is involved in mediating NPS's effects on object recognition memory consolidation and whether such effects require noradrenergic activity. Intracerebroventricular infusion of NPS (1nmol) post training facilitated 24-h memory in a mouse novel object recognition task. The memory-enhancing effect of NPS could be blocked by the β-adrenoceptor antagonist propranolol. Furthermore, post-training intra-BLA infusions of NPS (0.5nmol/side) improved 24-h memory for objects, which was impaired by co-administration of propranolol (0.5μg/side). Taken together, these results indicate that NPS interacts with the BLA noradrenergic system in improving object recognition memory during consolidation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Selective inhibition of dopamine-beta-hydroxylase enhances dopamine release from noradrenergic terminals in the medial prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Frau, Roberto; Gessa, Gian L

    2015-10-01

    Disulfiram has been claimed to be useful in cocaine addiction therapy, its efficacy being attributed to dopamine-beta-hydroxylase (DBH) inhibition. Our previous results indicate that disulfiram and the selective DBH inhibitor nepicastat increase extracellular dopamine (DA) in the rat medial prefrontal cortex (mPFC), and markedly potentiated cocaine-induced increase. Concomitantly, in rats with cocaine self-administration history, cocaine-seeking behavior induced by drug priming was prevented, probably through overstimulation of D1 receptors due to the DA increase. The present research was aimed at studying the neurochemical mechanisms originating the enhanced DA release. Noradrenergic system ablation was attained by intracerebroventricular (i.c.v.) administration of the neurotoxin anti-DBH-saporin (aDBH-sap). DA, noradrenaline (NA), and DOPAC were assessed by HPLC after ex vivo tissue extraction or in vivo microdialysis. Control and denervated rats were subjected to microdialysis in the mPFC and caudate nucleus to evaluate the effect of nepicastat-cocaine combination on extracellular DA levels and their regulation by α2-adrenoceptors. Fifteen days after neurotoxin or its vehicle administration, tissue and extracellular NA were reduced to less than 2% the control value, while extracellular DA was increased by approximately 100%. In control rats, nepicastat given alone and in combination with cocaine increased extracellular DA by about 250% and 1100%, respectively. In denervated rats, nepicastat slightly affected extracellular DA, while in combination with cocaine increased extracellular DA by 250%. No differences were found in the caudate nucleus. Clonidine almost totally reversed the extracellular DA elevation produced by nepicastat-cocaine combination, while it was ineffective in denervated rats. This research shows that the increase of extracellular DA produced by nepicastat alone or in combination with cocaine was prevented by noradrenergic denervation. The

  8. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    Science.gov (United States)

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Noradrenergic deficits in Parkinson's disease imaged with (11)C-MeNER

    DEFF Research Database (Denmark)

    Nahimi, Adjmal; Sommerauer, Michael; Kinnerup, Martin B

    2017-01-01

    significant declines in the thalamus, hypothalamus, and nucleus ruber. Tremor was significantly associated with preserved tracer binding. Conclusion: This is first specific quantification of noradrenergic denervation in Parkinsonńs disease patients in vivo. In agreement with predictions from determinations...

  10. Human amygdala reactivity is diminished by the beta-noradrenergic antagonist propranolol

    NARCIS (Netherlands)

    Hurlemann, R.; Walter, H.; Rehme, A. K.; Kukolja, J.; Santoro, S. C.; Schmidt, C.; Schnell, K.; Musshoff, F.; Keysers, C.; Maier, W.; Kendrick, K. M.; Onur, O. A.

    Background. Animal models of anxiety disorders emphasize the crucial role of locus ceruleus-noradrenergic (norepinephrine, NE) signaling, the basolateral amygdala (BLA) and their interactions in the expression of anxiety-like behavioral responses to stress. Despite clinical evidence for the efficacy

  11. The antidepressant-like effect of ethynyl estradiol is mediated by both serotonergic and noradrenergic systems in the forced swimming test.

    Science.gov (United States)

    Vega-Rivera, N M; López-Rubalcava, C; Estrada-Camarena, E

    2013-10-10

    17α-Ethynyl-estradiol (EE2, a synthetic steroidal estrogen) induces antidepressant-like effects in the forced swimming test (FST) similar to those induced by 5-HT and noradrenaline reuptake inhibitors (dual antidepressants). However, the precise mechanism of action of EE2 has not been studied. In the present study, the participation of estrogen receptors (ERs) and the serotonergic and the noradrenergic presynaptic sites in the antidepressant-like action of EE2 was evaluated in the FST. The effects of the ER antagonist ICI 182,780 (10 μg/rat; i.c.v.), the serotonergic and noradrenergic terminal destruction with 5,7-dihydroxytryptamine (5,7-DHT; 200 μg/rat, i.c.v.), and N-(2-chloro-ethyl)-N-ethyl-2-bromobenzylamine (DSP4; 10mg/kg, i.p.) were studied in ovariectomized rats treated with EE2 and subjected to the FST. In addition, the participation of α2-adrenergic receptors in the antidepressant-like action of EE2 was explored using the selective α2-receptor antagonist idazoxan (0.25, 0.5 and 1.0mg/kg, i.p.). EE2 induced an antidepressant-like action characterized by a decrease in immobility behavior with a concomitant increase in swimming and climbing behaviors. The ER antagonist, 5,7-DHT, DSP4, and idazoxan blocked the effects of EE2 on the immobility behavior, whereas ICI 182,780 and 5,7-DHT affected swimming behavior. The noradrenergic compound DSP4 altered climbing behavior, while Idazoxan inhibited the increase of swimming and climbing behaviors induced by EE2. Our results suggest that the antidepressant-like action of EE2 implies a complex mechanism of action on monoaminergic systems and estrogen receptors. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Effects of lesions to the dorsal noradrenergic bundle on counterconditioning of punished barpressing.

    Science.gov (United States)

    Tsaltas, E; Gray, J A; Preston, G C

    1987-01-01

    The possible contribution of the dorsal noradrenergic bundle (DB) to the development of a simple form of counterconditioning (an associative mechanism leading to behavioural tolerance for stress) was assessed by comparison of the performance of animals with 6-hydroxydopamine-induced lesions of the DB to that of sham-operated (SH) animals. Animals engaging in barpressing for food reward on a random-interval (RI) 64 sec schedule were presented with a stimulus signalling the concurrent operation of an RI-64 sec schedule of response-contingent shock. In the control condition (punishment), shock and reward never occurred as a result of the same barpress. In the experimental condition (counterconditioning), the frequency of shock and reward were the same as for the punishment condition but the two events always occurred in succession, with food following shock, as a consequence of the same barpress. DB lesions had no effect on the acquisition of rewarded barpressing or on the initial acquisition of the discrimination between the shock-free and shock-containing (signalled) components of the schedule. However, once performance on the discrimination had reached asymptote, DB animals in the punishment control group showed significantly less suppression to the signal than SH animals. The counterconditioning schedule used was effective, leading to significantly reduced response suppression in the SH animals in comparison to the SH group subjected to punishment. The pattern of findings in the DB groups was consistent with a blockade by the lesion of the development of counterconditioning. These results suggest, therefore, that the DB is involved in at least one associative mechanism leading to tolerance for stress.

  13. Noradrenergic and GABAergic systems in the medial hypothalamus are activated during hypoglycemia

    NARCIS (Netherlands)

    Beverly, JL; De Vries, MG; Bouman, SD; Arseneau, LM

    Noradrenergic and GABAergic systems in the medial hypothalamus influence plasma glucose and may be activated during glucoprivation. Microdialysis probes were placed into the ventromedial nucleus (VMH), lateral hypothalamus (LHA), and paraventricular nucleus (PVH) of male Sprague-Dawley rats to

  14. Noradrenergic α1 Receptor Antagonist Treatment Attenuates Positive Subjective Effects of Cocaine in Humans: A Randomized Trial

    Science.gov (United States)

    Newton, Thomas F.; De La Garza, Richard; Brown, Gregory; Kosten, Thomas R.; Mahoney, James J.; Haile, Colin N.

    2012-01-01

    Background Preclinical research implicates dopaminergic and noradrenergic mechanisms in mediating the reinforcing effects of drugs of abuse, including cocaine. The objective of this study was to evaluate the impact of treatment with the noradrenergic α1 receptor antagonist doxazosin on the positive subjective effects of cocaine. Methods Thirteen non-treatment seeking, cocaine-dependent volunteers completed this single-site, randomized, placebo-controlled, within-subjects study. In one study phase volunteers received placebo and in the other they received doxazosin, with the order counterbalanced across participants. Study medication was masked by over-encapsulating doxazosin tablets and matched placebo lactose served as the control. Study medication treatment was initiated at 1 mg doxazosin or equivalent number of placebo capsules PO/day and increased every three days by 1 mg. After receiving 4 mg doxazosin or equivalent number of placebo capsules participants received masked doses of 20 and 40 mg cocaine IV in that order with placebo saline randomly interspersed to maintain the blind. Results Doxazosin treatment was well tolerated and doxazosin alone produced minimal changes in heart rate and blood pressure. During treatment with placebo, cocaine produced dose-dependent increases in subjective effect ratings of “high”, “stimulated”, “like cocaine”, “desire cocaine”, “any drug effect”, and “likely to use cocaine if had access” (p<.001). Doxazosin treatment significantly attenuated the effects of 20 mg cocaine on ratings of “stimulated”, “like cocaine”, and “likely to use cocaine if had access” (p<.05). There were trends for doxazosin to reduce ratings of “stimulated”, “desire cocaine”, and “likely to use cocaine if had access” (p<.10). Conclusions Medications that block noradrenergic α1 receptors, such as doxazosin, may be useful as treatments for cocaine dependence, and should be evaluated further. Trial

  15. Prenatal drug exposures sensitize noradrenergic circuits to subsequent disruption by chlorpyrifos.

    Science.gov (United States)

    Slotkin, Theodore A; Skavicus, Samantha; Seidler, Frederic J

    2015-12-02

    We examined whether nicotine or dexamethasone, common prenatal drug exposures, sensitize the developing brain to chlorpyrifos. We gave nicotine to pregnant rats throughout gestation at a dose (3mg/kg/day) producing plasma levels typical of smokers; offspring were then given chlorpyrifos on postnatal days 1-4, at a dose (1mg/kg) that produces minimally-detectable inhibition of brain cholinesterase activity. In a parallel study, we administered dexamethasone to pregnant rats on gestational days 17-19 at a standard therapeutic dose (0.2mg/kg) used in the management of preterm labor, followed by postnatal chlorpyrifos. We evaluated cerebellar noradrenergic projections, a known target for each agent, and contrasted the effects with those in the cerebral cortex. Either drug augmented the effect of chlorpyrifos, evidenced by deficits in cerebellar β-adrenergic receptors; the receptor effects were not due to increased systemic toxicity or cholinesterase inhibition, nor to altered chlorpyrifos pharmacokinetics. Further, the deficits were not secondary adaptations to presynaptic hyperinnervation/hyperactivity, as there were significant deficits in presynaptic norepinephrine levels that would serve to augment the functional consequence of receptor deficits. The pretreatments also altered development of cerebrocortical noradrenergic circuits, but with a different overall pattern, reflecting the dissimilar developmental stages of the regions at the time of exposure. However, in each case the net effects represented a change in the developmental trajectory of noradrenergic circuits, rather than simply a continuation of an initial injury. Our results point to the ability of prenatal drug exposure to create a subpopulation with heightened vulnerability to environmental neurotoxicants. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Opioid and noradrenergic contributions of tapentadol to the inhibition of locus coeruleus neurons in the streptozotocin rat model of polyneuropathic pain.

    Science.gov (United States)

    Torres-Sanchez, Sonia; Borges, Gisela Da Silva; Mico, Juan A; Berrocoso, Esther

    2018-06-01

    Tapentadol is an analgesic that acts as an agonist of µ opioid receptors (MOR) and that inhibits noradrenaline reuptake. Data from healthy rats show that tapentadol inhibits neuronal activity in the locus coeruleus (LC), a nucleus regulated by both the noradrenergic and opioid systems. Thus, we set out to investigate the effect of tapentadol on LC activity in streptozotocin (STZ)-induced diabetic rats, a model of diabetic polyneuropathy, by analyzing single-unit extracellular recordings of LC neurons. Four weeks after inducing diabetes, tapentadol dose-response curves were obtained from animals pre-treated with RX821002 or naloxone (alpha2-adrenoceptors and opioid receptors antagonists, respectively). In STZ rats, the spontaneous activity of LC neurons (0.9 ± 0.1 Hz) was lower than in naïve animals (1.5 ± 0.1 Hz), and tapentadol's inhibitory effect was also weaker. Alpha2-adrenoceptors blockade by RX821002 (100 μg/kg i.v.) in STZ animals significantly increased the spontaneous activity (from 0.8 ± 0.1 to 1.4 ± 0.2 Hz) and it dampened the inhibition of LC neurons produced by tapentadol. However, opioid receptors blockade following naloxone pre-treatment (5 mg/kg i.v.) did not alter the spontaneous firing rate (0.9 ± 0.2 vs 0.9 ± 0.2 Hz) or the inhibitory effect of tapentadol on LC neurons in STZ animals. Thus, diabetic polyneuropathy appears to exert neuroplastic changes in LC neurotransmission, enhancing the sensitivity of alpha2-adrenoceptors and dampening opioid receptors expression. Tapentadol's activity seems to be predominantly mediated through its noradrenergic effects rather than its influence on opioid receptors in the STZ model of diabetic polyneuropathy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Modulation of the noradrenergic receptor at uterine level by the 17 β-estradiol influence

    International Nuclear Information System (INIS)

    Vanderlei, F.H.F.; Catanho, M.T.J.

    1991-01-01

    The present study was undertaken to asses the regulation of the noradrenergic receptor, by estrogens. We measured the uterotrophic response and the binding capacity of the noradrenergic receptor after the administration of 17 β-estradiol (E sub(2); 132 nmol/kg b.w., i.p.) to immature rats. The results showed that 2 and 4 hs after E sub(2) treatment, the total number of NA-receptors enhanced significantly (6 fold). Similarly, it was observed a significant increase in uterine weight, 24 h after E sub(2) administration. The results indicate that NA-receptors present in the uterus may be under a direct E sub(2) regulation, which suggests a possible participation on the uterotropic response induced by E sub(2). (author)

  18. Noradrenergic action in prefrontal cortex in the late stage of memory consolidation

    NARCIS (Netherlands)

    Tronel, Sophie; Feenstra, Matthijs G. P.; Sara, Susan J.

    2004-01-01

    These experiments investigated the role of the noradrenergic system in the late stage of memory consolidation and in particular its action at beta receptors in the prelimbic region (PL) of the prefrontal cortex in the hours after training. Rats were trained in a rapidly acquired, appetitively

  19. The inhibition of the dorsal paragigantocellular reticular nucleus induces waking and the activation of all adrenergic and noradrenergic neurons: a combined pharmacological and functional neuroanatomical study.

    Science.gov (United States)

    Clément, Olivier; Valencia Garcia, Sara; Libourel, Paul-Antoine; Arthaud, Sébastien; Fort, Patrice; Luppi, Pierre-Hervé

    2014-01-01

    GABAergic neurons specifically active during paradoxical sleep (PS) localized in the dorsal paragigantocellular reticular nucleus (DPGi) are known to be responsible for the cessation of activity of the noradrenergic neurons of the locus coeruleus during PS. In the present study, we therefore sought to determine the role of the DPGi in PS onset and maintenance and in the inhibition of the LC noradrenergic neurons during this state. The effect of the inactivation of DPGi neurons on the sleep-waking cycle was examined in rats by microinjection of muscimol, a GABAA agonist, or clonidine, an alpha-2 adrenergic receptor agonist. Combining immunostaining of the different populations of wake-inducing neurons with that of c-FOS, we then determined whether muscimol inhibition of the DPGi specifically induces the activation of the noradrenergic neurons of the LC. Slow wave sleep and PS were abolished during 3 and 5 h after muscimol injection in the DPGi, respectively. The application of clonidine in the DPGi specifically induced a significant decrease in PS quantities and delayed PS appearance compared to NaCl. We further surprisingly found out that more than 75% of the noradrenergic and adrenergic neurons of all adrenergic and noradrenergic cell groups are activated after muscimol treatment in contrast to the other wake active systems significantly less activated. These results suggest that, in addition to its already know inhibition of LC noradrenergic neurons during PS, the DPGi might inhibit the activity of noradrenergic and adrenergic neurons from all groups during PS, but also to a minor extent during SWS and waking.

  20. The inhibition of the dorsal paragigantocellular reticular nucleus induces waking and the activation of all adrenergic and noradrenergic neurons: a combined pharmacological and functional neuroanatomical study.

    Directory of Open Access Journals (Sweden)

    Olivier Clément

    Full Text Available GABAergic neurons specifically active during paradoxical sleep (PS localized in the dorsal paragigantocellular reticular nucleus (DPGi are known to be responsible for the cessation of activity of the noradrenergic neurons of the locus coeruleus during PS. In the present study, we therefore sought to determine the role of the DPGi in PS onset and maintenance and in the inhibition of the LC noradrenergic neurons during this state. The effect of the inactivation of DPGi neurons on the sleep-waking cycle was examined in rats by microinjection of muscimol, a GABAA agonist, or clonidine, an alpha-2 adrenergic receptor agonist. Combining immunostaining of the different populations of wake-inducing neurons with that of c-FOS, we then determined whether muscimol inhibition of the DPGi specifically induces the activation of the noradrenergic neurons of the LC. Slow wave sleep and PS were abolished during 3 and 5 h after muscimol injection in the DPGi, respectively. The application of clonidine in the DPGi specifically induced a significant decrease in PS quantities and delayed PS appearance compared to NaCl. We further surprisingly found out that more than 75% of the noradrenergic and adrenergic neurons of all adrenergic and noradrenergic cell groups are activated after muscimol treatment in contrast to the other wake active systems significantly less activated. These results suggest that, in addition to its already know inhibition of LC noradrenergic neurons during PS, the DPGi might inhibit the activity of noradrenergic and adrenergic neurons from all groups during PS, but also to a minor extent during SWS and waking.

  1. Noradrenergic facilitation of shock-probe defensive burying in lateral septum of rats, and modulation by chronic treatment with desipramine.

    Science.gov (United States)

    Bondi, Corina O; Barrera, Gabriel; Lapiz, M Danet S; Bedard, Tania; Mahan, Amy; Morilak, David A

    2007-03-30

    , rats treated chronically with DMI showed no significant rise of plasma ACTH in response to shock-probe exposure. Thus, acute stress-induced release of NE in LS facilitated defensive burying, an active, adaptive behavioral coping response. Chronic treatment with the NE reuptake blocker and antidepressant drug DMI attenuated acute noradrenergic facilitation of the active burying response, and also attenuated the level of perceived stress driving that response. These results suggest that long-term regulation of the acute modulatory function of NE by chronic treatment with reuptake blockers may contribute to the mechanisms by which such drugs exert their anxiolytic effects in the treatment of stress-related psychiatric conditions, including depression and anxiety.

  2. Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior.

    Science.gov (United States)

    McCall, Jordan G; Siuda, Edward R; Bhatti, Dionnet L; Lawson, Lamley A; McElligott, Zoe A; Stuber, Garret D; Bruchas, Michael R

    2017-07-14

    Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms.

  3. Noradrenergic Action in Prefrontal Cortex in the Late Stage of Memory Consolidation

    Science.gov (United States)

    Tronel, Sophie; Feenstra, Matthijs G. P.; Sara, Susan J.

    2004-01-01

    These experiments investigated the role of the noradrenergic system in the late stage of memory consolidation and in particular its action at beta receptors in the prelimbic region (PL) of the prefrontal cortex in the hours after training. Rats were trained in a rapidly acquired, appetitively motivated foraging task based on olfactory…

  4. Changes of the rats’ heart rate variability caused by chlorpromazine modulation of central noradrenergic neurotransmission during prolonged stress

    Directory of Open Access Journals (Sweden)

    O. Z. Мelnikova

    2012-03-01

    Full Text Available It’s established that under the prolonged stress there were changes of geometric and spectral indices of the rats’ heart rate variability (HRV, manifestations of which depended on duration of stressful factors acting and represented the stress reaction development from the stage of anxiety to the exhaustion phase. Application of chlorpromazine at the beginning and against the background of stress blocked the central alpha adrenoceptors and contributed to renewal of the most HRV indices into the limits of control values at the end of experiment. The results of research show that the modulation of functional state of central noradrenergic system plays a great role in the changes of HRV during prolonged stress.

  5. Statins Promote Long-Term Recovery after Ischemic Stroke by Reconnecting Noradrenergic Neuronal Circuitry

    Directory of Open Access Journals (Sweden)

    Kyoung Joo Cho

    2015-01-01

    Full Text Available Inhibitors of HMG-CoA reductase (statins, widely used to lower cholesterol in coronary heart and vascular disease, are effective drugs in reducing the risk of stroke and improving its outcome in the long term. After ischemic stroke, cardiac autonomic dysfunction and psychological problems are common complications related to deficits in the noradrenergic (NA system. This study investigated the effects of statins on the recovery of NA neuron circuitry and its function after transient focal cerebral ischemia (tFCI. Using the wheat germ agglutinin (WGA transgene technique combined with the recombinant adenoviral vector system, NA-specific neuronal pathways were labeled, and were identified in the locus coeruleus (LC, where NA neurons originate. NA circuitry in the atorvastatin-treated group recovered faster than in the vehicle-treated group. The damaged NA circuitry was partly reorganized with the gradual recovery of autonomic dysfunction and neurobehavioral deficit. Newly proliferated cells might contribute to reorganizing NA neurons and lead anatomic and functional recovery of NA neurons. Statins may be implicated to play facilitating roles in the recovery of the NA neuron and its function.

  6. Noradrenergic Control of Odor Recognition in a Nonassociative Olfactory Learning Task in the Mouse

    Science.gov (United States)

    Veyrac, Alexandra; Nguyen, Veronique; Marien, Marc; Didier, Anne; Jourdan, Francois

    2007-01-01

    The present study examined the influence of pharmacological modulations of the locus coeruleus noradrenergic system on odor recognition in the mouse. Mice exposed to a nonrewarded olfactory stimulation (training) were able to memorize this odor and to discriminate it from a new odor in a recall test performed 15 min later. At longer delays (30 or…

  7. Evaluation of the noradrenergic pathway and alpha-2 and beta-receptors in the modulation of the analgesia induced by transcutaneous electric nerve stimulation of high and low frequencies

    OpenAIRE

    Vasconcellos, Thiago Henrique Ferreira; Pantaleão, Patricia de Fátima; Teixeira, Dulcinéa Gonçalves; Santos, Ana Paula; Ferreira, Célio Marcos dos Reis

    2014-01-01

    Transcutaneous electric nerve stimulation is a noninvasive method used in clinical Physiotherapy to control acute or chronic pain. Different theories have been proposed to explain the mechanism of the analgesic action of transcutaneous electric nerve stimulation, as the participation of central and peripheral neurotransmitters. The aim of this study was to evaluate the involvement of noradrenergic pathway and of the receptors alfa-2 and beta in the modulation of analgesia produced by transcut...

  8. Amphetamine and cocaine suppress social play behavior in rats through distinct mechanisms.

    Science.gov (United States)

    Achterberg, E J Marijke; Trezza, Viviana; Siviy, Stephen M; Schrama, Laurens; Schoffelmeer, Anton N M; Vanderschuren, Louk J M J

    2014-04-01

    Social play behavior is a characteristic form of social behavior displayed by juvenile and adolescent mammals. This social play behavior is highly rewarding and of major importance for social and cognitive development. Social play is known to be modulated by neurotransmitter systems involved in reward and motivation. Interestingly, psychostimulant drugs, such as amphetamine and cocaine, profoundly suppress social play, but the neural mechanisms underlying these effects remain to be elucidated. In this study, we investigated the pharmacological underpinnings of amphetamine- and cocaine-induced suppression of social play behavior in rats. The play-suppressant effects of amphetamine were antagonized by the alpha-2 adrenoreceptor antagonist RX821002 but not by the dopamine receptor antagonist alpha-flupenthixol. Remarkably, the effects of cocaine on social play were not antagonized by alpha-2 noradrenergic, dopaminergic, or serotonergic receptor antagonists, administered either alone or in combination. The effects of a subeffective dose of cocaine were enhanced by a combination of subeffective doses of the serotonin reuptake inhibitor fluoxetine, the dopamine reuptake inhibitor GBR12909, and the noradrenaline reuptake inhibitor atomoxetine. Amphetamine, like methylphenidate, exerts its play-suppressant effect through alpha-2 noradrenergic receptors. On the other hand, cocaine reduces social play by simultaneous increases in dopamine, noradrenaline, and serotonin neurotransmission. In conclusion, psychostimulant drugs with different pharmacological profiles suppress social play behavior through distinct mechanisms. These data contribute to our understanding of the neural mechanisms of social behavior during an important developmental period, and of the deleterious effects of psychostimulant exposure thereon.

  9. Noradrenergic activation of the basolateral amygdala modulates the consolidation of object-in-context recognition memory

    Directory of Open Access Journals (Sweden)

    Areg eBarsegyan

    2014-05-01

    Full Text Available Noradrenergic activation of the basolateral complex of the amygdala (BLA is well known to enhance the consolidation of long-term memory of highly emotionally arousing training experiences. The present study investigated whether such noradrenergic activation of the BLA also influences the consolidation of object-in-context recognition memory, a low-arousing training task assessing episodic-like memory. Male Sprague–Dawley rats were exposed to two identical objects in one context for either 3 or 10 min, immediately followed by exposure to two other identical objects in a distinctly different context. Immediately after the training they received bilateral intra-BLA infusions of norepinephrine (0.3, 1.0 or 3.0 μg or the β-adrenoceptor antagonist propranolol (0.1, 0.3 or 1.0 μg. On the 24-h retention test, rats were placed back into one of the training contexts with one copy of each of the two training objects. Thus, although both objects were familiar, one of the objects had not previously been encountered in this particular test context. Hence, if the animal generated a long-term memory for the association between an object and its context, it would spend significantly more time exploring the object that was not previously experienced in this context. Saline-infused control rats exhibited poor 24-h retention when given 3 min of training and good retention when given 10 min of training. Norepinephrine administered after 3 min of object-in-context training induced a dose-dependent memory enhancement, whereas propranolol administered after 10 min of training produced memory impairment. These findings provide evidence that posttraining noradrenergic activation of the BLA also enhances the consolidation of memory of object-in-context recognition training, enabling accuracy of episodic-like memories.

  10. Tonic noradrenergic activity modulates explorative behavior and attentional set shifting: Evidence from pupillometry and gaze pattern analysis.

    Science.gov (United States)

    Pajkossy, Péter; Szőllősi, Ágnes; Demeter, Gyula; Racsmány, Mihály

    2017-12-01

    A constant task for every living organism is to decide whether to exploit rewards associated with current behavior or to explore the environment for more rewarding options. Current empirical evidence indicates that exploitation is related to phasic whereas exploration is related to tonic firing mode of noradrenergic neurons in the locus coeruleus. In humans, this exploration-exploitation trade-off is subserved by the ability to flexibly switch attention between task-related and task-irrelevant information. Here, we investigated whether this function, called attentional set shifting, is related to exploration and tonic noradrenergic discharge. We measured pretrial baseline pupil dilation, proved to be strongly correlated with the activity of the locus coeruleus, while human participants took part in well-known tasks of attentional set shifting. Study 1 used the Wisconsin Card Sorting Task, whereas in Study 2, the Intra/Extradimensional Set Shifting Task was used. Both tasks require participants to choose between different compound stimuli based on feedback provided for their previous decisions. During the task, stimulus-reward contingencies change periodically, thus participants are repeatedly required to reassess which stimulus features are relevant (i.e., they shift their attentional set). Our results showed that baseline pupil diameter steadily decreased when the stimulus-reward contingencies were stable, whereas they suddenly increased when these contingencies changed. Analysis of looking patterns also confirmed the presence of exploratory behavior during attentional set shifting. Thus, our results suggest that tonic firing mode of noradrenergic neurons in the locus coeruleus is implicated in attentional set shifting, as it regulates the amount of exploration. © 2017 Society for Psychophysiological Research.

  11. A1 noradrenergic neurons lesions reduce natriuresis and hypertensive responses to hypernatremia in rats.

    Directory of Open Access Journals (Sweden)

    Elaine Fernanda da Silva

    Full Text Available Noradrenergic neurons in the caudal ventrolateral medulla (CVLM; A1 group contribute to cardiovascular regulation. The present study assessed whether specific lesions in the A1 group altered the cardiovascular responses that were evoked by hypertonic saline (HS infusion in non-anesthetized rats. Male Wistar rats (280-340 g received nanoinjections of antidopamine-β-hydroxylase-saporin (A1 lesion, 0.105 ng.nL(-1 or free saporin (sham, 0.021 ng.nL(-1 into their CVLMs. Two weeks later, the rats were anesthetized (2% halothane in O2 and their femoral artery and vein were catheterized and led to exit subcutaneously between the scapulae. On the following day, the animals were submitted to HS infusion (3 M NaCl, 1.8 ml • kg(-1, b.wt., for longer than 1 min. In the sham-group (n = 8, HS induced a sustained pressor response (ΔMAP: 35±3.6 and 11±1.8 mmHg, for 10 and 90 min after HS infusion, respectively; P<0.05 vs. baseline. Ten min after HS infusion, the pressor responses of the anti-DβH-saporin-treated rats (n = 11were significantly smaller(ΔMAP: 18±1.4 mmHg; P<0.05 vs. baseline and vs. sham group, and at 90 min, their blood pressures reached baseline values (2±1.6 mmHg. Compared to the sham group, the natriuresis that was induced by HS was reduced in the lesioned group 60 min after the challenge (196±5.5 mM vs. 262±7.6 mM, respectively; P<0.05. In addition, A1-lesioned rats excreted only 47% of their sodium 90 min after HS infusion, while sham animals excreted 80% of their sodium. Immunohistochemical analysis confirmed a substantial destruction of the A1 cell group in the CVLM of rats that had been nanoinjected withanti-DβH-saporin. These results suggest that medullary noradrenergic A1 neurons are involved in the excitatory neural pathway that regulates hypertensive and natriuretic responses to acute changes in the composition of body fluid.

  12. CHOLINERGIC AND NORADRENERGIC MODULATION OF LONG-TERM EXPLICIT MEMORY ARE ALTERED BY CHRONIC LOW-LEVEL LEAD EXPOSURE. (U915393)

    Science.gov (United States)

    Recent evidence suggests that septohippocampal cholinergic activity is suppressed in rats exposed to low levels of lead (Pb). As a result, noradrenergic activity may be elevated due to compensatory sympathetic sprouting. Therefore, the goals of this study were to (a) determine...

  13. Glucocorticoids interact with the noradrenergic arousal system in the nucleus accumbens shell to enhance memory consolidation of both appetitive and aversive taste learning.

    Science.gov (United States)

    Wichmann, Romy; Fornari, Raquel V; Roozendaal, Benno

    2012-09-01

    It is well established that glucocorticoid hormones strengthen the consolidation of long-term memory of emotionally arousing experiences but have little effect on memory of low-arousing experiences. Although both positive and negative emotionally arousing events tend to be well remembered, studies investigating the neural mechanism underlying glucocorticoid-induced memory enhancement focused primarily on negatively motivated training experiences. In the present study we show an involvement of glucocorticoids within the nucleus accumbens (NAc) in enhancing memory consolidation of both an appetitive and aversive form of taste learning. The specific glucocorticoid receptor (GR) agonist RU 28362 (1 or 3ng) administered bilaterally into the NAc shell, but not core, of male Sprague-Dawley rats immediately after an appetitive saccharin drinking experience dose-dependently enhanced 24-h retention of the safe taste, resulting in a facilitated attenuation of neophobia. Similarly, GR agonist infusions given into the NAc shell immediately after pairing of the saccharin taste with a malaise-inducing agent enhanced memory of this negative experience, resulting in an intensified conditioned aversion. Importantly, a suppression of noradrenergic activity within the NAc shell with the β-adrenoceptor antagonist propranolol blocked the facilitating effect of a concurrently administered GR agonist on memory consolidation in both the appetitive and aversive learning task. Thus, these findings indicate that GR activation interacts with the noradrenergic arousal system within the NAc to enhance memory consolidation of emotionally arousing training experiences regardless of valence. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Both a Nicotinic Single Nucleotide Polymorphism (SNP) and a Noradrenergic SNP Modulate Working Memory Performance when Attention Is Manipulated

    Science.gov (United States)

    Greenwood, Pamela M.; Sundararajan, Ramya; Lin, Ming-Kuan; Kumar, Reshma; Fryxell, Karl J.; Parasuraman, Raja

    2009-01-01

    We investigated the relation between the two systems of visuospatial attention and working memory by examining the effect of normal variation in cholinergic and noradrenergic genes on working memory performance under attentional manipulation. We previously reported that working memory for location was impaired following large location precues,…

  15. Mechanism Design for Incentivizing Social Media Contributions

    Science.gov (United States)

    Singh, Vivek K.; Jain, Ramesh; Kankanhalli, Mohan

    Despite recent advancements in user-driven social media platforms, tools for studying user behavior patterns and motivations remain primitive. We highlight the voluntary nature of user contributions and that users can choose when (and when not) to contribute to the common media pool. A Game theoretic framework is proposed to study the dynamics of social media networks where contribution costs are individual but gains are common. We model users as rational selfish agents, and consider domain attributes like voluntary participation, virtual reward structure, network effect, and public-sharing to model the dynamics of this interaction. The created model describes the most appropriate contribution strategy from each user's perspective and also highlights issues like 'free-rider' problem and individual rationality leading to irrational (i.e. sub-optimal) group behavior. We also consider the perspective of the system designer who is interested in finding the best incentive mechanisms to influence the selfish end-users so that the overall system utility is maximized. We propose and compare multiple mechanisms (based on optimal bonus payment, social incentive leveraging, and second price auction) to study how a system designer can exploit the selfishness of its users, to design incentive mechanisms which improve the overall task-completion probability and system performance, while possibly still benefiting the individual users.

  16. Dopamine modulates male sexual behavior in Japanese quail in part via actions on noradrenergic receptors.

    Science.gov (United States)

    Cornil, Charlotte A; Dejace, Christel; Ball, Gregory F; Balthazart, Jacques

    2005-08-30

    In rats, dopamine (DA) facilitates male sexual behavior through its combined action on D1- and D2-like receptors, in the medial preoptic area (MPOA) as well as other brain areas. In Japanese quail, systemic injections of dopaminergic drugs suggested a similar pharmacology but central injections have never been performed. Recent electrophysiological experiments demonstrated that DA effects in the MPOA of quail are mediated mainly through the activation of alpha2-noradrenergic receptors. Previous studies of DA action on behavior used specific dopaminergic agonists/antagonists and therefore unintentionally avoided the potential cross-reaction with alpha2-receptors. The present study was thus designed to investigate directly the effects of DA on male sexual behavior and to test whether the interaction of DA with heterologous receptors affects this behavior. Intracerebroventricular (i.c.v.) injection of DA or NE inhibited copulation in a dose-dependent manner. Systemic injections of yohimbine, an alpha2-noradrenergic antagonist, modulated copulation in a bimodal manner depending on the dose injected. Interestingly, a behaviorally ineffective dose of yohimbine markedly reduced the inhibitory effects of DA when injected 15min before. Together, these results show for the first time that i.c.v. injections of DA itself inhibit male sexual behavior in quail and suggest that the interaction of DA with alpha2-receptors has behavioral significance.

  17. A computational psychiatry approach identifies how alpha-2a noradrenergic agonist guanfacine affects feature-based reinforcement learning in the macaque

    NARCIS (Netherlands)

    Hassani, S.A.; Oemisch, M.; Balcarras, M.; Westendorff, S.; Ardid, S.; van der Meer, M.A.; Tiesinga, P.H.E.; Womelsdorf, T.

    2017-01-01

    Noradrenaline is believed to support cognitive flexibility through the alpha 2A noradrenergic receptor (a2A-NAR) acting in prefrontal cortex. Enhanced flexibility has been inferred from improved working memory with the a2A-NA agonist Guanfacine. But it has been unclear whether Guanfacine improves

  18. Short-term serotonergic but not noradrenergic antidepressant administration reduces attentional vigilance to threat in healthy volunteers

    OpenAIRE

    Murphy, Susannah E; Yiend, Jenny; Lester, Kathryn J; Cowen, Philip J; Harmer, Catherine J

    2009-01-01

    Anxiety is associated with threat-related biases in information processing such as heightened attentional vigilance to potential threat. Such biases are an important focus of psychological treatments for anxiety disorders. Selective serotonin reuptake inhibitors (SSRIs) are effective in the treatment of a range of anxiety disorders. The aim of this study was to assess the effect of an SSRI on the processing of threat in healthy volunteers. A selective noradrenergic reuptake inhibitor (SNRI), ...

  19. Contributions of the Nucleus Accumbens Shell in Mediating the Enhancement in Memory Following Noradrenergic Activation of Either the Amygdala or Hippocampus

    Directory of Open Access Journals (Sweden)

    Erin C. Kerfoot

    2018-02-01

    Full Text Available The nucleus accumbens shell is a site of converging inputs during memory processing for emotional events. The accumbens receives input from the nucleus of the solitary tract (NTS regarding changes in peripheral autonomic functioning following emotional arousal. The shell also receives input from the amygdala and hippocampus regarding affective and contextual attributes of new learning experiences. The successful encoding of affect or context is facilitated by activating noradrenergic systems in either the amygdala or hippocampus. Recent findings indicate that memory enhancement produced by activating NTS neurons, is attenuated by suppressing accumbens functioning after learning. This finding illustrates the significance of the shell in integrating information from the periphery to modulate memory for arousing events. However, it is not known if the accumbens shell plays an equally important role in consolidating information that is initially processed in the amygdala and hippocampus. The present study determined if the convergence of inputs from these limbic regions within the nucleus accumbens contributes to successful encoding of emotional events into memory. Male Sprague-Dawley rats received bilateral cannula implants 2 mm above the accumbens shell and a second bilateral implant 2 mm above either the amygdala or hippocampus. The subjects were trained for 6 days to drink from a water spout. On day 7, a 0.35 mA footshock was initiated as the rat approached the spout and was terminated once the rat escaped into a white compartment. Subjects were then given intra-amygdala or hippocampal infusions of PBS or a dose of norepinephrine (0.2 μg previously shown to enhance memory. Later, all subjects were given intra-accumbens infusion of muscimol to functionally inactivate the shell. Muscimol inactivation of the accumbens shell was delayed to allow sufficient time for norepinephrine to activate intracellular cascades that lead to long-term synaptic

  20. Contributions of the Nucleus Accumbens Shell in Mediating the Enhancement in Memory Following Noradrenergic Activation of Either the Amygdala or Hippocampus.

    Science.gov (United States)

    Kerfoot, Erin C; Williams, Cedric L

    2018-01-01

    The nucleus accumbens shell is a site of converging inputs during memory processing for emotional events. The accumbens receives input from the nucleus of the solitary tract (NTS) regarding changes in peripheral autonomic functioning following emotional arousal. The shell also receives input from the amygdala and hippocampus regarding affective and contextual attributes of new learning experiences. The successful encoding of affect or context is facilitated by activating noradrenergic systems in either the amygdala or hippocampus. Recent findings indicate that memory enhancement produced by activating NTS neurons, is attenuated by suppressing accumbens functioning after learning. This finding illustrates the significance of the shell in integrating information from the periphery to modulate memory for arousing events. However, it is not known if the accumbens shell plays an equally important role in consolidating information that is initially processed in the amygdala and hippocampus. The present study determined if the convergence of inputs from these limbic regions within the nucleus accumbens contributes to successful encoding of emotional events into memory. Male Sprague-Dawley rats received bilateral cannula implants 2 mm above the accumbens shell and a second bilateral implant 2 mm above either the amygdala or hippocampus. The subjects were trained for 6 days to drink from a water spout. On day 7, a 0.35 mA footshock was initiated as the rat approached the spout and was terminated once the rat escaped into a white compartment. Subjects were then given intra-amygdala or hippocampal infusions of PBS or a dose of norepinephrine (0.2 μg) previously shown to enhance memory. Later, all subjects were given intra-accumbens infusion of muscimol to functionally inactivate the shell. Muscimol inactivation of the accumbens shell was delayed to allow sufficient time for norepinephrine to activate intracellular cascades that lead to long-term synaptic modifications

  1. Noradrenergic Activation of Hypoglossal Nucleus Modulates the Central Regulation of Genioglossus in Chronic Intermittent Hypoxic Rats

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2017-05-01

    Full Text Available Neuromuscular compensation of the genioglossus muscle can be induced by chronic intermittent hypoxia (CIH in obstructive sleep apnea to maintain upper airway stability. Noradrenergic activation of hypoglossal nucleus plays a critical role in the central control of the genioglossus. However, it remains unknown whether norepinephrine takes part in the central regulation of the genioglossus during CIH. Adult male Wistar rats (n = 32 were studied to explore the influence of noradrenergic activation of hypoglossal nucleus on the central control of the genioglossus at different stages of CIH. The rats were divided into four groups: normal control or normoxic (NO group, CIH group, CIH + normal saline (NS group, and CIH + prazosin (PZ, α1-adrenergic antagonist group. PZ (0.2 mM, 60 nl and NS (0.9%, 60 nl were microinjected into the hypoglossal nucleus. The responses of the genioglossus corticomotor area to transcranial magnetic stimulation (TMS were recorded on the 1st, 7th, 14th, and 21st day of CIH. The CIH group showed significantly shorter TMS latencies on days 1, 7, and 14 (3.85 ± 0.37 vs. 4.58 ± 0.42, 3.93 ± 0.17 vs. 4.49 ± 0.55, 3.79 ± 0.38 vs. 4.39 ± 0.30 ms, P < 0.05, and higher TMS amplitudes on day 1 (2.74 ± 0.87 vs. 1.60 ± 0.52 mV, P < 0.05 of CIH than the NO group. Compared to the CIH + NS group, the CIH + PZ group showed decreased TMS responses (longer latencies and lower amplitudes only on the 14th day of CIH (3.99 ± 0.28 vs. 4.61 ± 0.48 ms, 2.51 ± 0.67 vs. 1.18 ± 0.62 mV, P < 0.05. These results indicated that noradrenergic activation of the hypoglossal nucleus played a role in the central compensation of genioglossus through α1-adrenoceptor on the 14th day of CIH.

  2. Cellular Mechanisms Underlying Behavioral State-Dependent Bidirectional Modulation of Motor Cortex Output

    Directory of Open Access Journals (Sweden)

    Julia Schiemann

    2015-05-01

    Full Text Available Neuronal activity in primary motor cortex (M1 correlates with behavioral state, but the cellular mechanisms underpinning behavioral state-dependent modulation of M1 output remain largely unresolved. Here, we performed in vivo patch-clamp recordings from layer 5B (L5B pyramidal neurons in awake mice during quiet wakefulness and self-paced, voluntary movement. We show that L5B output neurons display bidirectional (i.e., enhanced or suppressed firing rate changes during movement, mediated via two opposing subthreshold mechanisms: (1 a global decrease in membrane potential variability that reduced L5B firing rates (L5Bsuppressed neurons, and (2 a coincident noradrenaline-mediated increase in excitatory drive to a subpopulation of L5B neurons (L5Benhanced neurons that elevated firing rates. Blocking noradrenergic receptors in forelimb M1 abolished the bidirectional modulation of M1 output during movement and selectively impaired contralateral forelimb motor coordination. Together, our results provide a mechanism for how noradrenergic neuromodulation and network-driven input changes bidirectionally modulate M1 output during motor behavior.

  3. Peripheral markers of serotonergic and noradrenergic function in post-pubertal, caucasian males with autistic disorder.

    Science.gov (United States)

    Croonenberghs, J; Delmeire, L; Verkerk, R; Lin, A H; Meskal, A; Neels, H; Van der Planken, M; Scharpe, S; Deboutte, D; Pison, G; Maes, M

    2000-03-01

    Some studies have suggested that disorders in the peripheral and central metabolism of serotonin (5-HT) and noradrenaline may play a role in the pathophysiology of autistic disorder. This study examines serotonergic and noradrenergic markers in a study group of 13 male, post-pubertal, caucasian autistic patients (age 12-18 y; I.Q. > 55) and 13 matched volunteers. [3H]-paroxetine binding Kd values were significantly higher in patients with autism than in healthy volunteers. Plasma concentrations of tryptophan, the precursor of 5-HT, were significantly lower in autistic patients than in healthy volunteers. There were no significant differences between autistic and normal children in the serum concentrations of 5-HT, or the 24-hr urinary excretion of 5-hydroxy-indoleacetic acid (5-HIAA), adrenaline, noradrenaline, and dopamine. There were no significant differences in [3H]-rauwolscine binding Bmax or Kd values, or in the serum concentrations of tyrosine, the precursor of noradrenaline, between both study groups. There were highly significant positive correlations between age and 24-hr urinary excretion of 5-HIAA and serum tryptophan. The results suggest that: 1) serotonergic disturbances, such as defects in the 5-HT transporter system and lowered plasma tryptophan, may play a role in the pathophysiology of autism; 2) autism is not associated with alterations in the noradrenergic system; and 3) the metabolism of serotonin in humans undergoes significant changes between the ages of 12 and 18 years.

  4. Contributions to mechanics Markus Reiner eightieth anniversary volume

    CERN Document Server

    Abir, David

    1969-01-01

    Contributions to Mechanics presents a biographical survey of Professor Markus Reiner's life. This book is a manifestation of affection and esteem to Professor Reiner, expressed by various authors who eagerly contributed original works in the field of mechanics. Organized into five parts encompassing 26 chapters, this book begins with a biographical article of Professor Markus Reiner that includes a detailed account of his works. This text then explores the approach for the interpretation of certain features commonly accepted in quantum theory on the basis of its mathematical formalism. Other c

  5. Does Growth Impairment Underlie the Adverse Effects of Dexamethasone on Development of Noradrenergic Systems?

    Science.gov (United States)

    Slotkin, Theodore A; Ko, Ashley; Seidler, Frederic J

    2018-06-20

    Glucocorticoids are given in preterm labor to prevent respiratory distress but these agents evoke neurobehavioral deficits in association with reduced brain region volumes. To determine whether the neurodevelopmental effects are distinct from growth impairment, we gave developing rats dexamethasone at doses below or within the therapeutic range (0.05, 0.2 or 0.8 mg/kg) at different stages: gestational days (GD) 17-19, postnatal days (PN) 1-3 or PN7-9. In adolescence and adulthood, we assessed the impact on noradrenergic systems in multiple brain regions, comparing the effects to those on somatic growth or on brain region growth. Somatic growth was reduced with exposure in all three stages, with greater sensitivity for the postnatal regimens; brain region growth was impaired to a lesser extent. Norepinephrine content and concentration were reduced depending on the treatment regimen, with a rank order of deficits of PN7-9 > PN1-3 > GD17-19. However, brain growth impairment did not parallel reduced norepinephrine content in magnitude, dose threshold, sex or regional selectivity, or temporal pattern, and even when corrected for reduced brain region weights (norepinephrine per g tissue), the dexamethasone-exposed animals showed subnormal values. Regression analysis showed that somatic growth impairment accounted for an insubstantial amount of the reduction in norepinephrine content, and brain growth impairment accounted for only 12%, whereas specific effects on norepinephrine accounted for most of the effect. The adverse effects of dexamethasone on noradrenergic system development are not simply related to impaired somatic or brain region growth, but rather include specific targeting of neurodifferentiation. Copyright © 2018. Published by Elsevier B.V.

  6. Inferior frontal gyrus preserves working memory and emotional learning under conditions of impaired noradrenergic signaling

    Directory of Open Access Journals (Sweden)

    Benjamin eBecker

    2013-12-01

    Full Text Available Compensation has been widely applied to explain neuroimaging findings in neuropsychiatric patients. Functional compensation is often invoked when patients display equal performance and increased neural activity in comparison to healthy controls. According to the compensatory hypothesis increased activity allows the brain to maintain cognitive performance despite underlying neuropathological changes. Due to methodological and pathology-related issues, however, the functional relevance of the increased activity and the specific brain regions involved in the compensatory response remain unclear. An experimental approach that allows a transient induction of compensatory responses in the healthy brain could help to overcome these issues. To this end we used the nonselective beta-blocker propranolol to pharmacologically induce sub-optimal noradrenergic signaling in healthy participants. In two independent fMRI experiments participants received either placebo or propranolol before they underwent a cognitive challenge (experiment 1: working memory; experiment 2: emotional learning: Pavlovian fear conditioning. In experiment 1 propranolol had no effects on working memory performance, but evoked stronger activity in the left inferior frontal gyrus (IFG. In experiment 2 propranolol produced no effects on emotional memory formation, but evoked stronger activity in the right IFG. The present finding that sub-optimal beta-adrenergic signaling did not disrupt performance and concomitantly increased IFG activity is consistent with, and extends, current perspectives on functional compensation. Together, our findings suggest that under conditions of impaired noradrenergic signaling, heightened activity in brain regions located within the cognitive control network, particularly the IFG, may reflect compensatory operations subserving the maintenance of behavioral performance.

  7. The selective neurotoxin DSP-4 impairs the noradrenergic projections from the locus coeruleus to the inferior colliculus in rats.

    Directory of Open Access Journals (Sweden)

    Sebastián eHormigo

    2012-06-01

    Full Text Available The inferior colliculus (IC and the locus coeruleus (LC are two midbrain nuclei that integrate multimodal information and play a major role in novelty detection to elicit an orienting response. Despite the reciprocal connections between these two structures, the projection pattern and target areas of the LC within the subdivisions of the rat IC are still unknown. Here, we used tract-tracing approaches combined with immunohistochemistry, densitometry and confocal microscopy analysis to describe a projection from the LC to the IC. Biotinylated dextran amine (BDA injections into the LC showed that the LC-IC projection is mainly ipsilateral (90% and reaches, to a major extent, the dorsal and lateral part of the IC and the intercollicular commissure. Additionally, some LC fibers extend into the central nucleus of the IC. The neurochemical nature of this projection is noradrenergic, given that tyrosine hydroxylase (TH and dopamine beta hydroxylase (DBH colocalize with the BDA-labeled fibers from the LC. To determine the total field of the LC innervations in the IC, we destroyed the LC neurons and fibers using a highly selective neurotoxin, DSP-4, and then studied the distribution and density of TH- and DBH-immunolabeled axons in the IC. In the DSP-4 treated animals, the number of axonal fibers immunolabeled for TH and DBH were deeply decreased throughout the entire rostrocaudal extent of the IC and its subdivisions compared to controls. Our densitometry results showed that the IC receives up to 97% of its noradrenergic innervations from the LC neurons and only 3% from non-coeruleus neurons. Our results also indicate that TH immunoreactivity in the IC was less impaired than the immunoreactivity for DBH after DSP-4 administration. This is consistent with the existence of an important dopaminergic projection from the substantia nigra to the IC. In conclusion, our study demonstrates and quantifies the noradrenergic projection from the LC to the IC and its

  8. Autoradiographic analysis of alpha 1-noradrenergic receptors in the human brain postmortem. Effect of suicide

    International Nuclear Information System (INIS)

    Gross-Isseroff, R.; Dillon, K.A.; Fieldust, S.J.; Biegon, A.

    1990-01-01

    In vitro quantitative autoradiography of alpha 1-noradrenergic receptors, using tritiated prazosin as a ligand, was performed on 24 human brains postmortem. Twelve brains were obtained from suicide victims and 12 from matched controls. We found significant lower binding to alpha 1 receptors in several brain regions of the suicide group as compared with matched controls. This decrease in receptor density was evident in portions of the prefrontal cortex, as well as the temporal cortex and in the caudate nucleus. Age, sex, presence of alcohol, and time of death to autopsy did not affect prazosin binding, in our sample, as measured by autoradiography

  9. Stress and PTSD Mechanisms as Targets for Pharmacotherapy of Alcohol Abuse, Addiction and Relapse

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-13-1-0126 TITLE: Stress and PTSD Mechanisms as Targets for Pharmacotherapy of Alcohol Abuse, Addiction and Relapse PRINCIPAL...10/27/2017 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2016 — 29 Sep 2017 4. TITLE AND SUBTITLE Stress and PTSD Mechanisms as Targets for...insights into mechanism; (2) suppression of noradrenergic signaling decreases alcohol drinking in rats with a history of traumatic stress , but not in

  10. Central chemoreceptors and neural mechanisms of cardiorespiratory control

    Directory of Open Access Journals (Sweden)

    T.S. Moreira

    2011-09-01

    Full Text Available The arterial partial pressure (P CO2 of carbon dioxide is virtually constant because of the close match between the metabolic production of this gas and its excretion via breathing. Blood gas homeostasis does not rely solely on changes in lung ventilation, but also to a considerable extent on circulatory adjustments that regulate the transport of CO2 from its sites of production to the lungs. The neural mechanisms that coordinate circulatory and ventilatory changes to achieve blood gas homeostasis are the subject of this review. Emphasis will be placed on the control of sympathetic outflow by central chemoreceptors. High levels of CO2 exert an excitatory effect on sympathetic outflow that is mediated by specialized chemoreceptors such as the neurons located in the retrotrapezoid region. In addition, high CO2 causes an aversive awareness in conscious animals, activating wake-promoting pathways such as the noradrenergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have projections that contribute to the CO2-induced rise in breathing and sympathetic outflow. However, since the level of activity of the retrotrapezoid nucleus is regulated by converging inputs from wake-promoting systems, behavior-specific inputs from higher centers and by chemical drive, the main focus of the present manuscript is to review the contribution of central chemoreceptors to the control of autonomic and respiratory mechanisms.

  11. Presynaptic beta-adrenoceptors in guinea pig papillary muscle: evidence for adrenaline-mediated positive feedback on noradrenergic transmission

    International Nuclear Information System (INIS)

    Valenta, B.; Singer, E.A.

    1991-01-01

    Guinea pig papillary muscles were preincubated in the presence of 5 x 10 - 9 mol/L unlabeled noradrenaline or adrenaline then incubated with ( 3 H)-noradrenaline and superfused. Electrical field stimulation with 180 pulses delivered at 1 or 3 Hz was used to induce overflow of radioactivity. Comparison of the effects of preexposure of the tissue to adrenaline or noradrenaline revealed that adrenaline incubation caused an enhancement of stimulation-evoked overflow of ( 3 H)noradrenaline and a reduction of the effect of exogenously added isoprenaline. Furthermore, the selective beta 2-adrenoceptor antagonist ICI 118,551 (10 - 7 mol/L), but not the selective beta 1-adrenoceptor antagonist ICI 89,406 (10 - 7 mol/L), reduced electrically evoked overflow of ( 3 H)noradrenaline in tissue preincubated with adrenaline but not in tissue preincubated with noradrenaline. The overflow-reducing effect of ICI 118.551 occurred at stimulation with 3 Hz but not at stimulation with 1 Hz. The present results support the hypothesis that noradrenergic transmission in guinea pig papillary muscle is facilitated via beta 2-adrenoceptors, and that adrenaline may serve as transmitter in this positive feedback mechanism after its incorporation into sympathetic nerves

  12. Disinhibition by propranolol and chlordiazepoxide of nonrewarded lever-pressing in the rat is unaffected by dorsal noradrenergic bundle lesion.

    Science.gov (United States)

    Salmon, P; Tsaltas, E; Gray, J A

    1989-03-01

    Ten male Sprague-Dawley rats received 6-hydroxydopamine-induced lesions of the dorsal noradrenergic bundle and 10 others underwent control operations. The lesion depleted levels of noradrenaline in the hippocampus to 2% of those in the controls. All rats were then trained for 16 sessions to lever-press in a Skinner box on a variable interval 18 sec schedule of food-reinforcement, then for 42 days on a successive discrimination between periods of variable interval (VI 18 sec) food-reinforcement and periods of extinction. This report describes the effects of chlordiazepoxide (CDP; 5 mg/kg) and propranolol (5 and 10 mg/kg) injected intraperitoneally in both groups on modified ABBA designs after this training. Both drugs increased the response rates in extinction periods. The effect of propranolol was similar at each dose and smaller than that of CDP. Although CDP and propranolol (5 mg/kg) increased variable interval response rates also, this could not account for the effect on extinction response rates. Responding did not differ between the lesioned and control animals and the effects of drugs were similar in each group. It is unlikely that CDP or propranolol release nonrewarded responding by disrupting transmission in the dorsal noradrenergic bundle.

  13. Both a Nicotinic Single Nucleotide Polymorphism (SNP) and a Noradrenergic SNP Modulate Working Memory Performance when Attention is Manipulated

    OpenAIRE

    Greenwood, Pamela M.; Sundararajan, Ramya; Lin, Ming-Kuan; Kumar, Reshma; Fryxell, Karl J.; Parasuraman, Raja

    2009-01-01

    We investigated the relation between the two systems of visuospatial attention and working memory by examining the effect of normal variation in cholinergic and noradrenergic genes on working memory performance under attentional manipulation. We previously reported that working memory for location was impaired following large location precues, indicating the scale of visuospatial attention has a role in forming the mental representation of the target. In one of the first studies to compare ef...

  14. Short-term serotonergic but not noradrenergic antidepressant administration reduces attentional vigilance to threat in healthy volunteers.

    Science.gov (United States)

    Murphy, Susannah E; Yiend, Jenny; Lester, Kathryn J; Cowen, Philip J; Harmer, Catherine J

    2009-03-01

    Anxiety is associated with threat-related biases in information processing such as heightened attentional vigilance to potential threat. Such biases are an important focus of psychological treatments for anxiety disorders. Selective serotonin reuptake inhibitors (SSRIs) are effective in the treatment of a range of anxiety disorders. The aim of this study was to assess the effect of an SSRI on the processing of threat in healthy volunteers. A selective noradrenergic reuptake inhibitor (SNRI), which is not generally used in the treatment of anxiety, was used as a contrast to assess the specificity of SSRI effects on threat processing. Forty-two healthy volunteers were randomly assigned to 7 d double-blind intervention with the SSRI citalopram (20 mg/d), the SNRI reboxetine (8 mg/d), or placebo. On the final day, attentional and interpretative bias to threat was assessed using the attentional probe and the homograph primed lexical decision tasks. Citalopram reduced attentional vigilance towards fearful faces but did not affect the interpretation of ambiguous homographs as threatening. Reboxetine had no significant effect on either of these measures. Citalopram reduces attentional orienting to threatening stimuli, which is potentially relevant to its clinical use in the treatment of anxiety disorders. This finding supports a growing literature suggesting that an important mechanism through which pharmacological agents may exert their effects on mood is by reversing the cognitive biases that characterize the disorders that they treat. Future studies are needed to clarify the neural mechanisms through which these effects on threat processing are mediated.

  15. Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk.

    Science.gov (United States)

    Nyman, Jeffry S; Granke, Mathilde; Singleton, Robert C; Pharr, George M

    2016-08-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.

  16. Selective Serotonergic (SSRI) Versus Noradrenergic (SNRI) Reuptake Inhibitors with and without Acetylsalicylic Acid in Major Depressive Disorder.

    Science.gov (United States)

    Zdanowicz, Nicolas; Reynaert, Christine; Jacques, Denis; Lepiece, Brice; Dubois, Thomas

    2017-09-01

    Antidepressant medication efficacy remains a major research challenge. Here, we explored four questions: whether noradrenergic antidepressants are more effective than serotonergic antidepressants; whether the addition of 100 mg acetylsalicylic acid (ASA) changes antidepressant efficacy; whether the long-term efficacy differs depending on the antidepressant and the addition of ASA; and whether serum levels of brain-derived neurotrophic factor (BDNF) are clinically informative. In a two-year study, forty people with major depressive disorder were randomly assigned to groups that received an SSRI (escitalopram) or an SNRI (duloxetine), each group received concomitant ASA (100 mg) or a placebo. Sociodemographic data were recorded and patients under went regular assessments with the Hamilton depression scale (HDS) and clinical global impression (CGI) scale. Serum levels of BDNF were measured four times per year. There was no significant difference in efficacy between the two antidepressants or between antidepressant treatment with and without ASA. However, subgroup comparisons revealed that the duloxetine + ASA (DASA) subgroup showed a more rapid improvement in HDS score as early as 2 months (t=-3.114, p=0.01), in CGI score at 5 months (t=-2.119, p=0.05), and a better remission rate (χ 2 =6.296, p 0.012) than the escitalopram + placebo (EP) subgroup. Serum BDNF before treatment was also higher in the DASA subgroup than in the EP subgroup (t=3.713; p=0.002). This suggest two hypotheses: either a noradrenergic agent combined with ASA is more effective in treating depression than a serotonergic agent alone, or the level of serum BDNF before treatment is a precursor marker of the response to antidepressants. Further research is needed to test these hypotheses.

  17. Mechanical contribution of lamellar and interlamellar elastin along the mouse aorta.

    Science.gov (United States)

    Clark, T E; Lillie, M A; Vogl, A W; Gosline, J M; Shadwick, R E

    2015-10-15

    The mechanical properties of aortic elastin vary regionally, but the microstructural basis for this variation is unknown. This study was designed to identify the relative contributions of lamellar and interlamellar elastin to circumferential load bearing in the mouse thoracic and abdominal aortas. Forces developed in uniaxial tests of samples of fresh and autoclaved aorta were correlated with elastin content and morphology obtained from histology and multiphoton laser scanning microscopy. Autoclaving should render much of the interlamellar elastin mechanically incompetent. In autoclaved tissue force per unit sample width correlated with lamellar elastin content (P≪0.001) but not total elastin content. In fresh tissue at low strain where elastin dominates the mechanical response, forces were higher than in the autoclaved tissue, but force did not correlate with total elastin content. Therefore although interlamellar elastin likely contributed to the stiffness in the fresh aorta, its contribution appeared not in proportion to its quantity. In both fresh and autoclaved tissue, elastin stiffness consistently decreased along the abdominal aorta, a key area for aneurysm development, and this difference could not be fully accounted for on the basis of either lamellar or total elastin content. These findings are relevant to the development of mathematical models of arterial mechanics, particularly for mouse models of arterial diseases involving elastic tissue. In microstructural based models the quantity of each mural constituent determines its contribution to the total response. This study shows elastin's mechanical response cannot necessarily be accounted for on the basis of fibre quantity, orientation, and modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. 125I-[Tyr0,D-Trp8]somatostatin-14 binding sites in the locus coeruleus of the rat are located on both ascending and descending projecting noradrenergic cells

    International Nuclear Information System (INIS)

    Epelbaum, J.; Bluet-Pajot, M.T.; Llorens-Cortes, C.; Kordon, C.; Mounier, F.; Senut, M.C.; Videau, C.

    1990-01-01

    Radioautographic determinations of 125I-[Tyr0,D-Trp8]somatostatin-14 (125I-SRIF) binding sites were performed on frozen serial sections of the locus coeruleus (LC) of control rats and of rats subjected to either bilateral microinjections of 6 hydroxydopamine (6-OHDA) into the LC or unilateral microinjection into the ascending noradrenergic bundles. These experiments were performed in order to determine whether 125I-SRIF binding was localized to noradrenergic-containing cells and in which regions the cells which contain the binding sites are projecting. The extent of the lesions was assessed by measuring norepinephrine (NE) levels in the hippocampus (88% decrease as compared to sham-operated animals) for bilateral LC lesions and in the frontal cortex (87% reduction vs. contralateral side) for unilateral bundle lesions. In control rats, 125I-SRIF binding sites were restricted to the boundaries of the LC and followed closely the distribution of tyrosine hydroxylase-labeled cells. Three weeks after bilateral injections of 6-OHDA, 125I-SRIF binding decreased by 79% in all regions of the LC. In contrast, unilateral destruction of the ascending noradrenergic bundles resulted in a moderate decrease only in the middle part of the LC with a more important effect in the dorsal (55%) than in the ventral (24%) portion of the nucleus. These data demonstrate that: (1) most SRIF receptors in the LC are located in the vicinity of NE-containing cell bodies and (2) NE-containing cells bearing SRIF receptors project to the forebrain as well as to other terminal areas located more caudally in the brain. These data suggest a general role for SRIF in the control of the multiple functions of the LC

  19. Evidence that BDNF regulates heart rate by a mechanism involving increased brainstem parasympathetic neuron excitability

    OpenAIRE

    Wan, Ruiqian; Weigand, Letitia A.; Bateman, Ryan; Griffioen, Kathleen; Mendelowitz, David; Mattson, Mark P.

    2014-01-01

    Autonomic control of heart rate is mediated by cardioinhibitory parasympathetic cholinergic neurons located in the brainstem and stimulatory sympathetic noradrenergic neurons. During embryonic development the survival and cholinergic phenotype of brainstem autonomic neurons is promoted by brain-derived neurotrophic factor (BDNF). We now provide evidence that BDNF regulates heart rate by a mechanism involving increased brainstem cardioinhibitory parasympathetic activity. Mice with a BDNF haplo...

