WorldWideScience

Sample records for noradrenaline na dopamine

  1. Dopamine versus noradrenaline in septic shock

    Directory of Open Access Journals (Sweden)

    Bo Xu

    2011-10-01

    Full Text Available BackgroundThe ‘Surviving Sepsis’ Campaign guidelines recommend theuse of dopamine or noradrenaline as the first vasopressor inseptic shock. However, information that guides clinicians inchoosing between dopamine and noradrenaline as the firstvasopressor in patients with septic shock is limited.ObjectiveThis article presents a review of the literature regarding theuse of dopamine versus noradrenaline in patients with septicshock.ResultsTwo randomised controlled trials (RCT and two largeprospective cohort studies were analysed. RCT data showeddopamine was associated with increased arrhythmic events.One cohort study found dopamine was associated with higher30-day mortality. The other cohort study found noradrenalinewas associated with higher 28-day mortality.DiscussionData on the use of dopamine versus noradrenaline in patientswith septic shock is limited. Following the recent SOAP IIstudy, there is now strong evidence that the use of dopaminein septic shock is associated with significantly morecardiovascular adverse events, compared tonoradrenaline.ConclusionNoradrenaline should be used as the initial vasopressor inseptic shock to avoid the arrhythmic events associatedwith dopamine.

  2. The postirradiation effect of noradrenaline, serotonin and dopamine on Na-K-pump activity in rat brain sections

    International Nuclear Information System (INIS)

    Dvoretskij, A.I.; Kulikova, I.A.

    1993-01-01

    Whole-body X-irradiation with doses of 0.155 and 0.310 C/kg was shown to modify in different ways the activating effects of noradrenaline and serotonin, as well as a biphase effect of dopamine of neuronal membranes. The resulting effect was a function of a combination of radiation doses and neurotransmitter concentrations and thus showed different modes of interaction between neurotransmitter and ion-transport systems of brain cells in radiation sickness

  3. Noradrenaline and dopamine levels in acute cerveau isolé in the cat.

    Science.gov (United States)

    Szikszay, M; Benedek, G; Obál, F; Obál, F

    1980-01-01

    Noradrenaline (NA) and dopamine (DA) levels were studied in the forebrain of acute immobilized cats and in cerveau isolé preparations. A gradual decrease in NA and DA was observed one and two hours after high mesencephalic transection, while the amount of NA increased in acute immobilized cats after the cessation of ether anaesthesia. These changes in NA level are consistent with the observations suggesting an inverse relationship between NA and cortical deactivation. The decrease of DA with an exaggeration of spindle activity and increased synchronizing effect of basal forebrain stimulation indicate that the spindle-increasing effect of DA suggested by several authors requires the contribution of the brain stem.

  4. Contrasting Roles of Dopamine and Noradrenaline in the Motivational Properties of Social Play Behavior in Rats.

    Science.gov (United States)

    Achterberg, E J Marijke; van Kerkhof, Linda W M; Servadio, Michela; van Swieten, Maaike M H; Houwing, Danielle J; Aalderink, Mandy; Driel, Nina V; Trezza, Viviana; Vanderschuren, Louk J M J

    2016-02-01

    Social play behavior, abundant in the young of most mammalian species, is thought to be important for social and cognitive development. Social play is highly rewarding, and as such, the expression of social play depends on its pleasurable and motivational properties. Since the motivational properties of social play have only sporadically been investigated, we developed a setup in which rats responded for social play under a progressive ratio schedule of reinforcement. Dopaminergic neurotransmission plays a key role in incentive motivational processes, and both dopamine and noradrenaline have been implicated in the modulation of social play behavior. Therefore, we investigated the role of dopamine and noradrenaline in the motivation for social play. Treatment with the psychostimulant drugs methylphenidate and cocaine increased responding for social play, but suppressed its expression during reinforced play periods. The dopamine reuptake inhibitor GBR-12909 increased responding for social play, but did not affect its expression, whereas the noradrenaline reuptake inhibitor atomoxetine decreased responding for social play as well as its expression. The effects of methylphenidate and cocaine on responding for social play, but not their play-suppressant effects, were blocked by pretreatment with the dopamine receptor antagonist α-flupenthixol. In contrast, pretreatment with the α2-adrenoceptor antagonist RX821002 prevented the play-suppressant effect of methylphenidate, but left its effect on responding for social play unaltered. In sum, the present study introduces a novel method to study the incentive motivational properties of social play behavior in rats. Using this paradigm, we demonstrate dissociable roles for dopamine and noradrenaline in social play behavior: dopamine stimulates the motivation for social play, whereas noradrenaline negatively modulates the motivation for social play behavior and its expression.

  5. Volume Transmission in Central Dopamine and Noradrenaline Neurons and Its Astroglial Targets.

    Science.gov (United States)

    Fuxe, Kjell; Agnati, Luigi F; Marcoli, Manuela; Borroto-Escuela, Dasiel O

    2015-12-01

    Already in the 1960s the architecture and pharmacology of the brainstem dopamine (DA) and noradrenaline (NA) neurons with formation of vast numbers of DA and NA terminal plexa of the central nervous system (CNS) indicated that they may not only communicate via synaptic transmission. In the 1980s the theory of volume transmission (VT) was introduced as a major communication together with synaptic transmission in the CNS. VT is an extracellular and cerebrospinal fluid transmission of chemical signals like transmitters, modulators etc. moving along energy gradients making diffusion and flow of VT signals possible. VT interacts with synaptic transmission mainly through direct receptor-receptor interactions in synaptic and extrasynaptic heteroreceptor complexes and their signaling cascades. The DA and NA neurons are specialized for extrasynaptic VT at the soma-dendrtitic and terminal level. The catecholamines released target multiple DA and adrenergic subtypes on nerve cells, astroglia and microglia which are the major cell components of the trophic units building up the neural-glial networks of the CNS. DA and NA VT can modulate not only the strength of synaptic transmission but also the VT signaling of the astroglia and microglia of high relevance for neuron-glia interactions. The catecholamine VT targeting astroglia can modulate the fundamental functions of astroglia observed in neuroenergetics, in the Glymphatic system, in the central renin-angiotensin system and in the production of long-distance calcium waves. Also the astrocytic and microglial DA and adrenergic receptor subtypes mediating DA and NA VT can be significant drug targets in neurological and psychiatric disease.

  6. Magnetic restricted-access microspheres for extraction of adrenaline, dopamine and noradrenaline from biological samples

    International Nuclear Information System (INIS)

    Xiao, Deli; Liu, Shubo; Liang, Liyun; Bi, Yanping

    2016-01-01

    Epoxy propyl bonded magnetic microspheres were prepared by atomic layer deposition using Fe 3 O 4 -SiO 2 microspheres as a core support material. Then, a restricted-access magnetic sorbent was prepared that contains diol groups on the external surface and m-aminophenylboronic acid groups on the internal surface. This kind of microspheres achieved excellent specific adsorption of the ortho-dihydroxy compounds (dopamine, adrenaline and noradrenaline). Following desorption with sorbitol, the ortho-dihydroxy compounds were quantified by HPLC. The limits of detection for dopamine, adrenaline and noradrenaline were 0.074, 0.053 and 0.095 μg mL −1 , respectively. Recoveries from spiked mice serum samples range from 80.2 to 89.1 %. (author)

  7. Effects of propofol and sevoflurane on isolated human umbilical arteries pre-contracted with dopamine, adrenaline and noradrenaline.

    Science.gov (United States)

    Gunduz, Ergun; Arun, Oguzhan; Bagci, Sengal Taylan; Oc, Bahar; Salman, Alper; Yilmaz, Setenay Arzu; Celik, Cetin; Duman, Ates

    2015-05-01

    To assess the effects of propofol and sevoflurane on the contraction elicited by dopamine, adrenaline and noradrenaline on isolated human umbilical arteries. Umbilical arteries were cut into endothelium-denuded spiral strips and suspended in organ baths containing Krebs-Henseleit solution bubbled with O2 +CO2 mixture. Control contraction to phenylephrine (10(-5)  M) was recorded. Response curves were obtained to 10(-5)  M dopamine, 10(-5)  M adrenaline or 10(-5)  M noradrenaline. Afterwards, either cumulative propofol (10(-6)  M, 10(-5)  M and 10(-4)  M) or cumulative sevoflurane (1.2%, 2.4% and 3.6%) was added to the organ bath, and the responses were recorded. Responses are expressed percentage of phenylephrine-induced contraction (mean ± standard deviation) (P adrenaline and noradrenaline (P adrenaline. High and highest concentrations of sevoflurane caused significantly higher relaxation compared with the high and highest concentrations of propofol on the contraction elicited by noradrenaline. Dopamine, adrenaline and noradrenaline elicit contractions in human umbilical arteries, and noradrenaline causes the highest contraction. Both propofol and sevoflurane inhibit these contractions in a dose-dependent manner. Propofol caused greater relaxation in the contractions elicited by dopamine and adrenaline while sevoflurane caused greater relaxation in the contraction elicited by noradrenaline. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  8. Serotonin, dopamine and noradrenaline adjust actions of myelinated afferents via modulation of presynaptic inhibition in the mouse spinal cord.

    Directory of Open Access Journals (Sweden)

    David L García-Ramírez

    Full Text Available Gain control of primary afferent neurotransmission at their intraspinal terminals occurs by several mechanisms including primary afferent depolarization (PAD. PAD produces presynaptic inhibition via a reduction in transmitter release. While it is known that descending monoaminergic pathways complexly regulate sensory processing, the extent these actions include modulation of afferent-evoked PAD remains uncertain. We investigated the effects of serotonin (5HT, dopamine (DA and noradrenaline (NA on afferent transmission and PAD. Responses were evoked by stimulation of myelinated hindlimb cutaneous and muscle afferents in the isolated neonatal mouse spinal cord. Monosynaptic responses were examined in the deep dorsal horn either as population excitatory synaptic responses (recorded as extracellular field potentials; EFPs or intracellular excitatory postsynaptic currents (EPSCs. The magnitude of PAD generated intraspinally was estimated from electrotonically back-propagating dorsal root potentials (DRPs recorded on lumbar dorsal roots. 5HT depressed the DRP by 76%. Monosynaptic actions were similarly depressed by 5HT (EFPs 54%; EPSCs 75% but with a slower time course. This suggests that depression of monosynaptic EFPs and DRPs occurs by independent mechanisms. DA and NA had similar depressant actions on DRPs but weaker effects on EFPs. IC50 values for DRP depression were 0.6, 0.8 and 1.0 µM for 5HT, DA and NA, respectively. Depression of DRPs by monoamines was nearly-identical in both muscle and cutaneous afferent-evoked responses, supporting a global modulation of the multimodal afferents stimulated. 5HT, DA and NA produced no change in the compound antidromic potentials evoked by intraspinal microstimulation indicating that depression of the DRP is unrelated to direct changes in the excitability of intraspinal afferent fibers, but due to metabotropic receptor activation. In summary, both myelinated afferent-evoked DRPs and monosynaptic

  9. Dopamine, Noradrenaline and Differences in Sexual Behavior between Roman High and Low Avoidance Male Rats: A Microdialysis Study in the Medial Prefrontal Cortex.

    Science.gov (United States)

    Sanna, Fabrizio; Bratzu, Jessica; Piludu, Maria A; Corda, Maria G; Melis, Maria R; Giorgi, Osvaldo; Argiolas, Antonio

    2017-01-01

    Roman High- (RHA) and Low-Avoidance (RLA) outbred rats, which differ for a respectively rapid vs. poor acquisition of the active avoidance response in the shuttle-box, display differences in sexual activity when put in the presence of a sexually receptive female rat. Indeed RHA rats show higher levels of sexual motivation and copulatory performance than RLA rats, which persist also after repeated sexual activity. These differences have been correlated to a higher tone of the mesolimbic dopaminergic system of RHA rats vs. RLA rats, revealed by the higher increase of dopamine found in the dialysate obtained from the nucleus accumbens of RHA than RLA rats during sexual activity. This work shows that extracellular dopamine and noradrenaline (NA) also, increase in the dialysate from the medial prefrontal cortex (mPFC) of male RHA and RLA rats put in the presence of an inaccessible female rat and more markedly during direct sexual interaction. Such increases in dopamine (and its main metabolite 3,4-dihydroxyphenylacetic acid, DOPAC) and NA were found in both sexually naïve and experienced animals, but they were higher: (i) in RHA than in RLA rats; and (ii) in sexually experienced RHA and RLA rats than in their naïve counterparts. Finally, the differences in dopamine and NA in the mPFC occurred concomitantly to those in sexual activity, as RHA rats displayed higher levels of sexual motivation and copulatory performance than RLA rats in both the sexually naïve and experienced conditions. These results suggest that a higher dopaminergic tone also occurs in the mPFC, together with an increased noradrenergic tone, which may be involved in the different copulatory patterns found in RHA and RLA rats, as suggested for the mesolimbic dopaminergic system.

  10. Na+-independent, nifedipine-resistant rat afferent arteriolar Ca2+ responses to noradrenaline

    DEFF Research Database (Denmark)

    Salomonsson, Max; Braunstein, Thomas Hartig; von Holstein-Rathlou, Niels-Henrik

    2010-01-01

    Abstract Aim: In rat afferent arterioles we investigated the role of Na(+) entry in noradrenaline (NA)-induced depolarization and voltage-dependent Ca(2+) entry together with the importance of the transient receptor potential channel (TRPC) subfamily for non-voltage-dependent Ca(2+) entry. Methods...

  11. Extinction memory is facilitated by methylphenidate and regulated by dopamine and noradrenaline receptors.

    Science.gov (United States)

    Furini, Cristiane R G; Behling, Jonny A K; Zinn, Carolina G; Zanini, Mara Lise; Assis Brasil, Eduardo; Pereira, Luiza Doro; Izquierdo, Ivan; de Carvalho Myskiw, Jociane

    2017-05-30

    Extinction is defined as the learned inhibition of retrieval and is the mainstay of exposure therapy, which is widely used to treat drug addiction, phobias and fear disorders. The psychostimulant, methylphenidate (MPH) is known to increase extracellular levels of noradrenaline and dopamine by blocking their reuptake and studies have demonstrated that MPH can modulate hippocampal physiology and/or functions including long-term potentiation (LTP), learning and memory. However, the influence of MPH on fear extinction memory has been insufficiently studied. Here we investigate the effect of MPH infused into the CA1 region of the hippocampus on extinction memory in animals normally incapable of showing contextual fear conditioning (CFC) extinction because of weak training, and the possible mechanisms through which it acts during this process. For this, male Wistar rats with infusion cannulae stereotaxically implanted in the CA1 region were submitted to a weak extinction protocol in a CFC apparatus. Animals that received intra-CA1 infusion of MPH (12.5μg/side) 20min before the extinction training (Ext Tr) expressed less freezing behavior than Veh-treated animals during both Ext Tr and extinction retention Test (Ext Test). Additionally, the administration of MPH+Timolol (1μg/side) or MPH+SCH23390 (1.5μg/side) intra-CA1 20min before the Ext Tr blocked the enhancing effect of the MPH on extinction learning. These results suggest that MPH in the CA1 region of the hippocampus is able to induce the consolidation of extinction memory and this process occurs through both β-adrenergic and D1/D5 dopaminergic receptors. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Simultaneous determination of the content of serotonin, dopamine, noradrenaline and adrenaline in pancreatic islets isolated from fed and starved mice

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, S E; Hedeskov, C J [Copenhagen Univ. (Denmark)

    1977-01-01

    A highly sensitive double isotope method for the simultaneous determination of serotonin, dopamine, noradrenaline and adrenaline has been developed. Advantages and limitations of the method are discussed. The mentioned biogenic amines are all present in isolated pancreatic islet tissue from albino mice in concentrations ranging from approximately 5-30 ..mu..mol per kg wet weight (0.8-5 x 10/sup -3/ pmol/ng DNA). A somewhat higher content of these amines, especially dopamine, was found in pancreatic acinar tissue. The hypothesis that the impaired glucose-induced insulin secretion during starvation partly is caused by an increased content of biogenic amines in the pancreatic islets was not supported by our experiments which showed an unchanged islet content of these amines after 48 h starvation.

  13. Simultaneous determination of the content of serotonin, dopamine, noradrenaline and adrenaline in pancreatic islets isolated from fed and starved mice

    International Nuclear Information System (INIS)

    Hansen, S.E.; Hedeskov, C.J.

    1977-01-01

    A highly sensitive double isotope method for the simultaneous determination of serotonin, dopamine, noradrenaline and adrenaline has been developed. Advantages and limitations of the method are discussed. The mentioned biogenic amines are all present in isolated pancreatic islet tissue from albino mice in concentrations ranging from approximately 5-30 μmol per kg wet weight (0.8-5 x 10 -3 pmol/ng DNA). A somewhat higher content of these amines, especially dopamine, was found in pancreatic acinar tissue. The hypothesis that the impaired glucose-induced insulin secretion during starvation partly is caused by an increased content of biogenic amines in the pancreatic islets was not supported by our experiments which showed an unchanged islet content of these amines after 48 h starvation. (author)

  14. Dopamine

    International Nuclear Information System (INIS)

    Walters, L.

    1983-01-01

    Dopamine is an important neurotransmittor in the central nervous system. The physiological function of the peripheral dopamine receptors is unknown, but they are of therapeutic importance as dopamine is used to improve renal blood flow in shocked patients. There are 4 dopamine receptors. The classification of these dopamine receptors has been made possible by research with radiopharmaceuticals. Dopamine sensitive adenylate cyclase is an inherent part of the dopamine-1-receptor. Dopamine-1-receptors are stimulated by micromolar (physiological) concentrations of dopamine and inhibited by micromolar (supratherapeutic) concentrations of the antipsychotic drugs. The vascular effect of dopamine is mediated through the dopamine-1-receptors. Dopamine-2-receptors are responsible for the effect of dopamine at the mesolimbic, nigrostriatal and chemoreceptortrigger areas. It is activated by micromolar concentrations of dopamine and blocked by nanomolar (therapeutic) concentrations of the anti-psychotic drugs. Dopamine-3-receptors are activated by nanomolar concentrations of dopamine and inhibited by micromolar concentrations of the antipsychotic drugs. They occur on presynaptic nerve terminals and have a negative feedback effect on the liberation of dopamine, noradrenaline and serotonin. The dopamine-4-receptors are activated by nanomolar concentrations of dopamine. These are the only dopamine receptors that could be responsible for effects in the hypophysis as only nanomolar concentrations of dopamine occur there. These receptors are blocked by nanomolar concentrations of the antipsychotic drugs

  15. Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: Effects of novelty and handling and comparison to the nucleus accumbens

    NARCIS (Netherlands)

    Feenstra, M. G.; Botterblom, M. H.; Mastenbroek, S.

    2000-01-01

    We used on-line microdialysis measurements of dopamine and noradrenaline extracellular concentrations in the medial prefrontal cortex of awake, freely moving rats during the dark and the light period of the day to study whether (i) basal efflux would be higher in the active, dark period than in the

  16. Mercuric chloride-induced alterations of levels of noradrenaline, dopamine, serotonin and acetylcholine esterase activity in different regions of rat brain during postnatal development

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmana, M.K. (Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore (India)); Desiraju, T. (Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore (India)); Raju, T.R. (Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, Bangalore (India))

    1993-07-01

    Wistar rats were fed mercuric chloride, 4 mg/kg body weight per day chronically from postnatal day 2 to 60 by gastric intubation. Mercury consumption was then discontinued until 170 days to allow time for recovery. Since mercury caused reduction in body weight, an underweight group was also included besides the normal saline group. Levels of noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5-HT) and the activity of acetylcholine esterase (AChE) were assayed in various brain regions in different age groups. By 60 days of age, the mercury group showed elevations of NA levels in olfactory bulb (OB), visual cortex (VC) and brain stem (BS) but not in striatumaccumbens (SA) and hippocampus (HI). DA levels were also increased in OB, HI, VC and BS but not in SA. AChE activity was decreased in the mercury group only in HI and VC at 20 days of age. The Mercury group showed no behavioural abnormality outwardly; however, operant conditioning relevated a dificiency in performance. Nevertheless, all these changes disappeared after discontinuation of mercury intake. Thus the changes occurring in the brain at this level of oral mercuric chloride intake seem to reflect adaptive neural mechanisms rather than pathological damage. (orig.)

  17. Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus

    Directory of Open Access Journals (Sweden)

    Saba Pierluigi

    2005-05-01

    Full Text Available Abstract Background Previous studies by our group suggest that extracellular dopamine (DA and noradrenaline (NA may be co-released from noradrenergic nerve terminals in the cerebral cortex. We recently demonstrated that the concomitant release of DA and NA could be elicited in the cerebral cortex by electrical stimulation of the locus coeruleus (LC. This study analyses the effect of both single train and repeated electrical stimulation of LC on NA and DA release in the medial prefrontal cortex (mPFC, occipital cortex (Occ, and caudate nucleus. To rule out possible stressful effects of electrical stimulation, experiments were performed on chloral hydrate anaesthetised rats. Results Twenty min electrical stimulation of the LC, with burst type pattern of pulses, increased NA and DA both in the mPFC and in the Occ. NA in both cortices and DA in the mPFC returned to baseline within 20 min after the end of the stimulation period, while DA in the Occ reached a maximum increase during 20 min post-stimulation and remained higher than baseline values at 220 min post-stimulation. Local perfusion with tetrodotoxin (TTX, 10 μM markedly reduced baseline NA and DA in the mPFC and Occ and totally suppressed the effect of electrical stimulation in both areas. A sequence of five 20 min stimulations at 20 min intervals were delivered to the LC. Each stimulus increased NA to the same extent and duration as the first stimulus, whereas DA remained elevated at the time next stimulus was delivered, so that baseline DA progressively increased in the mPFC and Occ to reach about 130 and 200% the initial level, respectively. In the presence of the NA transport (NAT blocker desipramine (DMI, 100 μM, multiple LC stimulation still increased extracellular NA and DA levels. Electrical stimulation of the LC increased NA levels in the homolateral caudate nucleus, but failed to modify DA level. Conclusion The results confirm and extend that LC stimulation induces a concomitant

  18. Hypofunction of prefrontal cortex NMDA receptors does not change stress-induced release of dopamine and noradrenaline in amygdala but disrupts aversive memory.

    Science.gov (United States)

    Del Arco, Alberto; Ronzoni, Giacomo; Mora, Francisco

    2015-07-01

    A dysfunction of prefrontal cortex has been associated with the exacerbated response to stress observed in schizophrenic patients and high-risk individuals to develop psychosis. The hypofunction of NMDA glutamatergic receptors induced by NMDA antagonists produces cortico-limbic hyperactivity, and this is used as an experimental model to resemble behavioural abnormalities observed in schizophrenia. The aim of the present study was to investigate whether injections of NMDA antagonists into the medial prefrontal cortex of the rat change (1) the increases of dopamine, noradrenaline and corticosterone concentrations produced by acute stress in amygdala, and (2) the acquisition of aversive memory related to a stressful event. Male Wistar rats were implanted with guide cannulae to perform microdialysis and bilateral microinjections (0.5 μl/side) of the NMDA antagonist 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phophonic acid (CPP) (25 and 100 ng). Prefrontal injections were performed 60 min before restraint stress in microdialysis experiments, or training (footshock; 0.6 mA, 2 s) in inhibitory avoidance test. Retention latency was evaluated 24 h after training as an index of aversive memory. Acute stress increased amygdala dialysate concentrations of dopamine (160% of baseline), noradrenaline (145% of baseline) and corticosterone (170% of baseline). Prefrontal injections of CPP did not change the increases of dopamine, noradrenaline or corticosterone produced by stress. In contrast, CPP significantly reduced the retention latency in the inhibitory avoidance test. These results suggest that the hypofunction of prefrontal NMDA receptors does not change the sensitivity to acute stress of dopamine and noradrenaline projections to amygdala but impairs the acquisition of aversive memory.

  19. Analysis of microdialysate monoamines, including noradrenaline, dopamine and serotonin, using capillary ultra-high performance liquid chromatography and electrochemical detection.

    Science.gov (United States)

    Ferry, Barbara; Gifu, Elena-Patricia; Sandu, Ioana; Denoroy, Luc; Parrot, Sandrine

    2014-03-01

    Electrochemical methods are very often used to detect catecholamine and indolamine neurotransmitters separated by conventional reverse-phase high performance liquid chromatography (HPLC). The present paper presents the development of a chromatographic method to detect monoamines present in low-volume brain dialysis samples using a capillary column filled with sub-2μm particles. Several parameters (repeatability, linearity, accuracy, limit of detection) for this new ultrahigh performance liquid chromatography (UHPLC) method with electrochemical detection were examined after optimization of the analytical conditions. Noradrenaline, adrenaline, serotonin, dopamine and its metabolite 3-methoxytyramine were separated in 1μL of injected sample volume; they were detected above concentrations of 0.5-1nmol/L, with 2.1-9.5% accuracy and intra-assay repeatability equal to or less than 6%. The final method was applied to very low volume dialysates from rat brain containing monoamine traces. The study demonstrates that capillary UHPLC with electrochemical detection is suitable for monitoring dialysate monoamines collected at high sampling rate. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Noradrenaline and dopamine neurons in the reward/effort trade-off: a direct electrophysiological comparison in behaving monkeys.

    Science.gov (United States)

    Varazzani, Chiara; San-Galli, Aurore; Gilardeau, Sophie; Bouret, Sebastien

    2015-05-20

    Motivation determines multiple aspects of behavior, including action selection and energization of behavior. Several components of the underlying neural systems have been examined closely, but the specific role of the different neuromodulatory systems in motivation remains unclear. Here, we compare directly the activity of dopaminergic neurons from the substantia nigra pars compacta and noradrenergic neurons from the locus coeruleus in monkeys performing a task manipulating the reward/effort trade-off. Consistent with previous reports, dopaminergic neurons encoded the expected reward, but we found that they also anticipated the upcoming effort cost in connection with its negative influence on action selection. Conversely, the firing of noradrenergic neurons increased with both pupil dilation and effort production in relation to the energization of behavior. Therefore, this work underlines the contribution of dopamine to effort-based decision making and uncovers a specific role of noradrenaline in energizing behavior to face challenges. Copyright © 2015 the authors 0270-6474/15/357866-12$15.00/0.

  1. Dopamine, Noradrenaline and Serotonin Receptor Densities in the Striatum of Hemiparkinsonian Rats following Botulinum Neurotoxin-A Injection.

    Science.gov (United States)

    Mann, T; Zilles, K; Dikow, H; Hellfritsch, A; Cremer, M; Piel, M; Rösch, F; Hawlitschka, A; Schmitt, O; Wree, A

    2018-03-15

    Parkinson's disease (PD) is characterized by a degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) that causes a dopamine (DA) deficit in the caudate-putamen (CPu) accompanied by compensatory changes in other neurotransmitter systems. These changes result in severe motor and non-motor symptoms. To disclose the role of various receptor binding sites for DA, noradrenaline, and serotonin in the hemiparkinsonian (hemi-PD) rat model induced by unilateral 6-hydroxydopamine (6-OHDA) injection, the densities of D 1 , D 2 /D 3 , α 1 , α 2 , and 5HT 2A receptors were longitudinally visualized and measured in the CPu of hemi-PD rats by quantitative in vitro receptor autoradiography. We found a moderate increase in D 1 receptor density 3 weeks post lesion that decreased during longer survival times, a significant increase of D 2 /D 3 receptor density, and 50% reduction in 5HT 2A receptor density. α 1 receptor density remained unaltered in hemi-PD and α 2 receptors demonstrated a slight right-left difference increasing with post lesion survival. In a second step, the possible role of receptors on the known reduction of apomorphine-induced rotations in hemi-PD rats by intrastriatally injected Botulinum neurotoxin-A (BoNT-A) was analyzed by measuring the receptor densities after BoNT-A injection. The application of this neurotoxin reduced D 2 /D 3 receptor density, whereas the other receptors mainly remained unaltered. Our results provide novel data for an understanding of the postlesional plasticity of dopaminergic, noradrenergic and serotonergic receptors in the hemi-PD rat model. The results further suggest a therapeutic effect of BoNT-A on the impaired motor behavior of hemi-PD rats by reducing the interhemispheric imbalance in D 2 /D 3 receptor density. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Noradrenaline and Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Claire eDelaville

    2011-05-01

    Full Text Available Parkinson’s disease (PD is characterized by the degeneration of dopamine (DA neurons in the substantia nigra pars compacta, and motor symptoms including bradykinesia, rigidity and tremor at rest. These symptoms are manifest when around 70% of striatal DA is lost. In addition to motor deficits, PD is also characterized by the manifestation of non-motor symptoms. However, depletion of DA alone in animal models has failed to simultaneously elicit both the motor and non-motor deficits of PD because the disease is a multi-system disorder that features a profound loss of other neurotransmitter systems. There is growing evidence that additional loss of noradrenaline (NA neurons of the locus coeruleus, the principal source of NA in the brain, could be involved in the clinical expression of motor as well as in non-motor deficits. In the present review, we analyzed the latest data obtained from animal models of parkinsonism and from parkinsonian patients providing evidence for the implication of NA in the pathophysiology of PD. Recent studies have shown that NA depletion alone or combined with DA depletion resulted in motor as well as in non-motor dysfunctions. In addition, by using selective agonists and antagonists of alpha receptors we, and others, have shown that α2 receptors are implicated in the control of motor activity and that α2 receptor antagonists can improve PD motor symptoms as well as L-Dopa-induced dyskinesia. Here we provide arguments that the loss of NA neurons in PD has an impact on all PD symptoms and that the association of NAergic agents to dopaminergic medication can be beneficial in the treatment of the disease.

  3. An Investigation of the Stoichiometry of Na+ Cotransport with Dopamine in Rat and Human Dopamine Transporters Expressed in Human Embryonic Kidney Cells

    National Research Council Canada - National Science Library

    Schumacher, Paul

    2001-01-01

    The neuronal membrane transporter for dopamine (DAT) is a member of the Na+ and Cl dependent family of transporters and concentrates dopamine intracellularly up to 106 fold over extracellular levels...