  20. Rock mechanics contributions from defense programs

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1992-02-01

    An attempt is made at illustrating the many contributions to rock mechanics from US defense programs, over the past 30-plus years. Large advances have been achieved in the technology-base area covering instrumentation, material properties, physical modeling, constitutive relations and numerical simulations. In the applications field, much progress has been made in understanding and being able to predict rock mass behavior related to underground explosions, cratering, projectile penetration, and defense nuclear waste storage. All these activities stand on their own merit as benefits to national security. But their impact is even broader, because they have found widespread applications in the non-defense sector; to name a few: the prediction of the response of underground structures to major earthquakes, the physics of the earth's interior at great depths, instrumentation for monitoring mine blasting, thermo-mechanical instrumentation useful for civilian nuclear waste repositories, dynamic properties of earthquake faults, and transient large-strain numerical modeling of geological processes, such as diapirism. There is not pretense that this summary is exhaustive. It is meant to highlight success stories representative of DOE and DOD geotechnical activities, and to point to remaining challenges

  1. Reduced Sympathetic Innervation in Endometriosis is Associated to Semaphorin 3C and 3F Expression.

    Science.gov (United States)

    Scheerer, Claudia; Frangini, Sergio; Chiantera, Vito; Mechsner, Sylvia

    2017-09-01

    Endometriosis is a chronic inflammatory disease and one of the most common causes of pelvic pain. The mechanisms underlying pain emergence or chronic inflammation during endometriosis remain unknown. Several chronic inflammatory diseases including endometriosis show reduced amounts of noradrenergic nerve fibers. The source of the affected innervation is still unclear. Semaphorins represent potential elicitors, due to their known role as axonal guidance cues, and are suggested as nerve repellent factors in different chronic inflammatory diseases. Therefore, semaphorins might influence the progress of neuroinflammatory mechanisms during endometriosis. Here, we analyzed the noradrenergic innervation and the expression of the specific semaphorins and receptors possibly involved in the neuroimmunomodulation in endometriosis. Our studies revealed an affected innervation and a significant increase of semaphorins and their receptors in peritoneal endometriotic tissue. Thereby, the expression of the receptors was identified on the membrane of noradrenergic nerve fibers and vessels. Macrophages and activated fibroblasts were found in higher density levels and additionally express semaphorins in peritoneal endometriotic tissue. Inflammation leads to an increased release of immune cells, which secrete a variety of inflammatory factors capable of affecting innervation. Therefore, our data suggests that the chronic inflammatory condition in endometriosis might contribute to the increase of semaphorins, which could possibly affect the innervation in peritoneal endometriosis.

  2. Alleviation of response suppression to conditioned aversive stimuli by lesions of the dorsal noradrenergic bundle.

    Science.gov (United States)

    Tsaltas, E; Gray, J A; Fillenz, M

    1984-08-01

    Rats with neurotoxic lesions of the dorsal ascending noradrenergic bundle (DB) were compared with sham-operated (SH) controls on the acquisition, steady state and extinction of response suppression maintained by a classical (conditioned suppression) or an instrumental (discriminated punishment) contingency. DB lesions interfered neither with the acquisition of the reference response of sucrose-rewarded barpressing nor with unconditioned responding to the overhead flashing light subsequently used as a signal of shock. The acquisition of discriminated response suppression was also unaffected by the lesion under both types of contingency. However, once discriminated suppression had stabilized, both the conditioned and the discriminative stimulus used were significantly less effective in maintaining suppression in DB animals than in SH controls provided that low intensity footshock (0.2 mA) was used as the unconditioned stimulus (UCS). Upon increase of UCS intensity (to 0.5 mA) normal suppression was observed in the DB group under both contingencies. Extinction of the classical contingency reinstated the difference between DB and SH performance: DB lesion resulted in significantly faster extinction of fear. In contrast, extinction of the discriminated punishment contingency was unaffected by the lesion, although generalized response suppression dissipated faster in the DB than in the SH animals trained under this condition. Our results offer no support for the reinforcement hypothesis of DB function (normal acquisition of barpressing and of discriminated suppression of barpressing); mixed support (greater initial generalization of suppression in DB animals) and contradiction (more rapid extinction of conditioned suppression in DB animals) for the attentional hypothesis; and weak support (reduced suppression and more rapid extinction of suppression in DB animals, but only within limited experimental parameters) for the anxiety hypothesis of DB function. Hence none of

  3. Generation of Two Noradrenergic-Specific Dopamine-Beta-Hydroxylase-FLPo Knock-In Mice Using CRISPR/Cas9-Mediated Targeting in Embryonic Stem Cells.

    Directory of Open Access Journals (Sweden)

    Jenny J Sun

    Full Text Available CRISPR/Cas9 mediated DNA double strand cutting is emerging as a powerful approach to increase rates of homologous recombination of large targeting vectors, but the optimization of parameters, equipment and expertise required remain barriers to successful mouse generation by single-step zygote injection. Here, we sought to apply CRISPR/Cas9 methods to traditional embryonic stem (ES cell targeting followed by blastocyst injection to overcome the common issues of difficult vector construction and low targeting efficiency. To facilitate the study of noradrenergic function, which is implicated in myriad behavioral and physiological processes, we generated two different mouse lines that express FLPo recombinase under control of the noradrenergic-specific Dopamine-Beta-Hydroxylase (DBH gene. We found that by co-electroporating a circular vector expressing Cas9 and a locus-specific sgRNA, we could target FLPo to the DBH locus in ES cells with shortened 1 kb homology arms. Two different sites in the DBH gene were targeted; the translational start codon with 6-8% targeting efficiency, and the translational stop codon with 75% targeting efficiency. Using this approach, we established two mouse lines with DBH-specific expression of FLPo in brainstem catecholaminergic populations that are publically available on MMRRC (MMRRC_041575-UCD and MMRRC_041577-UCD. Altogether, this study supports simplified, high-efficiency Cas9/CRISPR-mediated targeting in embryonic stem cells for production of knock-in mouse lines in a wider variety of contexts than zygote injection alone.

  4. Dissociable roles of glucocorticoid and noradrenergic activation on social discounting.

    Science.gov (United States)

    Margittai, Zsofia; van Wingerden, Marijn; Schnitzler, Alfons; Joëls, Marian; Kalenscher, Tobias

    2018-04-01

    People often exhibit prosocial tendencies towards close kin and friends, but generosity decreases as a function of increasing social distance between donor and recipient, a phenomenon called social discounting. Evidence suggests that acute stress affects prosocial behaviour in general and social discounting in particular. We tested the causal role of the important stress neuromodulators cortisol (CORT) and noradrenaline (NA) in this effect by considering two competing hypotheses. On the one hand, it is possible that CORT and NA act in concert to increase generosity towards socially close others by reducing the aversiveness of the cost component in costly altruism and enhancing the emotional salience of vicarious reward. Alternatively, it is equally plausible that CORT and NA exert dissociable, opposing effects on prosocial behaviour based on prior findings implicating CORT in social affiliation, and NA in aggressive and antagonistic tendencies. We pharmacologically manipulated CORT and NA levels in a sample of men (N = 150) and found that isolated hydrocortisone administration promoted prosocial tendencies towards close others, reflected in an altered social discount function, but this effect was offset by concurrent noradrenergic activation brought about by simultaneous yohimbine administration. These results provide inceptive evidence for causal, opposing roles of these two important stress neuromodulators on prosocial behaviour, and give rise to the possibility that, depending on the neuroendocrine response profile, stress neuromodulator action can foster both tend-and-befriend and fight-or-flight tendencies at the same time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Methylphenidate and Atomoxetine Inhibit Social Play Behavior through Prefrontal and Subcortical Limbic Mechanisms in Rats

    Science.gov (United States)

    Achterberg, E.J. Marijke; van Kerkhof, Linda W.M.; Damsteegt, Ruth; Trezza, Viviana

    2015-01-01

    Positive social interactions during the juvenile and adolescent phases of life, in the form of social play behavior, are important for social and cognitive development. However, the neural mechanisms of social play behavior remain incompletely understood. We have previously shown that methylphenidate and atomoxetine, drugs widely used for the treatment of attention-deficit hyperactivity disorder (ADHD), suppress social play in rats through a noradrenergic mechanism of action. Here, we aimed to identify the neural substrates of the play-suppressant effects of these drugs. Methylphenidate is thought to exert its effects on cognition and emotion through limbic corticostriatal systems. Therefore, methylphenidate was infused into prefrontal and orbitofrontal cortical regions as well as into several subcortical limbic areas implicated in social play. Infusion of methylphenidate into the anterior cingulate cortex, infralimbic cortex, basolateral amygdala, and habenula inhibited social play, but not social exploratory behavior or locomotor activity. Consistent with a noradrenergic mechanism of action of methylphenidate, infusion of the noradrenaline reuptake inhibitor atomoxetine into these same regions also reduced social play. Methylphenidate administration into the prelimbic, medial/ventral orbitofrontal, and ventrolateral orbitofrontal cortex, mediodorsal thalamus, or nucleus accumbens shell was ineffective. Our data show that the inhibitory effects of methylphenidate and atomoxetine on social play are mediated through a distributed network of prefrontal and limbic subcortical regions implicated in cognitive control and emotional processes. These findings increase our understanding of the neural underpinnings of this developmentally important social behavior, as well as the mechanism of action of two widely used treatments for ADHD. PMID:25568111

  6. Metformin normalizes the structural changes in glycogen preceding prediabetes in mice overexpressing neuropeptide Y in noradrenergic neurons.

    Science.gov (United States)

    Ailanen, Liisa; Bezborodkina, Natalia N; Virtanen, Laura; Ruohonen, Suvi T; Malova, Anastasia V; Okovityi, Sergey V; Chistyakova, Elizaveta Y; Savontaus, Eriika

    2018-04-01

    Hepatic insulin resistance and increased gluconeogenesis are known therapeutic targets of metformin, but the role of hepatic glycogen in the pathogenesis of diabetes is less clear. Mouse model of neuropeptide Y (NPY) overexpression in noradrenergic neurons (OE-NPY D βH ) with a phenotype of late onset obesity, hepatosteatosis, and prediabetes was used to study early changes in glycogen structure and metabolism preceding prediabetes. Furthermore, the effect of the anti-hyperglycemic agent, metformin (300 mg/kg/day/4 weeks in drinking water), was assessed on changes in glycogen metabolism, body weight, fat mass, and glucose tolerance. Glycogen structure was characterized by cytofluorometric analysis in isolated hepatocytes and mRNA expression of key enzymes by qPCR. OE-NPY D βH mice displayed decreased labile glycogen fraction relative to stabile fraction (the intermediate form of glycogen) suggesting enhanced glycogen cycling. This was supported by decreased filling of glucose residues in the 10th outer tier of the glycogen molecule, which suggests accelerated glycogen phosphorylation. Metformin reduced fat mass gain in both genotypes, but glucose tolerance was improved mostly in wild-type mice. However, metformin inhibited glycogen accumulation and normalized the ratio between glycogen structures in OE-NPY D βH mice indicating decreased glycogen synthesis. Furthermore, the presence of glucose residues in the 11th tier together with decreased glycogen phosphorylase expression suggested inhibition of glycogen degradation. In conclusion, structural changes in glycogen of OE-NPY D βH mice point to increased glycogen metabolism, which may predispose them to prediabetes. Metformin treatment normalizes these changes and suppresses both glycogen synthesis and phosphorylation, which may contribute to its preventive effect on the onset of diabetes.

  7. 杏仁核内去甲肾上腺素在应激激素调控记忆保持过程中的作用%Role of amygdala norepinephrine in mediating stress hormone regu-lation of memory storage

    Institute of Scientific and Technical Information of China (English)

    Barbara FERRY; James L McGAUGH

    2000-01-01

    There is extensive evidence indicating that the noradrenergic system of the amygdala, particularly the basolateral nucleus of the amygdala (BLA), is involved in memory consolidation. This article reviews the central hypothesis that stress hormones released during emotionally arousing experiences activate noradrenergic mechanisms in the BLA, resulting in enhanced memory for those events. Findings from expenments using rats have shown that the memory-modulatory effects of the adrenocortical stress hormones epinephrine and glucocorficoids involve activation of β-adrenoceptors in the BLA. In addition, both behavioral and microdialysis studies have shown that the noradrenergic system of the BLA also mediates the influences of other neuromodulatory systems such as opioid peptidergic and GABAergic systems on memory storage. Other findings indicate that this stress hormone-induced activation of noradrenergic mechanisms in the BLA regulates memory storage in other brain regions.

  8. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

    Science.gov (United States)

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias

    2016-02-01

    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma. Copyright © 2015 Federation of European Biochemical Societies

  9. Sleep and dreaming: induction and mediation of REM sleep by cholinergic mechanisms.

    Science.gov (United States)

    Hobson, J A

    1992-12-01

    The most important recent work on the neurobiology of sleep has focused on the precise cellular and biochemical mechanisms of rapid eye movement sleep mediation. Direct and indirect evidence implicates acetylcholine-containing neurons in the peribrachial pons as critical in the triggering and maintenance of rapid eye movement sleep. Other new studies provide support for the hypothesis that the cholinergic generator system is gated during waking by serotonergic and noradrenergic influences. A growing consensus regarding the basic neurobiology has stimulated new thinking about the brain basis of consciousness during waking and dreaming.

  10. Contribution of Psychological, Social, and Mechanical Work Exposures to Low Work Ability

    OpenAIRE

    Emberland, Jan S.; Knardahl, Stein

    2015-01-01

    Objective: To determine the contribution of specific psychological, social, and mechanical work exposures to the self-reported low level of work ability. Methods: Employees from 48 organizations were surveyed over a 2-year period (n = 3779). Changes in 16 work exposures and 3 work ability measures?the work ability index score, perceived current, and future work ability?were tested with Spearman rank correlations. Binary logistic regressions were run to determine contribution of work exposures...

  11. Chronic treatment with prazosin or duloxetine lessens concurrent anxiety-like behavior and alcohol intake: evidence of disrupted noradrenergic signaling in anxiety-related alcohol use.

    Science.gov (United States)

    Skelly, Mary J; Weiner, Jeff L

    2014-07-01

    Alcohol use disorders have been linked to increased anxiety, and enhanced central noradrenergic signaling may partly explain this relationship. Pharmacological interventions believed to reduce the excitatory effects of norepinephrine have proven effective in attenuating ethanol intake in alcoholics as well as in rodent models of ethanol dependence. However, most preclinical investigations into the effectiveness of these drugs in decreasing ethanol intake have been limited to acute observations, and none have concurrently assessed their anxiolytic effects. The purpose of these studies was to examine the long-term effectiveness of pharmacological interventions presumed to decrease norepinephrine signaling on concomitant ethanol self-administration and anxiety-like behavior in adult rats with relatively high levels of antecedent anxiety-like behavior. Adult male Long-Evans rats self-administered ethanol on an intermittent access schedule for eight to ten weeks prior to being implanted with osmotic minipumps containing either an a1-adrenoreceptor antagonist (prazosin, 1.5 mg/kg/day), a β1/2-adrenoreceptor antagonist (propranolol, 2.5 mg/kg/day), a serotonin/norepinephrine reuptake inhibitor (duloxetine, 1.5 mg/kg/day) or vehicle (10% dimethyl sulfoxide). These drugs were continuously delivered across four weeks, during which animals continued to have intermittent access to ethanol. Anxiety-like behavior was assessed on the elevated plus maze before treatment and again near the end of the drug delivery period. Our results indicate that chronic treatment with a low dose of prazosin or duloxetine significantly decreases ethanol self-administration (P chronic treatment with putative inhibitors of central noradrenergic signaling may attenuate ethanol intake via a reduction in anxiety-like behavior.

  12. Pro-cognitive drug effects modulate functional brain network organization

    Science.gov (United States)

    Giessing, Carsten; Thiel, Christiane M.

    2012-01-01

    Previous studies document that cholinergic and noradrenergic drugs improve attention, memory and cognitive control in healthy subjects and patients with neuropsychiatric disorders. In humans neural mechanisms of cholinergic and noradrenergic modulation have mainly been analyzed by investigating drug-induced changes of task-related neural activity measured with functional magnetic resonance imaging (fMRI). Endogenous neural activity has often been neglected. Further, although drugs affect the coupling between neurons, only a few human studies have explicitly addressed how drugs modulate the functional connectome, i.e., the functional neural interactions within the brain. These studies have mainly focused on synchronization or correlation of brain activations. Recently, there are some drug studies using graph theory and other new mathematical approaches to model the brain as a complex network of interconnected processing nodes. Using such measures it is possible to detect not only focal, but also subtle, widely distributed drug effects on functional network topology. Most important, graph theoretical measures also quantify whether drug-induced changes in topology or network organization facilitate or hinder information processing. Several studies could show that functional brain integration is highly correlated with behavioral performance suggesting that cholinergic and noradrenergic drugs which improve measures of cognitive performance should increase functional network integration. The purpose of this paper is to show that graph theory provides a mathematical tool to develop theory-driven biomarkers of pro-cognitive drug effects, and also to discuss how these approaches can contribute to the understanding of the role of cholinergic and noradrenergic modulation in the human brain. Finally we discuss the “global workspace” theory as a theoretical framework of pro-cognitive drug effects and argue that pro-cognitive effects of cholinergic and noradrenergic drugs

  13. Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats.

    Science.gov (United States)

    Bundzikova-Osacka, Jana; Ghosal, Sriparna; Packard, Benjamin A; Ulrich-Lai, Yvonne M; Herman, James P

    2015-01-01

    Chronic stress causes hypothalamo-pituitary-adrenal (HPA) axis hyperactivity and cardiovascular dyshomeostasis. Noradrenergic (NA) neurons in the nucleus of the solitary tract (NTS) are considered to play a role in these changes. In this study, we tested the hypothesis that NTS NA A2 neurons are required for cardiovascular and HPA axis responses to both acute and chronic stress. Adult male rats received bilateral microinjection into the NTS of 6-hydroxydopamine (6-OHDA) to lesion A2 neurons [cardiovascular study, n = 5; HPA study, n = 5] or vehicle [cardiovascular study, n = 6; HPA study, n = 4]. Rats were exposed to acute restraint stress followed by 14 d of chronic variable stress (CVS). On the last day of testing, rats were placed in a novel elevated plus maze (EPM) to test post-CVS stress responses. Lesions of NTS A2 neurons reduced the tachycardic response to acute restraint, confirming that A2 neurons promote sympathetic activation following acute stress. In addition, CVS increased the ratio of low-frequency to high-frequency power for heart rate variability, indicative of sympathovagal imbalance, and this effect was significantly attenuated by 6-OHDA lesion. Lesions of NTS A2 neurons reduced acute restraint-induced corticosterone secretion, but did not affect the corticosterone response to the EPM, indicating that A2 neurons promote acute HPA axis responses, but are not involved in CVS-mediated HPA axis sensitization. Collectively, these data indicate that A2 neurons promote both cardiovascular and HPA axis responses to acute stress. Moreover, A2 catecholaminergic neurons may contribute to the potentially deleterious enhancement of sympathetic drive following chronic stress.

  14. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching.

    Science.gov (United States)

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged.

  15. Relative Contributions of Various Cellular Mechanisms to Loss of Algae during Cnidarian Bleaching

    Science.gov (United States)

    Bieri, Tamaki; Onishi, Masayuki; Xiang, Tingting; Grossman, Arthur R.; Pringle, John R

    2016-01-01

    When exposed to stress such as high seawater temperature, corals and other cnidarians can bleach due to loss of symbiotic algae from the host tissue and/or loss of pigments from the algae. Although the environmental conditions that trigger bleaching are reasonably well known, its cellular and molecular mechanisms are not well understood. Previous studies have reported the occurrence of at least four different cellular mechanisms for the loss of symbiotic algae from the host tissue: in situ degradation of algae, exocytic release of algae from the host, detachment of host cells containing algae, and death of host cells containing algae. The relative contributions of these several mechanisms to bleaching remain unclear, and it is also not known whether these relative contributions change in animals subjected to different types and/or durations of stresses. In this study, we used a clonal population of the small sea anemone Aiptasia, exposed individuals to various precisely controlled stress conditions, and quantitatively assessed the several possible bleaching mechanisms in parallel. Under all stress conditions tested, except for acute cold shock at 4°C, expulsion of intact algae from the host cells appeared to be by far the predominant mechanism of bleaching. During acute cold shock, in situ degradation of algae and host-cell detachment also became quantitatively significant, and the algae released under these conditions appeared to be severely damaged. PMID:27119147

  16. Oral sapropterin augments reflex vasoconstriction in aged human skin through noradrenergic mechanisms.

    Science.gov (United States)

    Stanhewicz, Anna E; Alexander, Lacy M; Kenney, W Larry

    2013-10-01

    Reflex vasoconstriction is attenuated in aged skin due to a functional loss of adrenergic vasoconstriction. Bioavailability of tetrahydrobiopterin (BH4), an essential cofactor for catecholamine synthesis, is reduced with aging. Locally administered BH4 increases vasoconstriction through adrenergic mechanisms in aged human skin. We hypothesized that oral sapropterin (Kuvan, a pharmaceutical BH4) would augment vasoconstriction elicited by whole-body cooling and tyramine perfusion in aged skin. Ten healthy subjects (age 75 ± 2 yr) ingested sapropterin (10 mg/kg) or placebo in a randomized, double-blind crossover design. Venous blood samples were collected prior to, and 3 h following ingestion. Three intradermal microdialysis fibers were placed in the forearm skin for local delivery of 1) lactated Ringer, 2) 5 mM BH4, and 3) 5 mM yohimbine + 1 mM propranolol (Y+P; to inhibit adrenergic vasoconstriction). Red cell flux was measured at each site by laser-Doppler flowmetry (LDF) as reflex vasoconstriction was induced by lowering and then clamping whole-body skin temperature (Tsk) using a water-perfused suit. Following whole-body cooling, subjects were rewarmed and 1 mM tyramine was perfused at each site to elicit endogenous norepinephrine release from the perivascular nerve terminal. Cutaneous vascular conductance was calculated as CVC = LDF/mean arterial pressure and expressed as change from baseline (ΔCVC). Plasma BH4 was elevated 3 h after ingestion of sapropterin (43.8 ± 3 vs. 19.1 ± 2 pmol/ml; P effect on reflex vasoconstriction at the BH4-perfused or Y+P-perfused sites. Sapropterin increased pharmacologically induced vasoconstriction at the Ringer site (-0.19 ± 0.03 vs. -0.08 ± 0.02 ΔCVC; P = 0.01). There was no difference in pharmacologically induced vasoconstriction between treatments at the BH4-perfused site (-0.16 ± 0.04 vs. -0.14 ± 0.03 ΔCVC; P = 0.60) or the Y+P-perfused site (-0.05 ± 0.02 vs.-0.06 ± 0.02 ΔCVC; P = 0.79). Sapropterin increases

  17. Prefrontal Neuronal Excitability Maintains Cocaine-Associated Memory During Retrieval

    Directory of Open Access Journals (Sweden)

    James M. Otis

    2018-06-01

    Full Text Available Presentation of drug-associated cues provokes craving and drug seeking, and elimination of these associative memories would facilitate recovery from addiction. Emotionally salient memories are maintained during retrieval, as particular pharmacologic or optogenetic perturbations of memory circuits during retrieval, but not after, can induce long-lasting memory impairments. For example, in rats, inhibition of noradrenergic beta-receptors, which control intrinsic neuronal excitability, in the prelimbic medial prefrontal cortex (PL-mPFC can cause long-term memory impairments that prevent subsequent cocaine-induced reinstatement. The physiologic mechanisms that allow noradrenergic signaling to maintain drug-associated memories during retrieval, however, are unclear. Here we combine patch-clamp electrophysiology ex vivo and behavioral neuropharmacology in vivo to evaluate the mechanisms that maintain drug-associated memory during retrieval in rats. Consistent with previous studies, we find that cocaine experience increases the intrinsic excitability of pyramidal neurons in PL-mPFC. In addition, we now find that this intrinsic plasticity positively predicts the retrieval of a cocaine-induced conditioned place preference (CPP memory, suggesting that such plasticity may contribute to drug-associated memory retrieval. In further support of this, we find that pharmacological blockade of a cAMP-dependent signaling cascade, which allows noradrenergic signaling to elevate neuronal excitability, is required for memory maintenance during retrieval. Thus, inhibition of PL-mPFC neuronal excitability during memory retrieval not only leads to long-term deficits in the memory, but this memory deficit provides protection against subsequent cocaine-induced reinstatement. These data reveal that PL-mPFC intrinsic neuronal excitability maintains a cocaine-associated memory during retrieval and suggest a unique mechanism whereby drug-associated memories could be targeted

  18. Contribution to and Use of Online Knowledge Repositories: The Role of Governance Mechanisms

    Science.gov (United States)

    Kayhan, Varol O.

    2010-01-01

    Drawing upon the concept of governance, this dissertation refers to the two most commonly employed mechanisms that ensure high quality knowledge in electronic repositories as expert-governance and community-governance. In three related but distinct essays, the dissertation examines the governance concept, and investigates contributing knowledge to…

  19. Effects of catecholamine agonists and antagonists on alcohol uptake in rats with different stages of experimental alcoholism

    Energy Technology Data Exchange (ETDEWEB)

    Burov, Yu V; Varov, A I

    1985-02-01

    The effects of various catecholamine agonists and antagonists on 15% ethanol ingestion by outbred albino rats were studied in relation to the stage of experimental alcoholism. In animals with stage I and II alcoholism, alcohol intake was most profoundly inhibited by administration of alpha-adrenoblockers (AA), klofelin, and alpha-methyl-DOPA (AMD), while L-DOPA and cocaine stimulated a significant increase in ethanol ingestion. In stage III alcoholism, both AA and L-DOPA depressed alcohol intake, while AMD and haloperidol had a stimulatory effect. It appears, therefore, that different neurochemical mechanisms are involved in alcohol dependence in different stages of experimental alcoholism in the rat. Furthermore, it seems evident that alpha-adrenergic receptors have a key function in maintaining alcohol dependence. In well-established physical dependence, the importance of the noradrenergic system seems to diminish and dopaminergic mechanisms appear to become predominant. Consequently, in the initial stages of alcoholism, agents which depress the noradrenergic system seem indicated, while at the stage of physical dependence agents which normalize noradrenergic mechanisms and depress dopaminergic mechanisms should be considered. 13 references.

  20. Noradrenergic System and Memory

    KAUST Repository

    Zenger, Manuel; Burlet-Godinot, Sophie; Petit, Jean-Marie; Magistretti, Pierre J.

    2017-01-01

    There is ample evidence indicating that noradrenaline plays an important role in memory mechanisms. Noradrenaline is thought to modulate these procsses through activation of adrenergic receptors in neurons. Astrocytes that form essential partners for synaptic function, also express alpha- and beta-adrenergic receptors. In astrocytes, noradrenaline triggers metabolic actions such as the glycogenolysis leading to an increase in l-lactate formation and release. l-Lactate can be used by neurons as a sourc of energy during memory tasks and can also induc transcription of plasticity genes in neurons. Activation of β-adrenergic receptors can also trigger gliotransmitter release resulting of intracllular calcium waves. These gliotransmitters modulate the synaptic activity and thereby can modulate long-term potentiation mechanisms. In summary, recnt evidencs indicate that noradrenaline exerts its memory-promoting effects through different modes of action both on neurons and astrocytes.

  1. Noradrenergic System and Memory

    KAUST Repository

    Zenger, Manuel

    2017-07-22

    There is ample evidence indicating that noradrenaline plays an important role in memory mechanisms. Noradrenaline is thought to modulate these procsses through activation of adrenergic receptors in neurons. Astrocytes that form essential partners for synaptic function, also express alpha- and beta-adrenergic receptors. In astrocytes, noradrenaline triggers metabolic actions such as the glycogenolysis leading to an increase in l-lactate formation and release. l-Lactate can be used by neurons as a sourc of energy during memory tasks and can also induc transcription of plasticity genes in neurons. Activation of β-adrenergic receptors can also trigger gliotransmitter release resulting of intracllular calcium waves. These gliotransmitters modulate the synaptic activity and thereby can modulate long-term potentiation mechanisms. In summary, recnt evidencs indicate that noradrenaline exerts its memory-promoting effects through different modes of action both on neurons and astrocytes.

  2. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice.

    Science.gov (United States)

    Anderson, Matthew J; Diko, Sindi; Baehr, Leslie M; Baar, Keith; Bodine, Sue C; Christiansen, Blaine A

    2016-10-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30-44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within 1 week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss; however, it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study, we investigated the contribution of mechanical unloading to trabecular bone changes observed following non-invasive knee injury in mice (female C57BL/6N). We investigated changes in gait during treadmill walking, and changes in voluntary activity level using Open Field analysis at 4, 14, 28, and 42 days post-injury. We also quantified epiphyseal trabecular bone using μCT and weighed lower-limb muscles to quantify atrophy following knee injury in both ground control and hindlimb unloaded (HLU) mice. Gait analysis revealed a slightly altered stride pattern in the injured limb, with a decreased stance phase and increased swing phase. However, Open Field analysis revealed no differences in voluntary movement between injured and sham mice at any time point. Both knee injury and HLU resulted in comparable magnitudes of trabecular bone loss; however, HLU resulted in considerably more muscle loss than knee injury, suggesting another mechanism contributing to bone loss following injury. Altogether, these data suggest that mechanical unloading likely contributes to trabecular bone loss following non-invasive knee injury, but the magnitude of this bone loss cannot be fully explained by disuse. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1680-1687, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Breast cancer as heterogeneous disease: contributing factors and carcinogenesis mechanisms.

    Science.gov (United States)

    Kravchenko, Julia; Akushevich, Igor; Seewaldt, Victoria L; Abernethy, Amy P; Lyerly, H Kim

    2011-07-01

    The observed bimodal patterns of breast cancer incidence in the U.S. suggested that breast cancer may be viewed as more than one biological entity. We studied the factors potentially contributing to this phenomenon, specifically focusing on how disease heterogeneity could be linked to breast carcinogenesis mechanisms. Using empirical analyses and population-based biologically motivated modeling, age-specific patterns of incidence of ductal and lobular breast carcinomas from the SEER registry (1990-2003) were analyzed for heterogeneity and characteristics of carcinogenesis, stratified by race, stage, grade, and estrogen (ER)/progesterone (PR) receptor status. The heterogeneity of breast carcinoma age patterns decreased after stratification by grade, especially for grade I and III tumors. Stratification by ER/PR status further reduced the heterogeneity, especially for ER(+)/PR(-) and ER(-)/(-) tumors; however, the residual heterogeneity was still observed. The number of rate-limiting events of carcinogenesis and the latency of ductal and lobular carcinomas differed, decreasing from grade I to III, with poorly differentiated tumors associated with the least number of carcinogenesis stages and the shortest latency. Tumor grades play important role in bimodal incidence of breast carcinoma and have distinct mechanisms of carcinogenesis. Race and cancer subtype could play modifying role. ER/PR status contributes to the observed heterogeneity, but is subdominant to tumor grade. Further studies on sources of "remaining" heterogeneity of population with breast cancer (such as genetic/epigenetic characteristics) are necessary. The results of this study could suggest stratification rather than unification of breast cancer prevention strategies, risk assessment, and treatment.

  4. Composting projects under the Clean Development Mechanism: Sustainable contribution to mitigate climate change

    International Nuclear Information System (INIS)

    Rogger, Cyrill; Beaurain, Francois; Schmidt, Tobias S.

    2011-01-01

    The Clean Development Mechanism (CDM) of the Kyoto Protocol aims to reduce greenhouse gas emissions in developing countries and at the same time to assist these countries in sustainable development. While composting as a suitable mitigation option in the waste sector can clearly contribute to the former goal there are indications that high rents can also be achieved regarding the latter. In this article composting is compared with other CDM project types inside and outside the waste sector with regards to both project numbers and contribution to sustainable development. It is found that, despite the high number of waste projects, composting is underrepresented and a major reason for this fact is identified. Based on a multi-criteria analysis it is shown that composting has a higher potential for contribution to sustainable development than most other best in class projects. As these contributions can only be assured if certain requirements are followed, eight key obligations are presented.

  5. A Historical Survey of Sir Karl Popper's Contribution to Quantum Mechanics

    Directory of Open Access Journals (Sweden)

    William M. Shields

    2012-11-01

    Full Text Available Sir Karl Popper (1902-1994, though not trained as a physicist and embarrassed early in his career by a physics error pointed out by Einstein and Bohr, ultimately made substantial contributions to the interpretation of quantum mechanics. As was often the case, Popper initially formulated his position by criticizing the views of others - in this case Niels Bohr and Werner Heisenberg. Underlying Popper's criticism was his belief that, first, the Copenhagen interpretation of quantum mechanics abandoned scientific realism and second, the assertion that quantum theory was complete (an assertion rejected by Einstein among others amounted to an unfalsifiable claim. Popper insisted that the most basic predictions of quantum mechanics should continue to be tested, with an eye towards falsification rather than mere adding of decimal places to confirmatory experiments. His persistent attacks on the Copenhagen interpretation were aimed not at the uncertainty principle itself and the formalism from which it was derived, but at the acceptance by physicists of an unclear epistemology and ontology that left critical questions unanswered. Quanta 2012; 1: 1–12.

  6. Molecular Mechanisms That Contribute to Bone Marrow Pain

    Directory of Open Access Journals (Sweden)

    Jason J. Ivanusic

    2017-09-01

    Full Text Available Pain associated a bony pathology puts a significant burden on individuals, society, and the health-care systems worldwide. Pathology that involves the bone marrow activates sensory nerve terminal endings of peripheral bone marrow nociceptors, and is the likely trigger for pain. This review presents our current understanding of how bone marrow nociceptors are influenced by noxious stimuli presented in pathology associated with bone marrow. A number of ion channels and receptors are emerging as important modulators of the activity of peripheral bone marrow nociceptors. Nerve growth factor (NGF sequestration has been trialed for the management of inflammatory bone pain (osteoarthritis, and there is significant evidence for interaction of NGF with bone marrow nociceptors. Activation of transient receptor potential cation channel subfamily V member 1 sensitizes bone marrow nociceptors and could contribute to increased sensitivity of patients to noxious stimuli in various bony pathologies. Acid-sensing ion channels sense changes to tissue pH in the bone marrow microenvironment and could be targeted to treat pathology that involves acidosis of the bone marrow. Piezo2 is a mechanically gated ion channel that has recently been reported to be expressed by most myelinated bone marrow nociceptors and might be a target for treatments directed against mechanically induced bone pain. These ion channels and receptors could be useful targets for the development of peripherally acting drugs to treat pain of bony origin.

  7. Contribution of psychological, social, and mechanical work exposures to low work ability: a prospective study.

    Science.gov (United States)

    Emberland, Jan S; Knardahl, Stein

    2015-03-01

    To determine the contribution of specific psychological, social, and mechanical work exposures to the self-reported low level of work ability. Employees from 48 organizations were surveyed over a 2-year period (n = 3779). Changes in 16 work exposures and 3 work ability measures-the work ability index score, perceived current, and future work ability-were tested with Spearman rank correlations. Binary logistic regressions were run to determine contribution of work exposures to low work ability. Role conflict, human resource primacy, and positive challenge were the most consistent predictors of low work ability across test designs. Role clarity and fair leadership were less consistent but prominent predictors. Mechanical exposures were not predictive. To protect employee work ability, work place interventions would benefit from focusing on reducing role conflicts and on promoting positive challenges and human resource primacy.

  8. Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress.

    Science.gov (United States)

    Adamec, R; Muir, C; Grimes, M; Pearcey, K

    2007-05-16

    The roles of beta-NER (beta-noradrenergic receptor), GR (glucocorticoid) and mineral corticoid receptors (MR) in the consolidation of anxiogenic effects of predator stress were studied. One minute after predator stress, different groups of rats were injected (ip) with vehicle, propranolol (beta-NER blocker, 5 and 10 mg/kg), mifepristone (RU486, GR blocker, 20 mg/kg), spironolactone (MR blocker, 50 mg/kg), propranolol (5 mg/kg) plus RU486 (20 mg/kg) or the anxiolytic, chloradiazepoxide (CPZ, 10 mg/kg). One week later, rodent anxiety was assessed in elevated plus maze, hole board, light/dark box, social interaction and acoustic startle. Considering all tests except startle, propranolol dose dependently blocked consolidation of lasting anxiogenic effects of predator stress in all tests. GR receptor block alone was ineffective. However, GR block in combination with an ineffective dose of propranolol did blocked consolidation of predator stress effects in all tests, suggesting a synergism between beta-NER and GR. Surprisingly, MR block prevented consolidation of anxiogenic effects in all tests except the light/dark box. CPZ post stress was ineffective against the anxiogenic impact of predator stress. Study of startle was complicated by the fact that anxiogenic effects of stress on startle amplitude manifested as both an increase and a decrease in startle amplitude. Suppression of startle occurred in stressed plus vehicle injected groups handled three times prior to predator stress. In contrast, stressed plus vehicle rats handled five times prior to predator stress showed increases in startle, as did all predator stressed only groups. Mechanisms of consolidation of the different startle responses appear to differ. CPZ post stress blocked startle suppression but not enhancement of startle. Propranolol post stress had no effect on either suppression or enhancement of startle. GR block alone post stress prevented suppression of startle, but not enhancement. In contrast

  9. Noradrenergic signaling in the medial prefrontal cortex and amygdala differentially regulates vicarious trial-and-error in a spatial decision-making task.

    Science.gov (United States)

    Amemiya, Seiichiro; Kubota, Natsuko; Umeyama, Nao; Nishijima, Takeshi; Kita, Ichiro

    2016-01-15

    In uncertain choice situations, we deliberately search and evaluate possible options before taking an action. Once we form a preference regarding the current situation, we take an action more automatically and with less deliberation. In rats, the deliberation process can be seen in vicarious trial-and-error behavior (VTE), which is a head-orienting behavior toward options at a choice point. Recent neurophysiological findings suggest that VTE reflects the rat's thinking about future options as deliberation, expectation, and planning when rats feel conflict. VTE occurs depending on the demand: an increase occurs during initial learning, and a decrease occurs with progression in learning. However, the brain circuit underlying the regulation of VTE has not been thoroughly examined. In situations in which VTE often appears, the medial prefrontal cortex (mPFC) and the amygdala (AMY) are crucial for learning and decision making. Our previous study reported that noradrenaline regulates VTE. Here, to investigate whether the mPFC and AMY are involved in regulation of VTE, we examined the effects of local injection of clonidine, an alpha2 adrenergic autoreceptor agonist, into either region in rats during VTE and choice behavior during a T-maze choice task. Injection of clonidine into either region impaired selection of the advantageous choice in the task. Furthermore, clonidine injection into the mPFC suppressed occurrence of VTE in the early phase of the task, whereas injection into the AMY inhibited the decrease in VTE in the later phase and thus maintained a high level of VTE throughout the task. These results suggest that the mPFC and AMY play a role in the increase and decrease in VTE, respectively, and that noradrenergic mechanisms mediate the dynamic regulation of VTE over experiences. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Whole-protein alanine-scanning mutagenesis of allostery: A large percentage of a protein can contribute to mechanism.

    Science.gov (United States)

    Tang, Qingling; Fenton, Aron W

    2017-09-01

    Many studies of allosteric mechanisms use limited numbers of mutations to test whether residues play "key" roles. However, if a large percentage of the protein contributes to allosteric function, mutating any residue would have a high probability of modifying allostery. Thus, a predicted mechanism that is dependent on only a few residues could erroneously appear to be supported. We used whole-protein alanine-scanning mutagenesis to determine which amino acid sidechains of human liver pyruvate kinase (hL-PYK; approved symbol PKLR) contribute to regulation by fructose-1,6-bisphosphate (Fru-1,6-BP; activator) and alanine (inhibitor). Each nonalanine/nonglycine residue of hL-PYK was mutated to alanine to generate 431 mutant proteins. Allosteric functions in active proteins were quantified by following substrate affinity over a concentration range of effectors. Results show that different residues contribute to the two allosteric functions. Only a small fraction of mutated residues perturbed inhibition by alanine. In contrast, a large percentage of mutated residues influenced activation by Fru-1,6-BP; inhibition by alanine is not simply the reverse of activation by Fru-1,6-BP. Moreover, the results show that Fru-1,6-BP activation would be extremely difficult to elucidate using a limited number of mutations. Additionally, this large mutational data set will be useful to train and test computational algorithms aiming to predict allosteric mechanisms. © 2017 Wiley Periodicals, Inc.

  11. Post-transcriptional Mechanisms Contribute Little to Phenotypic Variation in Snake Venoms.

    Science.gov (United States)

    Rokyta, Darin R; Margres, Mark J; Calvin, Kate

    2015-09-09

    Protein expression is a major link in the genotype-phenotype relationship, and processes affecting protein abundances, such as rates of transcription and translation, could contribute to phenotypic evolution if they generate heritable variation. Recent work has suggested that mRNA abundances do not accurately predict final protein abundances, which would imply that post-transcriptional regulatory processes contribute significantly to phenotypes. Post-transcriptional processes also appear to buffer changes in transcriptional patterns as species diverge, suggesting that the transcriptional changes have little or no effect on the phenotypes undergoing study. We tested for concordance between mRNA and protein expression levels in snake venoms by means of mRNA-seq and quantitative mass spectrometry for 11 snakes representing 10 species, six genera, and three families. In contrast to most previous work, we found high correlations between venom gland transcriptomes and venom proteomes for 10 of our 11 comparisons. We tested for protein-level buffering of transcriptional changes during species divergence by comparing the difference between transcript abundance and protein abundance for three pairs of species and one intraspecific pair. We found no evidence for buffering during divergence of our three species pairs but did find evidence for protein-level buffering for our single intraspecific comparison, suggesting that buffering, if present, was a transient phenomenon in venom divergence. Our results demonstrated that post-transcriptional mechanisms did not contribute significantly to phenotypic evolution in venoms and suggest a more prominent and direct role for cis-regulatory evolution in phenotypic variation, particularly for snake venoms. Copyright © 2015 Rokyta et al.

  12. On possible contribution of a leptoquark intermediate boson mechanism in the free neutron beta decay

    International Nuclear Information System (INIS)

    Gaponov, Yu.V.

    2000-01-01

    A possible mechanism of the virtual leptoquark scalar intermediate boson exchange connected with a contribution of the right-handed nucleon currents to the free beta decay is demonstrated. The extension of the hypothesis can be associated with the realization of the same mechanism in the beta decay via the emission of right-handed neutrino (left-handed antineutrino). It is shown that a hypothesis of this kind leads to appearance of scalar and tensor terms in the effective Hamiltonian of weak interaction, and these terms include the right-handed neutrinos. The relevant experimental data are discussed [ru

  13. Mechanism analysis and evaluation methodology of regenerative braking contribution to energy efficiency improvement of electrified vehicles

    International Nuclear Information System (INIS)

    Lv, Chen; Zhang, Junzhi; Li, Yutong; Yuan, Ye

    2015-01-01

    Highlights: • The energy flow of an electric vehicle with regenerative brake is analyzed. • Methodology for measuring the regen brake contribution is discussed. • Evaluation parameters of regen brake contribution are proposed. • Vehicle tests are carried out on chassis dynamometer. • Test results verify the evaluation method and parameters proposed. - Abstract: This article discusses the mechanism and evaluation methods of contribution brought by regenerative braking to electric vehicle’s energy efficiency improvement. The energy flow of an electric vehicle considering the braking energy regeneration was analyzed. Then, methodologies for measuring the contribution made by regenerative brake to vehicle energy efficiency improvement were introduced. Based on the energy flow analyzed, two different evaluation parameters were proposed. Vehicle tests were carried out on chassis dynamometer under typical driving cycles with three different control strategies. The experimental results the difference between the proposed two evaluation parameters, and demonstrated the feasibility and effectiveness of the evaluation methodologies proposed

  14. Instanton contributions in reggeon quantum mechanics

    International Nuclear Information System (INIS)

    Ciafaloni, M.

    1978-01-01

    The full semiclassical approximation to reggeon field theory without transverse dimensions is derived. By using Polyakov's method in Lagrangian form and paying due attention to the quantum terms of the potential it is shown that instanton contributions are able to explain the tunnel-like energy gap for α(0)-1>>lambda. (Auth.)

  15. Contributions of chemical and mechanical surface properties and temperature effect on the adhesion at the nanoscale

    International Nuclear Information System (INIS)

    Awada, Houssein; Noel, Olivier; Hamieh, Tayssir; Kazzi, Yolla; Brogly, Maurice

    2011-01-01

    The atomic force microscope (AFM) is a powerful tool to investigate surface properties of model systems at the nanoscale. However, to get semi-quantitative and reproducible data with the AFM, it is necessary to establish a rigorous experimental procedure. In particular, a systematic calibration procedure of AFM measurements is necessary before producing reliable semi-quantitative data. In this paper, we study the contributions of the chemical and mechanical surface properties or the temperature influence on the adhesion energy at a local scale. To reach this objective, two types of model systems were considered. The first one is composed of rigid substrates (silicon wafers or AFM tips covered with gold) which were chemically modified by molecular self-assembling monolayers to display different surface properties (methyl and hydroxyl functional groups). The second one consists of model polymer networks (cross-linked polydimethylsiloxane) of variable mechanical properties. The comparison of the force curves obtained from the two model systems shows that the viscoelastic contributions dominate for the adhesion with polymer substrates, whereas, chemical contributions dominate for the rigid substrates. The temperature effect on the adhesion energy is also reported. Finally, we propose a relation for the adhesion energy at the nanoscale. This relation relates the energy measured during the separation of the contact to the three parameters: the surface properties of the polymer, the energy dissipated within the contact zone and the temperature.

  16. Spinal astrocytic activation contributes to mechanical allodynia in a rat chemotherapy-induced neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Xi-Tuan Ji

    Full Text Available Chemotherapy-induced neuropathic pain (CNP is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain enigmatic. Accumulating evidence implicates the involvement of spinal glia in some neuropathic pain models. In this study, using a vincristine-evoked CNP rat model with obvious mechanical allodynia, we found that spinal astrocyte rather than microglia was dramatically activated. The mechanical allodynia was dose-dependently attenuated by intrathecal administratration of L-α-aminoadipate (astrocytic specific inhibitor; whereas minocycline (microglial specific inhibitor had no such effect, indicating that spinal astrocytic activation contributes to allodynia in CNP rat. Furthermore, oxidative stress mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR phosphorylation in spinal neurons to strengthen pain transmission. Taken together, our findings suggest that spinal activated astrocytes may be a crucial component of the pathophysiology of CNP and "Astrocyte-Cytokine-NMDAR-neuron" pathway may be one detailed neural mechanisms underlying CNP. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for treating CNP.

  17. Angiotensin II regulation of neuromodulation: downstream signaling mechanism from activation of mitogen-activated protein kinase.

    Science.gov (United States)

    Lu, D; Yang, H; Raizada, M K

    1996-12-01

    Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.

  18. Mechanical and IL-1β Responsive miR-365 Contributes to Osteoarthritis Development by Targeting Histone Deacetylase 4

    Directory of Open Access Journals (Sweden)

    Xu Yang

    2016-03-01

    Full Text Available Mechanical stress plays an important role in the initiation and progression of osteoarthritis. Studies show that excessive mechanical stress can directly damage the cartilage extracellular matrix and shift the balance in chondrocytes to favor catabolic activity over anabolism. However, the underlying mechanism remains unknown. MicroRNAs (miRNAs are emerging as important regulators in osteoarthritis pathogenesis. We have found that mechanical loading up-regulated microRNA miR-365 in growth plate chondrocytes, which promotes chondrocyte differentiation. Here, we explored the role of the mechanical responsive microRNA miR-365 in pathogenesis of osteoarthritis (OA. We found that miR-365 was up-regulated by cyclic loading and IL-1β stimulation in articular chondrocytes through a mechanism that involved the transcription factor NF-κB. miR-365 expressed significant higher level in rat anterior cruciate ligament (ACL surgery induced OA cartilage as well as human OA cartilage from primary OA patients and traumatic OA Patients. Overexpression of miR-365 in chondrocytes increases gene expression of matrix degrading enzyme matrix metallopeptidase 13 (MMP13 and collagen type X (Col X. The increase in miR-365 expression in OA cartilage and in response to IL-1 may contribute to the abnormal gene expression pattern characteristic of OA. Inhibition of miR-365 down-regulated IL-1β induced MMP13 and Col X gene expression. We further showed histone deacetylase 4 (HDAC4 is a direct target of miR-365, which mediates mechanical stress and inflammation in OA pathogenesis. Thus, miR-365 is a critical regulator of mechanical stress and pro-inflammatory responses, which contributes cartilage catabolism. Manipulation of the expression of miR-365 in articular chondrocytes by miR-365 inhibitor may be a potent therapeutic target for the prevention and treatment of osteoarthritis.

  19. Contribution of facet joints, axial compression, and composition to human lumbar disc torsion mechanics.

    Science.gov (United States)

    Bezci, Semih E; Eleswarapu, Ananth; Klineberg, Eric O; O'Connell, Grace D

    2018-02-12

    Stresses applied to the spinal column are distributed between the intervertebral disc and facet joints. Structural and compositional changes alter stress distributions within the disc and between the disc and facet joints. These changes influence the mechanical properties of the disc joint, including its stiffness, range of motion, and energy absorption under quasi-static and dynamic loads. There have been few studies evaluating the role of facet joints in torsion. Furthermore, the relationship between biochemical composition and torsion mechanics is not well understood. Therefore, the first objective of this study was to investigate the role of facet joints in torsion mechanics of healthy and degenerated human lumbar discs under a wide range of compressive preloads. To achieve this, each disc was tested under four different compressive preloads (300-1200 N) with and without facet joints. The second objective was to develop a quantitative structure-function relationship between tissue composition and torsion mechanics. Facet joints have a significant contribution to disc torsional stiffness (∼60%) and viscoelasticity, regardless of the magnitude of axial compression. The findings from this study demonstrate that annulus fibrosus GAG content plays an important role in disc torsion mechanics. A decrease in GAG content with degeneration reduced torsion mechanics by more than an order of magnitude, while collagen content did not significantly influence disc torsion mechanics. The biochemical-mechanical and compression-torsion relationships reported in this study allow for better comparison between studies that use discs of varying levels of degeneration or testing protocols and provide important design criteria for biological repair strategies. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  20. The possible mechanisms of protocatechuic acid-induced central analgesia

    Directory of Open Access Journals (Sweden)

    Rana Arslan

    2018-05-01

    Full Text Available It is aimed to investigate the central antinociceptive effect of protocatechuic acid and the involvement of stimulation of opioidergic, serotonin 5-HT2A/2C, α2-adrenergic and muscarinic receptors in protocatechuic acid-induced central analgesia in mice. Time-dependent antinociceptive effects of protocatechuic acid at the oral doses of 75, 150 and 300 mg/kg were tested in hot-plate (integrated supraspinal response and tail-immersion (spinal reflex tests in mice. To investigate the mechanisms of action; the mice administered 300 mg/kg protocatechuic acid (p.o. were pre-treated with non-specific opioid antagonist naloxone (5 mg/kg, i.p., serotonin 5-HT2A/2C receptor antagonist ketanserin (1 mg/kg, i.p., α2-adrenoceptor antagonist yohimbine (1 mg/kg, i.p. and non-specific muscarinic antagonist atropine (5 mg/kg, i.p., respectively. The antinociceptive effect of protocatechuic acid was observed at the doses of 75, 150 and 300 mg/kg in tail-immersion test, at the doses of 150 and 300 mg/kg in hot-plate test at different time interval. The enhancement in the latency of protocatechuic acid-induced response to thermal stimuli was antagonized by yohimbine, naloxone and atropine in tail-immersion test, while it was antagonized only by yohimbine and naloxone pretreatments in hot-plate test. These results indicated that protocatechuic acid has the central antinociceptive action that is probably organized by spinal mediated cholinergic and opiodiergic, also spinal and supraspinal mediated noradrenergic modulation. However, further studies are required to understand how protocatechuic acid organizes the interactions of these modulatory systems. As a whole, these findings reinforce that protocatechuic acid is a potential agent that might be used for pain relief. Additionally, the clarification of the effect and mechanisms of action of protocatechuic acid will contribute to new therapeutic approaches and provide guidance for new drug

  1. Gastroprotective and ulcer healing effects of hydroethanolic extract of leaves of Caryocar coriaceum: Mechanisms involved in the gastroprotective activity.

    Science.gov (United States)

    de Lacerda Neto, Luis Jardelino; Ramos, Andreza Guedes Barbosa; Santos Sales, Valterlucio; de Souza, Severino Denicio Gonçalves; Dos Santos, Antonia Thassya Lucas; de Oliveira, Larissa Rolim; Kerntopf, Marta Regina; de Albuquerque, Thais Rodrigues; Coutinho, Henrique Douglas Melo; Quintans-Júnior, Lucindo Jose; Wanderley, Almir Gonçalves; de Menezes, Irwin Rose Alencar

    2017-01-05

    This work aimed to determine the chemical fingerprint of hydroethanolic extract of leaves of Caryocar coriaceum (HELCC) and the gastroprotective activity. The chemical fingerprint of HELCC was analyzed by HPLC-DAD, to quantify total phenols and flavonoids were carried out by Folin-Ciocalteu reagent and aluminum chloride assay, while in vitro antioxidant activity was evaluated by the DPPH method. The methods used to determine pharmacological activity were: gastroprotective screening test in classical models of induced acute and chronic gastric lesions and physical barrier test. Further assays were performed to demonstrate the involvement of NO, prostaglandins, ATP-dependent potassium channels, TRPV, noradrenergic α2 receptors, histamines, and opioids. The DPPH method demonstrated the antioxidant activity of the extract, in vitro, explained by the presence of polyphenols and flavonoids. Oral administration of the extract, previously dissolved in deionized water, at a dose of 100 mg/kg decreased the lesions induced by indomethacin, acidified ethanol, ethanol and acetic acid by 75.0, 72.8, 69.4 and 86.2% respectively. It was demonstrated that opioid receptors, α 2 -adrenergic receptors and primary afferent neurons sensitive to capsaicin were involved in the mechanism of gastric protection, in addition to the contribution of NO and prostaglandins. The results show that extract is a promising candidate for the treatment of gastric ulcers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice

    OpenAIRE

    Anderson, Matthew J.; Diko, Sindi; Baehr, Leslie M.; Baar, Keith; Bodine, Sue C.; Christiansen, Blaine A.

    2016-01-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30–44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within one week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss, however it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study,...

  3. Early life stress, HPA axis adaptation and mechanisms contributing to later health outcomes

    Directory of Open Access Journals (Sweden)

    Jayanthi eManiam

    2014-05-01

    Full Text Available Stress activates the hypothalamic-pituitary-adrenal (HPA axis, which then modulates the degree of adaptation and response to a later stressor. It is known that early life stress can impact on later health but less is known about how early life stress impairs HPA axis activity, contributing to maladaptation of the stress response system. Early life stress exposure (either prenatally or in the early postnatal period can impact developmental pathways resulting in lasting structural and regulatory changes that predispose to adulthood disease. Epidemiological, clinical and experimental studies have demonstrated that early life stress produces long-term hyper responsiveness to stress with exaggerated circulating glucocorticoids, and enhanced anxiety and depression-like behaviours. Recently, evidence has emerged on early life stress induced metabolic derangements, for example hyperinsulinemia and altered insulin sensitivity on exposure to a high energy diet later in life. This draws our attention to the contribution of later environment to disease vulnerability. Early life stress can alter the expression of genes in peripheral tissues, such as the glucocorticoid receptor and 11-beta hydroxysteroid dehydrogenase (11β-HSD1. We propose that interactions between altered HPA axis activity and liver 11β-HSD1 modulates both tissue and circulating glucocorticoid availability, with adverse metabolic consequences. This review discusses the potential mechanisms underlying early life stress induced maladaptation of the HPA axis, and its subsequent effects on energy utilisation and expenditure. The effects of positive later environments as a means of ameliorating early life stress induced health deficits, and proposed mechanisms underpinning the interaction between early life stress and subsequent detrimental environmental exposures on metabolic risk will be outlined. Limitations in current methodology linking early life stress and later health outcomes will also

  4. Early-Life Stress, HPA Axis Adaptation, and Mechanisms Contributing to Later Health Outcomes

    Science.gov (United States)

    Maniam, Jayanthi; Antoniadis, Christopher; Morris, Margaret J.

    2014-01-01

    Stress activates the hypothalamic–pituitary–adrenal (HPA) axis, which then modulates the degree of adaptation and response to a later stressor. It is known that early-life stress can impact on later health but less is known about how early-life stress impairs HPA axis activity, contributing to maladaptation of the stress–response system. Early-life stress exposure (either prenatally or in the early postnatal period) can impact developmental pathways resulting in lasting structural and regulatory changes that predispose to adulthood disease. Epidemiological, clinical, and experimental studies have demonstrated that early-life stress produces long term hyper-responsiveness to stress with exaggerated circulating glucocorticoids, and enhanced anxiety and depression-like behaviors. Recently, evidence has emerged on early-life stress-induced metabolic derangements, for example hyperinsulinemia and altered insulin sensitivity on exposure to a high energy diet later in life. This draws our attention to the contribution of later environment to disease vulnerability. Early-life stress can alter the expression of genes in peripheral tissues, such as the glucocorticoid receptor and 11-beta hydroxysteroid dehydrogenase (11β-HSD1). We propose that interactions between altered HPA axis activity and liver 11β-HSD1 modulates both tissue and circulating glucocorticoid availability, with adverse metabolic consequences. This review discusses the potential mechanisms underlying early-life stress-induced maladaptation of the HPA axis, and its subsequent effects on energy utilization and expenditure. The effects of positive later environments as a means of ameliorating early-life stress-induced health deficits, and proposed mechanisms underpinning the interaction between early-life stress and subsequent detrimental environmental exposures on metabolic risk will be outlined. Limitations in current methodology linking early-life stress and later health outcomes will also be

  5. Tinnitus Neural Mechanisms and Structural Changes in the Brain: The Contribution of Neuroimaging Research

    Directory of Open Access Journals (Sweden)

    Simonetti, Patricia

    2015-03-01

    Full Text Available Introduction Tinnitus is an abnormal perception of sound in the absence of an external stimulus. Chronic tinnitus usually has a high impact in many aspects of patients' lives, such as emotional stress, sleep disturbance, concentration difficulties, and so on. These strong reactions are usually attributed to central nervous system involvement. Neuroimaging has revealed the implication of brain structures in the auditory system. Objective This systematic review points out neuroimaging studies that contribute to identifying the structures involved in the pathophysiological mechanism of generation and persistence of various forms of tinnitus. Data Synthesis Functional imaging research reveals that tinnitus perception is associated with the involvement of the nonauditory brain areas, including the front parietal area; the limbic system, which consists of the anterior cingulate cortex, anterior insula, and amygdala; and the hippocampal and parahippocampal area. Conclusion The neuroimaging research confirms the involvement of the mechanisms of memory and cognition in the persistence of perception, anxiety, distress, and suffering associated with tinnitus.

  6. Diapause and quiescence: dormancy mechanisms that contribute to the geographical expansion of mosquitoes and their evolutionary success.

    Science.gov (United States)

    Diniz, Diego Felipe Araujo; de Albuquerque, Cleide Maria Ribeiro; Oliva, Luciana Oliveira; de Melo-Santos, Maria Alice Varjal; Ayres, Constância Flávia Junqueira

    2017-06-26

    Mosquitoes are insects belonging to the order Diptera and family Culicidae. They are distributed worldwide and include approximately 3500 species, of which about 300 have medical and veterinary importance. The evolutionary success of mosquitoes, in both tropical and temperate regions, is due to the various survival strategies these insects have developed throughout their life histories. Of the many adaptive mechanisms, diapause and quiescence, two different types of dormancy, likely contribute to the establishment, maintenance and spread of natural mosquito populations. This review seeks to objectively and coherently describe the terms diapause and quiescence, which can be confused in the literature because the phenotypic effects of these mechanisms are often similar.

  7. Norepinephrine signaling through β-adrenergic receptors is critical for expression of cocaine-induced anxiety

    Science.gov (United States)

    Schank, Jesse R.; Liles, L. Cameron; Weinshenker, David

    2008-01-01

    Background Cocaine is a widely abused psychostimulant that has both rewarding and aversive properties. While the mechanisms underlying cocaine’s rewarding effects have been studied extensively, less attention has been paid to the unpleasant behavioral states induced by cocaine, such as anxiety. Methods In this study we evaluated the performance of dopamine β-hydroxylase knockout (Dbh −/−) mice, which lack norepinephrine (NE), in the elevated plus maze (EPM) to examine the contribution of noradrenergic signaling to cocaine-induced anxiety. Results We found that cocaine dose-dependently increased anxiety-like behavior in control (Dbh +/−) mice, as measured by a decrease in open arm exploration. Dbh −/− mice had normal baseline performance in the EPM, but were completely resistant to the anxiogenic effects of cocaine. Cocaine-induced anxiety was also attenuated in Dbh +/− mice following administration of disulfiram, a DBH inhibitor. In experiments using specific adrenergic antagonists, we found that pretreatment with the β-adrenergic receptor antagonist propranolol blocked cocaine-induced anxiety-like behavior in Dbh +/− and wild-type C57BL6/J mice, while the α1 antagonist prazosin and the α2 antagonist yohimbine had no effect. Conclusions These results indicate that noradrenergic signaling via β-adrenergic receptors is required for cocaine-induced anxiety in mice. PMID:18083142

  8. Norepinephrine signaling through beta-adrenergic receptors is critical for expression of cocaine-induced anxiety.

    Science.gov (United States)

    Schank, Jesse R; Liles, L Cameron; Weinshenker, David

    2008-06-01

    Cocaine is a widely abused psychostimulant that has both rewarding and aversive properties. While the mechanisms underlying cocaine's rewarding effects have been studied extensively, less attention has been paid to the unpleasant behavioral states induced by cocaine, such as anxiety. In this study, we evaluated the performance of dopamine beta-hydroxylase knockout (Dbh -/-) mice, which lack norepinephrine (NE), in the elevated plus maze (EPM) to examine the contribution of noradrenergic signaling to cocaine-induced anxiety. We found that cocaine dose-dependently increased anxiety-like behavior in control (Dbh +/-) mice, as measured by a decrease in open arm exploration. The Dbh -/- mice had normal baseline performance in the EPM but were completely resistant to the anxiogenic effects of cocaine. Cocaine-induced anxiety was also attenuated in Dbh +/- mice following administration of disulfiram, a dopamine beta-hydroxylase (DBH) inhibitor. In experiments using specific adrenergic antagonists, we found that pretreatment with the beta-adrenergic receptor antagonist propranolol blocked cocaine-induced anxiety-like behavior in Dbh +/- and wild-type C57BL6/J mice, while the alpha(1) antagonist prazosin and the alpha(2) antagonist yohimbine had no effect. These results indicate that noradrenergic signaling via beta-adrenergic receptors is required for cocaine-induced anxiety in mice.

  9. Dibutyryl cyclic AMP induces differentiation of human neuroblastoma SH-SY5Y cells into a noradrenergic phenotype.

    Science.gov (United States)

    Kume, Toshiaki; Kawato, Yuka; Osakada, Fumitaka; Izumi, Yasuhiko; Katsuki, Hiroshi; Nakagawa, Takayuki; Kaneko, Shuji; Niidome, Tetsuhiro; Takada-Takatori, Yuki; Akaike, Akinori

    2008-10-10

    Dibutyryl cyclic AMP (dbcAMP) and retinoic acid (RA) have been demonstrated to be the inducers of morphological differentiation in SH-SY5Y cells, a human catecholaminergic neuroblastoma cell line. However, it remains unclear whether morphologically differentiated SH-SY5Y cells by these compounds acquire catecholaminergic properties. We focused on the alteration of tyrosine hydroxylase (TH) expression and intracellular content of noradrenaline (NA) as the indicators of functional differentiation. Three days treatment with dbcAMP (1mM) and RA (10microM) induced morphological changes and an increase of TH-positive cells using immunocytochemical analysis in SH-SY5Y cells. The percentage of TH-expressing cells in dbcAMP (1mM) treatment was larger than that in RA (10microM) treatment. In addition, dbcAMP increased intracellular NA content, whereas RA did not. The dbcAMP-induced increase in TH-expressing cells is partially inhibited by KT5720, a protein kinase A (PKA) inhibitor. We also investigated the effect of butyrate on SH-SY5Y cells, because dbcAMP is enzymatically degraded by intracellular esterase, thereby resulting in the formation of butyrate. Butyrate induced the increase of NA content at lower concentrations than dbcAMP, although the increase in TH-expressing cells by butyrate was smaller than that by dbcAMP. The dbcAMP (1mM)- and butyrate (0.3mM)-induced increase in NA content was completely suppressed by alpha-methyl-p-tyrosine (1mM), an inhibitor of TH. These results suggest that dbcAMP induces differentiation into the noradrenergic phenotype through both PKA activation and butyrate.

  10. Noradrenaline decreases spike voltage threshold and induces electrographic sharp waves in turtle medial cortex in vitro.

    Science.gov (United States)

    Lorenzo, Daniel; Velluti, Julio C

    2004-01-01

    The noradrenergic modulation of neuronal properties has been described at different levels of the mammalian brain. Although the anatomical characteristics of the noradrenergic system are well known in reptiles, functional data are scarce. In our study the noradrenergic modulation of cortical electrogenesis in the turtle medial cortex was studied in vitro using a combination of field and intracellular recordings. Turtle EEG consists of a low voltage background interspersed by spontaneous large sharp waves (LSWs). Noradrenaline (NA, 5-40 microM) induced (or enhanced) the generation of LSWs in a dose-dependent manner. Pharmacological experiments suggest the participation of alpha and beta receptors in this effect. In medial cortex neurons NA induced a hyperpolarization of the resting potential and a decrease of input resistance. Both effects were observed also after TTX treatment. Noradrenaline increased the response of the cells to depolarizing pulses, resulting in an upward shift of the frequency/current relation. In most cells the excitability change was mediated by a decrease of the spike voltage threshold resulting in the reduction of the amount of depolarization needed to fire the cell (voltage threshold minus resting potential). As opposed to the mechanisms reported in mammalian neurons, no changes in the frequency adaptation or the post-train afterhyperpolarization were observed. The NA effects at the cellular level were not reproduced by noradrenergic agonists. Age- and species-dependent properties in the pharmacology of adrenergic receptors could be involved in this result. Cellular effects of NA in turtle cortex are similar to those described in mammals, although the increase in cellular excitability seems to be mediated by a different mechanism. Copyright 2004 S. Karger AG, Basel

  11. The role of protein kinase-G in the antidepressant-like response of sildenafil in combination with muscarinic acetylcholine receptor antagonism

    DEFF Research Database (Denmark)

    Liebenberg, Nico; Wegener, Gregers; Brink, Christiaan

    not affect swimming or climbing. Lastly, locomotor activity was unaltered by all treatment conditions. Conclusions These results confirm cholinergic-cGMP-PK-G interactions in the antidepressant-like effects of sildenafil, putatively acting via noradrenergic mechanisms, whereas direct PK-G activation induces...... the antidepressant-like activity of sildenafil + atropine is mediated via the activation of PK-G, a downstream effector for cGMP, and whether this may target known pathways in antidepressant action. Purpose We investigated whether the antidepressant-like response of sildenafil ± atropine could be reversed by Rp-8-Br.......c.v.) ± atropine (1 mg/kg, i.p.), Rp-8-Br-PET-cGMP or atropine. Antidepressant-like activity was scored in terms of a reduction of immobility (in seconds) relative to vehicle-treated controls. Swimming and climbing behaviours were scored as an indication of serotonergic and noradrenergic mechanisms, respectively...

  12. A contribution to the study of mechanical behaviour of concrete structures taking into account the effects of desiccation

    International Nuclear Information System (INIS)

    Hubert, F.X.

    2004-12-01

    In this work, is given a model of the drying influence on the mechanical behaviour of concrete and a reliable anticipating tool is proposed for engineers. The drying of hardened concrete has several consequences on the mechanical properties of concrete. The desiccation shrinkage is the first sign, generating crack visible at the surface level under the form of crackling and core cracking particularly on the account of the presence of aggregates which prevent the shrinkage of the cement paste to make easily. Then, the elastic parameters are strongly affected (decrease of stiffness, of the Poisson coefficient). A simplified model of the stiffness loss during the drying is proposed under the form of an isotropic hydric damage. The model is validated in the unidimensional case with tests results carried out in the LML. With this model, it is possible to estimate with more accuracy the state of the hydric constraints in concrete. Numerical simulations on 3D structures are then proposed. An application to the case of a wall being manufactured is given. The contributions of the model are tested too in the case where the global mechanical response of cylindrical mortar specimens submitted to drying and to compression tests is simulated. The effect of the capillary suction as well as the increase of the elastic limit during drying are then discussed. At last, the contributions of the model for creep calculations and desiccation are presented. (O.M.)

  13. Upregulation of Ih expressed in IB4-negative Aδ nociceptive DRG neurons contributes to mechanical hypersensitivity associated with cervical radiculopathic pain

    Science.gov (United States)

    Liu, Da-Lu; Lu, Na; Han, Wen-Juan; Chen, Rong-Gui; Cong, Rui; Xie, Rou-Gang; Zhang, Yu-Fei; Kong, Wei-Wei; Hu, San-Jue; Luo, Ceng

    2015-01-01

    Cervical radiculopathy represents aberrant mechanical hypersensitivity. Primary sensory neuron’s ability to sense mechanical force forms mechanotransduction. However, whether this property undergoes activity-dependent plastic changes and underlies mechanical hypersensitivity associated with cervical radiculopathic pain (CRP) is not clear. Here we show a new CRP model producing stable mechanical compression of dorsal root ganglion (DRG), which induces dramatic behavioral mechanical hypersensitivity. Amongst nociceptive DRG neurons, a mechanically sensitive neuron, isolectin B4 negative Aδ-type (IB4− Aδ) DRG neuron displays spontaneous activity with hyperexcitability after chronic compression of cervical DRGs. Focal mechanical stimulation on somata of IB4- Aδ neuron induces abnormal hypersensitivity. Upregulated HCN1 and HCN3 channels and increased Ih current on this subset of primary nociceptors underlies the spontaneous activity together with neuronal mechanical hypersensitivity, which further contributes to the behavioral mechanical hypersensitivity associated with CRP. This study sheds new light on the functional plasticity of a specific subset of nociceptive DRG neurons to mechanical stimulation and reveals a novel mechanism that could underlie the mechanical hypersensitivity associated with cervical radiculopathy. PMID:26577374

  14. Neuroendocrine Factors Regulating Blood Glucose, Plasma FFA and Insulin in the Development of Obesity

    NARCIS (Netherlands)

    Steffens, A.B.; Strubbe, J.H.; Balkan, B.; Scheurink, A.J.W.

    1991-01-01

    A number of neurotransmitters and neuropeptides in the hypothalamus play a role in the control of food intake, metabolism, and body weight. Particularly, noradrenergic mechanisms in several areas of the hypothalamus are involved. Control of peripheral metabolism by the hypothalamus is achieved via

  15. Adrenal stress hormones, amygdala activation, and memory for emotionally arousing experiences.

    Science.gov (United States)

    Roozendaal, Benno; Barsegyan, Areg; Lee, Sangkwan

    2008-01-01

    Extensive evidence indicates that stress hormones released from the adrenal glands are critically involved in memory consolidation of emotionally arousing experiences. Epinephrine or glucocorticoids administered after exposure to emotionally arousing experiences enhance the consolidation of long-term memories of these experiences. Our findings indicate that adrenal stress hormones influence memory consolidation via interactions with arousal-induced activation of noradrenergic mechanisms within the amygdala. In turn, the amygdala regulates memory consolidation via its efferent projections to many other brain regions. In contrast to the enhancing effects on consolidation, high circulating levels of stress hormones impair memory retrieval and working memory. Such effects also require noradrenergic activation of the amygdala and interactions with other brain regions.

  16. Acquisition and extinction of continuously and partially reinforced running in rats with lesions of the dorsal noradrenergic bundle.

    Science.gov (United States)

    Owen, S; Boarder, M R; Gray, J A; Fillenz, M

    1982-05-01

    Local injection of 6-hydroxydopamine was used to selectively destroy the dorsal ascending noradrenergic bundle (DB) in rats. Two lesion procedures were used, differing in the extent of depletion of forebrain noradrenaline they produced (greater than 90% or 77%). In Experiments 1-3 the rats were run in a straight alley for food reward on continuous (CR) or partial (PR) reinforcement schedules. The smaller lesion reduced and the larger lesion eliminated the partial reinforcement acquisition effect (i.e. the faster start and run speeds produced by PR during training) and the partial reinforcement extinction effect (PREE, i.e. the greater resistance to extinction produced by PR training); these changes were due to altered performance only in the PR condition. Abolition of the PREE by the larger DB lesion occurred with 50 acquisition trials, but with 100 trials the lesion had no effect. In Experiment 4 rats were run in a double runway with food reward on CR in the second goal box, and on CR, PR or without reinforcement in the first. The larger lesion again eliminated the PREE in the first runway, but did not block the frustration effect in the second runway (i.e. the faster speeds observed in the PR condition after non-reward than after reward in the first goal box). These results are consistent with the hypothesis that DB lesions alter behavioural responses to signals of non-reward, but not to non-reward itself. They cannot be predicted from two other hypotheses: that the DB mediates responses to reward or that it subserves selective attention. Since septal and hippocampal, but not amygdalar, lesions have been reported to produced similar behavioural changes, it is proposed that the critical DB projection for the effects observed in these experiments is to the septo-hippocampal system.

  17. Carbon storage regulator A contributes to the virulence of Haemophilus ducreyi in humans by multiple mechanisms.

    Science.gov (United States)

    Gangaiah, Dharanesh; Li, Wei; Fortney, Kate R; Janowicz, Diane M; Ellinger, Sheila; Zwickl, Beth; Katz, Barry P; Spinola, Stanley M

    2013-02-01

    The carbon storage regulator A (CsrA) controls a wide variety of bacterial processes, including metabolism, adherence, stress responses, and virulence. Haemophilus ducreyi, the causative agent of chancroid, harbors a homolog of csrA. Here, we generated an unmarked, in-frame deletion mutant of csrA to assess its contribution to H. ducreyi pathogenesis. In human inoculation experiments, the csrA mutant was partially attenuated for pustule formation compared to its parent. Deletion of csrA resulted in decreased adherence of H. ducreyi to human foreskin fibroblasts (HFF); Flp1 and Flp2, the determinants of H. ducreyi adherence to HFF cells, were downregulated in the csrA mutant. Compared to its parent, the csrA mutant had a significantly reduced ability to tolerate oxidative stress and heat shock. The enhanced sensitivity of the mutant to oxidative stress was more pronounced in bacteria grown to stationary phase compared to that in bacteria grown to mid-log phase. The csrA mutant also had a significant survival defect within human macrophages when the bacteria were grown to stationary phase but not to mid-log phase. Complementation in trans partially or fully restored the mutant phenotypes. These data suggest that CsrA contributes to virulence by multiple mechanisms and that these contributions may be more profound in bacterial cell populations that are not rapidly dividing in the human host.

  18. Seeing the same thing differently: mechanisms that contribute to assessor differences in directly-observed performance assessments.

    Science.gov (United States)

    Yeates, Peter; O'Neill, Paul; Mann, Karen; Eva, Kevin

    2013-08-01

    Assessors' scores in performance assessments are known to be highly variable. Attempted improvements through training or rating format have achieved minimal gains. The mechanisms that contribute to variability in assessors' scoring remain unclear. This study investigated these mechanisms. We used a qualitative approach to study assessors' judgements whilst they observed common simulated videoed performances of junior doctors obtaining clinical histories. Assessors commented concurrently and retrospectively on performances, provided scores and follow-up interviews. Data were analysed using principles of grounded theory. We developed three themes that help to explain how variability arises: Differential Salience-assessors paid attention to (or valued) different aspects of the performances to different degrees; Criterion Uncertainty-assessors' criteria were differently constructed, uncertain, and were influenced by recent exemplars; Information Integration-assessors described the valence of their comments in their own unique narrative terms, usually forming global impressions. Our results (whilst not precluding the operation of established biases) describe mechanisms by which assessors' judgements become meaningfully-different or unique. Our results have theoretical relevance to understanding the formative educational messages that performance assessments provide. They give insight relevant to assessor training, assessors' ability to be observationally "objective" and to the educational value of narrative comments (in contrast to numerical ratings).

  19. Shaping vulnerability to addiction - the contribution of behavior, neural circuits and molecular mechanisms.

    Science.gov (United States)

    Egervari, Gabor; Ciccocioppo, Roberto; Jentsch, J David; Hurd, Yasmin L

    2018-02-01

    Substance use disorders continue to impose increasing medical, financial and emotional burdens on society in the form of morbidity and overdose, family disintegration, loss of employment and crime, while advances in prevention and treatment options remain limited. Importantly, not all individuals exposed to abused substances effectively develop the disease. Genetic factors play a significant role in determining addiction vulnerability and interactions between innate predisposition, environmental factors and personal experiences are also critical. Thus, understanding individual differences that contribute to the initiation of substance use as well as on long-term maladaptations driving compulsive drug use and relapse propensity is of critical importance to reduce this devastating disorder. In this paper, we discuss current topics in the field of addiction regarding individual vulnerability related to behavioral endophenotypes, neural circuits, as well as genetics and epigenetic mechanisms. Expanded knowledge of these factors is of importance to improve and personalize prevention and treatment interventions in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Stress corrosion cracking of alloy 600 in water at high temperature: contribution to a phenomenological approach to the understanding of mechanisms

    International Nuclear Information System (INIS)

    Abadie, Pascale

    1998-01-01

    This research thesis aims at being a contribution to the understanding of mechanisms of stress corrosion cracking of an alloy 600 in water at high temperature. More precisely, it aimed at determining, by using quantitative data characterizing cracking phenomenology, which mechanism(s) is (are) able to explain crack initiation and crack growth. These data concern quantitative characterization of crack initiation, of crack growth and of the influence of two cracking parameters (strain rate, medium hydrogen content). They have been obtained by quantifying cracking through the application of a morphological model. More precisely, these data are: evolution of crack density during a tensile test at slow rate, value of initial crack width with respect to grain boundary length, and relationship between crack density and medium hydrogen content. It appears that hydrogen absorption seems to be involved in the crack initiation mechanism. Crack growth mechanisms and crack growth rates are also discussed [fr

  1. Mechanisms underlying the social enhancement of vocal learning in songbirds.

    Science.gov (United States)

    Chen, Yining; Matheson, Laura E; Sakata, Jon T

    2016-06-14

    Social processes profoundly influence speech and language acquisition. Despite the importance of social influences, little is known about how social interactions modulate vocal learning. Like humans, songbirds learn their vocalizations during development, and they provide an excellent opportunity to reveal mechanisms of social influences on vocal learning. Using yoked experimental designs, we demonstrate that social interactions with adult tutors for as little as 1 d significantly enhanced vocal learning. Social influences on attention to song seemed central to the social enhancement of learning because socially tutored birds were more attentive to the tutor's songs than passively tutored birds, and because variation in attentiveness and in the social modulation of attention significantly predicted variation in vocal learning. Attention to song was influenced by both the nature and amount of tutor song: Pupils paid more attention to songs that tutors directed at them and to tutors that produced fewer songs. Tutors altered their song structure when directing songs at pupils in a manner that resembled how humans alter their vocalizations when speaking to infants, that was distinct from how tutors changed their songs when singing to females, and that could influence attention and learning. Furthermore, social interactions that rapidly enhanced learning increased the activity of noradrenergic and dopaminergic midbrain neurons. These data highlight striking parallels between humans and songbirds in the social modulation of vocal learning and suggest that social influences on attention and midbrain circuitry could represent shared mechanisms underlying the social modulation of vocal learning.

  2. Epistasis between 5-HTTLPR and ADRA2B polymorphisms influences attentional bias for emotional information in healthy volunteers.

    Science.gov (United States)

    Naudts, Kris H; Azevedo, Ruben T; David, Anthony S; van Heeringen, Kees; Gibbs, Ayana A

    2012-09-01

    Individual differences in emotional processing are likely to contribute to vulnerability and resilience to emotional disorders such as depression and anxiety. Genetic variation is known to contribute to these differences but they remain incompletely understood. The serotonin transporter (5-HTTLPR) and α2B-adrenergic autoreceptor (ADRA2B) insertion/deletion polymorphisms impact on two separate but interacting monaminergic signalling mechanisms that have been implicated in both emotional processing and emotional disorders. Recent studies suggest that the 5-HTTLPR s allele is associated with a negative attentional bias and an increased risk of emotional disorders. However, such complex behavioural traits are likely to exhibit polygenicity, including epistasis. This study examined the contribution of the 5-HTTLPR and ADRA2B insertion/deletion polymorphisms to attentional biases for aversive information in 94 healthy male volunteers and found evidence of a significant epistatic effect (pbias for aversive information was attenuated by possession of the ADRA2B deletion variant whereas in the absence of the s allele, the bias was enhanced. These data identify a cognitive mechanism linking genotype-dependent serotonergic and noradrenergic signalling that is likely to have implications for the development of cognitive markers for depression/anxiety as well as therapeutic drug effects and personalized approaches to treatment.

  3. Increased opioid dependence in a mouse model of panic disorder

    Directory of Open Access Journals (Sweden)

    Xavier Gallego

    2010-02-01

    Full Text Available Panic disorder is a highly prevalent neuropsychiatric disorder that shows co-occurrence with substance abuse. Here, we demonstrate that TrkC, the high affinity receptor for neurotrophin-3, is a key molecule involved in panic disorder and opiate dependence, using a transgenic mouse model (TgNTRK3. Constitutive TrkC overexpression in TgNTRK3 mice dramatically alters spontaneous firing rates of locus coeruleus neurons and the response of the noradrenergic system to chronic opiate exposure, possibly related to the altered regulation of neurotrophic peptides observed. Notably, TgNTRK3 locus coeruleus neurons showed an increased firing rate in saline-treated conditions and profound abnormalities in their response to met5-enkephalin. Behaviorally, chronic morphine administration induced a significantly increased withdrawal syndrome in TgNTRK3 mice. In conclusion, we show here that the NT-3/TrkC system is an important regulator of neuronal firing in locus coeruleus and could contribute to the adaptations of the noradrenergic system in response to chronic opiate exposure. Moreover, our results indicate that TrkC is involved in the molecular and cellular changes in noradrenergic neurons underlying both panic attacks and opiate dependence and support a functional endogenous opioid deficit in panic disorder patients.

  4. Biological Mechanisms Whereby Social Exclusion May Contribute to the Etiology of Psychosis: A Narrative Review.

    Science.gov (United States)

    Selten, Jean-Paul; Booij, Jan; Buwalda, Bauke; Meyer-Lindenberg, Andreas

    2017-01-03

    The purpose of this review is to examine whether a contribution of social exclusion to the pathogenesis of psychosis is compatible with the dopamine hypothesis and/or the neurodevelopmental hypothesis. Humans experience social exclusion as defeating. An animal model for defeat is the resident-intruder paradigm. The defeated animal shows evidence of an increased sensitivity to amphetamine, increased dopamine release in the nucleus accumbens and prefrontal cortex, and increased firing of dopaminergic neurons in the ventral tegmental area. As for humans, one study showed that amphetamine-induced striatal dopamine release was significantly greater among nonpsychotic young adults with severe hearing impairment than among normal hearing controls. Two other studies reported an association between childhood trauma and increased dopamine function in striatal subregions. Several studies have suggested that the perigenual anterior cingulate cortex (pgACC) may play a role in the processing of social stress. Importantly, the pgACC regulates the activity of the ventral striatum through bidirectional interconnections. We are not aware of studies in humans that examined whether (proxies for) social exclusion contributes to the structural brain changes present at psychosis onset. Animal studies, however, reported that long-term isolation may lead to reductions in volume of the total brain, hippocampus, or medial prefrontal cortex. Other animal studies reported that social defeat can reduce neurogenesis. In conclusion, the answer to the question as to whether there are plausible mechanisms whereby social exclusion can contribute to the pathogenesis of psychosis is cautiously affirmative. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. How much can disaster and climate science contribute to loss and damage mechanisms in international climate policy?

    Science.gov (United States)

    Huggel, Christian; Allen, Simon; Eicken, Hajo; Hansen, Gerrit; Stone, Dáithí

    2015-04-01

    proposals for mechanisms of financing suggested a role of causation and thus attribution of L&D to (anthropogenic) climate change. Yet, causation mechanisms are particularly delicate in terms of climate justice, development and implications of legal liabilities. Here, we outline potential contributions of science to L&D mechanisms in greater specificity, in particular for (i) threshold based mechanisms, and (ii) causation related mechanisms. We draw on recent concepts of L&D attribution suggesting a more comprehensive attribution framework based on risk concepts. We present a first-order proof-of-concept for the above mechanisms (i) and (ii), using case studies of recent disasters (both related to extreme events and gradual climate change) in the Indian Himalayas, Colombia, Alaska and Australia. We analyze whether science is in a position to substantially contribute to the different L&D policy proposals, including the question whether currently available data and datasets on climate and hazards, exposure and vulnerability are in line with such support, in particular with regards to developing country contexts. We conclude with a perspective on critical research and data needs to further strengthen L&D science and policy.

  6. HIV-1 Env and Nef Cooperatively Contribute to Plasmacytoid Dendritic Cell Activation via CD4-Dependent Mechanisms.

    Science.gov (United States)

    Reszka-Blanco, Natalia J; Sivaraman, Vijay; Zhang, Liguo; Su, Lishan

    2015-08-01

    Plasmacytoid dendritic cells (pDCs) are the major source of type I IFN (IFN-I) in response to human immunodeficiency virus type 1 (HIV-1) infection. pDCs are rapidly activated during HIV-1 infection and are implicated in reducing the early viral load, as well as contributing to HIV-1-induced pathogenesis. However, most cell-free HIV-1 isolates are inefficient in activating human pDCs, and the mechanisms of HIV-1 recognition by pDCs and pDC activation are not clearly defined. In this study, we report that two genetically similar HIV-1 variants (R3A and R3B) isolated from a rapid progressor differentially activated pDCs to produce alpha interferon (IFN-α). The highly pathogenic R3A efficiently activated pDCs to induce robust IFN-α production, while the less pathogenic R3B did not. The viral determinant for efficient pDC activation was mapped to the V1V2 region of R3A Env, which also correlated with enhanced CD4 binding activity. Furthermore, we showed that the Nef protein was also required for the activation of pDCs by R3A. Analysis of a panel of R3A Nef functional mutants demonstrated that Nef domains involved in CD4 downregulation were necessary for R3A to activate pDCs. Our data indicate that R3A-induced pDC activation depends on (i) the high affinity of R3A Env for binding the CD4 receptor and (ii) Nef activity, which is involved in CD4 downregulation. Our findings provide new insights into the mechanism by which HIV-1 induces IFN-α in pDCs, which contributes to pathogenesis. Plasmacytoid dendritic cells (pDCs) are the major type I interferon (IFN-I)-producing cells, and IFN-I actually contributes to pathogenesis during chronic viral infections. How HIV-1 activates pDCs and the roles of pDCs/IFN-I in HIV-1 pathogenesis remain unclear. We report here that the highly pathogenic HIV R3A efficiently activated pDCs to induce IFN-α production, while most HIV-1 isolates are inefficient in activating pDCs. We have discovered that R3A-induced pDC activation depends on

  7. Remembering to learn: independent place and journey coding mechanisms contribute to memory transfer.

    Science.gov (United States)

    Bahar, Amir S; Shapiro, Matthew L

    2012-02-08

    The neural mechanisms that integrate new episodes with established memories are unknown. When rats explore an environment, CA1 cells fire in place fields that indicate locations. In goal-directed spatial memory tasks, some place fields differentiate behavioral histories ("journey-dependent" place fields) while others do not ("journey-independent" place fields). To investigate how these signals inform learning and memory for new and familiar episodes, we recorded CA1 and CA3 activity in rats trained to perform a "standard" spatial memory task in a plus maze and in two new task variants. A "switch" task exchanged the start and goal locations in the same environment; an "altered environment" task contained unfamiliar local and distal cues. In the switch task, performance was mildly impaired, new firing maps were stable, but the proportion and stability of journey-dependent place fields declined. In the altered environment, overall performance was strongly impaired, new firing maps were unstable, and stable proportions of journey-dependent place fields were maintained. In both tasks, memory errors were accompanied by a decline in journey codes. The different dynamics of place and journey coding suggest that they reflect separate mechanisms and contribute to distinct memory computations. Stable place fields may represent familiar relationships among environmental features that are required for consistent memory performance. Journey-dependent activity may correspond with goal-directed behavioral sequences that reflect expectancies that generalize across environments. The complementary signals could help link current events with established memories, so that familiarity with either a behavioral strategy or an environment can inform goal-directed learning.

  8. Elevated Norepinephrine may be a Unifying Etiological Factor in the Abuse of a Broad Range of Substances: Alcohol, Nicotine, Marijuana, Heroin, Cocaine, and Caffeine.

    Science.gov (United States)

    Fitzgerald, Paul J

    2013-10-13

    A wide range of commonly abused drugs have effects on the noradrenergic neurotransmitter system, including alterations during acute intoxication and chronic use of these drugs. It is not established, however, that individual differences in noradrenergic signaling, which may be present prior to use of drugs, predispose certain persons to substance abuse. This paper puts forth the novel hypothesis that elevated noradrenergic signaling, which may be raised largely due to genetics but also due to environmental factors, is an etiological factor in the abuse of a wide range of substances, including alcohol, nicotine, marijuana, heroin, cocaine, and caffeine. Data are reviewed for each of these drugs comprising their interaction with norepinephrine during acute intoxication, long-term use, subsequent withdrawal, and stress-induced relapse. In general, the data suggest that these drugs acutely boost noradrenergic signaling, whereas long-term use also affects this neurotransmitter system, possibly suppressing it. During acute withdrawal after chronic drug use, noradrenergic signaling tends to be elevated, consistent with the observation that norepinephrine lowering drugs such as clonidine reduce withdrawal symptoms. Since psychological stress can promote relapse of drug seeking in susceptible individuals and stress produces elevated norepinephrine release, this suggests that these drugs may be suppressing noradrenergic signaling during chronic use or instead elevating it only in reward circuits of the brain. If elevated noradrenergic signaling is an etiological factor in the abuse of a broad range of substances, then chronic use of pharmacological agents that reduce noradrenergic signaling, such as clonidine, guanfacine, lofexidine, propranolol, or prazosin, may help prevent or treat drug abuse in general.

  9. Elevated Norepinephrine may be a Unifying Etiological Factor in the Abuse of a Broad Range of Substances: Alcohol, Nicotine, Marijuana, Heroin, Cocaine, and Caffeine

    Directory of Open Access Journals (Sweden)

    Paul J. Fitzgerald

    2013-01-01

    Full Text Available A wide range of commonly abused drugs have effects on the noradrenergic neurotransmitter system, including alterations during acute intoxication and chronic use of these drugs. It is not established, however, that individual differences in noradrenergic signaling, which may be present prior to use of drugs, predispose certain persons to substance abuse. This paper puts forth the novel hypothesis that elevated noradrenergic signaling, which may be raised largely due to genetics but also due to environmental factors, is an etiological factor in the abuse of a wide range of substances, including alcohol, nicotine, marijuana, heroin, cocaine, and caffeine. Data are reviewed for each of these drugs comprising their interaction with norepinephrine during acute intoxication, long-term use, subsequent withdrawal, and stress-induced relapse. In general, the data suggest that these drugs acutely boost noradrenergic signaling, whereas long-term use also affects this neurotransmitter system, possibly suppressing it. During acute withdrawal after chronic drug use, noradrenergic signaling tends to be elevated, consistent with the observation that norepinephrine lowering drugs such as clonidine reduce withdrawal symptoms. Since psychological stress can promote relapse of drug seeking in susceptible individuals and stress produces elevated norepinephrine release, this suggests that these drugs may be suppressing noradrenergic signaling during chronic use or instead elevating it only in reward circuits of the brain. If elevated noradrenergic signaling is an etiological factor in the abuse of a broad range of substances, then chronic use of pharmacological agents that reduce noradrenergic signaling, such as clonidine, guanfacine, lofexidine, propranolol, or prazosin, may help prevent or treat drug abuse in general.

  10. Noradrenergic neurotransmission within the bed nucleus of the stria terminalis modulates the retention of immobility in the rat forced swimming test.

    Science.gov (United States)

    Nagai, Michelly M; Gomes, Felipe V; Crestani, Carlos C; Resstel, Leonardo B M; Joca, Sâmia R L

    2013-06-01

    The bed nucleus of the stria terminalis (BNST) is a limbic structure that has a direct influence on the autonomic, neuroendocrine, and behavioral responses to stress. It was recently reported that reversible inactivation of synaptic transmission within this structure causes antidepressant-like effects, indicating that activation of the BNST during stressful situations would facilitate the development of behavioral changes related to the neurobiology of depression. Moreover, noradrenergic neurotransmission is abundant in the BNST and has an important role in the regulation of emotional processes related to the stress response. Thus, this study aimed to test the hypothesis that activation of adrenoceptors within the BNST facilitates the development of behavioral consequences of stress. To investigate this hypothesis, male Wistar rats were stressed (forced swimming, 15 min) and 24 h later received intra-BNST injections of vehicle, WB4101, RX821002, CGP20712, or ICI118,551, which are selective α(1), α(2), β(1), and β(2) adrenoceptor antagonists, respectively, 10 min before a 5-min forced swimming test. It was observed that administration of WB4101 (10 and 15 nmol), CGP20712 (5 and 10 nmol), or ICI118,551 (5 nmol) into the BNST reduced the immobility time of rats subjected to forced swimming test, indicating an antidepressant-like effect. These findings suggest that activation of α(1), β(1), and β(2) adrenoceptors in the BNST could be involved in the development of the behavioral consequences of stress. © 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  11. Effects of lesions of the dorsal noradrenergic bundle on conditioned suppression to a CS and to a contextual background stimulus.

    Science.gov (United States)

    Tsaltas, E; Schugens, M M; Gray, J A

    1989-01-01

    The aim of the experiment was to determine whether the dorsal noradrenergic bundle (DB) plays a role in conditioning to context. Rats received either bilateral lesions of the DB by local injection of 6-hydroxydopamine, vehicle injections only, or sham operations. All animals were then trained to barpress for food on a variable interval (VI) schedule. Two 5-min intrusion periods were superimposed on the VI baseline during each session. An 'envelope' stimulus (flashing light) was on throughout each intrusion period. In addition, embedded in the two intrusion periods of each session, there occurred 8 presentations of a 'punctate' conditioned stimulus (CS) (a 15-s clicker), and 8 presentations of a 0.5-s footshock. Within each surgical condition rats were randomly allocated to one of three conditioning groups, receiving 100%, 50% or 0% temporal association between CS and shock. Conditioning to the punctate CS and to the context provided by the envelope stimulus was assessed by the degree of suppression of the barpress response relative to the VI baseline. Responding was most suppressed in the punctate CS in the 100 and 50% conditions, and most suppressed in the envelope stimulus in the 0% condition. DB lesions released response suppression to the punctate CS, had no effect on suppression to the envelope stimulus, and reduced sensitivity to CS-shock probability as measured by response suppression during the punctate CS. These results confirm previous reports that DB lesions alleviate response suppression to shock-associated cues, identify some of the parameters that affect this phenomenon, but fail to support a role for the DB in contextual conditioning.

  12. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  13. Temporal contribution to gravitational WKB-like calculations

    International Nuclear Information System (INIS)

    Akhmedova, Valeria; Pilling, Terry; Gill, Andrea de; Singleton, Douglas

    2008-01-01

    Recently, it has been shown that the radiation arising from quantum fields placed in a gravitational background (e.g. Hawking radiation) can be derived using a quasi-classical calculation. Here we show that this method has a previously overlooked temporal contribution to the quasi-classical amplitude. The source of this temporal contribution lies in different character of time in general relativity versus quantum mechanics. Only when one takes into account this temporal contribution does one obtain the canonical temperature for the radiation. Although in this Letter the specific example of radiation in de Sitter space-time is used, the temporal contribution is a general contribution to the radiation given off by any gravitational background where the time coordinate changes its signature upon crossing a horizon. Thus, the quasi-classical method for gravitational backgrounds contains subtleties not found in the usual quantum mechanical tunneling problem

  14. Single or in Combination Antimicrobial Resistance Mechanisms of Klebsiella pneumoniae Contribute to Varied Susceptibility to Different Carbapenems

    Science.gov (United States)

    Tsai, Yu-Kuo; Liou, Ci-Hong; Fung, Chang-Phone; Lin, Jung-Chung; Siu, L. Kristopher

    2013-01-01

    Resistance to carbapenems has been documented by the production of carbapenemase or the loss of porins combined with extended-spectrum β-lactamases or AmpC β-lactamases. However, no complete comparisons have been made regarding the contributions of each resistance mechanism towards carbapenem resistance. In this study, we genetically engineered mutants of Klebsiella pneumoniae with individual and combined resistance mechanisms, and then compared each resistance mechanism in response to ertapenem, imipenem, meropenem, doripenem and other antibiotics. Among the four studied carbapenems, ertapenem was the least active against the loss of porins, cephalosporinases and carbapenemases. In addition to the production of KPC-2 or NDM-1 alone, resistance to all four carbapenems could also be conferred by the loss of two major porins, OmpK35 and OmpK36, combined with CTX-M-15 or DHA-1 with its regulator AmpR. Because the loss of OmpK35/36 alone or the loss of a single porin combined with bla CTX-M-15 or bla DHA-1-ampR expression was only sufficient for ertapenem resistance, our results suggest that carbapenems other than ertapenem should still be effective against these strains and laboratory testing for non-susceptibility to other carbapenems should improve the accurate identification of these isolates. PMID:24265784

  15. Contribution of elastic tissues to the mechanics and energetics of muscle function during movement.

    Science.gov (United States)

    Roberts, Thomas J

    2016-01-01

    Muscle force production occurs within an environment of tissues that exhibit spring-like behavior, and this elasticity is a critical determinant of muscle performance during locomotion. Muscle force and power output both depend on the speed of contraction, as described by the isotonic force-velocity curve. By influencing the speed of contractile elements, elastic structures can have a profound effect on muscle force, power and work. In very rapid movements, elastic mechanisms can amplify muscle power by storing the work of muscle contraction slowly and releasing it rapidly. When energy must be dissipated rapidly, such as in landing from a jump, energy stored rapidly in elastic elements can be released more slowly to stretch muscle contractile elements, reducing the power input to muscle and possibly protecting it from damage. Elastic mechanisms identified so far rely primarily on in-series tendons, but many structures within muscles exhibit spring-like properties. Actomyosin cross-bridges, actin and myosin filaments, titin, and the connective tissue scaffolding of the extracellular matrix all have the potential to store and recover elastic energy during muscle contraction. The potential contribution of these elements can be assessed from their stiffness and estimates of the strain they undergo during muscle function. Such calculations provide boundaries for the possible roles these springs might play in locomotion, and may help to direct future studies of the uses of elastic elements in muscle. © 2016. Published by The Company of Biologists Ltd.

  16. Contributions and mechanisms of action of graphite nanomaterials in ultra high performance concrete

    Science.gov (United States)

    Sbia, Libya Ahmed

    Ultra-high performance concrete (UHPC) reaches high strength and impermeability levels by using a relatively large volume fraction of a dense binder with fine microstructure in combination with high-quality aggregates of relatively small particle size, and reinforcing fibers. The dense microstructure of the cementitions binder is achieved by raising the packing density of the particulate matter, which covers sizes ranging from few hundred nanometers to few millimeters. The fine microstructure of binder in UHPC is realized by effective use of pozzolans to largely eliminate the coarse crystalline particles which exist among cement hydrates. UHPC incorporates (steel) fibers to overcome the brittleness of its dense, finely structured cementitious binder. The main thrust of this research is to evaluate the benefits of nanmaterials in UHPC. The dense, finely structure cementitious binder as well as the large volume fraction of the binder in UHPC benefit the dispersion of nanomaterials, and their interfacial interactions. The relatively close spacing of nanomaterials within the cementitious binder of UHPC enables them to render local reinforcement effects in critically stressed regions such as those in the vicinity of steel reinforcement and prestressing strands as well as fibers. Nanomaterials can also raise the density of the binder in UHPC by extending the particle size distribution down to the few nanometers range. Comprehensive experimental studies supported by theoretical investigations were undertake in order to optimize the use of nanomaterials in UHPC, identity the UHPC (mechanical) properties which benefit from the introduction of nanomaterials, and define the mechanisms of action of nanomaterials in UHPC. Carbon nanofiber was the primary nanomaterial used in this investigation. Some work was also conducted with graphite nanoplates. The key hypotheses of the project were as follows: (i) nanomaterials can make important contributions to the packing density of the

  17. Individually reared rats

    International Nuclear Information System (INIS)

    Kraeuchi, K.; Gentsch, C.; Feer, H.

    1981-01-01

    The influence of social isolation in rats on postsynaptic alpha 1 - and beta-adrenergic receptors, on the cAMP generating system and on the presynaptic uptake mechanism in the central noradrenergic system was examined in different brain regions. Rearing rats in isolation from the 19th day of life for 12 weeks leads in all regions to a general tendency for a reduction in 3 H-DHA binding, to an enhanced 3 H-WB4101 binding and to a decreased responsiveness of the noradrenaline sensitive cAMP generating system. These changes reach significance only in the pons-medulla-thallamusregion. Isolated rats showed an increased synaptosomal uptake of noradrenaline, most pronounced and significant in the hypothalamus. Our data provide further support for a disturbance in central noradrenergic function in isolated rats. (author)

  18. Mechanisms that contribute to the tendency to continue chemotherapy in patients with advanced cancer. Qualitative observations in the clinical setting.

    Science.gov (United States)

    Brom, Linda; Onwuteaka-Philipsen, Bregje D; Widdershoven, Guy A M; Pasman, H Roeline W

    2016-03-01

    The study aims to describe mechanisms that contribute to the tendency towards continuing chemotherapy in patients with advanced cancer. The study conducted qualitative observations of outpatient clinic visits of 28 patients with advanced cancer (glioblastoma and metastatic colorectal cancer). We uncovered four mechanisms in daily oncology practice that can contribute to the tendency towards continuing chemotherapy in patients with advanced cancer: (1) "presenting the full therapy sets the standard"--patients seemed to base their justification for continuing chemotherapy on the "standard" therapy with the maximum number of cycles as presented by the physician at the start of the treatment; (2) "focus on standard evaluation moments hampers evaluation of care goals"--whether or not to continue the treatment was mostly only considered at standard evaluation moments; (3) "opening question guides towards focus on symptoms"--most patients gave an update of their physical symptoms in answer to the opening question of "How are you doing?" Physicians consequently discussed how to deal with this at length, which often took up most of the visit; (4) "treatment is perceived as the only option"--patients mostly wanted to continue with chemotherapy because they felt that they had to try every available option the physician offered. Physicians also often seemed to focus on treatment as the only option. Discussing care goals more regularly with the patient, facilitated for instance by implementing early palliative care, might help counter the mechanisms and enable a more well-considered decision. This could be either stopping or continuing chemotherapy.

  19. Stressors impair odor recognition memory via an olfactory bulb-dependent noradrenergic mechanism

    Directory of Open Access Journals (Sweden)

    Laura C Manella

    2013-12-01

    Full Text Available Non-associative habituation and odor recognition tasks have been widely used to probe questions social recognition, odor memory duration, and odor memory specificity. Among others, these paradigms have provided valuable insight into how neuromodulation, and specifically norepinephrine/noradrenaline (NE influences odor memory. In general, NE levels are modulated by arousal, stress, and behavioral state, and there is sparse evidence of a direct relationship between NE and odor memory in adult rodents. The present study uses simple mild psychological stressors (bright light and sound, to modulate NE levels physiologically in order to probe its effect on olfactory memory. In rats with bilateral bulbar cannulations, we show that these stressors modulate olfactory memory and that this effect is at least partially mediated by olfactory bulb. Specifically, we show that the presence of stressors during the acquisition of odor memory suppresses memory for an odor when tested 30 minutes after the acquisition. This suppression is blocked by infusing NE antagonists into the olfactory bulb prior to odor acquisition. Additionally, we find that infusion of bulbar NE is sufficient to suppress odor memory in a manner mimicking that of our stressors. These effects are unlikely to be solely mediated by locomotor/exploratory changes produced by stressors, although these stressors influence certain behaviors not directly related to odor investigation. This study provides important information about how behaviorally relevant changes in NE can influence top-down sensory processing and odor memory.

  20. Involvement of adrenergic and serotonergic nervous mechanisms in allethrin-induced tremors in mice.

    Science.gov (United States)

    Nishimura, M; Obana, N; Yagasaki, O; Yanagiya, I

    1984-05-01

    Oral or intravenous administration of allethrin, a synthetic derivative of the pirethrin-based insecticides, produces neurotoxic symptoms consisting of mild salivation, hyperexcitability, tremors and convulsions which result in death. Intracerebroventricular injection of allethrin to mouse at about one-nineth the dose of intravenous administration, produced qualitatively identical but less prominent symptoms, indicating that at least some of the symptoms may be originated in the central nervous system. To investigate the mechanism of action of the compound, we studied the ability of agents which alter neurotransmission to prevent or potentiate the effect of convulsive doses of technical grade (15.5% cis, 84.5% trans) allethrin. Intraperitoneal pretreatment with drugs which block noradrenergic receptors or norepinephrine synthesis, such as pentobarbital, chlorpromazine, phentolamine, phenoxybenzamine and reserpine, depressed the tremor induced by allethrin. The inhibitory effect of reserpine was reversed by phenylephrine. Both the serotonergic blocker, methysergide, and the serotonin depletor, rho-chlorphenylalanine, potentiated the effect of allethrin. The potentiating effect of methysergide was antagonized by 5-hydroxytryptamine. However, intracerebroventricular administration of methysergide was ineffective in potentiating the effect of allethrin. alpha 2- and beta-adrenoceptor blockers, muscarinic antagonists, GABA mimenergics and morphine had no effect. These results suggest that allethrin produces its neurotoxic responses in mice by acting on the brain and spinal levels. Furthermore, adrenergic excitatory and serotonergic inhibitory mechanisms may be involved in the neural pathway through which the allethrin-induced tremor is evoked.

  1. Stimulation of feeding by three different glucose-sensing mechanisms requires hindbrain catecholamine neurons.

    Science.gov (United States)

    Li, Ai-Jun; Wang, Qing; Dinh, Thu T; Powers, Bethany R; Ritter, Sue

    2014-02-15

    Previous work has shown that hindbrain catecholamine neurons are required components of the brain's glucoregulatory circuitry. However, the mechanisms and circuitry underlying their glucoregulatory functions are poorly understood. Here we examined three drugs, glucosamine (GcA), phloridzin (Phl) and 5-thio-d-glucose (5TG), that stimulate food intake but interfere in different ways with cellular glucose utilization or transport. We examined feeding and blood glucose responses to each drug in male rats previously injected into the hypothalamic paraventricular nucleus with anti-dopamine-β-hydroxylase conjugated to saporin (DSAP), a retrogradely transported immunotoxin that selectively lesions noradrenergic and adrenergic neurons, or with unconjugated saporin (SAP) control. Our major findings were 1) that GcA, Phl, and 5TG all stimulated feeding in SAP controls whether injected into the lateral or fourth ventricle (LV or 4V), 2) that each drug's potency was similar for both LV and 4V injections, 3) that neither LV or 4V injection of these drugs evoked feeding in DSAP-lesioned rats, and 4) that only 5TG, which blocks glycolysis, stimulated a blood glucose response. The antagonist of the MEK/ERK signaling cascade, U0126, attenuated GcA-induced feeding, but not Phl- or 5TG-induced feeding. Thus GcA, Phl, and 5TG, although differing in mechanism and possibly activating different neural populations, stimulate feeding in a catecholamine-dependent manner. Although results do not exclude the possibility that catecholamine neurons possess glucose-sensing mechanisms responsive to all of these agents, currently available evidence favors the possibility that the feeding effects result from convergent neural circuits in which catecholamine neurons are a required component.

  2. The contribution of vascular smooth muscle, elastin and collagen on the passive mechanics of porcine carotid arteries

    International Nuclear Information System (INIS)

    Kochová, P; Cimrman, R; Kuncová, J; Švíglerová, J; Miklíková, M; Liška, V; Tonar, Z

    2012-01-01

    The main components responsible for the mechanical behavior of the arterial wall are collagen, elastin, and smooth muscle cells (SMCs) in the medial layer. We determined the structural and mechanical changes in porcine carotid arteries after administration of Triton® X-100, elastase, and collagenase using the inflation–deflation test. The arteries were intraluminarly pressurized from 0 to 200 mmHg, and the outer diameter of the artery was measured. The pressure–strain elastic modulus was determined based on the pressure/diameter ratio. The intima–media thickness, wall thickness, thickness of the tunica adventitia layer, and the area fractions of SMCs, elastin, and collagen within the arterial wall (A A (SMC/elastin/collagen, wall)) were measured using stereological methods. The relative changes in the relevant components of the treated samples were as follows: the decrease in A A (SMC, wall) after administration of Triton® X-100 was 11% ± 7%, the decrease in A A (elastin, wall) after administration of elastase was 40% ± 22%, and the decrease in A A (collagen, wall) after the application of collagenase was 51% ± 22%. The Triton® X-100 treatment led to a decrease in the SMC content that was associated with enlargement of the arterial wall (outer diameter) for pressures up to 120 mmHg, and with mechanical stiffening of the arterial wall at higher pressures. Elastase led to a decrease in the elastin content that was associated with enlargement of the arterial wall, but not with stiffening or softening. Collagenase led to a decrease in collagen content that was associated with a change in the stiffness of the arterial wall, although the exact contribution of mechanical loading and the duration of treatment (enlargement) could not be quantified. (paper)

  3. Noradrenaline and dopamine neurons in the reward/effort trade-off: a direct electrophysiological comparison in behaving monkeys.

    Science.gov (United States)

    Varazzani, Chiara; San-Galli, Aurore; Gilardeau, Sophie; Bouret, Sebastien

    2015-05-20

    Motivation determines multiple aspects of behavior, including action selection and energization of behavior. Several components of the underlying neural systems have been examined closely, but the specific role of the different neuromodulatory systems in motivation remains unclear. Here, we compare directly the activity of dopaminergic neurons from the substantia nigra pars compacta and noradrenergic neurons from the locus coeruleus in monkeys performing a task manipulating the reward/effort trade-off. Consistent with previous reports, dopaminergic neurons encoded the expected reward, but we found that they also anticipated the upcoming effort cost in connection with its negative influence on action selection. Conversely, the firing of noradrenergic neurons increased with both pupil dilation and effort production in relation to the energization of behavior. Therefore, this work underlines the contribution of dopamine to effort-based decision making and uncovers a specific role of noradrenaline in energizing behavior to face challenges. Copyright © 2015 the authors 0270-6474/15/357866-12$15.00/0.

  4. MEMORY MODULATION

    Science.gov (United States)

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evidence from both animal and human research indicates that emotionally significant experiences activate hormonal and brain systems that regulate the consolidation of newly acquired memories. These effects are integrated through noradrenergic activation of the basolateral amygdala which regulates memory consolidation via interactions with many other brain regions involved in consolidating memories of recent experiences. Modulatory systems not only influence neurobiological processes underlying the consolidation of new information, but also affect other mnemonic processes, including memory extinction, memory recall and working memory. In contrast to their enhancing effects on consolidation, adrenal stress hormones impair memory retrieval and working memory. Such effects, as with memory consolidation, require noradrenergic activation of the basolateral amygdala and interactions with other brain regions. PMID:22122145

  5. Genomic interrogation of mechanism(s) underlying cellular responses to toxicants

    International Nuclear Information System (INIS)

    Amin, Rupesh P.; Hamadeh, Hisham K.; Bushel, Pierre R.; Bennett, Lee; Afshari, Cynthia A.; Paules, Richard S.

    2002-01-01

    Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information

  6. 5-HT has contrasting effects in the frontal cortex, but not the hypothalamus, on changes in noradrenaline efflux induced by the monoamine releasing-agent, d-amphetamine, and the reuptake inhibitor, BTS 54 354.

    Science.gov (United States)

    Géranton, Sandrine M; Heal, David J; Stanford, S Clare

    2004-03-01

    There is extensive evidence for functional interactions between central noradrenergic and serotonergic neurones. Here, dual-probe microdialysis was used in freely-moving rats to compare the effects of 5-HT on noradrenergic transmission in the rat frontal cortex and hypothalamus. We studied the effects of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA; which depleted 5-HT stores in both the frontal cortex and the hypothalamus), on spontaneous efflux of noradrenaline and on the noradrenergic responses to d-amphetamine, and the monoamine reuptake inhibitor, BTS 54 354. pCPA pretreatment alone did not affect spontaneous noradrenaline efflux in either brain region, whether or not alpha2-autoreceptors were inactivated by administration of the alpha2-antagonist, atipamezole (1 mg/kg i.p). However, in the frontal cortex, pCPA pretreatment augmented the amplitude of, and prolonged, the noradrenergic response to local infusion of d-amphetamine (10 microM). In contrast, pCPA abolished the increase in cortical noradrenaline efflux induced by local infusion of BTS 54 354 (50 microM). In the hypothalamus, pCPA did not affect the amplitude of the response to either of these agents but did prolong the effects of d-amphetamine on noradrenaline efflux. These findings suggest that serotonergic transmission has complex effects on the noradrenergic response to drugs that increase noradrenergic transmission in the frontal cortex, but has less influence in the hypothalamus.

  7. Central mechanisms mediating the hypophagic effects of oleoylethanolamide and N-acylphosphatidylethanolamines: different lipid signals?

    Directory of Open Access Journals (Sweden)

    Adele eRomano

    2015-06-01

    Full Text Available The spread of ‘obesity epidemic’ and the poor efficacy of many anti-obesity therapies in the long-term highlight the need to develop novel efficacious therapy. This necessity stimulates a large research effort to find novel mechanisms controlling feeding and energy balance. Among these mechanisms a great deal of attention has been attracted by a family of phospholipid-derived signaling molecules that play an important role in the regulation of food-intake. They include N-acylethanolamines (NAEs and N-acylphosphatidylethanolamines (NAPEs. NAPEs have been considered for a long time simply as phospholipid precursors of the lipid mediator NAEs, but increasing body of evidence suggest a role in many physiological processes including the regulation of feeding behavior. Several observations demonstrated that among NAEs, oleoylethanolamide (OEA acts as a satiety signal, which is generated in the intestine, upon the ingestion of fat, and signals to the central nervous system. At this level different neuronal pathways, including oxytocinergic, noradrenergic, and histaminergic neurons, seem to mediate its hypophagic action. Similarly to NAEs, NAPEs (with particular reference to the N16:0 species levels were shown to be regulated by the fed state and this finding was initially interpreted as fluctuations of NAE precursors. However, the observation that exogenously administered NAPEs are able to inhibit food intake, not only in normal rats and mice but also in mice lacking the enzyme that converts NAPEs into NAEs, supported the hypothesis of a role of NAPE in the regulation of feeding behavior. Indirect observations suggest that the hypophagic action of NAPEs might involve central mechanisms, although the molecular target remains unknown. The present paper reviews the role that OEA and NAPEs play in the mechanisms that control food intake, further supporting this group of phospholipids as optimal candidate for the development of novel anti

  8. Exploring the mechanisms through which computers contribute to learning.

    NARCIS (Netherlands)

    Karasavvidis, I.; Karasavvidis, I.; Pieters, Julius Marie; Plomp, T.

    2003-01-01

    Even though it has been established that the incorporation of computers into the teaching and learning process enhances student performance, the underlying mechanisms through which this is accomplished have been largely unexplored. The present study aims to shed light on this issue. Two groups of 10

  9. Evaluating relative contribution of osmotolerance and tissue tolerance mechanisms toward salinity stress tolerance in three Brassica species.

    Science.gov (United States)

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Eyles, Alieta; Shabala, Sergey

    2016-10-01

    Three different species of Brassica, with differential salt sensitivity were used to understand physiological mechanisms of salt tolerance operating in these species and to evaluate the relative contribution of different strategies to cope with salt load. Brassica napus was the most tolerant species in terms of the overall performance, with Brassica juncea and Brassica oleracea being much more sensitive to salt stress with no obvious difference between them. While prominent reduction in net CO2 assimilation was observed in both sensitive species, physiological mechanisms beyond this reduction differed strongly. Brassica juncea plants possessed high osmotolerance and were able to maintain high transpiration rate but showed a significant reduction in leaf chlorophyll content and efficiency of leaf photochemistry. On the contrary, B. oleracea plants possessed the highest (among the three species) tissue tolerance but showed a very significant stomatal limitation of photosynthesis. Electrophysiological experiments revealed that the high tissue tolerance in B. oleracea was related to the ability of leaf mesophyll cells to maintain highly negative membrane potential in the presence of high apoplastic Na(+) . In addition to high osmotolerance, the most tolerant B. napus showed also lesser accumulation of toxic Na(+) and Cl(-) in the leaf, possessed moderate tissue tolerance and had a superior K(+) retention ability. Taken together, the results from this study indicate that the three Brassica species employ very different mechanisms to cope with salinity and, despite its overall sensitivity to salinity, B. oleracea could be recommended as a valuable 'donor' of tissue tolerance genes to confer this trait for marker-assisted breeding programs. © 2016 Scandinavian Plant Physiology Society.

  10. Methadone patients exhibit increased startle and cortisol response after intravenous yohimbine.

    Science.gov (United States)

    Stine, S M; Grillon, C G; Morgan, C A; Kosten, T R; Charney, D S; Krystal, J H

    2001-03-01

    Brain noradrenergic systems have been shown to be altered in opioid dependence and to mediate aspects of opioid withdrawal. Pre-clinical and clinical studies by others have shown that yohimbine, which increases noradrenergic activity, also increases both baseline and fear enhancement of the magnitude of the acoustic startle response (ASR). In a separate report from this experiment, it was shown that yohimbine produced opioid withdrawal-like symptoms, including anxiety, in clinically stable methadone-maintained patients and also produced elevations in the norepinepherine (NE) metabolite, 3-methoxy-4 hydroxyphenethyleneglycol (MHPG), and cortisol serum levels. The current study reports the effects of intravenous yohimbine hydrochloride, 0.4 mg/kg versus saline (double-blind), on ASR magnitude, plasma MHPG, and cortisol levels in eight methadone-maintained patients and 13 healthy subjects in a double-blind fashion. Yohimbine increased startle magnitude in both groups. There was no basal (placebo day) difference between the startle response of the two groups, but methadone patients had a larger startle magnitude increase in response to yohimbine than healthy controls. Methadone-maintained patients had lower baseline plasma levels of MHPG and similar baseline plasma cortisol levels compared with normal subjects. Yohimbine caused significant elevation in cortisol and MHPG in both groups. Methadone-maintained subjects had higher elevations in cortisol levels and MHPG (methadone main effect) levels in response to yohimbine. However, when MHPG levels were corrected for baseline differences by analysis of covariance (ANCOVA), the yohimbine effect, but not the methadone effect remained statistically significant. These results are consistent with the previous report and support the hypothesis that abnormalities of the hypothalamic-pituitary-adrenal (HPA) axis and of noradrenergic mechanisms of stress response persist in opioid-agonist maintenance. The ASR effect extends the

  11. Repaglinide-gemfibrozil drug interaction: inhibition of repaglinide glucuronidation as a potential additional contributing mechanism.

    Science.gov (United States)

    Gan, Jinping; Chen, Weiqi; Shen, Hong; Gao, Ling; Hong, Yang; Tian, Yuan; Li, Wenying; Zhang, Yueping; Tang, Yuwei; Zhang, Hongjian; Humphreys, William Griffith; Rodrigues, A David

    2010-12-01

    To further explore the mechanism underlying the interaction between repaglinide and gemfibrozil, alone or in combination with itraconazole. Repaglinide metabolism was assessed in vitro (human liver subcellular fractions, fresh human hepatocytes, and recombinant enzymes) and the resulting incubates were analyzed, by liquid chromatography-mass spectrometry (LC-MS) and radioactivity counting, to identify and quantify the different metabolites therein. Chemical inhibitors, in addition to a trapping agent, were also employed to elucidate the importance of each metabolic pathway. Finally, a panel of human liver microsomes (genotyped for UGT1A1*28 allele status) was used to determine the importance of UGT1A1 in the direct glucuronidation of repaglinide. The results of the present study demonstrate that repaglinide can undergo direct glucuronidation, a pathway that can possibly contribute to the interaction with gemfibrozil. For example, [³H]-repaglinide formed glucuronide and oxidative metabolites (M2 and M4) when incubated with primary human hepatocytes. Gemfibrozil effectively inhibited (∼78%) both glucuronide and M4 formation, but had a minor effect on M2 formation. Concomitantly, the overall turnover of repaglinide was also inhibited (∼80%), and was completely abolished when gemfibrozil was co-incubated with itraconazole. These observations are in qualitative agreement with the in vivo findings. UGT1A1 plays a significant role in the glucuronidation of repaglinide. In addition, gemfibrozil and its glucuronide inhibit repaglinide glucuronidation and the inhibition by gemfibrozil glucuronide is time-dependent. Inhibition of UGT enzymes, especially UGT1A1, by gemfibrozil and its glucuronide is an additional mechanism to consider when rationalizing the interaction between repaglinide and gemfibrozil. © 2010 The Authors. British Journal of Clinical Pharmacology © 2010 The British Pharmacological Society.

  12. The influence of botulinum toxin type A (BTX) on the immunohistochemical characteristics of noradrenergic and cholinergic nerve fibers supplying the porcine urinary bladder wall.

    Science.gov (United States)

    Lepiarczyk, E; Bossowska, A; Kaleczyc, J; Majewski, M

    2011-01-01

    Botulinum toxin (BTX) belongs to a family of neurotoxins which strongly influence the function of autonomic neurons supplying the urinary bladder. Accordingly, BTX has been used as an effective drug in experimental therapies of a range of neurogenic bladder disorders. However, there is no detailed information dealing with the influence of BTX on the morphological and chemical properties of nerve fibres supplying the urinary bladder wall. Therefore, the present study investigated, using double-labeling immunohistochemistry, the distribution, relative frequency and chemical coding of cholinergic and noradrenergic nerve fibers supplying the wall of the urinary bladder in normal female pigs (n = 6) and in the pigs (n = 6) after intravesical BTX injections. In the pigs injected with BTX, the number of adrenergic (DbetaH-positive) nerve fibers distributed in the bladder wall (urothelium, submucosa and muscle coat) was distinctly higher while the number of cholinergic (VAChT-positive) nerve terminals was lower than that found in the control animals. Moreover, the injections of BTX resulted in some changes dealing with the chemical coding of the adrenergic nerve fibers. In contrast to the normal pigs, in BTX injected animals the number of DbetaH/NPY- or DbetaH/CGRP-positive axons was higher in the muscle coat, and some fibres distributed in the urothelium and submucosa expressed immunoreactivity to CGRP. The results obtained suggest that the therapeutic effects of BTX on the urinary bladder might be dependent on changes in the distribution and chemical coding of nerve fibers supplying this organ.

  13. MP-4 Contributes to Snake Venom Neutralization by Mucuna pruriens Seeds through an Indirect Antibody-mediated Mechanism*

    Science.gov (United States)

    Kumar, Ashish; Gupta, Chitra; Salunke, Dinakar M.

    2016-01-01

    Mortality due to snakebite is a serious public health problem, and available therapeutics are known to induce debilitating side effects. Traditional medicine suggests that seeds of Mucuna pruriens can provide protection against the effects of snakebite. Our aim is to identify the protein(s) that may be important for snake venom neutralization and elucidate its mechanism of action. To this end, we have identified and purified a protein from M. pruriens, which we have named MP-4. The full-length polypeptide sequence of MP-4 was obtained through N-terminal sequencing of peptide fragments. Sequence analysis suggested that the protein may belong to the Kunitz-type protease inhibitor family and therefore may potentially neutralize the proteases present in snake venom. Using various structural and biochemical tools coupled with in vivo assays, we are able to show that MP-4 does not afford direct protection against snake venom because it is actually a poor inhibitor of serine proteases. Further experiments showed that antibodies generated against MP-4 cross-react with the whole venom and provide protection to mice against Echis carinatus snake venom. This study shows that the MP-4 contributes significantly to the snake venom neutralization activity of M. pruriens seeds through an indirect antibody-mediated mechanism. PMID:26987900

  14. Beta 1- and beta 2-adrenergic 125I-pindolol binding sites in the interpeduncular nucleus of the rat: Normal distribution and the effects of deafferentation

    International Nuclear Information System (INIS)

    Battisti, W.P.; Artymyshyn, R.P.; Murray, M.

    1989-01-01

    The plasticity of the beta 1- and beta 2-adrenergic receptor subtypes was examined in the interpeduncular nucleus (IPN) of the adult rat. The beta-adrenergic receptor antagonist 125I-pindolol (125I-PIN) was used in conjunction with the selective subtype antagonists ICI 118,551 and ICI 89,406 to determine the subnuclear distribution of beta 1- and beta 2-adrenergic receptors in this nucleus and to correlate the receptor distribution with the distribution of both noradrenergic afferents from the locus coeruleus (LC) and non-noradrenergic afferents from the fasiculus retroflexus (FR). The density of these binding sites was examined following lesions that decreased (LC lesions) or increased (FR lesions) the density of the noradrenergic projection in the IPN. Quantitative radioautography indicated that beta 1-labeled binding sites account for the larger percentage of binding sites in the IPN. The beta 1-binding sites are densest in those subnuclei that receive a noradrenergic projection from the LC: the central, rostral, and intermediate subnuclei. beta 1-binding sites are algo homogeneously distributed throughout the lateral subnuclei, where there is no detectable noradrenergic innervation. beta 2-binding sites have a more restricted distribution. They are concentrated in the ventral half of the lateral subnuclei, where they account for 70% of total 125I-PIN binding sites. beta 2-binding sites are also present along the ventral border of the IPN. Some of this labeling extends into the central and intermediate subnuclei. Bilateral lesions of the LC, which selectively remove noradrenergic innervation to the IPN, result in an increase in the beta 1-binding sites. Bilateral lesions of the FR, which remove the major cholinergic and peptidergic input from the IPN, elicit an increase in noradrenergic projections and a decrease in beta 1-binding sites

  15. Olanzapine and sibutramine have opposing effects on the motivation for palatable food

    NARCIS (Netherlands)

    van der Zwaal, Esther M.; Janhunen, Sanna K.; Luijendijk, Mieneke C. M.; Baclesanu, Roxana; Vanderschuren, Louk J. M. J.; Adan, Roger A. H.; la Fleur, Susanne E.

    2012-01-01

    Both olanzapine and sibutramine target serotonergic and noradrenergic neurotransmission and influence body weight, but in opposite ways. The second-generation antipsychotic olanzapine, an antagonist at serotonergic and noradrenergic receptors, frequently induces weight gain as a side-effect, whereas

  16. Contribution to diffusion mechanism study in amorphous metallic alloys

    International Nuclear Information System (INIS)

    Delaye, Jean-Marc

    1993-01-01

    This work is dedicated to the study of the vacancy diffusion mechanism in mono-elementary and binary amorphous Lennard-Jones systems, by a molecular dynamics method. The first chapter is a review of the preceding works performed before the beginning of this thesis, the method of simulation is described in the second chapter. We showed in the following chapters that the vacancies, introduced by the removal of one atom, remain stable on a large percentage of sites, especially in the binary system. By calculating some thermodynamical values, formation and migration enthalpies and entropies, we showed that the vacancy mechanism is magnified in a disordered system, as compared to a crystal of the same composition, and therefore can explain the magnitudes of the experimental diffusion coefficients. In parallel, to measure diffusion coefficients, we have settled an experimental method based on the evolution of the resistivity of a multilayer sample during interdiffusion, a gold-silver multilayer in our case (chapter six). By measurements under pressure, the activation volume is determined and our results agree well with the preceding ones. (author) [fr

  17. Interference and Mechanism of Dill Seed Essential Oil and Contribution of Carvone and Limonene in Preventing Sclerotinia Rot of Rapeseed

    Science.gov (United States)

    Huang, Bo; He, Jingsheng; Tian, Jun; Zeng, Hong; Chen, Yuxin; Wang, Youwei

    2015-01-01

    This study aimed to evaluate the inhibitory effects of dill (Anethum graveolens L.) seed essential oil against Sclerotinia sclerotiorum and its mechanism of action. The antifungal activities of the two main constituents, namely carvone and limonene, were also measured. Mycelial growth and sclerotial germination were thoroughly inhibited by dill seed essential oil at the 1.00 μL/mL under contact condition and 0.125μL/mL air under vapor condition. Carvone also contributed more than limonene in inhibiting the growth of S. sclerotiorum. Carvone and limonene synergistically inhibited the growth of the fungus. In vivo experiments, the essential oil remarkably suppressed S. sclerotiorum, and considerable morphological alterations were observed in the hyphae and sclerotia. Inhibition of ergosterol synthesis, malate dehydrogenase, succinate dehydrogenase activities, and external medium acidification were investigated to elucidate the antifungal mechanism of the essential oil. The seed essential oil of A. graveolens can be extensively used in agriculture for preventing the oilseed crops fungal disease. PMID:26133771

  18. Interference and Mechanism of Dill Seed Essential Oil and Contribution of Carvone and Limonene in Preventing Sclerotinia Rot of Rapeseed.

    Directory of Open Access Journals (Sweden)

    Bingxin Ma

    Full Text Available This study aimed to evaluate the inhibitory effects of dill (Anethum graveolens L. seed essential oil against Sclerotinia sclerotiorum and its mechanism of action. The antifungal activities of the two main constituents, namely carvone and limonene, were also measured. Mycelial growth and sclerotial germination were thoroughly inhibited by dill seed essential oil at the 1.00 μL/mL under contact condition and 0.125μL/mL air under vapor condition. Carvone also contributed more than limonene in inhibiting the growth of S. sclerotiorum. Carvone and limonene synergistically inhibited the growth of the fungus. In vivo experiments, the essential oil remarkably suppressed S. sclerotiorum, and considerable morphological alterations were observed in the hyphae and sclerotia. Inhibition of ergosterol synthesis, malate dehydrogenase, succinate dehydrogenase activities, and external medium acidification were investigated to elucidate the antifungal mechanism of the essential oil. The seed essential oil of A. graveolens can be extensively used in agriculture for preventing the oilseed crops fungal disease.

  19. Understanding the CDM's contribution to technology transfer

    International Nuclear Information System (INIS)

    Schneider, Malte; Holzer, Andreas; Hoffmann, Volker H.