  4. O papel do sistema dopaminérgico na fobia social

    OpenAIRE

    Kauer-SantAnna,Márcia; Lavinsky,Michelle; Aguiar,Rogério Wolf de; Kapczinski,Flávio

    2002-01-01

    Os autores descrevem o papel do sistema dopaminérgico na fobia social. Evidências que indicam disfunção dopaminérgica são descritas, e o papel da dopamina como um regulador da atividade social é discutido.

  5. O papel do sistema dopaminérgico na fobia social

    Directory of Open Access Journals (Sweden)

    Kauer-SantAnna Márcia

    2002-01-01

    Full Text Available Os autores descrevem o papel do sistema dopaminérgico na fobia social. Evidências que indicam disfunção dopaminérgica são descritas, e o papel da dopamina como um regulador da atividade social é discutido.

  6. Locally formed dopamine inhibits Na+-K+-ATPase activity in rat renal cortical tubule cells

    International Nuclear Information System (INIS)

    Seri, I.; Kone, B.C.; Gullans, S.R.; Aperia, A.; Brenner, B.M.; Ballermann, B.J.

    1988-01-01

    Dopamine, generated locally from L-dopa, inhibits Na + -K + -ATPase in permeabilized rat proximal tubules under maximum transport rate conditions for sodium. To determine whether locally formed dopamine inhibits Na + -K + -ATPase activity in intact cortical tubule cells we studied the effect of L-dopa on ouabain-sensitive oxygen consumption rate (Qo 2 ) and 86 Rb uptake in renal cortical tubule cell suspensions. L-Dopa did not affect ouabain-insensitive Qo 2 or mitochondrial respiration. However, L-dopa inhibited ouabain-sensitive Qo 2 in a concentration-dependent manner, with half-maximal inhibition (K 0.5 ) of 5 x 10 -7 M and a maximal inhibition of 14.1 ± 1.5% at 10 -4 M. L-Dopa also blunted the nystatin-stimulated Qo 2 in a concentration-dependent manner, indicating the L-dopa directly inhibits Na + -K + -ATPase activity and not sodium entry. Ouabain-sensitive 86 Rb uptake was also inhibited by L-dopa. Carbidopa, an inhibitor of the conversion of L-dopa to dopamine, eliminated the effect of L-dopa on ouabain-sensitive Qo 2 and 86 Rb uptake, indicating that dopamine rather than L-dopa was the active agent. The finding that the L-dopa concentration-response curve was shifted to the left by one order of magnitude in the presence of nystatin suggests that the inhibitory effect is enhanced when the intracellular sodium concentration is increased. By studying the effect of L-dopa on ouabain-sensitive Qo 2 at increasing extracellular sodium concentrations in the presence of nystatin, the authors demonstrated that the inhibitory effect of locally formed dopamine on the Na + -K + -ATPase is indeed dependent on the sodium available for the enzyme and occurs in an uncompetitive manner

  7. Locally formed dopamine inhibits Na sup + -K sup + -ATPase activity in rat renal cortical tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Seri, I.; Kone, B.C.; Gullans, S.R.; Aperia, A.; Brenner, B.M.; Ballermann, B.J. (Harvard Medical School, Boston, MA (USA) Karolinska Institute, Stockholm (Sweden))

    1988-10-01

    Dopamine, generated locally from L-dopa, inhibits Na{sup +}-K{sup +}-ATPase in permeabilized rat proximal tubules under maximum transport rate conditions for sodium. To determine whether locally formed dopamine inhibits Na{sup +}-K{sup +}-ATPase activity in intact cortical tubule cells we studied the effect of L-dopa on ouabain-sensitive oxygen consumption rate ({dot Q}o{sub 2}) and {sup 86}Rb uptake in renal cortical tubule cell suspensions. L-Dopa did not affect ouabain-insensitive {dot Q}o{sub 2} or mitochondrial respiration. However, L-dopa inhibited ouabain-sensitive {dot Q}o{sub 2} in a concentration-dependent manner, with half-maximal inhibition (K{sub 0.5}) of 5 {times} 10{sup {minus}7} M and a maximal inhibition of 14.1 {plus minus} 1.5% at 10{sup {minus}4}M. L-Dopa also blunted the nystatin-stimulated {dot Q}o{sub 2} in a concentration-dependent manner, indicating the L-dopa directly inhibits Na{sup +}-K{sup +}-ATPase activity and not sodium entry. Ouabain-sensitive {sup 86}Rb uptake was also inhibited by L-dopa. Carbidopa, an inhibitor of the conversion of L-dopa to dopamine, eliminated the effect of L-dopa on ouabain-sensitive {dot Q}o{sub 2} and {sup 86}Rb uptake, indicating that dopamine rather than L-dopa was the active agent. The finding that the L-dopa concentration-response curve was shifted to the left by one order of magnitude in the presence of nystatin suggests that the inhibitory effect is enhanced when the intracellular sodium concentration is increased. By studying the effect of L-dopa on ouabain-sensitive {dot Q}o{sub 2} at increasing extracellular sodium concentrations in the presence of nystatin, the authors demonstrated that the inhibitory effect of locally formed dopamine on the Na{sup +}-K{sup +}-ATPase is indeed dependent on the sodium available for the enzyme and occurs in an uncompetitive manner.

  8. Dopamine hypothesis of mania

    OpenAIRE

    Cookson, John

    2014-01-01

    s­of­the­Speakers­/­Konuşmacı­leriThe discovery of dopamine and its pathwaysDopamine (DA) was first synthesized in 1910 from 3,4-dihydroxy phenyl alanine (DOPA) by Barger and Ewens at Wellcome Laboratories in London. It is a cathecholamine and in the 1940s Blaschko in Cambridge proposed that DA was a precursor in synthesis of the cat-echolamine neurotransmitters noradrenaline (norepinephrine) and adrenaline (epinephrine). In 1957 it was shown to be present in the brain with other catecholamin...

  9. Noradrenaline and isoproterenol kinetics in diabetic patients with and without autonomic neuropathy

    DEFF Research Database (Denmark)

    Dejgaard, Anders; Hilsted, J; Christensen, N J

    1986-01-01

    Noradrenaline and isoproterenol kinetics using intravenous infusion of L-3H-NA and of 3H-isoproterenol were investigated in eight Type 1 (insulin-dependent) diabetic patients without neuropathy and in eight Type 1 diabetic patients with autonomic neuropathy matched for age, sex and duration...... with autonomic failure (p less than 0.01). The disappearance of L-3H-noradrenaline from plasma after the infusion of L-3H-noradrenaline had been stopped was not different in patients with and without neuropathy. The metabolic clearance of isoproterenol was not influenced by the presence of autonomic failure...

  10. Effect of noradrenaline on production of methoxyindoles by rat pineal gland in organ culture

    International Nuclear Information System (INIS)

    Morton, D.J.

    1987-01-01

    This report examined the effect of noradrenaline on production of methoxyindoles by the pineal gland in organ culture. Pineal glands were incubated in pairs in 95μl culture medium containing 5-hydroxy [2- 14 C]tryptamine creatinine sulphate (0,1 mM) and noradrenaline (NA) (0,5-100 μM). The results indicated that noradrenaline appeared to have a characteristic action on pineal metabolism. An increase in production of both N-acetylserotonin and melatonin by the pineal after noradrenaline treatment was observed. The overall production of methoxyindoles followed a very similar trend to that of N-acetylserotonin and melatonin, which suggests some degree of noradrenergic control over HIOMT levels

  11. [Presence of conjugated noradrenaline in the walls of the nest of Vespula germanica Linné].

    Science.gov (United States)

    Lecomte, J; Bourdon, V; Damas, J; Leclercq, M; Leclercq, J

    1976-01-01

    Conjugated noradrenaline (NA) has been identified as a constituant of the walls of a Vespid wasp: Vespula germanica Linne. Concentrations range between 1,8 mug/g (external wall) and 18 mug/g (internal structure). Probably NA originates from the saliva of the Hymenoptera.

  12. Voltage-dependent neuromodulation of Na+ channels by D1-like dopamine receptors in rat hippocampal neurons.

    Science.gov (United States)

    Cantrell, A R; Scheuer, T; Catterall, W A

    1999-07-01

    Activation of D1-like dopamine (DA) receptors reduces peak Na+ current in acutely isolated hippocampal neurons through phosphorylation of the alpha subunit of the Na+ channel by cAMP-dependent protein kinase (PKA). Here we report that neuromodulation of Na+ currents by DA receptors via PKA is voltage-dependent in the range of -110 to -70 mV and is also sensitive to concurrent activation of protein kinase C (PKC). Depolarization enhanced the ability of D1-like DA receptors to reduce peak Na+ currents via the PKA pathway. Similar voltage-dependent modulation was observed when PKA was activated directly with the membrane-permeant PKA activator DCl-cBIMPS (cBIMPS; 20 microM), indicating that the membrane potential dependence occurs downstream of PKA. PKA activation caused only a small (-2.9 mV) shift in the voltage dependence of steady-state inactivation and had no effect on slow inactivation or on the rates of entry into the fast or slow inactivated states, suggesting that another mechanism is responsible for coupling of membrane potential changes to PKA modulation. Activation of PKC with a low concentration of the membrane-permeant diacylglycerol analog oleylacetyl glycerol also potentiated modulation by SKF 81297 or cBIMPS, and these effects were most striking at hyperpolarized membrane potentials where PKA modulation was not stimulated by membrane depolarization. Thus, activation of D1-like DA receptors causes a strong reduction in Na+ current via the PKA pathway, but it is effective primarily when it is combined with depolarization or activation of PKC. The convergence of these three distinct signaling modalities on the Na+ channel provides an intriguing mechanism for integration of information from multiple signaling pathways in the hippocampus and CNS.

  13. D1-like dopamine receptors downregulate Na+-K+-ATPase activity and increase cAMP production in the posterior gills of the blue crab Callinectes sapidus.

    Science.gov (United States)

    Arnaldo, Francis B; Villar, Van Anthony M; Konkalmatt, Prasad R; Owens, Shaun A; Asico, Laureano D; Jones, John E; Yang, Jian; Lovett, Donald L; Armando, Ines; Jose, Pedro A; Concepcion, Gisela P

    2014-09-15

    Dopamine-mediated regulation of Na(+)-K(+)-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na(+)-K(+)-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1βR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1βR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na(+)-K(+)-ATPase and D1βR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na(+)-K(+)-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na(+)-K(+)-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na(+)-K(+)-ATPase activity by itself. Fenoldopam minimally decreased D1βR protein expression (10%) but did not affect Na(+)-K(+)-ATPase α-subunit protein expression. This study shows the presence of functional D1βR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis. Copyright © 2014 the American Physiological Society.

  14. Predicting treatment response from dopamine D2/3 receptor bnding potential? - A study in antipsychotic-naïve patients with schizophrenia

    DEFF Research Database (Denmark)

    Wulff, Sanne; Pinborg, Lars Hageman; Svarer, Claus

    of antipsychotic compounds on the positive symptoms. Furthermore, blockade of striatal dopamine D2 receptors have in studies shown to associate negatively with subjective well-being. Our main aim was to explore a possible predictive value of striatal dopamine D2/3 receptor binding potential (BPp) for treatment...... of 29 antipsychotic-naïve patients with schizophrenia and 26 matched healthy controls, SPECT with [123l]-IBZM was used to examine the BPP of striatal dopamine D2/3 receptors. The participants were examined at baseline and after 6 weeks of treatment with a selective D2/3 receptor antagonist, amisulpride....... Results: We found a significant inverse correlation between the striatal BPp at baseline and improvement of positive symptoms (p=0.046; R squared = 0.152) after six weeks of treatment with amisulpride. There was no association between the blockade of the D2/3 receptors and improvement of positive symptoms...

  15. The dopamine beta-hydroxylase inhibitor nepicastat increases dopamine release and potentiates psychostimulant-induced dopamine release in the prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Bini, Valentina; Gessa, Gian Luigi

    2014-07-01

    The dopamine-beta-hydroxylase inhibitor nepicastat has been shown to reproduce disulfiram ability to suppress the reinstatement of cocaine seeking after extinction in rats. To clarify its mechanism of action, we examined the effect of nepicastat, given alone or in association with cocaine or amphetamine, on catecholamine release in the medial prefrontal cortex and the nucleus accumbens, two key regions involved in the reinforcing and motivational effects of cocaine and in the reinstatement of cocaine seeking. Nepicastat effect on catecholamines was evaluated by microdialysis in freely moving rats. Nepicastat reduced noradrenaline release both in the medial prefrontal cortex and in the nucleus accumbens, and increased dopamine release in the medial prefrontal cortex but not in the nucleus accumbens. Moreover, nepicastat markedly potentiated cocaine- and amphetamine-induced extracellular dopamine accumulation in the medial prefrontal cortex but not in the nucleus accumbens. Extracellular dopamine accumulation produced by nepicastat alone or by its combination with cocaine or amphetamine was suppressed by the α2 -adrenoceptor agonist clonidine. It is suggested that nepicastat, by suppressing noradrenaline synthesis and release, eliminated the α2 -adrenoceptor mediated inhibitory mechanism that constrains dopamine release and cocaine- and amphetamine-induced dopamine release from noradrenaline or dopamine terminals in the medial prefrontal cortex. © 2012 The Authors, Addiction Biology © 2012 Society for the Study of Addiction.

  16. Dopamine beta-hydroxylase deficiency

    Directory of Open Access Journals (Sweden)

    Senard Jean-Michel

    2006-03-01

    Full Text Available Abstract Dopamine beta-hydroxylase (DβH deficiency is a very rare form of primary autonomic failure characterized by a complete absence of noradrenaline and adrenaline in plasma together with increased dopamine plasma levels. The prevalence of DβH deficiency is unknown. Only a limited number of cases with this disease have been reported. DβH deficiency is mainly characterized by cardiovascular disorders and severe orthostatic hypotension. First symptoms often start during a complicated perinatal period with hypotension, muscle hypotonia, hypothermia and hypoglycemia. Children with DβH deficiency exhibit reduced ability to exercise because of blood pressure inadaptation with exertion and syncope. Symptoms usually worsen progressively during late adolescence and early adulthood with severe orthostatic hypotension, eyelid ptosis, nasal stuffiness and sexual disorders. Limitation in standing tolerance, limited ability to exercise and traumatic morbidity related to falls and syncope may represent later evolution. The syndrome is caused by heterogeneous molecular alterations of the DBH gene and is inherited in an autosomal recessive manner. Restoration of plasma noradrenaline to the normal range can be achieved by therapy with the synthetic precursor of noradrenaline, L-threo-dihydroxyphenylserine (DOPS. Oral administration of 100 to 500 mg DOPS, twice or three times daily, increases blood pressure and reverses the orthostatic intolerance.

  17. [The effect of prolonged treatment of hypertensive rats with antihypertensive drugs of various actions on the arterial tension and noradrenaline level in the myocardium, brain and aortal].

    Science.gov (United States)

    Kiriakov, A; Khlebarova, M; Staneva-stoicheva, D; Panova, I

    1975-01-01

    The authors examined the changes in arterial blood pressure and the content of Noradrenaline in the myocardium, brain and aorta of rats with hypertension due to nephrectomy and treatment with desoxycorticosterone and NaCl, and after a chronic 6-month treatment of hypertension with various antihypertensive means. The most significant reduction of noradrenaline in the three of the examined tissues was found in rats, which received dic. sulfyram (100 mg/kg per os). Clondine (10 mkg/kg, per os) manifested the strongest hypotensive effect and lowered the level of noradrenaline in the myocardium, while it was raised in the aorta. Reserpine (10 mkg/kg, s. c) induced a clear reduction of Noradrenaline content in the brain, but an increase in the other two tissues. Insignificant hypotensive effect was observed in animals, treated with guanetidine (0.5 mg/kg, per os), which did not affect substantially noradrenaline in the examined organs. The increase of noradrenaline level was established in the three of the organs of animals, treated with alpha-methyl-DOFA (25 mg/kg, per os). Furosemide (1 mg/kg, s.c.) induced a statistically significant elevation of noradrenaline in the aorta, but was noneffective to noradrenaline in the myocardium and brain.

  18. Noradrenaline and adrenaline concentrations in various vascular beds in patients with cirrhosis. Relation to haemodynamics

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Christensen, N J; Ring-Larsen, H

    1981-01-01

    indicates that sympathetic nervous activity is enhanced in patients with cirrhosis. Based on the above positive correlation between NA and heart rate and the significant release of NA from the kidney, it may be hypothesized that the increased sympathetic nervous activity especially involves heart and kidney......Plasma noradrenaline (NA) and adrenaline (A) concentrations were related to various haemodynamic parameters in fifteen patients with cirrhosis. In supine position at rest plasma NA and A in peripheral venous blood were significantly higher in patients with cirrhosis than in normal subjects. Mean...

  19. Noradrenaline spillover during exercise in active versus resting skeletal muscle in man

    DEFF Research Database (Denmark)

    Savard, G; Strange, S; Kiens, Bente

    1987-01-01

    Increases in plasma noradrenaline (NA) concentration occur during moderate to heavy exercise in man. This study was undertaken to examine the spillover of NA from both resting and contracting skeletal muscle during exercise. Six male subjects performed one-legged knee-extension so that all...... in the exercising leg than in the resting leg both during 50% and 100% leg exercise. These results suggest that contracting skeletal muscle may contribute to a larger extent than resting skeletal muscle to increasing the level of plasma NA during exercise. Contractile activity may influence the NA spillover from...

  20. CFTR mediates noradrenaline-induced ATP efflux from DRG neurons.

    Science.gov (United States)

    Kanno, Takeshi; Nishizaki, Tomoyuki

    2011-09-24

    In our earlier study, noradrenaline (NA) stimulated ATP release from dorsal root ganglion (DRG) neurons as mediated via β(3) adrenoceptors linked to G(s) protein involving protein kinase A (PKA) activation, to cause allodynia. The present study was conducted to understand how ATP is released from DRG neurons. In an outside-out patch-clamp configuration from acutely dissociated rat DRG neurons, single-channel currents, sensitive to the P2X receptor inhibitor PPADS, were evoked by approaching the patch-electrode tip close to a neuron, indicating that ATP is released from DRG neurons, to activate P2X receptor. NA increased the frequency of the single-channel events, but such NA effect was not found for DRG neurons transfected with the siRNA to silence the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In the immunocytochemical study using acutely dissociated rat DRG cells, CFTR was expressed in neurons alone, but not satellite cells, fibroblasts, or Schwann cells. It is concluded from these results that CFTR mediates NA-induced ATP efflux from DRG neurons as an ATP channel.

  1. Food-dependent exercise-induced anaphylaxis with a high level of plasma noradrenaline.

    Science.gov (United States)

    Kato, Yukihiko; Nagai, Ayako; Saito, Masuyoshi; Ito, Tomonobu; Koga, Michiyuki; Tsuboi, Ryoji

    2007-02-01

    Ingesting certain foods sometimes triggers anaphylaxis when followed by exercise (food-dependent exercise-induced anaphylaxis, FDEIA). Specific food-induced mucocutaneous urticaria may also progress to anaphylaxis (oral allergy syndrome, OAS). A positive skin test and/or radioallergosorbent test (RAST) to the foods suggest involvement of immunoglobulin (Ig)E-anaphylaxis in both disorders. The triggering foods and initial target organs are usually different in each case. In the present study, a 32-year-old male reported dyspnea accompanied by wheals, and symptoms of low blood pressure while walking after eating Chinese noodles and donuts. He also reported uncomfortable sensations in his mouth and throat after ingesting melon. Exercise challenge tests were administered. Serum histamine, plasma adrenaline, noradrenaline and dopamine were measured pre- and post-test. No symptoms were induced by exercise or by the ingestion of any single food item before exercise. However, numerous wheals appeared when exercise followed the combined ingestion of foods. Likewise, the sequence of eating pancakes and then exercising resulted in numerous wheals and anaphylaxis. Olopatadine hydrochloride and ketotifen fumarate completely inhibited this anaphylaxis. The skin prick tests resulted in fruit-induced erythema and wheals. The results of these tests with wheat, butter and sugar were negative, and no symptoms were induced by the exercise test after ingestion of watermelon, melon or apple. The anaphylactoid symptoms were accompanied by a significant increase of plasma noradrenaline. In this case, not only wheat, but sugar and butter may induce the onset of FDEIA. There was no significant correlation between the intensity of the symptoms and the serum histamine levels in the present case. Noradrenaline may be involved in the onset of FDEIA, since noradrenaline may selectively inhibit T-helper (Th)1 functions while favoring Th2 responses. The tests showed no cross-reactivity between the

  2. Importancia dopaminérgica en farmacodinamia de cocaína evaluada por alteraciones de GABA y glutamato en el núcleo accumbens de ratas

    Directory of Open Access Journals (Sweden)

    Edgar A. Gélvez

    1996-06-01

    Full Text Available Este trabajo se propuso demostrar la importancia del sistema dopaminérgico en la farmacodinamia de cocaína en el SNC de ratas. Este postulado se verificó evaluando las alteraciones de GABA y glutamato en el núcleo accumbens. Este enfoque se sustenta en la gran cantidad de evidencias que muestran, consistentemente alteraciones en la actividad dopaminérgica por cocaína. Además, el GABA y el glutamato tienen gran importancia en los efectos agudos y crónicos por cocaína. Es bien conocida la interrelación de GABA y glutamato con la actividad dopaminérgica en el núcleo accumbens. Se diseñó un estudio por 16 días de administración de cocaína a ratas a la dosis inicial de 30 mglkgldía (IP con incremento de 5 mglkg cada 4 días, a las cuales se les había lesionado la actividad dopaminérgica en el núcleo accumbens con la neurotoxina 6- hidroxidopamina en ácido ascórbico. Además, se conformó un grupo basal que recibió estereotáxicamante, en el núcleo accumbens, ácido ascórbico en solución salina 0,9% y se trató con un volumen correspondiente de solución salina (IP y, un grupo control, al cual estereotáxicamente, en el núcleo mencionado, se le administró 6-OHDA (en ácido ascórbico, recibiendo posteriormente como tratamiento solución salina (IP. La determinación de los niveles de GABA y glutamato se realizó por métodos enzimáticos. Se observó que la administración crónica de cocaína produce una disminución significativa en el nivel de GABA en el núcleo accumbens del grupo problema, con relación a los grupos basal y control. En tanto, el nivel de glutamato en el grupo problema mostró un incremento significativo con relación al grupo basal, pero, no con relación al grupo control. En conclusión, los resultados de este trabajo sostienen la hipótesis del papel importante que tiene la dopamina en la farmacoterapia de cocaína a través de las alteraciones en los niveles de GABA y glutamato o alteraciones en

  3. Rotational Spectra of Adrenaline and Noradrenaline

    Science.gov (United States)

    Cortijo, V.; López, J. C.; Alonso, J. L.

    2009-06-01

    The emergence of Laser Ablation Molecular Beam Fourier Transform Microwave (LA-MB-FTMW) spectroscopy has rendered accessible the gas-phase study of solid biomolecules with high melting points. Among the biomolecules to benefit from this technique, neurotransmitters have received special attention due to the lack of experimental information and their biological relevance. As a continuation of the we present the study of adrenaline and noradrenaline. The comparison between the experimental rotational and ^{14}N nuclear quadrupole coupling constants and those calculated ab initio provide a definitive test for molecular structures and confirm unambiguously the identification of four conformers of adrenaline and three conformers of noradrenaline. Their relative population in the jet has been evaluated by relative intensity measurements of selected rotational transitions. The most abundant conformer in both neurotransmitters present an extended AG configuration with a O-H\\cdotsN hydrogen bond in the side chain. J.L. Alonso, M.E. Sanz, J.C. López and V. Cortijo, J. Am. Chem. Soc. (in press), 2009

  4. The involvement of dopaminergic system on LH secretion Nelore heifers Sistema dopaminérgico na secreção de LH de novilhas Nelore

    Directory of Open Access Journals (Sweden)

    Silvia Helena Venturoli Perri

    2009-12-01

    Full Text Available The aim of this study was to evaluate the response of sulpiride administration (dopamine D2 antagonist, 0.59 m/kg body weight, s.c. and blood collected every 15 min for 10 h thereafter on Luteinizing Hormone (LH secretion in B. indicus pre-pubertal heifers at 8, 12 and 16 month of age. LH was quantified by RIA, sensitivity (0.039 ng/ml and CV (15.51%. In heifers given sulpiride treatment didn’t differ (P≥0.05 in LH concentration, total secretion area, peak total area, number of peaks, area of highest secretion peak and time to highest peak occurrence and maximum LH secretion, from control group. The results suggest absence of dopamine D2 antagonist effect on LH secretion in pre-pubertal Nellore heifers, didn’t neurotransmitter participating on sexual maturation.O presente trabalho foi realizado com o objetivo de investigar a variação na secreção do Hormônio Luteinizante (LH em resposta ao tratamento com sulpiride, antagonista de receptor (D2 dopaminérgico, com administração de 0,59mg/kg, s.c. e colheita de amostras de sangue a cada 15min, por 10h. Foram utilizadas 10 novilhas da raça Nelore pré-púberes, aos 8, 12 e 16 meses de idade. A concentração de LH foi quantificada por radioimunoensaio, e o coeficiente de variação intra, o interensaio e a sensibilidade dos ensaios de LH foram respectivamente de: 11,86%; 15,51%; 0,039ng/mL. O tratamento com sulpiride não diferiu na concentração média de LH, área total de secreção de LH e picos, número de picos, área do maior pico, tempo necessário ao aparecimento do maior pico de secreção de LH e amplitude máxima de LH, em comparação ao grupo controle. Os resultados indicam ausência de efeito da dopamina, através de receptores D2, durante a fase pré-púbere, em novilhas da raça Nelore, o que sinaliza a não participação como neurotransmissora na secreção de LH durante o processo de maturação sexual.

  5. Dopamine-induced apoptosis in human neuronal cells: inhibition by nucleic acides antisense to the dopamine transporter

    International Nuclear Information System (INIS)

    Porat, S.; Gabbay, M.; Tauber, M.; Ratovitski, T.; Blinder, E.; Simantov, R.

    1996-01-01

    Human neuroblastoma NMB cells take up [ 3 H]dopamine in a selective manner indicating that dopamine transporters are responsible for this uptake. These cells were therefore used as a model to study dopamine neurotoxicity, and to elucidate the role of dopamine transporters in controlling cell death. Treatment with 0.05-0.4 mM dopamine changed cells' morphology within 4 h, accompanied by retraction of processes, shrinkage, apoptosis-like atrophy, accumulation of apoptotic particles, DNA fragmentation and cell death. Cycloheximide inhibited dopamine's effect, suggesting that induction of apoptosis by dopamine was dependent upon protein synthesis. Dopamine cytotoxicity, monitored morphologically by flow cytometric analysis, and by lactate dehydrogenase released, was blocked by cocaine but not by the noradrenaline and serotonin uptake blockers desimipramine and imipramine, respectively. Attempting to inhibit dopamine transport and toxicity in a drug-free and highly selective way, three 18-mer dopamine transporter antisense phosphorothioate oligonucleotides (numbers 1, 2 and 3) and a new plasmid vector expressing the entire rat dopamine transporter complementary DNA in the antisense orientation were prepared and tested. Antisense phosphorothioate oligonucleotide 3 inhibited [ 3 H]dopamine uptake in a time- and dose-dependent manner. Likewise, transient transfection of NMB cells with the plasmid expressing dopamine transporter complementary DNA in the antisense orientation partially blocked [ 3 H]dopamine uptake. Antisense phosphorothioate oligonucleotide 3 also decreased, dose-dependently, the toxic effect of dopamine and 6-hydroxydopamine. Western blot analysis with newly prepared anti-human dopamine transporter antibodies showed that antisense phosphorothioate oligonucleotide 3 decreased the transporter protein level. These studies contribute to better understand the mechanism of dopamine-induced apoptosis and neurotoxicity. (Copyright (c) 1996 Elsevier Science B

  6. Utilização do agonista dopaminérgico pergolida no tratamento da "fissura" por cocaína

    Directory of Open Access Journals (Sweden)

    Focchi Guilherme R de Azevedo

    2001-01-01

    Full Text Available OBJETIVOS: O estudo avaliou a eficácia e a segurança terapêutica do agonista dopaminérgico pergolida no tratamento ambulatorial da ''fissura" por cocaína. MÉTODOS: Participaram de estudo controlado simples-cego, com duração de quatro semanas, em tratamento ambulatorial, 42 pacientes do sexo masculino com idade entre 18 e 50 anos, com diagnóstico de dependência de cocaína pelo DSM-IV e primeiro grau completo. Transtornos clínicos e/ou psiquiátricos que necessitassem de internação, uso de medicação psiquiátrica, quadros psicóticos prévios independentes do consumo de cocaína e hipersensibilidade à pergolida foram critérios de exclusão. Os pacientes foram divididos aleatoriamente em dois grupos: o primeiro recebeu pergolida (0,05-0,2 mg ao dia, e o segundo, placebo (1 a 4 comprimidos ao dia. Os grupos foram comparados quanto à ''fissura'' por cocaína e aos efeitos colaterais das medicações. RESULTADOS: Não foram encontradas diferenças estatisticamente significativas entre os dois grupos em relação à incidência de efeitos colaterais ou ao relato da redução da ''fissura'' por cocaína. CONCLUSÃO: A amostra pequena e o uso de medicação por tempo curto podem ter influído nos resultados. A pergolida se mostrou segura, com poucos efeitos colaterais. A pergolida não se mostrou superior ao placebo no tratamento da "fissura" por cocaína.

  7. Effect of the dopamine D1-like receptor antagonist SCH 23390 on the microstructure of ingestive behaviour in water-deprived rats licking for water and NaCl solutions.