    2008-01-01

    Developing countries are increasingly contributing to global greenhouse gas emissions and, consequently, climate change as a result of their rapid economic growth. In order to reduce their impact, the private sector needs to be engaged in the transfer of low-carbon technology to those countries. The Clean Development Mechanism (CDM) is currently the only market mechanism aimed at triggering changes in the pattern of emissions-intensive activities in developing countries and is likely to play a role in future negotiations. In this paper, we analyse how the CDM contributes to technology transfer. We first develop a framework from the literature that delineates the main factors which characterise technology transfer. Second, we apply this framework to the CDM by assessing existing empirical studies and drawing on additional expert interviews. We find that the CDM does contribute to technology transfer by lowering several technology-transfer barriers and by raising the transfer quality. On the basis of this analysis, we give preliminary policy recommendations

  20. Force-velocity properties' contribution to bilateral deficit during ballistic push-off.

    Science.gov (United States)

    Samozino, Pierre; Rejc, Enrico; di Prampero, Pietro Enrico; Belli, Alain; Morin, Jean-Benoît

    2014-01-01

    The objective of this study is to quantify the contribution of the force-velocity (F-v) properties to bilateral force deficit (BLD) in ballistic lower limb push-off and to relate it to individual F-v mechanical properties of the lower limbs. The F-v relation was individually assessed from mechanical measurements for 14 subjects during maximal ballistic lower limb push-offs; its contribution to BLD was then investigated using a theoretical macroscopic approach, considering both the mechanical constraints of movement dynamics and the maximal external capabilities of the lower limb neuromuscular system. During ballistic lower limb push-off, the maximum force each lower limb can produce was lower during bilateral than unilateral actions, thus leading to a BLD of 36.7% ± 5.7%. The decrease in force due to the F-v mechanical properties amounted to 19.9% ± 3.6% of the force developed during BL push-offs, which represents a nonneural contribution to BLD of 43.5% ± 9.1%. This contribution to BLD that cannot be attributed to changes in neural features was negatively correlated to the maximum unloaded extension velocity of the lower limb (r = -0.977, P push-off, BLD is due to both neural alterations and F-v mechanical properties, the latter being associated with the change in movement velocity between bilateral and unilateral actions. The level of the contribution of the F-v properties depends on the individual F-v mechanical profile of the entire lower limb neuromuscular system: the more the F-v profile is oriented toward velocity capabilities, the lower the loss of force from unilateral to bilateral push-offs due to changes in movement velocity.

  1. Contributions from cognitive neuroscience to understanding functional mechanisms of visual search.

    NARCIS (Netherlands)

    Humphreys, G.W.; Hodsoll, J.; Olivers, C.N.L.; Yoon, E.Y.

    2006-01-01

    We argue that cognitive neuroscience can contribute not only information about the neural localization of processes underlying visual search, but also information about the functional nature of these processes. First we present an overview of recent work on whether search for form - colour

  2. MP-4 Contributes to Snake Venom Neutralization by Mucuna pruriens Seeds through an Indirect Antibody-mediated Mechanism.

    Science.gov (United States)

    Kumar, Ashish; Gupta, Chitra; Nair, Deepak T; Salunke, Dinakar M

    2016-05-20

    Mortality due to snakebite is a serious public health problem, and available therapeutics are known to induce debilitating side effects. Traditional medicine suggests that seeds of Mucuna pruriens can provide protection against the effects of snakebite. Our aim is to identify the protein(s) that may be important for snake venom neutralization and elucidate its mechanism of action. To this end, we have identified and purified a protein from M. pruriens, which we have named MP-4. The full-length polypeptide sequence of MP-4 was obtained through N-terminal sequencing of peptide fragments. Sequence analysis suggested that the protein may belong to the Kunitz-type protease inhibitor family and therefore may potentially neutralize the proteases present in snake venom. Using various structural and biochemical tools coupled with in vivo assays, we are able to show that MP-4 does not afford direct protection against snake venom because it is actually a poor inhibitor of serine proteases. Further experiments showed that antibodies generated against MP-4 cross-react with the whole venom and provide protection to mice against Echis carinatus snake venom. This study shows that the MP-4 contributes significantly to the snake venom neutralization activity of M. pruriens seeds through an indirect antibody-mediated mechanism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Spinal high-mobility group box 1 contributes to mechanical allodynia in a rat model of bone cancer pain

    International Nuclear Information System (INIS)

    Tong, Wei; Wang, Wei; Huang, Jing; Ren, Ning; Wu, Sheng-Xi; Li, Yong-Qi

    2010-01-01

    Mechanisms underlying bone cancer-induced pain are largely unknown. Previous studies indicate that neuroinflammation in the spinal dorsal horn is especially involved. Being first reported as a nonhistone chromosomal protein, high-mobility group box 1 (HMGB1) is now implicated as a mediator of inflammation. We hypothesized that HMGB1 could trigger the release of cytokines in the spinal dorsal horn and contribute to bone cancer pain. To test this hypothesis, we first built a bone cancer pain model induced by intratibal injection of Walker 256 mammary gland carcinoma cells. The structural damage to the tibia was monitored by radiological analysis. The mechanical allodynia was measured and the expression of spinal HMGB1 and IL-1β was evaluated. We observed that inoculation of cancer cells, but not heat-killed cells, induced progressive bone destruction from 9 d to 21 d post inoculation. Behavioral tests demonstrated that the significant nociceptive response in the cancer cells-injected rats emerged on day 9 and this kind of mechanical allodynia lasted at least 21 d following inoculation. Tumor cells inoculation significantly increased HMGB1 expression in the spinal dorsal horn, while intrathecal injecting a neutralizing antibody against HMGB1 showed an effective and reliable anti-allodynia effect with a dose-dependent manner. IL-1β was significantly increased in caner pain rats while intrathecally administration of anti-HMGB1 could decrease IL-1β. Together with previous reports, we predict that bone cancer induces HMGB1 production, enhancing spinal IL-1β expression and thus modulating spinal excitatory synaptic transmission and pain response.

  4. Identification of corrosion and damage mechanisms by using scanning electron microscopy and energy-dispersive X-ray microanalysis: contribution to failure analysis case histories

    Science.gov (United States)

    Pantazopoulos, G.; Vazdirvanidis, A.

    2014-03-01

    Emphasis is placed on the evaluation of corrosion failures of copper and machineable brass alloys during service. Typical corrosion failures of the presented case histories mainly focussed on stress corrosion cracking and dezincification that acted as the major degradation mechanisms in components used in piping and water supply systems. SEM assessment, coupled with EDS spectroscopy, revealed the main cracking modes together with the root-source(s) that are responsible for the damage initiation and evolution. In addition, fracture surface observations contributed to the identification of the incurred fracture mechanisms and potential environmental issues that stimulated crack initiation and propagation. Very frequently, the detection of chlorides among the corrosion products served as a suggestive evidence of the influence of working environment on passive layer destabilisation and metal dissolution.

  5. Contribution of a luminance-dependent S-cone mechanism to non-assimilative color spreading in the watercolor configuration

    Directory of Open Access Journals (Sweden)

    Eiji eKimura

    2014-12-01

    Full Text Available In the watercolor configuration composed of wavy double contours, both assimilative and non-assimilative color spreading have been demonstrated depending on the luminance conditions of the inner and outer contours (IC and OC, respectively. This study investigated how the induced color in the watercolor configuration was modulated by combinations of the IC and the OC color, particularly addressing non-assimilative color spreading. In two experiments, the IC color was fixed to a certain color and combined with various colors selected from a hue circle centered at the background white color. Color spreading was quantified with a chromatic cancellation technique. Results showed that both the magnitude and the apparent hue of the color spreading were largely changed with the luminance condition. When the IC contrast (Weber contrast of the IC to the background luminance was smaller in size than the OC contrast (higher IC luminance condition, the color spreading was assimilative. When the luminance condition was reversed and the IC contrast was greater than the OC contrast (lower IC luminance condition, the color spreading was non-assimilative and yellowish. When the color spreading was analyzed in terms of cone-opponent excitations, the results were consistent with the interpretation that the color spreading is explainable by a combination of chromatic diffusion from the IC and chromatically opponent induction from the OC. The color spreading in the higher IC luminance condition mainly reflected the chromatic diffusion by both (L–M and S cone-opponent mechanisms. The non-assimilative color spreading in the lower IC luminance condition mostly reflected S-cone mediated opponent induction and the contribution of -S inducing mechanisms was differentially large. These findings provided several constraints on possible visual mechanisms underlying the watercolor effect.

  6. Contribution of a luminance-dependent S-cone mechanism to non-assimilative color spreading in the watercolor configuration.

    Science.gov (United States)

    Kimura, Eiji; Kuroki, Mikako

    2014-01-01

    In the watercolor configuration composed of wavy double contours, both assimilative and non-assimilative color spreading have been demonstrated depending on the luminance conditions of the inner and outer contours (IC and OC, respectively). This study investigated how the induced color in the watercolor configuration was modulated by combinations of the IC and the OC color, particularly addressing non-assimilative color spreading. In two experiments, the IC color was fixed to a certain color and combined with various colors selected from a hue circle centered at the background white color. Color spreading was quantified with a chromatic cancelation technique. Results showed that both the magnitude and the apparent hue of the color spreading were largely changed with the luminance condition. When the IC contrast (Weber contrast of the IC to the background luminance) was smaller in size than the OC contrast (higher IC luminance condition), the color spreading was assimilative. When the luminance condition was reversed and the IC contrast was greater than the OC contrast (lower IC luminance condition), the color spreading was non-assimilative and yellowish. When the color spreading was analyzed in terms of cone-opponent excitations, the results were consistent with the interpretation that the color spreading is explainable by a combination of chromatic diffusion from the IC and chromatically opponent induction from the OC. The color spreading in the higher IC luminance condition mainly reflected the chromatic diffusion by both (L-M) and S cone-opponent mechanisms. The non-assimilative color spreading in the lower IC luminance condition mostly reflected S-cone mediated opponent induction and the contribution of -S inducing mechanisms was differentially large. These findings provided several constraints on possible visual mechanisms underlying the watercolor effect.

  7. Contributions to naive quantum mechanics. A textbook for mathematicians and physicists

    International Nuclear Information System (INIS)

    Kohlmann, Martin

    2009-01-01

    The present text examplifies by means of 60 citations from current textbooks for the study of physics the necessarity of a mathematically rigorous formulation of quantum mechanics. Well known statements of many physicists about quantum mechanics at their mathematical tool kit are commented in form of a dialogue und mathematical points of view. Supplemented are the representations by a selection of theorems of higher analysis relevant for quantum theory. The book applies to mathematicians and mathematically interested physicists or students with founded mathematical knowledge.

  8. A contribution to the study of mechanical behaviour of concrete structures taking into account the effects of desiccation; Contribution a l'etude du comportement mecanique des ouvrages en beton avec prise en compte des effets de la dessiccation

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, F.X

    2004-12-15

    In this work, is given a model of the drying influence on the mechanical behaviour of concrete and a reliable anticipating tool is proposed for engineers. The drying of hardened concrete has several consequences on the mechanical properties of concrete. The desiccation shrinkage is the first sign, generating crack visible at the surface level under the form of crackling and core cracking particularly on the account of the presence of aggregates which prevent the shrinkage of the cement paste to make easily. Then, the elastic parameters are strongly affected (decrease of stiffness, of the Poisson coefficient). A simplified model of the stiffness loss during the drying is proposed under the form of an isotropic hydric damage. The model is validated in the unidimensional case with tests results carried out in the LML. With this model, it is possible to estimate with more accuracy the state of the hydric constraints in concrete. Numerical simulations on 3D structures are then proposed. An application to the case of a wall being manufactured is given. The contributions of the model are tested too in the case where the global mechanical response of cylindrical mortar specimens submitted to drying and to compression tests is simulated. The effect of the capillary suction as well as the increase of the elastic limit during drying are then discussed. At last, the contributions of the model for creep calculations and desiccation are presented. (O.M.)

  9. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries.

    Science.gov (United States)

    Boeva, Valentina; Louis-Brennetot, Caroline; Peltier, Agathe; Durand, Simon; Pierre-Eugène, Cécile; Raynal, Virginie; Etchevers, Heather C; Thomas, Sophie; Lermine, Alban; Daudigeos-Dubus, Estelle; Geoerger, Birgit; Orth, Martin F; Grünewald, Thomas G P; Diaz, Elise; Ducos, Bertrand; Surdez, Didier; Carcaboso, Angel M; Medvedeva, Irina; Deller, Thomas; Combaret, Valérie; Lapouble, Eve; Pierron, Gaelle; Grossetête-Lalami, Sandrine; Baulande, Sylvain; Schleiermacher, Gudrun; Barillot, Emmanuel; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle

    2017-09-01

    Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.

  10. Duloxetine and 8-OH-DPAT, but not fluoxetine, reduce depression-like behaviour in an animal model of chronic neuropathic pain.

    Science.gov (United States)

    Hu, Bing; Doods, Henri; Treede, Rolf-Detlef; Ceci, Angelo

    2016-04-21

    The current study assessed whether antidepressant and/or antinociceptive drugs, duloxetine, fluoxetine as well as (±)-8-hydroxy-2-[di-n-propylamino] tetralin (8-OH-DPAT), are able to reverse depression-like behaviour in animals with chronic neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve in rats was selected as neuropathic pain model. Mechanical hypersensitivity and depression-like behaviour were evaluated 4 weeks after surgery by "electronic algometer" and forced swimming test (FST), which measured the time of immobility, and active behaviours climbing and swimming. The selective noradrenergic and serotonergic uptake blocker duloxetine (20mg/kg) and the selective 5-HT1A agonist 8-OH-DPAT (0.5mg/kg) significantly reversed both mechanical hypersensitivity and depression-like behaviour in CCI animals. Duloxetine significantly reversed depression-like behaviour in CCI rats by increasing the time of climbing and swimming, while 8-OH-DPAT attenuated depression-like behaviour mainly by increasing the time of swimming. However, the selective serotonergic uptake blocker fluoxetine (20mg/kg) failed to attenuate mechanical hypersensitivity and depression-like behaviour, possibly due to confounding pro-nociceptive actions at 5-HT3 receptors. These data suggest to target noradrenergic and 5-HT1A receptors for treatment of chronic pain and its comorbidity depression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. NRSF-dependent epigenetic mechanisms contribute to programming of stress-sensitive neurons by neonatal experience, promoting resilience.

    Science.gov (United States)

    Singh-Taylor, A; Molet, J; Jiang, S; Korosi, A; Bolton, J L; Noam, Y; Simeone, K; Cope, J; Chen, Y; Mortazavi, A; Baram, T Z

    2018-03-01

    Resilience to stress-related emotional disorders is governed in part by early-life experiences. Here we demonstrate experience-dependent re-programming of stress-sensitive hypothalamic neurons, which takes place through modification of neuronal gene expression via epigenetic mechanisms. Specifically, we found that augmented maternal care reduced glutamatergic synapses onto stress-sensitive hypothalamic neurons and repressed expression of the stress-responsive gene, Crh. In hypothalamus in vitro, reduced glutamatergic neurotransmission recapitulated the repressive effects of augmented maternal care on Crh, and this required recruitment of the transcriptional repressor repressor element-1 silencing transcription factor/neuron restrictive silencing factor (NRSF). Increased NRSF binding to chromatin was accompanied by sequential repressive epigenetic changes which outlasted NRSF binding. chromatin immunoprecipitation-seq analyses of NRSF targets identified gene networks that, in addition to Crh, likely contributed to the augmented care-induced phenotype, including diminished depression-like and anxiety-like behaviors. Together, we believe these findings provide the first causal link between enriched neonatal experience, synaptic refinement and induction of epigenetic processes within specific neurons. They uncover a novel mechanistic pathway from neonatal environment to emotional resilience.

  12. Erotic stimulus processing under amisulpride and reboxetine: a placebo-controlled fMRI study in healthy subjects.

    Science.gov (United States)

    Graf, Heiko; Wiegers, Maike; Metzger, Coraline D; Walter, Martin; Grön, Georg; Abler, Birgit

    2014-10-31

    Impaired sexual function is increasingly recognized as a side effect of psychopharmacological treatment. However, underlying mechanisms of action of the different drugs on sexual processing are still to be explored. Using functional magnetic resonance imaging, we previously investigated effects of serotonergic (paroxetine) and dopaminergic (bupropion) antidepressants on sexual functioning (Abler et al., 2011). Here, we studied the impact of noradrenergic and antidopaminergic medication on neural correlates of visual sexual stimulation in a new sample of subjects. Nineteen healthy heterosexual males (mean age 24 years, SD 3.1) under subchronic intake (7 days) of the noradrenergic agent reboxetine (4 mg/d), the antidopaminergic agent amisulpride (200mg/d), and placebo were included and studied with functional magnetic resonance imaging within a randomized, double-blind, placebo-controlled, within-subjects design during an established erotic video-clip task. Subjective sexual functioning was assessed using the Massachusetts General Hospital-Sexual Functioning Questionnaire. Relative to placebo, subjective sexual functioning was attenuated under reboxetine along with diminished neural activations within the caudate nucleus. Altered neural activations correlated with decreased sexual interest. Under amisulpride, neural activations and subjective sexual functioning remained unchanged. In line with previous interpretations of the role of the caudate nucleus in the context of primary reward processing, attenuated caudate activation may reflect detrimental effects on motivational aspects of erotic stimulus processing under noradrenergic agents. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  13. Abstracts of contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This volume contains 571 abstracts of contributed papers to be presented during the Twelfth US National Congress of Applied Mechanics. Abstracts are arranged in the order in which they fall in the program -- the main sessions are listed chronologically in the Table of Contents. The Author Index is in alphabetical order and lists each paper number (matching the schedule in the Final Program) with its corresponding page number in the book.

  14. Vasoactive intestinal polypeptide induces glycogenolysis in mouse cortical slices: a possible regulatory mechanism for the local control of energy metabolism.

    OpenAIRE

    Magistretti, P J; Morrison, J H; Shoemaker, W J; Sapin, V; Bloom, F E

    1981-01-01

    Mouse cerebral cortex slices will synthesize [3H]glycogen in vitro. Vasoactive intestinal polypeptide (VIP) stimulates the enzymatic breakdown of this [3H]glycogen. The concentration giving 50% of maximum effectiveness (EC50) is 26 nM. Under the same experimental conditions norepinephrine also induces a concentration-dependent [3H]glycogen hydrolysis with an EC50 of 500 nM. The effect of VIP is not mediated by the release of norepinephrine because it is not blocked by the noradrenergic antago...

  15. Optional contributions have positive effects for volunteering public goods games

    Science.gov (United States)

    Song, Qi-Qing; Li, Zhen-Peng; Fu, Chang-He; Wang, Lai-Sheng

    2011-11-01

    Public goods (PG) games with the volunteering mechanism are referred to as volunteering public goods (VPG) games, in which loners are introduced to the PG games, and a loner obtains a constant payoff but not participating the game. Considering that small contributions may have positive effects to encourage more players with bounded rationality to contribute, this paper introduces optional contributions (high value or low value) to these typical VPG games-a cooperator can contribute a high or low payoff to the public pools. With the low contribution, the logit dynamics show that cooperation can be promoted in a well mixed population comparing to the typical VPG games, furthermore, as the multiplication factor is greater than a threshold, the average payoff of the population is also enhanced. In spatial VPG games, we introduce a new adjusting mechanism that is an approximation to best response. Some results in agreement with the prediction of the logit dynamics are found. These simulation results reveal that for VPG games the option of low contributions may be a better method to stimulate the growth of cooperation frequency and the average payoff of the population.

  16. Adrenaline rush: the role of adrenergic receptors in stimulant-induced behaviors.

    Science.gov (United States)

    Schmidt, Karl T; Weinshenker, David

    2014-04-01

    Psychostimulants, such as cocaine and amphetamines, act primarily through the monoamine neurotransmitters dopamine (DA), norepinephrine, and serotonin. Although stimulant addiction research has largely focused on DA, medication development efforts targeting the dopaminergic system have thus far been unsuccessful, leading to alternative strategies aimed at abating stimulant abuse. Noradrenergic compounds have shown promise in altering the behavioral effects of stimulants in rodents, nonhuman primates, and humans. In this review, we discuss the contribution of each adrenergic receptor (AR) subtype (α1, α2, and β) to five stimulant-induced behaviors relevant to addiction: locomotor activity, conditioned place preference, anxiety, discrimination, and self-administration. AR manipulation has diverse effects on these behaviors; each subtype profoundly influences outcomes in some paradigms but is inconsequential in others. The functional neuroanatomy and intracellular signaling mechanisms underlying the impact of AR activation/blockade on these behaviors remain largely unknown, presenting a new frontier for research on psychostimulant-AR interactions.

  17. An isotopic approach to study the recharge mechanism in Haripur plain contribution to the area from Tarbela and Khanpur lakes

    International Nuclear Information System (INIS)

    Sajjad, M.I.; Tasneem, M.A.; Khan, I.H.; Ahmad, M.; Akram, W.

    1992-01-01

    Environmental isotopic investigation were carried out in Haripur plain to determine the recharge mechanism in the area. The Haripur plain is bounded by river Doar (that falls in Tarbela lake) in the north mountain ranges in the east and west, while the river Haro flows on the south eastern boundary upon which Khanpur dam has been built. Effort were made to identify the different sources which recharge the aquifer in the area. Isotopic data reveals that the major source of recharge is the rainfall on adjoining hills There is no contribution of Tarbela and Khanpur lakes. The residence time varies from a few years to more than fifty years depending upon the geology of the area. 14 figs. (author)

  18. Impairments in Motor Neurons, Interneurons and Astrocytes Contribute to Hyperexcitability in ALS: Underlying Mechanisms and Paths to Therapy.

    Science.gov (United States)

    Do-Ha, Dzung; Buskila, Yossi; Ooi, Lezanne

    2018-02-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by the loss of motor neurons leading to progressive paralysis and death. Using transcranial magnetic stimulation (TMS) and nerve excitability tests, several clinical studies have identified that cortical and peripheral hyperexcitability are among the earliest pathologies observed in ALS patients. The changes in the electrophysiological properties of motor neurons have been identified in both sporadic and familial ALS patients, despite the diverse etiology of the disease. The mechanisms behind the change in neuronal signalling are not well understood, though current findings implicate intrinsic changes in motor neurons and dysfunction of cells critical in regulating motor neuronal excitability, such as astrocytes and interneurons. Alterations in ion channel expression and/or function in motor neurons has been associated with changes in cortical and peripheral nerve excitability. In addition to these intrinsic changes in motor neurons, inhibitory signalling through GABAergic interneurons is also impaired in ALS, likely contributing to increased neuronal excitability. Astrocytes have also recently been implicated in increasing neuronal excitability in ALS by failing to adequately regulate glutamate levels and extracellular K + concentration at the synaptic cleft. As hyperexcitability is a common and early feature of ALS, it offers a therapeutic and diagnostic target. Thus, understanding the underlying pathways and mechanisms leading to hyperexcitability in ALS offers crucial insight for future development of ALS treatments.

  19. Effects of atomoxetine on attention and impulsivity in the five-choice serial reaction time task in rats with lesions of dorsal noradrenergic ascending bundle.

    Science.gov (United States)

    Liu, Yia-Ping; Huang, Teng-Shun; Tung, Che-Se; Lin, Chen-Cheng

    2015-01-02

    Atomoxetine, a noradrenaline reuptake inhibitor (NRI), which is a non-stimulating medicine that is used for the treatment of patients with attention deficit hyperactivity disorder (ADHD), has been found to be effective in reducing behavioral impulsivity in rodents, but its efficacy in a dorsal noradrenergic ascending bundle (DNAB)-lesioned condition has not been examined. The present study aimed to investigate the effects of DNAB lesions on attention and impulsive control in the five-choice serial reaction time task (5-CSRTT) in rats treated with atomoxetine. The drug-induced changes in noradrenaline efflux in the medial prefrontal cortex were also measured. 5-CSRTT-trained rats were included in one of the following groups: N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4)/Atomoxetine, Sham/Atomoxetine, DSP-4/Saline, or Sham/Saline. Acute atomoxetine (0.3 mg/kg) was administered 14 days after the DSP-4 regime. The behavioral testing included manipulations of the inter-trial interval (ITI), stimulation duration and food satiety. In vivo microdialysis of the noradrenaline efflux in the medial prefrontal cortex and the expression of the noradrenaline transporter (NAT) in the DNAB areas were examined. Atomoxetine reduced impulsivity and perseveration in the long-ITI condition with no effects on any other variables. This phenomenon was not influenced by DSP-4 pre-treatment. The DNAB-lesioned rats had lower noradrenaline efflux in the medial prefrontal cortex. DSP-4 caused no change in NAT expression in the DNAB areas. These findings suggested that noradrenaline reuptake may not be exclusively responsible for the atomoxetine effects in adjusting impulsivity. The role of DNAB should also be considered, particularly in conditions requiring greater behavioral inhibition. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Chromatic discrimination: differential contributions from two adapting fields

    Science.gov (United States)

    Cao, Dingcai; Lu, Yolanda H.

    2012-01-01

    To test whether a retinal or cortical mechanism sums contributions from two adapting fields to chromatic discrimination, L/M discrimination was measured with a test annulus surrounded by an inner circular field and an outer rectangular field. A retinal summation mechanism predicted that the discrimination pattern would not change with a change in the fixation location. Therefore, the fixation was set either in the inner or the outer field in two experiments. When one of the adapting fields was “red” and the other was “green,” the adapting field where the observer fixated always had a stronger influence on chromatic discrimination. However, when one adapting field was “white” and the other was red or green, the white field always weighted more heavily than the other adapting field in determining discrimination thresholds, whether the white field or the fixation was in the inner or outer adapting field. These results suggest that a cortical mechanism determines the relative contributions from different adapting fields. PMID:22330364

  1. Agmatine Modulation of Noradrenergic Neurotransmission in Isolated Rat Blood Vessels.

    Science.gov (United States)

    Török, Jozef; Zemančíková, Anna

    2016-06-30

    Agmatine, a vasoactive metabolite of L-arginine, is widely distributed in mammalian tissues including blood vessels. Agmatine binding to imidazoline and α₂-adrenoceptors induces a variety of physiological and pharmacological effects. We investigated the effect of agmatine on contractile responses of the rat pulmonary artery and portal vein induced by electrical stimulation of perivascular nerves and by exogenous adrenergic substances. Experiments were performed on isolated segments of rat main pulmonary artery and its extralobular branches, and portal vein suspended in organ bath containing modified Krebs bicarbonate solution and connected to a force-displacement transducer for isometric tension recording. Electrical field stimulation (EFS) produced tetrodotoxin-sensitive contractile responses of pulmonary artery and portal vein. Besides the well known vasorelaxant actions, we found that agmatine also produced a concentration-dependent inhibition of neurogenic contractions induced by EFS in pulmonary arteries; however, the agmatine treatment did not influence the responses to exogenous noradrenaline. The inhibitory effect on EFS-induced contractions was not abolished by the α₂-adrenoceptor antagonist rauwolscine. In portal vein, in contrast, agmatine increased spontaneous mechanical contractions and enhanced the contractions induced by EFS. The results suggest that agmatine can significantly influence vascular function of pulmonary arteries and portal veins by modulating sympathetically mediated vascular contractions by pre- and postsynaptic mechanisms.

  2. Dissociable contributions of the amygdala to the immediate and delayed effects of emotional arousal on memory.

    Science.gov (United States)

    Schümann, Dirk; Sommer, Tobias

    2018-06-01

    Emotional arousal enhances memory encoding and consolidation leading to better immediate and delayed memory. Although the central noradrenergic system and the amygdala play critical roles in both effects of emotional arousal, we have recently shown that these effects are at least partly independent of each other, suggesting distinct underlying neural mechanisms. Here we aim to dissociate the neural substrates of both effects in 70 female participants using an emotional memory paradigm to investigate how neural activity, as measured by fMRI, and a polymorphism in the α 2B -noradrenoceptor vary for these effects. To also test whether the immediate and delayed effects of emotional arousal on memory are stable traits, we invited back participants who were a part of a large-scale behavioral memory study ∼3.5 yr ago. We replicated the low correlation of the immediate and delayed emotional enhancement of memory across participants ( r = 0.16) and observed, moreover, that only the delayed effect was, to some degree, stable over time ( r = 0.23). Bilateral amygdala activity, as well as its coupling with the visual cortex and the fusiform gyrus, was related to the preferential encoding of emotional stimuli, which is consistent with affect-biased attention. Moreover, the adrenoceptor genotype modulated the bilateral amygdala activity associated with this effect. The left amygdala and its coupling with the hippocampus was specifically associated with the more efficient consolidation of emotional stimuli, which is consistent with amygdalar modulation of hippocampal consolidation. © 2018 Schümann and Sommer; Published by Cold Spring Harbor Laboratory Press.

  3. Mechanism of hyperphagia contributing to obesity in brain-derived neurotrophic factor knockout mice.

    Science.gov (United States)

    Fox, E A; Biddinger, J E; Jones, K R; McAdams, J; Worman, A

    2013-01-15

    Global-heterozygous and brain-specific homozygous knockouts (KOs) of brain-derived neurotrophic factor (BDNF) cause late- and early-onset obesity, respectively, both involving hyperphagia. Little is known about the mechanism underlying this hyperphagia or whether BDNF loss from peripheral tissues could contribute to overeating. Since global-homozygous BDNF-KO is perinatal lethal, a BDNF-KO that spared sufficient brainstem BDNF to support normal health was utilized to begin to address these issues. Meal pattern and microstructure analyses suggested overeating of BDNF-KO mice was mediated by deficits in both satiation and satiety that resulted in increased meal size and frequency and implicated a reduction of vagal signaling from the gut to the brain. Meal-induced c-Fos activation in the nucleus of the solitary tract, a more direct measure of vagal afferent signaling, however, was not decreased in BDNF-KO mice, and thus was not consistent with a vagal afferent role. Interestingly though, meal-induced c-Fos activation was increased in the dorsal motor nucleus of the vagus nerve (DMV) of BDNF-KO mice. This could imply that augmentation of vago-vagal digestive reflexes occurred (e.g., accommodation), which would support increased meal size and possibly increased meal number by reducing the increase in intragastric pressure produced by a given amount of ingesta. Additionally, vagal sensory neuron number in BDNF-KO mice was altered in a manner consistent with the increased meal-induced activation of the DMV. These results suggest reduced BDNF causes satiety and satiation deficits that support hyperphagia, possibly involving augmentation of vago-vagal reflexes mediated by central pathways or vagal afferents regulated by BDNF levels. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Peripheral mechanisms contributing to the glucocorticoid hypersensitivity in proopiomelanocortin null mice treated with corticosterone

    Science.gov (United States)

    Michailidou, Zoi; Coll, Anthony P; Kenyon, Christopher J; Morton, Nicholas M; O'Rahilly, Stephen; Seckl, Jonathan R; Chapman, Karen E

    2007-01-01

    Proopiomelanocortin (POMC) deficiency causes severe obesity through hyperphagia of hypothalamic origin. However, low glucocorticoid levels caused by adrenal insufficiency mitigate against insulin resistance, hyperphagia and fat accretion in Pomc−/− mice. Upon exogenous glucocorticoid replacement, corticosterone-supplemented (CORT) Pomc−/− mice show exaggerated responses, including excessive fat accumulation, hyperleptinaemia and insulin resistance. To investigate the peripheral mechanisms underlying this glucocorticoid hypersensitivity, we examined the expression levels of key determinants and targets of glucocorticoid action in adipose tissue and liver. Despite lower basal expression of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), which generates active glucocorticoids within cells, CORT-mediated induction of 11β-HSD1 mRNA levels was more pronounced in adipose tissues of Pomc−/− mice. Similarly, CORT treatment increased lipoprotein lipase mRNA levels in all fat depots in Pomc−/− mice, consistent with exaggerated fat accumulation. Glucocorticoid receptor (GR) mRNA levels were selectively elevated in liver and retroperitoneal fat of Pomc−/− mice but were corrected by CORT in the latter depot. In liver, CORT increased phosphoenolpyruvate carboxykinase mRNA levels specifically in Pomc−/− mice, consistent with their insulin-resistant phenotype. Furthermore, CORT induced hypertension in Pomc−/− mice, independently of adipose or liver renin–angiotensin system activation. These data suggest that CORT-inducible 11β-HSD1 expression in fat contributes to the adverse cardiometabolic effects of CORT in POMC deficiency, whereas higher GR levels may be more important in liver. PMID:17592030

  5. Cooperation and Noise in Public Goods Experiments: Applying the Contribution Function Approach

    NARCIS (Netherlands)

    Brandts, J.; Schram, A.

    2001-01-01

    We introduce a new design for experiments with the voluntary contributions mechanism for public goods. Subjects report a complete con-tri-bution function in each period, i.e., a contribution level for various marginal rates of transformation between a public and a private good. The results show that

  6. On interference of cumulative proton production mechanisms

    International Nuclear Information System (INIS)

    Braun, M.A.; Vechernin, V.V.

    1993-01-01

    The dynamical picture of the cumulative proton production in hA-collisions by means of diagram analysis with NN interaction described by a non-relativistic NN potential is considered. The contributions of the various mechanisms (spectator, direct and rescattering) for backward hemisphere proton production within the framework of this common approach is calculated. The emphasis is on the comparison of the relative contributions of these mechanisms for various angles, taking into account the interference of these contributions. Comparison with experimental data is also presented. (author)

  7. Cyclic mechanical stretch contributes to network development of osteocyte-like cells with morphological change and autophagy promotion but without preferential cell alignment in rat.

    Science.gov (United States)

    Inaba, Nao; Kuroshima, Shinichiro; Uto, Yusuke; Sasaki, Muneteru; Sawase, Takashi

    2017-09-01

    Osteocytes play important roles in controlling bone quality as well as preferential alignment of biological apatite c -axis/collagen fibers. However, the relationship between osteocytes and mechanical stress remains unclear due to the difficulty of three-dimensional (3D) culture of osteocytes in vitro . The aim of this study was to investigate the effect of cyclic mechanical stretch on 3D-cultured osteocyte-like cells. Osteocyte-like cells were established using rat calvarial osteoblasts cultured in a 3D culture system. Cyclic mechanical stretch (8% amplitude at a rate of 2 cycles min -1 ) was applied for 24, 48 and 96 consecutive hours. Morphology, cell number and preferential cell alignment were evaluated. Apoptosis- and autophagy-related gene expression levels were measured using quantitative PCR. 3D-cultured osteoblasts became osteocyte-like cells that expressed osteocyte-specific genes such as Dmp1 , Cx43 , Sost , Fgf23 and RANKL , with morphological changes similar to osteocytes. Cell number was significantly decreased in a time-dependent manner under non-loaded conditions, whereas cyclic mechanical stretch significantly prevented decreased cell numbers with increased expression of anti-apoptosis-related genes. Moreover, cyclic mechanical stretch significantly decreased cell size and ellipticity with increased expression of autophagy-related genes, LC3b and atg7 . Interestingly, preferential cell alignment did not occur, irrespective of mechanical stretch. These findings suggest that an anti-apoptotic effect contributes to network development of osteocyte-like cells under loaded condition. Spherical change of osteocyte-like cells induced by mechanical stretch may be associated with autophagy upregulation. Preferential alignment of osteocytes induced by mechanical load in vivo may be partially predetermined before osteoblasts differentiate into osteocytes and embed into bone matrix.

  8. Reactivation, retrieval, replay and reconsolidation in and out of sleep: connecting the dots

    Directory of Open Access Journals (Sweden)

    Susan J Sara

    2010-12-01

    Full Text Available The neurobiology of memory has taken on a new look over the past decade. Re-discovery of cue-dependent amnesia, wide availability of functional imaging tools and increased dialogue among clinicians, cognitive psychologists, behavioral neuroscientists and neurobiologists have provided impetus for the search for new paradigms for the study of memory. Memory is increasingly viewed as an open-ended process, with retrieval being recognized as an intricate part of the encoding process. New memories are always made on the background of past experience, so that every consolidation is, in fact reconsolidation. serving to update and strengthen memories after retrieval. Spontaneous reactivation of memory circuits occurs during sleep and there is converging evidence from rodent and human studies that this is an important part of the extended off-line memory processing. The noradrenergic neuromodulatory system is engaged at retrieval, facilitating recall. The noradrenergic system is activated during sleep after learning and noradrenergic neurons fire in concert with cortical oscillations that are associated with reactivation of memory circuits. We suggest that the noradrenergic system and perhaps other neuromodulatory systems,[...

  9. Mechanical branch constraints contribute to life-history variation across tree species in a Bolivian forest.

    NARCIS (Netherlands)

    Sterck, F.J.; Gelder, van H.A.; Poorter, L.

    2006-01-01

    1 Trade-offs among plant traits may contribute to specialization for different environments and coexistence of plant species. This may be the first study that shows how trade-offs among branch traits contribute to variation in crown size, light requirements and maximum height across multiple

  10. Modelling anelastic contribution to nuclear fuel cladding creep and stress relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Tulkki, Ville, E-mail: ville.tulkki@vtt.fi; Ikonen, Timo

    2015-10-15

    In fuel behaviour modelling accurate description of the cladding mechanical response is important for both operational and safety considerations. While accuracy is desired, a certain level of simplicity is needed as both computational resources and detailed information on properties of particular cladding may be limited. Most models currently used in the integral codes divide the mechanical response into elastic and viscoplastic contributions. These have difficulties in describing both creep and stress relaxation, and often separate models for the two phenomena are used. In this paper we implement anelastic contribution to the cladding mechanical model, thus enabling consistent modelling of both creep and stress relaxation. We show that the model based on assumption of viscoelastic behaviour can be used to explain several experimental observations in transient situations and compare the model to published set of creep and stress relaxation experiments performed on similar samples. Based on the analysis presented we argue that the inclusion of anelastic contribution to the cladding mechanical models provides a way to improve the simulation of cladding behaviour during operational transients.

  11. Effect of Prazosin and Naltrexone on Script Induced Alcohol Craving in Veterans with Alcohol Use Disorders with and without Co-occurring PTSD

    Science.gov (United States)

    2017-01-01

    and each is postulated to be mediated by different neurological substrates. The neural networks postulated to subserve reward and relief craving...noradrenergic system with craving-related brain systems, blocking α1 receptors with the noradrenergic antagonist, prazosin, theoretically has the...to evaluate whether specific individual characteristics, including PTSD status, moderate medication response. 15. SUBJECT TERMS Alcohol Drinking

  12. The old with the die. A contribution to metaphysics of quantum mechanics

    International Nuclear Information System (INIS)

    Ijjas, Anna

    2011-01-01

    Since the rise of quantum mechanics also their ideological implications and consequences were discussed. Meanwhile still scarcely a metaphysical problem exists, which was not supposedly solved under calling on quantum theory. Anna Ijjas inquires the usual practice and developes a new model of the assignment of quantum mechanics and metaphysics. She discusses both the physical foundations and the classical philosophical controversies, before she draws consequencies for the relation determination of brain and consciousness, the problem of freedom of will, as well as for the question of the influence of God in the world.

  13. The mechanism of contribution to the taxes of the electricity public service

    International Nuclear Information System (INIS)

    Blonde, G.; Poizat, F.; Triboulet, A.

    2008-02-01

    This report presents the results of an expertise realized by the Institute of the Energy and development for the CCE of EDF. The CSPE is a mechanism of mutualization of taxes of the electricity public service. These taxes concern the impact of the tariffs adjustment, the assistance to systems of energy conservation, the solidarity to poor households. the document presents the historical aspects and the bases of the mechanism, the cost of the global compensation, the foundations of this mutualization system, the forecasts and some recommendations. (A.L.B.)

  14. Mechanisms underlying the noradrenergic modulation of longitudinal coordination during swimming in Xenopus laevis tadpoles

    DEFF Research Database (Denmark)

    Merrywest, Simon D; McDearmid, Jonathan R; Kjaerulff, Ole

    2003-01-01

    Noradrenaline (NA) is a potent modulator of locomotion in many vertebrate nervous systems. When Xenopus tadpoles swim, waves of motor neuron activity alternate across the body and propagate along it with a brief rostro-caudal delay (RC-delay) between segments. We have now investigated the mechani......Noradrenaline (NA) is a potent modulator of locomotion in many vertebrate nervous systems. When Xenopus tadpoles swim, waves of motor neuron activity alternate across the body and propagate along it with a brief rostro-caudal delay (RC-delay) between segments. We have now investigated...... might promote postinhibitory rebound firing. The synaptic inputs during swimming were simulated using a sustained positive current, superimposed upon which were brief negative currents. When these conditions were held constant NA enhanced the probability of rebound firing--indicating a direct effect...

  15. Cold-induced vasoconstriction at forearm and hand skin sites: the effect of age.

    Science.gov (United States)

    Kingma, B R M; Frijns, A J H; Saris, W H M; van Steenhoven, A A; van Marken Lichtenbelt, W D

    2010-07-01

    During mild cold exposure, elderly are at risk of hypothermia. In humans, glabrous skin at the hands is well adapted as a heat exchanger. Evidence exists that elderly show equal vasoconstriction due to local cooling at the ventral forearm, yet no age effects on vasoconstriction at hand skin have been studied. Here, we tested the hypotheses that at hand sites (a) elderly show equal vasoconstriction due to local cooling and (b) elderly show reduced response to noradrenergic stimuli. Skin perfusion and mean arterial pressure were measured in 16 young adults (Y: 18-28 years) and 16 elderly (E: 68-78 years). To study the effect of local vasoconstriction mechanisms local sympathetic nerve terminals were blocked by bretylium (BR). Baseline local skin temperature was clamped at 33 degrees C. Next, local temperature was reduced to 24 degrees C. After 15 min of local cooling, noradrenaline (NA) was administered to study the effect of neural vasoconstriction mechanisms. No significant age effect was observed in vasoconstriction due to local cooling at BR sites. After NA, vasoconstriction at the forearm showed a significant age effect; however, no significant age effect was found at the hand sites. [Change in CVC (% from baseline): Forearm Y: -76 +/- 3 vs. E: -60 +/- 5 (P forearm, elderly did not show a blunted response to local cooling and noradrenaline at hand skin sites. This indicates that at hand skin the noradrenergic mechanism of vasoconstriction is maintained with age.

  16. Proteomic analysis of human norepinephrine transporter complexes reveals associations with protein phosphatase 2A anchoring subunit and 14-3-3 proteins

    International Nuclear Information System (INIS)

    Sung, Uhna; Jennings, Jennifer L.; Link, Andrew J.; Blakely, Randy D.

    2005-01-01

    The norepinephrine transporter (NET) terminates noradrenergic signals by clearing released NE at synapses. NET regulation by receptors and intracellular signaling pathways is supported by a growing list of associated proteins including syntaxin1A, protein phosphatase 2A (PP2A) catalytic subunit (PP2A-C), PICK1, and Hic-5. In the present study, we sought evidence for additional partnerships by mass spectrometry-based analysis of proteins co-immunoprecipitated with human NET (hNET) stably expressed in a mouse noradrenergic neuroblastoma cell line. Our initial proteomic analyses reveal multiple peptides derived from hNET, peptides arising from the mouse PP2A anchoring subunit (PP2A-Ar) and peptides derived from 14-3-3 proteins. We verified physical association of NET with PP2A-Ar via co-immunoprecipitation studies using mouse vas deferens extracts and with 14-3-3 via a fusion pull-down approach, implicating specifically the hNET NH 2 -terminus for interactions. The transporter complexes described likely support mechanisms regulating transporter activity, localization, and trafficking

  17. Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos

    International Nuclear Information System (INIS)

    Qiao, Dan; Seidler, Frederic J.; Slotkin, Theodore A.

    2005-01-01

    Nicotine and chlorpyrifos are developmental neurotoxicants that, despite their differences in structure and mechanism of action, share many aspects for damage to the developing brain. Both are thought to generate oxidative radicals; in the current study, we evaluated their ability to produce lipid peroxidation in two in vitro models of neural cell development (PC12 and SH-SY5Y cells) and for nicotine, with treatment of adolescent rats in vivo. Nicotine and chlorpyrifos, in concentrations relevant to human exposures, elicited an increase in thiobarbituric-acid-reactive species (TBARS) in undifferentiated cells, an effect that was prevented by addition of the antioxidant, Vitamin E. Initiating differentiation with nerve growth factor, which enhances nicotinic acetylcholine receptor expression, increased the TBARS response to nicotine but not chlorpyrifos, suggesting that the two agents act by different originating mechanisms to converge on the endpoint of oxidative damage. Furthermore, nicotine protected the cells from oxidative damage evoked by chlorpyrifos and similarly blocked the antimitotic effect of chlorpyrifos. Treatment of adolescent rats with nicotine elicited increases in TBARS in multiple brain regions when given in doses that simulate plasma nicotine concentrations found in smokers or at one-tenth the dose. Our results indicate that nicotine and chlorpyrifos elicit oxidative damage to developing neural cells both in vitro and in vivo, a mechanism that explains some of the neurodevelopmental endpoints that are common to the two agents. The balance between neuroprotectant and neurotoxicant actions of nicotine may be particularly important in situations where exposure to tobacco smoke is combined with other prooxidant insults

  18. Hindbrain A2 noradrenergic neuron adenosine 5'-monophosphate-activated protein kinase activation, upstream kinase/phosphorylase protein expression, and receptivity to hormone and fuel reporters of short-term food deprivation are regulated by estradiol.

    Science.gov (United States)

    Briski, Karen P; Alenazi, Fahaad S H; Shakya, Manita; Sylvester, Paul W

    2017-07-01

    Estradiol (E) mitigates acute and postacute adverse effects of 12 hr-food deprivation (FD) on energy balance. Hindbrain 5'-monophosphate-activated protein kinase (AMPK) regulates hyperphagic and hypothalamic metabolic neuropeptide and norepinephrine responses to FD in an E-dependent manner. Energy-state information from AMPK-expressing hindbrain A2 noradrenergic neurons shapes neural responses to metabolic imbalance. Here we investigate the hypothesis that FD causes divergent changes in A2 AMPK activity in E- vs. oil (O)-implanted ovariectomized female rats, alongside dissimilar adjustments in circulating metabolic fuel (glucose, free fatty acids [FFA]) and energy deficit-sensitive hormone (corticosterone, glucagon, leptin) levels. FD decreased blood glucose in oil (O)- but not E-implanted ovariectomized female rats and elevated and reduced glucagon levels in O and E, respectively. FD decreased circulating leptin in O and E, but increased corticosterone and FFA concentrations in E only. Western blot analysis of laser-microdissected A2 neurons showed that glucocorticoid receptor type II and very-long-chain acyl-CoA synthetase 3 protein profiles were amplified in FD/E vs. FD/O. A2 total AMPK protein was elevated without change in activity in FD/O, whereas FD/E exhibited increased AMPK activation along with decreased upstream phosphatase expression. The catecholamine biosynthetic enzyme dopamine-β-hydroxylase (DβH) was increased in FD/O but not FD/E A2 cells. The data show discordance between A2 AMPK activation and glycemic responses to FD; sensor activity was refractory to glucose decrements in FD/O but augmented in FD/E despite stabilized glucose and elevated FFA levels. E-dependent amplification of AMPK activity may reflect adaptive conversion to fatty acid oxidation and/or glucocorticoid stimulation. FD augmentation of A2 DβH protein profiles in FD/O but not FD/E animals suggests that FD may correspondingly regulate NE synthesis vs. metabolism/release in the

  19. Lesion of the commissural nucleus of the solitary tract/A2 noradrenergic neurons facilitates the activation of angiotensinergic mechanisms in response to hemorrhage.

    Science.gov (United States)

    Freiria-Oliveira, A H; Blanch, G T; De Paula, P M; Menani, J V; Colombari, D S A

    2013-12-19

    In the present study, we investigated the effects of lesions of A2 neurons of the commissural nucleus of the solitary tract (cNTS) alone or combined with the blockade of angiotensinergic mechanisms on the recovery of arterial pressure (AP) to hemorrhage in conscious rats. Male Holtzman rats (280-320g) received an injection of anti-dopamine-beta-hydroxylase-saporin (12.6ng/60nl; cNTS/A2-lesion, n=28) or immunoglobulin G (IgG)-saporin (12.6ng/60nl, sham, n=24) into the cNTS and 15-21days later had a stainless steel cannula implanted in the lateral ventricle. After 6days, rats were submitted to hemorrhage (four blood withdrawals, 2ml/300g of body weight every 10min). Both cNTS/A2-lesioned and sham rats had similar hypotension to hemorrhage (-62±7 and -73±7mmHg, respectively), however cNTS/A2-lesioned rats rapidly recovered from hypotension (-5±3mmHg at 30min), whereas sham rats did not completely recover until the end of the recording (-20±3mmHg at 60min). Losartan (angiotensin type 1 receptor antagonist) injected intracerebroventricularly (100μg/1μl) or intravenously (i.v.) (10mg/kg of body weight) impaired the recovery of AP in cNTS/A2-lesioned rats (-24±6 and -35±7mmHg at 30min, respectively). In sham rats, only i.v. losartan affected the recovery of AP (-39±6mmHg at 60min). The results suggest that lesion of the A2 neurons in the cNTS facilitates the activation of the angiotensinergic pressor mechanisms in response to hemorrhage. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. The contribution of soil adhesion to radiocaesium uptake by leafy vegetables

    International Nuclear Information System (INIS)

    Amaral, E.C.S.; Paretzke, H.G.; Campos, M.J.; Pires do Rio, M.A.; Franklin, M.

    1994-01-01

    The Goiania accident, Brazil, was used as an opportunity to quantify the contributions of different mechanisms, in particular mass loading, leading to caesium uptake by leafy vegetables in a semi-urban environment contaminated with 137 Cs. Soil splash contributions of 70-90% were quantified for lettuce and 50-60% for green cole. Soil mass loadings of 130 and 340 mg.g -1 were estimated for lettuce and 120 and 150 mg.g -1 for green cole. The results call attention to the potential significant contribution of the soil splash to radionuclide uptake by plants which have the edible plant parts near the soil surface (within 30-40 cm) and low root uptake factors. For radiological assessment purposes it could also be necessary to consider the contamination of crops by this mechanism. (orig.)

  1. Alternative Mechanisms to Encourage Individual Contributions to Vocational Education and Training

    Science.gov (United States)

    Haukka, Sandra; Keating, Jack; Lamb, Stephen

    2004-01-01

    Financing vocational education and training, as part of Australia's commitment to lifelong learning, will become a greater challenge as increased spending on other public services, such as health and welfare caused by an aging population, constrains government education expenditure. This report examines a range of mechanisms to encourage…

  2. Award for Distinguished Scientific Early Career Contributions to Psychology: Ahmad R. Hariri

    Science.gov (United States)

    American Psychologist, 2009

    2009-01-01

    Ahmad R. Hariri, recipient of the Award for Distinguished Scientific Early Career Contributions to Psychology, is cited for pioneering contributions to understanding the neurobiological mechanisms driving individual differences in complex behavior traits. Hariri has integrated molecular genetics, neuropharmacology, neuroimaging, and psychology in…

  3. Analgesic Effects of Bee Venom Derived Phospholipase A(2) in a Mouse Model of Oxaliplatin-Induced Neuropathic Pain.

    Science.gov (United States)

    Li, Dongxing; Lee, Younju; Kim, Woojin; Lee, Kyungjin; Bae, Hyunsu; Kim, Sun Kwang

    2015-06-29

    A single infusion of oxaliplatin, which is widely used to treat metastatic colorectal cancer, induces specific sensory neurotoxicity signs that are triggered or aggravated when exposed to cold or mechanical stimuli. Bee Venom (BV) has been traditionally used in Korea to treat various pain symptoms. Our recent study demonstrated that BV alleviates oxaliplatin-induced cold allodynia in rats, via noradrenergic and serotonergic analgesic pathways. In this study, we have further investigated whether BV derived phospholipase A2 (bvPLA2) attenuates oxaliplatin-induced cold and mechanical allodynia in mice and its mechanism. The behavioral signs of cold and mechanical allodynia were evaluated by acetone and a von Frey hair test on the hind paw, respectively. The significant allodynia signs were observed from one day after an oxaliplatin injection (6 mg/kg, i.p.). Daily administration of bvPLA2 (0.2 mg/kg, i.p.) for five consecutive days markedly attenuated cold and mechanical allodynia, which was more potent than the effect of BV (1 mg/kg, i.p.). The depletion of noradrenaline by an injection of N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride (DSP4, 50 mg/kg, i.p.) blocked the analgesic effect of bvPLA2, whereas the depletion of serotonin by injecting DL-p-chlorophenylalanine (PCPA, 150 mg/kg, i.p.) for three successive days did not. Furthermore, idazoxan (α2-adrenegic receptor antagonist, 1 mg/kg, i.p.) completely blocked bvPLA2-induced anti-allodynic action, whereas prazosin (α1-adrenegic antagonist, 10 mg/kg, i.p.) did not. These results suggest that bvPLA2 treatment strongly alleviates oxaliplatin-induced acute cold and mechanical allodynia in mice through the activation of the noradrenergic system, via α2-adrenegic receptors, but not via the serotonergic system.

  4. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  5. Pathways and mechanisms in adolescence contribute to adult health inequalities

    DEFF Research Database (Denmark)

    Due, Pernille; Krølner, Rikke; Rasmussen, Mette

    2011-01-01

    useful for providing an overview of what elements and mechanisms in adolescence may be of special importance for adult health inequalities. There is a lack of knowledge of how social patterns of health, health behaviours, and social relations in adolescence transfer into adulthood and to what extent...... vulnerability. METHODS: We conducted literature searches in English-language peer-reviewed journals using PubMed (from 1966 to May 2009) and PsycINFO, and combined these with hand-searches of reference lists, journals, and authors of particular relevance. RESULTS: Most health indicators are socially patterned...

  6. Respiratory mechanics

    CERN Document Server

    Wilson, Theodore A

    2016-01-01

    This book thoroughly covers each subfield of respiratory mechanics: pulmonary mechanics, the respiratory pump, and flow. It presents the current understanding of the field and serves as a guide to the scientific literature from the golden age of respiratory mechanics, 1960 - 2010. Specific topics covered include the contributions of surface tension and tissue forces to lung recoil, the gravitational deformation of the lung, and the interdependence forces that act on pulmonary airways and blood vessels. The geometry and kinematics of the ribs is also covered in detail, as well as the respiratory action of the external and internal intercostal muscles, the mechanics of the diaphragm, and the quantitative compartmental models of the chest wall is also described. Additionally, flow in the airways is covered thoroughly, including the wave-speed and viscous expiratory flow-limiting mechanisms; convection, diffusion and the stationary front; and the distribution of ventilation. This is an ideal book for respiratory ...

  7. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  8. Membrane microdomain-associated uroplakin IIIa contributes to Src-dependent mechanisms of anti-apoptotic proliferation in human bladder carcinoma cells

    Directory of Open Access Journals (Sweden)

    Shigeru Kihira

    2012-08-01

    Our previous study demonstrated that tyrosine phosphorylation of p145met/β-subunit of hepatocyte growth factor receptor by epidermal growth factor receptor and Src contributes to the anti-apoptotic growth of human bladder carcinoma cell 5637 under serum-starved conditions. Here, we show that some other cell lines of human bladder carcinoma, but not other types of human cancer cells, also exhibit Src-dependent, anti-apoptotic proliferation under serum-starved conditions, and that low-density, detergent-insoluble membrane microdomains (MD serve as a structural platform for signaling events involving p145met, EGFR, and Src. As an MD-associated molecule that may contribute to bladder carcinoma-specific cellular function, we identified uroplakin IIIa (UPIIIa, an urothelium-specific protein. Results obtained so far revealed: 1 UPIIIa undergoes partial proteolysis in serum-starved cells; 2 a specific antibody to the extracellular domain of UPIIIa inhibits the proteolysis of UPIIIa and the activation of Src, and promotes apoptosis in serum-starved cells; and 3 knockdown of UPIIIa by short interfering RNA also promotes apoptosis in serum-starved cells. GM6001, a potent inhibitor of matrix metalloproteinase (MMP, inhibits the proteolysis of UPIIIa and promotes apoptosis in serum-starved cells. Furthermore, serum starvation promotes expression and secretion of the heparin-binding EGF-like growth factor in a manner that depends on the functions of MMP, Src, and UPIIIa. These results highlight a hitherto unknown signaling network involving a subset of MD-associated molecules in the anti-apoptotic mechanisms of human bladder carcinoma cells.

  9. Contributions of non-intrusive coupling in nonlinear structural mechanics

    International Nuclear Information System (INIS)

    Duval, Mickael

    2016-01-01

    This PhD thesis, part of the ANR ICARE project, aims at developing methods for complex analysis of large scale structures. The scientific challenge is to investigate very localised areas, but potentially critical as of mechanical systems resilience. Classically, representation models, discretizations, mechanical behaviour models and numerical tools are used at both global and local scales for simulation needs of graduated complexity. Global problem is handled by a generic code with topology (plate formulation, geometric approximation...) and behaviour (homogenization) simplifications while local analysis needs implementation of specialized tools (routines, dedicated codes) for an accurate representation of the geometry and behaviour. The main goal of this thesis is to develop an efficient non-intrusive coupling tool for multi-scale and multi-model structural analysis. Constraints of non-intrusiveness result in the non-modification of the stiffness operator, connectivity and the global model solver, allowing to work in a closed source software environment. First, we provide a detailed study of global/local non-intrusive coupling algorithm. Making use of several relevant examples (cracking, elastic-plastic behaviour, contact...), we show the efficiency and the flexibility of such coupling method. A comparative analysis of several optimisation tools is also carried on, and the interacting multiple patches situation is handled. Then, non-intrusive coupling is extended to globally non-linear cases, and a domain decomposition method with non-linear re-localization is proposed. Such methods allowed us to run a parallel computation using only sequential software, on a high performance computing cluster. Finally, we apply the coupling algorithm to mesh refinement with patches of finite elements. We develop an explicit residual based error estimator suitable for multi-scale solutions arising from the non-intrusive coupling, and apply it inside an error driven local mesh

  10. Ethanol consumption and pineal melatonin daily profile in rats.

    Science.gov (United States)

    Peres, Rafael; do Amaral, Fernanda Gaspar; Madrigrano, Thiago Cardoso; Scialfa, Julieta Helena; Bordin, Silvana; Afeche, Solange Castro; Cipolla-Neto, José

    2011-10-01

    It is well known that melatonin participates in the regulation of many important physiological functions such as sleep-wakefulness cycle, motor coordination and neural plasticity, and cognition. However, as there are contradictory results regarding the melatonin production diurnal profile under alcohol consumption, the aim of this paper was to study the phenomenology and mechanisms of the putative modifications on the daily profile of melatonin production in rats submitted to chronic alcohol intake. The present results show that rats receiving 10% ethanol in drinking water for 35 days display an altered daily profile of melatonin production, with a phase delay and a reduction in the nocturnal peak. This can be partially explained by a loss of the daily rhythm and the 25% reduction in tryptophan hydroxylase activity and, mainly, by a phase delay in arylalkylamine N-acetyltransferase gene expression and a 70% reduction in its peak activity. Upstream in the melatonin synthesis pathway, the results showed that noradrenergic signaling is impaired as well, with a decrease in β1 and α1 adrenergic receptors' mRNA contents and in vitro sustained loss of noradrenergic-stimulated melatonin production by glands from alcohol-treated rats. Together, these results confirm the alterations in the daily melatonin profile of alcoholic rats and suggest the possible mechanisms for the observed melatonin synthesis modification. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  11. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy

    International Nuclear Information System (INIS)

    Ma, Kaka; Wen, Haiming; Hu, Tao; Topping, Troy D.; Isheim, Dieter; Seidman, David N.; Lavernia, Enrique J.; Schoenung, Julie M.

    2014-01-01

    To provide insight into the relationships between precipitation phenomena, grain size and mechanical behavior in a complex precipitation-strengthened alloy system, Al 7075 alloy, a commonly used aluminum alloy, was selected as a model system in the present study. Ultrafine-grained (UFG) bulk materials were fabricated through cryomilling, degassing, hot isostatic pressing and extrusion, followed by a subsequent heat treatment. The mechanical behavior and microstructure of the materials were analyzed and compared directly to the coarse-grained (CG) counterpart. Three-dimensional atom-probe tomography was utilized to investigate the intermetallic precipitates and oxide dispersoids formed in the as-extruded UFG material. UFG 7075 exhibits higher strength than the CG 7075 alloy for each equivalent condition. After a T6 temper, the yield strength (YS) and ultimate tensile strength (UTS) of UFG 7075 achieved 734 and 774 MPa, respectively, which are ∼120 MPa higher than those of the CG equivalent. The strength of as-extruded UFG 7075 (YS: 583 MPa, UTS: 631 MPa) is even higher than that of commercial 7075-T6. More importantly, the strengthening mechanisms in each material were established quantitatively for the first time for this complex precipitation-strengthened system, accounting for grain-boundary, dislocation, solid-solution, precipitation and oxide dispersoid strengthening contributions. Grain-boundary strengthening was the predominant mechanism in as-extruded UFG 7075, contributing a strength increment estimated to be 242 MPa, whereas Orowan precipitation strengthening was predominant in the as-extruded CG 7075 (∼102 MPa) and in the T6-tempered materials, and was estimated to contribute 472 and 414 MPa for CG-T6 and UFG-T6, respectively

  12. Upregulation of EMMPRIN (OX47 in Rat Dorsal Root Ganglion Contributes to the Development of Mechanical Allodynia after Nerve Injury

    Directory of Open Access Journals (Sweden)

    Qun Wang

    2015-01-01

    Full Text Available Matrix metalloproteinases (MMPs are widely implicated in inflammation and tissue remodeling associated with various neurodegenerative diseases and play an important role in nociception and allodynia. Extracellular Matrix Metalloproteinase Inducer (EMMPRIN plays a key regulatory role for MMP activities. However, the role of EMMPRIN in the development of neuropathic pain is not clear. Western blotting, real-time quantitative RT-PCR (qRT-PCR, and immunofluorescence were performed to determine the changes of messenger RNA and protein of EMMPRIN/OX47 and their cellular localization in the rat dorsal root ganglion (DRG after nerve injury. Paw withdrawal threshold test was examined to evaluate the pain behavior in spinal nerve ligation (SNL model. The lentivirus containing OX47 shRNA was injected into the DRG one day before SNL. The expression level of both mRNA and protein of OX47 was markedly upregulated in ipsilateral DRG after SNL. OX47 was mainly expressed in the extracellular matrix of DRG. Administration of shRNA targeted against OX47 in vivo remarkably attenuated mechanical allodynia induced by SNL. In conclusion, peripheral nerve injury induced upregulation of OX47 in the extracellular matrix of DRG. RNA interference against OX47 significantly suppressed the expression of OX47 mRNA and the development of mechanical allodynia. The altered expression of OX47 may contribute to the development of neuropathic pain after nerve injury.

  13. Contribution of large-sized primary sensory neuronal sensitization to mechanical allodynia by upregulation of hyperpolarization-activated cyclic nucleotide gated channels via cyclooxygenase 1 cascade.

    Science.gov (United States)

    Sun, Wei; Yang, Fei; Wang, Yan; Fu, Han; Yang, Yan; Li, Chun-Li; Wang, Xiao-Liang; Lin, Qing; Chen, Jun

    2017-02-01

    Under physiological state, small- and medium-sized dorsal root ganglia (DRG) neurons are believed to mediate nociceptive behavioral responses to painful stimuli. However, recently it has been found that a number of large-sized neurons are also involved in nociceptive transmission under neuropathic conditions. Nonetheless, the underlying mechanisms that large-sized DRG neurons mediate nociception are poorly understood. In the present study, the role of large-sized neurons in bee venom (BV)-induced mechanical allodynia and the underlying mechanisms were investigated. Behaviorally, it was found that mechanical allodynia was still evoked by BV injection in rats in which the transient receptor potential vanilloid 1-positive DRG neurons were chemically deleted. Electrophysiologically, in vitro patch clamp recordings of large-sized neurons showed hyperexcitability in these neurons. Interestingly, the firing pattern of these neurons was changed from phasic to tonic under BV-inflamed state. It has been suggested that hyperpolarization-activated cyclic nucleotide gated channels (HCN) expressed in large-sized DRG neurons contribute importantly to repeatedly firing. So we examined the roles of HCNs in BV-induced mechanical allodynia. Consistent with the overexpression of HCN1/2 detected by immunofluorescence, HCNs-mediated hyperpolarization activated cation current (I h ) was significantly increased in the BV treated samples. Pharmacological experiments demonstrated that the hyperexcitability and upregulation of I h in large-sized neurons were mediated by cyclooxygenase-1 (COX-1)-prostaglandin E2 pathway. This is evident by the fact that the COX-1 inhibitor significantly attenuated the BV-induced mechanical allodynia. These results suggest that BV can excite the large-sized DRG neurons at least in part by increasing I h through activation of COX-1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Cellular mechanisms of noise-induced hearing loss.

    Science.gov (United States)

    Kurabi, Arwa; Keithley, Elizabeth M; Housley, Gary D; Ryan, Allen F; Wong, Ann C-Y

    2017-06-01

    Exposure to intense sound or noise can result in purely temporary threshold shift (TTS), or leave a residual permanent threshold shift (PTS) along with alterations in growth functions of auditory nerve output. Recent research has revealed a number of mechanisms that contribute to noise-induced hearing loss (NIHL). The principle cause of NIHL is damage to cochlear hair cells and associated synaptopathy. Contributions to TTS include reversible damage to hair cell (HC) stereocilia or synapses, while moderate TTS reflects protective purinergic hearing adaptation. PTS represents permanent damage to or loss of HCs and synapses. While the substrates of HC damage are complex, they include the accumulation of reactive oxygen species and the active stimulation of intracellular stress pathways, leading to programmed and/or necrotic cell death. Permanent damage to cochlear neurons can also contribute to the effects of NIHL, in addition to HC damage. These mechanisms have translational potential for pharmacological intervention and provide multiple opportunities to prevent HC damage or to rescue HCs and spiral ganglion neurons that have suffered injury. This paper reviews advances in our understanding of cellular mechanisms that contribute to NIHL and their potential for therapeutic manipulation. Published by Elsevier B.V.

  15. Mechanisms of Action Contributing to Reductions in Suicide Attempts Following Brief Cognitive Behavioral Therapy for Military Personnel: A Test of the Interpersonal-Psychological Theory of Suicide.