    Science.gov (United States)

    Galistu, Adriana; D'Aquila, Paolo S

    2012-01-18

    The analysis of licking microstructure provides measures, size and number of licking bouts, which might reveal, respectively, reward evaluation and behavioural activation. Based on the different effects of the dopamine D1-like and D2-like receptor antagonists SCH 23390 and raclopride on licking for sucrose, in particular the failure of the former to reduce bout size and the ability of the latter to induce a within-session decrement of bout number resembling either reward devaluation or neuroleptics on instrumental responding, we suggested that activation of reward-associated responses depends on dopamine D1-like receptor stimulation, and its level is updated on the basis of a dopamine D2-like receptor-mediated reward evaluation. Consistent results were obtained in a study examining the effect of dopamine D2-like receptor antagonism in rats licking for NaCl solutions and water. In this study, we examined the effects of the dopamine D1-like receptor antagonist SCH 23390 (0, 10, 20 and 40 μg/kg) on the microstructure of licking for water and sodium chloride solutions (0.075 M, 0.15 M, 0.3 M) in 12 h water deprived rats. Rats were exposed to each solution for 60 s either after the first lick or after 3 min that the animals were placed in the chambers. Bout size, but not bout number, was decreased at the highest NaCl concentration. SCH 23390 produced a decrease of bout number and of lick number mainly due to the decreased number of subjects engaging in licking behaviour, and failed to reduce bout size for Na Cl and water at a dose which increased the latency to the 1st lick but did not affect the intra-bout lick rate. In agreement with previous observations, these results suggest that dopamine D1-like receptors play an important role in the activation of reward-oriented responses. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Ca2+ influx insensitive to organic Ca2+ entry blockers contributes to noradrenaline-induced contractions of the isolated guinea pig aorta

    NARCIS (Netherlands)

    Gouw, M. A.; Wilffert, B.; Wermelskirchen, D.; van Zwieten, P. A.

    1990-01-01

    We determined the contribution of intracellular Ca2+ to the noradrenaline (NA, 3 X 10(-5) mmol/l)-induced contraction of the isolated guinea pig aorta. Since only about 55% of the NA-induced contraction could be attributed to intracellular Ca2+ release, we assumed that a Ca2+ influx component

  9. Ca2+influx insensitive to organic Ca2+entry blockers contributes to noradrenaline-induced contractions of the isolated guinea pig aorta

    NARCIS (Netherlands)

    Gouw, M.A.M.; Wilffert, B.; Wermelskirchen, D.; Van Zwieten, P.A.

    1990-01-01

    We determined the contribution of intracellular Ca2+to the noradrenaline (NA, 3 x 10-5mmol/l)-induced contraction of the isolated guinea pig aorta. Since only about 55% of the NA-induced contraction could be attributed to intracellular Ca2+release, we assumed that a Ca2+influx component contributes

  10. Stereoselectivity of the distribution of labelled noradrenaline in rabbit aortic strips after inhibition of the noradrenaline-metabolizing enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Eckert, E; Henseling, M; Gescher, A; Trendelenburg, U [Wuerzburg Univ. (Germany, F.R.). Inst. fuer Pharmakologie und Toxikologie

    1976-01-01

    Rabbit aortic strips (nerve-free, reserpinepretreated or normal) whose noradrenaline-metabolizing enzymes were inhibited (by in vitro treatment with 0.5 mM pargyline for 30 min and by the presence of 0.1 mM U-0521) were exposed to 1.18 ..mu..M labelled (-)- or (+)noradrenaline for 30 min. At the end of the incubation period some strips were used for analysis of radioactivity (i.e., of noradrenaline and its metabolites), while for others the efflux of radioactivity was determined during 250 min of washout with amine-free solution. An estimate of the original distribution of the amine into the various extraneuronal and neuronal compartments of the tissue was obtained by compartmental analysis of the efflux curves. The mechanisms responsible for the accumulation of radioactivity in extraneuronal and axoplasmic compartments lack stereoselectivity; the rate constants for the efflux of radioactivity from these compartments are the same for (-)- and (+)noradrenaline. Despite the use of enzyme inhibitors, the 'late neuronal efflux' of radioactivity (i.e., the efflux collected between the 200th and 250th min of wash out) contained a considerable proportion of metabolites of noradrenaline. The metabolism of noradrenaline was stereoselective: while dihydroxyphenylglycol (DOPEG) was the predominant metabolite in the efflux from strips incubated with (-)noradrenaline, a considerable part of the efflux from strips incubated with the (+)isomer consisted of dihydroxymandelic acid and 'O-methylated and deaminated' metabolites (in addition to DOPEG).

  11. Stereoselectivity of the distribution of labelled noradrenaline in rabbit aortic strips after inhibition of the noradrenaline-metabolizing enzymes

    International Nuclear Information System (INIS)

    Eckert, E.; Henseling, M.; Gescher, A.; Trendelenburg, U.

    1976-01-01

    Rabbit aortic strips (nerve-free, reserpinepretreated or normal) whose noradrenaline-metabolizing enzymes were inhibited (by in vitro treatment with 0.5 mM pargyline for 30 min and by the presence of 0.1 mM U-0521) were exposed to 1.18 μM labelled (-)- or (+)noradrenaline for 30 min. At the end of the incubation period some strips were used for analysis of radioactivity (i.e., of noradrenaline and its metabolites), while for others the efflux of radioactivity was determined during 250 min of washout with amine-free solution. An estimate of the original distribution of the amine into the various extraneuronal and neuronal compartments of the tissue was obtained by compartmental analysis of the efflux curves. The mechanisms responsible for the accumulation of radioactivity in extraneuronal and axoplasmic compartments lack stereoselectivity; the rate constants for the efflux of radioactivity from these compartments are the same for (-)- and (+)noradrenaline. Despite the use of enzyme inhibitors, the 'late neuronal efflux' of radioactivity (i.e., the efflux collected between the 200th and 250th min of wash out) contained a considerable proportion of metabolites of noradrenaline. The metabolism of noradrenaline was stereoselective: while dihydroxyphenylglycol (DOPEG) was the predominant metabolite in the efflux from strips incubated with (-)noradrenaline, a considerable part of the efflux from strips incubated with the (+)isomer consisted of dihydroxymandelic acid and 'O-methylated and deaminated' metabolites (in addition to DOPEG). (orig/GSE) [de

  12. The distribution of 3H-(+-)noradrenaline in rabbit aortic strips after inhibition of the noradrenaline-metabolizing enzymes

    International Nuclear Information System (INIS)

    Henseling, M.; Eckert, E.; Trendelenburg, U.

    1976-01-01

    Rabbit aortic strips (nerve-free, reserpine pretreated or normal) whose noradrenaline-metabolizing enzymes were inhibited (by in vitro treatment with 0.5 mM pargyline for 30 min and by the presence of 0.1 mM U-0521) were exposed to 1.18 μM 3 H-(+-)noradrenaline for 30 min (in most experiments). At the end of the incubation some strips were used for anlysis of radioactivity (i.e., of noradrenaline and its metabolites), while for others the efflux of radioactivity was determined during 240 min of wash out with amine-free solution. An estimate of the original distribution of the amine into the various extraneuronal and neuronal compartments of the tissue was obtained by compartmental analysis of the efflux curves. Extracellular amine distributes into 'compartment I + II' (characterized by a half time for efflux of 14 C-sorbitol. The extraneuronal accumulation of noradrenaline is a quickly equilibrating process which involves compartments III and IV (with half times for efflux of 3 and 11 min, respectively). Compartment IV represents not only extraneuronally but also neuronally distributed noradrenaline. The neuronal accumulation of noradrenaline is a slowly equilibrating process which can be subdivided into axoplasmic and vesicular accumulation. The results support the view that the rate of relaxation (of strips initially exposed to noradrenaline and then washed out) is affected by the efflux of unchanged amine form extraneuronal and neuronal stores. (orig./GSE) [de

  13. Leptin inhibits and ghrelin augments hypothalamic noradrenaline release after stress.

    Science.gov (United States)

    Kawakami, Akio; Okada, Nobukazu; Rokkaku, Kumiko; Honda, Kazufumi; Ishibashi, Shun; Onaka, Tatsushi

    2008-09-01

    Metabolic conditions affect hypothalamo-pituitary-adrenal responses to stressful stimuli. Here we examined effects of food deprivation, leptin and ghrelin upon noradrenaline release in the hypothalamic paraventricular nucleus (PVN) and plasma adrenocorticotropic hormone (ACTH) concentrations after stressful stimuli. Food deprivation augmented both noradrenaline release in the PVN and the increase in plasma ACTH concentration following electrical footshocks (FSs). An intracerebroventricular injection of leptin attenuated the increases in hypothalamic noradrenaline release and plasma ACTH concentrations after FSs, while ghrelin augmented these responses. These data suggest that leptin inhibits and ghrelin facilitates neuroendocrine stress responses via noradrenaline release and indicate that a decrease in leptin and an increase in ghrelin release after food deprivation might contribute to augmentation of stress-induced ACTH release in a fasting state.

  14. Lead-Induced Atypical Parkinsonism in Rats: Behavioral, Electrophysiological, and Neurochemical Evidence for a Role of Noradrenaline Depletion

    Directory of Open Access Journals (Sweden)

    Mariam Sabbar

    2018-03-01

    Full Text Available Background: Lead neurotoxicity is a major health problem known as a risk factor for neurodegenerative diseases, including the manifestation of parkinsonism-like disorder. While lead is known to preferentially accumulate in basal ganglia, the mechanisms underlying behavioral disorders remain unknown. Here, we investigated the neurophysiological and biochemical correlates of motor deficits induced by sub-chronic injections of lead.Methods: Sprague Dawely rats were exposed to sub-chronic injections of lead (10 mg/kg, i.p. or to a single i.p. injection of 50 mg/kg N-(2-chloroethyl-N-ethyl-2-bromobenzylamine hydrochloride (DSP-4, a drug known to induce selective depletion of noradrenaline. Rats were submitted to a battery of behavioral tests, including the open field for locomotor activity and rotarod for motor coordination. Electrophysiological recordings were carried out in three major basal ganglia nuclei, the subthalamic nucleus (STN, globus pallidus (GP, and substantia nigra pars reticulata (SNr. At the end of experiments, post-mortem tissue level of the three monoamines (dopamine, noradrenaline, and serotonin and their metabolites has been determined using HPLC.Results: Lead intoxication significantly impaired exploratory and locomotor activity as well as motor coordination. It resulted in a significant reduction in the level of noradrenaline in the cortex and dopamine and its metabolites, DOPAC, and HVA, in the striatum. The tissue level of serotonin and its metabolite 5-HIAA was not affected in the two structures. Similarly, DSP-4, which induced a selective depletion of noradrenaline, significantly decreased exploratory, and locomotor activity as well as motor coordination. L-DOPA treatment did not improve motor deficits induced by lead and DSP-4 in the two animal groups. Electrophysiological recordings showed that both lead and DSP-4 did not change the firing rate but resulted in a switch from the regular normal firing to irregular and

  15. Chronic cobalt-induced epilepsy: noradrenaline ionophoresis and adrenoceptor binding studies in the rat cerebral cortex

    International Nuclear Information System (INIS)

    Bregman, B.; Le Saux, F.; Maurin, Y.; Trottier, S.; Chauvel, P.

    1985-01-01

    Several studies indicate that brain noradrenaline (NA) depletion facilitates the occurrence of epileptogenic syndromes in various animal models. In cobalt-induced epilepsy in the rat, seizure activity is associated with a cortical NA denervation. In order to search for cortical adrenoceptor modifications, inonophoretic studies and adrenoceptor binding assays were performed. At the period of maximal seizure activity, there was a significant supersensitivity of cortial neurons to the ionophoretic application of NA. An increase in the density of β-adrenoceptor binding sites was observed. No modification in α 1 - and α 2 -adrenoceptor binding sites was found. This suggests that in cobalt-induced epilepsy there is a denervation supersensitivity which rests on a selective involvement of β-adrenoceptors. (Author)

  16. Distribution of /sup 3/H-(+-)noradrenaline in rabbit aortic strips after inhibition of the noradrenaline-metabolizing enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Henseling, M; Eckert, E; Trendelenburg, U [Wuerzburg Univ. (Germany, F.R.). Inst. fuer Pharmakologie und Toxikologie

    1976-01-01

    Rabbit aortic strips (nerve-free, reserpine pretreated or normal) whose noradrenaline-metabolizing enzymes were inhibited (by in vitro treatment with 0.5 mM pargyline for 30 min and by the presence of 0.1 mM U-0521) were exposed to 1.18 ..mu..M /sup 3/H-(+-)noradrenaline for 30 min (in most experiments). At the end of the incubation some strips were used for anlysis of radioactivity (i.e., of noradrenaline and its metabolites), while for others the efflux of radioactivity was determined during 240 min of wash out with amine-free solution. An estimate of the original distribution of the amine into the various extraneuronal and neuronal compartments of the tissue was obtained by compartmental analysis of the efflux curves. Extracellular amine distributes into 'compartment I + II' (characterized by a half time for efflux of < 1 min); compartment size and half time for efflux were similar to those obtained for /sup 14/C-sorbitol. The extraneuronal accumulation of noradrenaline is a quickly equilibrating process which involves compartments III and IV (with half times for efflux of 3 and 11 min, respectively). Compartment IV represents not only extraneuronally but also neuronally distributed noradrenaline. The neuronal accumulation of noradrenaline is a slowly equilibrating process which can be subdivided into axoplasmic and vesicular accumulation. The results support the view that the rate of relaxation (of strips initially exposed to noradrenaline and then washed out) is affected by the efflux of unchanged amine form extraneuronal and neuronal stores.

  17. Adeprene influence on the turnover rate of brain noradrenaline

    International Nuclear Information System (INIS)

    Tyutyulkova, N.I.; Gorancheva, J.I.; Ankov, V.K.

    1978-01-01

    The influence of Adeprene - Bulgarian antidepressant - on the content and the turnover rate of the rat brain noradrenaline was studied. The animals were injected intraperitoneally during 5 days with 20 mg/kg Adeprene. One hour after the last administration of Adeprene, Tyrosine, labelled with 14 C was injected. The animals were sacrified on the 1st, 2nd and 4th hours after the injection of 14 C-Tyrosine. The tyrosine and noradrenaline concentration were determined spectrofluorimetrically the concentration of the compounds labelled with 14 C by means of a liquid scintillator. The turnover rate constant of noradrenaline was calculated on the basis of the obtained results and the respective formula. It was established that under the influence of Adeprene, the noradrenaline concentration in the brain rises from 0,5 g/g in the control animals to 0,6 in treated mice. The turnover rate constant of noradrenaline, however, drops to 0,9 g/g/hour as compared to 0,15 g/g/hours in the controls. The determination of the turnover rate provides an idea about the intensity of utilization and synthesis of the mediator and is considered consequently as a more radiosensitive index for the neuronal activity then the total amine content. (A.B.)

  18. Plasma clearance of noradrenaline does not change with age in normal subjects

    DEFF Research Database (Denmark)

    Hilsted, J; Christensen, N J; Larsen, S

    1985-01-01

    Noradrenaline kinetics (plasma concentrations, plasma clearance and appearance rates) were investigated in seven elderly healthy subjects and in six young healthy subjects. Forearm venous plasma noradrenaline concentrations were higher in the elderly subjects compared with the young subjects. Pla....... Plasma clearance of noradrenaline was identical in the two groups. The increase in plasma noradrenaline concentration, with age, probably reflects an increased sympathetic nervous activity.......Noradrenaline kinetics (plasma concentrations, plasma clearance and appearance rates) were investigated in seven elderly healthy subjects and in six young healthy subjects. Forearm venous plasma noradrenaline concentrations were higher in the elderly subjects compared with the young subjects...

  19. Sexual odor preference and dopamine release in the nucleus accumbens by estrous olfactory cues in sexually naïve and experienced male rats.

    Science.gov (United States)

    Fujiwara, Masaya; Chiba, Atsuhiko

    2018-03-01

    Sexual behavior is a natural reward that activates mesolimbic dopaminergic system. Microdialysis studies have shown that extracellular level of dopamine (DA) in the nucleus accumbens (NAcc) significantly increases during copulation in male rats. The NAcc DA level is also known to be increased during the presentation of a sexually receptive female before mating. This rise in DA was probably associated with sexual motivation elicited by incentive stimuli from the receptive female. These microdialysis studies, however, did not thoroughly investigated if olfactory stimuli from estrous females could significantly increase the extracellular DA in the NAcc of male rats. The present study was designed to examine systematically the relationship between the expression of preference for the olfactory stimuli from estrous females and the effects of these stimuli on the extracellular DA levels in the NAcc measured by in vivo microdialysis in male Long-Evans (LE) rats. We used two types of olfactory stimuli, either airborne odors (volatile stimuli) or soiled bedding (volatile plus nonvolatile stimuli). The sexually experienced male rats, which experienced six ejaculations, significantly preferred both of these olfactory stimuli from estrous females as opposed to males. Exposure to these female olfactory stimuli gradually increased extracellular DA in the NAcc, which reached significantly higher level above baseline during the period following the removal of the stimuli although not during the 15-min stimulus presentation period. The sexually naïve male rats, on the other hand, showed neither preference for olfactory stimuli from estrous females nor increase in the NAcc DA after exposure to these stimuli. These data suggest that in male LE rats olfactory stimuli from estrous females in and of themselves can be conditional cues that induce both incentive motivation and a significant increase in the NAcc DA probably as a result of being associated with sexual reward through

  20. Regulation of Dopamine Uptake by Vasoactive Peptides in the Kidney

    Directory of Open Access Journals (Sweden)

    N. L. Rukavina Mikusic

    2016-01-01

    Full Text Available Considering the key role of renal dopamine in tubular sodium handling, we hypothesized that c-type natriuretic peptide (CNP and Ang-(1-7 may regulate renal dopamine availability in tubular cells, contributing to Na+, K+-ATPase inhibition. Present results show that CNP did not affect either 3H-dopamine uptake in renal tissue or Na+, K+-ATPase activity; meanwhile, Ang-(1-7 was able to increase 3H-dopamine uptake and decreased Na+, K+-ATPase activity in renal cortex. Ang-(1-7 and dopamine together decreased further Na+, K+-ATPase activity showing an additive effect on the sodium pump. In addition, hydrocortisone reversed Ang-(1-7-dopamine overinhibition on the enzyme, suggesting that this inhibition is closely related to Ang-(1-7 stimulation on renal dopamine uptake. Both anantin and cANP (4-23-amide did not modify CNP effects on 3H-dopamine uptake by tubular cells. The Mas receptor antagonist, A-779, blocked the increase elicited by Ang-(1-7 on 3H-dopamine uptake. The stimulatory uptake induced by Ang-(1-7 was even more pronounced in the presence of losartan, suggesting an inhibitory effect of Ang-(1-7 on AT1 receptors on 3H-dopamine uptake. By increasing dopamine bioavailability in tubular cells, Ang-(1-7 enhances Na+, K+-ATPase activity inhibition, contributing to its natriuretic and diuretic effects.

  1. Relationship between respiratory failure and plasma noradrenaline levels in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Yamashita, A; Koike, Y; Takahashi, A; Hirayama, M; Murakami, N; Sobue, G

    1997-08-01

    We evaluated plasma noradrenaline (NA) levels at test and during head-up tilt test in 20 patients with sporadic amyotrophic lateral sclerosis (ALS). Their fasting plasma NA levels ranged from 195 to 4227 pg/ml. The average plasma NA level was 483 pg/ml in five ambulatory patients, 341 in two wheelchair-bound patients, 1264 in 11 bedridden patients, and 208 in two respirator-dependent patients whose disability grading was the worst among the four groups. Arterial carbon dioxide (PCO2) was evaluated as a measure of respiratory function. The coefficient of correlation between PCO2 and plasma NA was r = 0.654 (p respiratory failure or lower motor neuron dysfunction may relate to the elevation of plasma NA levels. In the two bedridden patients, plasma NA levels and heart rate at rest increased significantly as the disease progressed. Cardiovascular responses to head-up tilting were normal. These data suggest that the elevation of plasma NA levels may be related to progression of respiratory failure and lower motor neuron dysfunction. In conclusion, sympathetic hyperactivity in ALS is considered to be not primary, but secondary to somatic motor disabilities and respiratory failure.

  2. Genesis and Maintenance of Attentional Biases: The Role of the Locus Coeruleus-Noradrenaline System

    Directory of Open Access Journals (Sweden)

    Mana R. Ehlers

    2017-01-01

    Full Text Available Emotionally arousing events are typically better remembered than mundane ones, in part because emotionally relevant aspects of our environment are prioritized in attention. Such biased attentional tuning is itself the result of associative processes through which we learn affective and motivational relevance of cues. We propose that the locus coeruleus-noradrenaline (LC-NA system plays an important role in the genesis of attentional biases through associative learning processes as well as their maintenance. We further propose that individual differences in and disruptions of the LC-NA system underlie the development of maladaptive biases linked to psychopathology. We provide support for the proposed role of the LC-NA system by first reviewing work on attentional biases in development and its link to psychopathology in relation to alterations and individual differences in NA availability. We focus on pharmacological manipulations to demonstrate the effect of a disrupted system as well as the ADRA2b polymorphism as a tool to investigate naturally occurring differences in NA availability. We next review associative learning processes that—modulated by the LC-NA system—result in such implicit attentional biases. Further, we demonstrate how NA may influence aversive and appetitive conditioning linked to anxiety disorders as well as addiction and depression.

  3. Increased Contractile Response to Noradrenaline Induced By Factors Associated with the Metabolic Syndrome in Cultured Small Mesenteric Arteries

    DEFF Research Database (Denmark)

    Blædel, Martin; Sams, Anette; Boonen, Harrie C M

    2016-01-01

    UNLABELLED: This study investigated the effect of the metabolic syndrome associated risk factors hyperglycemia (glucose [Glc]), hyperinsulinemia (insulin [Ins]) and low-grade inflammation (tumor necrosis factor α [TNFα]) on the vasomotor responses of resistance arteries. Isolated small mesenteric...... arteries from 3-month-old Sprague-Dawley rats, were suspended for 21-23 h in tissue cultures containing either elevated Glc (30 mmol/l), Ins (100 nmol/l), TNFα (100 ng/ml) or combinations thereof. After incubation, the vascular response to noradrenaline (NA), phenylephrine, isoprenaline and NA...... in vascular tone....

  4. Noradrenaline decreases spike voltage threshold and induces electrographic sharp waves in turtle medial cortex in vitro.

    Science.gov (United States)

    Lorenzo, Daniel; Velluti, Julio C

    2004-01-01

    The noradrenergic modulation of neuronal properties has been described at different levels of the mammalian brain. Although the anatomical characteristics of the noradrenergic system are well known in reptiles, functional data are scarce. In our study the noradrenergic modulation of cortical electrogenesis in the turtle medial cortex was studied in vitro using a combination of field and intracellular recordings. Turtle EEG consists of a low voltage background interspersed by spontaneous large sharp waves (LSWs). Noradrenaline (NA, 5-40 microM) induced (or enhanced) the generation of LSWs in a dose-dependent manner. Pharmacological experiments suggest the participation of alpha and beta receptors in this effect. In medial cortex neurons NA induced a hyperpolarization of the resting potential and a decrease of input resistance. Both effects were observed also after TTX treatment. Noradrenaline increased the response of the cells to depolarizing pulses, resulting in an upward shift of the frequency/current relation. In most cells the excitability change was mediated by a decrease of the spike voltage threshold resulting in the reduction of the amount of depolarization needed to fire the cell (voltage threshold minus resting potential). As opposed to the mechanisms reported in mammalian neurons, no changes in the frequency adaptation or the post-train afterhyperpolarization were observed. The NA effects at the cellular level were not reproduced by noradrenergic agonists. Age- and species-dependent properties in the pharmacology of adrenergic receptors could be involved in this result. Cellular effects of NA in turtle cortex are similar to those described in mammals, although the increase in cellular excitability seems to be mediated by a different mechanism. Copyright 2004 S. Karger AG, Basel

  5. Serotonin and noradrenaline reuptake inhibitors improve micturition control in mice.

    Directory of Open Access Journals (Sweden)

    Marco Redaelli

    Full Text Available Poor micturition control may cause profound distress, because proper voiding is mandatory for an active social life. Micturition results from the subtle interplay of central and peripheral components. It involves the coordination of autonomic and neuromuscular activity at the brainstem level, under the executive control of the prefrontal cortex. We tested the hypothesis that administration of molecules acting as reuptake inhibitors of serotonin, noradrenaline or both may exert a strong effect on the control of urine release, in a mouse model of overactive bladder. Mice were injected with cyclophosphamide (40 mg/kg, to increase micturition acts. Mice were then given one of four molecules: the serotonin reuptake inhibitor imipramine, its metabolite desipramine that acts on noradrenaline reuptake, the serotonin and noradrenaline reuptake inhibitor duloxetine or its active metabolite 4-hydroxy-duloxetine. Cyclophosphamide increased urine release without inducing overt toxicity or inflammation, except for increase in urothelium thickness. All the antidepressants were able to decrease the cyclophosphamide effects, as apparent from longer latency to the first micturition act, decreased number of urine spots and volume of released urine. These results suggest that serotonin and noradrenaline reuptake inhibitors exert a strong and effective modulatory effect on the control of urine release and prompt to additional studies on their central effects on brain areas involved in the social and behavioral control of micturition.

  6. Selective inhibition of dopamine-beta-hydroxylase enhances dopamine release from noradrenergic terminals in the medial prefrontal cortex.

    Science.gov (United States)

    Devoto, Paola; Flore, Giovanna; Saba, Pierluigi; Frau, Roberto; Gessa, Gian L

    2015-10-01

    Disulfiram has been claimed to be useful in cocaine addiction therapy, its efficacy being attributed to dopamine-beta-hydroxylase (DBH) inhibition. Our previous results indicate that disulfiram and the selective DBH inhibitor nepicastat increase extracellular dopamine (DA) in the rat medial prefrontal cortex (mPFC), and markedly potentiated cocaine-induced increase. Concomitantly, in rats with cocaine self-administration history, cocaine-seeking behavior induced by drug priming was prevented, probably through overstimulation of D1 receptors due to the DA increase. The present research was aimed at studying the neurochemical mechanisms originating the enhanced DA release. Noradrenergic system ablation was attained by intracerebroventricular (i.c.v.) administration of the neurotoxin anti-DBH-saporin (aDBH-sap). DA, noradrenaline (NA), and DOPAC were assessed by HPLC after ex vivo tissue extraction or in vivo microdialysis. Control and denervated rats were subjected to microdialysis in the mPFC and caudate nucleus to evaluate the effect of nepicastat-cocaine combination on extracellular DA levels and their regulation by α2-adrenoceptors. Fifteen days after neurotoxin or its vehicle administration, tissue and extracellular NA were reduced to less than 2% the control value, while extracellular DA was increased by approximately 100%. In control rats, nepicastat given alone and in combination with cocaine increased extracellular DA by about 250% and 1100%, respectively. In denervated rats, nepicastat slightly affected extracellular DA, while in combination with cocaine increased extracellular DA by 250%. No differences were found in the caudate nucleus. Clonidine almost totally reversed the extracellular DA elevation produced by nepicastat-cocaine combination, while it was ineffective in denervated rats. This research shows that the increase of extracellular DA produced by nepicastat alone or in combination with cocaine was prevented by noradrenergic denervation. The

  7. Effect of interaction of heavy metals on (Na+-K+) ATPase and uptake of 3H-DA and 3H-NA in rat brain synaptosomes

    International Nuclear Information System (INIS)

    Chandra, S.V.; Murthy, R.C.; Husain, T.; Bansal, S.K.