    Science.gov (United States)

    Bryan, Craig J; Wood, David S; May, Alexis; Peterson, Alan L; Wertenberger, Evelyn; Rudd, M David

    2018-01-01

    Brief cognitive behavioral therapy (BCBT) is associated with significant reductions in suicide attempts among military personnel. However, the underlying mechanisms of action contributing to reductions in suicide attempts in effective psychological treatments remain largely unknown. The present study conducted a secondary analysis of a randomized controlled trial of BCBT versus treatment as usual (TAU) to examine the mechanisms of action hypothesized by the interpersonal-psychological theory of suicide (IPT): perceived burdensomeness, thwarted belongingness, and fearlessness about death. In a sample of 152 active duty U.S. Army personnel with recent suicide ideation or attempts, there were significantly fewer suicide attempts in BCBT, but there were no differences between treatment groups from baseline to 6 months postbaseline on any of the 3 IPT constructs or their interactions. Tests of the moderated mediation failed to support an indirect effect for the IPT model, regardless of which IPT variables were specified as mediators or moderators. Results suggest that the IPT's hypothesized mechanisms of action do not account for reductions in suicide attempts in BCBT. Implications for clinical practice and research are discussed.

  16. ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms

    Directory of Open Access Journals (Sweden)

    Izabella Kovacs

    2016-11-01

    Full Text Available Nitric oxide (NO has emerged as a signaling molecule in plants being involved in diverse physiological processes like germination, root growth, stomata closing and response to biotic and abiotic stress. S-nitrosoglutathione (GSNO as a biological NO donor has a very important function in NO signaling since it can transfer its NO moiety to other proteins (trans-nitrosylation. Such trans-nitrosylation reactions are equilibrium reactions and depend on GSNO level. The breakdown of GSNO and thus the level of S-nitrosylated proteins are regulated by GSNO-reductase (GSNOR. In this way, this enzyme controls S-nitrosothiol levels and regulates NO signaling. Here we report that Arabidopsis thaliana GSNOR activity is reversibly inhibited by H2O2 in-vitro and by paraquat-induced oxidative stress in-vivo. Light scattering analyses of reduced and oxidized recombinant GSNOR demonstrated that GSNOR proteins form dimers under both reducing and oxidizing conditions. Moreover, mass spectrometric analyses revealed that H2O2-treatment increased the amount of oxidative modifications on Zn2+-coordinating Cys47 and Cys177. Inhibition of GSNOR results in enhanced levels of S-nitrosothiols followed by accumulation of glutathione. Moreover, transcript levels of redox-regulated genes and activities of glutathione-dependent enzymes are increased in gsnor-ko plants, which may contribute to the enhanced resistance against oxidative stress. In sum, our results demonstrate that ROS-dependent inhibition of GSNOR is playing an important role in activation of anti-oxidative mechanisms to damping oxidative damage and imply a direct crosstalk between ROS- and NO-signaling.

  17. Norepinephrine ignites local hotspots of neuronal excitation: How arousal amplifies selectivity in perception and memory.

    Science.gov (United States)

    Mather, Mara; Clewett, David; Sakaki, Michiko; Harley, Carolyn W

    2016-01-01

    Emotional arousal enhances perception and memory of high-priority information but impairs processing of other information. Here, we propose that, under arousal, local glutamate levels signal the current strength of a representation and interact with norepinephrine (NE) to enhance high priority representations and out-compete or suppress lower priority representations. In our "glutamate amplifies noradrenergic effects" (GANE) model, high glutamate at the site of prioritized representations increases local NE release from the locus coeruleus (LC) to generate "NE hotspots." At these NE hotspots, local glutamate and NE release are mutually enhancing and amplify activation of prioritized representations. In contrast, arousal-induced LC activity inhibits less active representations via two mechanisms: 1) Where there are hotspots, lateral inhibition is amplified; 2) Where no hotspots emerge, NE levels are only high enough to activate low-threshold inhibitory adrenoreceptors. Thus, LC activation promotes a few hotspots of excitation in the context of widespread suppression, enhancing high priority representations while suppressing the rest. Hotspots also help synchronize oscillations across neural ensembles transmitting high-priority information. Furthermore, brain structures that detect stimulus priority interact with phasic NE release to preferentially route such information through large-scale functional brain networks. A surge of NE before, during, or after encoding enhances synaptic plasticity at NE hotspots, triggering local protein synthesis processes that enhance selective memory consolidation. Together, these noradrenergic mechanisms promote selective attention and memory under arousal. GANE not only reconciles apparently contradictory findings in the emotion-cognition literature but also extends previous influential theories of LC neuromodulation by proposing specific mechanisms for how LC-NE activity increases neural gain.

  18. Anatomical pathways involved in generating and sensing rhythmic whisker movements

    Directory of Open Access Journals (Sweden)

    Laurens W.J. Bosman

    2011-10-01

    Full Text Available The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception.

  19. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  20. Seymour Fisher contributions to research on body image

    Directory of Open Access Journals (Sweden)

    P.R.L. Ribeiro

    2011-01-01

    Full Text Available The aim of this work was to systematically review Seymour Fisher contributions to research on body image. A literature review of his work on body perception, distorted body image, body boundary, assigned meanings to specific body areas, and general body awareness was carried out on four of the books written by the author. Fisher correlated those variables with defense mechanisms, adaptation, and body anxiety. Moreover, he also considered the roles played by culture and personality on the complex phenomenon of body experience. This review intends to disseminate Seymour Fisher contributions among Brazilian researchers on body image.

  1. Turbulent current drive mechanisms

    Science.gov (United States)

    McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua

    2017-08-01

    Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.

  2. Recent trends in fracture and damage mechanics

    CERN Document Server

    Zybell, Lutz

    2016-01-01

    This book covers a wide range of topics in fracture and damage mechanics. It presents historical perspectives as well as recent innovative developments, presented by peer reviewed contributions from internationally acknowledged authors.  The volume deals with the modeling of fracture and damage in smart materials, current industrial applications of fracture mechanics, and it explores advances in fracture testing methods. In addition, readers will discover trends in the field of local approach to fracture and approaches using analytical mechanics. Scholars in the fields of materials science, engineering and computational science will value this volume which is dedicated to Meinhard Kuna on the occasion of his 65th birthday in 2015. This book incorporates the proceedings of an international symposium that was organized to honor Meinhard Kuna’s contributions to the field of theoretical and applied fracture and damage mechanics.

  3. Contribution of local probes in the understanding of mechanical effect on localized corrosion

    International Nuclear Information System (INIS)

    Vignal, Vincent; Oltra, Roland; Mary, Nicolas

    2004-01-01

    Understanding the actual effects of mechanical stresses on the processes leading to pitting corrosion necessitates to develop both a mechanical approach and electrochemical experiments at a microscopic scale. Typical embrittlement can be observed after straining around MnS inclusions on a re-sulfurized 316 stainless steels and their corrosion sensitivity have been classified using the micro-capillary electrochemical cell technique. It has been shown that the numerical simulation of the location of stress gradients is possible before the local electrochemical analysis and could be a very interesting way to define the pitting susceptibility of micro-cracked areas during straining. (authors)

  4. The effect of coniine on presynaptic nicotinic receptors.

    Science.gov (United States)

    Erkent, Ulkem; Iskit, Alper B; Onur, Rustu; Ilhan, Mustafa

    2016-01-01

    Toxicity of coniine, an alkaloid of Conium maculatum (poison hemlock), is manifested by characteristic nicotinic clinical signs including excitement, depression, hypermetria, seizures, opisthotonos via postsynaptic nicotinic receptors. There is limited knowledge about the role of presynaptic nicotinic receptors on the pharmacological and toxicological effects of coniine in the literature. The present study was undertaken to evaluate the possible role of presynaptic nicotinic receptors on the pharmacological and toxicological effects of coniine. For this purpose, the rat anococcygeus muscle and guinea-pig atria were used in vitro. Nicotine (100 μM) elicited a biphasic response composed of a relaxation followed by contraction through the activation of nitrergic and noradrenergic nerve terminals in the phenylephrine-contracted rat anococcygeus muscle. Coniine inhibited both the nitrergic and noradrenergic response in the muscle (-logIC(50) = 3.79 ± 0.11 and -logIC(50) = 4.57 ± 0.12 M, respectively). The effect of coniine on nicotinic receptor-mediated noradrenergic transmission was also evaluated in the guinea-pig atrium (-logIC(50) = 4.47 ± 0.12 M) and did not differ from the -logIC(50) value obtained in the rat anococcygeus muscle. This study demonstrated that coniine exerts inhibitory effects on nicotinic receptor-mediated nitrergic and noradrenergic transmitter response.

  5. Mechanical engineering

    CERN Document Server

    Darbyshire, Alan

    2010-01-01

    Alan Darbyshire's best-selling text book provides five-star high quality content to a potential audience of 13,000 engineering students. It explains the most popular specialist units of the Mechanical Engineering, Manufacturing Engineering and Operations & Maintenance Engineering pathways of the new 2010 BTEC National Engineering syllabus. This challenging textbook also features contributions from specialist lecturers, ensuring that no stone is left unturned.

  6. Mechanical tests imaging on metallic matrix composites. Experimental contribution to homogenization methods validation and identification of phase-related mechanical properties

    International Nuclear Information System (INIS)

    Quoc-Thang Vo

    2013-01-01

    This work is focused on a matrix/inclusion metal composite. A simple method is proposed to evaluate the elastic properties of one phase while the properties of the other phase are assumed to be known. The method is based on both an inverse homogenization scheme and mechanical field's measurements by 2D digital image correlation. The originality of the approach rests on the scale studied, i.e. the microstructure scale of material: the characteristic size of the inclusions is about few tens of microns. The evaluation is performed on standard uniaxial tensile tests associated with a long-distance microscope. It allows observation of the surface of a specimen on the microstructure scale during the mechanical stress. First, the accuracy of the method is estimated on 'perfect' mechanical fields coming from numerical simulations for four microstructures: elastic or porous single inclusions having either spherical or cylindrical shape. Second, this accuracy is estimated on real mechanical field for two simple microstructures: an elasto-plastic metallic matrix containing a single cylindrical micro void or four cylindrical micro voids arranged in a square pattern. Third, the method is used to evaluate elastic properties of αZr inclusions with arbitrary shape in an oxidized Zircaloy-4 sample of the fuel cladding of a pressurized water reactor after an accident loss of coolant accident (LOCA). In all this study, the phases are assumed to have isotropic properties. (author) [fr

  7. [Seagrass ecosystems: contributions to and mechanisms of carbon sequestration].

    Science.gov (United States)

    Qiu, Guang-Long; Lin, Hsing-Juh; Li, Zong-Shan; Fan, Hang-Qing; Zhou, Hao-Lang; Liu, Guo-Hua

    2014-06-01

    The ocean's vegetated habitats, in particular seagrasses, mangroves and salt marshes, each capture and store a comparable amount of carbon per year, forming the Earth's blue carbon sinks, the most intense carbon sinks on the planet. Seagrass meadows, characterized by high primary productivity, efficient water column filtration and sediment stability, have a pronounced capacity for carbon sequestration. This is enhanced by low decomposition rates in anaerobic seagrass sediments. The carbon captured by seagrass meadows contributes significantly to the total blue carbon. At a global scale, seagrass ecosystems are carbon sink hot spots and have profound influences on the global carbon cycle. This importance combined with the many other functions of seagrass meadows places them among the most valuable ecosystems in the world. Unfortunately, seagrasses are declining globally at an alarming rate owing to anthropogenic disturbances and climate change, making them also among the most threatened ecosystems on the Earth. The role of coastal systems in carbon sequestration has received far too little attention and thus there are still many uncertainties in evaluating carbon sequestration of global seagrass meadows accurately. To better assess the carbon sequestration of global seagrass ecosystems, a number of scientific issues should be considered with high priorities: 1) more accurate measurements of seagrass coverage at national and global levels; 2) more comprehensive research into species- and location-specific carbon sequestration efficiencies; 3) in-depth exploration of the effects of human disturbance and global climate change on carbon capture and storage by seagrass ecosystems.

  8. Einstein's statistical mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Baracca, A; Rechtman S, R

    1985-08-01

    The foundation of equilibrium classical statistical mechanics were laid down in 1902 independently by Gibbs and Einstein. The latter's contribution, developed in three papers published between 1902 and 1904, is usually forgotten and when not, rapidly dismissed as equivalent to Gibb's. We review in detail Einstein's ideas on the foundations of statistical mechanics and show that they constitute the beginning of a research program that led Einstein to quantum theory. We also show how these ideas may be used as a starting point for an introductory course on the subject.

  9. Einstein's statistical mechanics

    International Nuclear Information System (INIS)

    Baracca, A.; Rechtman S, R.

    1985-01-01

    The foundation of equilibrium classical statistical mechanics were laid down in 1902 independently by Gibbs and Einstein. The latter's contribution, developed in three papers published between 1902 and 1904, is usually forgotten and when not, rapidly dismissed as equivalent to Gibb's. We review in detail Einstein's ideas on the foundations of statistical mechanics and show that they constitute the beginning of a research program that led Einstein to quantum theory. We also show how these ideas may be used as a starting point for an introductory course on the subject. (author)

  10. Incentives to Encourage Scientific Web Contribution (Invited)

    Science.gov (United States)

    Antunes, A. K.

    2010-12-01

    We suggest improvements to citation standards and creation of remuneration opportunities to encourage career scientist contributions to Web2.0 and social media science channels. At present, agencies want to accomplish better outreach and engagement with no funding, while scientists sacrifice their personal time to contribute to web and social media sites. Securing active participation by scientists requires career recognition of the value scientists provide to web knowledge bases and to the general public. One primary mechanism to encourage participation is citation standards, which let a contributor improve their reputation in a quantifiable way. But such standards must be recognized by their scientific and workplace communities. Using case studies such as the acceptance of web in the workplace and the growth of open access journals, we examine what agencies and individual can do as well as the time scales needed to secure increased active contribution by scientists. We also discuss ways to jumpstart this process.

  11. Masonry structures between mechanics and architecture

    CERN Document Server

    Pedemonte, Orietta; Williams, Kim

    2015-01-01

    This book provides an overview of state of the art research in the mechanics of masonry structures. It continues the series Between Mechanics and Architecture, initially launched in 1995 from the collaboration of several renowned scholars, including Edoardo Benvenuto and Patricia Radelet-de Grave.   The contributions in this volume represent the main approaches to the complex topic of masonry structures. In addition to historical studies, the mechanical behavior of masonry arches and structures is studied using different approaches (structural analysis, limit analysis, elastic analysis, plasticity, mathematical approaches, etc.), at times difficult to reconcile, at others intertwined and complementary.   Readers will have the opportunity to compare different theoretical lines of inquiry and thus explore new horizons of research.   Contributions by: Danila Aita Andrea Bacigalupo Riccardo Barsotti Stefano Bennati Antonio Brencich Mario Como Salvatore D’Agostino Luigi Gambarotta Jacques Heyman Santiago Huer...

  12. Double-sided auction mechanism design in electricity based on maximizing social welfare

    International Nuclear Information System (INIS)

    Zou Xiaoyan

    2009-01-01

    An efficient electricity double-sided auction mechanism should control market power and enhance the social welfare of the electricity market. Based on this goal, the paper designs a new double-sided auction mechanism. In the new mechanism, the social welfare contribution of each participant plays a pivotal role, because this contribution is the critical factor in market clearing, payment settling, and transaction matching rules. In particular, each winner of the auction can gain transfer payments according to his contribution to social welfare in the electricity market, and this gives the mechanism the ability to control the market power of some participants. At the same time, this mechanism ensures that the market organizer balances his budget. We then conduct a theoretical and empirical analysis based on the Spanish electricity market. Both of the results show that compared to the uniform-pricing mechanism, the new mechanism can reduce market power of participants and enhance the social welfare of the electricity market.

  13. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. HIV Protease Inhibitor Use During Pregnancy Is Associated With Decreased Progesterone Levels, Suggesting a Potential Mechanism Contributing to Fetal Growth Restriction

    Science.gov (United States)

    Papp, Eszter; Mohammadi, Hakimeh; Loutfy, Mona R.; Yudin, Mark H.; Murphy, Kellie E.; Walmsley, Sharon L.; Shah, Rajiv; MacGillivray, Jay; Silverman, Michael; Serghides, Lena

    2015-01-01

    Background. Protease inhibitor (PI)–based combination antiretroviral therapy (cART) is administered during pregnancy to prevent perinatal human immunodeficiency virus (HIV) transmission. However, PI use has been associated with adverse birth outcomes, including preterm delivery and small-for-gestational-age (SGA) births. The mechanisms underlying these outcomes are unknown. We hypothesized that PIs contribute to these adverse events by altering progesterone levels. Methods. PI effects on trophoblast progesterone production were assessed in vitro. A mouse pregnancy model was used to assess the impact of PI-based cART on pregnancy outcomes and progesterone levels in vivo. Progesterone levels were assessed in plasma specimens from 27 HIV-infected and 17 HIV-uninfected pregnant women. Results. PIs (ritonavir, lopinavir, and atazanavir) but not nucleoside reverse transcriptase inhibitors (NRTIs) or nonnucleoside reverse transcriptase inhibitors reduced trophoblast progesterone production in vitro. In pregnant mice, PI-based cART but not dual-NRTI therapy was associated with significantly lower progesterone levels that directly correlated with fetal weight. Progesterone supplementation resulted in a significant improvement in fetal weight. We observed lower progesterone levels and smaller infants in HIV-infected women receiving PI-based cART, compared with the control group. In HIV-infected women, progesterone levels correlated significantly with birth weight percentile. Conclusions. Our data suggest that PI use in pregnancy may lead to lower progesterone levels that could contribute to adverse birth outcomes. PMID:25030058

  15. HIV protease inhibitor use during pregnancy is associated with decreased progesterone levels, suggesting a potential mechanism contributing to fetal growth restriction.

    Science.gov (United States)

    Papp, Eszter; Mohammadi, Hakimeh; Loutfy, Mona R; Yudin, Mark H; Murphy, Kellie E; Walmsley, Sharon L; Shah, Rajiv; MacGillivray, Jay; Silverman, Michael; Serghides, Lena

    2015-01-01

    Protease inhibitor (PI)-based combination antiretroviral therapy (cART) is administered during pregnancy to prevent perinatal human immunodeficiency virus (HIV) transmission. However, PI use has been associated with adverse birth outcomes, including preterm delivery and small-for-gestational-age (SGA) births. The mechanisms underlying these outcomes are unknown. We hypothesized that PIs contribute to these adverse events by altering progesterone levels. PI effects on trophoblast progesterone production were assessed in vitro. A mouse pregnancy model was used to assess the impact of PI-based cART on pregnancy outcomes and progesterone levels in vivo. Progesterone levels were assessed in plasma specimens from 27 HIV-infected and 17 HIV-uninfected pregnant women. PIs (ritonavir, lopinavir, and atazanavir) but not nucleoside reverse transcriptase inhibitors (NRTIs) or nonnucleoside reverse transcriptase inhibitors reduced trophoblast progesterone production in vitro. In pregnant mice, PI-based cART but not dual-NRTI therapy was associated with significantly lower progesterone levels that directly correlated with fetal weight. Progesterone supplementation resulted in a significant improvement in fetal weight. We observed lower progesterone levels and smaller infants in HIV-infected women receiving PI-based cART, compared with the control group. In HIV-infected women, progesterone levels correlated significantly with birth weight percentile. Our data suggest that PI use in pregnancy may lead to lower progesterone levels that could contribute to adverse birth outcomes. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  16. Bottom quark contribution to spin-dependent dark matter detection

    Directory of Open Access Journals (Sweden)

    Jinmian Li

    2016-05-01

    Full Text Available We investigate a previously overlooked bottom quark contribution to the spin-dependent cross section for Dark Matter (DM scattering from the nucleon. While the mechanism is relevant to any supersymmetric extension of the Standard Model, for illustrative purposes we explore the consequences within the framework of the Minimal Supersymmetric Standard Model (MSSM. We study two cases, namely those where the DM is predominantly Gaugino or Higgsino. In both cases, there is a substantial, viable region in parameter space (mb˜−mχ≲O(100 GeV in which the bottom contribution becomes important. We show that a relatively large contribution from the bottom quark is consistent with constraints from spin-independent DM searches, as well as some incidental model dependent constraints.

  17. Redox Fluctuations Increase the Contribution of Lignin to Soil Respiration

    Science.gov (United States)

    Hall, S. J.; Silver, W. L.; Timokhin, V.; Hammel, K.

    2014-12-01

    Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia has long been thought to suppress lignin decomposition, yet variation in oxygen (O2) availability in surface soils accompanying moisture fluctuations could potentially stimulate this process by generating reactive oxygen species via coupled biotic and abiotic iron (Fe) redox cycling. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten-week laboratory incubations. We used synthetic lignins labeled with 13C in either of two positions (aromatic methoxyl and propyl Cβ) to provide highly sensitive and specific measures of lignin mineralization not previously employed in soils. Four-day redox fluctuations increased the percent contribution of methoxyl C to soil respiration, and cumulative methoxyl C mineralization was equivalent under static aerobic and fluctuating redox conditions despite lower total C mineralization in the latter treatment. Contributions of the highly stable Cβ to mineralization were also equivalent in static aerobic and fluctuating redox treatments during periods of O2 exposure, and nearly doubled in the fluctuating treatment after normalizing to cumulative O2 exposure. Oxygen fluctuations drove substantial net Fe reduction and oxidation, implying that reactive oxygen species generated during abiotic Fe oxidation likely contributed to the elevated contribution of lignin to C mineralization. Iron redox cycling provides a mechanism for lignin breakdown in soils that experience conditions unfavorable for canonical lignin-degrading organisms, and provides a potential mechanism for lignin depletion in soil organic matter during late-stage decomposition. Thus, close couplings between soil moisture, redox fluctuations, and lignin breakdown provide potential a link between climate variability and

  18. Epigenetic mechanisms in schizophrenia.

    Science.gov (United States)

    Akbarian, Schahram

    2014-09-01

    Schizophrenia is a major psychiatric disorder that lacks a unifying neuropathology, while currently available pharmacological treatments provide only limited benefits to many patients. This review will discuss how the field of neuroepigenetics could contribute to advancements of the existing knowledge on the neurobiology and treatment of psychosis. Genome-scale mapping of DMA methylation, histone modifications and variants, and chromosomal loopings for promoter-enhancer interactions and other epigenetic determinants of genome organization and function are likely to provide important clues about mechanisms contributing to dysregulated expression of synaptic and metabolic genes in schizophrenia brain, including the potential links to the underlying genetic risk architecture and environmental exposures. In addition, studies in animal models are providing a rapidly increasing list of chromatin-regulatory mechanisms with significant effects on cognition and complex behaviors, thereby pointing to the therapeutic potential of epigenetic drug targets in the nervous system.

  19. Comparison of a two-body threshold (π,2π) reaction mechanism with the usual one-body mechanism in the deuteron

    International Nuclear Information System (INIS)

    Rockmore, R.

    1984-01-01

    A two-body threshold (π +- ,π +- π -+ ) reaction mechanism is suggested in direct analogy with pion absorption. The mechanism involves boson rescattering via Δ excitation. The relative importance of this mechanism and the ordinary one-body mechanism in nuclei is studied in the particular case of S-wave deuteron targets. The contribution of the two-body mechanism to the threshold reaction cross section is found to be less than 1% of the simple one-body estimate

  20. Contribution of deformation mechanisms to strength and ductility in two Cr-Mn grade austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S., E-mail: atef_saleh@s-petrol.suez.edu.eg [Materials Engineering Laboratory, Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P. [Materials Engineering Laboratory, Box 4200, University of Oulu, 90014 Oulu (Finland); Misra, R.D.K. [Center for Structural and Functional Materials and Chemical Engineering Department, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504-4130, USA. (United States); Talonen, J. [Outokumpu Oyj, Box 140, FI-02201 Espoo (Finland)

    2013-01-01

    The role of different deformation mechanisms in controlling mechanical properties were studied in two low-Ni, Cr-Mn austenitic stainless steel grades (Types 201 and 201L) by tensile testing and microstructure examinations. Tensile tests were carried out at two different strain rates, 5 Multiplication-Sign 10{sup -4} and 10{sup -2} s{sup -1}, in the temperature range from -80 Degree-Sign C to 200 Degree-Sign C. It was observed that the flow properties and work hardening rate are affected significantly by temperature and strain rate for the concerned steels through variation of deformation mechanism. Deformation-induced austenite-to-martensite transformation (TRIP effect) is the dominant mechanism at temperatures below room temperature. From 50 Degree-Sign C up to 200 Degree-Sign C, plastic deformation is controlled by mechanical twinning (TWIP effect) and dislocation glide. The electron backscattered diffraction (EBSD) technique and transmission electron microscopy (TEM) were employed to study the plastic deformation accommodation and identify the primary deformation mechanisms operating in the deformed steels.

  1. Mechanical performance of styrene-butadiene-rubber filled with carbon nanoparticles prepared by mechanical mixing

    Energy Technology Data Exchange (ETDEWEB)

    Saatchi, M.M. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran (Iran, Islamic Republic of); Shojaei, A., E-mail: akbar.shojaei@sharif.edu [Department of Chemical and Petroleum Engineering, Sharif University of Technology, P.O. Box 11155-9465, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Highlights: {yields} We compare influence of carbon blacks and carbon nanotube on properties of SBR. {yields} We model mechanical behavior of SBR nanocomposites by the micromechanical model. {yields} Mechanical properties of carbon black/SBR is greatly dominated by bound rubber. {yields} Mechanical properties of SBR/nanotube is governed by big aspect ratio of nanotube. - Abstract: Reinforcement of styrene-butadiene-rubber (SBR) was investigated using two different carbon blacks (CBs) with similar particle sizes, including highly structured CB and conventional CB, as well as multi-walled carbon nanotube (MWCNT) prepared by mechanical mixing. The attempts were made to examine reinforcing mechanism of these two different classes of carbon nanoparticles. Scanning electron microscopy and electrical conductivity measurement were used to investigate morphology. Tensile, cyclic tensile and stress relaxation analyses were performed. A modified Halpin-Tsai model based on the concept of an equivalent composite particle, consisting of rubber bound, occluded rubber and nanoparticle, was proposed. It was found that properties of CB filled SBR are significantly dominated by rubber shell and occluded rubber in which molecular mobility is strictly restricted. At low strains, these rubber constituents can contribute in hydrodynamic effects, leading to higher elastic modulus. However, at higher strains, they contribute in stress hardening resulting in higher elongation at break and higher tensile strength. These elastomeric regions can also influence stress relaxation behaviors of CB filled rubber. For SBR/MWCNT, the extremely great inherent mechanical properties of nanotube along with its big aspect ratio were postulated to be responsible for the reinforcement while their interfacial interaction was not so efficient.

  2. Study of the dislocation contribution to the internal friction background of gold

    Science.gov (United States)

    Baur, J.; Benoit, W.

    1987-04-01

    The dislocation contribution to the internal friction (IF) background is studied in annealed gold samples containing various dilute concentrations of platinum impurities. The measurements are performed in the kHz frequency range in order to determine the loss mechanism responsible for the high IF background observed at these low frequencies. To this end, the IF background was systematically measured as a function of frequency, vibration amplitude, temperature, and impurity concentration. The experimental results show that the high dislocation contribution observed in annealed samples is strain-amplitude independent for amplitudes in the range 10-7 to 2×10-6, but rapidly decreases for amplitudes smaller than 10-7. In particular, the dislocation contribution tends to zero when the strain amplitude tends to zero. Furthermore, this contribution is frequency independent. These observations demonstrate that the dislocation contribution cannot be explained by relaxations. In particular, this contribution cannot be attributed to a viscous damping of the dislocation motion. On the contrary, the experiments show that the IF background due to dislocations must be explained by hysteretic and athermal motions of dislocations interacting with point defects. However, these hysteretic motions are not due to breakaway of dislocations from pinning points distributed along their length. The experimental results can be explained by the presence of point defects close to the dislocations, but not on them. The mechanical energy loss is attributed to hysteretic motions of dislocations between potential minima created by point defects.

  3. Glucocorticoids in the prefrontal cortex enhance memory consolidation and impair working memory by a common neural mechanism

    Science.gov (United States)

    Barsegyan, Areg; Mackenzie, Scott M.; Kurose, Brian D.; McGaugh, James L.; Roozendaal, Benno

    2010-01-01

    It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be independently regulated processes. Here we report that a glucocorticoid receptor agonist administered into the medial prefrontal cortex (mPFC) of male Sprague-Dawley rats both enhances memory consolidation and impairs working memory. Both memory effects are mediated by activation of a membrane-bound steroid receptor and depend on noradrenergic activity within the mPFC to increase levels of cAMP-dependent protein kinase. These findings provide direct evidence that glucocorticoid effects on both memory consolidation and working memory share a common neural influence within the mPFC. PMID:20810923

  4. Projection specificity in heterogeneous locus coeruleus cell populations: implications for learning and memory

    Science.gov (United States)

    Uematsu, Akira; Tan, Bao Zhen

    2015-01-01

    Noradrenergic neurons in the locus coeruleus (LC) play a critical role in many functions including learning and memory. This relatively small population of cells sends widespread projections throughout the brain including to a number of regions such as the amygdala which is involved in emotional associative learning and the medial prefrontal cortex which is important for facilitating flexibility when learning rules change. LC noradrenergic cells participate in both of these functions, but it is not clear how this small population of neurons modulates these partially distinct processes. Here we review anatomical, behavioral, and electrophysiological studies to assess how LC noradrenergic neurons regulate these different aspects of learning and memory. Previous work has demonstrated that subpopulations of LC noradrenergic cells innervate specific brain regions suggesting heterogeneity of function in LC neurons. Furthermore, noradrenaline in mPFC and amygdala has distinct effects on emotional learning and cognitive flexibility. Finally, neural recording data show that LC neurons respond during associative learning and when previously learned task contingencies change. Together, these studies suggest a working model in which distinct and potentially opposing subsets of LC neurons modulate particular learning functions through restricted efferent connectivity with amygdala or mPFC. This type of model may provide a general framework for understanding other neuromodulatory systems, which also exhibit cell type heterogeneity and projection specificity. PMID:26330494

  5. Disentangling the roles of arousal and amygdala activation in emotional declarative memory.

    Science.gov (United States)

    de Voogd, Lycia D; Fernández, Guillén; Hermans, Erno J

    2016-09-01

    A large body of evidence in animals and humans implicates the amygdala in promoting memory for arousing experiences. Although the amygdala can trigger threat-related noradrenergic-sympathetic arousal, in humans amygdala activation and noradrenergic-sympathetic arousal do not always concur. This raises the question how these two processes play a role in enhancing emotional declarative memory. This study was designed to disentangle these processes in a combined subsequent-memory/fear-conditioning paradigm with neutral items belonging to two conceptual categories as conditioned stimuli. Functional MRI, skin conductance (index of sympathetic activity), and pupil dilation (indirect index of central noradrenergic activity) were acquired throughout procedures. Recognition memory for individual items was tested 24 h later. We found that pupil dilation and skin conductance responses were higher on CS+ (associated with a shock) compared with CS- trials, irrespective of later memory for those items. By contrast, amygdala activity was only higher for CS+ items that were later confidently remembered compared with CS+ items that were later forgotten. Thus, amygdala activity and not noradrenergic-sympathetic arousal, predicted enhanced declarative item memory. This dissociation is in line with animal models stating that the amygdala integrates arousal-related neuromodulatory changes to alter mnemonic processes elsewhere in the brain. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Electrophysiological and neurochemical changes in the rat hippocampus after in vitro and in vivo treatments with cocaine

    International Nuclear Information System (INIS)

    Yasuda, R.P.

    1986-01-01

    The in vitro and in vivo effects of cocaine in the noradrenergic pathway in the rat hippocampus were examined. Although the blockade of [ 3 H]-norepinephrine-uptake by cocaine has been well-characterized in both the central and peripheral nervous systems, investigations characterizing the electrophysiological effects of cocaine in the central nervous system have been limited. The first part of this thesis examines the relationship between the ability of cocaine to potentiate the electrophysiological response to norepinephrine (NE) and the ability of cocaine to block noradrenergic high affinity uptake in rat hippocampal slices. The second part of this thesis examines the effects of the repeated administration of cocaine on noradrenergic pre- and postsynaptic function and receptors of the rat hippocampus. These studies demonstrate that after repeated administration of cocaine (10 mg/kg/day) for 8 and 14 days there is a 50% decrease in NE high affinity uptake in the rat hippocampus. This was accompanied by a 40% increase in a binding site for NE uptake inhibitors at 14 days. In contrast to these effects, there was no effect on β-adrenergic receptor number or the isoproterenol induced electrophysiological responsiveness in the rat hippocampus. The conclusion of these studies is that the repeated administration of cocaine has a greater effect on presynaptic targets in the noradrenergic system than on postsynaptic neurons

  7. Molecular and cellular mechanisms of cadmium carcinogenesis

    International Nuclear Information System (INIS)

    Waisberg, Michael; Joseph, Pius; Hale, Beverley; Beyersmann, Detmar

    2003-01-01

    Cadmium is a heavy metal, which is widely used in industry, affecting human health through occupational and environmental exposure. In mammals, it exerts multiple toxic effects and has been classified as a human carcinogen by the International Agency for Research on Cancer. Cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Cd 2+ does not catalyze Fenton-type reactions because it does not accept or donate electrons under physiological conditions, and it is only weakly genotoxic. Hence, indirect mechanisms are implicated in the carcinogenicity of cadmium. In this review multiple mechanisms are discussed, such as modulation of gene expression and signal transduction, interference with enzymes of the cellular antioxidant system and generation of reactive oxygen species (ROS), inhibition of DNA repair and DNA methylation, role in apoptosis and disruption of E-cadherin-mediated cell-cell adhesion. Cadmium affects both gene transcription and translation. The major mechanisms of gene induction by cadmium known so far are modulation of cellular signal transduction pathways by enhancement of protein phosphorylation and activation of transcription and translation factors. Cadmium interferes with antioxidant defense mechanisms and stimulates the production of reactive oxygen species, which may act as signaling molecules in the induction of gene expression and apoptosis. The inhibition of DNA repair processes by cadmium represents a mechanism by which cadmium enhances the genotoxicity of other agents and may contribute to the tumor initiation by this metal. The disruption of E-cadherin-mediated cell-cell adhesion by cadmium probably further stimulates the development of tumors. It becomes clear that there exist multiple mechanisms which contribute to the carcinogenicity of cadmium, although the relative weights of these contributions are difficult to estimate

  8. Differences in Binding and Monitoring Mechanisms Contribute to Lifespan Age Differences in False Memory

    Science.gov (United States)

    Fandakova, Yana; Shing, Yee Lee; Lindenberger, Ulman

    2013-01-01

    Based on a 2-component framework of episodic memory development across the lifespan (Shing & Lindenberger, 2011), we examined the contribution of memory-related binding and monitoring processes to false memory susceptibility in childhood and old age. We administered a repeated continuous recognition task to children (N = 20, 10-12 years),…

  9. 2014 Annual Conference on Experimental and Applied Mechanics

    CERN Document Server

    Korach, Chad; Zavattieri, Pablo; Prorok, Barton; Grande-Allen, K; Carroll, Jay; Daly, Samantha; Qi, H; Antoun, Bonnie; Hall, Richard; Lu, Hongbing; Arzoumanidis, Alex; Silberstein, Meredith; Furmanski, Jevan; Amirkhizi, Alireza; Gonzalez-Gutierrez, Joamin; Jin, Helena; Sciammarella, Cesar; Yoshida, Sanichiro; Lamberti, Luciano; Sottos, Nancy; Rowlands, Robert; Dannemann, Kathryn; Tandon, Gyaneshwar; Song, Bo; Casem, Daniel; Kimberley, Jamie; Starman, LaVern; Hay, Jennifer; Shaw, Gordon

    2015-01-01

    Proceedings of the 2014 Annual Conference on Experimental and Applied Mechanics, the seventh volume of eight from the Conference, brings together contributions to this important area of research and engineering.  The collection presents early findings and case studies on a wide range of areas, including: Soft Tissues Mechanics Natural Materials & Bio-Inspiration Tissue Engineering Cells Mechanics

  10. Deep brain stimulation reveals emotional impact processing in ventromedial prefrontal cortex

    DEFF Research Database (Denmark)

    Gjedde, Albert; Geday, Jacob

    2009-01-01

    We tested the hypothesis that modulation of monoaminergic tone with deep-brain stimulation (DBS) of subthalamic nucleus would reveal a site of reactivity in the ventromedial prefrontal cortex that we previously identified by modulating serotonergic and noradrenergic mechanisms by blocking serotonin......-noradrenaline reuptake sites. We tested the hypothesis in patients with Parkinson's disease in whom we had measured the changes of blood flow everywhere in the brain associated with the deep brain stimulation of the subthalamic nucleus. We determined the emotional reactivity of the patients as the average impact...

  11. Sympathetic ingrowth: A result of cholinergic nerve injury in the adult mammalian brain

    International Nuclear Information System (INIS)

    Davis, J.N.

    1986-01-01

    This paper describes sympathetic ingrowth, its regulation and function. The study leads to a better understanding of the molecular mechanisms that probably underlie the regulation of other neuronal rearrangements. The authors examine tritium-2-deoxyglucose uptake in the hippocampal formation after septal leasions. Preliminary experiments suggest that the septo-hippocampal fibers do influence tritium-2-deoxyglucose uptake throughout the hippocampal formation in normal animals. If sympathetic ingrowth also can influence this uptake, this could provide further evidence for an adaptive role of this noradrenergic replacement of cholinergic neurons

  12. Quantitative Proteomic Analysis Reveals that Antioxidation Mechanisms Contribute to Cold Tolerance in Plantain (Musa paradisiaca L.; ABB Group) Seedlings*

    Science.gov (United States)

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A.; Chen, Wei; Yang, Yong; Rose, Jocelyn K. C.; Zhang, Sheng; Yi, Gan-Jun

    2012-01-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by

  13. Quantitative proteomic analysis reveals that antioxidation mechanisms contribute to cold tolerance in plantain (Musa paradisiaca L.; ABB Group) seedlings.

    Science.gov (United States)

    Yang, Qiao-Song; Wu, Jun-Hua; Li, Chun-Yu; Wei, Yue-Rong; Sheng, Ou; Hu, Chun-Hua; Kuang, Rui-Bin; Huang, Yong-Hong; Peng, Xin-Xiang; McCardle, James A; Chen, Wei; Yang, Yong; Rose, Jocelyn K C; Zhang, Sheng; Yi, Gan-Jun

    2012-12-01

    Banana and its close relative, plantain are globally important crops and there is considerable interest in optimizing their cultivation. Plantain has superior cold tolerance compared with banana and a thorough understanding of the molecular mechanisms and responses of plantain to cold stress has great potential value for developing cold tolerant banana cultivars. In this study, we used iTRAQ-based comparative proteomic analysis to investigate the temporal responses of plantain to cold stress. Plantain seedlings were exposed for 0, 6, and 24 h of cold stress at 8 °C and subsequently allowed to recover for 24 h at 28 °C. A total of 3477 plantain proteins were identified, of which 809 showed differential expression from the three treatments. The majority of differentially expressed proteins were predicted to be involved in oxidation-reduction, including oxylipin biosynthesis, whereas others were associated with photosynthesis, photorespiration, and several primary metabolic processes, such as carbohydrate metabolic process and fatty acid beta-oxidation. Western blot analysis and enzyme activity assays were performed on seven differentially expressed, cold-response candidate plantain proteins to validate the proteomics data. Similar analyses of the seven candidate proteins were performed in cold-sensitive banana to examine possible functional conservation, and to compare the results to equivalent responses between the two species. Consistent results were achieved by Western blot and enzyme activity assays, demonstrating that the quantitative proteomics data collected in this study are reliable. Our results suggest that an increase of antioxidant capacity through adapted ROS scavenging capability, reduced production of ROS, and decreased lipid peroxidation contribute to molecular mechanisms for the increased cold tolerance in plantain. To the best of our knowledge, this is the first report of a global investigation on molecular responses of plantain to cold stress by

  14. Modeling low pressure baroreceptors and their contribution to blood pressure control

    Directory of Open Access Journals (Sweden)

    Sánchez de Zambrano, Betsy Mirley

    2016-10-01

    Full Text Available The main mechanism for blood pressure (BP control is coordinated by the central nervous system through the sympathetic and parasympathetic systems. In order to simulate this mechanism, different mathematical models are available, but they take into account only the high pressure receptors as sensing systems for BP. However, other receptors located in low pressure areas have not, as far as we know, been considered in the models described in the literature, despite their important role in the nervous BP control. This paper presents a mathematical model for the representation of low pressure receptors by means of the detection of atrial volume changes, and their contribution to immediate BP control through nervous stimulation of the heart rate. The proposed model was coupled to the sensor mechanism of a larger model. With this model it is possible to analyze the contribution and behavior of low pressure receptors, thus allowing a better understanding of this complex system under normal and pathological conditions, since it includes important variables in the immediate BP control, not included in previous models.

  15. Disentangling the contribution of the paretic and non-paretic leg to balance control in stroke.

    NARCIS (Netherlands)

    van Asseldonk, Edwin H.F.; Buurke, Jaap; Bloem, Bastiaan R.; van der Helm, F.C.T.; Renzenbrink, Gerbert J.; van der Kooij, Herman; Nene, A.V.

    2005-01-01

    During stroke recovery, restoration of the paretic ankle and compensation in the non-paretic ankle may contribute to improved balance maintenance. We examine a new approach to disentangle these recovery mechanisms by objectively quantifying the contribution of each ankle to balance maintenance.

  16. The mechanism of contribution to the taxes of the electricity public service; Le mecanisme de contribution aux Charges de Service Public d'Electricite

    Energy Technology Data Exchange (ETDEWEB)

    Blonde, G; Poizat, F; Triboulet, A [IED, Louvain-la-Neuve (Belgium)

    2008-02-15

    This report presents the results of an expertise realized by the Institute of the Energy and development for the CCE of EDF. The CSPE is a mechanism of mutualization of taxes of the electricity public service. These taxes concern the impact of the tariffs adjustment, the assistance to systems of energy conservation, the solidarity to poor households. the document presents the historical aspects and the bases of the mechanism, the cost of the global compensation, the foundations of this mutualization system, the forecasts and some recommendations. (A.L.B.)

  17. ATP Supply May Contribute to Light-Enhanced Calcification in Corals More Than Abiotic Mechanisms

    Directory of Open Access Journals (Sweden)

    Giovanni Galli

    2018-03-01

    Full Text Available Zooxanthellate corals are known to increase calcification rates when exposed to light, a phenomenon called light-enhanced calcification that is believed to be mediated by symbionts' photosynthetic activity. There is controversy over the mechanism behind this phenomenon, with hypotheses coarsely divided between abiotic and biologically-mediated mechanisms. At the same time, accumulating evidence shows that calcification in corals relies on active ion transport to deliver the skeleton building blocks into the calcifying medium, making it is an energetically costly activity. Here we build on generally accepted conceptual models of the coral calcification machinery and conceptual models of the energetics of coral-zooxanthellae symbiosis to develop a model that can be used to isolate the biologically-mediated and abiotic effects of photosynthesis, respiration, temperature, and seawater chemistry on coral calcification rates and related metabolic costs. We tested this model on data from the Mediterranean scleractinian Cladocora caespitosa, an acidification resistant species. We concluded that most of the variation in calcification rates due to photosynthesis, respiration and temperature can be attributed to biologically-mediated mechanisms, in particular to the ATP supplied to the active ion transports. Abiotic effects are also present but are of smaller magnitude. Instead, the decrease in calcification rates caused by acidification, albeit small, is sustained by both abiotic and biologically-mediated mechanisms. However, there is a substantial extra cost of calcification under acidified conditions. Based on these findings and on a literature review we suggest that the energy aspect of coral calcification might have been so far underappreciated.

  18. Justice mechanisms and the question of legitimacy: the example of Rwanda's multi-layered justice mechanisms

    OpenAIRE

    Oomen, B.; Ambos, K.; Large, J.; Wierda, M.

    2009-01-01

    Legitimacy, this contribution argues, plays a key role in connecting transitional justice mechanisms to sustainable peace, and strengthening people's perceptions of legitimacy should be of concern to all those involved in these institutions. Here, it is important to take an empirical, people-based approach to legitimacy, with regard for its dynamic quality. This approach should focus on all three dimensions of legitimacy: the input into transitional justice mechanisms, the popular adherence t...

  19. Growth hormone response to guanfacine in boys with attention deficit hyperactivity disorder: a preliminary study.

    Science.gov (United States)

    Halperin, Jeffrey M; Newcorn, Jeffrey H; McKay, Kathleen E; Siever, Larry J; Sharma, Vanshdeep

    2003-01-01

    This preliminary study evaluated a method for assessing central noradrenergic function in children via the growth hormone response to a single dose of the alpha-2 adrenergic receptor agonist guanfacine and examined whether this measure distinguishes between attention deficit hyperactivity disorder (ADHD) boys with and without reading disabilities (RD). Plasma growth hormone was assessed before and after the oral administration of guanfacine and placebo in boys with ADHD who were divided into subgroups based on the presence (n = 3) or absence (n = 5) of RD. Guanfacine and placebo conditions did not differ at baseline, but peak growth hormone was significantly higher following guanfacine. The increase in growth hormone following guanfacine was significantly greater in boys without RD as compared to those with RD, with no overlap between the groups. Consistent with findings using peripheral measures of noradrenergic function, these preliminary data suggest that ADHD boys with and without RD may differ in central noradrenergic function.

  20. Inequity in Health Care Financing in Iran: Progressive or Regressive Mechanism?

    Science.gov (United States)

    Rad, Enayatollah Homaie; Khodaparast, Marzie

    2016-06-01

    Having progressive health finance mechanism is very important to decrease inequity in health systems. Revenue collection is one of the aspects of health care financing. In this study, taxation system and health insurance contribution of Iranians were assessed. Data of 2012 household expenditures survey were used in this study, and payments of the families for health insurances and tax payments were extracted from the study. Kakwani index was calculated for assessing the progressivity of these payments. At the end, a model was designed to find the effective factors. We found that taxation mechanism was progressive, but insurance contribution mechanism was very regressive. The portion of people living in urban regions was higher in the payments of insurance and tax. Less educated families had lower contribution in health insurance and families with more aging persons paid more for health insurance. Policy makers must pay more attention to the health insurance contribution and change the laws in favour of the poor.

  1. Mechanical design in embryos: mechanical signalling, robustness and developmental defects.

    Science.gov (United States)

    Davidson, Lance A

    2017-05-19

    Embryos are shaped by the precise application of force against the resistant structures of multicellular tissues. Forces may be generated, guided and resisted by cells, extracellular matrix, interstitial fluids, and how they are organized and bound within the tissue's architecture. In this review, we summarize our current thoughts on the multiple roles of mechanics in direct shaping, mechanical signalling and robustness of development. Genetic programmes of development interact with environmental cues to direct the composition of the early embryo and endow cells with active force production. Biophysical advances now provide experimental tools to measure mechanical resistance and collective forces during morphogenesis and are allowing integration of this field with studies of signalling and patterning during development. We focus this review on concepts that highlight this integration, and how the unique contributions of mechanical cues and gradients might be tested side by side with conventional signalling systems. We conclude with speculation on the integration of large-scale programmes of development, and how mechanical responses may ensure robust development and serve as constraints on programmes of tissue self-assembly.This article is part of the themed issue 'Systems morphodynamics: understanding the development of tissue hardware'. © 2017 The Author(s).

  2. The clean development mechanism's contribution to sustainable development: A review of the literature

    DEFF Research Database (Denmark)

    Olsen, Karen Holm

    2007-01-01

    The challenges of how to respond to climate change and ensure sustainable development are currently high on the political agenda among the world's leading nations. The Clean Development Mechanism (CDM) is part of the global carbon market developing rapidly as part of the Kyoto response towards...

  3. Enhancing medicine price transparency through price information mechanisms.

    Science.gov (United States)

    Hinsch, Michael; Kaddar, Miloud; Schmitt, Sarah

    2014-05-08

    Medicine price information mechanisms provide an essential tool to countries that seek a better understanding of product availability, market prices and price compositions of individual medicines. To be effective and contribute to cost savings, these mechanisms need to consider prices in their particular contexts when comparing between countries. This article discusses in what ways medicine price information mechanisms can contribute to increased price transparency and how this may affect access to medicines for developing countries. We used data collected during the course of a WHO project focusing on the development of a vaccine price and procurement information mechanism. The project collected information from six medicine price information mechanisms and interviewed data managers and technical experts on key aspects as well as observed market effects of these mechanisms.The reviewed mechanisms were broken down into categories including objective and target audience, as well as the sources, types and volumes of data included. Information provided by the mechanisms was reviewed according to data available on medicine prices, product characteristics, and procurement modalities. We found indications of positive effects on access to medicines resulting from the utilization of the reviewed mechanisms. These include the uptake of higher quality medicines, more favorable results from contract negotiations, changes in national pricing policies, and the decrease of prices in certain segments for countries participating in or deriving data from the various mechanisms. The reviewed mechanisms avoid the methodological challenges observed for medicine price comparisons that only use national price databases. They work with high quality data and display prices in the appropriate context of procurement modalities as well as the peculiarities of purchasing countries. Medicine price information mechanisms respond to the need for increased medicine price transparency and have the

  4. Contribution of maintenance group towards automation/mechanization in natural uranium fuel plants

    International Nuclear Information System (INIS)

    Banerjee, P.K.

    1997-01-01

    Competition in an increasingly global economy has created new benchmarks. Developing successful efforts to continuously improve performance is becoming a key responsibility of engineers and managers in all organisations. Recent studies have shown that maintenance has got great impact on the overall performance and profitability of the organisations. Development of mechanization and automation in existing equipment has a direct bearing on the available manpower, production requirement, quality specification for raw material, energy consumption and working environment

  5. Nuclear Mechanics and Stem Cell Differentiation.

    Science.gov (United States)

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  6. Characteristics of the wood adhesion bonding mechanism using hydroxymethyl resorcinol

    Science.gov (United States)

    Douglas J. Gardner; Charles E. Frazier; Alfred W. Christiansen

    2006-01-01

    A recent collaborative effort among the U.S. Forest Products Laboratory, Virginia Tech, and the University of Maine has explored the possible bonding mechanisms contributing to durable wood adhesive bonding using hydroxymethyl resorcinol (HMR) surface treatment. Current adhesive bonding mechanisms include: mechanical interlocking, electronic or electrostatic theory,...

  7. Challenges of citizen science contributions to modelling hydrodynamics of floods

    Science.gov (United States)

    Assumpção, Thaine Herman; Popescu, Ioana; Jonoski, Andreja; Solomatine, Dimitri P.

    2017-04-01

    Citizen science is an established mechanism in many fields of science, including ecology, biology and astronomy. Citizen participation ranges from collecting and interpreting data towards designing experiments with scientists and cooperating with water management authorities. In the environmental sciences, its potential has begun to be explored in the past decades and many studies on the applicability to water resources have emerged. Citizen Observatories are at the core of several EU-funded projects such as WeSenseIt, GroundTruth, GroundTruth 2.0 and SCENT (Smart Toolbox for Engaging Citizens into a People-Centric Observation Web) that already resulted in valuable contributions to the field. Buytaert et al. (2014) has already reviewed the role of citizen science in hydrology. The work presented here aims to complement it, reporting and discussing the use of citizen science for modelling the hydrodynamics of floods in a variety of studies. Additionally, it highlights the challenges that lie ahead to utilize more fully the citizen science potential contribution. In this work, focus is given to each component of hydrodynamic models: water level, velocity, flood extent, roughness and topography. It is addressed how citizens have been contributing to each aspect, mainly considering citizens as sensors and citizens as data interpreters. We consider to which kind of model (1D or 2D) the discussed approaches contribute and what their limitations and potential uses are. We found that although certain mechanisms are well established (e.g. the use of Volunteer Geographic Information for soft validation of land-cover and land-use maps), the applications in a modelling context are rather modest. Also, most studies involving models are limited to replacing traditional data with citizen data. We recommend that citizen science continue to be explored in modelling frameworks, in different case studies, taking advantage of the discussed mechanisms and of new sensor technologies

  8. 12th International Congress of Applied Mechanics

    CERN Document Server

    Vincenti, Walter

    1969-01-01

    This volume contains the Proceedings of the Twelfth International Congress of Applied Mechanics, held at Stanford University on August 26 to 31, 1968. The Congress was organized by the International Union of Theoretical and Applied Mechanics; members of the IUTAM Congress Committee and Bureau are listed under Congress Organization. The members of the Stanford Organizing Committee, which was responsible for the detailed organization of the Congress, are also given, as are the names of the sponsors and the industrial and educational organizations that contributed so generously to the financial support of the meeting. Those attending the Congress came from 32 countries and totaled 1337 persons, plus wives and children. A list of the registered participants is included in the volume. The technical sessions of the Congress comprised four General Lectures and 281 contributed papers, the latter being presented in groups of five simultaneous sessions. The final choice of the contributed papers was made on the basis o...

  9. Disentangling the contribution of the paretic and non-paretic ankle to balance control in stroke patients.

    NARCIS (Netherlands)

    Asseldonk, E.H.F. van; Buurke, J.H.; Bloem, B.R.; Renzenbrink, G.J.; Nene, A.V.; Helm, F.C.T. van der; Kooij, H. van der

    2006-01-01

    During stroke recovery, restoration of the paretic ankle and compensation in the non-paretic ankle may contribute to improved balance maintenance. We examine a new approach to disentangle these recovery mechanisms by objectively quantifying the contribution of each ankle to balance maintenance.

  10. Investigations of the mechanical loss of tantala films between 5 and 300 K

    Energy Technology Data Exchange (ETDEWEB)

    Hudl, Matthias; Nawrodt, Ronny; Zimmer, Anja; Nietzsche, Sandor; Vodel, Wolfgang; Seidel, Paul [Friedrich Schiller University (Germany); Tuennermann, Andreas [Institute of Solid-State Physics, Helmholtzweg 5, D-07743 Jena (Germany),; Friedrich Schiller University-Institute of Applied Physics, Jena (Germany)

    2007-07-01

    Mechanical losses in dielectric mirror coatings of interferometric gravitational wave detectors are a main issue for the proposed advanced generation of gravitational wave detectors. Recent investigations have shown that the mechanical loss of the dielectric mirror coatings (tantala/silica stacks) is probably the main contribution to the detector noise. There are indications that among both coating materials tantala gives the major contribute to mechanical loss. Experimental details of a measuring setup and investigations of the temperature dependency of the mechanical dissipation in thin tantala films on different substrates are presented.

  11. The beneficial effects of meditation: contribution of the anterior cingulate and locus coeruleus

    Directory of Open Access Journals (Sweden)

    Nancy Alker Craigmyle

    2013-10-01

    Full Text Available Abstract During fMRI studies of meditation the cortical salience detecting and executive networks become active during awareness of mind wandering, shifting and sustained attention. The anterior cingulate (AC is activated during awareness of mind wandering.The AC modulates both the peripheral sympathetic nervous system (SNS and the central locus coeruleus (LC norepinephrine systems, which form the principal neuromodulatory system, regulating in multiple ways both neuronal and non-neuronal cells to maximize adaptation in changing environments. The LC is the primary source of central norepinephrine (C-NE and nearly the exclusive source of cortical norepinephrine. Normally activated by novel or salient stimuli, the AC initially inhibits the SNS reflexively, lowering peripheral norepinephrine (P-NE and activates the LC, increasing C-NE.Moderate levels of C-NE enhance working memory through alpha 2 adrenergic receptors, while higher levels of C-NE, acting on alpha 1 and beta receptors, enhance other executive network functions such as the stopping of ongoing behavior, attentional set shifting and sustained attention. The actions of the AC on both the central and peripheral noradrenergic systems are implicated in the beneficial effects of meditation. This paper will explore some of the known functions and interrelationships of the AC, SNS and LC with respect to their possible relevance to meditation.

  12. Pharmacological and therapeutic directions in ADHD: Specificity in the PFC

    Directory of Open Access Journals (Sweden)

    Levy Florence

    2008-02-01

    Full Text Available Abstract Background Recent directions in the treatment of ADHD have involved both a broadening of pharmacological perspectives to include nor-adrenergic as well as dopaminergic agents. A review of animal and human studies of pharmacological and therapeutic directions in ADHD suggests that the D1 receptor is a specific site for dopaminergic regulation of the PFC, but optimal levels of dopamine (DA are required for beneficial effects on working memory. Animal and human studies indicate that the alpha-2A receptor is also important for prefrontal regulation, leaving open the question of the relative importance of these receptor sites. The therapeutic effects of ADHD medications in the prefrontal cortex have focused attention on the development of working memory capacity in ADHD. Hypothesis The actions of dopaminergic vs noradrenergic agents, currently available for the treatment of ADHD have overlapping, but different actions in the prefrontal cortex (PFC and subcortical centers. While stimulants act on D1 receptors in the dorsolateral prefrontal cortex, they also have effects on D2 receptors in the corpus striatum and may also have serotonergic effects at orbitofrontal areas. At therapeutic levels, dopamine (DA stimulation (through DAT transporter inhibition decreases noise level acting on subcortical D2 receptors, while NE stimulation (through alpha-2A agonists increases signal by acting preferentially in the PFC possibly on DAD1 receptors. On the other hand, alpha-2A noradrenergic transmission is more limited to the prefrontal cortex (PFC, and thus less likely to have motor or stereotypic side effects, while alpha-2B and alpha-2C agonists may have wider cortical effects. The data suggest a possible hierarchy of specificity in the current medications used in the treatment of ADHD, with guanfacine likely to be most specific for the treatment of prefrontal attentional and working memory deficits. Stimulants may have broader effects on both vigilance

  13. Justice mechanisms and the question of legitimacy: the example of Rwanda's multi-layered justice mechanisms

    NARCIS (Netherlands)

    Oomen, B.; Ambos, K.; Large, J.; Wierda, M.

    2009-01-01

    Legitimacy, this contribution argues, plays a key role in connecting transitional justice mechanisms to sustainable peace, and strengthening people's perceptions of legitimacy should be of concern to all those involved in these institutions. Here, it is important to take an empirical, people-based

  14. Mechanical vibration where do we stand?

    CERN Document Server

    Schneider, Wilhelm; Elishakoff, Isaac

    2007-01-01

    Written by the world’s leading researchers on various topics of linear, nonlinear, and stochastic mechanical vibrations, this work gives an authoritative overview of the classic yet still very modern subject of mechanical vibrations. It poses the question: What are the most important contributions made in the past decade The reader will be able to gain a critical and authoritative overview of the subject from various complementary perspectives.

  15. Anti-dopamine beta-hydroxylase immunotoxin-induced sympathectomy in adult rats

    Science.gov (United States)

    Picklo, M. J.; Wiley, R. G.; Lonce, S.; Lappi, D. A.; Robertson, D.

    1995-01-01

    Anti-dopamine beta-hydroxylase immunotoxin (DHIT) is an antibody-targeted noradrenergic lesioning tool comprised of a monoclonal antibody against the noradrenergic enzyme, dopamine beta-hydroxylase, conjugated to saporin, a ribosome-inactivating protein. Noradrenergic-neuron specificity and completeness and functionality of sympathectomy were assessed. Adult, male Sprague-Dawley rats were given 28.5, 85.7, 142 or 285 micrograms/kg DHIT i.v. Three days after injection, a 6% to 73% decrease in the neurons was found in the superior cervical ganglia of the animals. No loss of sensory, nodose and dorsal root ganglia, neurons was observed at the highest dose of DHIT. In contrast, the immunotoxin, 192-saporin (142 micrograms/kg), lesioned all three ganglia. To assess the sympathectomy, 2 wk after treatment (285 micrograms/kg), rats were anesthetized with urethane (1 g/kg) and cannulated in the femoral artery and vein. DHIT-treated animals' basal systolic blood pressure and heart rate were significantly lower than controls. Basal plasma norepinephrine levels were 41% lower in DHIT-treated animals than controls. Tyramine-stimulated release of norepinephrine in DHIT-treated rats was 27% of controls. Plasma epinephrine levels of DHIT animals were not reduced. DHIT-treated animals exhibited a 2-fold hypersensitivity to the alpha-adrenergic agonist phenylephrine. We conclude that DHIT selectively delivered saporin to noradrenergic neurons resulting in destruction of these neurons. Anti-dopamine beta-hydroxylase immunotoxin administration produces a rapid, irreversible sympathectomy.

  16. Beta adrenergic blockade reduces utilitarian judgement

    Science.gov (United States)

    Sylvia, Terbeck; Guy, Kahane; Sarah, McTavish; Julian, Savulescu; Neil, Levy; Miles, Hewstone; Cowen, Philip J.

    2013-01-01

    Noradrenergic pathways are involved in mediating the central and peripheral effects of physiological arousal. The aim of the present study was to investigate the role of noradrenergic transmission in moral decision-making. We studied the effects in healthy volunteers of propranolol (a noradrenergic beta-adrenoceptor antagonist) on moral judgement in a set of moral dilemmas pitting utilitarian outcomes (e.g., saving five lives) against highly aversive harmful actions (e.g., killing an innocent person) in a double-blind, placebo-controlled, parallel group design. Propranolol (40 mg orally) significantly reduced heart rate, but had no effect on self-reported mood. Importantly, propranolol made participants more likely to judge harmful actions as morally unacceptable, but only in dilemmas where harms were ‘up close and personal’. In addition, longer response times for such personal dilemmas were only found for the placebo group. Finally, judgments in personal dilemmas by the propranolol group were more decisive. These findings indicate that noradrenergic pathways play a role in responses to moral dilemmas, in line with recent work implicating emotion in moral decision-making. However, contrary to current theorising, these findings also suggest that aversion to harming is not driven by emotional arousal. Our findings are also of significant practical interest given that propranolol is a widely used drug in different settings, and is currently being considered as a potential treatment for post-traumatic stress disorder in military and rescue service personnel. PMID:23085134

  17. Cortisol boosts risky decision-making behavior in men but not in women.

    Science.gov (United States)

    Kluen, Lisa Marieke; Agorastos, Agorastos; Wiedemann, Klaus; Schwabe, Lars

    2017-10-01

    Acute stress may escalate risky decision-making in men, while there is no such effect in women. Although first evidence links these gender-specific effects of stress to stress-induced changes in cortisol, whether elevated cortisol is indeed sufficient to boost risk-taking, whether a potential cortisol effect depends on simultaneous noradrenergic activation, and whether cortisol and noradrenergic activation exert distinct effects on risk-taking in men and women is unknown. In this experiment, we therefore set out to elucidate the impact of cortisol and noradrenergic stimulation on risky decision-making in men and women. In a fully-crossed, placebo-controlled, double-blind design, male and female participants received orally either a placebo, hydrocortisone, yohimbine, an alpha-2-adrenoceptor-antagonist leading to increased noradrenergic stimulation, or both drugs before completing the balloon analogue risk task, a validated measure of risk-taking. Overall, participants' choice was risk-sensitive as reflected in reduced responding in high- compared to moderate- and low-risk conditions. Cortisol, however, led to a striking increase in risk-taking in men, whereas it had no effect on risk-taking behavior in women. Yohimbine had no such effect and the gender-specific effect of cortisol was not modulated by yohimbine. Our data show that cortisol boosts risk-taking behavior in men but not in women. This differential effect of cortisol on risk-taking may drive gender differences in risky decision-making under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Extracellular DNA contributes to dental biofilm formation: An ex vivo study

    DEFF Research Database (Denmark)

    Schlafer, Sebastian; Meyer, Rikke Louise; Dige, Irene

    2016-01-01

    The extracellular matrix of dental biofilms plays an important role during caries development. It increases the mechanical stability of the biofilm, it prevents desiccation, it serves as a reservoir for nutrients and it contributes to the long-term preservation of acidic microenvironments. Research...

  19. Individual muscle contributions to push and recovery subtasks during wheelchair propulsion.

    Science.gov (United States)

    Rankin, Jeffery W; Richter, W Mark; Neptune, Richard R

    2011-04-29

    Manual wheelchair propulsion places considerable physical demand on the upper extremity and is one of the primary activities associated with the high prevalence of upper extremity overuse injuries and pain among wheelchair users. As a result, recent effort has focused on determining how various propulsion techniques influence upper extremity demand during wheelchair propulsion. However, an important prerequisite for identifying the relationships between propulsion techniques and upper extremity demand is to understand how individual muscles contribute to the mechanical energetics of wheelchair propulsion. The purpose of this study was to use a forward dynamics simulation of wheelchair propulsion to quantify how individual muscles deliver, absorb and/or transfer mechanical power during propulsion. The analysis showed that muscles contribute to either push (i.e., deliver mechanical power to the handrim) or recovery (i.e., reposition the arm) subtasks, with the shoulder flexors being the primary contributors to the push and the shoulder extensors being the primary contributors to the recovery. In addition, significant activity from the shoulder muscles was required during the transition between push and recovery, which resulted in increased co-contraction and upper extremity demand. Thus, strengthening the shoulder flexors and promoting propulsion techniques that improve transition mechanics have much potential to reduce upper extremity demand and improve rehabilitation outcomes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Selective nitrergic neurodegeneration in diabetes mellitus–a nitric oxide-dependent phenomenon

    Science.gov (United States)

    Cellek, Selim; Rodrigo, José; Lobos, Edgar; Fernández, Patricia; Serrano, Julia; Moncada, Salvador

    1999-01-01

    In vitro and in vivo studies have demonstrated a dysfunctional nitrergic system in diabetes mellitus, thus explaining the origin of diabetic impotence. However, the mechanism of this nitrergic defect is not understood.In the penises of streptozotocin (STZ)-induced diabetic rats, here, we show by immunohistochemistry that nitrergic nerves undergo selective degeneration since the noradrenergic nerves which have an anti-erectile function in the penis remained intact.Nitrergic relaxation responses in vitro and erectile responses to cavernous nerve stimulation in vivo were attenuated in these animals, whereas noradrenergic responses were enhanced.Activity and protein amount of neuronal nitric oxide synthase (nNOS) were also reduced in the penile tissue of diabetic rats.We, thus, hypothesized that NO in the nitrergic nerves may be involved in the nitrergic nerve damage, since only the nerves which contain neuronal NO synthase underwent degeneration.We administered an inhibitor of NO synthase, NG-nitro-L-arginine methyl ester (L-NAME), in the drinking water of rats for up to 12 weeks following the establishment of diabetes with STZ.Here we demonstrate that this compound protected the nitrergic nerves from morphological and functional impairment. Our results show that selective nitrergic degeneration in diabetes is NO-dependent and suggest that inhibition of NO synthase is neuroprotective in this condition. PMID:10588937

  1. Incentive-Rewarding Mechanism for User-position Control in Mobile Services

    Science.gov (United States)

    Yoshino, Makoto; Sato, Kenichiro; Shinkuma, Ryoichi; Takahashi, Tatsuro

    When the number of users in a service area increases in mobile multimedia services, no individual user can obtain satisfactory radio resources such as bandwidth and signal power because the resources are limited and shared. A solution for such a problem is user-position control. In the user-position control, the operator informs users of better communication areas (or spots) and navigates them to these positions. However, because of subjective costs caused by subjects moving from their original to a new position, they do not always attempt to move. To motivate users to contribute their resources in network services that require resource contributions for users, incentive-rewarding mechanisms have been proposed. However, there are no mechanisms that distribute rewards appropriately according to various subjective factors involving users. Furthermore, since the conventional mechanisms limit how rewards are paid, they are applicable only for the network service they targeted. In this paper, we propose a novel incentive-rewarding mechanism to solve these problems, using an external evaluator and interactive learning agents. We also investigated ways of appropriately controlling rewards based on user contributions and system service quality. We applied the proposed mechanism and reward control to the user-position control, and demonstrated its validity.

  2. Mechanisms and management of functional abdominal pain.

    Science.gov (United States)

    Farmer, Adam D; Aziz, Qasim

    2014-09-01

    Functional abdominal pain syndrome is characterised by frequent or continuous abdominal pain associated with a degree of loss of daily activity. It has a reported population prevalence of between 0.5% and 1.7%, with a female preponderance. The pathophysiology of functional abdominal pain is incompletely understood although it has been postulated that peripheral sensitisation of visceral afferents, central sensitisation of the spinal dorsal horn and aberrancies within descending modulatory systems may have an important role. The management of patients with functional abdominal pain requires a tailored multidisciplinary approach in a supportive and empathetic environment in order to develop an effective therapeutic relationship. Patient education directed towards an explanation of the pathophysiology of functional abdominal pain is in our opinion a prerequisite step and provides the rationale for the introduction of interventions. Interventions can usefully be categorised into general measures, pharmacotherapy, psychological interventions and 'step-up' treatments. Pharmacotherapeutic/step-up options include tricyclic antidepressants, serotonin noradrenergic reuptake inhibitors and the gabapentinoids. Psychological treatments include cognitive behavioural therapy and hypnotherapy. However, the objective evidence base for these interventions is largely derived from other chronic pain syndrome, and further research is warranted in adult patients with functional abdominal pain. © The Royal Society of Medicine.

  3. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM).

    Science.gov (United States)

    Sinitskiy, Anton V; Voth, Gregory A

    2018-01-07

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  4. Quantum mechanics/coarse-grained molecular mechanics (QM/CG-MM)

    Science.gov (United States)

    Sinitskiy, Anton V.; Voth, Gregory A.

    2018-01-01

    Numerous molecular systems, including solutions, proteins, and composite materials, can be modeled using mixed-resolution representations, of which the quantum mechanics/molecular mechanics (QM/MM) approach has become the most widely used. However, the QM/MM approach often faces a number of challenges, including the high cost of repetitive QM computations, the slow sampling even for the MM part in those cases where a system under investigation has a complex dynamics, and a difficulty in providing a simple, qualitative interpretation of numerical results in terms of the influence of the molecular environment upon the active QM region. In this paper, we address these issues by combining QM/MM modeling with the methodology of "bottom-up" coarse-graining (CG) to provide the theoretical basis for a systematic quantum-mechanical/coarse-grained molecular mechanics (QM/CG-MM) mixed resolution approach. A derivation of the method is presented based on a combination of statistical mechanics and quantum mechanics, leading to an equation for the effective Hamiltonian of the QM part, a central concept in the QM/CG-MM theory. A detailed analysis of different contributions to the effective Hamiltonian from electrostatic, induction, dispersion, and exchange interactions between the QM part and the surroundings is provided, serving as a foundation for a potential hierarchy of QM/CG-MM methods varying in their accuracy and computational cost. A relationship of the QM/CG-MM methodology to other mixed resolution approaches is also discussed.

  5. The mechanism of contribution to the taxes of the electricity public service; Le mecanisme de contribution aux Charges de Service Public d'Electricite

    Energy Technology Data Exchange (ETDEWEB)

    Blonde, G.; Poizat, F.; Triboulet, A. [IED, Louvain-la-Neuve (Belgium)

    2008-02-15

    This report presents the results of an expertise realized by the Institute of the Energy and development for the CCE of EDF. The CSPE is a mechanism of mutualization of taxes of the electricity public service. These taxes concern the impact of the tariffs adjustment, the assistance to systems of energy conservation, the solidarity to poor households. the document presents the historical aspects and the bases of the mechanism, the cost of the global compensation, the foundations of this mutualization system, the forecasts and some recommendations. (A.L.B.)

  6. Mechanisms to promote board gender diversity in South Africa

    Directory of Open Access Journals (Sweden)

    Suzette Viviers

    2017-09-01

    Contribution: Whereas existing research mainly centres on the rationale for board gender diversity, this study goes a step further by investigating three prominent mechanisms to promote female board representation. A contribution is made to the body of knowledge on diversity management. Context-specific recommendations are offered.

  7. Neutron scattering and the search for mechanisms of superconductivity

    DEFF Research Database (Denmark)

    Aeppli, G.; Bishop, D.J.; Broholm, C.

    1999-01-01

    Neutron scattering is a direct probe of mass and magnetization density in solids. We start with a brief review of experimental strategies for determining the mechanisms of superconductivity and how neutron scattering contributed towards our understanding of conventional superconductors. The remai......Neutron scattering is a direct probe of mass and magnetization density in solids. We start with a brief review of experimental strategies for determining the mechanisms of superconductivity and how neutron scattering contributed towards our understanding of conventional superconductors....... The remainder of the article gives examples of neutron results with impact on the search for the mechanism of superconductivity in more recently discovered, 'exotic', materials, namely the heavy fermion compounds and the layered cuprates, (C) 1999 Elsevier Science B.V. All rights reserved....

  8. The global contribution of energy consumption by product exports from China.

    Science.gov (United States)

    Tang, Erzi; Peng, Chong

    2017-06-01

    This paper presents a model to analyze the mechanism of the global contribution of energy usage by product exports. The theoretical analysis is based on the perspective that contribution estimates should be in relatively smaller sectors in which the production characteristics could be considered, such as the productivity distribution for each sector. Then, we constructed a method to measure the global contribution of energy usage. The simple method to estimate the global contribution is the percentage of goods export volume compared to the GDP as a multiple of total energy consumption, but this method underestimates the global contribution because it ignores the structure of energy consumption and product export in China. According to our measurement method and based on the theoretical analysis, we calculated the global contribution of energy consumption only by industrial manufactured product exports in a smaller sector per industry or manufacturing sector. The results indicated that approximately 42% of the total energy usage in the whole economy for China in 2013 was contributed to foreign regions. Along with the primary products and service export in China, the global contribution of energy consumption for China in 2013 by export was larger than 42% of the total energy usage.

  9. Mechanisms of sintering

    International Nuclear Information System (INIS)

    Mohan, Ashok; Soni, N.C.; Moorthy, V.K.

    1980-01-01

    The basic mechanisms by which the material moves during sintering have not only held a strange fascination but are also very important in determining the properties of the end product. Kuczynski's exponent method has been subsequently refined by several schools to make it increasingly reliable. There is now a fairly good understanding of mechanisms in some of the materials. However in others the issue is complicated by their basic nature. The problems of ambiguity in criterion and that of more than one mechanism being simultaneously operative have been tackled with dexterity by Ashby for drawing sintering mechanism diagrams. The method has been modified to give Relative Contribution Diagrams (RCD). These yield additional information and have been used for analysis. The main criticism against this is that it uses a very large number of rate equations and material properties, which can communicate their inaccuracies to the diagram. A case study of UO 2 was undertaken and it has been shown quantitatively that inaccuracies in a smaller number of properties only affect the diagrams to any significant extent. (auth.)

  10. The Role of the Mammalian Prion Protein in the Control of Sleep

    Directory of Open Access Journals (Sweden)

    Amber Roguski

    2017-11-01

    Full Text Available Sleep disruption is a prevalent clinical feature in many neurodegenerative disorders, including human prion diseases where it can be the defining dysfunction, as in the case of the “eponymous” fatal familial insomnia, or an early-stage symptom as in certain types of Creutzfeldt-Jakob disease. It is important to establish the role of the cellular prion protein (PrPC, the key molecule involved in prion pathogenesis, within the sleep-wake system in order to understand fully the mechanisms underlying its contribution to both healthy circadian rhythmicity and sleep dysfunction during disease. Although severe disruption to the circadian rhythm and melatonin release is evident during the pathogenic phases of some prion diseases, untangling whether PrPC plays a role in circadian rhythmicity, as suggested in mice deficient for PrPC expression, is challenging given the lack of basic experimental research. We provide a short review of the small amount of direct literature focused on the role of PrPC in melatonin and circadian rhythm regulation, as well as suggesting mechanisms by which PrPC might exert influence upon noradrenergic and dopaminergic signaling and melatonin synthesis. Future research in this area should focus upon isolating the points of dysfunction within the retino-pineal pathway and further investigate PrPC mediation of pinealocyte GPCR activity.

  11. Mechanisms Contributing to the Induction and Storage of Pavlovian Fear Memories in the Lateral Amygdala

    Science.gov (United States)

    Kim, Dongbeom; Pare, Denis; Nair, Satish S.

    2013-01-01

    The relative contributions of plasticity in the amygdala vs. its afferent pathways to conditioned fear remain controversial. Some believe that thalamic and cortical neurons transmitting information about the conditioned stimulus (CS) to the lateral amygdala (LA) serve a relay function. Others maintain that thalamic and/or cortical plasticity is…

  12. Angiotensinergic and noradrenergic neurons in the rat and human heart.

    Science.gov (United States)

    Patil, Jaspal; Stucki, Silvan; Nussberger, Juerg; Schaffner, Thomas; Gygax, Susanne; Bohlender, Juergen; Imboden, Hans

    2011-02-25

    Although the physiological and pharmacological evidences suggest a role for angiotensin II (Ang II) with the mammalian heart, the source and precise location of Ang II are unknown. To visualize and quantitate Ang II in atria, ventricular walls and interventricular septum of the rat and human heart and to explore the feasibility of local Ang II production and function, we investigated by different methods the expression of proteins involved in the generation and function of Ang II. We found mRNA of angiotensinogen (Ang-N), of angiotensin converting enzyme, of the angiotensin type receptors AT(1A) and AT₂ (AT(1B) not detected) as well as of cathepsin D in any part of the hearts. No renin mRNA was traceable. Ang-N mRNA was visualized by in situ hybridization in atrial ganglial neurons. Ang II and dopamine-β-hydroxylase (DβH) were either colocalized inside the same neuronal cell or the neurons were specialized for Ang II or DβH. Within these neurons, the vesicular acetylcholine transporter (VAChT) was neither colocalized with Ang II nor DβH, but VAChT-staining was found with synapses en passant encircle these neuronal cells. The fibers containing Ang II exhibited with blood vessels and with cardiomyocytes supposedly angiotensinergic synapses en passant. In rat heart, right atrial median Ang II concentration appeared higher than septal and ventricular Ang II. The distinct colocalization of neuronal Ang II with DβH in the heart may indicate that Ang II participates together with norepinephrine in the regulation of cardiac functions: produced as a cardiac neurotransmitter Ang II may have inotropic, chronotropic or dromotropic effects in atria and ventricles and contributes to blood pressure regulation. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Long-range contributions to double beta decay revisited

    Energy Technology Data Exchange (ETDEWEB)

    Helo, J.C. [Universidad Técnica Federico Santa María, Centro-Científico-Tecnológico de Valparaíso,Casilla 110-V, Valparaíso (Chile); Departamento de Física, Facultad de Ciencias, Universidad de La Serena, Avenida Cisternas 1200, La Serena (Chile); Hirsch, M. [HEP Group, Instituto de Física Corpuscular,C.S.I.C./Universitat de València Edificio Institutos de Investigacion,Parc Cientific de Paterna, Apartado 22085, E-46071 València (Spain); Ota, T. [Department of Physics, Saitama University,Shimo-Okubo 255, 338-8570 Saitama-Sakura (Japan)

    2016-06-01

    We discuss the systematic decomposition of all dimension-7 (d=7) lepton number violating operators. These d=7 operators produce momentum enhanced contributions to the long-range part of the 0νββ decay amplitude and thus are severely constrained by existing half-live limits. In our list of possible models one can find contributions to the long-range amplitude discussed previously in the literature, such as the left-right symmetric model or scalar leptoquarks, as well as some new models not considered before. The d=7 operators generate Majorana neutrino mass terms either at tree-level, 1-loop or 2-loop level. We systematically compare constraints derived from the mass mechanism to those derived from the long-range 0νββ decay amplitude and classify our list of models accordingly. We also study one particular example decomposition, which produces neutrino masses at 2-loop level, can fit oscillation data and yields a large contribution to the long-range 0νββ decay amplitude, in some detail.

  14. Incentive Mechanism for P2P Content Sharing over Heterogenous Access Networks

    Science.gov (United States)

    Sato, Kenichiro; Hashimoto, Ryo; Yoshino, Makoto; Shinkuma, Ryoichi; Takahashi, Tatsuro

    In peer-to-peer (P2P) content sharing, users can share their content by contributing their own resources to one another. However, since there is no incentive for contributing contents or resources to others, users may attempt to obtain content without any contribution. To motivate users to contribute their resources to the service, incentive-rewarding mechanisms have been proposed. On the other hand, emerging wireless technologies, such as IEEE 802.11 wireless local area networks, beyond third generation (B3G) cellular networks and mobile WiMAX, provide high-speed Internet access for wireless users. Using these high-speed wireless access, wireless users can use P2P services and share their content with other wireless users and with fixed users. However, this diversification of access networks makes it difficult to appropriately assign rewards to each user according to their contributions. This is because the cost necessary for contribution is different in different access networks. In this paper, we propose a novel incentive-rewarding mechanism called EMOTIVER that can assign rewards to users appropriately. The proposed mechanism uses an external evaluator and interactive learning agents. We also investigate a way of appropriately controlling rewards based on the system service's quality and managing policy.

  15. Contribution to a hydro-chemo-mechanical multi-mechanisms model based on the multi-scale and multi components structure of Callovo-Oxfordian argillites: experiments and modelling

    International Nuclear Information System (INIS)

    Robinet, J.C.; Trinh, M.H.; Imbert, C.

    2010-01-01

    Document available in extended abstract form only. The fundamental features of the Callovo Oxfordian argillite, namely the structure and the pore size distribution are considered to propose a model consistent with its mechanical behavior. The model deals with the main mechanisms selected: damage, plasticity and swelling. Structure of Argillites as fundamental base of mechanical behavior Callovian-Oxfordian argillites present specific characteristics: - a strong mineralogical heterogeneity made up from 23% to 25% of quartz, 20% to 27% of carbonate, 40% to 50% of argillaceous minerals and 5% to 10% various mineral; - a low porosity comprised between 12 to 15%, associated with the following pore size distribution: 14% of nano-pores, majority 81% of meso-pores and 5% of macro-pores; - a low Biot coefficient, around 0.6; - no cementing (within the meaning of a concrete). Four basic mechanisms are considered likely to explain the structure of argillite in place: - mechanical consolidation obtained by increasing external stress, - chemical consolidation by reduction in dielectric constant (leaching of chlorides), - thermal consolidation, - filling of the macro-porosity by precipitation of a carbonated phase (calcite). Experimental tests were performed to evaluate the weight of these mechanisms. Results show that mechanic and thermal consolidations, in the fields of stress and temperature encountered in situ by argillite during geological history, and chemical consolidation could not alone explain the state the high density without macro porosity. An assumption advanced to explain is the filling of macro porosity by non argillaceous mineral precipitation, in particular calcite that would confer to in situ argillite an apparent over-consolidation from a mechanical point of view. This assumption is partially validated by some experiments: - Percolation tests were made with hydrochloric acid on bulky and sound argillite to remove the carbonates in the macro-porosity; they

  16. Contribution of cerebellar sensorimotor adaptation to hippocampal spatial memory.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Passot

    Full Text Available Complementing its primary role in motor control, cerebellar learning has also a bottom-up influence on cognitive functions, where high-level representations build up from elementary sensorimotor memories. In this paper we examine the cerebellar contribution to both procedural and declarative components of spatial cognition. To do so, we model a functional interplay between the cerebellum and the hippocampal formation during goal-oriented navigation. We reinterpret and complete existing genetic behavioural observations by means of quantitative accounts that cross-link synaptic plasticity mechanisms, single cell and population coding properties, and behavioural responses. In contrast to earlier hypotheses positing only a purely procedural impact of cerebellar adaptation deficits, our results suggest a cerebellar involvement in high-level aspects of behaviour. In particular, we propose that cerebellar learning mechanisms may influence hippocampal place fields, by contributing to the path integration process. Our simulations predict differences in place-cell discharge properties between normal mice and L7-PKCI mutant mice lacking long-term depression at cerebellar parallel fibre-Purkinje cell synapses. On the behavioural level, these results suggest that, by influencing the accuracy of hippocampal spatial codes, cerebellar deficits may impact the exploration-exploitation balance during spatial navigation.

  17. Mechanism of charity activity

    Directory of Open Access Journals (Sweden)

    Roman B. Golovkin

    2015-12-01

    Full Text Available Objective to establish the essential properties of the mechanism of charitable activities and to formulate the concept of quotmechanism of charitable activityquot. Methods the objective of the study is achieved using the complex of methods which are based on the interaction of dialectical and metaphysical analysis the epistemological properties of which allowed to reveal various aspects of the charitable activities mechanism functioning taking into account the principles of comprehensiveness complexity specificity and objectivity of the research. Results the rules are stated of using the term quotmechanismquot to characterize actions of state and law the essence of the charity mechanism is defined the definition of quotthe mechanism of charitable activity quot is formulated. Scientific novelty for the first time at theoretical level in legal science the definition of quotthe mechanism of charitable activityquot is formulated and its essential properties are set. Practical significance the research will contribute to improving the legal regulation in the field of philanthropy as well as to improving the efficiency and quality of charitable activity in the Russian Federation. nbsp

  18. The contribution of site to washout and rainout: Precipitation chemistry based on sample analysis from 0.5 mm precipitation increments and numerical simulation

    Science.gov (United States)

    Aikawa, Masahide; Kajino, Mizuo; Hiraki, Takatoshi; Mukai, Hitoshi

    2014-10-01

    Datasets of precipitation chemistry at a precipitation resolution of 0.5 mm from three sites were studied to determine whether the washout and rainout mechanisms differed with site type (urban, suburban, rural). Rainout accounted for approximately one-third of the total NO3- deposition and washout contributed two-thirds, irrespective of the site type, although the washout contribution at the urban site (over 70%) was larger than that at the other two sites. The rainout mechanism and the washout mechanism both accounted for about half the total SO42- deposition at the suburban and rural sites, whereas at the urban site the rainout contribution was over 80%. A chemical transport model produced similar levels of washout and rainout contributions as the precipitation chemistry data.

  19. Investigation of the CH3Cl + CN(-) reaction in water: Multilevel quantum mechanics/molecular mechanics study.

    Science.gov (United States)

    Xu, Yulong; Zhang, Jingxue; Wang, Dunyou

    2015-06-28

    The CH3Cl + CN(-) reaction in water was studied using a multilevel quantum mechanics/molecular mechanics (MM) method with the multilevels, electrostatic potential, density functional theory (DFT) and coupled-cluster single double triple (CCSD(T)), for the solute region. The detailed, back-side attack SN2 reaction mechanism was mapped along the reaction pathway. The potentials of mean force were calculated under both the DFT and CCSD(T) levels for the reaction region. The CCSD(T)/MM level of theory presents a free energy activation barrier height at 20.3 kcal/mol, which agrees very well with the experiment value at 21.6 kcal/mol. The results show that the aqueous solution has a dominant role in shaping the potential of mean force. The solvation effect and the polarization effect together increase the activation barrier height by ∼11.4 kcal/mol: the solvation effect plays a major role by providing about 75% of the contribution, while polarization effect only contributes 25% to the activation barrier height. Our calculated potential of mean force under the CCSD(T)/MM also has a good agreement with the one estimated using data from previous gas-phase studies.

  20. 5th Contact Mechanics International Symposium

    CERN Document Server

    2013-01-01

    Contact mechanics is an active research area with deep theoretical and numerical roots. The links between nonsmooth analysis and optimization with mechanics have been investigated intensively during the last decades, especially in Europe. The study of complementarity problems, variational -, quasivariational- and hemivariational inequalities arising in contact mechanics and beyond is a hot topic for interdisciplinary research and cooperation. The needs of industry for robust solution algorithms suitable for large scale applications and the regular updates of the respective elements in major commercial computational mechanics codes, demonstrate that this interaction is not restricted to the academic environment. The contributions of this book have been selected from the participants of the CMIS 2009 international conference which took place in Crete and continued a successful series of specialized contact mechanics conferences.

  1. Contribution to the study of the amorphization mechanisms of intermetallic compounds by mechanical grinding; Contribution a l`etude des mecanismes d`amorphisation par sollicitation mecanique de composes intermetalliques

    Energy Technology Data Exchange (ETDEWEB)

    Galy, D

    1995-01-11

    This work aims at identifying the mechanisms responsible for amorphization of NiZr and NiZr{sub 2} compounds under ball-milling. In the first part, the effect of a localized deformation is studied: the deformation is produced by indentation on bulk samples, very high local strains can be achieved by this technique. The resulting microstructure is studied by transmission electron microscopy (TEM). No evidence for amorphization is found in these compounds, contrary to what is known to occur in silicon and germanium. Despite of their high brittleness, the NiZr and NiZr{sub 2} compounds accommodate the multiaxial localized stress by plastic deformation: dislocations multiplication and glide, micro-twinning. Dislocations (both perfect and imperfect) and micro-twins have been analysed into details for the first time. The twinning mechanism in NiZr{sub 2} has been elucidated. In the second part of this work, the microstructure of NiZr{sub 2} in the course of amorphization by ball-milling is studied by TEM observation are prepared by ultra-microtomy. The following evolution is observed: first, the material is fragmented and plastically deformed; the microstructure is refined by polygonation. Second, aggregates are formed by a fragmentation and sticking process, leading to a stationary size for the aggregates. The aggregates themselves are made of a mixture of nanocrystalline (about 10 nm) material and coarser crystallites. As milling proceeds, the latter disappear to the benefit of the former. Once aggregates are 100% nanocrystalline, the amorphous phase appears and develops to the expense of the nanocrystalline phase. At late stages, small crystallites embedded in an amorphous matrix are observed. No massive chemical disordering is observed but a small amount can not be ruled out. It is suggested that amorphization occurs by chemical disordering at interfaces, induced by shear waves. (Author). 76 refs., 57 figs., 12 tabs.

  2. Affective spectrum disorders and role of serotonergic system of the brain

    Directory of Open Access Journals (Sweden)

    Timotijević Ivana P.

    2014-01-01

    Full Text Available Affective spectrum disorders include mood and anxiety disorders, whereas the term functional somatic syndromes describes disorders in which the main symptom is chronic pain, with no pathognomonic tissue damage, such as fibromyalgia, irritable colon, tension headache. Pain as a symptom is often present in patients with depression and anxiety, and similarly, depressed mood, anxiety and other psychiatric symptoms are common in patients with functional somatic syndromes. This explains attitudes that affective disorders and functional somatic syndromes should be found along the same spectrum, due to a similar neurobiochemicalmehanism and dysfunction of these CNS structures and neurotransmitter systems, which lead to similar symptoms in both groups. The symptoms of affective disorders, including somatic are associated with serotonin and serotonergic transmission in the CNS. The existence of depressive and anxiety disorders, such as fatigue, sleep disorders, cognitive disorders, depressed mood, anxiety, and functional somatic syndromes code indicate a similar mechanism of origin. Hypothesis of central neuropathic pain explains the possibility of the descending inhibitory pain mechanisms, including serotonergic and noradrenergic projections and their receptors. Central suprasegmental senzitization in nociceptive pathways, also at the level of the thalamus and the sensory cortex, trigered by an emotional stressors can cause painful symptoms in both groups of disorders. Serotonergic and noradrenergic pathways and voltage sensitive channels of their receptors are included in the mechanism. Modern psychopharmacology can no longer ignore the existence of painful symptoms in affective disorder or depressive and anxiety symptoms in functional somatic syndromes and their treatment can improve. Therapeutic effects of SSRI and SNRI antidepressants and alpha 2 delta ligands for all kinds of painful symptoms in affective disorders - serotonergic spectrum is

  3. Trojan Horse Transit Contributes to Blood-Brain Barrier Crossing of a Eukaryotic Pathogen.

    Science.gov (United States)

    Santiago-Tirado, Felipe H; Onken, Michael D; Cooper, John A; Klein, Robyn S; Doering, Tamara L

    2017-01-31

    The blood-brain barrier (BBB) protects the central nervous system (CNS) by restricting the passage of molecules and microorganisms. Despite this barrier, however, the fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that is estimated to kill over 600,000 people annually. Cryptococcal infection begins in the lung, and experimental evidence suggests that host phagocytes play a role in subsequent dissemination, although this role remains ill defined. Additionally, the disparate experimental approaches that have been used to probe various potential routes of BBB transit make it impossible to assess their relative contributions, confounding any integrated understanding of cryptococcal brain entry. Here we used an in vitro model BBB to show that a "Trojan horse" mechanism contributes significantly to fungal barrier crossing and that host factors regulate this process independently of free fungal transit. We also, for the first time, directly imaged C. neoformans-containing phagocytes crossing the BBB, showing that they do so via transendothelial pores. Finally, we found that Trojan horse crossing enables CNS entry of fungal mutants that cannot otherwise traverse the BBB, and we demonstrate additional intercellular interactions that may contribute to brain entry. Our work elucidates the mechanism of cryptococcal brain invasion and offers approaches to study other neuropathogens. The fungal pathogen Cryptococcus neoformans invades the brain, causing a meningoencephalitis that kills hundreds of thousands of people each year. One route that has been proposed for this brain entry is a Trojan horse mechanism, whereby the fungus crosses the blood-brain barrier (BBB) as a passenger inside host phagocytes. Although indirect experimental evidence supports this intriguing mechanism, it has never been directly visualized. Here we directly image Trojan horse transit and show that it is regulated independently of free fungal entry, contributes

  4. Analysis of Heat Generation Mechanism in Ultrasound Infrared Thermography

    International Nuclear Information System (INIS)

    Choi, Man Yong; Lee, Seung Seok; Park, Jeong Hak; Kang, Ki Soo; Kim, Won Tae

    2009-01-01

    Heat generation mechanism of ultrasound infrared thermography is still not well understood, yet and there are two reliable assumptions of heat generation, friction and thermo-mechanical effect. This paper investigates the principal cause of heat generation at fatigue crack with experimental and numerical approach. Our results show most of heat generation is contributed by friction between crack interface and thermo-mechanical effect is a negligible quantity

  5. Selective noradrenaline depletion impairs working memory and hippocampal neurogenesis.

    Science.gov (United States)

    Coradazzi, Marino; Gulino, Rosario; Fieramosca, Francesco; Falzacappa, Lucia Verga; Riggi, Margherita; Leanza, Giampiero

    2016-12-01

    Noradrenergic neurons in the locus coeruleus play a role in learning and memory, and their loss is an early event in Alzheimer's disease pathogenesis. Moreover, noradrenaline may sustain hippocampal neurogenesis; however, whether are these events related is still unknown. Four to five weeks following the selective immunotoxic ablation of locus coeruleus neurons, young adult rats underwent reference and working memory tests, followed by postmortem quantitative morphological analyses to assess the extent of the lesion, as well as the effects on proliferation and/or survival of neural progenitors in the hippocampus. When tested in the Water Maze task, lesioned animals exhibited no reference memory deficit, whereas working memory abilities were seen significantly impaired, as compared with intact or sham-lesioned controls. Stereological analyses confirmed a dramatic noradrenergic neuron loss associated to reduced proliferation, but not survival or differentiation, of 5-bromo-2'deoxyuridine-positive progenitors in the dentate gyrus. Thus, ascending noradrenergic afferents may be involved in more complex aspects of cognitive performance (i.e., working memory) possibly via newly generated progenitors in the hippocampus. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Proceedings of the 20th meeting of the working group on fracture mechanisms

    International Nuclear Information System (INIS)

    1988-01-01

    This volume contains 41 contributions presented at the 20th meeting of the working group on fracture mechanisms. The contributions dealt with the following topics: 1.) mechanical and test fundamentals of crack initiating corrosion processes; 2.) crack formation in water and seawater; 3.) crack formation in the process industry; 4.) hydrogen-induced crack formation; 5.) stress and crack corrosion of rustproof cast alloys; 6.) corrosion-induced crack formation at high temperatures; 7.) experimental and numerical studies on fracture behaviour. 30 contributions were separately integrated in the data base 'ENERGY'. (MM) [de

  7. Interactions Between Epinephrine, Ascending Vagal Fibers and Central Noradrenergic Systems in Modulating Memory for Emotionally Arousing Events.

    Directory of Open Access Journals (Sweden)

    Cedric L. Williams

    2012-06-01

    Full Text Available It is well established that exposure to emotionally laden events initiates secretion of the arousal related hormone epinephrine in the periphery. These neuroendocrine changes and the subsequent increase in peripheral physiological output play an integral role in modulating brain systems involved in memory formation. The impermeability of the blood brain barrier to epinephrine represents an important obstacle in understanding how peripheral hormones initiate neurochemical changes in the brain that lead to effective memory formation. This obstacle necessitated the identity of a putative pathway capable of conveying physiological changes produced by epinephrine to limbic structures that incorporate arousal and affect related information into memory. A major theme of the proposed studies is that ascending fibers of the vagus nerve may represent such a mechanism. This hypothesis was tested by evaluating the contribution of ascending vagal fibers in modulating memory for responses learned under behavioral conditions that produce emotional arousal by manipulating appetitive stimuli. A combination of electrophysiological recording of vagal afferent fibers and in vivo microdialysis was employed in a second study to simultaneously assess how elevations in peripheral levels of epinephrine affect vagal nerve discharge and the subsequent potentiation of norepinephrine release in the basolateral amygdala. The final study used double immunohistochemistry labeling of c-fos and dopamine beta hydroxylase, the enzyme for norepinephrine synthesis to determine if epinephrine administration alone or stimulation of the vagus nerve at an intensity identical to that which improved memory in Experiment 1 produces similar patterns of neuronal activity in brain areas involved in processing memory for emotional events. Findings emerging from this collection of studies establish the importance of ascending fibers of the vagus nerve as an essential pathway for conveying the

  8. Complications of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Drašković Biljana

    2011-01-01

    Full Text Available Mechanical ventilation of the lungs, as an important therapeutic measure, cannot be avoided in critically ill patients. However, when machines take over some of vital functions there is always a risk of complications and accidents. Complications associated with mechanical ventilation can be divided into: 1 airway-associated complications; 2 complications in the response of patients to mechanical ventilation; and 3 complications related to the patient’s response to the device for mechanical ventilation. Complications of artificial airway may be related to intubation and extubation or the endotracheal tube. Complications of mechanical ventilation, which arise because of the patient’s response to mechanical ventilation, may primarily cause significant side effects to the lungs. During the last two decades it was concluded that mechanical ventilation can worsen or cause acute lung injury. Mechanical ventilation may increase the alveolar/capillary permeability by overdistension of the lungs (volutrauma, it can exacerbate lung damage due to the recruitment/derecruitment of collapsed alveoli (atelectrauma and may cause subtle damages due to the activation of inflammatory processes (biotrauma. Complications caused by mechanical ventilation, beside those involving the lungs, can also have significant effects on other organs and organic systems, and can be a significant factor contributing to the increase of morbidity and mortality in critically ill of mechanically ventilated patients. Complications are fortunately rare and do not occur in every patient, but due to their seriousness and severity they require extensive knowledge, experience and responsibility by health-care workers.

  9. Mechanisms of superficial micropunctate corneal staining with sodium fluorescein: the contribution of pooling.

    Science.gov (United States)

    Bandamwar, Kalika L; Garrett, Qian; Papas, Eric B

    2012-04-01

    To establish if sodium fluorescein (SFL) dye accumulation within intercellular spaces on the ocular surface contributes to the appearance of superficial punctate corneal staining. Thirteen subjects bilaterally wore PureVision™ lenses that had been pre-soaked in ReNu MultiPlus® multipurpose solution. After 1h of lens wear, corneal staining with SFL was assessed using a standard slit-lamp technique. Participants who presented with bilateral, corneal staining were selected for further evaluation. A randomly selected eye was rinsed with saline three times. Fellow eyes (control) received no rinsing. After each rinse, the appearance of SFL staining was recorded without any further instillation of the dye. To eliminate any confounding effects of staining due to residual fluorescein in the tear menisci, corneal staining was induced in freshly excised, isolated, rabbit eyes by topical administration of 0.001% PHMB and staining, rinsing and grading were performed as above. Nine out of 13 subjects presented with bilateral diffuse corneal staining (mean grade±SD: 2.4±0.7). The mean staining grades in test and control eyes respectively after each of the three rinses were (1) 2.41±0.41, 2.25±0.69 (p=0.9); (2) 2.34±0.79, 2.1±0.83 (p=0.8); and (3) 1.71±0.65, 1.60±0.79 (p=0.6) there was no significant reduction in staining with rinsing (p>0.05) and no difference was observed between test and control eyes at any sampling-point. Similar observations made in ex vivo rabbit eyes replicated these results. Pooling or accumulation of SFL solution within intercellular spaces does not appear to contribute to the appearance of superficial micropunctate corneal staining. Copyright © 2011 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  10. Nicotinic mechanisms influencing synaptic plasticity in the hippocampus

    Institute of Scientific and Technical Information of China (English)

    Andon Nicholas PLACZEK; Tao A ZHANG; John Anthony DANI

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are expressed throughout the hippocampus, and nicotinic signaling plays an important role in neuronal function. In the context of learning and memory related behaviors associated with hippocampal function, a potentially significant feature of nAChR activity is the impact it has on synaptic plasticity. Synaptic plasticity in hippocampal neurons has long been considered a contributing cellular mechanism of learning and memory. These same kinds of cellular mechanisms are a factor in the development of nicotine addiction. Nicotinic signaling has been demonstrated by in vitro studies to affect synaptic plasticity in hippocampal neurons via multiple steps, and the signaling has also been shown to evoke synaptic plasticity in vivo. This review focuses on the nAChRs subtypes that contribute to hippocampal synaptic plasticity at the cellular and circuit level. It also considers nicotinic influences over long-term changes in the hippocampus that may contribute to addiction.

  11. Pleiotropic Mechanisms Indicated for Sex Differences in Autism.

    Directory of Open Access Journals (Sweden)

    Ileena Mitra

    2016-11-01

    Full Text Available Sexual dimorphism in common disease is pervasive, including a dramatic male preponderance in autism spectrum disorders (ASDs. Potential genetic explanations include a liability threshold model requiring increased polymorphism risk in females, sex-limited X-chromosome contribution, gene-environment interaction driven by differences in hormonal milieu, risk influenced by genes sex-differentially expressed in early brain development, or contribution from general mechanisms of sexual dimorphism shared with secondary sex characteristics. Utilizing a large single nucleotide polymorphism (SNP dataset, we identify distinct sex-specific genome-wide significant loci. We investigate genetic hypotheses and find no evidence for increased genetic risk load in females, but evidence for sex heterogeneity on the X chromosome, and contribution of sex-heterogeneous SNPs for anthropometric traits to ASD risk. Thus, our results support pleiotropy between secondary sex characteristic determination and ASDs, providing a biological basis for sex differences in ASDs and implicating non brain-limited mechanisms.

  12. 3rd School on Attractor Mechanism

    CERN Document Server

    SAM 2007; The Attractor Mechanism: Proceedings of the INFN-Laboratori Nazionali di Frascati School 2007

    2010-01-01

    This book is based upon lectures presented in June 2007 at the INFN-Laboratori Nazionali di Frascati School on Attractor Mechanism, directed by Stefano Bellucci. The symposium included such prestigious lecturers as S. Ferrara, M. Gunaydin, P. Levay, and T. Mohaupt. All lectures were given at a pedagogical, introductory level, which is reflected in the specific "flavor" of this volume. The book also benefits from extensive discussions about, and related reworking of, the various contributions. In addition, this volume contains contributions originating from short presentations of rece

  13. The Contribution of Deficits in Emotional Clarity to Stress Responses and Depression

    Science.gov (United States)

    Flynn, Megan; Rudolph, Karen D.

    2010-01-01

    This research investigated the contribution of deficits in emotional clarity to children's socioemotional adjustment. Specifically, this study examined the proposal that deficits in emotional clarity are associated with maladaptive interpersonal stress responses, and that maladaptive interpersonal stress responses act as a mechanism linking…

  14. Understanding a Nonlinear Causal Relationship Between Rewards and Physicians’ Contributions in Online Health Care Communities: Longitudinal Study

    Science.gov (United States)

    2017-01-01

    Background The online health care community is not just a place for the public to share physician reviews or medical knowledge, but also a physician-patient communication platform. The medical resources of developing countries are relatively inadequate, and the online health care community is a potential solution to alleviate the phenomenon of long hospital queues and the lack of medical resources in rural areas. However, the success of the online health care community depends on online contributions by physicians. Objective The aim of this study is to examine the effect of incentive mechanisms on physician’s online contribution behavior in the online health community. We addressed the following questions: (1) from which specialty area are physicians more likely to participate in online health care community activities, (2) what are the factors affecting physician online contributions, and (3) do incentive mechanisms, including psychological and material rewards, result in differences of physician online contributions? Methods We designed a longitudinal study involving a data sample in three waves. All data were collected from the Good Doctor website, which is the largest online health care community in China. We first used descriptive statistics to investigate the physician online contribution behavior in its entirety. Then multiple linear and quadratic regression models were applied to verify the causal relationship between rewards and physician online contribution. Results Our sample included 40,300 physicians from 3607 different hospitals, 10 different major specialty areas, and 31 different provinces or municipalities. Based on the multiple quadratic regression model, we found that the coefficients of the control variables, past physician online contributions, doctor review rating, clinic title, hospital level, and city level, were .415, .189, –.099, –.106, and –.143, respectively. For the psychological (or material) rewards, the standardized

  15. Understanding a Nonlinear Causal Relationship Between Rewards and Physicians' Contributions in Online Health Care Communities: Longitudinal Study.

    Science.gov (United States)

    Wang, Jying-Nan; Chiu, Ya-Ling; Yu, Haiyan; Hsu, Yuan-Teng

    2017-12-21

    The online health care community is not just a place for the public to share physician reviews or medical knowledge, but also a physician-patient communication platform. The medical resources of developing countries are relatively inadequate, and the online health care community is a potential solution to alleviate the phenomenon of long hospital queues and the lack of medical resources in rural areas. However, the success of the online health care community depends on online contributions by physicians. The aim of this study is to examine the effect of incentive mechanisms on physician's online contribution behavior in the online health community. We addressed the following questions: (1) from which specialty area are physicians more likely to participate in online health care community activities, (2) what are the factors affecting physician online contributions, and (3) do incentive mechanisms, including psychological and material rewards, result in differences of physician online contributions? We designed a longitudinal study involving a data sample in three waves. All data were collected from the Good Doctor website, which is the largest online health care community in China. We first used descriptive statistics to investigate the physician online contribution behavior in its entirety. Then multiple linear and quadratic regression models were applied to verify the causal relationship between rewards and physician online contribution. Our sample included 40,300 physicians from 3607 different hospitals, 10 different major specialty areas, and 31 different provinces or municipalities. Based on the multiple quadratic regression model, we found that the coefficients of the control variables, past physician online contributions, doctor review rating, clinic title, hospital level, and city level, were .415, .189, -.099, -.106, and -.143, respectively. For the psychological (or material) rewards, the standardized coefficient of the main effect was 0.261 (or 0

  16. Dissociation of immediate and delayed effects of emotional arousal on episodic memory.

    Science.gov (United States)

    Schümann, Dirk; Bayer, Janine; Talmi, Deborah; Sommer, Tobias

    2018-02-01

    Emotionally arousing events are usually better remembered than neutral ones. This phenomenon is in humans mostly studied by presenting mixed lists of neutral and emotional items. An emotional enhancement of memory is observed in these studies often already immediately after encoding and increases with longer delays and consolidation. A large body of animal research showed that the more efficient consolidation of emotionally arousing events is based on an activation of the central noradrenergic system and the amygdala (Modulation Hypothesis; Roozendaal & McGaugh, 2011). The immediately superior recognition of emotional items is attributed primarily to their attraction of attention during encoding which is also thought to be based on the amygdala and the central noradrenergic system. To investigate whether the amygdala and noradrenergic system support memory encoding and consolidation via shared neural substrates and processes a large sample of participants (n = 690) encoded neutral and arousing pictures. Their memory was tested immediately and after a consolidation delay. In addition, they were genotyped in two relevant polymorphisms (α 2B -adrenergic receptor and serotonin transporter). Memory for negative and positive emotional pictures was enhanced at both time points where these enhancements were correlated (immediate r = 0.60 and delayed test r = 0.46). Critically, the effects of emotional arousal on encoding and consolidation correlated only very low (negative r = 0.14 and positive r = 0.03 pictures) suggesting partly distinct underlying processes consistent with a functional heterogeneity of the central noradrenergic system. No effect of genotype on either effect was observed. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Neonatal co-lesion by DSP-4 and 5,7-DHT produces adulthood behavioral sensitization to dopamine D(2) receptor agonists.

    Science.gov (United States)

    Nowak, Przemysław; Nitka, Dariusz; Kwieciński, Adam; Jośko, Jadwiga; Drab, Jacek; Pojda-Wilczek, Dorota; Kasperski, Jacek; Kostrzewa, Richard M; Brus, Ryszard

    2009-01-01

    To assess the possible modulatory effects of noradrenergic and serotoninergic neurons on dopaminergic neuronal activity, the noradrenergic and serotoninergic neurotoxins DSP-4 N-(2-chlorethyl)-N-ethyl-2-bromobenzylamine (50.0 mg/kg, sc) and 5,7-dihydroxytryptamine (5,7-DHT) (37.5 microg icv, half in each lateral ventricle), respectively, were administered toWistar rats on the first and third days of postnatal ontogeny, and dopamine (DA) agonist-induced behaviors were assessed in adulthood. At eight weeks, using an HPLC/ED technique, DSP-4 treatment was associated with a reduction in NE content of the corpus striatum (> 60%), hippocampus (95%), and frontal cortex (> 85%), while 5,7-DHT was associated with an 80-90% serotonin reduction in the same brain regions. DA content was unaltered in the striatum and the cortex. In the group lesioned with both DSP-4 and 5,7-DHT, quinpirole-induced (DA D(2) agonist) yawning, 7-hydroxy-DPAT-induced (DA D(3) agonist) yawning, and apomorphine-induced (non-selective DA agonist) stereotypies were enhanced. However, SKF 38393-induced (DA D(1) agonist) oral activity was reduced in the DSP-4 + 5,7-DHT group. These findings demonstrate that DA D(2)- and D(3)-agonist-induced behaviors are enhanced while DA D(1)-agonist-induced behaviors are suppressed in adult rats in which brain noradrenergic and serotoninergic innervation of the brain has largely been destroyed. This study indicates that noradrenergic and serotoninergic neurons have a great impact on the development of DA receptor reactivity (sensitivity).

  18. Microbial contributions to the persistence of coral reefs.

    Science.gov (United States)

    Webster, Nicole S; Reusch, Thorsten B H

    2017-10-01

    On contemplating the adaptive capacity of reef organisms to a rapidly changing environment, the microbiome offers significant and greatly unrecognised potential. Microbial symbionts contribute to the physiology, development, immunity and behaviour of their hosts, and can respond very rapidly to changing environmental conditions, providing a powerful mechanism for acclimatisation and also possibly rapid evolution of coral reef holobionts. Environmentally acquired fluctuations in the microbiome can have significant functional consequences for the holobiont phenotype upon which selection can act. Environmentally induced changes in microbial abundance may be analogous to host gene duplication, symbiont switching / shuffling as a result of environmental change can either remove or introduce raw genetic material into the holobiont; and horizontal gene transfer can facilitate rapid evolution within microbial strains. Vertical transmission of symbionts is a key feature of many reef holobionts and this would enable environmentally acquired microbial traits to be faithfully passed to future generations, ultimately facilitating microbiome-mediated transgenerational acclimatisation (MMTA) and potentially even adaptation of reef species in a rapidly changing climate. In this commentary, we highlight the capacity and mechanisms for MMTA in reef species, propose a modified Price equation as a framework for assessing MMTA and recommend future areas of research to better understand how microorganisms contribute to the transgenerational acclimatisation of reef organisms, which is essential if we are to reliably predict the consequences of global change for reef ecosystems.

  19. Prostate Cancer Stem-like Cells Contribute to the Development of Castration-Resistant Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Diane Ojo

    2015-11-01

    Full Text Available Androgen deprivation therapy (ADT has been the standard care for patients with advanced prostate cancer (PC since the 1940s. Although ADT shows clear benefits for many patients, castration-resistant prostate cancer (CRPC inevitably occurs. In fact, with the two recent FDA-approved second-generation anti-androgens abiraterone and enzalutamide, resistance develops rapidly in patients with CRPC, despite their initial effectiveness. The lack of effective therapeutic solutions towards CRPC largely reflects our limited understanding of the underlying mechanisms responsible for CRPC development. While persistent androgen receptor (AR signaling under castration levels of serum testosterone (<50 ng/mL contributes to resistance to ADT, it is also clear that CRPC evolves via complex mechanisms. Nevertheless, the physiological impact of individual mechanisms and whether these mechanisms function in a cohesive manner in promoting CRPC are elusive. In spite of these uncertainties, emerging evidence supports a critical role of prostate cancer stem-like cells (PCSLCs in stimulating CRPC evolution and resistance to abiraterone and enzalutamide. In this review, we will discuss the recent evidence supporting the involvement of PCSLC in CRPC acquisition as well as the pathways and factors contributing to PCSLC expansion in response to ADT.

  20. The contribution of genetics and environment to obesity.

    Science.gov (United States)

    Albuquerque, David; Nóbrega, Clévio; Manco, Licínio; Padez, Cristina

    2017-09-01

    Obesity is a global health problem mainly attributed to lifestyle changes such as diet, low physical activity or socioeconomics factors. However, several evidences consistently showed that genetics contributes significantly to the weight-gain susceptibility. A systematic literature search of most relevant original, review and meta-analysis, restricted to English was conducted in PubMed, Web of Science and Google scholar up to May 2017 concerning the contribution of genetics and environmental factors to obesity. Several evidences suggest that obesogenic environments contribute to the development of an obese phenotype. However, not every individual from the same population, despite sharing the same obesogenic environment, develop obesity. After more than 10 years of investigation on the genetics of obesity, the variants found associated with obesity represent only 3% of the estimated BMI-heritability, which is around 47-80%. Moreover, genetic factors per se were unable to explain the rapid spread of obesity prevalence. The integration of multi-omics data enables scientists having a better picture and to elucidate unknown pathways contributing to obesity. New studies based on case-control or gene candidate approach will be important to identify new variants associated with obesity susceptibility and consequently unveiling its genetic architecture. This will lead to an improvement of our understanding about underlying mechanisms involved in development and origin of the actual obesity epidemic. The integration of several omics will also provide insights about the interplay between genes and environments contributing to the obese phenotype. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  1. MOLECULAR MECHANISMS OF FEAR LEARNING AND MEMORY

    Science.gov (United States)

    Johansen, Joshua P.; Cain, Christopher K.; Ostroff, Linnaea E.; LeDoux, Joseph E.

    2011-01-01

    Pavlovian fear conditioning is a useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Together, this research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals, and potentially for understanding fear related disorders, such as PTSD and phobias. PMID:22036561

  2. Molecular mechanisms of fear learning and memory.

    Science.gov (United States)

    Johansen, Joshua P; Cain, Christopher K; Ostroff, Linnaea E; LeDoux, Joseph E

    2011-10-28

    Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Contribution to the study of uranium dioxide aqueous corrosion mechanisms

    International Nuclear Information System (INIS)

    Gallien, J.-P.

    1994-01-01

    The corrosion of uranium dioxide by a synthetical ground water has been studied in order to understand the behaviour of nuclear fuels in the hypothesis of a direct storage. An original leaching unit has been carried out in order to control the parameters occurring in the oxidation-dissolution of the uranium dioxide and to condition the leachate (in particular the temperature and the partial pressure of the carbon dioxide). A ground water in equilibrium with the geological enveloping site has been reconstituted from data acquired on the site. The influence of two parameters has been followed: the carbon dioxide carbon pressure and the redox potential. Each experiment has been carried out at 96 C during one month and the time-history of the solutions and of the solids has been studied. In oxidizing conditions, the uranium concentration in solution has been controlled by an U(VI) complex (one oxide, one hydroxide or a carbonate). The possibility of a control by an U(IV) complex (as coffinite, uraninite or uraninite B) has been confirmed in the case of reducing leaching. An original interpretation of the Rutherford backscattering spectra has allowed to describe the decomposition of the samples in a succession of layers of different densities. A very good agreement between the analyses of the solids and those of the solutions has been obtained in the experiments occurring in reducing conditions. Complementary leaching involving solutions containing stable isotopes (deuterium, O 18 ) have revealed the formation of an hydrated layer and the contribution of grain boundaries to the corrosion phenomenon of uranium dioxide. The results of the current hydro-geochemistry study on the uranium Oklo deposit prove the realism of the experiments that have been carried out in the laboratory. (O.M.)

  4. Solvable potentials derived from supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Levai, G.

    1994-01-01

    The introduction of supersymmetric quantum mechanics has generated renewed interest in solvable problems of non-relativistic quantum mechanics. This approach offers an elegant way to describe different, but isospectral potentials by interpreting the degeneracy of their energy levels in terms of supersymmetry. The original ideas of supersymmetric quantum mechanics have been developed further in many respects in the past ten years, and have been applied to a large variety of physical problems. The purpose of this contribution is to give a survey of supersymmetric quantum mechanics and its applications to solvable quantum mechanical potentials. Its relation to other models describing isospectral potentials is also discussed here briefly, as well as some of its practical applications in various branches of physics. (orig.)

  5. Both cell-autonomous mechanisms and hormones contribute to sexual development in vertebrates and insects.

    Science.gov (United States)

    Bear, Ashley; Monteiro, Antónia

    2013-08-01

    The differentiation of male and female characteristics in vertebrates and insects has long been thought to proceed via different mechanisms. Traditionally, vertebrate sexual development was thought to occur in two phases: a primary and a secondary phase, the primary phase involving the differentiation of the gonads, and the secondary phase involving the differentiation of other sexual traits via the influence of sex hormones secreted by the gonads. In contrast, insect sexual development was thought to depend exclusively on cell-autonomous expression of sex-specific genes. Recently, however, new evidence indicates that both vertebrates and insects rely on sex hormones as well as cell-autonomous mechanisms to develop sexual traits. Collectively, these new data challenge the traditional vertebrate definitions of primary and secondary sexual development, call for a redefinition of these terms, and indicate the need for research aimed at explaining the relative dependence on cell-autonomous versus hormonally guided sexual development in animals. © 2013 The Authors. BioEssays published by WILEY Periodicals, Inc.

  6. Noradrenergic augmentation strategies in the pharmacological treatment of depression and schizophrenia : An experimental study

    OpenAIRE

    Linnér, Love

    2002-01-01

    The pharmacological treatment of depression and schizophrenia, two major psychiatric disorders, is largely based on modulation of central monoaminergic neurotransmission. However, currently available pharmacological treatment alternatives possess a relatively modest clinical efficacy, making them less than optimal. The present series of studies, using in vivo electrophysiological, biochemical and behavioral techniques in rats, aim at the disclosure of mechanisms whereby an ...

  7. Higher order coupling between rigid-body and elastic motion in flexible mechanisms

    International Nuclear Information System (INIS)

    Esat, I.I.; Ianakiev, A.

    1995-01-01

    The paper presents an investigation of the influence of the higher order coupling terms between the rigid-body and elastic motion into flexible mechanism dynamics. The configuration of the mechanical system is obtained by using the so called hybrid coordinates. The kinematic description of the mechanism was obtained using the D-H 4 x 4 transformation matrices. The elastic deformation of each point of the mechanism is described by the finite element modeling (FEM) type interpolation scheme. The dynamic model of the flexible mechanism consists due to the hybrid coordinates of two groups of differential equations. The first group describes the manipulator transport motion and the second group describes the vibration. In this paper the authors evaluated the contribution of the coupling terms between the two groups of differential equations and selected only those with high contribution

  8. Central nervous system mechanisms contributing to the cachexia-anorexia syndrome.

    Science.gov (United States)

    Plata-Salamán, C R

    2000-10-01

    in the development and/or progression of cachexia-anorexia; interleukin-1, interleukin-6 (and its subfamily members such as ciliary neurotrophic factor and leukemia inhibitory factor), interferon-gamma, tumor necrosis factor-alpha, and brain-derived neurotrophic factor have been associated with various cachectic conditions. Controversy has focused on the requirement of increased cytokine concentrations in the circulation or other body fluids (e.g., cerebrospinal fluid) to demonstrate cytokine involvement in cachexia-anorexia. Cytokines, however, also act in paracrine, autocrine, and intracrine manners, activities that cannot be detected in the circulation. In fact, paracrine interactions represent a predominant cytokine mode of action within organs, including the brain. Data show that cytokines may be involved in cachectic-anorectic processes by being produced and by acting locally in specific brain regions. Brain synthesis of cytokines has been shown in peripheral models of cancer, peripheral inflammation, and during peripheral cytokine administration; these data support a role for brain cytokines as mediators of neurologic and neuropsychiatric manifestations of disease and in the brain-to-peripheral communication (e.g., through the autonomic nervous system). Brain mechanisms that merit significant attention in the cachexia-anorexia syndrome are those that result from interactions among cytokines, peptides/neuropeptides, and neurotransmitters. These interactions could result in additive, synergistic, or antagonistic activities and can involve modifications of transducing molecules and intracellular mediators. Thus, the data show that the cachexia-anorexia syndrome is multifactorial, and understanding the interactions between peripheral and brain mechanisms is pivotal to characterizing the underlying integrative pathophysiology of this disorder.

  9. REMEMBERING TO LEARN: INDEPENDENT PLACE AND JOURNEY CODING MECHANISMS CONTRIBUTE TO MEMORY TRANSFER

    OpenAIRE

    Bahar, Amir S.; Shapiro, Matthew L.

    2012-01-01

    The neural mechanisms that integrate new episodes with established memories are unknown. When rats explore an environment, CA1 cells fire in place fields that indicate locations. In goal-directed spatial memory tasks, some place fields differentiate behavioral histories (journey-dependent place fields) while others do not (journey-independent place fields). To investigate how these signals inform learning and memory for new and familiar episodes, we recorded CA1 and CA3 activity in rats train...

  10. Actin and microtubule networks contribute differently to cell response for small and large strains

    Science.gov (United States)

    Kubitschke, H.; Schnauss, J.; Nnetu, K. D.; Warmt, E.; Stange, R.; Kaes, J.

    2017-09-01

    Cytoskeletal filaments provide cells with mechanical stability and organization. The main key players are actin filaments and microtubules governing a cell’s response to mechanical stimuli. We investigated the specific influences of these crucial components by deforming MCF-7 epithelial cells at small (≤5% deformation) and large strains (>5% deformation). To understand specific contributions of actin filaments and microtubules, we systematically studied cellular responses after treatment with cytoskeleton influencing drugs. Quantification with the microfluidic optical stretcher allowed capturing the relative deformation and relaxation of cells under different conditions. We separated distinctive deformational and relaxational contributions to cell mechanics for actin and microtubule networks for two orders of magnitude of drug dosages. Disrupting actin filaments via latrunculin A, for instance, revealed a strain-independent softening. Stabilizing these filaments by treatment with jasplakinolide yielded cell softening for small strains but showed no significant change at large strains. In contrast, cells treated with nocodazole to disrupt microtubules displayed a softening at large strains but remained unchanged at small strains. Stabilizing microtubules within the cells via paclitaxel revealed no significant changes for deformations at small strains, but concentration-dependent impact at large strains. This suggests that for suspended cells, the actin cortex is probed at small strains, while at larger strains; the whole cell is probed with a significant contribution from the microtubules.

  11. Mast cell-neural interactions contribute to pain and itch.

    Science.gov (United States)

    Gupta, Kalpna; Harvima, Ilkka T

    2018-03-01

    Mast cells are best recognized for their role in allergy and anaphylaxis, but increasing evidence supports their role in neurogenic inflammation leading to pain and itch. Mast cells act as a "power house" by releasing algogenic and pruritogenic mediators, which initiate a reciprocal communication with specific nociceptors on sensory nerve fibers. Consequently, nerve fibers release inflammatory and vasoactive neuropeptides, which in turn activate mast cells in a feedback mechanism, thus promoting a vicious cycle of mast cell and nociceptor activation leading to neurogenic inflammation and pain/pruritus. Mechanisms underlying mast cell differentiation, activation, and intercellular interactions with inflammatory, vascular, and neural systems are deeply influenced by their microenvironment, imparting enormous heterogeneity and complexity in understanding their contribution to pain and pruritus. Neurogenic inflammation is central to both pain and pruritus, but specific mediators released by mast cells to promote this process may vary depending upon their location, stimuli, underlying pathology, gender, and species. Therefore, in this review, we present the contribution of mast cells in pathological conditions, including distressing pruritus exacerbated by psychologic stress and experienced by the majority of patients with psoriasis and atopic dermatitis and in different pain syndromes due to mastocytosis, sickle cell disease, and cancer. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Molecular mechanisms of canalization: Hsp90 and beyond

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-03-26

    Mar 26, 2007 ... clients are essential nodes in signal transduction pathways and regulatory circuits, accounting for the .... respective contributions of genetics versus epigenetics ... authors succeeded in elucidating the molecular mechanism.

  13. Chemogenetic locus coeruleus activation restores reversal learning in a rat model of Alzheimer's disease.

    Science.gov (United States)

    Rorabaugh, Jacki M; Chalermpalanupap, Termpanit; Botz-Zapp, Christian A; Fu, Vanessa M; Lembeck, Natalie A; Cohen, Robert M; Weinshenker, David

    2017-11-01

    See Grinberg and Heinsen (doi:10.1093/brain/awx261) for a scientific commentary on this article. Clinical evidence suggests that aberrant tau accumulation in the locus coeruleus and noradrenergic dysfunction may be a critical early step in Alzheimer’s disease progression. Yet, an accurate preclinical model of these phenotypes that includes early pretangle tau accrual in the locus coeruleus, loss of locus coeruleus innervation and deficits locus coeruleus/norepinephrine modulated behaviours, does not exist, hampering the identification of underlying mechanisms and the development of locus coeruleus-based therapies. Here, a transgenic rat (TgF344-AD) expressing disease-causing mutant amyloid precursor protein (APPsw) and presenilin-1 (PS1ΔE9) was characterized for histological and behavioural signs of locus coeruleus dysfunction reminiscent of mild cognitive impairment/early Alzheimer’s disease. In TgF344-AD rats, hyperphosphorylated tau was detected in the locus coeruleus prior to accrual in the medial entorhinal cortex or hippocampus, and tau pathology in the locus coeruleus was negatively correlated with noradrenergic innervation in the medial entorhinal cortex. Likewise, TgF344-AD rats displayed progressive loss of hippocampal norepinephrine levels and locus coeruleus fibres in the medial entorhinal cortex and dentate gyrus, with no frank noradrenergic cell body loss. Cultured mouse locus coeruleus neurons expressing hyperphosphorylation-prone mutant human tau had shorter neurites than control neurons, but similar cell viability, suggesting a causal link between pretangle tau accrual and altered locus coeruleus fibre morphology. TgF344-AD rats had impaired reversal learning in the Morris water maze compared to their wild-type littermates, which was rescued by chemogenetic locus coeruleus activation via designer receptors exclusively activated by designer drugs (DREADDs). Our results indicate that TgF344-AD rats uniquely meet several key criteria for a

  14. Contribution to numerical and mechanical modelling of pellet-cladding interaction in nuclear reactor fuel rod

    International Nuclear Information System (INIS)

    Retel, V.

    2002-12-01

    Pressurised water reactor fuel rods (PWR) are the place of nuclear fission, resulting in unstable and radioactive elements. Today, the mechanical loading on the cladding is harder and harder and is partly due to the fuel pellet movement. Then, the mechanical behaviour of the cladding needs to be simulated with models allowing to assess realistic stress and strain fields for all the running conditions. Besides, the mechanical treatment of the fuel pellet needs to be improved. The study is part of a global way of improving the treatment of pellet-cladding interaction (PCI) in the 1D finite elements EDF code named CYRANO3. Non-axisymmetrical multidirectional effects have to be accounted for in a context of unidirectional axisymmetrical finite elements. The aim of this work is double. Firstly a model simulating the effect of stress concentration on the cladding, due to the opening of the radial cracks of fuel, had been added in the code. Then, the fragmented state of fuel material has been taken into account in the thermomechanical calculation, through a model which led the strain and stress relaxation in the pellet due to the fragmentation, be simulated. This model has been implemented in the code for two types of fuel behaviour: elastic and viscoplastic. (author)

  15. On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles

    Energy Technology Data Exchange (ETDEWEB)

    Webb, M.J.; Senior, C.A.; Sexton, D.M.H.; Ingram, W.J.; Williams, K.D.; Ringer, M.A. [Hadley Centre for Climate Prediction and Research, Met Office, Exeter (United Kingdom); McAvaney, B.J.; Colman, R. [Bureau of Meteorology Research Centre (BMRC), Melbourne (Australia); Soden, B.J. [University of Miami, Rosenstiel School for Marine and Atmospheric Science, Miami, FL (United States); Gudgel, R.; Knutson, T. [Geophysical Fluid Dynamics Laboratory (GFDL), Princeton, NJ (United States); Emori, S.; Ogura, T. [National Institute for Environmental Studies (NIES), Tsukuba (Japan); Tsushima, Y. [Japan Agency for Marine-Earth Science and Technology, Frontier Research Center for Global Change (FRCGC), Kanagawa (Japan); Andronova, N. [University of Michigan, Department of Atmospheric, Oceanic and Space Sciences, Ann Arbor, MI (United States); Li, B. [University of Illinois at Urbana-Champaign (UIUC), Department of Atmospheric Sciences, Urbana, IL (United States); Musat, I.; Bony, S. [Institut Pierre Simon Laplace (IPSL), Paris (France); Taylor, K.E. [Program for Climate Model Diagnosis and Intercomparison (PCMDI), Livermore, CA (United States)

    2006-07-15

    Global and local feedback analysis techniques have been applied to two ensembles of mixed layer equilibrium CO{sub 2} doubling climate change experiments, from the CFMIP (Cloud Feedback Model Intercomparison Project) and QUMP (Quantifying Uncertainty in Model Predictions) projects. Neither of these new ensembles shows evidence of a statistically significant change in the ensemble mean or variance in global mean climate sensitivity when compared with the results from the mixed layer models quoted in the Third Assessment Report of the IPCC. Global mean feedback analysis of these two ensembles confirms the large contribution made by inter-model differences in cloud feedbacks to those in climate sensitivity in earlier studies; net cloud feedbacks are responsible for 66% of the inter-model variance in the total feedback in the CFMIP ensemble and 85% in the QUMP ensemble. The ensemble mean global feedback components are all statistically indistinguishable between the two ensembles, except for the clear-sky shortwave feedback which is stronger in the CFMIP ensemble. While ensemble variances of the shortwave cloud feedback and both clear-sky feedback terms are larger in CFMIP, there is considerable overlap in the cloud feedback ranges; QUMP spans 80% or more of the CFMIP ranges in longwave and shortwave cloud feedback. We introduce a local cloud feedback classification system which distinguishes different types of cloud feedbacks on the basis of the relative strengths of their longwave and shortwave components, and interpret these in terms of responses of different cloud types diagnosed by the International Satellite Cloud Climatology Project simulator. In the CFMIP ensemble, areas where low-top cloud changes constitute the largest cloud response are responsible for 59% of the contribution from cloud feedback to the variance in the total feedback. A similar figure is found for the QUMP ensemble. Areas of positive low cloud feedback (associated with reductions in low level

  16. The Best of Two Worlds. Article 6 mechanisms shall contribute to Sustainable Development Goals (SDGs)

    DEFF Research Database (Denmark)

    Olsen, Karen Holm; Soezer, Alexandra

    2016-01-01

    The Paris Agreement and the UN Sustainable Development Goals (SDGs) were two milestone achievements in 2015. The Intended Nationally Determined Contributions (INDCs) put forward by Parties before the Climate Conference in Paris will have to be fully embedded in the 2030 agenda to achieve truly...... transformational, lasting impacts for low carbon and SDGs and, ultimately, resilient communities that are able to quickly respond to and recover from adverse situations....