    1984-01-01

    The effect of interaction of Mn 2+ , Pb 2+ and CD 2+ on (Na + -K + ) ATPase and uptake of labelled dopamine ( 3 H-DA) and labelled noradrenaline ( 3 H-NA) were studied in vitro in rat brain synaptosomes. The inhibition of (Na + -K + )ATPase by Pb 2+ + Cd 2+ alone was concentration dependent, however, Mn 2+ had almost no effect on the activity of this enzyme. Interaction of Cd 2+ with either Pb 2+ or Mn 2+ was almost powerful in inhibiting the activity of synaptosomal transport ATPase. Lower concentrations of Pb 2+ increased while higher concentrations inhibited synaptosomal uptake of 3 H-DA and 3 H-NA. Lower concentrations of CD 2+ increased the uptake of 3 H-DA while at concentrations of 100 μM, the uptake was inhibited, this metal had strong inhibitory effect on the uptake of 3 H-NA. Mn 2+ had inhibited the uptake of labelled amines. Interaction of Mn 2+ with Pb 2+ or Cd 2+ produced inhibition on the uptake of 3 H-DA and 3 H-NA. The results of the uptake of biogenic amines in the presence of metal ions apparently had no correlation with the activity og (Na + -K + ) ATPase which is involved in the active transport of cations across cell membranes. (author)

  8. Blockade of the high-affinity noradrenaline transporter (NET) by the selective 5-HT reuptake inhibitor escitalopram: an in vivo microdialysis study in mice

    Science.gov (United States)

    Nguyen, Hai T; Guiard, Bruno P; Bacq, Alexandre; David, Denis J; David, Indira; Quesseveur, Gaël; Gautron, Sophie; Sanchez, Connie; Gardier, Alain M

    2013-01-01

    BACKGROUND AND PURPOSE Escitalopram, the S(+)-enantiomer of citalopram is the most selective 5-HT reuptake inhibitor approved. Although all 5-HT selective reuptake inhibitors (SSRIs) increase extracellular levels of 5-HT ([5-HT]ext). some also enhance, to a lesser extent, extracellular levels of noradrenaline ([NA]ext). However, the mechanisms by which SSRIs activate noradrenergic transmission in the brain remain to be determined. EXPERIMENTAL APPROACH This study examined the effects of escitalopram, on both [5-HT]ext and [NA]ext in the frontal cortex (FCx) of freely moving wild-type (WT) and mutant mice lacking the 5-HT transporter (SERT−/−) by using intracerebral microdialysis. We explored the possibilities that escitalopram enhances [NA]ext, either by a direct mechanism involving the inhibition of the low- or high-affinity noradrenaline transporters, or by an indirect mechanism promoted by [5-HT]ext elevation. The forced swim test (FST) was used to investigate whether enhancing cortical [5-HT]ext and/or [NA]ext affected the antidepressant-like activity of escitalopram. KEY RESULTS In WT mice, a single systemic administration of escitalopram produced a significant increase in cortical [5-HT]ext and [NA]ext. As expected, escitalopram failed to increase cortical [5-HT]ext in SERT−/− mice, whereas its neurochemical effects on [NA]ext persisted in these mutants. In WT mice subjected to the FST, escitalopram increased swimming parameters without affecting climbing behaviour. Finally, escitalopram, at relevant concentrations, failed to inhibit cortical noradrenaline and 5-HT uptake mediated by low-affinity monoamine transporters. CONCLUSIONS AND IMPLICATIONS These experiments suggest that escitalopram enhances, although moderately, cortical [NA]extin vivo by a direct mechanism involving the inhibition of the high-affinity noradrenaline transporter (NET). PMID:22233336

  9. Effects of Acetylcholine and Noradrenalin on Action Potentials of Isolated Rabbit Sinoatrial and Atrial Myocytes

    Science.gov (United States)

    Verkerk, Arie O.; Geuzebroek, Guillaume S. C.; Veldkamp, Marieke W.; Wilders, Ronald

    2012-01-01

    The autonomic nervous system controls heart rate and contractility through sympathetic and parasympathetic inputs to the cardiac tissue, with acetylcholine (ACh) and noradrenalin (NA) as the chemical transmitters. In recent years, it has become clear that specific Regulators of G protein Signaling proteins (RGS proteins) suppress muscarinic sensitivity and parasympathetic tone, identifying RGS proteins as intriguing potential therapeutic targets. In the present study, we have identified the effects of 1 μM ACh and 1 μM NA on the intrinsic action potentials of sinoatrial (SA) nodal and atrial myocytes. Single cells were enzymatically isolated from the SA node or from the left atrium of rabbit hearts. Action potentials were recorded using the amphotericin-perforated patch-clamp technique in the absence and presence of ACh, NA, or a combination of both. In SA nodal myocytes, ACh increased cycle length and decreased diastolic depolarization rate, whereas NA decreased cycle length and increased diastolic depolarization rate. Both ACh and NA increased maximum upstroke velocity. Furthermore, ACh hyperpolarized the maximum diastolic potential. In atrial myocytes stimulated at 2 Hz, both ACh and NA hyperpolarized the maximum diastolic potential, increased the action potential amplitude, and increased the maximum upstroke velocity. Action potential duration at 50 and 90% repolarization was decreased by ACh, but increased by NA. The effects of both ACh and NA on action potential duration showed a dose dependence in the range of 1–1000 nM, while a clear-cut frequency dependence in the range of 1–4 Hz was absent. Intermediate results were obtained in the combined presence of ACh and NA in both SA nodal and atrial myocytes. Our data uncover the extent to which SA nodal and atrial action potentials are intrinsically dependent on ACh, NA, or a combination of both and may thus guide further experiments with RGS proteins. PMID:22754533

  10. A photoaffinity ligand for dopamine D2 receptors: azidoclebopride.

    Science.gov (United States)

    Niznik, H B; Guan, J H; Neumeyer, J L; Seeman, P

    1985-02-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [3H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol. The degree of D2 dopamine receptor photoinduced inactivation by azidoclebopride was not significantly affected by scavengers such as p-aminobenzoic acid and dithiothreitol. Furthermore, irradiation of striatal membranes with a concentration of azidoclebopride sufficient to inactivate dopamine D2 receptors by 60% did not significantly reduce dopamine D1, serotonin (S2), benzodiazepine, alpha 1- or beta-noradrenergic receptors. This study describes the use of a novel and selective photoaffinity ligand for brain dopamine D2 receptors. The molecule, in radiolabeled form, may aid in the

  11. Effect of naftopidil on brain noradrenaline-induced decrease in arginine-vasopressin secretion in rats

    Directory of Open Access Journals (Sweden)

    Masaki Yamamoto

    2016-09-01

    Full Text Available Naftopidil, an α1-adrenoceptor antagonist, has been shown to inhibit nocturnal polyuria in patients with lower urinary tract symptom. However, it remains unclear how naftopidil decreases nocturnal urine production. Here, we investigated the effects of naftopidil on arginine-vasopressin (AVP plasma level and urine production and osmolality in rats centrally administered with noradrenaline (NA. NA (3 or 30 μg/kg was administered into the left ventricle (i.c.v. of male Wistar rats 3 h after naftopidil pretreatment (10 or 30 mg/kg, i.p.. Blood samples were collected from the inferior vena cava 1 h after NA administration or 4 h after peritoneal administration of naftopidil; plasma levels of AVP were assessed by ELISA. Voiding behaviors of naftopidil (30 mg/kg, i.p.-administered male Wistar rats were observed during separate light- and dark cycles. Administration of NA decreased plasma AVP levels and elevated urine volume, which were suppressed by systemic pretreatment with naftopidil (30 mg/kg, i.p.. Urine osmolality decreased 1 h after NA administration. However, naftopidil by itself had no effect on plasma AVP levels or urodynamic parameters during light- and dark cycles. Our findings suggest that systemic administration of naftopidil could prevent central noradrenergic nervous system-mediated decline in AVP secretion and increase in urine production in rats.

  12. Increased binding of (/sup 3/H)apomorphine in caudate membranes after dopamine pretreatment in vitro

    Energy Technology Data Exchange (ETDEWEB)

    McManus, C; Hartley, E J; Seeman, P [Toronto Univ., Ontario (Canada)

    1978-07-01

    Most patients with Parkinson's disease treated with L-dopa show a progressively deteriorating response which may possibly be attributed to an L-dopa-induced process of unknown origin. Long-term administration of dopamine-mimetic drugs to animals sometimes produces behavioural facilitation. To investigate one possible molecular mechanism of this facilitation or sensitization the effects of prolonged exposure, in vitro, of dopamine on the dopamine/neuroleptic receptors in the caudate nucleus of the calf were tested. Calf caudate homogenates pretreated with dopamine or other drugs were tested for the binding of (/sup 3/H)apomorphine, (/sup 3/H)haloperidol, 3H-WB-4101, or (/sup 3/H)naloxine. Pre-exposure with dopamine or noradrenaline lead to an increased binding of (/sup 3/H)apomorphine. The significance of the results is discussed.

  13. Increased binding of [3H]apomorphine in caudate membranes after dopamine pretreatment in vitro

    International Nuclear Information System (INIS)

    McManus, C.; Hartley, E.J.; Seeman, P.

    1978-01-01

    Most patients with Parkinson's disease treated with L-dopa show a progressively deteriorating response which may possibly be attributed to an L-dopa-induced process of unknown origin. Long-term administration of dopamine-mimetic drugs to animals sometimes produces behavioural facilitation. To investigate one possible molecular mechanism of this facilitation or sensitization the effects of prolonged exposure, in vitro, of dopamine on the dopamine/neuroleptic receptors in the caudate nucleus of the calf were tested. Calf caudate homogenates pretreated with dopamine or other drugs were tested for the binding of [ 3 H]apomorphine, [ 3 H]haloperidol, 3H-WB-4101, or [ 3 H]naloxine. Pre-exposure with dopamine or noradrenaline lead to an increased binding of [ 3 H]apomorphine. The significance of the results is discussed. (author)

  14. Sexual side effects of serotonergic antidepressants: mediated by inhibition of serotonin on central dopamine release?

    Science.gov (United States)

    Bijlsma, Elisabeth Y; Chan, Johnny S W; Olivier, Berend; Veening, Jan G; Millan, Mark J; Waldinger, Marcel D; Oosting, Ronald S

    2014-06-01

    Antidepressant-induced sexual dysfunction adversely affects the quality of life of antidepressant users and reduces compliance with treatment. Animal models provide an instructive approach for examining potential sexual side effects of novel drugs. This review discusses the stability and reproducibility of our standardized test procedure that assesses the acute, subchronic and chronic effects of psychoactive compounds in a 30 minute mating test. In addition, we present an overview of the effects of several different (putative) antidepressants on male rat sexual behavior, as tested in our standardized test procedure. By comparing the effects of these mechanistically distinct antidepressants (paroxetine, venlafaxine, bupropion, buspirone, DOV 216,303 and S32006), this review discusses the putative mechanism underlying sexual side effects of antidepressants and their normalization. This review shows that sexual behavior is mainly inhibited by antidepressants that increase serotonin neurotransmission via blockade of serotonin transporters, while those that mainly increase the levels of dopamine and noradrenaline are devoid of sexual side effects. Those sexual disturbances cannot be normalized by simultaneously increasing noradrenaline neurotransmission, but are normalized by increasing both noradrenaline and dopamine neurotransmission. Therefore, it is hypothesized that the sexual side effects of selective serotonin reuptake inhibitors may be mediated by their inhibitory effects on dopamine signaling in sex brain circuits. Clinical development of novel antidepressants should therefore focus on compounds that simultaneously increase both serotonin and dopamine signaling. © 2013 Elsevier Inc. All rights reserved.

  15. Dopamine/noradrenaline reuptake inhibition in women improves endurance exercise performance in the heat.

    Science.gov (United States)

    Cordery, P; Peirce, N; Maughan, R J; Watson, P

    2017-11-01

    Catecholamine reuptake inhibition improves the performance of male volunteers exercising in warm conditions, but sex differences in thermoregulation, circulating hormones, and central neurotransmission may alter this response. With local ethics committee approval, nine physically active women (mean ± SD age 21 ± 2 years; height 1.68 ± 0.08 m; body mass 64.1 ± 6.0 kg; VO 2peak 51 ± 7 mL/kg/min) were recruited to examine the effect of pre-exercise administration of Bupropion (BUP; 4 × 150 mg) on prolonged exercise performance in a warm environment. Participants completed a VO 2peak test, two familiarization trials, and two randomized, double-blind experimental trials. All trials took place during the first 10 days of the follicular phase of the menstrual cycle. Participants cycled for 1 h at 60% VO 2peak followed by a 30-min performance test. Total work done was greater during the BUP trial (291 ± 48 kJ) than the placebo trial (269 ± 46 kJ, P = 0.042, d = 0.497). At the end of the performance test, core temperature was higher on the BUP trial (39.5 ± 0.4 °C) than on the placebo trial (39.2 ± 0.6 °C, P = 0.021; d = 0.588), as was heart rate (185 ± 9 vs 179 ± 13, P = 0.043; d = 0.537). The results indicate that during the follicular phase of the menstrual cycle, an acute dosing protocol of BUP can improve self-regulated performance in warm conditions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Contrasting Roles of Dopamine and Noradrenaline in the Motivational Properties of Social Play Behavior in Rats

    NARCIS (Netherlands)

    Achterberg, E.J.M.; van Kerkhof, L.W.M.; Servadio, Michela; van Swieten, Maaike; Houwing, Danielle J; Aalderink, Mandy; Driel, Nina V; Trezza, Viviana; Vanderschuren, L.J.M.J.

    2016-01-01

    Social play behavior, abundant in the young of many mammalian species, is generally assumed to be important for social and cognitive development. Social play is highly rewarding, and as such, the expression of social play depends on its pleasurable and motivational properties. Since the motivational

  17. Copper Induces Vasorelaxation and Antagonizes Noradrenaline -Induced Vasoconstriction in Rat Mesenteric Artery

    Directory of Open Access Journals (Sweden)

    Yu-Chun Wang

    2013-11-01

    Full Text Available Background/Aims: Copper is an essential trace element for normal cellular function and contributes to critical physiological or pathological processes. The aim of the study was to investigate the effects of copper on vascular tone of rat mesenteric artery and compare the effects of copper on noradrenaline (NA and high K+ induced vasoconstriction. Methods: The rat mesenteric arteries were isolated and the vessel tone was measured by using multi wire myograph system in vitro. Blood pressure of carotid artery in rabbits was measured by using physiological data acquisition and analysis system in vivo. Results: Copper dose-dependently blunted NA-induced vasoconstriction of rat mesenteric artery. Copper-induced vasorelaxation was inhibited when the vessels were pretreated with NG-nitro-L-arginine methyl ester (L-NAME. Copper did not blunt high K+-induced vasoconstriction. Copper preincubation inhibited NA-evoked vasoconstriction and the inhibition was not affected by the presence of L-NAME. Copper preincubation showed no effect on high K+-evoked vasoconstriction. Copper chelator diethyldithiocarbamate trihydrate (DTC antagonized the vasoactivity induced by copper in rat mesenteric artery. In vivo experiments showed that copper injection (iv significantly decreased blood pressure of rabbits and NA or DTC injection (iv did not rescue the copper-induced hypotension and animal death. Conclusion: Copper blunted NA but not high K+-induced vasoconstriction of rat mesenteric artery. The acute effect of copper on NA-induced vasoconstriction was depended on nitric oxide (NO, but the effect of copper pretreatment on NA-induced vasoconstriction was independed on NO, suggesting that copper affected NA-induced vasoconstriction by two distinct mechanisms.

  18. Photoaffinity ligand for dopamine D2 receptors: azidoclebopride

    International Nuclear Information System (INIS)

    Niznik, H.B.; Guan, J.H.; Neumeyer, J.L.; Seeman, P.

    1985-01-01

    In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [ 3 H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol

  19. M-octopamine injected into the paraventricular nucleus induces eating in rats: a comparison with noradrenaline-induced eating.

    OpenAIRE

    Fletcher, P. J.; Paterson, I. A.

    1989-01-01

    1. The effects on food intake in rats of injection of m- and p-octopamine into the paraventricular nucleus (PVN) of the hypothalamus were examined, and compared to the effects of noradrenaline (NA). 2. m-Octopamine injected into the PVN induced a dose-dependent increase in food intake, with the maximal effect occurring at a dose of 25 nmol. p-Octopamine did not elicit eating unless it was administered to animals pretreated with the monoamine oxidase inhibitor, pargyline. 3. The effects of pre...

  20. Noradrenaline increases the expression and release of Hsp72 by human neutrophils.

    Science.gov (United States)

    Giraldo, E; Multhoff, G; Ortega, E

    2010-05-01

    The blood concentration of extracellular 72kDa heat shock protein (eHsp72) increases under conditions of stress, including intense exercise. However, the signal(s), source(s), and secretory pathways in its release into the bloodstream have yet to be clarified. The aim of the present study was to evaluate the role of noradrenaline (NA) as a stress signal on the expression and release of Hsp72 by circulating neutrophils (as a source), all within a context of the immunophysiological regulation during exercise-induced stress in sedentary and healthy young (21-26years) women. The expression of Hsp72 on the surface of isolated neutrophils was determined by flow cytometry, and its release by cultured isolated neutrophils was determined by ELISA. Incubation with cmHsp70-FITC showed that neutrophils express Hsp72 on their surface under basal conditions. In addition, cultured isolated neutrophils (37 degrees C and 5% CO(2)) also released Hsp72 under basal conditions, with this release increasing from 10min to 24h in the absence of cell damage. NA at 10(-9)-10(-5)M doubled the percentage of neutrophils expressing Hsp72 after 60min and 24h incubation. NA also stimulated (by about 20%) the release of Hsp72 after 10min of incubation. (1) Hsp72 is expressed on the surface of isolated neutrophils under basal conditions, and this expression is augmented by NA. (2) Isolated neutrophils can also release Hsp72 under cultured basal conditions in the absence of cell death, and NA can increase this release. These results may contribute to confirming the hypothesis that NA can act as a "stress signal" for the increased eHsp72 in the context of exercise stress, with a role for neutrophils as a source for the expression and, to a lesser degree, the release of Hsp72 after activation by NA. Copyright 2010 Elsevier Inc. All rights reserved.

  1. Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat

    International Nuclear Information System (INIS)

    Oleskevich, S.; Descarries, L.; Lacaille, J.C.

    1989-01-01

    A recently developed radioautographic technique, based on the uptake labeling of monoamine terminals in vitro, was used to quantify the noradrenaline (NA) innervation in adult rat hippocampus. After incubation of brain slices with 1 microM 3H-NA, the NA varicosities were visualized as small aggregates of silver grains, in light microscope radioautographs prepared at 3 equidistant horizontal levels across the ventral 2/3 of the hippocampus. Using a computer-assisted image analyzer, counts were obtained from the subiculum (SUB), 3 sectors of Ammon's horn (CA1, CA3-a, CA3-b) and 3 sectors of the dentate gyrus (DG-medial blade, crest, and lateral blade), every lamina being sampled in each region. After a double correction for duration of radioautographic exposure and section thickness, and following measurement of varicosity diameter in electron microscope radioautographs, it was possible to express these results in number of terminals per volumetric unit of tissue. It was thus found that the overall density of hippocampal NA innervation averages 2.1 million varicosities/mm3 of tissue, a value almost twice as high as that in cerebral cortex. This innervation is 20% denser ventrally than dorsally and is heterogeneous both in terms of regional and laminar distribution. SUB and DG are more strongly innervated than Ammon's horn, wherein CA1 has the lowest overall density. In SUB and CA1, there is a clear predilection of NA varicosities for the stratum moleculare. In CA3, there is a narrow band of even stronger innervation in the stratum radiatum, near the apical border of the stratum pyramidale, contrasting with a 3 times lower density in this cell layer and the stratum oriens. In DG, the NA innervation is again the weakest in the cell body layer and exhibits an almost 3-fold greater density in the polymorph layer, the highest of all hippocampus

  2. Characterization of noradrenaline release in the locus coeruleus of freely moving awake rats by in vivo microdialysis.

    Science.gov (United States)

    Fernández-Pastor, Begoña; Mateo, Yolanda; Gómez-Urquijo, Sonia; Javier Meana, J

    2005-07-01

    The origin and regulation of noradrenaline (NA) in the locus coeruleus (LC) is unknown. The neurochemical features of NA overflow (nerve impulse dependence, neurotransmitter synthesis, vesicle storage, reuptake, alpha2-adrenoceptor-mediated regulation) were characterized in the LC. Brain microdialysis was performed in awake rats. Dialysates were analyzed for NA. NA in the LC decreased via local infusion of Ca2+-free medium (-42+/-5%) or the sodium channel blocker tetrodotoxine (TTX) (-47+/-8%) but increased (333+/-40%) via KCl-induced depolarization. The tyrosine hydroxylase (TH) inhibitor alpha-methyl-p-tyrosine (250 mg kg(-1), i.p.) and the vesicle depletory drug reserpine (5 mg kg(-1), i.p.) decreased NA. Therefore, extracellular NA in the LC satisfies the criteria for an impulse flow-dependent vesicular exocytosis of neuronal origin. Local perfusion of the alpha2-adrenoceptor agonist clonidine (0.1-100 microM) decreased NA (E(max)=-79+/-5%) in the LC, whereas the opposite effect (E(max)=268+/-53%) was observed with the alpha2A-adrenoceptor antagonist BRL44408 (0.1-100 microM). This suggests a tonic modulation of NA release through local alpha2A-adrenoceptors. The selective NA reuptake inhibitor desipramine (DMI) (0.1-100 microM) administered into the LC increased NA in the LC (E(max)=223+/-40%) and simultaneously decreased NA in the cingulate cortex, confirming the modulation exerted by NA in the LC on firing activity of noradrenergic cells and on the subsequent NA release in noradrenergic terminals. Synaptic processes underlying NA release in the LC are similar to those in noradrenergic terminal areas. NA in the LC could represent local somatodendritic release, but also the presence of neurotransmitter release from collateral axon terminals.

  3. Pheochromocytoma with Negative Metanephrines: A Rarity and the Significance of Dopamine Secreting Tumors

    Directory of Open Access Journals (Sweden)

    Michael Bozin

    2017-05-01

    Full Text Available We describe a case of a 25-year-old female with a dopamine secreting PPGL diagnosed retrospectively with biochemical analysis. This finding resulted in change in approach to investigation and management, given their important clinical implications. There are important differences in management of dopamine secreting PPGL compared to classical noradrenaline and adrenaline-secreting PPGL. This includes the risk of peri-operative cardiovascular collapse peri-operatively with alpha/beta blockade, risk of malignancy/recurrence, and associated genetic abnormalities.

  4. The neuropharmacology of serotonin and noradrenaline in depression.

    Science.gov (United States)

    Nutt, David J

    2002-06-01

    Several classes of antidepressant drug exist, divided into three broad families, the monoamine reuptake inhibitors, the monoamine oxidase inhibitors and the monoamine receptor antagonists. All these drugs have a common pharmacological effect, to raise the synaptic concentrations of noradrenaline and serotonin. Although different drugs have different relative selectivity for noradrenaline and serotonin systems, these two neurotransmitter pathways work in parallel and in a coherent manner to produce the same final antidepressant response. The lag-time in the onset of action of antidepressants can be explained by the activation of inhibitory autoreceptors on serotonergic and noradrenergic neurones which initially attenuate the effects of antidepressants on synaptic transmitter levels. Over time, these autoreceptors desensitize, allowing the emergence of an overt antidepressant response. This theory has led to the proposition that antagonists at these autoreceptors such as pindolol may be useful adjuncts to antidepressant treatment, in order to hasten the appearance of a clinical response. Evidence for the clinical validity of this idea remains equivocal, however. The use of central monoamine depletion studies has demonstrated that it is elevated synaptic monoamine levels themselves, rather than some downstream postsynaptic changes in, for example, receptor sensitivity, that are responsible for the therapeutic effect of antidepressant drugs. Taken together, the data collected over the last 40 years have allowed the emergence of a unified monoamine hypothesis of antidepressant drug action.

  5. Central noradrenaline transporter availability in highly obese, non-depressed individuals

    International Nuclear Information System (INIS)

    Hesse, Swen; Sabri, Osama; Becker, Georg-Alexander; Bresch, Anke; Luthardt, Julia; Patt, Marianne; Meyer, Philipp M.; Rullmann, Michael; Hankir, Mohammed K.; Zientek, Franziska; Reissig, Georg; Fenske, Wiebke K.; Arelin, Katrin; Lobsien, Donald; Mueller, Ulrich; Baldofski, S.; Hilbert, Anja; Blueher, Matthias; Fasshauer, Mathias; Stumvoll, Michael; Ding, Yu-Shin

    2017-01-01

    The brain noradrenaline (NA) system plays an important role in the central nervous control of energy balance and is thus implicated in the pathogenesis of obesity. The specific processes modulated by this neurotransmitter which lead to obesity and overeating are still a matter of debate. We tested the hypothesis that in vivo NA transporter (NAT) availability is changed in obesity by using positron emission tomography (PET) and S,S-["1"1C]O-methylreboxetine (MRB) in twenty subjects comprising ten highly obese (body mass index BMI > 35 kg/m"2), metabolically healthy, non-depressed individuals and ten non-obese (BMI < 30 kg/m"2) healthy controls. Overall, we found no significant differences in binding potential (BP_N_D) values between obese and non-obese individuals in the investigated brain regions, including the NAT-rich thalamus (0.40 ± 0.14 vs. 0.41 ± 0.18; p = 0.84) though additional discriminant analysis correctly identified individual group affiliation based on regional BP_N_D in all but one (control) case. Furthermore, inter-regional correlation analyses indicated different BP_N_D patterns between both groups but this did not survive testing for multiple comparions. Our data do not find an overall involvement of NAT changes in human obesity. However, preliminary secondary findings of distinct regional and associative patterns warrant further investigation. (orig.)

  6. Central noradrenaline transporter availability in highly obese, non-depressed individuals

    Energy Technology Data Exchange (ETDEWEB)

    Hesse, Swen; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Leipzig University Medical Centre, Integrated Treatment and Research Centre (IFB) Adiposity Diseases, Leipzig (Germany); Becker, Georg-Alexander; Bresch, Anke; Luthardt, Julia; Patt, Marianne; Meyer, Philipp M. [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Rullmann, Michael [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Leipzig University Medical Centre, Integrated Treatment and Research Centre (IFB) Adiposity Diseases, Leipzig (Germany); Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (Germany); Hankir, Mohammed K.; Zientek, Franziska; Reissig, Georg; Fenske, Wiebke K. [Leipzig University Medical Centre, Integrated Treatment and Research Centre (IFB) Adiposity Diseases, Leipzig (Germany); Arelin, Katrin [Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig (Germany); University of Leipzig, Day Clinic for Cognitive Neurology, Leipzig (Germany); Lobsien, Donald [University of Leipzig, Department of Neuroradiology, Leipzig (Germany); Mueller, Ulrich [University of Cambridge, Department of Psychiatry and Behavioural and Clinical Neuroscience Institute, Cambridge (United Kingdom); Baldofski, S.; Hilbert, Anja [Leipzig University Medical Centre, Integrated Treatment and Research Centre (IFB) Adiposity Diseases, Leipzig (Germany); University of Leipzig, Department of Medical Psychology and Medical Sociology, Leipzig (Germany); Blueher, Matthias [University of Leipzig, Department of Internal Medicine, Leipzig (Germany); Fasshauer, Mathias; Stumvoll, Michael [Leipzig University Medical Centre, Integrated Treatment and Research Centre (IFB) Adiposity Diseases, Leipzig (Germany); University of Leipzig, Department of Internal Medicine, Leipzig (Germany); Ding, Yu-Shin [New York University School of Medicine, Departments of Radiology and Psychiatry, New York, NY (United States)

    2017-06-15

    The brain noradrenaline (NA) system plays an important role in the central nervous control of energy balance and is thus implicated in the pathogenesis of obesity. The specific processes modulated by this neurotransmitter which lead to obesity and overeating are still a matter of debate. We tested the hypothesis that in vivo NA transporter (NAT) availability is changed in obesity by using positron emission tomography (PET) and S,S-[{sup 11}C]O-methylreboxetine (MRB) in twenty subjects comprising ten highly obese (body mass index BMI > 35 kg/m{sup 2}), metabolically healthy, non-depressed individuals and ten non-obese (BMI < 30 kg/m{sup 2}) healthy controls. Overall, we found no significant differences in binding potential (BP{sub ND}) values between obese and non-obese individuals in the investigated brain regions, including the NAT-rich thalamus (0.40 ± 0.14 vs. 0.41 ± 0.18; p = 0.84) though additional discriminant analysis correctly identified individual group affiliation based on regional BP{sub ND} in all but one (control) case. Furthermore, inter-regional correlation analyses indicated different BP{sub ND} patterns between both groups but this did not survive testing for multiple comparions. Our data do not find an overall involvement of NAT changes in human obesity. However, preliminary secondary findings of distinct regional and associative patterns warrant further investigation. (orig.)

  7. Lead intoxication induces noradrenaline depletion, motor nonmotor disabilities, and changes in the firing pattern of subthalamic nucleus neurons.

    Science.gov (United States)

    Sabbar, M; Delaville, C; De Deurwaerdère, P; Benazzouz, A; Lakhdar-Ghazal, N

    2012-05-17

    Lead intoxication has been suggested as a high risk factor for the development of Parkinson disease. However, its impact on motor and nonmotor functions and the mechanism by which it can be involved in the disease are still unclear. In the present study, we studied the effects of lead intoxication on the following: (1) locomotor activity using an open field actimeter and motor coordination using the rotarod test, (2) anxiety behavior using the elevated plus maze, (3) "depression-like" behavior using sucrose preference test, and (4) subthalamic nucleus (STN) neuronal activity using extracellular single unit recordings. Male Sprague-Dawley rats were treated once a day with lead acetate or sodium acetate (20 mg/kg/d i.p.) during 3 weeks. The tissue content of monoamines was used to determine alteration of these systems at the end of experiments. Results show that lead significantly reduced exploratory activity, locomotor activity and the time spent on the rotarod bar. Furthermore, lead induced anxiety but not "depressive-like" behavior. The electrophysiological results show that lead altered the discharge pattern of STN neurons with an increase in the number of bursting and irregular cells without affecting the firing rate. Moreover, lead intoxication resulted in a decrease of tissue noradrenaline content without any change in the levels of dopamine and serotonin. Together, these results show for the first time that lead intoxication resulted in motor and nonmotor behavioral changes paralleled by noradrenaline depletion and changes in the firing activity of STN neurons, providing evidence consistent with the induction of atypical parkinsonian-like deficits. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. [Changes in serotonin and noradrenaline in hepatic encephalopathy as a result of liver failure in rat].

    Science.gov (United States)

    Song, Min-ning; Song, Yu-na; Chen, Fu; Luo, Mei-lan

    2007-01-01

    To investigate the changes in serotonin (5-HT) and noradrenaline (NA) in hepatic encephalopathy as a result of acute and chronic liver failure in rat. One hundred and ten Sprague-Dawley (SD) rats were randomly divided into groups of normal control (n=20), experimental group of acute liver failure (ALF) encephalopathy (n=45), and experimental group of chronic liver failure (CLF) encephalopathy (n=45). Two dosages of thioacetamide (TAA) of 500 mg/kg were gavaged with an interval of 24 hours to reproduce ALF model. To reproduce CLF model rats were fed with 0.03% TAA in drinking water for 10 weeks, and 50% of TAA dosage was added or withheld according to the change in weekly body weight measurement. Animals were sacrificed and venous blood specimens were obtained after successful replication of model, and 5-HT, NA, ammonia, parameters of liver function were determined, and liver and brain were studied pathologically. The experiment showed that the liver functions of rats in groups ALF encephalopathy and CLF encephalopathy deteriorated seriously, changes in alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), albumen (ALB), ALB/globulin (A/G), and blood ammonia were observed(Pliver and brain pathologies were identical to those of ALF and CLF encephalopathy. The values of 5-HT were increased in groups ALF encephalopathy and CLF encephalopathy [(16.06+/-1.08) micromol/L and (15.32+/-1.48) micromol/L] compared with the normal group [(2.75+/-0.26) micromol/L, both Pencephalopathy [(94.0+/-2.13) pmol/L vs.(121.2+/-14.8) pmol/L,Pencephalopathy and CLF encephalopathy. The content of NA decreases remarkably in CLF encephalopathy.

  9. Exposure of P. gingivalis to noradrenaline reduces bacterial growth and elevates ArgX protease activity.

    Science.gov (United States)

    Saito, Takayuki; Inagaki, Satoru; Sakurai, Kaoru; Okuda, Katsuji; Ishihara, Kazuyuki

    2011-03-01

    Periodontitis, an infectious disease caused by periodontopathic bacteria, including Porphyromonas gingivalis, is reported to be accelerated by stress, under which noradrenaline levels are increased in the bloodstream. The purpose of this study was to evaluate the effects of noradrenaline on P. gingivalis. P. gingivalis was incubated in the presence of 25μM, 50μM, or 100μM adrenaline or noradrenaline at 37°C for 12, 24 or 36h and growth was evaluated by OD(660). Auto-inducer-2 (AI-2) was measured by luminescence of Vibrio harveyi BB 170. Expression of P. gingivalis genes was evaluated using a microarray and RT-PCR. Rgp activity of arg-gingipainA and B (Rgp) was measured with a synthetic substrate. Growth of P. gingivalis FDC381 was inhibited by noradrenaline at 24 and 36h. Growth inhibition by noradrenaline increased dose-dependently. Inhibition of growth partially recovered with addition of propranolol. AI-2 production from P. gingivalis showed a marked decrease with addition of noradrenaline compared with peak production levels in the control group. Microarray analysis revealed an increase in expression in 18 genes and a decrease in expression in 2 genes. Amongst these genes, expression of the protease arg-gingipainB (RgpB) gene, a major virulence factor of P. gingivalis, was further analysed. Expression of rgpB showed a significant increase with addition of noradrenaline, which was partially reduced by addition of propranolol. Cell-associated Rgp activity also increased with addition of noradrenaline. These results suggest that stressors influence the expression of the virulence factors of P. gingivalis via noradrenaline. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. [Features of noradrenaline stimulation of rat liver mitochondria respiration by ADP and calcium ions].

    Science.gov (United States)

    Stefankiv, Iu S; Babskyĭ, A M; Shostakovska, Y V

    1995-01-01

    A single administration of a physiological dose of noradrenaline to animals. in contrast to adrenaline, stimulates the respiration of mitochondria not only under oxidation of FAD-dependent Krebbs cycle substrate of the succinase but also HAD-dependent substrate of alpha-ketoglutarate. In the both cases the phosphorylation rate increases, since the action of noradrenaline, separating the respiration and oxidative phosphorylation, was not found. Noradrenaline increases the capacity of mitochondria to more actively absorb calcium ions under oxidation of succinate than under that of alpha-ketoglutarate.

  11. Attempt to separate the fluorescence spectra of adrenaline and noradrenaline using chemometrics

    DEFF Research Database (Denmark)

    Nikolajsen, Rikke P; Hansen, Åse Marie; Bro, R

    2000-01-01

    An investigation was conducted on whether the fluorescence spectra of the very similar catecholamines adrenaline and noradrenaline could be separated using chemometric methods. The fluorescence landscapes (several excitation and emission spectra were measured) of two data sets with respectively 16...... regression (Unfold-PLSR) on the larger data set and parallel factor analysis (PARAFAC) of the six samples of the smaller set showed that there was no difference between the fluorescence landscapes of adrenaline and noradrenaline. It can be concluded that chemometric separation of adrenaline and noradrenaline...

  12. Muscarinic receptors in separate populations of noradrenaline- and adrenaline-containing chromaffin cells

    International Nuclear Information System (INIS)

    Michelena, P.; Moro, M.A.; Castillo, C.J.; Garcia, A.G.

    1991-01-01

    We have performed binding experiments of (a)[3H]quinuclidinyl benzilate to partially purified membranes from noradrenaline- and adrenaline-containing chromaffin cells and (b) [3H]N-methyl-quinuclidinyl benzilate to acutely isolated, or 48-h cultured, chromaffin cells subpopulations. Using this approach, we obtained enough evidence to conclude (1st) that muscarinic receptors are present in both noradrenaline- and adrenaline containing cells; (2nd) that noradrenaline cells contain in fact 2-3 fold higher density of those receptors; and (3rd) that those receptors undergo plastic changes upon chronic culturing of the cells

  13. Evidence for a dihydropyridine-sensitive and conotoxin-insensitive release of noradrenaline and uptake of calcium in adrenal chromaffin cells.

    Science.gov (United States)

    Owen, P. J.; Marriott, D. B.; Boarder, M. R.

    1989-01-01

    1. It has been suggested that neuronal voltage-sensitive calcium channels (VSCC) may be divided into dihydropyridine (DHP)-sensitive (L) and DHP-insensitive (N and T), and that both the L and the N type channels are attenuated by the peptide blocker omega-conotoxin. Here the effects of omega-conotoxin on release of noradrenaline and uptake of calcium in bovine adrenal chromaffin cells were investigated. 2. Release of noradrenaline in response to 25 mM K+, 65 mM K+, 10 nM bradykinin or 10 microM prostaglandin E1 was not affected by omega-conotoxin in the range 10 nM-1 microM. 3. 45Ca2+ uptake stimulated by high K+ and prostaglandin was attenuated by 1 microM nitrendipine and enhanced by 1 microM Bay K 8644; these calcium fluxes were not modified by 20 nM omega-conotoxin. 4. With superfused rat brain striatal slices in the same medium as the above cell studies, release of dopamine in response to 25 mM K+ was attenuated by 20 nM omega-conotoxin. 5. These results show that in these neurone-like cells, release may be effected by calcium influx through DHP-sensitive but omega-conotoxin-insensitive VSCC, a result inconsistent with the suggestion that omega-conotoxin blocks both L-type and N-type neuronal calcium channels. PMID:2470457

  14. Acute intraperitoneal injection of caffeine improves endurance exercise performance in association with increasing brain dopamine release during exercise.

    Science.gov (United States)

    Zheng, Xinyan; Takatsu, Satomi; Wang, Hongli; Hasegawa, Hiroshi

    2014-07-01

    The purpose of this study was to examine changes of thermoregulation, neurotransmitters in the preoptic area and anterior hypothalamus (PO/AH), which is the thermoregulatory center, and endurance exercise performance after the intraperitoneal injection of caffeine in rats. Core body temperature (Tcore), oxygen consumption (VO₂) and tail skin temperature (Ttail) were measured. A microdialysis probe was inserted in the PO/AH, and samples for the measurements of extracellular dopamine (DA), noradrenaline (NA) and serotonin (5-HT) levels were collected. During the rest experiment, 1 h after baseline collections in the chamber (23 °C), the rats were intraperitoneally injected with saline, or 3 mg kg(-1) or 10 mg kg(-1) caffeine. The duration of the test was 4 h. During the exercise experiment, baseline collections on the treadmill were obtained for 1 h. One hour before the start of exercise, rats were intraperitoneally injected with either 10 mg kg(-1) caffeine (CAF) or saline (SAL). Animals ran until fatigue at a speed of 18 m min(-1), at a 5% grade, on the treadmill in a normal environment (23 °C). At rest, 3 mg kg(-1) caffeine did not influence Tcore, Ttail, VO₂, extracellular DA, NA and 5-HT. 10 mg kg(-1) caffeine caused significant increases in Tcore, VO₂, Ttail and extracellular DA in the PO/AH. In addition, 10 mg kg(-1) caffeine increased the run time to fatigue (SAL: 104.4 ± 30.9 min, CAF: 134.0 ± 31.1 min, pcaffeine and exercise increased Tcore, VO₂, Ttail and extracellular DA in the PO/AH. NA increased during exercise, while neither caffeine nor exercise changed 5-HT. These results indicate that caffeine has ergogenic and hyperthermic effects, and these effects may be related to changes of DA release in the brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Dopamine transporters govern diurnal variation in extracellular dopamine tone

    OpenAIRE

    Ferris, Mark J.; España, Rodrigo A.; Locke, Jason L.; Konstantopoulos, Joanne K.; Rose, Jamie H.; Chen, Rong; Jones, Sara R.

    2014-01-01

    The mechanism for diurnal (i.e., light/dark) oscillations in extracellular dopamine tone in mesolimbic and nigrostriatal systems is unknown. This is because, unlike other neurotransmitter systems, variation in dopamine tone does not correlate with variation in dopamine cell firing. The current research pinpoints the dopamine transporter as a critical governor of diurnal variation in both extracellular dopamine tone and the intracellular availability of releasable dopamine. These data describe...

  16. Effect of Leu-enkephalin and delta sleep inducing peptide (DSIP) on endogenous noradrenaline release by rat brain synaptosomes

    International Nuclear Information System (INIS)

    Lozhanets, V.V.; Anosov, A.K.

    1986-01-01

    The nonapeptide delta-sleep inducing peptide (DSIP) causes specific changes in the encephalogram of recipient animals: It prolongs the phase of long-wave or delta sleep. The cellular mechanism of action of DSIP has not yet been explained. To test the hyporhesis that this peptide or its degradation product may be presynaptic regulators of catecholamine release, the action of Leu-enkephaline, DSIP, and amino acids composing DSIP on release of endogenous noradrenalin (NA) from synaptosomes during depolarization was compared. Subcellular fractions from cerebral hemisphere of noninbred male albino rats were isolated. Lactate dehydrogenase activity was determined in the suspension of synaptosomes before and after addition of 0.5% Triton X-100. The results were subjected to statistical analysis, using the Wilcoxon-Mann-Whitney nonparametric test

  17. Evidence for distinct sodium-, dopamine-, and cocaine-dependent conformational changes in transmembrane segments 7 and 8 of the dopamine transporter

    DEFF Research Database (Denmark)

    Norregaard, Lene; Loland, Claus Juul; Gether, Ulrik

    2003-01-01

    . Inhibitors such as cocaine did not alter the effect of MTSET in M371C. The protection of M371C inactivation by dopamine required Na+. Because dopamine binding is believed to be Na+-independent, this suggests that dopamine induces a transport-associated conformational change that decreases the reactivity of M......371C with MTSET. In contrast to M371C, cocaine decreased the reaction rate of A399C with MTSET, whereas dopamine had no effect. The protection by cocaine can either reflect that Ala-399 lines the cocaine binding crevice or that cocaine induces a conformational change that decreases the reactivity of A...

  18. Suprachiasmatic modulation of noradrenaline release in the ventrolateral preoptic nucleus.

    Science.gov (United States)

    Saint-Mleux, Benoît; Bayer, Laurence; Eggermann, Emmanuel; Jones, Barbara E; Mühlethaler, Michel; Serafin, Mauro

    2007-06-13

    As the major brain circadian pacemaker, the suprachiasmatic nucleus (SCN) is known to influence the timing of sleep and waking. We thus investigated here the effect of SCN stimulation on neurons of the ventrolateral preoptic nucleus (VLPO) thought to be involved in promoting sleep. Using an acute in vitro preparation of the rat anterior hypothalamus/preoptic area, we found that whereas single-pulse stimulations of the SCN evoked standard fast ionotropic IPSPs and EPSPs, train stimulations unexpectedly evoked a long-lasting inhibition (LLI). Such LLIs could also be evoked in VLPO neurons by pressure application of NMDA within the SCN, indicating the specific activation of SCN neurons. This LLI was shown to result from the presynaptic facilitation of noradrenaline release, because it was suppressed in presence of yohimbine, a selective antagonist of alpha2-adrenoreceptors. The LLI depended on the opening of a potassium conductance, because it was annulled at E(K) and could be reversed below E(K). These results show that the SCN can provide an LLI of the sleep-promoting VLPO neurons that could play a role in the circadian organization of the sleep-waking cycle.

  19. Selective noradrenaline depletion impairs working memory and hippocampal neurogenesis.

    Science.gov (United States)

    Coradazzi, Marino; Gulino, Rosario; Fieramosca, Francesco; Falzacappa, Lucia Verga; Riggi, Margherita; Leanza, Giampiero

    2016-12-01

    Noradrenergic neurons in the locus coeruleus play a role in learning and memory, and their loss is an early event in Alzheimer's disease pathogenesis. Moreover, noradrenaline may sustain hippocampal neurogenesis; however, whether are these events related is still unknown. Four to five weeks following the selective immunotoxic ablation of locus coeruleus neurons, young adult rats underwent reference and working memory tests, followed by postmortem quantitative morphological analyses to assess the extent of the lesion, as well as the effects on proliferation and/or survival of neural progenitors in the hippocampus. When tested in the Water Maze task, lesioned animals exhibited no reference memory deficit, whereas working memory abilities were seen significantly impaired, as compared with intact or sham-lesioned controls. Stereological analyses confirmed a dramatic noradrenergic neuron loss associated to reduced proliferation, but not survival or differentiation, of 5-bromo-2'deoxyuridine-positive progenitors in the dentate gyrus. Thus, ascending noradrenergic afferents may be involved in more complex aspects of cognitive performance (i.e., working memory) possibly via newly generated progenitors in the hippocampus. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Reduced plasma noradrenaline during angiotensin II-induced acute hypertension in man

    DEFF Research Database (Denmark)

    Henriksen, J H; Kastrup, J; Christensen, N J

    1985-01-01

    1. Plasma noradrenaline and adrenaline concentrations were measured in ten subjects before, during and after intravenous infusion of angiotensin II (ANG II) in order to determine the sympathoadrenal response of ANG II challenge in man. In five subjects ganglionic blockade was additionally performed...... by intravenous infusion of trimethaphan. 2. During ANG II infusion mean arterial blood pressure increased by 30% (P adrenaline decreased less. 3. During ganglionic blockade plasma noradrenaline decreased significantly (P

  1. Increase in serum noradrenaline concentration by short dives with bradycardia in Indo-Pacific bottlenose dolphin Tursiops aduncus.

    Science.gov (United States)

    Suzuki, Miwa; Tomoshige, Mika; Ito, Miki; Koga, Sotaro; Yanagisawa, Makio; Bungo, Takashi; Makiguchi, Yuya

    2017-07-01

    In cetaceans, diving behavior immediately induces a change in blood circulation to favor flow to the brain and heart; this is achieved by intense vasoconstriction of the blood vessels that serve other organs. This blood circulation response is allied to a decrease in heart rate in order to optimize oxygen usage during diving. Vasoconstrictors are present in all mammals and stimulate the contraction of the smooth muscle in the walls of blood vessels. The most important of these vasoconstrictors are the hormones adrenaline (A), noradrenaline (NA), and angiotensin II (ANG II). At present, the contribution of these hormones to vasoconstriction during diving in cetaceans is unclear. To elucidate their possible roles, changes in serum levels of A, NA and ANG II were monitored together with heart rate in the Indo-Pacific bottlenose dolphin Tursiops aduncus during 90 and 180s dives. Both brief diving periods induced an increase in serum NA concentration and a decrease in heart rate; however, no changes were detected in serum levels of A or ANG II. These data indicate that NA may play a role in diving-induced vasoconstriction. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Selective potentiation of noradrenaline in the guinea-pig vas deferens by 2-(4-methylaminobutoxy) diphenylmethane hydrochloride (MCI-2016), a new psychotropic drug.

    OpenAIRE

    Ohizumi, Y.; Takahashi, M.; Tobe, A.

    1982-01-01

    In the isolated vas deferens of the guinea-pig, the effects of 2-(4-methylaminobutoxy) diphenylmethane hydrochloride (MCI-2016), a new psychotropic drug, on the contractile response to various agonists or transmural electrical stimulation and on the release of noradrenaline (NA) from the tissue were examined and compared with cocaine. MCI-2016 (3 X 10(-6)M) and cocaine (3 X 10(-5)M) produced a leftward shift (15 and 20 times, respectively) of the dose-response curves for the contractile effec...

  3. The second sodium site in the dopamine transporter controls cation permeability and is regulated by chloride

    DEFF Research Database (Denmark)

    Borre, Lars; Andreassen, Thorvald F; Shi, Lei

    2014-01-01

    The dopamine transporter (DAT) belongs to the family of neurotransmitter:sodium symporters (NSSs) and controls dopamine (DA) homeostasis by mediating Na(+)- and Cl(-)-dependent reuptake of DA. Here we used two-electrode voltage clamp measurements in Xenopus oocytes together with targeted mutagene......The dopamine transporter (DAT) belongs to the family of neurotransmitter:sodium symporters (NSSs) and controls dopamine (DA) homeostasis by mediating Na(+)- and Cl(-)-dependent reuptake of DA. Here we used two-electrode voltage clamp measurements in Xenopus oocytes together with targeted...

  4. Study of dopamine reactivity on platinum single crystal electrode surfaces

    International Nuclear Information System (INIS)

    Chumillas, Sara; Figueiredo, Marta C.; Climent, Víctor; Feliu, Juan M.

    2013-01-01

    Dopamine is the biological molecule responsible, among other functions, of the heart beat and blood pressure regulation. Its loss, in the human body, can result in serious diseases such as Parkinson's, schizophrenia or depression. Structurally, this molecule belongs to the group of catecholamines, together with epinephrine (adrenaline) and norepinephrine (noradrenaline). The hydroquinone moiety of the molecule can be easily oxidized to quinone, rendering the electrochemical methods a convenient approach for the development of dopamine biosensors. The reactivity of similar aromatic molecules, such as catechol and hydroquinone, at well-ordered platinum surfaces, has recently been investigated in our group. In this paper, we extend these studies to the structurally related molecule dopamine. The study has been performed in neutral pH, since this is closer to the natural conditions for these molecules in biological media. Cyclic voltammetry and in situ infra-red spectroscopy have been combined to extract information about the behavior of this molecule on well-defined platinum surfaces. Dopamine appears to be electrochemically active and reveals interesting adsorption phenomena at low potentials (0.15–0.25 V vs RHE), sensitive to the single crystal orientation. The adsorption of dopamine on these surfaces is very strong, taking place at much lower potentials than the electron transfer from solution species. Specifically, the voltammetry of Pt(1 1 1) and Pt(1 0 0) in dopamine solutions shows an oxidation peak at potentials close to the onset of hydrogen evolution, which is related to the desorption of hydrogen and the adsorption of dopamine. On the other hand, adsorption on Pt(1 1 0) is irreversible and the surface appears totally blocked. Spectroscopic results indicate that dopamine is adsorbed flat on the surface. At potentials higher than 0.6 V vs RHE the three basal planes show a common redox process. The initial formation of the quinone moiety is followed by a

  5. Noradrenaline and acetylcholine responsiveness of glucose-monitoring and glucose-insensitive neurons in the mediodorsal prefrontal cortex.

    Science.gov (United States)

    Nagy, Bernadett; Szabó, István; Csetényi, Bettina; Hormay, Edina; Papp, Szilárd; Keresztes, Dóra; Karádi, Zoltán

    2014-01-16

    The mediodorsal prefrontal cortex (mdPFC), as part of the forebrain glucose-monitoring (GM) system, plays important role in several regulatory processes to control the internal state of the organism and to initiate behavioral outputs accordingly. Little is known, however, about the neurochemical sensitivity of neurons located in this area. Substantial evidence indicates that the locus ceruleus - noradrenaline (NA) projection system and the nucleus basalis magnocellularis - cholinergic projection system regulate behavioral state and state dependent processing of sensory information, various cognitive functions already associated with the mdPFC. The main goal of the present study was to examine noradrenergic and cholinergic responsiveness of glucose-monitoring and glucose-insensitive (GIS) neurons in the mediodorsal prefrontal cortex. One fifth of the neurons tested changed in firing rate to microelectrophoretically applied NA. Responsiveness of the GM cells to this catecholamine proved to be significantly higher than that of the GIS units. Microiontophoretic application of acetylcholine (Ach) resulted in activity changes (predominantly facilitation) of more than 40% of the mdPFC neurons. Proportion of Ach sensitive units among the GM and the GIS neurons was found to be similar. The glucose-monitoring neurons of the mdPFC and their distinct NA and remarkable Ach sensitivity are suggested to be of particular significance in prefrontal control of adaptive behaviors. © 2013 Published by Elsevier B.V.

  6. Early Paradoxical Increase of Dopamine: A Neurochemical Study of Olfactory Bulb in Asymptomatic and Symptomatic MPTP Treated Monkeys

    Directory of Open Access Journals (Sweden)

    Christian Pifl

    2017-05-01

    Full Text Available Parkinson’s disease (PD is a neurodegenerative disease with both motor and non-motor manifestations. Hyposmia is one of the early non-motor symptoms, which can precede motor symptoms by several years. The relationship between hyposmia and PD remains elusive. Olfactory bulb (OB pathology shows an increased number of olfactory dopaminergic cells, protein aggregates and dysfunction of neurotransmitter systems. In this study we examined tissue levels of dopamine (DA and serotonin (5-hydroxytryptamine, 5-HT and their metabolites, of noradrenaline (NA and of the amino acid neurotransmitters aspartate, glutamate, taurine and γ-aminobutyric acid in OBs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP treated Macaca fascicularis in different stages, including monkeys who were always asymptomatic, monkeys who recovered from mild parkinsonian signs, and monkeys with stable moderate or severe parkinsonism. DA was increased compared to controls, while neither NA and 5-HT nor the amino acid neurotransmitters were significantly changed. Furthermore, DA increased before stable motor deficits appear with +51% in asymptomatic and +96% in recovered monkeys. Unchanged DA metabolites suggest a special metabolic profile of the newly formed DA neurons. Significant correlation of homovanillic acid (HVA with taurine single values within the four MPTP groups and of aspartate with taurine within the asymptomatic and recovered MPTP groups, but not within the controls suggest interactions in the OB between taurine and the DA system and taurine and the excitatory neurotransmitter triggered by MPTP. This first investigation of OB in various stages after MPTP administration suggests that the DA increase seems to be an early phenomenon, not requiring profound nigrostriatal neurodegeneration or PD symptoms.

  7. Correlations between plasma noradrenaline concentrations, antioxidants, and neutrophil counts after submaximal resistance exercise in men

    Science.gov (United States)

    Ramel, A; Wagner, K; Elmadfa, I

    2004-01-01

    Objectives: To investigate noradrenaline concentrations, neutrophil counts, plasma antioxidants, and lipid oxidation products before and after acute resistance exercise. Methods: 17 male participants undertook a submaximal resistance exercise circuit (10 exercises; 75% of the one repetition maximum; mean (SD) exercise time, 18.6 (1.1) minutes). Blood samples were taken before and immediately after exercise and analysed for plasma antioxidants, noradrenaline, neutrophils, and lipid oxidation products. Wilcoxon's signed-rank test and Pearson's correlation coefficient were used for calculations. Results: Neutrophils, noradrenaline, fat soluble antioxidants, and lipid oxidation products increased after exercise. Noradrenaline concentrations were associated with higher antioxidant concentrations. Neutrophils were related to higher concentrations of conjugated dienes. Conclusions: Submaximal resistance exercise increases plasma antioxidants. This might reflect enhanced antioxidant defence in response to the oxidative stress of exercise, though this is not efficient for inhibiting lipid oxidation. The correlation between noradrenaline concentrations and plasma antioxidants suggests a modulating role of the stress hormone. Neutrophils are a possible source of oxidative stress after resistance exercise. PMID:15388566

  8. [3H] glycogen hydrolysis in brain slices: responses to meurotransmitters and modulation of noradrenaline receptors

    International Nuclear Information System (INIS)

    Quach, T.T.; Rose, C.; Schwartz, J.C.

    1978-01-01

    Different agents have been investigated for their effects on [ 3 H] glycogen synthesized in mouse cortical slices. Of these noradrenaline, serotonin and histamine induced clear concentration-dependent glycogenesis. [ 3 H] glycogen hydrolysis induced by noradrenaline appears to be mediated by beta-adrenergic receptors because it is completely prevented by timolol, while phentolamine is ineffective. It seems to involve cyclic AMP because it is potentiated in the presence of isobutylmethylxanthine; in addition dibutyryl cyclic AMP (but not dibutyryl cyclic GMP) promotes glycogenolysis. Lower concentrations of noradrenaline were necessary for [ 3 H] glycogen hydrolysis (ECsub(50) 0.5μM) than for stimulation of cyclic AMP accumulation (ECsub(50) = 8μM). After subchronic reserpine treatment the concentration-response curve to noradrenaline was significantly shifted to the left (ECsub(50) = 0.09 +- 0.02 μM as compared with 0.49 +- 0.08μM in saline-pretreated mice) without modifications of either the basal [ 3 H] glycogen level, maximal glycogenolytic effect, or the dibutyryl cAMP-induced glycogenolytic response. In addition to noradrenaline, clear concentration-dependent [ 3 H] glycogen hydrolysis was observed in the presence of histamine or serotonin. In contrast to the partial [ 3 H] glycogen hydrolysis elicited by these biogenic amines, depolarization of the slices by 50 mM K + provoked a nearly total [ 3 H] glycogen hydrolysis. (author)

  9. Down-regulation of dopamine D-2, 5-HT2 receptors and β-adrenoceptors in rat brain after prolonged treatment with a new potential antidepressant, Lu 19-005

    International Nuclear Information System (INIS)

    Nowak, G.; Arnt, J.; Hyttel, J.; Svendsen, O.

    1985-01-01

    Lu 19-005 is a new phenylindan derivative with strong and equipotent inhibitory effect on dopamine (DA), noradrenaline (NA) and serotonin (5-HT) uptake. The adaptive effects of 2 weeks treatment with Lu 19-005, on receptor binding in vitro and on d-amphetamine responsiveness in vivo have been investigated in rats. One or 3 days after the final dose the number of β-adrenoceptors and of 5-HT 2 and DA D-2 receptors was decreased by 20-30%, whereas αsub1-adrenoceptor number was slightly decreased only 1 day after withdrawal. The DA D-2 receptor number remained decreased at 7 days withdrawal, but returned to normal after another 3 days. The brain levels of DA, NA and 5-HT were not changed by 2 weeks' Lu 19-005 treatment. The down-regulation of DA D-2 receptors was accompanied by tolerance to d-amphetamine-induced hypermotility (after low doses) and stereotyped licking or biting (after a high dose). The tolerance to d-amphetamine-induced hypermotility was maximal 3-5 days withdrawal time, and remained significant also 15 days after the last dose. The results are discussed in relation to the effect of prolonged treatment with other antidepressant drugs. (Author)

  10. Serotonin and noradrenaline reuptake inhibitors (SNRIs) for fibromyalgia.

    Science.gov (United States)

    Welsch, Patrick; Üçeyler, Nurcan; Klose, Petra; Walitt, Brian; Häuser, Winfried

    2018-02-28

    Fibromyalgia is a clinically defined chronic condition of unknown etiology characterized by chronic widespread pain that often co-exists with sleep disturbances, cognitive dysfunction and fatigue. People with fibromyalgia often report high disability levels and poor quality of life. Drug therapy, for example, with serotonin and noradrenaline reuptake inhibitors (SNRIs), focuses on reducing key symptoms and improving quality of life. This review updates and extends the 2013 version of this systematic review. To assess the efficacy, tolerability and safety of serotonin and noradrenaline reuptake inhibitors (SNRIs) compared with placebo or other active drug(s) in the treatment of fibromyalgia in adults. For this update we searched CENTRAL, MEDLINE, Embase, the US National Institutes of Health and the World Health Organization (WHO) International Clinical Trials Registry Platform for published and ongoing trials and examined the reference lists of reviewed articles, to 8 August 2017. We selected randomized, controlled trials of any formulation of SNRIs against placebo or any other active treatment of fibromyalgia in adults. Three review authors independently extracted data, examined study quality, and assessed risk of bias. For efficacy, we calculated the number needed to treat for an additional beneficial outcome (NNTB) for pain relief of 50% or greater and of 30% or greater, patient's global impression to be much or very much improved, dropout rates due to lack of efficacy, and the standardized mean differences (SMD) for fatigue, sleep problems, health-related quality of life, mean pain intensity, depression, anxiety, disability, sexual function, cognitive disturbances and tenderness. For tolerability we calculated number needed to treat for an additional harmful outcome (NNTH) for withdrawals due to adverse events and for nausea, insomnia and somnolence as specific adverse events. For safety we calculated NNTH for serious adverse events. We undertook meta

  11. Response Surface Modelling of Noradrenaline Production in Hairy Root Culture of Purslane (Portulaca oleracea L.

    Directory of Open Access Journals (Sweden)

    Mehdi Ghorbani

    2015-03-01

    Full Text Available Common purslane (Portulaca oleracea L. is an annual plant as one of the natural sources for noradrenaline hormone. In this research, hairy root culture of purslane was established by using Agrobacterium rhizogenes strain ATCC 15834. In the following, Box-Behnken model of response surface methodology (RSM was employed to optimize B5 medium for the growth of P. oleracea L. hairy root line. According to the results, modelling and optimization conditions, including sucrose, CaCl2.H2O, H2PO4 and NO3-/NH4+ concentrations on maximum dry weight (0.155 g and noradrenaline content (0.36 mg.g-1 DW was predicted. These optimal conditions predicted by RSM were confirmed the enhancement of noradrenaline production as an application potential for production by hairy root cultures.

  12. Tesofensine induces appetite suppression and weight loss with reversal of low forebrain dopamine levels in the diet-induced obese rat

    DEFF Research Database (Denmark)

    Hansen, Henrik H; Jensen, Majbrit M; Overgaard, Agnete

    2013-01-01

    is not clarified. Tesofensine effectively induces appetite suppression in the diet-induced obese (DIO) rat partially being ascribed to an indirect stimulation of central dopamine receptor function subsequent to blocked dopamine transporter activity. This is interesting, as obese patients have reduced central......Tesofensine is a triple monoamine reuptake inhibitor which inhibits noradrenaline, 5-HT and dopamine reuptake. Tesofensine is currently in clinical development for the treatment of obesity, however, the pharmacological basis for its strong and sustained effects in obesity management...... as compared to age-matched chow-fed rats. DIO rats also exhibited a marked reduction in baseline extracellular dopamine levels in the nucleus accumbens (NAcc) and prefrontal cortex (PFC), as compared to chow-fed rats using microdialysis. While acute administration of tesofensine (2.0mg/kg) normalized accumbal...