  17. Trends in applications of mathematics to mechanics

    CERN Document Server

    Stefanelli, Ulisse; Truskinovsky, Lev; Visintin, Augusto

    2018-01-01

    This volume originates from the INDAM Symposium on Trends on Applications of Mathematics to Mechanics (STAMM), which was held at the INDAM headquarters in Rome on 5–9 September 2016. It brings together original contributions at the interface of Mathematics and Mechanics. The focus is on mathematical models of phenomena issued from various applications. These include thermomechanics of solids and gases, nematic shells, thin films, dry friction, delamination, damage, and phase-field dynamics. The papers in the volume present novel results and identify possible future developments. The book is addressed to researchers involved in Mathematics and its applications to Mechanics.

  18. Search for violations of quantum mechanics

    International Nuclear Information System (INIS)

    Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V.; Srednicki, M.

    1984-01-01

    The treatment of quantum effects in gravitational fields indicates that pure states may evolve into mixed states, and Hawking has proposed modification of the axioms of field theory which incorporate the corresponding violation of quantum mechanics. In this paper we propose a modified hamiltonian equation of motion for density matrices and use it to interpret upper bounds on the violation of quantum mechanics in different phenomenological situations. We apply our formalism to the K 0 -anti K 0 system and to long baseline neutron interferometry experiments. In both cases we find upper bounds of about 2x10 -21 GeV on contributions to the single particle 'hamiltonian' which violate quantum mechanical coherence. We discuss how these limits might be improved in the future, and consider the relative significance of other successful tests of quantum mechanics. An appendix contains model estimates of the magnitude of effects violating quantum mechanics. (orig.)

  19. Issues related to cooperative implementation mechanisms

    International Nuclear Information System (INIS)

    1998-01-01

    This note by the secretariat seeks to focus discussions on some key issues regarding the design and functioning of the three new mechanisms, such as issues concerning mandates, cross-cutting as well as issues concerning individual mechanisms. The note addresses each mechanism separately in view of different origins, approaches, participants and possible applications. Reference is, however, made to similarities among the mechanisms, in particular where coordination of work on methodological and institutional issues and inter-institutional collaboration are concerned. The note suggests, in its concluding part, elements of a work programme up to and, to some extent, beyond COP 4. It draws upon the views submitted by Parties (document FCCC/SB/1998/MISC.1), contains reflections by the secretariat and builds on its consultations with other organizations having activities, under way or planned, that could contribute to the design or operation of the mechanisms. (au)

  20. Fracture mechanics

    International Nuclear Information System (INIS)

    Miannay, D.P.

    1995-01-01

    This book entitle ''Fracture Mechanics'', the first one of the monograph ''Materiologie'' is geared to design engineers, material engineers, non destructive inspectors and safety experts. This book covers fracture mechanics in isotropic homogeneous continuum. Only the monotonic static loading is considered. This book intended to be a reference with the current state of the art gives the fundamental of the issues under concern and avoids the developments too complicated or not yet mastered for not making reading cumbersome. The subject matter is organized as going from an easy to a more complicated level and thus follows the chronological evolution in the field. Similarly the microscopic scale is considered before the macroscopic scale, the physical understanding of phenomena linked to the experimental observation of the material preceded the understanding of the macroscopic behaviour of structures. In this latter field the relatively recent contribution of finite element computations with some analogy with the experimental observation is determining. However more sensitive analysis is not skipped

  1. Hypertensive response to exercise: mechanisms and clinical implication

    OpenAIRE

    Kim, Darae; Ha, Jong-Won

    2016-01-01

    A hypertensive response to exercise (HRE) is frequently observed in individuals without hypertension or other cardiovascular disease. However, mechanisms and clinical implication of HRE is not fully elucidated. Endothelial dysfunction and increased stiffness of large artery contribute to development of HRE. From neurohormonal aspects, excess stimulation of sympathetic nervous system and augmented rise of angiotensin II seems to be important mechanism in HRE. Increasing evidences indicates tha...

  2. New two-loop contribution to electric dipole moment in supersymmetric theories

    CERN Document Server

    Chang, Darwin; Pilaftsis, Apostolos; Chang, Darwin; Keung, Wai-Yee; Pilaftsis, Apostolos

    1999-01-01

    We calculate a new type of two-loop contributions to the electric dipole moments of the electron and neutron in supersymmetric theories. The new contributions are originated from the potential CP violation in the trilinear couplings of the Higgs bosons to the scalar-top or the scalar-bottom quarks. These couplings were previously very weakly constrained. The electric dipole moments are induced through a mechanism analogous to that due to Barr and Zee. We find observable effects for a sizeable portion of the parameter space related to the third generation scalar-quarks in the minimal supersymmetric standard model which cannot be excluded by earlier considerations.

  3. POVMs: a small but important step beyond standard quantum mechanics

    NARCIS (Netherlands)

    Muynck, de W.M.; Nieuwenhuizen, T.M.; Spicka, V.; Mehmani, B.; et al., xx

    2007-01-01

    It is the purpose of the present contribution to demonstrate that the generalization of the concept of a quantum mechanical oservable from the Hermitian operator of standard quantum mechanics to a positive operator-valued measure is not a peripheral issue, allegedly to be understood in terms of a

  4. History of respiratory mechanics prior to World War II.

    Science.gov (United States)

    West, John B

    2012-01-01

    The history of respiratory mechanics is reviewed over a period of some 2,500 years from the ancient Greeks to World War II. A cardinal early figure was Galen (130-199 AD) who made remarkably perceptive statements on the diaphragm and the anatomy of the phrenic nerves. The polymath Leonardo da Vinci (1452-1519) contributed observations on pulmonary mechanics including the pleural space and bronchial airflow that still make good reading. Vesalius (1514-1564) produced magnificent illustrations of the lung, ribcage, and diaphragm. In the 17th century, the Oxford School including Boyle, Hooke, Lower, and Mayow were responsible for many contributions on mechanical functions including the intercostal muscles and the pleura. Hales (1677-1761) calculated the size and surface area of the alveoli, the time spent by the blood in the pulmonary capillaries, and intrathoracic pressures. Poiseuille (1799-1869) carried out classical studies of fluid mechanics including one of the first demonstrations of flow limitation in collapsible vessels. The culmination of the pre-World War II period was the outstanding contributions of Rohrer (1888-1926) and his two Swiss countrymen, Wirz (1896-1978) and von Neergaard (1887-1947). Rohrer developed the first comprehensive, quantitative treatment of respiratory mechanics in the space of 10 years including an analysis of flow in airways, and the pressure-volume behavior of the respiratory system. von Neergaard performed landmark studies on the effects of surface tension on pressure-volume behavior. Progress over the 2,500 years was slow and erratic at times, but by 1940 the stage was set for the spectacular developments of the next 70 years. © 2012 American Physiological Society

  5. Potential fluid mechanic pathways of platelet activation

    OpenAIRE

    Shadden, Shawn C.; Hendabadi, Sahar

    2012-01-01

    Platelet activation is a precursor for blood clotting, which plays leading roles in many vascular complications and causes of death. Platelets can be activated by chemical or mechanical stimuli. Mechanically, platelet activation has been shown to be a function of elevated shear stress and exposure time. These contributions can be combined by considering the cumulative stress or strain on a platelet as it is transported. Here we develop a framework for computing a hemodynamic-based activation ...

  6. Cognitive factors contributing to spelling performance in children with prenatal alcohol exposure.

    Science.gov (United States)

    Glass, Leila; Graham, Diana M; Akshoomoff, Natacha; Mattson, Sarah N

    2015-11-01

    Heavy prenatal alcohol exposure is associated with impaired school functioning. Spelling performance has not been comprehensively evaluated. We examined whether children with heavy prenatal alcohol exposure demonstrate deficits in spelling and related abilities, including reading, and tested whether there are unique underlying mechanisms for observed deficits in this population. Ninety-six school-age children made up 2 groups: children with heavy prenatal alcohol exposure (AE, n = 49) and control children (CON, n = 47). Children completed select subtests from the Wechsler Individual Achievement Test-Second Edition and the NEPSY-II. Group differences and relations between spelling and theoretically related cognitive variables were evaluated using multivariate analysis of variance and Pearson correlations. Hierarchical regression analyses were used to assess contributions of group membership and cognitive variables to spelling performance. The specificity of these deficits and underlying mechanisms was tested by examining the relations between reading ability, group membership, and cognitive variables. Groups differed significantly on all variables. Group membership and phonological processing significantly contributed to spelling performance, whereas for reading, group membership and all cognitive variables contributed significantly. For both reading and spelling, group × working memory interactions revealed that working memory contributed independently only for alcohol-exposed children. Alcohol-exposed children demonstrated a unique pattern of spelling deficits. The relation of working memory to spelling and reading was specific to the AE group, suggesting that if prenatal alcohol exposure is known or suspected, working memory ability should be considered in the development and implementation of explicit instruction. (c) 2015 APA, all rights reserved).

  7. Does Impaired Gallbladder Function Contribute to the Development of Barrett's Esophagus and Esophageal Adenocarcinoma?

    LENUS (Irish Health Repository)

    Nassr, Ayman O

    2011-06-01

    Esophageal adenocarcinoma is aetiologically associated with gastro-esophageal reflux, but the mechanisms responsible for the metaplasia-dysplasia sequence are unknown. Bile components are implicated. Impaired gallbladder function may contribute to duodenogastric reflux (DGR) and harmful GERD.

  8. Springer handbook of mechanical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Karl-Heinrich [Magdeburg Univ. (Germany). Dept. of Mechanical Engineering; Antonsson, Erik K. (eds.) [California Inst. of Technology (CALTEC), Pasadena, CA (United States). Dept. of Mechanical Engineering

    2009-07-01

    Mechanical Engineering is a professional engineering discipline which involves the application of principles of physics, design, manufacturing and maintenance of mechanical systems. It requires a solid understanding of the key concepts including mechanics, kinematics, thermodynamics and energy. Mechanical engineers use these principles and others in the design and analysis of automobiles, aircrafts, heating and cooling systems, industrial equipment and machinery. In addition to these main areas, specialized fields are necessary to prepare future engineers for their positions in industry, such as mechatronics and robotics, transportation and logistics, fuel technology, automotive engineering, biomechanics, vibration, optics and others. Accordingly, the Springer Handbook of Mechanical Engineering devotes its contents to all areas of interest for the practicing engineer as well as for the student at various levels and educational institutions. Authors from all over the world have contributed with their expertise and support the globally working engineer in finding a solution for today's mechanical engineering problems. Each subject is discussed in detail and supported by numerous figures and tables. DIN standards are retained throughout and ISO equivalents are given where possible. The text offers a concise but detailed and authoritative treatment of the topics with full references. (orig.)

  9. Contributions of the Medial Prefrontal Cortex to Social Influence in Economic Decision-Making.

    Science.gov (United States)

    Apps, M A J; Ramnani, N

    2017-09-01

    Economic decisions are guided by highly subjective reward valuations (SVs). Often these SVs are over-ridden when individuals conform to social norms. Yet, the neural mechanisms that underpin the distinct processing of such normative reward valuations (NVs) are poorly understood. The dorsomedial and ventromedial portions of the prefrontal cortex (dmPFC/vmPFC) are putatively key regions for processing social and economic information respectively. However, the contribution of these regions to economic decisions guided by social norms is unclear. Using functional magnetic resonance imaging and computational modeling we examine the neural mechanisms underlying the processing of SVs and NVs. Subjects (n = 15) indicated either their own economic preferences or made similar choices based on a social norm-learnt during a training session. We found that that the vmPFC and dmPFC make dissociable contributions to the processing of SV and NV. Regions of the dmPFC processed "only" the value of rewards when making normative choices. In contrast, we identify a novel mechanism in the vmPFC for the coding of value. This region signaled both subjective and normative valuations, but activity was scaled positively for SV and negatively for NV. These results highlight some of the key mechanisms that underpin conformity and social influence in economic decision-making. © The Author 2017. Published by Oxford University Press.

  10. Systemic administration of guanfacine improves food-motivated impulsive choice behavior primarily via direct stimulation of postsynaptic α2A-adrenergic receptors in rats.

    Science.gov (United States)

    Nishitomi, Kouhei; Yano, Koji; Kobayashi, Mika; Jino, Kohei; Kano, Takuya; Horiguchi, Naotaka; Shinohara, Shunji; Hasegawa, Minoru

    2018-06-01

    Impulsive choice behavior, which can be assessed using the delay discounting task, is a characteristic of various psychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). Guanfacine is a selective α 2A -adrenergic receptor agonist that is clinically effective in treating ADHD. However, there is no clear evidence that systemic guanfacine administration reduces impulsive choice behavior in the delay discounting task in rats. In the present study, we examined the effect of systemic guanfacine administration on food-motivated impulsive choice behavior in rats and the neuronal mechanism underlying this effect. Repeated administration of either guanfacine, methylphenidate, or atomoxetine significantly enhanced impulse control, increasing the number of times the rats chose a large but delayed reward in a dose-dependent manner. The effect of guanfacine was significantly blocked by pretreatment with an α 2A -adrenergic receptor antagonist. Furthermore, the effect of guanfacine remained unaffected in rats pretreated with a selective noradrenergic neurotoxin, consistent with a post-synaptic action. In contrast, the effect of atomoxetine on impulsive choice behavior was attenuated by pretreatment with the noradrenergic neurotoxin. These results provide the first evidence that systemically administered guanfacine reduces impulsive choice behavior in rats and that direct stimulation of postsynaptic, rather than presynaptic, α 2A -adrenergic receptors is involved in this effect. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. An investigation into the receptor-regulating effects of the acute administration of opioid agonists and an antagonist on beta adrenergic receptors in the rat cerebral cortex

    International Nuclear Information System (INIS)

    Roper, I.

    1987-01-01

    Past and current research indicated that biochemical deviations which might be involved in the etiology and pathophysiology of depression, included abnormalities or imbalances in the noradrenergic, serotonergic, hormonal and possibly in the endogenous opioid, dopaminergic, histaminergic, cholinergic and trace amine systems. In order to investigate a possible link between the noradrenergic system and opioids, it was decided to test the acute effects of opioid administration on cortical beta adrenoceptor numbers and affinity. As these receptors have been most consistently downregulated by antidepressant treatment, they may be involved in the mechanism of antidepressant action of these agents. It was decided to investigate beta adrenoceptor-regulatory effects of opioid treatment. Naloxone was tested alone, with a view to suppressing any possible endogenous opioid influences upon beta receptor status and revealing an effect which would possibly be the opposite of that brought about by the administration of opioid agonists. Naloxone was administered together with morphine to demonstrate that any beta receptor up- or downregulation which might be measured, had indeed been opioid-receptor mediated. It was found that the acute administration of four different mu opioid agonists, naloxone and naloxone plus morphine, did not cause any statistically significant alterations in cortical beta adrenergic receptor numbers or affinity in the rat. A radioactive ligand, the beta adrenoceptor-labelling compound referred to as DHA (L-dihydroalprenolol HCI) was used in this study

  12. Glucocorticoids interact with the hippocampal endocannabinoid system in impairing retrieval of contextual fear memory

    Science.gov (United States)

    Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; McGaugh, James L.; Roozendaal, Benno

    2012-01-01

    There is extensive evidence that glucocorticoid hormones impair the retrieval of memory of emotionally arousing experiences. Although it is known that glucocorticoid effects on memory retrieval impairment depend on rapid interactions with arousal-induced noradrenergic activity, the exact mechanism underlying this presumably nongenomically mediated glucocorticoid action remains to be elucidated. Here, we show that the hippocampal endocannabinoid system, a rapidly activated retrograde messenger system, is involved in mediating glucocorticoid effects on retrieval of contextual fear memory. Systemic administration of corticosterone (0.3–3 mg/kg) to male Sprague–Dawley rats 1 h before retention testing impaired the retrieval of contextual fear memory without impairing the retrieval of auditory fear memory or directly affecting the expression of freezing behavior. Importantly, a blockade of hippocampal CB1 receptors with AM251 prevented the impairing effect of corticosterone on retrieval of contextual fear memory, whereas the same impairing dose of corticosterone increased hippocampal levels of the endocannabinoid 2-arachidonoylglycerol. We also found that antagonism of hippocampal β-adrenoceptor activity with local infusions of propranolol blocked the memory retrieval impairment induced by the CB receptor agonist WIN55,212–2. Thus, these findings strongly suggest that the endocannabinoid system plays an intermediary role in regulating rapid glucocorticoid effects on noradrenergic activity in impairing memory retrieval of emotionally arousing experiences. PMID:22331883

  13. Mindful Emotion Regulation: Exploring the Neurocognitive Mechanisms behind Mindfulness

    Directory of Open Access Journals (Sweden)

    Alessandro Grecucci

    2015-01-01

    Full Text Available The purpose of this paper is to review some of the psychological and neural mechanisms behind mindfulness practice in order to explore the unique factors that account for its positive impact on emotional regulation and health. After reviewing the mechanisms of mindfulness and its effects on clinical populations we will consider how the practice of mindfulness contributes to the regulation of emotions. We argue that mindfulness has achieved effective outcomes in the treatment of anxiety, depression, and other psychopathologies through the contribution of mindfulness to emotional regulation. We consider the unique factors that mindfulness meditation brings to the process of emotion regulation that may account for its effectiveness. We review experimental evidence that points towards the unique effects of mindfulness specifically operating over and above the regulatory effects of cognitive reappraisal mechanisms. A neuroanatomical circuit that leads to mindful emotion regulation is also suggested. This paper thereby aims to contribute to proposed models of mindfulness for research and theory building by proposing a specific model for the unique psychological and neural processes involved in mindful detachment that account for the effects of mindfulness over and above the effects accounted for by other well-established emotional regulation processes such as cognitive reappraisal.

  14. Towards Deciphering the Hidden Mechanisms That Contribute to the Antigenic Activation Process of Human Vγ9Vδ2 T Cells

    Directory of Open Access Journals (Sweden)

    Lola Boutin

    2018-04-01

    Full Text Available Vγ9Vδ2 T cells represent a major unconventional γδ T cell subset located in the peripheral blood of adults in humans and several non-human primates. Lymphocytes that constitute this transitional subset can sense subtle level changes of intracellular phosphorylated intermediates of the isoprenoid biosynthesis pathway (phosphoantigens, pAg, such as isopentenyl pyrophosphate, during cell stress events. This unique antigenic activation process operates in a rigorous framework that requires the expression of butyrophilin 3A1 (BTN3A1/CD277 molecules, which are type I glycoproteins that belong to the B7 family. Several studies have further shown that pAg specifically bind to the intracellular B30.2 domain of BTN3A1 linked to the antigenic activation of Vγ9Vδ2 T cells. Here, we highlight the recent advances in BTN3A1 dynamics induced upon the binding of pAg and the contribution of the different subunits to this activation process. Recent reports support that conformational modifications of BTN3A1 might represent a key step in the detection of infection or tumorigenesis by Vγ9Vδ2 T cells. A better understanding of this mechanism will help optimize novel immunotherapeutical approaches that target defined functions of this unique γδ T cell subset.

  15. Increased mRNA expression of cytochrome oxidase in dorsal raphe nucleus of depressive suicide victims

    Directory of Open Access Journals (Sweden)

    A Sanchez-Bahillo

    2008-04-01

    Full Text Available A Sanchez-Bahillo1, V Bautista-Hernandez1, Carlos Barcia Gonzalez1, R Bañon2, A Luna2, EC Hirsch3, Maria-Trinidad Herrero11Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED; 2Department of Legal Medicine, Department of Human Anatomy, School of Medicine, University of Murcia, Campus de Espinardo, Murcia 30100, Spain; 3INSERM U679 Hôpital de la Salpêtrière, Boulevard de l’Hôpital, Paris, FranceAbstract: Suicidal behavior is a problem with important social repercussions. Some groups of the population show a higher risk of suicide; for example, depression, alcoholism, psychosis or drug abuse frequently precedes suicidal behavior. However, the relationship between metabolic alterations in the brain and premorbid clinical symptoms of suicide remains uncertain. The serotonergic and noradrenergic systems have frequently been, implicated in suicidal behavior and the amount of serotonin in the brain and CSF of suicide victims has been found to be low compared with normal subjects. However, there are contradictory results regarding the role of noradrenergic neurons in the mediation of suicide attempts, possibly reflecting the heterogeneity of conditions that lead to a common outcome. In the present work we focus on the subgroup of suicide victims that share a common diagnosis of major depression. Based on post-mortem studies analyzing mRNA expression by in situ hybridization, serotonergic neurons from the dorsal raphe nucleus (DRN from depressive suicide victims are seen to over-express cytochrome oxidase mRNA. However, no corresponding changes were found in the expression of tyrosine hydroxylase (TH mRNA in the noradrenergic neurons of the Locus Coeruleus (LC. These results suggest that, despite of the low levels of serotonin described in suicide victims, the activity of DRN neurons could increase in the suicidally depressed, probably due to the over activation of

  16. Loss of Sympathetic Nerves in Spleens from Patients with End Stage Sepsis

    Directory of Open Access Journals (Sweden)

    Donald B. Hoover

    2017-12-01

    Full Text Available The spleen is an important site for central regulation of immune function by noradrenergic sympathetic nerves, but little is known about this major region of neuroimmune communication in humans. Experimental studies using animal models have established that sympathetic innervation of the spleen is essential for cholinergic anti-inflammatory responses evoked by vagal nerve stimulation, and clinical studies are evaluating this approach for treating inflammatory diseases. Most data on sympathetic nerves in spleen derive from rodent studies, and this work has established that remodeling of sympathetic innervation can occur during inflammation. However, little is known about the effects of sepsis on spleen innervation. Our primary goals were to (i localize noradrenergic nerves in human spleen by immunohistochemistry for tyrosine hydroxylase (TH, a specific noradrenergic marker, (ii determine if nerves occur in close apposition to leukocytes, and (iii determine if splenic sympathetic innervation is altered in patients who died from end stage sepsis. Staining for vesicular acetylcholine transporter (VAChT was done to screen for cholinergic nerves. Archived paraffin tissue blocks were used. Control samples were obtained from trauma patients or patients who died after hemorrhagic stroke. TH + nerves were associated with arteries and arterioles in all control spleens, occurring in bundles or as nerve fibers. Individual TH + nerve fibers entered the perivascular region where some appeared in close apposition to leukocytes. In marked contrast, spleens from half of the septic patients lacked TH + nerves fibers and the average abundance of TH + nerves for the septic group was only 16% of that for the control group (control: 0.272 ± 0.060% area, n = 6; sepsis: 0.043 ± 0.026% area, n = 8; P < 0.005. All spleens lacked cholinergic innervation. Our results provide definitive evidence for the distribution of noradrenergic

  17. Developmental Origins of Common Disease: Epigenetic Contributions to Obesity.

    Science.gov (United States)

    Kappil, Maya; Wright, Robert O; Sanders, Alison P

    2016-08-31

    The perinatal period is a window of susceptibility for later life disease. Recent epigenetic findings are beginning to increase our understanding of the molecular mechanisms that may contribute to the programming of obesity. This review summarizes recent evidence that supports the role of epigenetically mediated early life programming in the later onset of obesity. Establishing such links between environmental exposures and modifiable molecular changes ultimately holds promise to inform interventional efforts toward alleviating the environmentally mediated onset of obesity.

  18. The French capacity mechanism

    International Nuclear Information System (INIS)

    2014-01-01

    The French capacity mechanism has been design to ensure security of supply in the context of the energy transition. This energy transition challenges the electricity market design with several features: peak load growth, the development of renewables, demand response,... To ensure security of supply in this context, a capacity mechanism is being implemented in France. It is a market wide capacity obligation on electricity suppliers, based on market principles. Suppliers are responsible for forecasting their obligation, which corresponds to their contribution to winter peak load, and must procure enough capacity certificates to meet their obligations. Capacity certificates are granted to capacities through a certification process, which assesses their contribution to security of supply on the basis of availability commitments. This certification process is technology neutral and performance based, associated with controls and penalties in case of non compliance. Demand Side is fully integrated in the market, either through the reduction of suppliers' capacity obligation or direct participation after certification. In addition to the expected benefits in terms of security of supply, the French capacity market will foster the development of demand response. The participation of foreign capacities will require adaptations which are scheduled in a road-map, and could pave the way for further European integration of energy policies. (authors)

  19. Atomoxetine, a norepinephrine reuptake inhibitor, reduces seizure-induced respiratory arrest.

    Science.gov (United States)

    Zhang, Honghai; Zhao, Haiting; Feng, Hua-Jun

    2017-08-01

    Sudden unexpected death in epilepsy (SUDEP) is a devastating epilepsy complication, and no effective preventive strategies are currently available for this fatal disorder. Clinical and animal studies of SUDEP demonstrate that seizure-induced respiratory arrest (S-IRA) is the primary event leading to death after generalized seizures in many cases. Enhancing brain levels of serotonin reduces S-IRA in animal models relevant to SUDEP, including the DBA/1 mouse. Given that serotonin in the brain plays an important role in modulating respiration and arousal, these findings suggest that deficits in respiration and/or arousal may contribute to S-IRA. It is well known that norepinephrine is an important neurotransmitter that modulates respiration and arousal in the brain as well. Therefore, we hypothesized that enhancing noradrenergic neurotransmission suppresses S-IRA. To test this hypothesis, we examined the effect of atomoxetine, a norepinephrine reuptake inhibitor (NRI), on S-IRA evoked by either acoustic stimulation or pentylenetetrazole in DBA/1 mice. We report the original observation that atomoxetine specifically suppresses S-IRA without altering the susceptibility to seizures evoked by acoustic stimulation, and atomoxetine also reduces S-IRA evoked by pentylenetetrazole in DBA/1 mice. Our data suggest that the noradrenergic signaling is importantly involved in S-IRA, and that atomoxetine, a medication widely used to treat attention deficit hyperactivity disorder (ADHD), is potentially useful to prevent SUDEP. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited

    DEFF Research Database (Denmark)

    Deelen, Joris; Beekman, Marian; Uh, Hae-Won

    2011-01-01

    By studying the loci which contribute to human longevity, we aim to identify mechanisms that contribute to healthy aging. To identify such loci, we performed a genome-wide association study (GWAS) comparing 403 unrelated nonagenarians from long-living families included in the Leiden Longevity Stu...

  1. Efficiency of the emission trading. A contribution to the climate protection law

    International Nuclear Information System (INIS)

    Frenz, Walter

    2014-01-01

    The contribution discusses the following topics: Inclusion of additional sectors into the emission trading: road traffic and sea traffic, the stepwise realization and difficulties; the failed inclusion of air traffic, rigid penalties in case of violation of the fee delivery, thread for the complete mechanism, over-compliance in Germany and international perspectives.

  2. Use of Modafinil in Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Mehmet Hanifi Kokacya

    2016-03-01

    Full Text Available Modafinil, is a psychostimulant drug with neurochemical and behavourial effects, distinct from those of amphetamine. It is used to treat patients with narcolepsy and other excessive sleepiness. Modafinil has dopaminergic, noradrenergic, histaminergic, glutamergic, serotonergic and GABAergic interactions. It is also shown that modafinil has neuroprotective effects via antioxidative mechanisms. Besides modafinil shows initial promise for a variety of off-label indications in psychiatry, including bipolar disorder, attention-deficit/hyperactivity disorder, and schizophrenia . The aim of this article is to review the literature on clinical use of modafinil in psychiatric disorders. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2016; 8(1: 42-51

  3. The history of theoretical, material and computational mechanics mathematics meets mechanics and engineering

    CERN Document Server

    2014-01-01

    This collection of 23 articles is the output of lectures in special sessions on “The History of Theoretical, Material and Computational Mechanics” within the yearly conferences of the GAMM in the years 2010 in Karlsruhe, Germany, 2011 in Graz, Austria, and in 2012 in Darmstadt, Germany; GAMM is the “Association for Applied Mathematics and Mechanics”, founded in 1922 by Ludwig Prandtl and Richard von Mises. The contributions in this volume discuss different aspects of mechanics. They are related to solid and fluid mechanics in general and to specific problems in these areas including the development of numerical solution techniques. In the first part the origins and developments of conservation principles in mechanics and related variational methods are treated together with challenging applications from the 17th to the 20th century. Part II treats general and more specific aspects of material theories of deforming solid continua and porous soils. and Part III presents important theoretical and enginee...

  4. Mechanical Contact Experiments and Simulations

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Martins, P; Zhang, W.

    2011-01-01

    Mechanical contact is studied under dynamic development by means of a combined numerical and experimental investigation. The experiments are designed to allow dynamical development of non-planar contact areas with significant expansion in all three directions as the load is increased. Different....... The overall investigation serves for testing and validating the numerical implementation of the mechanical contact, which is one of the main contributions to a system intended for 3D simulation of resistance welding. Correct modelling of contact between parts to be welded, as well as contact with electrodes......, is crucial for satisfactory modelling of the resistance welding process. The resistance heating at the contact interfaces depends on both contact area and pressure, and as the contact areas develop dynamically, the presented tests are relevant for assessing the validity and accuracy of the mechanical contact...

  5. Diffusion mechanisms in intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Larikov, L N [ANU, Inst. Metallofiziki, Kiev (Ukraine)

    1992-08-01

    Recent research aimed at the identification of the principal mechanisms of diffusion in intermetallics is reviewed. In particular, attention is given to the effect of the type of interatomic bond on the contribution of different mechanisms to diffusion in ordered metallic compounds. Results of an analysis of experimental determinations of diffusion coefficients D(A) and D(B) in binary intermetallics (CuZn, Cu3Sn, AuCd, AgZn, AgMg, InSb, GaSb, AlSb, Fe3Al, FeAl, FeAl3, Ni3Al, Ni3Nb, FeSn, FeSn2, Ni3Sn2, Ni3Sn4, Co3Sn2, CoSn, CoSn2, and CoGa) are presented, and it is shown that the D(A)/D(B) ratio differs substantially for different diffusion mechanisms. 60 refs.

  6. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion.

    Science.gov (United States)

    Fang, Fei; Lake, Spencer P

    2016-10-01

    Human supraspinatus tendon (SST) exhibits region-specific nonlinear mechanical properties under tension, which have been attributed to its complex multiaxial physiological loading environment. However, the mechanical response and underlying multiscale mechanism regulating SST behavior under other loading scenarios are poorly understood. Furthermore, little is known about the contribution of elastin to tendon mechanics. We hypothesized that (1) SST exhibits region-specific shear mechanical properties, (2) fiber sliding is the predominant mode of local matrix deformation in SST in shear, and (3) elastin helps maintain SST mechanical integrity by facilitating force transfer among collagen fibers. Through the use of biomechanical testing and multiphoton microscopy, we measured the multiscale mechanical behavior of human SST in shear before and after elastase treatment. Three distinct SST regions showed similar stresses and microscale deformation. Collagen fiber reorganization and sliding were physical mechanisms observed as the SST response to shear loading. Measures of microscale deformation were highly variable, likely due to a high degree of extracellular matrix heterogeneity. After elastase treatment, tendon exhibited significantly decreased stresses under shear loading, particularly at low strains. These results show that elastin contributes to tendon mechanics in shear, further complementing our understanding of multiscale tendon structure-function relationships. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Award for Distinguished Scientific Early Career Contributions to Psychology: Christian N. L. Olivers

    Science.gov (United States)

    American Psychologist, 2009

    2009-01-01

    Christian N. L. Olivers, winner of the Award for Distinguished Scientific Early Career Contributions to Psychology, is cited for outstanding research on visual attention and working memory. Olivers uses classic experimental designs in an innovative and sophisticated way to determine underlying mechanisms. He has formulated important theoretical…

  8. On the contribution of electrochemical methods in the study of corrosion mechanisms in automotive body steel sheets

    International Nuclear Information System (INIS)

    Massinon, D.; Dauchelle, D.; Charbonnier, J.C.

    1989-01-01

    Complex mechanisms and interactions seem to govern the degradation of automotive body panels. The multimaterial nature of the system (steel, coating, conversion layer and paint), together with the variety of agressions it can encounter makes it a difficult task to characterize the corrosion mechanism(s). To this aim, physical analysis of corroded surfaces have recently yielded new insights on the role of some parameters and especially the quality of the interfaces, i.e. paint/coating and coating/steel. Electrochemistry, on the other hand, has given much information on phenomena such as selective dissolution, galvanic protection of steel by a coating, or oxygen diffusion through an organic coating. More and more is being known about the role of the paint and the mechanisms of its adhesion on a metallic substrate. However, a link between those theories is still missing and a full understanding of the corrosion phenomenon has not been achieved yet. We have developed original techniques in order to look into the corroded specimens with the most sophisticated physical analysis tools. The observed phenomena can be simulated and, whenever possible, quantified. This approach requires the use of different electrochemical techniques which will be presented in this paper. (author) 8 refs., 15 figs

  9. Lectures on quantum mechanics

    International Nuclear Information System (INIS)

    Weinberg, Steven

    2015-01-01

    Quantum mechanics represents the central revolution of modern natural science and reaches in its importance farely beyond physics. Neither chemistry nor biology on the molecular scale would be understandable without it. Modern information technology from the laptop over the mobile telephone and the flat screen until the supercomputer would be unthinkable without quantum-mechanical effects. It desribes the world on the atomic and subatomic scale and is by this the starting point of our modern worldview. The Nobel-prize carrier Steven Weinberg has done ever among others by his theory of the unification of the weak and the electromagnetic interaction one of the most important contributions to this revolution. In this book he reproduces his personal view of quantum mechanics, which captivates by its strictly logic construction, precise linguistic representation, and mathematical clearness and completeness. This book appeals to studyings of natural sciences, especially of physics. Accompanied is the test by exercise problems, which allow the studying to apply immediately the knowledge, but also test their understanding. Because of its precision and clearness ''Lectures on Quantum Mechanics'' by Weinberg is also essentially suited for the self-study.

  10. Numerical Simulation of Mechanical Property of Post Friction Stir Weld Artificial Ageing of Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    WAN Zhenyu

    2017-08-01

    Full Text Available KWN model was used to establish the precipitation evolution model of friction stir welding of Al-Mg-Si alloy. The yield strength was divided into three parts:the contribution from grain size, the contribution from solid solution and the contribution from the precipitations. Based on this model, the yield strength and hardness of friction stir weld was predicted. The effect of post weld artificial ageing on mechanical properties of friction stir weld was further investigated. The results indicate that longer holding time can be beneficial to the recovery of mechanical properties in the stirring zone. Higher temperature can lead to quick recovery of mechanical properties in the stirring zone, but when the holding temperature is higher than 200℃, longer holding time can lead the base metal softened, which is harmful to the service of friction stir welds. The mechanical property in the heat affected zone cannot be improved by post weld artificial ageing.

  11. Contribution of ankyrin-band 3 complexes to the organization and mechanical properties of the membrane skeleton of human erythrocyte

    Energy Technology Data Exchange (ETDEWEB)

    Shen, B.W. [Argonne National Lab., IL (United States). Biological and Medical Research Div.

    1995-02-01

    To understand the role of ankyrin-band 3 complexes in the organization of the spectrin-based membrane skeleton and its contribution to the mechanical properties of human erythrocytes, intact skeletons and single-layered skeleton leaflets were prepared from intact and physically sheared membrane ghosts, expanded in low salt buffer, and examined by transmission electron microscopy. While the structures of intact skeletons and single-layered skeleton leaflets shared many common features, including rigid junctional complexes of spectrin, actin, and band 4.1; short stretches ({approximately}50 {angstrom}) of flexible spectrin filaments; and globular masses of ankyrin-band 3 complexes situated close to the middle of the spectrin filaments, the definition of structural units in the intact skeleton is obscured by the superposition of the two layers. However, the spatial disposition of structural elements can be clearly defined in the images of the single-layered skeleton leaflets. Partially expanded skeletal leaflets contain conglomerates of ankyrin-band 3 complexes arranged in a circular or clove-leaf configuration that straddles multiple strands of thick spectrin cables, presumably reflecting the association of ankyrin-band 3 complexes on neighboring spectrin tetramers as well as the lateral association of the spectrin filaments. Hyperexpansion of the skeleton leaflets led to dissociation of the conglomerates of ankyrin-band 3 complexes, full-extension of the spectrin tetramers, and separation of the individual strands of spectrin tetramers. Clearly defined stands of spectrin tetramers in the hyperexpanded single-layered skeletal leaflets often contained two sets of globular protein masses that divided the spectrin tetramers into three segments of approximately equal length.

  12. Irradiation-induced instability of MnS precipitates and its possible contribution to IASCC in light water reactors

    International Nuclear Information System (INIS)

    Garner, F.A.; Greenwood, L.R.; Chung, H.M.

    1997-01-01

    Although a number of candidate mechanisms have been proposed to participate in the IASCC phenomenon, it is not clear at this time that all of the contributing mechanisms have been identified. A new mechanism was proposed by Garner and Greenwood as a potential contribution to IASCC that involves the radiation-induced release into solution of sulphur and other deleterious elements that are normally concentrated into MnS precipitates. The instability arises from the combined action of the transmutation of manganese to iron, cascade-induced mixing and the very strong action of the inverse Kirkendall effect. The latter mechanism acts as a pump to export manganese from the precipitate surface and to replace it primarily with iron, as well as smaller amounts of chromium, nickel and other lesser elements. Evidence previously presented by Chung and coworkers appears to show that MnS precipitates in typical 300 series stainless steels become progressively depleted in manganese and enriched with iron as irradiation proceeds in boiling water reactor neutron spectra. It is shown in this paper that transmutation alone is insufficient to produce the observed behavior

  13. Relation between Perceived Scholastic Competence and Social Comparison Mechanisms among Elementary School Children

    Science.gov (United States)

    Boissicat, Natacha; Pansu, Pascal; Bouffard, Therese; Cottin, Fanny

    2012-01-01

    According to the literature, among social comparison mechanisms, identification with an upward target would be the most frequent mechanism that students report to use. However, it remains unclear how the identification and the contrast mechanisms contribute to the construction of pupils' scholastic perceived competence. The aim of this study was…

  14. Stress-corrosion mechanisms in silicate glasses

    International Nuclear Information System (INIS)

    Ciccotti, Matteo

    2009-01-01

    The present review is intended to revisit the advances and debates in the comprehension of the mechanisms of subcritical crack propagation in silicate glasses almost a century after its initial developments. Glass has inspired the initial insights of Griffith into the origin of brittleness and the ensuing development of modern fracture mechanics. Yet, through the decades the real nature of the fundamental mechanisms of crack propagation in glass has escaped a clear comprehension which could gather general agreement on subtle problems such as the role of plasticity, the role of the glass composition, the environmental condition at the crack tip and its relation to the complex mechanisms of corrosion and leaching. The different processes are analysed here with a special focus on their relevant space and time scales in order to question their domain of action and their contribution in both the kinetic laws and the energetic aspects.

  15. Light ion reaction mechanisms and nuclear structure

    International Nuclear Information System (INIS)

    Robson, B.A.

    1986-01-01

    Of the many contributions to the subject 'Light ion reaction mechanism and nuclear structure', a few are selected and reviewed which highlight the present state of the field. Some contributions to the conference dealing with nuclear interactions are briefly outlined in the second section following an introductory section. Lane model calculations are compared with data for 9 Be and results are given showing angular distributions of the cross sections, the analyzing powers and the spin-rotation parameters for p - 40 Ca. Real central potential for d + 32 s resulting from the FB-analysis are compared with frozen density folding and delta-function folding. The third section deals with reaction mechanism. Data are cited which show near-side and far-side contributions to the calculated analyzing powers in the 116 Sn(d,p) 117 Sn (11.2 - ) transition. Calculations are compared with experimental A y and -(A yy + 2)/3. Also given are measurements of the cross sections and analyzing powers of the continuum energy spectra for the 58 Ni(p,p'x), along with relations between the analyzing powers and momentum transfer. The fourth section addresses nuclear structure. Cross sections and analyzing powers measured at 22 MeV for the reaction 208 Pb(p,t) 206 Pb(3 2 + ) are cited and considered. (Nogami, K.)

  16. 2012 Annual Conference on Experimental and Applied Mechanics

    CERN Document Server

    Crone, Wendy; Jin, Helena; Sciammarella, Cesar; Furlong, Cosme; Furlong, Cosme; Chalivendra, Vijay; Song, Bo; Casem, Daniel; Antoun, Bonnie; Qi, H; Hall, Richard; Tandon, GP; Lu, Hongbing; Lu, Charles; Yoshida, Sanichiro; Shaw, Gordon; Prorok, Barton; Barthelat, François; Korach, Chad; Grande-Allen, K; Lipke, Elizabeth; Lykofatitits, George; Zavattieri, Pablo; Starman, LaVern; Patterson, Eann; Backman, David; Cloud, Gary; Vol.1 Dynamic Behavior of Materials; Vol.2 Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials; Vol.3 Imaging Methods for Novel Materials and Challenging Applications; Vol.4 Experimental and Applied Mechanics; Vol.5 Mechanics of Biological Systems and Materials; Vol.6 MEMS and Nanotechnology; Vol.7 Composite Materials and Joining Technologies for Composites

    2013-01-01

    Experimental and Applied Mechanics, Volume 4: Proceedings of the 2012 Annual Conference on Experimental and Applied Mechanics, the fourth volume of seven from the Conference, brings together 54 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental and Applied Mechanics, including papers on:  Fracture & Fatigue Microscale & Microstructural Effects in Fatigue & Fracture Material Applications Composite Characterization Using Digital Image Correlation Techniques Multi-Scale Simulation and Testing of Composites Residual Stress Inverse Problems/Hybrid Methods Nano-Composites Microstructure Material Characterization Modeling and Uncertainty Quantification Impact Behavior of Composites.

  17. Mechanics, Models and Methods in Civil Engineering

    CERN Document Server

    Maceri, Franco

    2012-01-01

    Mechanics, Models and Methods in Civil Engineering” collects leading papers dealing with actual Civil Engineering problems. The approach is in the line of the Italian-French school and therefore deeply couples mechanics and mathematics creating new predictive theories, enhancing clarity in understanding, and improving effectiveness in applications. The authors of the contributions collected here belong to the Lagrange Laboratory, an European Research Network active since many years. This book will be of a major interest for the reader aware of modern Civil Engineering.

  18. Discrete variational Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Lall, S; West, M

    2006-01-01

    The main contribution of this paper is to present a canonical choice of a Hamiltonian theory corresponding to the theory of discrete Lagrangian mechanics. We make use of Lagrange duality and follow a path parallel to that used for construction of the Pontryagin principle in optimal control theory. We use duality results regarding sensitivity and separability to show the relationship between generating functions and symplectic integrators. We also discuss connections to optimal control theory and numerical algorithms

  19. Contribution of radiation chemistry to the study of metal clusters.

    Science.gov (United States)

    Belloni, J

    1998-11-01

    Radiation chemistry dates from the discovery of radioactivity one century ago by H. Becquerel and P. and M. Curie. The complex phenomena induced by ionizing radiation have been explained progressively. At present, the methodology of radiation chemistry, particularly in the pulsed mode, provides a powerful means to study not only the early processes after the energy absorption, but more generally a broad diversity of chemical and biochemical reaction mechanisms. Among them, the new area of metal cluster chemistry illustrates how radiation chemistry contributed to this field in suggesting fruitful original concepts, in guiding and controlling specific syntheses, and in the detailed elaboration of the mechanisms of complex and long-unsolved processes, such as the dynamics of nucleation, electron transfer catalysis and photographic development.

  20. Contribution to the study of scaling mechanisms. Application to electric anti-scaling apparatus

    International Nuclear Information System (INIS)

    Le Duigou, Alain

    1982-01-01

    In order to precisely study scaling mechanisms, this research thesis first aims at a deeper understanding of natural waters and their equilibriums by developing the Legrand and Poirier graphical method, and then studies the conditions for obtaining deposited products by electrolytic way on metal substrates the surface condition of which allows a better monitoring of the first stages of the phenomenon. The author also addresses the determination of an operating principle for electrical anti-scaling systems, and the development of a test method for the assessment of their efficiency. The author also identifies some rules allowing this efficiency to be improved in the case of natural waters

  1. Characteristics and contributing factors related to sports injuries in young volleyball players.

    Science.gov (United States)

    Vanderlei, Franciele Marques; Bastos, Fabio Nascimento; Tsutsumi, Gustavo Yuki Cantalejo; Vanderlei, Luiz Carlos Marques; Netto Júnior, Jayme; Pastre, Carlos Marcelo

    2013-10-14

    The participation of young in volleyball is becoming increasingly common, and this increased involvement raises concerns about the risk of installation of sports injuries. Therefore, the objectives the study were identify the characteristics of sports injuries in young volleyball players and associate anthropometric and training variables with contributing factors for injuries. A total of 522 volleyball players participating in the High School Olympic Games of the State of São Paulo (Brazil) were interviewed. A reported condition inquiry was used to gather information on injuries, such as anatomic site affected, mechanism and moment of injury, as well as personal and training data. The level of significance was set at 5%. A 19% frequency of injuries was found. Higher age, weight, height, body mass index and training duration values were associated with the occurrence of injuries. The most affected anatomic site was the ankle/foot complex (45 injuries, 36.3%). Direct contact and contactless mechanisms were the main causes of injuries (61 injuries; 49.2% and 48 injuries; 38.7%, respectively). Training was the moment in which most injuries occurred (93 injuries; 75%), independently of personal and training characteristics. Injuries affected the ankle/foot complex with a greater frequency. Direct contact and contactless mechanisms were the most frequently reported and injuries occurred mainly during training sessions. Personal and training characteristics were contributing factors for the occurrence of injuries.

  2. Lung-protective mechanical ventilation does not protect against acute kidney injury in patients without lung injury at onset of mechanical ventilation

    NARCIS (Netherlands)

    Cortjens, Bart; Royakkers, Annick A. N. M.; Determann, Rogier M.; van Suijlen, Jeroen D. E.; Kamphuis, Stephan S.; Foppen, Jannetje; de Boer, Anita; Wieland, Cathrien W.; Spronk, Peter E.; Schultz, Marcus J.; Bouman, Catherine S. C.

    2012-01-01

    Introduction: Preclinical and clinical studies suggest that mechanical ventilation contributes to the development of acute kidney injury (AKI), particularly in the setting of lung-injurious ventilator strategies. Objective: To determine whether ventilator settings in critically ill patients without

  3. Hybrid Polymer-Network Hydrogels with Tunable Mechanical Response

    Directory of Open Access Journals (Sweden)

    Sebastian Czarnecki

    2016-03-01

    Full Text Available Hybrid polymer-network gels built by both physical and covalent polymer crosslinking combine the advantages of both these crosslinking types: they exhibit high mechanical strength along with excellent fracture toughness and extensibility. If these materials are extensively deformed, their physical crosslinks can break such that strain energy is dissipated and irreversible fracturing is restricted to high strain only. This mechanism of energy dissipation is determined by the kinetics and thermodynamics of the physical crosslinking contribution. In this paper, we present a poly(ethylene glycol (PEG based material toolkit to control these contributions in a rational and custom fashion. We form well-defined covalent polymer-network gels with regularly distributed additional supramolecular mechanical fuse links, whose strength of connectivity can be tuned without affecting the primary polymer-network composition. This is possible because the supramolecular fuse links are based on terpyridine–metal complexation, such that the mere choice of the fuse-linking metal ion adjusts their kinetics and thermodynamics of complexation–decomplexation, which directly affects the mechanical properties of the hybrid gels. We use oscillatory shear rheology to demonstrate this rational control and enhancement of the mechanical properties of the hybrid gels. In addition, static light scattering reveals their highly regular and well-defined polymer-network structures. As a result of both, the present approach provides an easy and reliable concept for preparing hybrid polymer-network gels with rationally designed properties.

  4. Archibald V. Hill’s contribution to science and society

    Directory of Open Access Journals (Sweden)

    Gerta Vrbová

    2013-07-01

    Full Text Available A brief account of A.V. Hill’s contribution to our understanding of muscle contraction is given. This includes an overview of discoveries that led to solving the problem how chemical events provide the energy for mechanical work. Hill helped to train and educate a generation of scientists to use concise mathematical treatment of biological phenomena. He also taught his students moral values important when pursuing research. Finally Hill’s deep belief in the international nature of scientific work and his human qualities led him to join Lord Rutherford to become founder member of the Academic Assistance Council, an organization that rescued around 1500 academics from Nazi occupied Europe during the Second World War. With all these activities taken together Hill can be considered a person who made an exceptionally important contribution to the cultural and scientific life of the 20th and 21st century.

  5. The potential role of neuropathic mechanisms in dry eye syndromes.

    Science.gov (United States)

    Mcmonnies, Charles W

    Dry eye syndromes can involve both nociceptive and neuropathic symptoms. Nociceptive symptoms are the normal physiological responses to noxious stimuli. Neuropathic symptoms are caused by a lesion or disease of the somatosensory nervous system and can be the result of hypersensitisation of peripheral or central corneal and conjunctival somatosensory nerves. For example, inflammation could induce neuroplastic peripheral sensitisation of the ocular surface or lid wiper and exacerbate nociceptive symptoms. Neuropathic symptoms may explain the incommensurate relation between signs and symptoms in some dry eye syndromes although absence of signs of a dry eye syndrome may also be a consequence of inappropriate methods used when examining for them. Involvement of neuropathic mechanisms may also help explain dry eye symptoms which occur in association with reduced corneal sensitivity. This review includes a discussion of the potential for ocular symptoms involving neuropathic mechanisms to contribute to psychosocial problems such as depression, stress, anxiety and sleep disorders as well as for these types of psychosocial problems to contribute to neuropathic mechanisms and dry eye syndromes. Failure to consider the possibility that neuropathic mechanisms can contribute to dry eye syndromes may reduce accuracy of diagnosis and the suitability of treatment provided. Dry eye symptoms in the absence of commensurate evidence of tear dysfunction, and unsatisfactory response to tear dysfunction therapies should prompt consideration of neuropathic mechanisms being involved. Symptoms which persist after local anaesthetic instillation are more likely to be neuropathic in origin. Reducing inflammation may help limit any associated neuroplastic hypersensitivity. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.

  6. Multiple mechanisms enable invasive species to suppress native species.

    Science.gov (United States)

    Bennett, Alison E; Thomsen, Meredith; Strauss, Sharon Y

    2011-07-01

    Invasive plants represent a significant threat to ecosystem biodiversity. To decrease the impacts of invasive species, a major scientific undertaking of the last few decades has been aimed at understanding the mechanisms that drive invasive plant success. Most studies and theories have focused on a single mechanism for predicting the success of invasive plants and therefore cannot provide insight as to the relative importance of multiple interactions in predicting invasive species' success. We examine four mechanisms that potentially contribute to the success of invasive velvetgrass Holcus lanatus: direct competition, indirect competition mediated by mammalian herbivores, interference competition via allelopathy, and indirect competition mediated by changes in the soil community. Using a combination of field and greenhouse approaches, we focus on the effects of H. lanatus on a common species in California coastal prairies, Erigeron glaucus, where the invasion is most intense. We found that H. lanatus had the strongest effects on E. glaucus via direct competition, but it also influenced the soil community in ways that feed back to negatively influence E. glaucus and other native species after H. lanatus removal. This approach provided evidence for multiple mechanisms contributing to negative effects of invasive species, and it identified when particular strategies were most likely to be important. These mechanisms can be applied to eradication of H. lanatus and conservation of California coastal prairie systems, and they illustrate the utility of an integrated set of experiments for determining the potential mechanisms of invasive species' success.

  7. Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study.

    Directory of Open Access Journals (Sweden)

    Andrea Mike

    Full Text Available Successful socialization requires the ability of understanding of others' mental states. This ability called as mentalization (Theory of Mind may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus. Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed, processing of emotions (right entorhinal cortex and socially relevant information (left temporal pole. Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients.

  8. Disconnection mechanism and regional cortical atrophy contribute to impaired processing of facial expressions and theory of mind in multiple sclerosis: a structural MRI study.

    Science.gov (United States)

    Mike, Andrea; Strammer, Erzsebet; Aradi, Mihaly; Orsi, Gergely; Perlaki, Gabor; Hajnal, Andras; Sandor, Janos; Banati, Miklos; Illes, Eniko; Zaitsev, Alexander; Herold, Robert; Guttmann, Charles R G; Illes, Zsolt

    2013-01-01

    Successful socialization requires the ability of understanding of others' mental states. This ability called as mentalization (Theory of Mind) may become deficient and contribute to everyday life difficulties in multiple sclerosis. We aimed to explore the impact of brain pathology on mentalization performance in multiple sclerosis. Mentalization performance of 49 patients with multiple sclerosis was compared to 24 age- and gender matched healthy controls. T1- and T2-weighted three-dimensional brain MRI images were acquired at 3Tesla from patients with multiple sclerosis and 18 gender- and age matched healthy controls. We assessed overall brain cortical thickness in patients with multiple sclerosis and the scanned healthy controls, and measured the total and regional T1 and T2 white matter lesion volumes in patients with multiple sclerosis. Performances in tests of recognition of mental states and emotions from facial expressions and eye gazes correlated with both total T1-lesion load and regional T1-lesion load of association fiber tracts interconnecting cortical regions related to visual and emotion processing (genu and splenium of corpus callosum, right inferior longitudinal fasciculus, right inferior fronto-occipital fasciculus, uncinate fasciculus). Both of these tests showed correlations with specific cortical areas involved in emotion recognition from facial expressions (right and left fusiform face area, frontal eye filed), processing of emotions (right entorhinal cortex) and socially relevant information (left temporal pole). Thus, both disconnection mechanism due to white matter lesions and cortical thinning of specific brain areas may result in cognitive deficit in multiple sclerosis affecting emotion and mental state processing from facial expressions and contributing to everyday and social life difficulties of these patients.

  9. Notes on Some Schizoid Mechanisms

    Science.gov (United States)

    KLEIN, MELANIE

    1996-01-01

    I propose to summarize some of the conclusions presented in this paper. One of my main points was the suggestion that in the first few months of life anxiety is predominantly experienced as fear of persecution and that this contributes to certain mechanisms and defenses which characterize the paranoid and schizoid positions. Outstanding among these defenses is the mechanism of splitting internal and external objects, emotions, and the ego. These mechanisms and defenses are part of normal development and at the same time form the basis for later schizophrenic illness. I described the processes underlying identification by projection as a combination of splitting off parts of the self and projecting them on to another person, and some of the effects this identification has on normal and schizoid object relations. The onset of the depressive position is the juncture at which by regression schizoid mechanisms may be reinforced. I also suggested a close connection between the manic-depressive and schizoid disorders, based on the interaction between the infantile schizoid and depressive positions. PMID:22700275

  10. Neuroinflammatory Mechanisms of Connective Tissue Fibrosis: Targeting Neurogenic and Mast Cell Contributions

    Science.gov (United States)

    Monument, Michael J.; Hart, David A.; Salo, Paul T.; Befus, A. Dean; Hildebrand, Kevin A.

    2015-01-01

    Significance: The pathogenesis of fibrogenic wound and connective tissue healing is complex and incompletely understood. Common observations across a vast array of human and animal models of fibroproliferative conditions suggest neuroinflammatory mechanisms are important upstream fibrogenic events. Recent Advances: As detailed in this review, mast cell hyperplasia is a common observation in fibrotic tissue. Recent investigations in human and preclinical models of hypertrophic wound healing and post-traumatic joint fibrosis provides evidence that fibrogenesis is governed by a maladaptive neuropeptide-mast cell-myofibroblast signaling pathway. Critical Issues: The blockade and manipulation of these factors is providing promising evidence that if timed correctly, the fibrogenic process can be appropriately regulated. Clinically, abnormal fibrogenic healing responses are not ubiquitous to all patients and the identification of those at-risk remains an area of priority. Future Directions: Ultimately, an integrated appreciation of the common pathobiology shared by many fibrogenic connective tissue conditions may provide a scientific framework to facilitate the development of novel antifibrotic prevention and treatment strategies. PMID:25785237

  11. The contribution of post-copulatory mechanisms to incipient ecological speciation in sticklebacks.

    Science.gov (United States)

    Kaufmann, Joshka; Eizaguirre, Christophe; Milinski, Manfred; Lenz, Tobias L

    2015-01-01

    Ecology can play a major role in species diversification. As individuals are adapting to contrasting habitats, reproductive barriers may evolve at multiple levels. While pre-mating barriers have been extensively studied, the evolution of post-mating reproductive isolation during early stages of ecological speciation remains poorly understood. In diverging three-spined stickleback ecotypes from two lakes and two rivers, we observed differences in sperm traits between lake and river males. Interestingly, these differences did not translate into ecotype-specific gamete precedence for sympatric males in competitive in vitro fertilization experiments, potentially owing to antagonistic compensatory effects. However, we observed indirect evidence for impeded development of inter-ecotype zygotes, possibly suggesting an early stage of genetic incompatibility between ecotypes. Our results show that pre-zygotic post-copulatory mechanisms play a minor role during this first stage of ecotype divergence, but suggest that genetic incompatibilities may arise at early stages of ecological speciation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. The Molecular Mechanism of Alternative P450-Catalyzed Metabolism of Environmental Phenolic Endocrine-Disrupting Chemicals

    DEFF Research Database (Denmark)

    Ji, Li; Ji, Shujing; Wang, Chenchen

    2018-01-01

    Understanding the bioactivation mechanisms to predict toxic metabolites is critical for risk assessment of phenolic endocrine-disrupting chemicals (EDCs). One mechanism involves ipso-substitution, which may contribute to the total turnover of phenolic EDCs, yet the detailed mechanism and its rela...

  13. Mechanics of nonplanar membranes with force-dipole activity

    DEFF Research Database (Denmark)

    Lomholt, Michael Andersen

    2006-01-01

    A study is made of how active membrane proteins can modify the long wavelength mechanics of fluid membranes. The activity of the proteins is modelled as disturbing the protein surroundings through nonlocal force distributions of which a force-dipole distribution is the simplest example. An analytic...... contributions to mechanical properties such as tension and bending moments become apparent. It is also explained how the activity can induce a hydrodynamic attraction between the active proteins in the membrane....

  14. Semiclassical asymptotic behavior and the rearrangement mechanisms for Coulomb particles

    International Nuclear Information System (INIS)

    Bogdanov, A.V.; Gevorkyan, A.S.; Dubrovskii, G.V.

    1986-01-01

    The semiclassical asymptotic behavior of the eikonal amplitude of the resonance rearrangement in a system of three Coulomb particles is studied. It is shown that the general formula for the amplitude correctly describes two classical mechanisms (pickup and knockout) and one nonclassical mechanism (stripping). The classical mechanisms predominate at high energies, while the stripping mechanism predominates at lower energies. In the region of medium energies the dominant mechanism is the pickup (or Thomas) mechanism, which is realized by nonclassical means. For such transitions the classical cross section diverges, and the amplitude must be computed on a complex trajectory. The physical reasons for introducing the approximate complex trajectories are discussed. The contributions of all the mechanisms to the rearrangement cross section are found in their analytic forms

  15. Ultrasound-based testing of tendon mechanical properties

    DEFF Research Database (Denmark)

    Seynnes, O R; Bojsen-Møller, J.; Albracht, K

    2015-01-01

    In the past 20 years, the use of ultrasound-based methods has become a standard approach to measure tendon mechanical properties in vivo. Yet the multitude of methodological approaches adopted by various research groups probably contribute to the large variability of reported values. The technique......, or signal synchronization; and 2) in physiological considerations related to the viscoelastic behavior or length measurements of tendons. Hence, the purpose of the present review is to assess and discuss the physiological and technical aspects connected to in vivo testing of tendon mechanical properties...

  16. Resonance charge exchange mechanism at high and moderate energies

    International Nuclear Information System (INIS)

    Bogdanov, A.V.; Gevorkyan, A.S.

    1984-01-01

    Charge exchange mechanisms at high and medium energies are investigated, ta king the resonance charge exchange of a proton by an hydrogen atom as an example . It is established that there are two classical charge exchange mechanisms rel ated to direct proton knockout from the bound state and one quantum-mechanical mechanism corresponding to the electron tunnelling from one bound state to anoth er. The classical cross-section diverges for two of these mechanisms, and the quasiclassical scattering amplitude must be calculated on the base of a complex classical trajectory. Physical grounds for the choice of such trajectories are discussed and calculations of the Van Vleck determinant for these mechanisms a re presented. Contributions from different mechanisms to the total charge excha nge cross-section are analyzed. A comparison with experimental data and results of other authors is made

  17. Fate of water pumped from underground and contributions to sea-level rise

    Science.gov (United States)

    Wada, Yoshihide; Lo, Min-Hui; Yeh, Pat J.-F.; Reager, John T.; Famiglietti, James S.; Wu, Ren-Jie; Tseng, Yu-Heng

    2016-08-01

    The contributions from terrestrial water sources to sea-level rise, other than ice caps and glaciers, are highly uncertain and heavily debated. Recent assessments indicate that groundwater depletion (GWD) may become the most important positive terrestrial contribution over the next 50 years, probably equal in magnitude to the current contributions from glaciers and ice caps. However, the existing estimates assume that nearly 100% of groundwater extracted eventually ends up in the oceans. Owing to limited knowledge of the pathways and mechanisms governing the ultimate fate of pumped groundwater, the relative fraction of global GWD that contributes to sea-level rise remains unknown. Here, using a coupled climate-hydrological model simulation, we show that only 80% of GWD ends up in the ocean. An increase in runoff to the ocean accounts for roughly two-thirds, whereas the remainder results from the enhanced net flux of precipitation minus evaporation over the ocean, due to increased atmospheric vapour transport from the land to the ocean. The contribution of GWD to global sea-level rise amounted to 0.02 (+/-0.004) mm yr-1 in 1900 and increased to 0.27 (+/-0.04) mm yr-1 in 2000. This indicates that existing studies have substantially overestimated the contribution of GWD to global sea-level rise by a cumulative amount of at least 10 mm during the twentieth century and early twenty-first century. With other terrestrial water contributions included, we estimate the net terrestrial water contribution during the period 1993-2010 to be +0.12 (+/-0.04) mm yr-1, suggesting that the net terrestrial water contribution reported in the IPCC Fifth Assessment Report report is probably overestimated by a factor of three.

  18. Organization of the sleep-related neural systems in the brain of the harbour porpoise (Phocoena phocoena).

    Science.gov (United States)

    Dell, Leigh-Anne; Patzke, Nina; Spocter, Muhammad A; Siegel, Jerome M; Manger, Paul R

    2016-07-01

    The present study provides the first systematic immunohistochemical neuroanatomical investigation of the systems involved in the control and regulation of sleep in an odontocete cetacean, the harbor porpoise (Phocoena phocoena). The odontocete cetaceans show an unusual form of mammalian sleep, with unihemispheric slow waves, suppressed REM sleep, and continuous bodily movement. All the neural elements involved in sleep regulation and control found in bihemispheric sleeping mammals were present in the harbor porpoise, with no specific nuclei being absent, and no novel nuclei being present. This qualitative similarity of nuclear organization relates to the cholinergic, noradrenergic, serotonergic, and orexinergic systems and is extended to the γ-aminobutyric acid (GABA)ergic elements involved with these nuclei. Quantitative analysis of the cholinergic and noradrenergic nuclei of the pontine region revealed that in comparison with other mammals, the numbers of pontine cholinergic (126,776) and noradrenergic (122,878) neurons are markedly higher than in other large-brained bihemispheric sleeping mammals. The diminutive telencephalic commissures (anterior commissure, corpus callosum, and hippocampal commissure) along with an enlarged posterior commissure and supernumerary pontine cholinergic and noradrenergic neurons indicate that the control of unihemispheric slow-wave sleep is likely to be a function of interpontine competition, facilitated through the posterior commissure, in response to unilateral telencephalic input related to the drive for sleep. In addition, an expanded peripheral division of the dorsal raphe nuclear complex appears likely to play a role in the suppression of REM sleep in odontocete cetaceans. Thus, the current study provides several clues to the understanding of the neural control of the unusual sleep phenomenology present in odontocete cetaceans. J. Comp. Neurol. 524:1999-2017, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals

  19. Upregulation of Ih expressed in IB4-negative Aδ nociceptive DRG neurons contributes to mechanical hypersensitivity associated with cervical radiculopathic pain

    OpenAIRE

    Da-Lu Liu; Na Lu; Wen-Juan Han; Rong-Gui Chen; Rui Cong; Rou-Gang Xie; Yu-Fei Zhang; Wei-Wei Kong; San-Jue Hu; Ceng Luo

    2015-01-01

    Cervical radiculopathy represents aberrant mechanical hypersensitivity. Primary sensory neuron?s ability to sense mechanical force forms mechanotransduction. However, whether this property undergoes activity-dependent plastic changes and underlies mechanical hypersensitivity associated with cervical radiculopathic pain (CRP) is not clear. Here we show a new CRP model producing stable mechanical compression of dorsal root ganglion (DRG), which induces dramatic behavioral mechanical hypersensit...

  20. 75 FR 34388 - Employee Contribution Elections and Contribution Allocations

    Science.gov (United States)

    2010-06-17

    ... contributions equal to 3 percent of the employee's basic pay will be deducted from his or her pay and... employees who are rehired after a separation in service of 31 or more calendar days and who are eligible to participate in the TSP will automatically have 3 percent of their basic pay contributed to the TSP, unless...