  13. Pharmacological profile of the abeorphine 201-678, a potent orally active and long lasting dopamine agonist

    Energy Technology Data Exchange (ETDEWEB)

    Jaton, A.L.; Giger, R.K.A.; Vigouret, J.M.; Enz, A.; Frick, W.; Closse, A.; Markstein, R.

    1986-01-13

    The central dopaminergic effects of an abeorphine derivative 201-678 were compared to those of apomorphine and bromocriptine in different model systems. After oral administration, this compound induced contralateral turning in rats with 6-hydroxydopamine induced nigral lesions and exhibited strong anti-akinetic properties in rats with 6-hydroxydopamine induced hypothalamic lesions. It decreased dopamine metabolism in striatum and cortex, but did not modify noradrenaline and serotonin metabolism in the rat brain. 201-678 counteracted the in vivo increase of tyrosine hydroxylase activity induced by ..gamma..-butyrolactone. In vitro it stimulated DA-sensitive adenylate cyclase and inhibited acetylcholine release from rat striatal slices. This compound had high affinity for /sup 3/H-dopamine and /sup 3/H-clonidine binding sites. These results indicate that 201-678 is a potent, orally active dopamine agonist with a long duration of action. Furthermore it appears more selective than other dopaminergic drugs. 29 references, 5 figures, 3 tables.

  14. The release of noradrenaline in the locus coeruleus and prefrontal cortex studied with dual-probe microdialysis

    NARCIS (Netherlands)

    Pudovkina, O; Kawahara, Y; de Vries, J.B; Westerink, B.H.C.

    2001-01-01

    The present study was undertaken to investigate and compare the properties of noradrenaline release in the locus coeruleus (LC) and prefrontal cortex (PFC). For that aim the dual-probe microdialysis technique was applied for simultaneous detection of noradrenaline levels in the LC and PFC in

  15. Stress at birth: plasma noradrenaline concentrations of women in labour and in cord blood.

    Science.gov (United States)

    Messow-Zahn, K; Sarafoff, M; Riegel, K P

    1978-03-15

    Radioenzymatically measured plasma noradrenaline concentrations, present at birth in umbilical veins of 19 healthy, 17 acutely asphyxiated, and 9 chronically distressed newborn infants were found to be elevated above maternal values proportional to the degree of distress and to plasma H ion concentrations.

  16. Olfactory Perceptual Learning Requires Action of Noradrenaline in the Olfactory Bulb: Comparison with Olfactory Associative Learning

    Science.gov (United States)

    Vinera, Jennifer; Kermen, Florence; Sacquet, Joëlle; Didier, Anne; Mandairon, Nathalie; Richard, Marion

    2015-01-01

    Noradrenaline contributes to olfactory-guided behaviors but its role in olfactory learning during adulthood is poorly documented. We investigated its implication in olfactory associative and perceptual learning using local infusion of mixed a1-ß adrenergic receptor antagonist (labetalol) in the adult mouse olfactory bulb. We reported that…

  17. Tonic inhibition by orphanin FQ/nociceptin of noradrenaline neurotransmission in the amygdala

    NARCIS (Netherlands)

    Kawahara, Y; Hesselink, M.B.; van Scharrenburg, G; Westerink, B.H.C.

    2004-01-01

    The present microdialysis study investigated whether nociceptin/orphanin FQ exerts a tonic inhibition of the release of noradrenaline in the basolateral nucleus of the amygdala in awake rats. The non-peptide competitive nociceptin/orphanin FQ (N/OFQ) peptide receptor antagonist J-113397 (20 mg/kg

  18. The Dynamic cerebral autoregulatory adaptive response to noradrenaline is attenuated during systemic inflammation in humans

    DEFF Research Database (Denmark)

    Berg, Ronan M. G.; Plovsing, Ronni R.; Bailey, Damian M.

    2015-01-01

    Vasopressor support is used widely for maintaining vital organ perfusion pressure in septic shock, with implications for dynamic cerebral autoregulation (dCA). This study investigated whether a noradrenaline-induced steady state increase in mean arterial blood pressure (MAP) would enhance d......, noradrenaline administration was associated with a decrease in gain (1.18 (1.12-1.35) vs 0.93 (0.87-0.97) cm/mmHg per s; P vs 0.94 (0.81-1.10) radians; P = 0.58). After LPS, noradrenaline administration changed neither gain (0.91 (0.85-1.01) vs 0.87 (0.......81-0.97) cm/mmHg per s; P = 0.46) nor phase (1.10 (1.04-1.30) vs 1.37 (1.23-1.51) radians; P = 0.64). The improvement of dCA to a steady state increase in MAP is attenuated during an LPS-induced systemic inflammatory response. This may suggest that vasopressor treatment with noradrenaline offers no additional...

  19. CO-RELEASED ADRENALINE MARKEDLY FACILITATES NORADRENALINE OVERFLOW THROUGH PREJUNCTIONAL BETA(2)-ADRENOCEPTORS DURING SWIMMING EXERCISE

    NARCIS (Netherlands)

    COPPES, RP; SMIT, J; BENTHEM, L; VANDERLEEST, J; ZAAGSMA, J

    1995-01-01

    The effect of intravenously applied (-)adrenaline, taken up by and released from sympathetic nerves, on swimming exercise-induced noradrenaline overflow in permanently cannulated adrenal demedullated rats was studied. Adrenaline (100 ng/min) was infused for 2 h, during which a plasma concentration

  20. Toxicity of noradrenaline, a novel anti-biofouling component, to two non-target zooplankton species, Daphnia magna and Ceriodaphnia dubia.

    Science.gov (United States)

    Overturf, C L; Wormington, A M; Blythe, K N; Gohad, N V; Mount, A S; Roberts, A P

    2015-05-01

    Noradrenaline (NA) is the active component of novel antifouling agents and acts by preventing attachment of fouling organisms. The goal of this study was to examine the toxicity of NA to the non-target zooplankton D. magna and C. dubia. Neonates were exposed to one of five concentrations of NA and effects on survival, reproduction and molting were determined. Calculated LC50 values were determined to be 46 and 38 μM in C. dubia and D. magna, respectively. A 10-day C. dubia study found that reproduction metrics were significantly impacted at non-lethal concentrations. In D. magna, concentrations greater than 40 μM significantly impacted molting. A toxicity test was conducted with D. magna using oxidized NA, which yielded similar results. These data indicate that both NA and oxidized NA are toxic to non-target zooplankton. Results obtained from this study can be used to guide future ecological risk assessments of catecholamine-based antifouling agents. Copyright © 2015. Published by Elsevier Inc.

  1. Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

    Science.gov (United States)

    Daberkow, DP; Brown, HD; Bunner, KD; Kraniotis, SA; Doellman, MA; Ragozzino, ME; Garris, PA; Roitman, MF

    2013-01-01

    Drugs of abuse hijack brain reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting non-exocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties - which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to two hours. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration and frequency of spontaneous dopamine transients, the naturally occurring, non-electrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sucrose reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sucrose-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify up-regulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling. PMID:23303926

  2. Elevated Striatal Dopamine Function in Immigrants and Their Children: A Risk Mechanism for Psychosis.

    Science.gov (United States)

    Egerton, Alice; Howes, Oliver D; Houle, Sylvain; McKenzie, Kwame; Valmaggia, Lucia R; Bagby, Michael R; Tseng, Huai-Hsuan; Bloomfield, Michael A P; Kenk, Miran; Bhattacharyya, Sagnik; Suridjan, Ivonne; Chaddock, Chistopher A; Winton-Brown, Toby T; Allen, Paul; Rusjan, Pablo; Remington, Gary; Meyer-Lindenberg, Andreas; McGuire, Philip K; Mizrahi, Romina

    2017-03-01

    Migration is a major risk factor for schizophrenia but the neurochemical processes involved are unknown. One candidate mechanism is through elevations in striatal dopamine synthesis and release. The objective of this research was to determine whether striatal dopamine function is elevated in immigrants compared to nonimmigrants and the relationship with psychosis. Two complementary case-control studies of in vivo dopamine function (stress-induced dopamine release and dopamine synthesis capacity) in immigrants compared to nonimmigrants were performed in Canada and the United Kingdom. The Canadian dopamine release study included 25 immigrant and 31 nonmigrant Canadians. These groups included 23 clinical high risk (CHR) subjects, 9 antipsychotic naïve patients with schizophrenia, and 24 healthy volunteers. The UK dopamine synthesis study included 32 immigrants and 44 nonimmigrant British. These groups included 50 CHR subjects and 26 healthy volunteers. Both striatal stress-induced dopamine release and dopamine synthesis capacity were significantly elevated in immigrants compared to nonimmigrants, independent of clinical status. These data provide the first evidence that the effect of migration on the risk of developing psychosis may be mediated by an elevation in brain dopamine function. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.

  3. Dopamine and anorexia nervosa.

    Science.gov (United States)

    Södersten, P; Bergh, C; Leon, M; Zandian, M

    2016-01-01

    We have suggested that reduced food intake increases the risk for anorexia nervosa by engaging mesolimbic dopamine neurons, thereby initially rewarding dieting. Recent fMRI studies have confirmed that dopamine neurons are activated in anorexia nervosa, but it is not clear whether this response is due to the disorder or to its resulting nutritional deficit. When the body senses the shortage of nutrients, it rapidly shifts behavior toward foraging for food as a normal physiological response and the mesolimbic dopamine neurons may be involved in that process. On the other hand, the altered dopamine status of anorexics has been suggested to result from a brain abnormality that underlies their complex emotional disorder. We suggest that the outcomes of the treatments that emerge from that perspective remain poor because they target the mental symptoms that are actually the consequences of the food deprivation that accompanies anorexia. On the other hand, a method that normalizes the disordered eating behavior of anorexics results in much better physiological, behavioral, and emotional outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Dopamins renale virkninger

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal

    1990-01-01

    is frequently employed in cases of acute oliguric renal failure but the results available concerning the therapeutic effect are frequently retrospective and uncontrolled. The results suggest that early treatment with 1-3 micrograms/kg/min dopamine combined with furosemide can postpone or possibly render...

  5. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: Effects of dopamine receptor activation and anesthesia

    OpenAIRE

    Robinson, Siobhan; Smith, David M.; Mizumori, Sheri J. Y.; Palmiter, Richard D.

    2004-01-01

    To examine the regulation of midbrain dopamine neurons, recordings were obtained from single neurons of freely moving, genetically engineered dopamine-deficient (DD) mice. DD mice were tested without dopamine signaling (basal state) and with endogenous dopamine signaling (after L-dopa administration). In the basal state, when dopamine concentration in DD mice is

  6. The modulatory effects of noradrenaline on vagal control of heart rate in the dogfish, Squalus acanthias.

    Science.gov (United States)

    Agnisola, Claudio; Randall, David J; Taylor, Edwin W

    2003-01-01

    The possible interactions between inhibitory vagal control of the heart and circulating levels of catecholamines in dogfish (Squalus acanthias) were studied using an in situ preparation of the heart, which retained intact its innervation from centrally cut vagus nerves. The response to peripheral vagal stimulation typically consisted of an initial cardiac arrest, followed by an escape beat, leading to renewed beating at a mean heart rate lower than the prestimulation rate (partial recovery). Cessation of vagal stimulation led to a transient increase in heart rate, above the prestimulation rate. This whole response was completely abolished by 10(-4) M atropine (a muscarinic cholinergic antagonist). The degree of vagal inhibition was evaluated in terms of both the initial, maximal cardiac interval and the mean heart rate during partial recovery, both expressed as a percentage of the prestimulation heart rate. The mean prestimulation heart rate of this preparation (36+/-4 beats min(-1)) was not affected by noradrenaline but was significantly reduced by 10(-4) M nadolol (a beta-adrenergic receptor antagonist), suggesting the existence of a resting adrenergic tone arising from endogenous catecholamines. The degree of vagal inhibition of heart rate varied with the rate of stimulation and was increased by the presence of 10(-8) M noradrenaline (the normal in vivo level in routinely active fish), while 10(-7) M noradrenaline (the in vivo level measured in disturbed or deeply hypoxic fish) reduced the cardiac response to vagal stimulation. In the presence of 10(-7) M noradrenaline, 10(-4) M nadolol further reduced the vagal response, while 10(-4) M nadolol + 10(-4) M phentolamine had no effect, indicating a complex interaction between adrenoreceptors, possibly involving presynaptic modulation of vagal inhibition.

  7. Modulation of sibutramine-induced increases in extracellular noradrenaline concentration in rat frontal cortex and hypothalamus by α2-adrenoceptors

    Science.gov (United States)

    Wortley, K E; Heal, D J; Stanford, S C

    1999-01-01

    The effects of sibutramine (0.25–10 mg kg−1 i.p.) on extracellular noradrenaline concentration in the frontal cortex and hypothalamus of freely-moving rats were investigated using microdialysis. The role of presynaptic α2-adrenoceptors in modulating the effects of sibutramine in these brain areas was also determined.Sibutramine induced an increase in extracellular noradrenaline concentration, the magnitude of which paralleled dose, in both brain areas. In the cortex, this increase was gradual and sustained, whereas in the hypothalamus it was more rapid and of shorter duration.In both the cortex and hypothalamus, pretreatment of rats with the α2-adrenoceptor antagonist RX821002 (3 mg kg−1 i.p.) potentiated increases in the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.), by 7 and 10 fold respectively. RX821002 also reduced the latency of sibutramine to reach its maximum effect in the cortex, but not in the hypothalamus.Infusion of RX821002 (1 μM) via the probe increased the accumulation of extracellular noradrenaline induced by sibutramine (10 mg kg−1 i.p.) in both brain areas. In the hypothalamus, the effects of RX821002 on the accumulation of noradrenaline induced by sibutramine were 2 fold greater than those in the cortex.These findings support evidence that sibutramine inhibits the reuptake of noradrenaline in vivo, but that the accumulation of extracellular noradrenaline is limited by noradrenergic activation of presynaptic α2-adrenoceptors. Furthermore, the data suggest that terminal α2-adrenoceptors in the hypothalamus exert a greater inhibitory effect over the control of extracellular noradrenaline accumulation than do those in the cortex. PMID:10516646

  8. NEW DOPAMINE AGONISTS IN CARDIOVASCULAR THERAPY

    NARCIS (Netherlands)

    GIRBES, ARJ; VANVELDHUISEN, DJ; SMIT, AJ

    1992-01-01

    Dopamine, a naturally occurring catecholamine, has been extensively used in intensive care for many years. Dopamine stimulates different types of adrenergic receptors: alpha-1 and -2, beta-1 and -2, and dopamine-1 and -2. The renal effects of dopamine are the result of dopamine-1 receptor (DA1)

  9. Role of adrenal hormones in the synthesis of noradrenaline in cardiac sympathetic neurones

    Science.gov (United States)

    Bhagat, B.

    1969-01-01

    1. Adrenalectomy or adrenal demedullation affected neither the levels of endogenous catecholamines in the rat heart nor the accumulation of 3H-noradrenaline 1 hr after its intravenous administration. 2. Twenty-four hours after intravenous administration of labelled amine, however, its retention was markedly reduced in the heart of adrenalectomized or demedullated rats. Ganglionic blockade prevented this reduction. 3. Rate calculations from the decline of catecholamine levels after blockade of synthesis with α-methyl-tyrosine showed that cardiac synthesis of noradrenaline increased about four-fold after demedullation and about three-fold after adrenalectomy. This increase in synthesis may compensate for the loss of circulating catecholamines. 4. There was no change in catechol-o-methyl-transferase activity, but monoamine oxidase activity was increased in the homogenates of the heart of adrenalectomized and demedullated rats. The increase in the cardiac monoamine oxidase activity was markedly greater in the adrenalectomized rats than in the demedullated rats. 5. It is suggested that adrenal cortex insufficiency may modulate the rate of synthesis of noradrenaline and monoamine oxidase activity in cardiac sympathetic neurones. PMID:5360339

  10. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  11. Selective labelling of dopamine (D2) receptors in rat striatum by [3H]domperidone but not by [3H]spiperone

    International Nuclear Information System (INIS)

    Lazareno, S.; Nahorski, S.R.

    1982-01-01

    Specific binding of [ 3 H]spiperone and [ 3 H]domperidone, displaceable by 1 μM d-butaclamol, was examined in rat striatal membranes. Initial saturation and displacement experiments indicated that [ 3 H]spiperone bound to more sites than [ 3 H]domperidone and that, whilst all displacing drugs were more potent against [ 3 H]domperidone, this difference in potency was greatest for dopamine agonists and specific antagonists and least for 5HT-related drugs. Sulpiride displaced [ 3 H]spiperone biphasically, and was used at a concentration of 50 μM to examine two classes of [ 3 H]spiperone binding: site 1 displaceable by sulpiride, and site 2 displaceable by butaclamol but not by sulpiride. Site 1 had twice the capacity of site 2 and ten times the affinity for [ 3 H]spiperone. Dopaminergic drugs displaced preferentially from site 1, whilst 5HT-related drugs were more potent against site 2. GTP reduced the potency of dopamine, noradrenaline and, to a lesser extent, 5HT at site 1, but had no effect at site 2. [ 3 H]Domperidone sites had the same capacity as [ 3 H]spiperone site 1, and dopamine, noradrenaline and 5HT, in the absence or presence of GTP, and sulpiride had essentially identical affinities for [ 3 H]domperidone sites and [ 3 H]spiperone site 1. It is concluded that [ 3 H]domperidone and [ 3 H]spiperone label an identical population of dopamine (D 2 ) receptors, whilst [ 3 H]spiperone also labels a substantial number of non-dopamine sites, at least some of which are 5TH-related. [ 3 H]Domperidone is the better radioligand for dopamine receptors. (Auth.)

  12. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    Kung, H.F.

    1994-01-01

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [ 123 I]TISCH for D1 dopamine receptors; [ 123 I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [ 123 I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  13. Noradrenaline from Locus Coeruleus Neurons Acts on Pedunculo-Pontine Neurons to Prevent REM Sleep and Induces Its Loss-Associated Effects in Rats.

    Science.gov (United States)

    Khanday, Mudasir Ahmad; Somarajan, Bindu I; Mehta, Rachna; Mallick, Birendra Nath

    2016-01-01

    Normally, rapid eye movement sleep (REMS) does not appear during waking or non-REMS. Isolated, independent studies showed that elevated noradrenaline (NA) levels inhibit REMS and induce REMS loss-associated cytomolecular, cytomorphological, psychosomatic changes and associated symptoms. However, the source of NA and its target in the brain for REMS regulation and function in health and diseases remained to be confirmed in vivo . Using tyrosine hydroxylase (TH)-siRNA and virus-coated TH-shRNA in normal freely moving rats, we downregulated NA synthesis in locus coeruleus (LC) REM-OFF neurons in vivo . These TH-downregulated rats showed increased REMS, which was prevented by infusing NA into the pedunculo-pontine tegmentum (PPT), the site of REM-ON neurons, normal REMS returned after recovery. Moreover, unlike normal or control-siRNA- or shRNA-injected rats, upon REMS deprivation (REMSD) TH-downregulated rat brains did not show elevated Na-K ATPase (molecular changes) expression and activity. To the best of our knowledge, these are the first in vivo findings in an animal model confirming that NA from the LC REM-OFF neurons (1) acts on the PPT REM-ON neurons to prevent appearance of REMS, and (2) are responsible for inducing REMSD-associated molecular changes and symptoms. These observations clearly show neuro-physio-chemical mechanism of why normally REMS does not appear during waking. Also, that LC neurons are the primary source of NA, which in turn causes some, if not many, REMSD-associated symptoms and behavioral changes. The findings are proof-of-principle for the first time and hold potential to be exploited for confirmation toward treating REMS disorder and amelioration of REMS loss-associated symptoms in patients.

  14. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Hayashizaki, Seiji; Hirai, Shinobu; Ito, Yumi; Honda, Yoshiko; Arime, Yosefu; Sora, Ichiro; Okado, Haruo; Kodama, Tohru; Takada, Masahiko

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  15. Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters

    Science.gov (United States)

    Can, Adem; Zanos, Panos; Moaddel, Ruin; Kang, Hye Jin; Dossou, Katinia S. S.; Wainer, Irving W.; Cheer, Joseph F.; Frost, Douglas O.; Huang, Xi-Ping

    2016-01-01

    Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine’s antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine’s side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1–D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine’s enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect. PMID

  16. Antidepressant drugs specifically inhibiting noradrenaline reuptake enhance recognition memory in rats.

    Science.gov (United States)

    Feltmann, Kristin; Konradsson-Geuken, Åsa; De Bundel, Dimitri; Lindskog, Maria; Schilström, Björn

    2015-12-01

    Patients suffering from major depression often experience memory deficits even after the remission of mood symptoms, and many antidepressant drugs do not affect, or impair, memory in animals and humans. However, some antidepressant drugs, after a single dose, enhance cognition in humans (Harmer et al., 2009). To compare different classes of antidepressant drugs for their potential as memory enhancers, we used a version of the novel object recognition task in which rats spontaneously forget objects 24 hr after their presentation. Antidepressant drugs were injected systemically 30 min before or directly after the training phase (Session 1 [S1]). Post-S1 injections were used to test for specific memory-consolidation effects. The noradrenaline reuptake inhibitors reboxetine and atomoxetine, as well as the serotonin noradrenaline reuptake inhibitor duloxetine, injected prior to S1 significantly enhanced recognition memory. In contrast, the serotonin reuptake inhibitors citalopram and paroxetine and the cyclic antidepressant drugs desipramine and mianserin did not enhance recognition memory. Post-S1 injection of either reboxetine or citalopram significantly enhanced recognition memory, indicating an effect on memory consolidation. The fact that citalopram had an effect only when injected after S1 suggests that it may counteract its own consolidation-enhancing effect by interfering with memory acquisition. However, pretreatment with citalopram did not attenuate reboxetine's memory-enhancing effect. The D1/5-receptor antagonist SCH23390 blunted reboxetine's memory-enhancing effect, indicating a role of dopaminergic transmission in reboxetine-induced recognition memory enhancement. Our results suggest that antidepressant drugs specifically inhibiting noradrenaline reuptake enhance cognition and may be beneficial in the treatment of cognitive symptoms of depression. (c) 2015 APA, all rights reserved).

  17. The wake-promoting hypocretin/orexin neurons change their response to noradrenaline after sleep deprivation.

    Science.gov (United States)

    Grivel, Jeremy; Cvetkovic, Vesna; Bayer, Laurence; Machard, Danièle; Tobler, Irene; Mühlethaler, Michel; Serafin, Mauro

    2005-04-20

    Sleep deprivation is accompanied by the progressive development of an irresistible need to sleep, a phenomenon whose mechanism has remained elusive. Here, we identified for the first time a reflection of that phenomenon in vitro by showing that, after a short 2 h period of total sleep deprivation, the action of noradrenaline on the wake-promoting hypocretin/orexin neurons changes from an excitation to an inhibition. We propose that such a conspicuous modification of responsiveness should contribute to the growing sleepiness that accompanies sleep deprivation.

  18. Effect of an inhibitor of noradrenaline uptake, desipramine, on cell proliferation in the intestinal crypt epithelium.

    Science.gov (United States)

    Tutton, P J; Barkla, D H

    1989-01-01

    The intestinal mucosa receives an adrenergic innervation for which there is no commonly accepted function. However, in recent years, cell kinetic studies have raised the possibility that this innervation may be an important regulator of crypt cell proliferation. The effects of noradrenaline released from adrenergic nerves is terminated principally by re-uptake of the amine into the nerve and this process can be inhibited by the antidepressant drug, desipramine. In this report desipramine is shown to accelerate crypt cell proliferation in intact, but not in chemically sympathectomized rats, thus adding support to the notion that regulation of crypt cell division is an important function of the sympathetic nervous system.

  19. TERLIPRESSIN VERSUS NORADRENALINE FOR HEPATORENAL SYNDROME. Economic evaluation under the perspective of the Brazilian Public Health System

    Directory of Open Access Journals (Sweden)

    Ângelo Zambam de MATTOS

    Full Text Available ABSTRACT Background - Terlipressin and noradrenaline are the best studied treatments for hepatorenal syndrome, and there is no evidence of superiority of one over the other regarding to efficacy. While the former drug is more costly, the latter requires admission into an intensive care unit. Objective - The aim of this study was to perform an economic evaluation, comparing treatments for hepatorenal syndrome with terlipressin and noradrenaline. Methods - For the economic evaluation, a cost-minimization analysis was performed. Direct medical costs of the two treatment strategies were compared under the perspective of the Brazilian Public Health System as the third-party payer. A probabilistic sensitivity analysis was performed. Results - The costs of treatments with terlipressin or noradrenaline were 287.77 and 2,960.45 International Dollars (Int$ respectively. Treatment using terlipressin would save Int$2,672.68 for the Public Health System for each hospital admission related to hepatorenal syndrome. In the probabilistic sensitivity analysis, it was verified that the cost of the treatment with noradrenaline could vary between Int$2,326.53 and Int$3,644.16, while costs related to the treatment using terlipressin are not variable. Conclusion - The treatment strategy using terlipressin was more economical than that using noradrenaline under the perspective of the Brazilian Public Health System as the third-party payer.

  20. Noradrenaline, oxymetazoline and phorbol myristate acetate induce distinct functional actions and phosphorylation patterns of α1A-adrenergic receptors.

    Science.gov (United States)

    Alcántara-Hernández, Rocío; Hernández-Méndez, Aurelio; Romero-Ávila, M Teresa; Alfonzo-Méndez, Marco A; Pupo, André S; García-Sáinz, J Adolfo

    2017-12-01

    In LNCaP cells that stably express α 1A -adrenergic receptors, oxymetazoline increased intracellular calcium and receptor phosphorylation, however, this agonist was a weak partial agonist, as compared to noradrenaline, for calcium signaling. Interestingly, oxymetazoline-induced receptor internalization and desensitization displayed greater effects than those induced by noradrenaline. Phorbol myristate acetate induced modest receptor internalization and minimal desensitization. α 1A -Adrenergic receptor interaction with β-arrestins (colocalization/coimmunoprecipitation) was induced by noradrenaline and oxymetazoline and, to a lesser extent, by phorbol myristate acetate. Oxymetazoline was more potent and effective than noradrenaline in inducing ERK 1/2 phosphorylation. Mass spectrometric analysis of immunopurified α 1A -adrenergic receptors from cells treated with adrenergic agonists and the phorbol ester clearly showed that phosphorylated residues were present both at the third intracellular loop and at the carboxyl tail. Distinct phosphorylation patterns were observed under the different conditions. The phosphorylated residues were: a) Baseline and all treatments: T233; b) noradrenaline: S220, S227, S229, S246, S250, S389; c) oxymetazoline: S227, S246, S381, T384, S389; and d) phorbol myristate acetate: S246, S250, S258, S351, S352, S401, S402, S407, T411, S413, T451. Our novel data, describing the α 1A -AR phosphorylation sites, suggest that the observed different phosphorylation patterns may participate in defining adrenoceptor localization and action, under the different conditions examined. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Dopamine Oxidation and Autophagy

    Directory of Open Access Journals (Sweden)

    Patricia Muñoz

    2012-01-01

    Full Text Available The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction, α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxic α-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i the formation of α-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii the formation of adducts with α- and β-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.

  2. Reduced dopamine transporter binding predates impulse control disorders in Parkinson's disease.

    Science.gov (United States)

    Vriend, Chris; Nordbeck, Anna H; Booij, Jan; van der Werf, Ysbrand D; Pattij, Tommy; Voorn, Pieter; Raijmakers, Pieter; Foncke, Elisabeth M J; van de Giessen, Elsmarieke; Berendse, Henk W; van den Heuvel, Odile A

    2014-06-01

    Impulse control disorders (ICD) are relatively common in Parkinson's disease (PD) and generally are regarded as adverse effects of dopamine replacement therapy, although certain demographic and clinical risk factors are also involved. Previous single-photon emission computed tomography (SPECT) studies showed reduced ventral striatal dopamine transporter binding in Parkinson patients with ICD compared with patients without. Nevertheless, these studies were performed in patients with preexisting impulse control impairments, which impedes clear-cut interpretation of these findings. We retrospectively procured follow-up data from 31 medication-naïve PD patients who underwent dopamine transporter SPECT imaging at baseline and were subsequently treated with dopamine replacement therapy. We used questionnaires and a telephone interview to assess medication status and ICD symptom development during the follow-up period (31.5 ± 12.0 months). Eleven patients developed ICD symptoms during the follow-up period, eight of which were taking dopamine agonists. The PD patients with ICD symptoms at follow-up had higher baseline depressive scores and lower baseline dopamine transporter availability in the right ventral striatum, anterior-dorsal striatum, and posterior putamen compared with PD patients without ICD symptoms. No baseline between-group differences in age and disease stage or duration were found. The ICD symptom severity correlated negatively with baseline dopamine transporter availability in the right ventral and anterior-dorsal striatum. The results of this preliminary study show that reduced striatal dopamine transporter availability predates the development of ICD symptoms after dopamine replacement therapy and may constitute a neurobiological risk factor related to a lower premorbid dopamine transporter availability or a more pronounced dopamine denervation in PD patients susceptible to ICD. © 2014 International Parkinson and Movement Disorder Society.

  3. Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Glisezinski, I. de; Larrouy, D.; Bajzova, M.