  1. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Science.gov (United States)

    Kosan, Christian; Godmann, Maren

    2016-01-01

    All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function. PMID:26798358

  2. Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function

    Directory of Open Access Journals (Sweden)

    Christian Kosan

    2016-01-01

    Full Text Available All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.

  3. The micro-mechanisms of failure of nodular cast iron

    Directory of Open Access Journals (Sweden)

    Alan Vaško

    2014-12-01

    Full Text Available The contribution deals with a comparison of the micro-mechanisms of failure of nodular cast irons at static, impact and fatigue stress. Several specimens of ferrite-pearlitic nodular cast irons with different content of ferrite in a matrix were used for metallographic analysis, mechanical tests and micro-fractographic analysis. Mechanical properties were found by static tensile test, impact bending test and fatigue tests. The micro-fractographic analysis was made with use of scanning electron microscope VEGA II LMU on fracture surfaces of the specimens fractured by these mechanical and fatigue tests. Fracture surfaces of analysed specimens are characteristic of mixed mode of fracture. Micro-mechanism of failure of nodular cast irons is dependent on the method of stress.

  4. Potential fluid mechanic pathways of platelet activation.

    Science.gov (United States)

    Shadden, Shawn C; Hendabadi, Sahar

    2013-06-01

    Platelet activation is a precursor for blood clotting, which plays leading roles in many vascular complications and causes of death. Platelets can be activated by chemical or mechanical stimuli. Mechanically, platelet activation has been shown to be a function of elevated shear stress and exposure time. These contributions can be combined by considering the cumulative stress or strain on a platelet as it is transported. Here, we develop a framework for computing a hemodynamic-based activation potential that is derived from a Lagrangian integral of strain rate magnitude. We demonstrate that such a measure is generally maximized along, and near to, distinguished material surfaces in the flow. The connections between activation potential and these structures are illustrated through stenotic flow computations. We uncover two distinct structures that may explain observed thrombus formation at the apex and downstream of stenoses. More broadly, these findings suggest fundamental relationships may exist between potential fluid mechanic pathways for mechanical platelet activation and the mechanisms governing their transport.

  5. Genomic sequencing of a strain of Acinetobacter baumannii and potential mechanisms to antibiotics resistance.

    Science.gov (United States)

    Zhao, Lei; Li, Hongru; Zhu, Ziwen; Wakefield, Mark R; Fang, Yujiang; Ye, Ying

    2017-06-01

    Acinetobacter baumannii has been becoming a great challenge to clinicians due to their resistance to almost all available antibiotics. In this study, we sequenced the genome from a multiple antibiotics resistant Acinetobacter baumannii stain which was named A. baumannii-1isolated from China by SMRT sequencing technology to explore its potential mechanisms to antibiotic resistance. We found that several mechanisms might contribute to the antibiotic resistance of Acinetobacter baumannii. Specifically, we found that SNP in genes associated with nucleotide excision repair and ABC transporter might contribute to its resistance to multiple antibiotics; we also found that specific genes associated with bacterial DNA integration and recombination, DNA-mediated transposition and response to antibiotics might contribute to its resistance to multiple antibiotics; Furthermore, specific genes associated with penicillin and cephalosporin biosynthetic pathway and specific genes associated with CHDL and MBL β-lactamase genes might contribute to its resistance to multiple antibiotics. Thus, the detailed mechanisms by which Acinetobacter baumannii show extensive resistance to multiple antibiotics are very complicated. Such a study might be helpful to develop new strategies to control Acinetobacter baumannii infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nurse middle managers contributions to patient-centred care: A 'managerial work' analysis.

    Science.gov (United States)

    Lalleman, Pcb; Smid, Gac; Dikken, J; Lagerwey, M D; Schuurmans, M J

    2017-10-01

    Nurse middle managers are in an ideal position to facilitate patient-centred care. However, their contribution is underexposed in literature due to difficulties to articulate this in practice. This paper explores how nurse middle managers contribute to patient-centred care in hospitals. A combination of time-use analysis and ethnographic work was used to disclose their contribution to patient-centred care at a micro level. Sixteen nurse managers were shadowed for over 560 hours in four hospitals. Some nurse middle managers seldom contribute to patient-centred care. Others are involved in direct patient care, but this does not result in patient-centred practices. At one hospital, the nurse middle managers did contribute to patient-centred care. Here balancing between "organizing work" and "caring work" is seen as a precondition for their patient-centeredness. Other important themes are feedback mechanisms; place matters; with whom to talk and how to frame the issues at stake; and behavioral style. Both "hands-on" and "heads-on" caring work of nurse middle managers enhances their patient-centeredness. This study is the first of its kind to obtain insight in the often difficult to articulate "doings" of nurse middle managers with regard to patient-centred care through combining time-use analysis with ethnographic work. © 2017 John Wiley & Sons Ltd.

  7. Mechanisms of transient radiation-induced creep

    International Nuclear Information System (INIS)

    Pyatiletov, Yu.S.

    1981-01-01

    Radiation-induced creep at the transient stage is investigated for metals. The situation, when several possible creep mechanisms operate simultaneously is studied. Among them revealed are those which give the main contribution and determine thereby the creep behaviour. The time dependence of creep rate and its relation to the smelling rate is obtained. The results satisfactorily agree with the available experimental data [ru

  8. [Contribution of fungi to soil nitrous oxide emission and their research methods: a review].

    Science.gov (United States)

    Huang, Ying; Long, Xi-En

    2014-04-01

    Nitrous oxide is an important greenhouse gas. Soil is one major emission source of N2O, which is a by-product of microorganisms-driven nitrification and denitrification processes. Extensive research has demonstrated archaea and bacteria are the predominant contributors in nitrification and denitrification. However, fungi may play a predominant role in the N transformation in a certain soil ecosystem. The fungal contribution to N2O production has been rarely investigated. Here, we reviewed the mechanism of N2O production by soil fungi. The mechanisms of denitrification, autotrophic and heterotrophic nitrification and their key microbes and functional genes were described, respectively. We discriminated the differences in denitrification between bacteria and fungi and discussed the methods being used to determine the contribution of fungi to soil N2O emission, including selective inhibitors, 15N stable isotope probing, isolation and pure culturing and uncultured molecular detection methods. The existing problems and research prospects were also presented.

  9. Basal Ganglia Dysfunction Contributes to Physical Inactivity in Obesity.

    Science.gov (United States)

    Friend, Danielle M; Devarakonda, Kavya; O'Neal, Timothy J; Skirzewski, Miguel; Papazoglou, Ioannis; Kaplan, Alanna R; Liow, Jeih-San; Guo, Juen; Rane, Sushil G; Rubinstein, Marcelo; Alvarez, Veronica A; Hall, Kevin D; Kravitz, Alexxai V

    2017-02-07

    Obesity is associated with physical inactivity, which exacerbates the health consequences of weight gain. However, the mechanisms that mediate this association are unknown. We hypothesized that deficits in dopamine signaling contribute to physical inactivity in obesity. To investigate this, we quantified multiple aspects of dopamine signaling in lean and obese mice. We found that D2-type receptor (D2R) binding in the striatum, but not D1-type receptor binding or dopamine levels, was reduced in obese mice. Genetically removing D2Rs from striatal medium spiny neurons was sufficient to reduce motor activity in lean mice, whereas restoring G i signaling in these neurons increased activity in obese mice. Surprisingly, although mice with low D2Rs were less active, they were not more vulnerable to diet-induced weight gain than control mice. We conclude that deficits in striatal D2R signaling contribute to physical inactivity in obesity, but inactivity is more a consequence than a cause of obesity. Published by Elsevier Inc.

  10. Genes contribute to the switching dynamics of bistable perception.

    Science.gov (United States)

    Shannon, Robert W; Patrick, Christopher J; Jiang, Yi; Bernat, Edward; He, Sheng

    2011-03-09

    Ordinarily, the visual system provides an unambiguous representation of the world. However, at times alternative plausible interpretations of a given stimulus arise, resulting in a dynamic perceptual alternation of the differing interpretations, commonly referred to as bistable or rivalrous perception. Recent research suggests that common neural mechanisms may be involved in the dynamics of very different types of bistable phenomena. Further, evidence has emerged that genetic factors may be involved in determining the rate of switch for at least one form of bistable perception, known as binocular rivalry. The current study evaluated whether genetic factors contribute to the switching dynamics for distinctly different variants of bistable perception in the same participant sample. Switching rates were recorded for MZ and DZ twin participants in two different bistable perception tasks, binocular rivalry and the Necker Cube. Strong concordance in switching rates across both tasks was evident for MZ but not DZ twins, indicating that genetic factors indeed contribute to the dynamics of multiple forms of bistable perception.

  11. Potential of development of the mechanical-biological waste treatment; Entwicklungspotenzial der Mechanisch-Biologischen Abfallbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, Thomas; Balhar, Michael [ASA e.V., Ennigerloh (Germany); Abfallwirtschaftsgesellschaft des Kreises Warendorf mbH, Ennigerloh (Germany)

    2013-03-01

    The Consortium Material-Specific Waste Treatment eV (Ennigerloh, Federal Republic of Germany) is an association of plant operators having the opinion that an economic and ecologic waste treatment only can be guaranteed by material-specific processes permanently. Due to the specific treatment processes in plants with mechanical-biological waste treatment (MBA) material flows are resulting being available for the recycling or exploitation. Under this aspect, the authors of the contribution under consideration report on the development potential of the mechanical-biological waste treatment. The state of the art of the technology of mechanical-biological waste treatment in Germany as well as the contribution of this technology to the resource protection and climate protection are described. Further aspects of this contribution are the increase of the energy efficiency and reduction of emissions; further development of the efficient sorting technology; development of integrated total conceptions - MBA-sites as centres for the production of renewable energies.

  12. Fractional vector calculus and fluid mechanics

    Science.gov (United States)

    Lazopoulos, Konstantinos A.; Lazopoulos, Anastasios K.

    2017-04-01

    Basic fluid mechanics equations are studied and revised under the prism of fractional continuum mechanics (FCM), a very promising research field that satisfies both experimental and theoretical demands. The geometry of the fractional differential has been clarified corrected and the geometry of the fractional tangent spaces of a manifold has been studied in Lazopoulos and Lazopoulos (Lazopoulos KA, Lazopoulos AK. Progr. Fract. Differ. Appl. 2016, 2, 85-104), providing the bases of the missing fractional differential geometry. Therefore, a lot can be contributed to fractional hydrodynamics: the basic fractional fluid equations (Navier Stokes, Euler and Bernoulli) are derived and fractional Darcy's flow in porous media is studied.

  13. Nuclear Mechanics in Disease

    Science.gov (United States)

    Zwerger, Monika; Ho, Chin Yee; Lammerding, Jan

    2015-01-01

    Over the past two decades, the biomechanical properties of cells have emerged as key players in a broad range of cellular functions, including migration, proliferation, and differentiation. Although much of the attention has focused on the cytoskeletal networks and the cell’s microenvironment, relatively little is known about the contribution of the cell nucleus. Here, we present an overview of the structural elements that determine the physical properties of the nucleus and discuss how changes in the expression of nuclear components or mutations in nuclear proteins can affect not only nuclear mechanics but also modulate cytoskeletal organization and diverse cellular functions. These findings illustrate that the nucleus is tightly integrated into the surrounding cellular structure. Consequently, changes in nuclear structure and composition are highly relevant to normal development and physiology and can contribute to many human diseases, such as muscular dystrophy, dilated cardiomyopathy, (premature) aging, and cancer. PMID:21756143

  14. Evolution of global contribution in multi-level threshold public goods games with insurance compensation

    Science.gov (United States)

    Du, Jinming; Tang, Lixin

    2018-01-01

    Understanding voluntary contribution in threshold public goods games has important practical implications. To improve contributions and provision frequency, free-rider problem and assurance problem should be solved. Insurance could play a significant, but largely unrecognized, role in facilitating a contribution to provision of public goods through providing insurance compensation against the losses. In this paper, we study how insurance compensation mechanism affects individuals’ decision-making under risk environments. We propose a multi-level threshold public goods game model where two kinds of public goods games (local and global) are considered. Particularly, the global public goods game involves a threshold, which is related to the safety of all the players. We theoretically probe the evolution of contributions of different levels and free-riders, and focus on the influence of the insurance on the global contribution. We explore, in both the cases, the scenarios that only global contributors could buy insurance and all the players could. It is found that with greater insurance compensation, especially under high collective risks, players are more likely to contribute globally when only global contributors are insured. On the other hand, global contribution could be promoted if a premium discount is given to global contributors when everyone buys insurance.

  15. Novel frataxin isoforms may contribute to the pathological mechanism of Friedreich ataxia.

    Directory of Open Access Journals (Sweden)

    Haiyan Xia

    Full Text Available Friedreich ataxia (FRDA is an inherited neurodegenerative disease caused by frataxin (FXN deficiency. The nervous system and heart are the most severely affected tissues. However, highly mitochondria-dependent tissues, such as kidney and liver, are not obviously affected, although the abundance of FXN is normally high in these tissues. In this study we have revealed two novel FXN isoforms (II and III, which are specifically expressed in affected cerebellum and heart tissues, respectively, and are functional in vitro and in vivo. Increasing the abundance of the heart-specific isoform III significantly increased the mitochondrial aconitase activity, while over-expression of the cerebellum-specific isoform II protected against oxidative damage of Fe-S cluster-containing aconitase. Further, we observed that the protein level of isoform III decreased in FRDA patient heart, while the mRNA level of isoform II decreased more in FRDA patient cerebellum compared to total FXN mRNA. Our novel findings are highly relevant to understanding the mechanism of tissue-specific pathology in FRDA.

  16. Does a voltage-sensitive outer envelope transport mechanism contributes to the chloroplast iron uptake?

    Science.gov (United States)

    Solti, Ádám; Kovács, Krisztina; Müller, Brigitta; Vázquez, Saúl; Hamar, Éva; Pham, Hong Diep; Tóth, Brigitta; Abadía, Javier; Fodor, Ferenc

    2016-12-01

    Based on the effects of inorganic salts on chloroplast Fe uptake, the presence of a voltage-dependent step is proposed to play a role in Fe uptake through the outer envelope. Although iron (Fe) plays a crucial role in chloroplast physiology, only few pieces of information are available on the mechanisms of chloroplast Fe acquisition. Here, the effect of inorganic salts on the Fe uptake of intact chloroplasts was tested, assessing Fe and transition metal uptake using bathophenantroline-based spectrophotometric detection and plasma emission-coupled mass spectrometry, respectively. The microenvironment of Fe was studied by Mössbauer spectroscopy. Transition metal cations (Cd 2+ , Zn 2+ , and Mn 2+ ) enhanced, whereas oxoanions (NO 3 - , SO 4 2- , and BO 3 3- ) reduced the chloroplast Fe uptake. The effect was insensitive to diuron (DCMU), an inhibitor of chloroplast inner envelope-associated Fe uptake. The inorganic salts affected neither Fe forms in the uptake assay buffer nor those incorporated into the chloroplasts. The significantly lower Zn and Mn uptake compared to that of Fe indicates that different mechanisms/transporters are involved in their acquisition. The enhancing effect of transition metals on chloroplast Fe uptake is likely related to outer envelope-associated processes, since divalent metal cations are known to inhibit Fe 2+ transport across the inner envelope. Thus, a voltage-dependent step is proposed to play a role in Fe uptake through the chloroplast outer envelope on the basis of the contrasting effects of transition metal cations and oxoaninons.

  17. Monoamine re-uptake sites in the human brain evaluated in vivo by means of /sup 11/C-nomifensine and positron emission tomography: the effects of age and Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Tedroff, J; Aquilonius, S -M; Hartvig, P; Lundqvist, H; Gee, A G; Uhlin, J; Laangstroem, B

    1988-01-01

    Six patients with Parkinson's disease, selected to cover a range of clinical features, and 7 healthy volunteers aged 24-81 years, were examined by positron emission tomography after i.v. injection of racemic /sup 11/C-nomifensine, a catecholamine re-uptake blocking drug. After injection the radiotracer, radioactivity was rapidly distributed to the brain. The highest accumulation of radioactivity was found in areas rich in dopamineric and noradrenergic innervation, such as the striatum and the thalamus. In regions with negible dopaminergic and noradrenergic innervation, such as the cerebellum, radioactivity was lower and evenly distributed. In all investigated brain regions a marked age-related decline in /sup 11/C-nomifensinederived radioactivity relative to the cerebellum was observed in the group of healthy volunteers. Parkinsonian patients did not show such a decline with age. In the group of parkinsonian patients with mainly unilateral involvement, the contralateral putamen exhibited the most pronounced decrease. Only the 3 parkinsonian patients aged 63 and younger showed markedly lower /sup 11/C-nomifensine binding in striatal areas than age-matched healthy volunteers. /sup 11/C-nomifensine seems to be a valuable tool for investigating noradrenergic and dopaminergic re-uptake sites in vivo. Further achievements will most likely be made when the active enantioimer becomes available.

  18. Symposium on Recent Advances in Experimental Mechanics : in honor of Isaac M. Daniel

    CERN Document Server

    2002-01-01

    This book contains 71 papers presented at the symposium on “Recent Advances in Experimental Mechanics” which was organized in honor of Professor Isaac M. Daniel. The symposium took place at Virginia Polytechnic Institute and State University on th June 23-28, 2002, in conjunction with the 14 US National Congress of Applied Mechanics. The book is a tribute to Isaac Daniel, a pioneer of experimental mechanics and composite materials, in recognition of his continuous, original, diversified and outstanding contributions for half a century. The book consists of invited papers written by leading experts in the field. It contains original contributions concerning the latest developments in experimental mechanics. It covers a wide range of subjects, including optical methods of stress analysis (photoelasticity, moiré, etc.), composite materials, sandwich construction, fracture mechanics, fatigue and damage, nondestructive evaluation, dynamic problems, fiber optic sensors, speckle metrology, digital image process...

  19. [Neonatal hyperbilirubinemia and molecular mechanisms of jaundice].

    Science.gov (United States)

    Jirsa, M; Sticová, E

    2013-07-01

    The introductory summarises the classical path of heme degradation and classification of jaundice. Subsequently, a description of neonatal types of jaundice is given, known as Crigler Najjar, Gilberts, DubinJohnson and Rotor syndromes, emphasising the explanation of the molecular mechanisms of these metabolic disorders. Special attention is given to a recently discovered molecular mechanism of the Rotor syndrome. The mechanism is based on the inability of the liver to retrospectively uptake the conjugated bilirubin fraction primarily excreted into the blood, not bile. A reduced ability of the liver to uptake the conjugated bilirubin contributes to the development of hyperbilirubinemia in common disorders of the liver and bile ducts and to the toxicity of xenobiotics and drugs using transport proteins for conjugated bilirubin.

  20. Characteristics and contributing factors related to sports injuries in young volleyball players

    Science.gov (United States)

    2013-01-01

    Background The participation of young in volleyball is becoming increasingly common, and this increased involvement raises concerns about the risk of installation of sports injuries. Therefore, the objectives the study were identify the characteristics of sports injuries in young volleyball players and associate anthropometric and training variables with contributing factors for injuries. Methods A total of 522 volleyball players participating in the High School Olympic Games of the State of São Paulo (Brazil) were interviewed. A reported condition inquiry was used to gather information on injuries, such as anatomic site affected, mechanism and moment of injury, as well as personal and training data. The level of significance was set at 5%. Results A 19% frequency of injuries was found. Higher age, weight, height, body mass index and training duration values were associated with the occurrence of injuries. The most affected anatomic site was the ankle/foot complex (45 injuries, 36.3%). Direct contact and contactless mechanisms were the main causes of injuries (61 injuries; 49.2% and 48 injuries; 38.7%, respectively). Training was the moment in which most injuries occurred (93 injuries; 75%), independently of personal and training characteristics. Conclusion Injuries affected the ankle/foot complex with a greater frequency. Direct contact and contactless mechanisms were the most frequently reported and injuries occurred mainly during training sessions. Personal and training characteristics were contributing factors for the occurrence of injuries. PMID:24124803

  1. Colloquium: Mechanical formalisms for tissue dynamics.

    Science.gov (United States)

    Tlili, Sham; Gay, Cyprien; Graner, François; Marcq, Philippe; Molino, François; Saramito, Pierre

    2015-05-01

    The understanding of morphogenesis in living organisms has been renewed by tremendous progress in experimental techniques that provide access to cell scale, quantitative information both on the shapes of cells within tissues and on the genes being expressed. This information suggests that our understanding of the respective contributions of gene expression and mechanics, and of their crucial entanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assist the design and interpretation of experiments, point out the main ingredients and assumptions, and ultimately lead to predictions. The newly accessible local information thus calls for a reflection on how to select suitable classes of mechanical models. We review both mechanical ingredients suggested by the current knowledge of tissue behaviour, and modelling methods that can help generate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell") and tissue scale ("inter-cell") contributions. We recall the mathematical framework developed for continuum materials and explain how to transform a constitutive equation into a set of partial differential equations amenable to numerical resolution. We show that when plastic behaviour is relevant, the dissipation function formalism appears appropriate to generate constitutive equations; its variational nature facilitates numerical implementation, and we discuss adaptations needed in the case of large deformations. The present article gathers theoretical methods that can readily enhance the significance of the data to be extracted from recent or future high throughput biomechanical experiments.

  2. Elastic Multi-scale Mechanisms: Computation and Biological Evolution.

    Science.gov (United States)

    Diaz Ochoa, Juan G

    2018-01-01

    Explanations based on low-level interacting elements are valuable and powerful since they contribute to identify the key mechanisms of biological functions. However, many dynamic systems based on low-level interacting elements with unambiguous, finite, and complete information of initial states generate future states that cannot be predicted, implying an increase of complexity and open-ended evolution. Such systems are like Turing machines, that overlap with dynamical systems that cannot halt. We argue that organisms find halting conditions by distorting these mechanisms, creating conditions for a constant creativity that drives evolution. We introduce a modulus of elasticity to measure the changes in these mechanisms in response to changes in the computed environment. We test this concept in a population of predators and predated cells with chemotactic mechanisms and demonstrate how the selection of a given mechanism depends on the entire population. We finally explore this concept in different frameworks and postulate that the identification of predictive mechanisms is only successful with small elasticity modulus.

  3. Exercise intolerance in Type 2 diabetes: is there a cardiovascular contribution?

    Science.gov (United States)

    Poitras, Veronica J; Hudson, Robert W; Tschakovsky, Michael E

    2018-05-01

    Physical activity is critically important for Type 2 diabetes management, yet adherence levels are poor. This might be partly due to disproportionate exercise intolerance. Submaximal exercise tolerance is highly sensitive to muscle oxygenation; impairments in exercising muscle oxygen delivery may contribute to exercise intolerance in Type 2 diabetes since there is considerable evidence for the existence of both cardiac and peripheral vascular dysfunction. While uncompromised cardiac output during submaximal exercise is consistently observed in Type 2 diabetes, it remains to be determined whether an elevated cardiac sympathetic afferent reflex could sympathetically restrain exercising muscle blood flow. Furthermore, while deficits in endothelial function are common in Type 2 diabetes and are often cited as impairing exercising muscle oxygen delivery, no direct evidence in exercise exists, and there are several other vasoregulatory mechanisms whose dysfunction could contribute. Finally, while there are findings of impaired oxygen delivery, conflicting evidence also exists. A definitive conclusion that Type 2 diabetes compromises exercising muscle oxygen delivery remains premature. We review these potentially dysfunctional mechanisms in terms of how they could impair oxygen delivery in exercise, evaluate the current literature on whether an oxygen delivery deficit is actually manifest, and correspondingly identify key directions for future research.

  4. Classifying the mechanisms of electrochemical shock in ion-intercalation materials

    OpenAIRE

    Woodford, William; Carter, W. Craig; Chiang, Yet-Ming

    2014-01-01

    “Electrochemical shock” – the electrochemical cycling-induced fracture of materials – contributes to impedance growth and performance degradation in ion-intercalation batteries, such as lithium-ion. Using a combination of micromechanical models and acoustic emission experiments, the mechanisms of electrochemical shock are identified, classified, and modeled in targeted model systems with different composition and microstructure. A particular emphasis is placed on mechanical degradation occurr...

  5. Enhanced Noradrenergic Activity Potentiates Fear Memory Consolidation and Reconsolidation by Differentially Recruiting alpha1- and beta-Adrenergic Receptors

    Science.gov (United States)

    Gazarini, Lucas; Stern, Cristina A. Jark; Carobrez, Antonio P.; Bertoglio, Leandro J.

    2013-01-01

    Consolidation and reconsolidation are phases of memory stabilization that diverge slightly. Noradrenaline is known to influence both processes, but the relative contribution of alpha1- and beta-adrenoceptors is unclear. The present study sought to investigate this matter by comparing their recruitment to consolidate and/or reconsolidate a…

  6. Mechanisms of Sensorineural Cell Damage, Death and Survival in the Cochlea

    Directory of Open Access Journals (Sweden)

    Allen Frederic Ryan

    2015-04-01

    Full Text Available The majority of acquired hearing loss, including presbycusis, is caused by irreversible damage to the sensorineural tissues of the cochlea. This article reviews the intracellular mechanisms that contribute to sensorineural damage in the cochlea, as well as the survival signaling pathways that can provide endogenous protection and tissue rescue. These data have primarily been generated in hearing loss not directly related to age. However, there is evidence that similar mechanisms operate in presbycusis. Moreover, accumulation of damage from other causes can contribute to age-related hearing loss. Potential therapeutic interventions to balance opposing but interconnected cell damage and survival pathways, such as antioxidants, anti-apoptotics, and pro-inflammatory cytokine inhibitors, are also discussed.

  7. Higgs seesaw mechanism as a source for dark energy.

    Science.gov (United States)

    Krauss, Lawrence M; Dent, James B

    2013-08-09

    Motivated by the seesaw mechanism for neutrinos which naturally generates small neutrino masses, we explore how a small grand-unified-theory-scale mixing between the standard model Higgs boson and an otherwise massless hidden sector scalar can naturally generate a small mass and vacuum expectation value for the new scalar which produces a false vacuum energy density contribution comparable to that of the observed dark energy dominating the current expansion of the Universe. This provides a simple and natural mechanism for producing the correct scale for dark energy, even if it does not address the long-standing question of why much larger dark energy contributions are not produced from the visible sector. The new scalar produces no discernible signatures in existing terrestrial experiments so that one may have to rely on other cosmological tests of this idea.

  8. Fracture Mechanics Analyses of Subsurface Defects in Reinforced Carbon-Carbon Joggles Subjected to Thermo-Mechanical Loads

    Science.gov (United States)

    Knight, Norman F., Jr.; Raju, Ivatury S.; Song, Kyongchan

    2011-01-01

    Coating spallation events have been observed along the slip-side joggle region of the Space Shuttle Orbiter wing-leading-edge panels. One potential contributor to the spallation event is a pressure build up within subsurface voids or defects due to volatiles or water vapor entrapped during fabrication, refurbishment, or normal operational use. The influence of entrapped pressure on the thermo-mechanical fracture-mechanics response of reinforced carbon-carbon with subsurface defects is studied. Plane-strain simulations with embedded subsurface defects are performed to characterize the fracture mechanics response for a given defect length when subjected to combined elevated-temperature and subsurface-defect pressure loadings to simulate the unvented defect condition. Various subsurface defect locations of a fixed-length substrate defect are examined for elevated temperature conditions. Fracture mechanics results suggest that entrapped pressure combined with local elevated temperatures have the potential to cause subsurface defect growth and possibly contribute to further material separation or even spallation. For this anomaly to occur, several unusual circumstances would be required making such an outcome unlikely but plausible.

  9. β-Adrenergic enhancement of neuronal excitability in the lateral amygdala is developmentally gated.

    Science.gov (United States)

    Fink, Ann E; LeDoux, Joseph E

    2018-05-01

    Noradrenergic signaling in the amygdala is important for processing threats and other emotionally salient stimuli, and β-adrenergic receptor activation is known to enhance neuronal spiking in the lateral amygdala (LA) of juvenile animals. Nevertheless, intracellular recordings have not yet been conducted to determine the effect of β-adrenergic receptor activation on spike properties in the adult LA, despite the potential significance of developmental changes between adolescence and adulthood. Here we demonstrate that the β-adrenergic agonist isoproterenol (15 μM) enhances spike frequency in dorsal LA principal neurons of juvenile male C57BL/6 mice and fails to do so in strain- and sex-matched adults. Furthermore, we find that the age-dependent effect of isoproterenol on spike frequency is occluded by the GABA A receptor blocker picrotoxin (75 μM), suggesting that β-adrenergic receptors downregulate tonic inhibition specifically in juvenile animals. These findings indicate a significant shift during adolescence in the cellular mechanisms of β-adrenergic modulation in the amygdala. NEW & NOTEWORTHY β-Adrenergic receptors (β-ARs) in amygdala are important in processing emotionally salient stimuli. Most cellular recordings have examined juvenile animals, while behavioral data are often obtained from adults. We replicate findings showing that β-ARs enhance spiking of principal cells in the lateral amygdala of juveniles, but we fail to find this in adults. These findings have notable scientific and clinical implications regarding the noradrenergic modulation of threat processing, alterations of which underlie fear and anxiety disorders.

  10. Epigenetic mechanisms in experience-driven memory formation and behavior

    Science.gov (United States)

    Puckett, Rosemary E; Lubin, Farah D

    2011-01-01

    Epigenetic mechanisms have long been associated with the regulation of gene-expression changes accompanying normal neuronal development and cellular differentiation; however, until recently these mechanisms were believed to be statically quiet in the adult brain. Behavioral neuroscientists have now begun to investigate these epigenetic mechanisms as potential regulators of gene-transcription changes in the CNS subserving synaptic plasticity and long-term memory (LTM) formation. Experimental evidence from learning and memory animal models has demonstrated that active chromatin remodeling occurs in terminally differentiated postmitotic neurons, suggesting that these molecular processes are indeed intimately involved in several stages of LTM formation, including consolidation, reconsolidation and extinction. Such chromatin modifications include the phosphorylation, acetylation and methylation of histone proteins and the methylation of associated DNA to subsequently affect transcriptional gene readout triggered by learning. The present article examines how such learning-induced epigenetic changes contribute to LTM formation and influence behavior. In particular, this article is a survey of the specific epigenetic mechanisms that have been demonstrated to regulate gene expression for both transcription factors and growth factors in the CNS, which are critical for LTM formation and storage, as well as how aberrant epigenetic processing can contribute to psychological states such as schizophrenia and drug addiction. Together, the findings highlighted in this article support a novel role for epigenetic mechanisms in the adult CNS serving as potential key molecular regulators of gene-transcription changes necessary for LTM formation and adult behavior. PMID:22126252

  11. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar

    International Nuclear Information System (INIS)

    Cui, Xiaoqiang; Fang, Siyu; Yao, Yiqiang; Li, Tingqiang; Ni, Qijun; Yang, Xiaoe; He, Zhenli

    2016-01-01

    The objective of this study was to investigate the mechanisms of cadmium (Cd) sorption on biochars produced at different temperature (300–600 °C) and their quantitative contribution. The sorption isotherms and kinetics of Cd 2+ sorption on biochars were determined and fitted to different models. The Cd 2+ sorption data could be well described by a simple Langmuir model, and the pseudo second order kinetic model best fitted the kinetic data. The maximum sorption capacity (Q m ) obtained from the Langmuir model for CIB500 was 188.8 mg g −1 , which was greater than that of biochars produced at other temperature. Precipitation with minerals, ion exchange, complexation with surface oxygen-containing functional groups, and coordination with π electrons were the possible mechanisms of Cd 2+ sorption on the biochars. The contribution of each mechanism varied with the pyrolysis temperature. With increasing pyrolysis temperature, the contribution of surface complexation and metal ion exchange decreased from 24.5% and 43.3% to 0.7% and 4.7%, while the contribution of precipitation and Cd 2+ -π interaction significantly increased from 29.7% and 2.5% to 89.5% and 5.1%, respectively. Overall, the precipitation with minerals and metal ion exchange dominated Cd 2+ sorption on the biochars (accounted for 73.0–94.1%), and precipitation with minerals was the primary mechanism of Cd 2+ sorption on the high-temperature biochars (≥ 500 °C) (accounted for 86.1–89.5%). - Highlights: • Sorption capacity of metal on biochars is affected by pyrolysis temperature. • Biochar derived from Canna indica at 500 °C has a high sorption capacity for Cd 2+ . • Cd 2+ sorption on the biochars fits a pseudo second order and Langmuir model. • Precipitation and ion exchange mechanisms dominated Cd 2+ sorption on the biochars.

  12. The relative contributions of forest growth and areal expansion to forest biomass carbon

    Science.gov (United States)

    P. Li; J. Zhu; H. Hu; Z. Guo; Y. Pan; R. Birdsey; J. Fang

    2016-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms...

  13. Theorising EIA effectiveness: A contribution based on the Danish system

    Energy Technology Data Exchange (ETDEWEB)

    Lyhne, Ivar, E-mail: lyhne@plan.aau.dk [Department of Development and Planning, Aalborg University, Aalborg (Denmark); Laerhoven, Frank van [Copernicus Institute of Sustainable Development, Utrecht University, Utrecht (Netherlands); Cashmore, Matthew [Department of Development and Planning, Aalborg University, Aalborg (Denmark); Department of Urban and Rural Development, Swedish University of Agricultural Sciences, Uppsala (Sweden); Runhaar, Hens [Copernicus Institute of Sustainable Development, Utrecht University, Utrecht (Netherlands); Forest and Nature Conservation Group, Wageningen University and Research Centre, Wageningen (Netherlands)

    2017-01-15

    Considerable attention has been given to the effectiveness of environmental impact assessment (EIA) since the 1970s. Relatively few research studies, however, have approached EIA as an instrument of environmental governance, and have explored the mechanisms through which EIA influences the behaviour of actors involved in planning processes. Consequently, theory in this area is underspecified. In this paper we contribute to theory-building by analysing the effectiveness of a unique EIA system: the Danish system. In this system the competent authority, instead of the project proponent, undertakes EIA reporting. Additionally, the public, rather than experts, play a central role in quality control and the Danish EIA community is relatively small which influences community dynamics in particular ways. A nation-wide survey and expert interviews were undertaken in order to examine the views of actors involved in EIA on the effectiveness of this anomalous system. The empirical data are compared with similar studies on governance mechanisms in other countries, especially the United Kingdom and the Netherlands, as well as with earlier evaluations of EIA effectiveness in Denmark. The results indicate that the more extensive role attributed to the competent authority may lead to higher EIA effectiveness when this aligns with their interests; the influence of the public is amplified by a powerful complaints system; and, the size of the EIA community appears to have no substantial influence on EIA effectiveness. We discuss how the research findings might enhance our theoretical understanding of the operation and effectiveness of governance mechanisms in EIA. - Highlights: • The effectiveness of the unique Danish EIA system is explored. • Results are compared with similar studies in the Netherlands and the UK. • Findings lead to hypotheses that contribute to theorising EIA effectiveness.

  14. Theorising EIA effectiveness: A contribution based on the Danish system

    International Nuclear Information System (INIS)

    Lyhne, Ivar; Laerhoven, Frank van; Cashmore, Matthew; Runhaar, Hens

    2017-01-01

    Considerable attention has been given to the effectiveness of environmental impact assessment (EIA) since the 1970s. Relatively few research studies, however, have approached EIA as an instrument of environmental governance, and have explored the mechanisms through which EIA influences the behaviour of actors involved in planning processes. Consequently, theory in this area is underspecified. In this paper we contribute to theory-building by analysing the effectiveness of a unique EIA system: the Danish system. In this system the competent authority, instead of the project proponent, undertakes EIA reporting. Additionally, the public, rather than experts, play a central role in quality control and the Danish EIA community is relatively small which influences community dynamics in particular ways. A nation-wide survey and expert interviews were undertaken in order to examine the views of actors involved in EIA on the effectiveness of this anomalous system. The empirical data are compared with similar studies on governance mechanisms in other countries, especially the United Kingdom and the Netherlands, as well as with earlier evaluations of EIA effectiveness in Denmark. The results indicate that the more extensive role attributed to the competent authority may lead to higher EIA effectiveness when this aligns with their interests; the influence of the public is amplified by a powerful complaints system; and, the size of the EIA community appears to have no substantial influence on EIA effectiveness. We discuss how the research findings might enhance our theoretical understanding of the operation and effectiveness of governance mechanisms in EIA. - Highlights: • The effectiveness of the unique Danish EIA system is explored. • Results are compared with similar studies in the Netherlands and the UK. • Findings lead to hypotheses that contribute to theorising EIA effectiveness.

  15. Physics and Mechanics of New Materials and Their Applications

    CERN Document Server

    Chang, Shun-Hsyung; Gupta, Vijay

    2018-01-01

    This book presents selected peer-reviewed contributions from the 2017 International Conference on “Physics and Mechanics of New Materials and Their Applications”, PHENMA 2017 (Jabalpur, India, 14–16 October, 2017), which is devoted to processing techniques, physics, mechanics, and applications of advanced materials. The book focuses on a wide spectrum of nanostructures, ferroelectric crystals, materials and composites as well as promising materials with special properties. It presents nanotechnology approaches, modern environmentally friendly piezoelectric and ferromagnetic techniques and physical and mechanical studies of the structural and physical–mechanical properties of materials. Various original mathematical and numerical methods are applied to the solution of different technological, mechanical and physical problems that are interesting from theoretical, modeling and experimental points of view. Further, the book highlights novel devices with high accuracy, longevity and extended capabilities ...

  16. Percentage-based Author Contribution Index: a universal measure of author contribution to scientific articles.

    Science.gov (United States)

    Boyer, Stéphane; Ikeda, Takayoshi; Lefort, Marie-Caroline; Malumbres-Olarte, Jagoba; Schmidt, Jason M

    2017-01-01

    Deciphering the amount of work provided by different co-authors of a scientific paper has been a recurrent problem in science. Despite the myriad of metrics available, the scientific community still largely relies on the position in the list of authors to evaluate contributions, a metric that attributes subjective and unfounded credit to co-authors. We propose an easy to apply, universally comparable and fair metric to measure and report co-authors contribution in the scientific literature. The proposed Author Contribution Index (ACI) is based on contribution percentages provided by the authors, preferably at the time of submission. Researchers can use ACI to compare the contributions of different authors, describe the contribution profile of a particular researcher or analyse how contribution changes through time. We provide such an analysis based on contribution percentages provided by 97 scientists from the field of ecology who voluntarily responded to an online anonymous survey. ACI is simple to understand and to implement because it is based solely on percentage contributions and the number of co-authors. It provides a continuous score that reflects the contribution of one author as compared to the average contribution of all other authors. For example, ACI(i) = 3, means that author i contributed three times more than what the other authors contributed on average. Our analysis comprised 836 papers published in 2014-2016 and revealed patterns of ACI values that relate to career advancement. There are many examples of author contribution indices that have been proposed but none has really been adopted by scientific journals. Many of the proposed solutions are either too complicated, not accurate enough or not comparable across articles, authors and disciplines. The author contribution index presented here addresses these three major issues and has the potential to contribute to more transparency in the science literature. If adopted by scientific journals, it

  17. A review of monoaminergic neuropsychopharmacology in zebrafish.

    Science.gov (United States)

    Maximino, Caio; Herculano, Anderson Manoel

    2010-12-01

    Monoamine neurotransmitters are the major regulatory mechanisms in the vertebrate brain, involved in the adjustment of motivation, emotion, and cognition. The chemical anatomy of these systems is thought to be highly conserved in the brain of all vertebrates, including zebrafish. Recently, the development of behavioral assays in zebrafish allowed the neuropsychopharmacological investigation of these circuits and its functions. Here we review neuroanatomical, genetic, neurochemical, and psychopharmacological evidence regarding the roles of histaminergic, dopaminergic, noradrenergic, serotonergic, and melatonergic systems in this species. We conclude that, in spite of species differences, zebrafish are suitable for the investigation of neuropsychopharmacology of drugs that affect theses systems; nonetheless, more thorough validation of behavioral methods is still needed.

  18. Olivocochlear efferent vs. middle-ear contributions to the alteration of otoacoustic emissions by contralateral noise

    NARCIS (Netherlands)

    Buki, B; Wit, HP; Avan, P

    2000-01-01

    The medial olivocochlear efferent bundle is the key element of a bilateral efferent reflex activated by sound in either ear and acting directly on cochlear outer hair cells (OHC) via numerous cholinegic synapses. It probably contributes to regulating the mechanical activity of the cochlea

  19. A Preliminary Study of DBH (Encoding Dopamine Beta-Hydroxylase) Genetic Variation and Neural Correlates of Emotional and Motivational Processing in Individuals With and Without Pathological Gambling.

    Science.gov (United States)

    Yang, Bao-Zhu; Balodis, Iris M; Lacadie, Cheryl M; Xu, Jiansong; Potenza, Marc N

    2016-06-01

    Background and aims Corticostriatal-limbic neurocircuitry, emotional and motivational processing, dopaminergic and noradrenergic systems and genetic factors have all been implicated in pathological gambling (PG). However, allelic variants of genes influencing dopaminergic and noradrenergic neurotransmitters have not been investigated with respect to the neural correlates of emotional and motivational states in PG. Dopamine beta-hydroxylase (DBH) converts dopamine to norepinephrine; the T allele of a functional single-nucleotide polymorphism rs1611115 (C-1021T) in the DBH gene is associated with less DBH activity and has been linked to emotional processes and addiction. Here, we investigate the influence of rs1611115 on the neural correlates of emotional and motivational processing in PG and healthy comparison (HC) participants. Methods While undergoing functional magnetic resonance imaging, 18 PG and 25 HC participants, all European Americans, viewed gambling-, sad-, and cocaine-related videotapes. Analyses focused on brain activation differences related to DBH genotype (CC/T-carrier [i.e., CT and TT]) and condition (sad/gambling/cocaine). Results CC participants demonstrated greater recruitment of corticostriatal-limbic regions, relative to T-carriers. DBH variants were also associated with altered corticostriatal-limbic activations across the different videotape conditions, and this association appeared to be driven by greater activation in CC participants relative to T-carriers during the sad condition. CC relative to T-carrier subjects also reported greater subjective sadness to the sad videotapes. Conclusions Individual differences in genetic composition linked to aminergic function contribute significantly to emotional regulation across diagnostic groups and warrant further investigation in PG.

  20. Contribution to the study of the mechanisms of turbulent diffusion and of related matters

    International Nuclear Information System (INIS)

    Mailliat, Alain.

    1980-12-01

    The subject of this paper is the study of turbulent diffusion mechanisms and the related problems. The diffusion mechanisms considered here are those which concern a passive scalar contaminant not subject to molecular effects. The reason for this latter character is that it makes it possible to isolate in the diffusion phenomenon that which is inherent in the turbulent dispersion. The present state of this question is reviewed in Chapter I. The system of natural coordinates for following the movement of a particle and hence for describing the dispersion is that of Lagrange. For our purpose this description must be statistical. Hence, the specific properties of the probability densities of the velocities and movements in this type of coordinate are examined in Chapter II. The expressions of the probability densities of the concentration and turbulent flow of a contaminant are sought. These expressions make it possible to formulate the diffusion laws linking the mean flow and concentration to the statistical characteristics of the velocity field. These matters form the central subject of this paper and are developed in Chapter III. Although the use of Lagrange's coordinates makes it possible fairly easily to obtain the probability densities mentioned above, it does, on the other hand, rule out on examination the relations existing between Lagrangian and Eulerian probability characteristics of the velocity field moments. The experimental determination in a Lagrangian system of the probability characteristics is in fact very tricky. These questions are discussed in Chapter IV of this paper [fr

  1. Social Contributions in Romania

    Directory of Open Access Journals (Sweden)

    Attila Gyorgy

    2012-12-01

    Full Text Available Social contributions have an important impact on payroll policy. Also, social contributions represent a significant budgetary revenue item which can be viewed at the edge between taxation and insurance. Social contributions in Romania experienced many changes which ended in 2008. Nowadays, they are within a long transaction period towards partial externalization of the insurance activity to privately managed funds. The aim of this paper is to analyse the homogeneity of Romanian social security public scheme using annual data extracted from 2002-2009.The main findings reveal that social contributions reached the pinnacle of diversification, being too many, some of them with a small contribution rates; fiscal reforms which reduced contribution rates advantaged employers, and state will be interested to externalize this activity as far private sector will be able to assume this responsibility and the budgetary effects are acceptable for the public finance.

  2. Analysis of Strengthening Mechanisms in an Artificially Aged Ultrafine Grain 6061 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Rezaei

    2017-12-01

    Full Text Available The current study adopted a quantitative approach to investigating the mechanical properties, and their relationship to the microstructural features, of precipitation-strengthened 6061 aluminum alloy processed through accumulative roll bonding (ARB and aging heat treatment.  To serve this purpose, the contributions of different strengthening mechanisms including grain refinement, precipitation, dislocation and solid-solution strengthening to the yield strength of five-cycle ARB samples processed under pre-aged (ARBed and aged (ARBed+Aged conditions were examined and compared. Microstructural characterizations were performed on the samples through the transmission electron microscope (TEM and X-ray diffraction (XRD. Also, the mechanical properties of the samples were investigated through the tensile test. The obtained results showed that an equiaxed ultrafine grain structure with nano-sized precipitates was created in the both ARBed and ARBed+Aged samples. The grain refinement was the predominant strengthening mechanism which was estimated to contribute 151 and 226 MPa to the ARBed and ARBed+Aged samples, respectively, while the dislocation and Orowan strengthening mechanisms were ranked second with regard to their contributions to the ARBed and ARBed+Aged samples, respectively. The overall yield strength, calculated through the root mean square summation method, was found to be in good agreement with the experimentally determined yield strength. It was also found that the presence of non-shearable precipitates, which interfered with the movement of the dislocations, would be effective for the simultaneous improvement of the strength and ductility of the ARBed+Agedsample .

  3. Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys.

    Science.gov (United States)

    Liu, R; Zhang, Z J; Li, L L; An, X H; Zhang, Z F

    2015-04-01

    In this study, the concept of "twinning induced plasticity (TWIP) alloys" is broadened, and the underlying intrinsic microscopic mechanisms of the general TWIP effect are intensively explored. For the first aspect, "TWIP copper alloys" was proposed following the concept of "TWIP steels", as they share essentially the same strengthening and toughening mechanisms. For the second aspect, three intrinsic features of twinning: i.e. "dynamic development", "planarity", as well as "orientation selectivity" were derived from the detailed exploration of the deformation behavior in TWIP copper alloys. These features can be considered the microscopic essences of the general "TWIP effect". Moreover, the effective cooperation between deformation twinning and dislocation slipping in TWIP copper alloys leads to a desirable tendency: the synchronous improvement of strength and plasticity (SISP). This breakthrough against the traditional trade-off relationship, achieved by the general "TWIP effect", may provide useful strategies for designing high-performance engineering materials.

  4. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    Science.gov (United States)

    Patel, Binay S.

    Epoxies are widely used as underfill resins throughout the microelectronics industry to mechanically couple and protect various components of flip-chip assemblies. Generally rigid materials largely surround underfill resins. Improving the mechanical and thermal properties of epoxy resins to better match those of their rigid counterparts can help extend the service lifetime of flip-chip assemblies. Recently, researchers have demonstrated that silica nanoparticles are effective toughening agents for lightly-crosslinked epoxies. Improvements in the fracture toughness of silica-filled epoxy nanocomposites have primarily been attributed to two toughening mechanisms: particle debonding with subsequent void growth and matrix shear banding. Various attempts have been made to model the contribution of these toughening mechanisms to the overall fracture energy observed in silica-filled epoxy nanocomposites. However, disparities still exist between experimental and modeled fracture energy results. In this dissertation, the thermal, rheological and mechanical behavior of eight different types of silica-filled epoxy nanocomposites was investigated. Each nanocomposite consisted of up to 10 vol% of silica nanoparticles with particle sizes ranging from 20 nm to 200 nm, with a variety of surface treatments and particle structures. Fractographical analysis was conducted with new experimental approaches in order to accurately identify morphological evidence for each proposed toughening mechanism. Overall, three major insights into the fracture behavior of real world silica-filled epoxy nanocomposites were established. First, microcracking was observed as an essential toughening mechanism in silica-filled epoxy nanocomposites. Microcracking was observed on the surface and subsurface of fractured samples in each type of silica-filled epoxy nanocomposite. The additional toughening contribution of microcracking to overall fracture energy yielded excellent agreement between experimental

  5. Pulmonary Mechanics and Mortality in Mechanically Ventilated Patients Without Acute Respiratory Distress Syndrome: A Cohort Study.

    Science.gov (United States)

    Fuller, Brian M; Page, David; Stephens, Robert J; Roberts, Brian W; Drewry, Anne M; Ablordeppey, Enyo; Mohr, Nicholas M; Kollef, Marin H

    2018-03-01

    Driving pressure has been proposed as a major determinant of outcome in patients with acute respiratory distress syndrome (ARDS), but there is little data examining the association between pulmonary mechanics, including driving pressure, and outcomes in mechanically ventilated patients without ARDS. Secondary analysis from 1,705 mechanically ventilated patients enrolled in a clinical study that examined outcomes associated with the use of early lung-protective mechanical ventilation. The primary outcome was mortality and the secondary outcome was the incidence of ARDS. Multivariable models were constructed to: define the association between pulmonary mechanics (driving pressure, plateau pressure, and compliance) and mortality; and evaluate if driving pressure contributed information beyond that provided by other pulmonary mechanics. The mortality rate for the entire cohort was 26.0%. Compared with survivors, non-survivors had significantly higher driving pressure [15.9 (5.4) vs. 14.9 (4.4), P = 0.005] and plateau pressure [21.4 (5.7) vs. 20.4 (4.6), P = 0.001]. Driving pressure was independently associated with mortality [adjusted OR, 1.04 (1.01-1.07)]. Models related to plateau pressure also revealed an independent association with mortality, with similar effect size and interval estimates as driving pressure. There were 152 patients who progressed to ARDS (8.9%). Along with driving pressure and plateau pressure, mechanical power [adjusted OR, 1.03 (1.00-1.06)] was also independently associated with ARDS development. In mechanically ventilated patients, driving pressure and plateau pressure are risk factors for mortality and ARDS, and provide similar information. Mechanical power is also a risk factor for ARDS.

  6. New trends in educational activity in the field of mechanism and machine theory

    CERN Document Server

    Castejon, Cristina

    2014-01-01

    The First International Symposium on the Education in Mechanism and Machine Science (ISEMMS 2013) aimed to create a stable platform for the interchange of experience among researches of mechanism and machine science. Topics treated include contributions on subjects such as new trends and experiences in mechanical engineering education; mechanism and machine science in mechanical engineering curricula; MMS in engineering programs, such as, for example, methodology, virtual labs and new laws. All papers have been rigorously reviewed and represent the state of the art in their field.

  7. Salinity Adaptation and the Contribution of Parental Environmental Effects in Medicago truncatula.

    Directory of Open Access Journals (Sweden)

    Ken S Moriuchi

    Full Text Available High soil salinity negatively influences plant growth and yield. Some taxa have evolved mechanisms for avoiding or tolerating elevated soil salinity, which can be modulated by the environment experienced by parents or offspring. We tested the contribution of the parental and offspring environments on salinity adaptation and their potential underlying mechanisms. In a two-generation greenhouse experiment, we factorially manipulated salinity concentrations for genotypes of Medicago truncatula that were originally collected from natural populations that differed in soil salinity. To compare population level adaptation to soil salinity and to test the potential mechanisms involved we measured two aspects of plant performance, reproduction and vegetative biomass, and phenological and physiological traits associated with salinity avoidance and tolerance. Saline-origin populations had greater biomass and reproduction under saline conditions than non-saline populations, consistent with local adaptation to saline soils. Additionally, parental environmental exposure to salt increased this difference in performance. In terms of environmental effects on mechanisms of salinity adaptation, parental exposure to salt spurred phenological differences that facilitated salt avoidance, while offspring exposure to salt resulted in traits associated with greater salt tolerance. Non-saline origin populations expressed traits associated with greater growth in the absence of salt while, for saline adapted populations, the ability to maintain greater performance in saline environments was also associated with lower growth potential in the absence of salt. Plastic responses induced by parental and offspring environments in phenology, leaf traits, and gas exchange contribute to salinity adaptation in M. truncatula. The ability of plants to tolerate environmental stress, such as high soil salinity, is likely modulated by a combination of parental effects and within

  8. Contributions of microbial activity and ash deposition to post-fire nitrogen availability in a pine savanna

    Science.gov (United States)

    Ficken, Cari D.; Wright, Justin P.

    2017-01-01

    Many ecosystems experience drastic changes to soil nutrient availability associated with fire, but the magnitude and duration of these changes are highly variable among vegetation and fire types. In pyrogenic pine savannas across the southeastern United States, pulses of soil inorganic nitrogen (N) occur in tandem with ecosystem-scale nutrient losses from prescribed burns. Despite the importance of this management tool for restoring and maintaining fire-dependent plant communities, the contributions of different mechanisms underlying fire-associated changes to soil N availability remain unclear. Pulses of N availability following fire have been hypothesized to occur through (1) changes to microbial cycling rates and (2) direct ash deposition. Here, we document fire-associated changes to N availability across the growing season in a longleaf pine savanna in North Carolina. To differentiate between possible mechanisms driving soil N pulses, we measured net microbial cycling rates and changes to soil δ15N before and after a burn. Our findings refute both proposed mechanisms: we found no evidence for changes in microbial activity, and limited evidence that ash deposition could account for the increase in ammonium availability to more than 5-25 times background levels. Consequently, we propose a third mechanism to explain post-fire patterns of soil N availability, namely that (3) changes to plant sink strength may contribute to ephemeral increases in soil N availability, and encourage future studies to explicitly test this mechanism.

  9. Advances in mechanisms, robotics and design education and research

    CERN Document Server

    Schmiedeler, James; Sreenivasan, S; Su, Hai-Jun

    2013-01-01

    This book contains papers on a wide range of topics in the area of kinematics, mechanisms, robotics, and design, addressing new research advances and innovations in design education. The content is divided into  five main categories headed ‘Historical Perspectives’, ‘Kinematics and Mechanisms’, ‘Robotic Systems’, ‘Legged Locomotion’, and ‘Design Engineering Education’. Contributions take the form of survey articles, historical perspectives, commentaries on trends on education or research, original research contributions, and papers on design education.   This volume celebrates the achievements of Professor Kenneth Waldron who has made innumerable and invaluable contributions to these fields in the last fifty years. His leadership and his pioneering work have influenced thousands of people in this discipline.

  10. Statistical mechanics of complex networks

    CERN Document Server

    Rubi, Miguel; Diaz-Guilera, Albert

    2003-01-01

    Networks can provide a useful model and graphic image useful for the description of a wide variety of web-like structures in the physical and man-made realms, e.g. protein networks, food webs and the Internet. The contributions gathered in the present volume provide both an introduction to, and an overview of, the multifaceted phenomenology of complex networks. Statistical Mechanics of Complex Networks also provides a state-of-the-art picture of current theoretical methods and approaches.

  11. Microstructure, Mechanical Properties, and Toughening Mechanisms of a New Hot Stamping-Bake Toughening Steel

    Science.gov (United States)

    Lin, Tao; Song, Hong-Wu; Zhang, Shi-Hong; Cheng, Ming; Liu, Wei-Jie; Chen, Yun

    2015-09-01

    In this article, the hot stamping-bake toughening process has been proposed following the well-known concept of bake hardening. The influences of the bake time on the microstructure and the mechanical properties of the hot stamped-baked part were studied by means of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and mechanical tests at room temperature. The results show that the amount of the retained austenite was nearly not changed by the bake process. Also observed were spherical Cu-rich precipitates of about 15 nm in martensite laths. According to the Orowan mechanism, their contribution of the Cu-rich precipitates to the strength is approximately 245 MPa. With the increase of the bake time, the tensile strength of the part was decreased, whereas both the ductility and the product of the tensile strength and ductility were increased then decreased. The tensile strength and ductility product and the tensile strength are as high as 21.9 GPa pct, 2086 MPa, respectively. The excellent combined properties are due to the transformation-induced plasticity effect caused by retained austenite.

  12. Coupling Langevin Dynamics With Continuum Mechanics: Exposing the Role of Sarcomere Stretch Activation Mechanisms to Cardiac Function

    Directory of Open Access Journals (Sweden)

    Takumi Washio

    2018-04-01

    Full Text Available High-performance computing approaches that combine molecular-scale and macroscale continuum mechanics have long been anticipated in various fields. Such approaches may enrich our understanding of the links between microscale molecular mechanisms and macroscopic properties in the continuum. However, there have been few successful examples to date owing to various difficulties associated with overcoming the large spatial (from 1 nm to 10 cm and temporal (from 1 ns to 1 ms gaps between the two scales. In this paper, we propose an efficient parallel scheme to couple a microscopic model using Langevin dynamics for a protein motor with a finite element continuum model of a beating heart. The proposed scheme allows us to use a macroscale time step that is an order of magnitude longer than the microscale time step of the Langevin model, without loss of stability or accuracy. This reduces the overhead required by the imbalanced loads of the microscale computations and the communication required when switching between scales. An example of the Langevin dynamics model that demonstrates the usefulness of the coupling approach is the molecular mechanism of the actomyosin system, in which the stretch-activation phenomenon can be successfully reproduced. This microscopic Langevin model is coupled with a macroscopic finite element ventricle model. In the numerical simulations, the Langevin dynamics model reveals that a single sarcomere can undergo spontaneous oscillation (15 Hz accompanied by quick lengthening due to cooperative movements of the myosin molecules pulling on the common Z-line. Also, the coupled simulations using the ventricle model show that the stretch-activation mechanism contributes to the synchronization of the quick lengthening of the sarcomeres at the end of the systolic phase. By comparing the simulation results given by the molecular model with and without the stretch-activation mechanism, we see that this synchronization contributes to

  13. Mechanisms of elastic wave generation in solids by ion impact

    International Nuclear Information System (INIS)

    Deemer, B.; Murphy, J.; Claytor, T.

    1990-01-01

    This study is directed at understanding the mechanisms of acoustic signal generation by modulated beams of energetic ions as a function of ion energy. Interaction of ions with solids initiates a range of processes including sputtering, ion implantation, ionization, both internal and external, as well as thermal deposition in the solid. Accumulated internal stress also occurs by generation of dislocations resulting from, inelastic nuclear scattering of the incident ion beam. With respect to elastic wave generation, two potential mechanisms are thermoelastic induced stress and momentum transfer. The latter process includes contributions of momentum transfer from the incident beam and from ions ejected via sputtering. Other aspects of the generation process include the potential for shock wave generation since the mean particle velocity for a wide range of ion energies exceeds the velocity of sound in solids. This study seeks to distinguish the contribution of these mechanisms by studying the signature, angular distribution and energy dependence of the elastic wave response in the time domain and to use this information to understand technologically important processes such as implantation and sputtering

  14. Tumor Necrosis Factor Alpha Signaling in Trigeminal Ganglion Contributes to Mechanical Hypersensitivity in Masseter Muscle During Temporomandibular Joint Inflammation.

    Science.gov (United States)

    Ito, Reio; Shinoda, Masamichi; Honda, Kuniya; Urata, Kentaro; Lee, Jun; Maruno, Mitsuru; Soma, Kumi; Okada, Shinji; Gionhaku, Nobuhito; Iwata, Koichi

    To determine the involvement of tumor necrosis factor alpha (TNFα) signaling in the trigeminal ganglion (TG) in the mechanical hypersensitivity of the masseter muscle during temporomandibular joint (TMJ) inflammation. A total of 55 male Sprague-Dawley rats were used. Following injection of Complete Freund's Adjuvant into the TMJ, the mechanical sensitivities of the masseter muscle and the overlying facial skin were measured. Satellite glial cell (SGC) activation and TNFα expression in the TG were investigated immunohistochemically, and the effects of their inhibition on the mechanical hypersensitivity of the masseter muscle were also examined. Student t test or two-way repeated-measures analysis of variance followed by Bonferroni multiple comparisons test were used for statistical analyses. P < .05 was considered to reflect statistical significance. Mechanical allodynia in the masseter muscle was induced without any inflammatory cell infiltration in the muscle after TMJ inflammation. SGC activation and an increased number of TNFα-immunoreactive cells were induced in the TG following TMJ inflammation. Intra-TG administration of an inhibitor of SGC activity or of TNFα-neutralizing antibody depressed both the increased number of TG cells encircled by activated SGCs and the mechanical hypersensitivity of the masseter following TMJ inflammation. These findings suggest that persistent masseter hypersensitivity associated with TMJ inflammation was mediated by SGC-TG neuron interactions via TNFα signaling in the TG.

  15. 2016 Annual Conference on Experimental and Applied Mechanics

    CERN Document Server

    Lamberson, Leslie; Kimberley, Jamie; Korach, Chad; Tekalur, Srinivasan; Zavattieri, Pablo; Yoshida, Sanichiro; Lamberti, Luciano; Sciammarella, Cesar; Ralph, W; Singh, Raman; Tandon, Gyaneshwar; Thakre, Piyush; Zavattieri, Pablo; Zhu, Yong; Zehnder, Alan; Zehnder, Alan; Carroll, Jay; Hazeli, Kavan; Berke, Ryan; Pataky, Garrett; Cavalli, Matthew; Beese, Alison; Xia, Shuman; Starman, La; Hay, Jennifer; Karanjgaokar, Nikhil; Quinn, Simon; Balandraud, Xavier; Cloud, Gary; Patterson, Eann; Backman, David

    2017-01-01

    Dynamic Behavior of Materials, Volume 1 of the Proceedings of the 2016 SEM Annual Conference& Exposition on Experimental and Applied Mechanics, the first volume of ten from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers on: Quantitative Visualization Fracture & Fragmentation Dynamic Behavior of Low Impedance Materials Shock & Blast Dynamic Behavior of Composites Novel Testing Techniques Hybrid Experimental & Computational Methods Dynamic Behavior of Geo-materials General Material Behavior.

  16. How to solve path integrals in quantum mechanics

    International Nuclear Information System (INIS)

    Grosche, C.

    1994-10-01

    A systematic classification of Feynman path integrals in quantum mechanics is presented and a table of solvable path integrals is given which reflects the progress made during the last 15 years, including, of course, the main contributions since the invention of the path integral by Feynman in 1942. An outline of the general theory is given which will serve as a quick reference for solving path integrals. Explicit formulae for the so-called basic path integrals are presented on which our general scheme to classify and calculate path integrals in quantum mechanics is based. (orig.)

  17. Mechanisms of Candida biofilm drug resistance

    Science.gov (United States)

    Taff, Heather T; Mitchell, Kaitlin F; Edward, Jessica A; Andes, David R

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involving both mechanisms similar to conventional, planktonic antifungal resistance, such as increased efflux pump activity, as well as mechanisms specific to the biofilm lifestyle. A unique biofilm property is the production of an extracellular matrix. Two components of this material, β-glucan and extracellular DNA, promote biofilm resistance to multiple antifungals. Biofilm formation also engages several stress response pathways that impair the activity of azole drugs. Resistance within a biofilm is often heterogeneous, with the development of a subpopulation of resistant persister cells. In this article we review the molecular mechanisms underlying Candida biofilm antifungal resistance and their relative contributions during various growth phases. PMID:24059922

  18. Contribution of Binaural Masking Release to Improved Speech Intelligibility for different Masker types.

    Science.gov (United States)

    Sutojo, Sarinah; van de Par, Steven; Schoenmaker, Esther

    2018-06-01

    In situations with competing talkers or in the presence of masking noise, speech intelligibility can be improved by spatially separating the target speaker from the interferers. This advantage is generally referred to as spatial release from masking (SRM) and different mechanisms have been suggested to explain it. One proposed mechanism to benefit from spatial cues is the binaural masking release, which is purely stimulus driven. According to this mechanism, the spatial benefit results from differences in the binaural cues of target and masker, which need to appear simultaneously in time and frequency to improve the signal detection. In an alternative proposed mechanism, the differences in the interaural cues improve the segregation of auditory streams, a process, which involves top-down processing rather than being purely stimulus driven. Other than the cues that produce binaural masking release, the interaural cue differences between target and interferer required to improve stream segregation do not have to appear simultaneously in time and frequency. This study is concerned with the contribution of binaural masking release to SRM for three masker types that differ with respect to the amount of energetic masking they exert. Speech intelligibility was measured, employing a stimulus manipulation that inhibits binaural masking release, and analyzed with a metric to account for the number of better-ear glimpses. Results indicate that the contribution of the stimulus-driven binaural masking release plays a minor role while binaural stream segregation and the availability of glimpses in the better ear had a stronger influence on improving the speech intelligibility. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Molecular-level Insight into the Spectral Tuning Mechanism of the DsRed Chromophore

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Olsen, Jógvan Magnus Haugaard; Jensen, Hans Jørgen Aagaard

    2012-01-01

    the protein. Our results indicate that this mainly is attributable to counter-directional contributions stemming from Lys163 and the conserved Arg95 with the former additionally identified as a key residue in the color tuning mechanism. The results provide new insights into the tuning mechanism of Ds...

  20. Geometry, algebra and applications from mechanics to cryptography

    CERN Document Server

    Encinas, Luis; Gadea, Pedro; María, Mª

    2016-01-01

    This volume collects contributions written by different experts in honor of Prof. Jaime Muñoz Masqué. It covers a wide variety of research topics, from differential geometry to algebra, but particularly focuses on the geometric formulation of variational calculus; geometric mechanics and field theories; symmetries and conservation laws of differential equations, and pseudo-Riemannian geometry of homogeneous spaces. It also discusses algebraic applications to cryptography and number theory. It offers state-of-the-art contributions in the context of current research trends. The final result is a challenging panoramic view of connecting problems that initially appear distant.