    2009-01-01

    The relative contribution of noradrenaline (norepinephrine) and adrenaline (epinephrine) in the control of lipid mobilization in subcutaneous adipose tissue (SCAT) during exercise was evaluated in men treated with a somatostatin analogue, octreotide. Eight lean and eight obese young men matched...... of octreotide suppressed plasma insulin and growth hormone levels at rest and during exercise. It blocked the exercise-induced increase in plasma adrenaline while that of noradrenaline was unchanged. Plasma natriuretic peptides (NPs) level was higher at rest and during exercise under octreotide infusion in lean...... individuals. In conclusion, blockade of beta-adrenergic receptors during exercise performed during infusion of octreotide (blocking the exercise-induced rise in adrenaline but not that of noradrenaline) does not alter the exercise-induced lipolysis. This suggests that adrenaline is the main adrenergic agent...

  4. Noradrenaline might enhance assertive human social behaviours: an investigation in a flatmate relationship.

    Science.gov (United States)

    Tse, W S; Bond, A J

    2006-09-01

    The aim of the present study was to explore the role of noradrenaline on the social behaviour of healthy volunteers when they were interacting with a familiar person, their flatmate. Interaction with the flatmate was explored in a cooperative game situation. Ten pairs of same-sex healthy volunteer flatmates aged 18-25 years were recruited for the experiment. All volunteers gave written informed consent and the study was approved by the institutional ethical committee. A randomised, double blind, placebo-controlled crossover trial of reboxetine versus placebo was conducted. In each of the 10 pairs of volunteers, one (subject) volunteered to take the tablets and the other (flatmate) received no treatment. Reboxetine (4 mg/bd) and placebo were administered orally as identical capsules for 2 weeks. The subjects were randomly assigned to receive either reboxetine or placebo first and there was a two-week washout period following the first treatment. At baseline and the end of each treatment, they filled in the Beck Depression Inventory (BDI), Social Adapation Self-Evaluation Scale (SASS), and Aggression Questionnaire (AQ). Then, they were instructed to play the Tangrams game. This task elicits face-valid social behaviours such as cooperation, giving commands and unilateral grasps. Analysis of covariance showed that there was a statistical trend for reboxetine treatment to increase commands (p=0.055). This study presents preliminary evidence that two weeks' enhancement of noradrenaline transmission induced by reboxetine makes healthy volunteers more self-confident and assertive.

  5. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior

    Directory of Open Access Journals (Sweden)

    Fuka Aizawa

    2016-12-01

    Full Text Available The free fatty acid receptor 1 (GPR40/FFAR1 is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO mice. The emotional behavior in wild and KO male mice was evaluated at 9–10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC–MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain.

  6. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Kurihara, Takashi; Hirasawa, Akira; Kasuya, Fumiyo; Miyata, Atsuro; Tokuyama, Shogo

    2016-12-01

    The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  7. Functional adaptation of the human β-cells after frequent exposure to noradrenaline

    DEFF Research Database (Denmark)

    Dela, Flemming

    2015-01-01

    KEY POINTS: Trained people produce less insulin than untrained; there is an adaptation of the insulin-producing cells to the trained state. The mechanism behind this adaptation is not known, but some sort of memory must be introduced into the insulin-producing cells. Here it is shown that this me......KEY POINTS: Trained people produce less insulin than untrained; there is an adaptation of the insulin-producing cells to the trained state. The mechanism behind this adaptation is not known, but some sort of memory must be introduced into the insulin-producing cells. Here it is shown...... that this memory is introduced by 10 daily intravenous infusions of noradrenaline, mimicking the increases that occur during a 10 day training programme. Thus, after the infusion period, the subjects produced less insulin in response to the same stimulus. It is concluded that exercise-induced increases...... in noradrenaline is most likely the stimulus that introduces a memory in the insulin-producing cells. ABSTRACT: Physical training decreases glucose- and arginine-stimulated insulin secretion. The mechanism by which the pancreatic β-cells adapt to the training status of the individual is not known. We hypothesized...

  8. Neuroimagem do transportador de dopamina na doença de Parkinson: primeiro estudo com [99mTc]-TRODAT-1 e SPECT no Brasil Neuroimaging of the dopamine transporter in Parkinson’s disease: first study using [99mTc]-TRODAT-1 and SPECT in Brazil

    Directory of Open Access Journals (Sweden)

    Ming Chi Shih

    2006-09-01

    Full Text Available INTRODUÇÃO: Radiotraçadores para neuroimagem de transportador de dopamina (TDA foram desenvolvidos para estimar a perda de neurônios dopaminérgicos in vivo na doença de Parkinson (DP. OBJETIVO: Avaliar a densidade de TDA in vivo utilizando [99mTc]-TRODAT-1 (INER-Taiwan e SPECT em uma população de pacientes brasileiros com DP. MÉTODO: Quinze pacientes com DP e 15 controles saudáveis pareados realizaram exames de SPECT com [99mTc]-TRODAT-1 (INER-Taiwan. Estimativas da densidade de TDA estriatal foram calculadas usando potencial de ligação (PL. Pacientes foram avaliados com escalas para PD. RESULTADOS: Pacientes com DP apresentaram redução significativa do PL-TDA (0,38±0,12 comparado aos controles (0,84±0,16, pBACKGROUND: Dopamine transporter (DAT neuroimaging radiotracers were developed to estimate dopamine neuronal loss in vivo in Parkinson’s disease (PD. OBJECTIVE: To evaluate DAT density in vivo using [99mTc]-TRODAT-1 and single photon computerized tomography (SPECT in a population of Brazilian PD. METHOD: Fifteen PD patients and 15 matched healthy controls scanned with [99mTc]-TRODAT-1 (INER-Taiwan and SPECT. Estimates of striatum DAT density were calculated using binding potential (BP. Patients were assessed with PD scales. RESULTS: PD patients had significantly lower striatal DAT-BP (mean±SD (0.38±0.12 compared to controls (BP=0.84±0.16; p<0.01. A 100% sensitivity and 100% specificity was obtained to discriminate PD cases from controls. Negative correlations between striatal DAT-BP and PD severity (rho= -0.7, p<0.001 and motor scales (rho= -0.80, p<0.001 were found. CONCLUSION: [99mTc]TRODAT-1 SPECTs scanning was able to discriminate PD patients from controls. The technique is a powerful instrument to measure DAT density that can be used in clinical and research settings in Brazil.

  9. Noradrenaline concentration and turnover in nuclei of the hypothalamus and the medulla oblongata at two stages in the development of renal hypertension in the rat

    NARCIS (Netherlands)

    Wijnen, H.J.L.M.; Kloet, E.R. de; Versteeg, D.H.G.; Jong, Wybren de

    1980-01-01

    The noradrenaline concentration and the α-methyl-para-tyrosine (α-MPT)-induced disappearance of noradrenaline were determined in several nuclei of the hypothalamus and the medulla oblongata of renal hypertensive rats (two-kidney Goldblatt hypertension). A decreased α-MPT-induced disappearance of

  10. Neuropharmacology of novel dopamine modulators

    NARCIS (Netherlands)

    Beek, Erik Tomas te

    2014-01-01

    De neurotransmitter dopamine speelt een essentiële rol in diverse neurofysiologische functies en is betrokken bij de pathofysiologie van diverse neuropsychiatrische aandoeningen, waaronder de ziekte van Parkinson, schizofrenie, drugsverslaving en hyperprolactinemie. De huidige

  11. Dopamine signaling: target in glioblastoma

    Czech Academy of Sciences Publication Activity Database

    Bartek, Jiří; Hodný, Zdeněk

    2014-01-01

    Roč. 5, č. 5 (2014), 1116-1117 ISSN 1949-2553 Institutional support: RVO:68378050 Keywords : Dopamine signaling * glioblastoma * MAPK Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.359, year: 2014

  12. Dopamine reward prediction error coding.

    Science.gov (United States)

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  13. Effects of articaine on [3H]noradrenaline release from cortical and spinal cord slices prepared from normal and streptozotocin-induced diabetic rats and compared to lidocaine.

    Science.gov (United States)

    Végh, D; Somogyi, A; Bányai, D; Lakatos, M; Balogh, M; Al-Khrasani, M; Fürst, S; Vizi, E S; Hermann, P

    2017-10-01

    Since a significant proportion of diabetic patients have clinical or subclinical neuropathy, there may be concerns about the use of local anaesthetics. The present study was designed to determine and compare the effects of articaine, a widely used anaesthetic in dental practice, and lidocaine on the resting and axonal stimulation-evoked release of [ 3 H]noradrenaline ([ 3 H]NA) in prefrontal cortex slices and the release of [ 3 H]NA in spinal cord slices prepared from non-diabetic and streptozocin (STZ)-induced diabetic (glucose level=22.03±2.31mmol/l) rats. The peak of allodynia was achieved 9 weeks after STZ-treatment. Articaine and lidocaine inhibited the stimulation-evoked release in a concentration-dependent manner and increased the resting release by two to six times. These effects indicate an inhibitory action of these anaesthetics on Na + - and K + -channels. There was no difference in clinically important nerve conduction between non-diabetic and diabetic rats, as measured by the release of transmitter in response to axonal stimulation. The uptake and resting release of NA was significantly higher in the brain slices prepared from diabetic rats, but there were no differences in the spinal cord. For the adverse effects, the effects of articaine on K + channels (resting release) are more pronounced compared to lidocaine. In this respect, articaine has a thiophene ring with high lipid solubility, which may present potential risks for some patients. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Efeitos do propofol na resposta contrátil do miocárdio à dopamina e dobutamina: estudo experimental em corações isolados de ratos Effects of the propofol in the myocardial contractile response to dopamine and dobutamine in isolated rat's heart

    Directory of Open Access Journals (Sweden)

    José Carlos Dorsa Pontes

    1996-12-01

    Full Text Available OBJETIVO: Estudo experimental das ações farmacodinâmicas do propofol e sua interação com a dopamina e dobutamina em corações isolados de ratos. MÉTODO: Foram estudadas as variações da contratilidade miocárdica (dT/dt, em 30 corações isolados de ratos. Em todos os animais, após anestesia por inalação de éter, os corações foram excisados e perfundidos em sistema de Langendorff com solução de Krebs - Hensleit enriquecida com 95% O2 e 5% CO2, (pressão de 90 cm de H2O, temperatura constante de 37,0ºC ± 0,5ºC. Foram estudados 30 animais divididos em: Grupo I (controle - 10 corações perfundidos durante 11 minutos com solução de Krebs - Hensleit; Grupo II (dopamina-propofol-dopamina -10 corações onde foram administrados dopamina (50 mcg/ml e analisados os resultados nos 1º, 3º e 5º minutos e, posteriormente, propofol, (25 mcg/ml infundindo-se 1 minuto após, dopamina (50 mcg/ml e analisando-se os 1º, 3º e 5º minutos. Grupo III (dobutamina-propofol-dobutamina - diferiu do Grupo II pela substituição da dopamina por dobutamina (50 mcg/ml. RESULTADOS: No Grupo I observou-se que a dT/dt variou de 39,57 ± 3,97 (g.seg-1 a 39,37 ± 3,44 (g.seg-1 (p>0,05 no período estudado. No Grupo II observou-se que, após a administração de propofol e dopamina, a dT/dt em (g.seg-1 apresentou queda de 17,61% (p0,05 no 1º minuto; 3,62% (p>0,05 no 3º minuto e 3,08% (p>0,05 no 5º minuto, comparado à injeção isolada da dobutamina. CONCLUSÃO: O propofol (25 mcg/ml não alterou a resposta contrátil do miocárdio à dobutamina (50 mcg/ml; no entanto, inibiu a resposta esperada pela ação da dopamina (50 mcg/ml na contratilidade miocárdica.PURPOSE: Experimental investigation of the pharmacodynamic effects of propofol with and without simultaneous injections of dopamine or dobutamine in isolated hearts of rats. METHODS: In all animals under anaesthesia the hearts were removed and irrigated by a Krebs-Hensleit solution containing O2

  15. Comparative evaluation of two radioenzymatic procedures designed to determine noradrenaline in the plasma (COMT assay and PNMT assay)

    International Nuclear Information System (INIS)

    Barth, A.

    1984-01-01

    A comparative evaluation of two radioenzymatic procedures to determine the concentration of noradrenaline in the plasma - with linearity, sensitivity, specifity and accuracy serving as test criteria - led to the following results: In view of a probability of error in the order of 2% both methods were judged to show a satisfactory sensitivity. The specific of the COMT assay, by contrast with that of the PNMT assay, was found to be wanting, as the noradrenaline measurements in the presence of other biogenic amines were biassed in such a way that the values determined were higher than the actual concentrations. During antihypertensive treatment even minimal changes in the noradrenaline concentration can be ascertained on a quantitative basis. If suitable hardware is available, the COMT assay permits up to 25 single determinations to be carried out per day, while the number of double determinations is restricted to 7 per day. One advantage, however, lies in the fact that several catecholamines in the plasma can be detected simultaneously, if required. In cases where the noradrenaline concentration alone is to be determined for clinical purposes, preference should be given to the PNMT assay, as both tests showed equal linearity and sensitivity. (TRV) [de

  16. Cutaneous noradrenaline measured by microdialysis in complex regional pain syndrome during whole-body cooling and heating

    DEFF Research Database (Denmark)

    Terkelsen, Astrid Juhl; Gierthmühlen, Janne; Petersen, Lars J.

    2013-01-01

    and in healthy volunteers. Seven patients and nine controls completed whole-body cooling (sympathetic activation) and heating (sympathetic inhibition) induced by a whole-body thermal suit with simultaneous measurement of the skin temperature, skin blood flow, and release of dermal noradrenaline. CRPS pain...

  17. Role of glycogenolysis in memory and learning: regulation by noradrenaline, serotonin and ATP

    Directory of Open Access Journals (Sweden)

    Marie Elizabeth Gibbs

    2016-01-01

    Full Text Available This paper reviews the role played by glycogen breakdown (glycogenolysis and glycogen re-synthesis in memory processing in two different chick brain regions, (1 the hippocampus and (2 the avian equivalent of the mammalian cortex, the intermediate medial mesopallium (IMM. Memory processing is regulated by the neuromodulators noradrenaline and serotonin soon after training and glycogen breakdown and re-synthesis are involved. In day-old domestic chicks, memory formation is dependent on the breakdown of glycogen (glycogenolysis at three specific times during the first 60 min after learning (around 2.5, 30 and 55 min. The chicks learn to discriminate in a single trial between beads of two colours and tastes. Inhibition of glycogen breakdown by the inhibitor of glycogen phosphorylase 1,4-dideoxy-1,4-imino-D-arabinitol (DAB given at specific times prior to the formation of long-term memory prevents memory forming. Noradrenergic stimulation of cultured chicken astrocytes by a selective β2-adrenergic (AR agonist reduces glycogen levels and we believe that in vivo this triggers memory consolidation at the second stage of glycogenolysis. Serotonin acting at 5-HT2B receptors acts on the first stage, but not on the second. We have shown that noradrenaline, acting via post-synaptic α2-ARs, is also responsible for the synthesis of glycogen and our experiments suggest that there is a readily accessible labile pool of glycogen in astrocytes which is depleted within 10 min if glycogen synthesis is inhibited. Endogenous ATP promotion of memory consolidation at 2.5 and 30 min is also dependent on glycogen breakdown. ATP acts at P2Y1 receptors and the action of thrombin suggests that it causes the release of internal calcium ([Ca2+]i] in astrocytes. Glutamate and GABA, the primary neurotransmitters in the brain, cannot be synthesized in neurons de novo. Neurons rely on astrocytic glutamate synthesis, requiring glycogenolysis.

  18. The concentration of adrenaline and noradrenaline in the serum of dogs under the influence of calcium channels blockers

    Directory of Open Access Journals (Sweden)

    Milanović Tamara

    2015-01-01

    membrane of presynaptic ending is necessary to free the neurotransmitter out of the vesicle, the aim of our work is to study whether Verapamile has effects on the membrane of presynaptic endings of sympathetic nervous system checking the level of catecholamine in serum. The experiment was conducted in 6 healthy dogs which were, after 10-minute-infusion (0.9% NaCl, treated with intravenous bolus veramapile injections in three occasions, in every 5 minutes, until the first signs of intoxication had appeared. This caused bradycardia, heart rhythm disorder and blood pressure drop. In order to determine the level of catecholamine, blood was taken sequentially, in every 5 minutes, before the new dose of verapamile was given. Verapamile (given intravenous significantly decreases the concentration of adrenaline and noradrenaline in the serum of dogs.

  19. NEUROTRANSMITTERS AND IMMUNITY: 1. DOPAMINE

    Directory of Open Access Journals (Sweden)

    Lucian Hritcu

    2007-08-01

    Full Text Available Dopamine is one of the principal neurotransmitters in the central nervous system (CNC, and its neuronal pathways are involved in several key functions such as behavior (Hefco et al., 2003a,b, control of movement, endocrine regulation, immune response (Fiserova et al., 2002; Levite et al., 2001, Hritcu et al., 2006a,b,c, and cardiovascular function. Dopamine has at least five G-protein, coupled receptor subtypes, D1-D5, each arising from a different gene (Sibley et al., 1993. Traditionally, these receptors have been classified into D1-like (the D1 and D5 and D2-like (D2, D3 and D4 receptors subtypes, primarily according to their ability to stimulate or inhibit adenylate cyclase, respectively, and to their pharmacological characteristics (Seeman et al., 1993. Receptors for dopamine (particularly of D2 subclass are the primary therapeutic target in a number of neuropathological disorders including schizophrenia, Parkinson’s disease and Huntington’s chorea (Seeman et al., 1987. Neither dopamine by itself, nor dopaminergic agonists by themselves, has been shown to activate T cell function. Nevertheless, lymphocytes are most probably exposed to dopamine since the primary and secondary lymphoid organs of various mammals are markedly innervated, and contain nerve fibers which stain for tyrosine hydroxylase (Weihe et al., 1991, the enzyme responsible for dopamine synthesis. Moreover, cathecolamines and their metabolites are present in single lymphocytes and in extracts of T and B cell clones, and pharmacological inhibition of tyrosine hydroxylase reduces catecholamine levels, suggesting catecholamine synthesis by lymphocytes (Bergquist et al., 1994. The existence of putative dopamine receptors of D2, D3, D4 and D5 subtypes on immune cells has been proposed of several authors, primarily on the basis of dopaminergic ligand binding assays and specific mRNA expression as monitored by reverse transcription-PCR. Several experiments evoked the idea of a

  20. Dopamine, reward learning, and active inference

    Directory of Open Access Journals (Sweden)

    Thomas eFitzgerald

    2015-11-01

    Full Text Available Temporal difference learning models propose phasic dopamine signalling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behaviour. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  1. Dopamine, reward learning, and active inference.

    Science.gov (United States)

    FitzGerald, Thomas H B; Dolan, Raymond J; Friston, Karl

    2015-01-01

    Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

  2. Behavioural effects of chemogenetic dopamine neuron activation

    NARCIS (Netherlands)

    Boekhoudt, L

    2016-01-01

    Various psychiatric disorders, including schizophrenia, attention-deficit/hyperactivity disorder (ADHD) and major depressive disorder, have been associated with altered dopamine signalling in the brain. However, it remains unclear which specific changes in dopamine activity are related to specific

  3. Molecular Mechanisms of Dopamine Receptor Mediated Neuroprotection

    National Research Council Canada - National Science Library

    Sealfon, Stuart

    2000-01-01

    ... of the cellular changes characteristic of this process. Evidence from our laboratory and others suggest that activation of dopamine receptors can oppose the induction of apoptosis in dopamine neurons...

  4. Comparison of changes in the extracellular concentration of noradrenaline in rat frontal cortex induced by sibutramine or d-amphetamine: modulation by α2-adrenoceptors

    Science.gov (United States)

    Wortley, K E; Hughes, Z A; Heal, D J; Stanford, S C

    1999-01-01

    The effects of sibutramine (0.25–10 mg kg−1, i.p.) on extracellular noradrenaline concentration in the frontal cortex of halothane-anaesthetized rats were compared with those of d-amphetamine (1–3 mg kg−1, i.p.) using in vivo microdialysis. The role of presynaptic α2-adrenoceptors in modulating the effects of these drugs on extracellular noradrenaline concentration were also investigated by pretreating rats with the selective α2-adrenoceptor antagonist, RX821002.Sibutramine induced a gradual and sustained increase in extracellular noradrenaline concentration. The dose-response relationship was described by a bell-shaped curve with a maximum effect at 0.5 mg kg−1. In contrast, d-amphetamine induced a rapid increase in extracellular noradrenaline concentration, the magnitude of which paralleled drug dose.Pretreatment with the α2-adrenoceptor antagonist, RX821002 (dose 3 mg kg−1, i.p.) increased by 5 fold the accumulation of extracellular noradrenaline caused by sibutramine (10 mg kg−1) and reduced the latency of sibutramine to reach its maximum effect from 144–56 min.RX821002-pretreatment increased by only 2.5 fold the increase in extracellular noradrenaline concentration caused by d-amphetamine alone (10 mg kg−1) and had no effect on the latency to reach maximum.These findings support evidence that sibutramine acts as a noradrenaline uptake inhibitor in vivo and that the effects of this drug are blunted by indirect activation of presynaptic α2-adreno-ceptors. In contrast, the rapid increase in extracellular noradrenaline concentration induced by d-amphetamine is consistent with this being mainly due to an increase in Ca2+-independent release of noradrenaline. PMID:10482917

  5. Cocaine serves as a peripheral interoceptive conditioned stimulus for central glutamate and dopamine release.

    Directory of Open Access Journals (Sweden)

    Roy A Wise

    Full Text Available Intravenous injections of cocaine HCl are habit-forming because, among their many actions, they elevate extracellular dopamine levels in the terminal fields of the mesocorticolimbic dopamine system. This action, thought to be very important for cocaine's strong addiction liability, is believed to have very short latency and is assumed to reflect rapid brain entry and pharmacokinetics of the drug. However, while intravenous cocaine HCl has almost immediate effects on behavior and extracellular dopamine levels, recent evidence suggests that its central pharmacological effects are not evident until 10 or more seconds after IV injection. Thus the immediate effects of a given intravenous cocaine injection on extracellular dopamine concentration and behavior appear to occur before there is sufficient time for cocaine to act centrally as a dopamine uptake inhibitor. To explore the contribution of peripheral effects of cocaine to the early activation of the dopamine system, we used brain microdialysis to measure the effects of cocaine methiodide (MI--a cocaine analogue that does not cross the blood brain barrier--on glutamate (excitatory input to the dopamine cells. IP injections of cocaine MI were ineffective in cocaine-naïve animals but stimulated ventral tegmental glutamate release in rats previously trained to lever-press for cocaine HCl. This peripherally triggered glutamate input was sufficient to reinstate cocaine-seeking in previously trained animals that had undergone extinction of the habit. These findings offer an explanation for short-latency behavioral responses and immediate dopamine elevations seen following cocaine injections in cocaine-experienced but not cocaine-naïve animals.

  6. Apathy and noradrenaline: silent partners to mild cognitive impairment in Parkinson's disease?

    OpenAIRE

    Loued-Khenissi Leyla; Preuschoff Kerstin

    2015-01-01

    PURPOSE OF REVIEW: Mild cognitive impairment (MCI) is a comorbid factor in Parkinson's disease. The aim of this review is to examine the recent neuroimaging findings in the search for Parkinson's disease MCI (PD MCI) biomarkers to gain insight on whether MCI and specific cognitive deficits in Parkinson's disease implicate striatal dopamine or another system. RECENT FINDINGS: The evidence implicates a diffuse pathophysiology in PD MCI rather than acute dopaminergic involvement. On the one han...

  7. Extracellular dopamine, acetylcholine, and activation of dopamine D1 and D2 receptors after selective breeding for cocaine self-administration in rats.

    Science.gov (United States)

    Xu, Haiyang; Das, Sasmita; Sturgill, Marc; Hodgkinson, Colin; Yuan, Qiaoping; Goldman, David; Grasing, Kenneth

    2017-08-01

    The low self-administration (LS)/Kgras (LS) and high self-administration (HS)/Kgras (HS) rat lines were generated by selective breeding for low- and high-intravenous cocaine self-administration, respectively, from a common outbred Wistar stock (Crl:WI). This trait has remained stable after 13 generations of breeding. The objective of the present study is to compare cocaine preference, neurotransmitter release, and dopamine receptor activation in LS and HS rats. Levels of dopamine, acetylcholine, and cocaine were measured in the nucleus accumbens (NA) shell of HS and LS rats by tandem mass spectrometry of microdialysates. Cocaine-induced locomotor activity and conditioned-place preference were compared between LS and HS rats. HS rats displayed greater conditioned-place preference scores compared to LS and reduced basal extracellular concentrations of dopamine and acetylcholine. However, patterns of neurotransmitter release did not differ between strains. Low-dose cocaine increased locomotor activity in LS rats, but not in HS animals, while high-dose cocaine augmented activity only in HS rats. Either dose of cocaine increased immunoreactivity for c-Fos in the NA shell of both strains, with greater elevations observed in HS rats. Activation identified by cells expressing both c-Fos and dopamine receptors was generally greater in the HS strain, with a similar pattern for both D1 and D2 dopamine receptors. Diminished levels of dopamine and acetylcholine in the NA shell, with enhanced cocaine-induced expression of D1 and D2 receptors, are associated with greater rewarding effects of cocaine in HS rats and an altered dose-effect relationship for cocaine-induced locomotor activity.

  8. Predicting treatment response in Schizophrenia: the role of stratal and frontal dopamine D2/D3 receptor binding potential

    DEFF Research Database (Denmark)

    Wulff, Sanne; Nørbak-Emig, Henrik; Nielsen, Mette Ødegaard

    2014-01-01

    Background One of the best validated findings in schizophrenia is an association between increased presynaptic striatal dopaminergic activity and psychotic symptoms. We have previously reported an association between positive symptoms and dopamine D2 receptor binding potentials (BPs) in frontal...... cortex in antipsychotic-naïve first-episode male schizophrenia patients(1). Preclinical studies suggest an inverse relationship between frontal and striatal dopamine activity. This activity can indirectly be expressed by the BP of dopamine receptors using Single Photon Emission Computed Tomography (SPECT......) where low striatal BP is believed to reflect high dopamine availability. We aim to assess the association between D2 receptor BPs in antipsychotic-naïve first-episode schizophrenia patients and their response to the first treatment with an antipsychotic compound. We hypothesise that patients with low...

  9. Electrochemical Label-Free Aptasensor for Specific Analysis of Dopamine in Serum in the Presence of Structurally Related Neurotransmitters.

    Science.gov (United States)

    Álvarez-Martos, Isabel; Ferapontova, Elena E

    2016-04-05

    Cellular and brain metabolism of dopamine can be correlated with a number of neurodegenerative disorders, and as such, in vivo analysis of dopamine in the presence of structurally related neurotransmitters (NT) represents a holy grail of neuroscience. Interference from those NTs generally does not allow selective electroanalysis of dopamine, which redox transformation overlaps with those of other catecholamines. In our previous work, we reported an electrochemical RNA-aptamer-based biosensor for specific analysis of dopamine (Analytical Chemistry, 2013; Vol. 85, p 121). However, the overall design of the biosensor restricted its stability and impeded its operation in serum. Here, we show that specific biorecognition and electroanalysis of dopamine in serum can be performed by the RNA aptamer tethered to cysteamine-modified gold electrodes via the alkanethiol linker. The stabilized dopamine aptasensor allowed continuous 20 h amperometric analysis of dopamine in 10% serum within the physiologically important 0.1-1 μM range and in the presence of catechol and such dopamine precursors and metabolites as norepinephrine and l-DOPA. In a flow-injection mode, the aptasensor response to dopamine was ∼1 s, the sensitivity of analysis, optimized by adjusting the aptamer surface coverage, was 67 ± 1 nA μM(-1) cm(-2), and the dopamine LOD was 62 nM. The proposed design of the aptasensor, exploiting both the aptamer alkanethiol tethering to the electrode and screening of the catecholamine-aptamer electrostatic interactions, allows direct monitoring of dopamine levels in biological fluids in the presence of competitive NT and thus may be further applicable in biomedical research.

  10. Atrial Natriuretic Peptide Stimulates Dopamine Tubular Transport by Organic Cation Transporters: A Novel Mechanism to Enhance Renal Sodium Excretion

    Science.gov (United States)

    Kouyoumdzian, Nicolás M.; Rukavina Mikusic, Natalia L.; Kravetz, María C.; Lee, Brenda M.; Carranza, Andrea; Del Mauro, Julieta S.; Pandolfo, Marcela; Gironacci, Mariela M.; Gorzalczany, Susana; Toblli, Jorge E.; Fernández, Belisario E.

    2016-01-01

    The aim of this study was to demonstrate the effects of atrial natriuretic peptide (ANP) on organic cation transporters (OCTs) expression and activity, and its consequences on dopamine urinary levels, Na+, K+-ATPase activity and renal function. Male Sprague Dawley rats were infused with isotonic saline solution during 120 minutes and randomized in nine different groups: control, pargyline plus tolcapone (P+T), ANP, dopamine (DA), D-22, DA+D-22, ANP+D-22, ANP+DA and ANP+DA+D-22. Renal functional parameters were determined and urinary dopamine concentration was quantified by HPLC. Expression of OCTs and D1-receptor in membrane preparations from renal cortex tissues were determined by western blot and Na+, K+-ATPase activity was determined using in vitro enzyme assay. 3H-DA renal uptake was determined in vitro. Compared to P+T group, ANP and dopamine infusion increased diuresis, urinary sodium and dopamine excretion significantly. These effects were more pronounced in ANP+DA group and reversed by OCTs blockade by D-22, demonstrating that OCTs are implied in ANP stimulated-DA uptake and transport in renal tissues. The activity of Na+, K+-ATPase exhibited a similar fashion when it was measured in the same experimental groups. Although OCTs and D1-receptor protein expression were not modified by ANP, OCTs-dependent-dopamine tubular uptake was increased by ANP through activation of NPR-A receptor and protein kinase G as signaling pathway. This effect was reflected by an increase in urinary dopamine excretion, natriuresis, diuresis and decreased Na+, K+-ATPase activity. OCTs represent a novel target that links the activity of ANP and dopamine together in a common mechanism to enhance their natriuretic and diuretic effects. PMID:27392042

  11. Critical investigation of the separation of noradrenaline and adrenaline from urine samples using Al2O3 as adsorbant

    International Nuclear Information System (INIS)

    Neidhart, B.; Kringe, K.-P.; Deutschmann, P.

    1983-01-01

    A critical investigation of the separation of free noradrenaline and adrenaline from urine samples revealed serious errors during sample pretreatment using Al 2 O 3 as adsorbent. An exact and rapid pH adjustment of the sample, using thymol-blue as indicator, proved to be the chief prerequisite for precise and accurate results. Increasing temperature and pH favour the oxidative decomposition of the catecholamines during routine analysis. This was examined, using the radiotracer method and liquid scintillation counting. (author)

  12. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    Science.gov (United States)

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  13. Protein kinase C and α 2-adrenoceptor-mediated inhibition of noradrenaline release from the rat tail artery

    International Nuclear Information System (INIS)

    Bucher, B.; Neuburger, J.; Illes, P.

    1991-01-01

    In isolated rat tail arteries preincubated with [3H]noradrenaline, electrical field stimulation evoked the overflow of tritium. Phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activating phorbol ester, time-dependently increased the overflow at 1 mumol/L but not at 0.1 mumol/L. In contrast, the overflow was not altered by phorbol 13-acetate (PA, 1 mumol/L), which does not influence the activity of PKC. Polymyxin B (70 mumol/L), an inhibitor of PKC, depressed the overflow when given alone and, in addition, attenuated the effect of PMA, 1 mumol/L. The selective alpha 2-adrenoceptor agonist B-HT 933 depressed the overflow; PMA, 1 mumol/L, did not interfere with the effect of B-HT 933, 10 mumol/L. The results provide evidence for the participation of prejunctionally located PKC in the release of noradrenaline. However, PKC does not seem to be involved in the alpha 2-adrenoceptor-agonist-mediated inhibition of noradrenaline release

  14. Dopamine versus norepinephrine in the treatment of cardiogenic shock: A PRISMA-compliant meta-analysis.

    Science.gov (United States)

    Rui, Qing; Jiang, Yufeng; Chen, Min; Zhang, Nannan; Yang, Huajia; Zhou, Yafeng

    2017-10-01

    Guidelines recommend that norepinephrine (NA) should be used to reach the target mean arterial pressure (MAP) during cardiogenic shock (CS), rather than epinephrine and dopamine (DA). However, there has actually been few studies on comparing norepinephrine with dopamine and their results conflicts. These studies raise a heat discussion. This study aimed to validate the effectiveness of norepinephrine for treating CS in comparison with dopamine. We performed a meta-analysis of randomized controlled trials (RCTs) to assess pooled estimates of risk ratio (RR) and 95% confidence interval (CI) for 28-day mortality, incidence of arrhythmic events, gastrointestinal reaction, and some indexes after treatment. Compared with dopamine, patients receiving norepinephrine had a lower 28-day mortality (RR 1.611 [95% CI 1.219-2.129]; P dopamine in 2 subgroups. Our analysis revealed that norepinephrine was associated with a lower 28-day mortality, a lower risk of arrhythmic events, and gastrointestinal reaction. No matter whether CS is caused by coronary heart disease or not, norepinephrine is superior to dopamine for correcting CS on the 28-day mortality.

  15. Increased brain dopamine and dopamine receptors in schizophrenia

    International Nuclear Information System (INIS)

    Mackay, A.V.; Iversen, L.L.; Rossor, M.; Spokes, E.; Bird, E.; Arregui, A.; Creese, I.; Synder, S.H.

    1982-01-01

    In postmortem samples of caudate nucleus and nucleus accumbens from 48 schizophrenic patients, there were significant increases in both the maximum number of binding sites (Bmax) and the apparent dissociation constant (KD) for tritiated spiperone. The increase in apparent KD probably reflects the presence of residual neuroleptic drugs, but changes in Bmax for tritiated spiperone reflect genuine changes in receptor numbers. The increases in receptors were seen only in patients in whom neuroleptic medication had been maintained until the time of death, indicating that they may be entirely iatrogenic. Dopamine measurements for a larger series of schizophrenic and control cases (n greater than 60) show significantly increased concentrations in both the nucleus accumbens and caudate nucleus. The changes in dopamine were not obviously related to neuroleptic medication and, unlike the receptor changes, were most severe in younger patients

  16. Intracellular Methamphetamine Prevents the Dopamine-induced Enhancement of Neuronal Firing*

    Science.gov (United States)

    Saha, Kaustuv; Sambo, Danielle; Richardson, Ben D.; Lin, Landon M.; Butler, Brittany; Villarroel, Laura; Khoshbouei, Habibeh

    2014-01-01

    The dysregulation of the dopaminergic system is implicated in multiple neurological and neuropsychiatric disorders such as Parkinson disease and drug addiction. The primary target of psychostimulants such as amphetamine and methamphetamine is the dopamine transporter (DAT), the major regulator of extracellular dopamine levels in the brain. However, the behavioral and neurophysiological correlates of methamphetamine and amphetamine administration are unique from one another, thereby suggesting these two compounds impact dopaminergic neurotransmission differentially. We further examined the unique mechanisms by which amphetamine and methamphetamine regulate DAT function and dopamine neurotransmission; in the present study we examined the impact of extracellular and intracellular amphetamine and methamphetamine on the spontaneous firing of cultured midbrain dopaminergic neurons and isolated DAT-mediated current. In dopaminergic neurons the spontaneous firing rate was enhanced by extracellular application of amphetamine > dopamine > methamphetamine and was DAT-dependent. Amphetamine > methamphetamine similarly enhanced DAT-mediated inward current, which was sensitive to isosmotic substitution of Na+ or Cl− ion. Although isosmotic substitution of extracellular Na+ ions blocked amphetamine and methamphetamine-induced DAT-mediated inward current similarly, the removal of extracellular Cl− ions preferentially blocked amphetamine-induced inward current. The intracellular application of methamphetamine, but not amphetamine, prevented the dopamine-induced increase in the spontaneous firing of dopaminergic neurons and the corresponding DAT-mediated inward current. The results reveal a new mechanism for methamphetamine-induced dysregulation of dopaminergic neurons. PMID:24962577

  17. Peripheral Dopamine in Restless Legs Syndrome

    Directory of Open Access Journals (Sweden)

    Ulrike H. Mitchell

    2018-03-01

    Full Text Available Objective/BackgroundRestless Legs Syndrome (RLS is a dopamine-dependent disorder characterized by a strong urge to move. The objective of this study was to evalulate blood levels of dopamine and other catecholamines and blood D2-subtype dopamine receptors (D2Rs in RLS.Patients/MethodsDopamine levels in blood samples from age-matched unmedicated RLS subjects, medicated RLS subjects and Controls were evaluated with high performance liquid chromatography and dopamine D2R white blood cell (WBC expression levels were determined with fluorescence-activated cell sorting and immunocytochemistry.ResultsBlood plasma dopamine levels, but not norepinepherine or epinephrine levels, were significantly increased in medicated RLS subjects vs unmedicated RLS subjects and Controls. The percentage of lymphocytes and monocytes expressing D2Rs differed between Control, RLS medicated and RLS unmedicated subjects. Total D2R expression in lymphocytes, but not monocytes, differed between Control, RLS medicated and RLS unmedicated subjects. D2Rs in lymphocytes, but not monocytes, were sensitive to dopamine in Controls only.ConclusionDownregulation of WBCs D2Rs occurs in RLS. This downregulation is not reversed by medication, although commonly used RLS medications increase plasma dopamine levels. The insensitivity of monocytes to dopamine levels, but their downregulation in RLS, may reflect their utility as a biomarker for RLS and perhaps brain dopamine homeostasis.

  18. Dopamine agents for hepatic encephalopathy

    DEFF Research Database (Denmark)

    Junker, Anders Ellekær; Als-Nielsen, Bodil; Gluud, Christian

    2014-01-01

    BACKGROUND: Patients with hepatic encephalopathy may present with extrapyramidal symptoms and changes in basal ganglia. These changes are similar to those seen in patients with Parkinson's disease. Dopamine agents (such as bromocriptine and levodopa, used for patients with Parkinson's disease) have...... therefore been assessed as a potential treatment for patients with hepatic encephalopathy. OBJECTIVES: To evaluate the beneficial and harmful effects of dopamine agents versus placebo or no intervention for patients with hepatic encephalopathy. SEARCH METHODS: Trials were identified through the Cochrane...... hepatic encephalopathy that were published during 1979 to 1982 were included. Three trials assessed levodopa, and two trials assessed bromocriptine. The mean daily dose was 4 grams for levodopa and 15 grams for bromocriptine. The median duration of treatment was 14 days (range seven to 56 days). None...

  19. Dopamine reward prediction error coding

    OpenAIRE

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards?an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less...

  20. PRESYNAPTIC DOPAMINE MODULATION BY STIMULANT SELF ADMINISTRATION

    Science.gov (United States)

    España, Rodrigo A.; Jones, Sara R.

    2013-01-01

    The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine. PMID:23277050

  1. Neurochemical evidence that cocaine- and amphetamine-regulated transcript (CART) 55-102 peptide modulates the dopaminergic reward system by decreasing the dopamine release in the mouse nucleus accumbens.

    Science.gov (United States)

    Rakovska, Angelina; Baranyi, Maria; Windisch, Katalin; Petkova-Kirova, Polina; Gagov, Hristo; Kalfin, Reni

    2017-09-01

    levels of DOPET. At the same concentration, 0.1μM, CART (55-102) peptide did not have any effect on the release of noradrenaline. In the presence of CART (55-102) peptide, 0.1μM, the effect of cocaine, 30μM, on the basal dopamine release was inhibited and the effect on the basal DOPAC release substantially increased. To our knowledge, our findings are the first to show direct neurochemical evidence that CART (55-102) peptide plays a neuromodulatory role on the dopaminergic reward system by decreasing dopamine in the mouse nucleus accumbens and by attenuating cocaine-induced effects on dopamine release. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Comparação entre a lidocaína e a acupuntura no tratamento da taquicardia ventricular induzida com dopamina em equinos anestesiados com halotano Comparative study between lidocaine and acupunture in the treatment of ventricular tachycardia induced by dopamine in horses anesthetized with halothane

    Directory of Open Access Journals (Sweden)

    J.J. Cárdenas

    2009-08-01

    Full Text Available Os efeitos da lidocaina e da acupuntura nos pontos bilaterais associados ao pericárdio 6 (Pc6-Neiguan e ao coração 7 (C7-Shenmen, no tratamento da taquicardia ventricular (TV induzida por dopamina em equinos anestesiados com halotano, foram avaliados e comparados. Seis equinos, distribuídos em três grupos: grupo-controle (GC, grupo tratado com acupuntura (GA e grupo tratado com lidocaína (GL, foram anestesiados três vezes cada, com intervalo de uma semana entre cada anestesia. Avaliaram-se os parâmetros cardiovasculares (frequência cardíaca, pressão arterial e eletrocardiografia, os respiratórios (frequência respiratória, capnografía, saturação de hemoglobina e hemogasometria e o escore de recuperação. A dose arritmogênica da dopamina (DAD foi determinada a partir da infusão de 70µg/kg/min IV durante 10 minutos, sem interrupção, preenchendo o critério arritmogênico: quatro ou mais complexos ventriculares prematuros seguidos, com duração de pelo menos 15 segundos ou TV sustentada. O tempo médio de aparecimento da DAD ou da TV foi de 6,05±0,45 minutos nos animais não tratados, e a TV se reverteu espontaneamente aos 2,7±0,2 minutos. O grupo tratado com acupuntura reverteu a TV no tempo médio de 1,8±0,2 (PThe effects of lidocaine and acupuncture in the associated bilateral points, i.e. pericardium 6 (Pc 6- Neiguan and heart 7 (H7 - Shenmen, on the ventricular tachycardia (VT induced by dopamine were evaluated in horses anesthetized with halothane. Six horses were distributed in three groups: control group (CG, acupuncture treated group (AG, and lidocaine treated group (LG. They were anesthetized three times each one using halothane with one week interval between each anesthesic procedure. Cardiovascular (heart rate, arterial pressure, and ECG and respiratory (respiratory rate, capnometry, hemoglobin saturation, and blood gas analysis parameters and recovery score were evaluated. The arrhythmogenic dose of dopamine

  3. Dopamine plasma clearance is increased in piglets compared to neonates during continuous dopamine infusion

    DEFF Research Database (Denmark)

    Rasmussen, Martin B; Gramsbergen, Jan Bert; Eriksen, Vibeke Ramsgaard

    2018-01-01

    pharmacokinetics. METHODS: Arterial blood samples were drawn from six neonates admitted to the neonatal intensive care unit of Copenhagen University Hospital and 20 newborn piglets during continuous dopamine infusion. Furthermore, to estimate the piglet plasma dopamine half-life, blood samples were drawn at 2.......5-minute intervals after the dopamine infusion was discontinued. The plasma dopamine content was analysed by high-performance liquid chromatography with electrochemical detection. RESULTS: The dopamine displayed first-order kinetics in piglets and had a half-life of 2.5 minutes, while the median plasma...

  4. Investigation of the mechanisms underlying the hypophagic effects of the 5-HT and noradrenaline reuptake inhibitor, sibutramine, in the rat

    Science.gov (United States)

    Jackson, Helen C; Bearham, M Clair; Hutchins, Lisa J; Mazurkiewicz, Sarah E; Needham, Andrew M; Heal, David J

    1997-01-01

    Sibutramine is a novel 5-hydroxytryptamine (5-HT) and noradrenaline reuptake inhibitor (serotonin- noradrenaline reuptake inhibitor, SNRI) which is currently being developed as a treatment for obesity. Sibutramine has been shown to decrease food intake in the rat. In this study we have used a variety of monoamine receptor antagonists to examine the pharmacological mechanisms underlying sibutramine-induced hypophagia. Individually-housed male Sprague-Dawley rats were maintained on reversed phase lighting with free access to food and water. Drugs were administered at 09 h 00 min and food intake was monitored over the following 8 h dark period. Sibutramine (10 mg kg−1, p.o.) produced a significant decrease in food intake during the 8 h following drug administration. This hypophagic response was fully antagonized by the α1-adrenoceptor antagonist, prazosin (0.3 and 1 mg kg−1, i.p.), and partially antagonized by the β1-adrenoceptor antagonist, metoprolol (3 and 10 mg kg−1, i.p.) and the 5-HT receptor antagonists, metergoline (non-selective; 0.3 mg kg−1, i.p.); ritanserin (5-HT2A/2C; 0.1 and 0.5 mg kg−1, i.p.) and SB200646 (5-HT2B/2C; 20 and 40 mg kg−1, p.o.). By contrast, the α2-adrenoceptor antagonist, RX821002 (0.3 and 1 mg kg−1, i.p.) and the β2-adrenoceptor antagonist, ICI 118,551 (3 and 10 mg kg−1, i.p.) did not reduce the decrease in food intake induced by sibutramine. These results demonstrate that β1-adrenoceptors, 5-HT2A/2C-receptors and particularly α1-adrenoceptors, are involved in the effects of sibutramine on food intake and are consistent with the hypothesis that sibutramine-induced hypophagia is related to its ability to inhibit the reuptake of both noradrenaline and 5-HT, with the subsequent activation of a variety of noradrenaline and 5-HT receptor systems. PMID:9283694

  5. Serotonin noradrenaline reuptake inhibitors: New hope for the treatment of chronic pain.

    Science.gov (United States)

    Delgado, Pedro L

    2006-01-01

    Depression and painful symptoms occur frequently together. Over 75% of depressed patients report painful symptoms such as headache, stomach pain, neck and back pain as well as non-specific generalized pain. In addition, World Health Organization data have shown that primary care patients with chronic pain have a four fold greater risk of becoming depressed than pain-free patients. Increasingly, pain is considered as an integral symptom of depression and there evidence to suggest that pain and depression may arise from a common neurobiological dysfunction. Serotonergic cell bodies, in the raphe nucleus, and noradrenergic cell bodies in the locus coeruleus send projections to various parts of the brain, where they are involved in the control of mood, movement, cognitive functioning and emotions. In addition both serotonergic and noradrenergic neurons project to the spinal cord. These descending pathways serve to inhibit input from the intestines, skeletal muscles and other sensory inputs. Usually, these inhibitory effects are modest, but in times of stress, in the interest of the survival of the individual, they can completely inhibit the input from painful stimuli. A dysfunction of the serotonergic and noradrenergic neurons can thus affect both the ascending and descending pathways resulting in the psychological symptoms of depression and somatic pain symptoms such as chronic pain, fibromyalgia, non-cardiac chest pain, or irritable bowel syndrome. In view of this, it is not surprising that tricyclic antidepressants have been a standard treatment of chronic pain for many years. In contrast and in spite of their improved tolerance, selective serotonin reuptake inhibitors do not appear to be particularly effective in the treatment of pain. Recently, a number of open and controlled trials with selective serotonin and noradrenaline reuptake inhibitors such as venlafaxine, milnacipran and duloxetine, suggest that these compounds may be more effective in relieving pain

  6. Computational systems analysis of dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Zhen Qi

    2008-06-01

    Full Text Available A prominent feature of Parkinson's disease (PD is the loss of dopamine in the striatum, and many therapeutic interventions for the disease are aimed at restoring dopamine signaling. Dopamine signaling includes the synthesis, storage, release, and recycling of dopamine in the presynaptic terminal and activation of pre- and post-synaptic receptors and various downstream signaling cascades. As an aid that might facilitate our understanding of dopamine dynamics in the pathogenesis and treatment in PD, we have begun to merge currently available information and expert knowledge regarding presynaptic dopamine homeostasis into a computational model, following the guidelines of biochemical systems theory. After subjecting our model to mathematical diagnosis and analysis, we made direct comparisons between model predictions and experimental observations and found that the model exhibited a high degree of predictive capacity with respect to genetic and pharmacological changes in gene expression or function. Our results suggest potential approaches to restoring the dopamine imbalance and the associated generation of oxidative stress. While the proposed model of dopamine metabolism is preliminary, future extensions and refinements may eventually serve as an in silico platform for prescreening potential therapeutics, identifying immediate side effects, screening for biomarkers, and assessing the impact of risk factors of the disease.

  7. Presynaptic D2 dopamine receptors control long-term depression expression and memory processes in the temporal hippocampus.

    Science.gov (United States)

    Rocchetti, Jill; Isingrini, Elsa; Dal Bo, Gregory; Sagheby, Sara; Menegaux, Aurore; Tronche, François; Levesque, Daniel; Moquin, Luc; Gratton, Alain; Wong, Tak Pan; Rubinstein, Marcelo; Giros, Bruno

    2015-03-15

    Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Surplus dietary tryptophan reduces plasma cortisol and noradrenaline concentrations and enhances recovery after social stress in pigs.

    Science.gov (United States)

    Koopmans, Sietse Jan; Ruis, Marko; Dekker, Ruud; van Diepen, Hans; Korte, Mechiel; Mroz, Zdzislaw

    2005-07-21

    Social stress occurs in intensive pig farming due to aggressive behavior. This stress may be reduced at elevated dietary levels of tryptophan (TRP). In this study, we compared the effects of high (13.2%) vs. normal (3.4%) dietary TRP to large neutral amino acid (LNAA) ratios on behavior and stress hormones in catheterized pigs ( approximately 50 kg BW), which were exposed to social stress by placing them twice into the territory of a dominant pig ( approximately 60 kg) for 15 min. Pre-stress plasma TRP concentrations were 156+/-15 vs. 53+/-6 micromol/l (psocial confrontations, pigs on the high vs. normal TRP diets show a tendency towards reduced active avoidance behavior (3.2+/-1.1 vs. 6.7+/-1.2 min, psocial confrontations, the post-stress plasma cortisol, noradrenaline and adrenaline concentrations and/or curves (from +5 min to 2 h) were lower/steeper (psurplus TRP in diets for pigs (1) does not significantly affect behavior when exposed to social stress, (2) reduces basal plasma cortisol and noradrenaline concentrations, (3) does not affect the immediate hormonal response to stress, and (4) reduces the long-term hormonal response to stress. In general, pigs receiving high dietary TRP were found to be less affected by stress.

  9. Pressor Response to Noradrenaline in the Setting of Septic Shock: Anything New under the Sun—Dexmedetomidine, Clonidine? A Minireview

    Directory of Open Access Journals (Sweden)

    A. Géloën

    2015-01-01

    Full Text Available Progress over the last 50 years has led to a decline in mortality from ≈70% to ≈20% in the best series of patients with septic shock. Nevertheless, refractory septic shock still carries a mortality close to 100%. In the best series, the mortality appears related to multiple organ failure linked to comorbidities and/or an intense inflammatory response: shortening the period that the subject is exposed to circulatory instability may further lower mortality. Treatment aims at reestablishing circulation within a “central” compartment (i.e., brain, heart, and lung but fails to reestablish a disorganized microcirculation or an adequate response to noradrenaline, the most widely used vasopressor. Indeed, steroids, nitric oxide synthase inhibitors, or donors have not achieved overwhelming acceptance in the setting of septic shock. Counterintuitively, α2-adrenoceptor agonists were shown to reduce noradrenaline requirements in two cases of human septic shock. This has been replicated in rat and sheep models of sepsis. In addition, some data show that α2-adrenoceptor agonists lead to an improvement in the microcirculation. Evidence-based documentation of the effects of alpha-2 agonists is needed in the setting of human septic shock.

  10. Determination of adrenaline, noradrenaline and corticosterone in rodent blood by ion pair reversed phase UHPLC-MS/MS.

    Science.gov (United States)

    Bergh, Marianne Skov-Skov; Bogen, Inger Lise; Andersen, Jannike Mørch; Øiestad, Åse Marit Leere; Berg, Thomas

    2018-01-01

    A novel ion pair reversed phase ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of the stress hormones adrenaline, noradrenaline and corticosterone in rodent blood was developed and fully validated. Separations were performed on an Acquity HSS T3 column (2.1mm i.d.×100mm, 1.8μm) with gradient elution and a runtime of 5.5min. The retention of adrenaline and noradrenaline was substantially increased by employing the ion pair reagent heptafluorobutyric acid (HFBA). Ion pair reagents are usually added to the mobile phase only, but we demonstrate for the first time that including HFBA to the sample reconstitution solvent as well, has a major impact on the chromatography of these compounds. The stability of adrenaline and corticosterone in rodent blood was investigated using the surrogate analytes adrenaline-d 3 and corticosterone-d 8 . The applicability of the described method was demonstrated by measuring the concentration of stress hormones in rodent blood samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dopamine Agonists and Pathologic Behaviors

    Directory of Open Access Journals (Sweden)

    Brendan J. Kelley

    2012-01-01

    Full Text Available The dopamine agonists ropinirole and pramipexole exhibit highly specific affinity for the cerebral dopamine D3 receptor. Use of these medications in Parkinson’s disease has been complicated by the emergence of pathologic behavioral patterns such as hypersexuality, pathologic gambling, excessive hobbying, and other circumscribed obsessive-compulsive disorders of impulse control in people having no history of such disorders. These behavioral changes typically remit following discontinuation of the medication, further demonstrating a causal relationship. Expression of the D3 receptor is particularly rich within the limbic system, where it plays an important role in modulating the physiologic and emotional experience of novelty, reward, and risk assessment. Converging neuroanatomical, physiological, and behavioral science data suggest the high D3 affinity of these medications as the basis for these behavioral changes. These observations suggest the D3 receptor as a therapeutic target for obsessive-compulsive disorder and substance abuse, and improved understanding of D3 receptor function may aid drug design of future atypical antipsychotics.

  12. Dopamine-transporter SPECT and Dopamine-D2-receptor SPECT in basal ganglia diseases

    International Nuclear Information System (INIS)

    Hesse, S.; Barthel, H.; Seese, A.; Sabri, O.

    2007-01-01

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D 2 receptor SPECT findings in selected movement disorders. (orig.)

  13. Effects of noradrenaline on locomotor rhythm-generating networks in the isolated neonatal rat spinal cord

    DEFF Research Database (Denmark)

    Kiehn, O; Sillar, K T; Kjaerulff, O

    1999-01-01

    locomotor-like rhythm, in which activity alternated between the left and right sides, and between rostral and caudal roots on the same side. As shown previously, stable locomotor activity could be induced by bath application of N-methyl-D-aspartate (NMDA; 4-8.5 microM) and/or serotonin (5-HT; 4-20 micro......M). NA modulated this activity by decreasing the cycle frequency and increasing the ventral root burst duration. These effects were dose dependent in the concentration range 1-5 microM. In contrast, at no concentration tested did NA have consistent effects on burst amplitudes or on the background...... activity of the ongoing rhythm. Moreover, NA did not obviously affect the left/right and rostrocaudal alternation of the NMDA/5-HT rhythm. The NMDA/5-HT locomotor rhythm sometimes displayed a time-dependent breakdown in coordination, ultimately resulting in tonic ventral root activity. However...

  14. Dopamine receptors in human gastrointestinal mucosa

    International Nuclear Information System (INIS)

    Hernandez, D.E.; Mason, G.A.; Walker, C.H.; Valenzuela, J.E.

    1987-01-01

    Dopamine is a putative enteric neurotransmitter that has been implicated in exocrine secretory and motility functions of the gastrointestinal tract of several mammalian species including man. This study was designed to determine the presence of dopamine binding sites in human gastric and duodenal mucosa and to describe certain biochemical characteristics of these enteric receptor sites. The binding assay was performed in triplicate with tissue homogenates obtained from healthy volunteers of both sexes using 3 H-dopamine as a ligand. The extent of nonspecific binding was determined in the presence of a 100-fold excess of unlabeled dopamine. Scatchard analysis performed with increasing concentrations of 3 H-dopamine (20-500 nM) revealed a single class of saturable dopamine binding sites in gastric and duodenal mucosa. The results of this report demonstrate the presence of specific dopamine receptors in human gastric and duodenal mucosa. These biochemical data suggest that molecular abnormalities of these receptor sites may be operative in the pathogenesis of important gastrointestinal disorders. 33 references, 2 figures

  15. Decreased prefrontal cortical dopamine transmission in alcoholism.

    Science.gov (United States)

    Narendran, Rajesh; Mason, Neale Scott; Paris, Jennifer; Himes, Michael L; Douaihy, Antoine B; Frankle, W Gordon

    2014-08-01

    Basic studies have demonstrated that optimal levels of prefrontal cortical dopamine are critical to various executive functions such as working memory, attention, inhibitory control, and risk/reward decisions, all of which are impaired in addictive disorders such as alcoholism. Based on this and imaging studies of alcoholism that have demonstrated less dopamine in the striatum, the authors hypothesized decreased dopamine transmission in the prefrontal cortex in persons with alcohol dependence. To test this hypothesis, amphetamine and [11C]FLB 457 positron emission tomography were used to measure cortical dopamine transmission in 21 recently abstinent persons with alcohol dependence and 21 matched healthy comparison subjects. [11C]FLB 457 binding potential, specific compared to nondisplaceable uptake (BPND), was measured in subjects with kinetic analysis using the arterial input function both before and after 0.5 mg kg-1 of d-amphetamine. Amphetamine-induced displacement of [11C]FLB 457 binding potential (ΔBPND) was significantly smaller in the cortical regions in the alcohol-dependent group compared with the healthy comparison group. Cortical regions that demonstrated lower dopamine transmission in the alcohol-dependent group included the dorsolateral prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, temporal cortex, and medial temporal lobe. The results of this study, for the first time, unambiguously demonstrate decreased dopamine transmission in the cortex in alcoholism. Further research is necessary to understand the clinical relevance of decreased cortical dopamine as to whether it is related to impaired executive function, relapse, and outcome in alcoholism.

  16. Stereoselectivity of presynaptic autoreceptors modulating dopamine release

    International Nuclear Information System (INIS)

    Arbilla, S.; Langer, S.Z.

    1981-01-01

    The effects of the (R)- and (S)-enantiomers of sulpiride and butaclamol were studied on the spontaneous and field stimulation-evoked release of total radioactivity from slices of rabbit caudate nucleus prelabelled with [ 3 H]dopamine. (S)-Sulpiride in concentrations ranging from 0.01-1μM enhanced the electrically evoked release of [ 3 H]dopamine while (R)-sulpiride was 10 times less potent than (S)-sulpiride. Exposure to (S)-butaclamol (0.1-1 μM) but not to (R)-butaclamol (0.1-10μM) enhanced the field-stimulated release of [ 3 H]dopamine. The facilitatory effects of (S)- and (R)-sulpiride and (S)-butaclamol on the stimulated release of the labelled neurotransmitter were observed under conditions in which these drugs did not modify the spontaneous outflow of radioactivity. Only the active enantiomers of sulpiride and butaclamol antagonized the inhibition by apomorphine (1μM) of the stimulated release of [ 3 H]dopamine. Our results indicate that the presynaptic inhibitory dopamine autoreceptors modulating the stimulation-evoked release of [ 3 H]dopamine in the caudate nucleus are, like the classical postsynaptic dopamine receptors, chemically stereoselective. (Auth.)

  17. Human dopamine receptor and its uses

    Energy Technology Data Exchange (ETDEWEB)

    Civelli, Olivier (Portland, OR); Van Tol, Hubert Henri-Marie (Toronto, CA)

    1999-01-01

    The present invention is directed toward the isolation, characterization and pharmacological use of the human D4 dopamine receptor. The nucleotide sequence of the gene corresponding to this receptor and alleleic variant thereof are provided by the invention. The invention also includes recombinant eukaryotic expression constructs capable of expressing the human D4 dopamine receptor in cultures of transformed eukaryotic cells. The invention provides cultures of transformed eukaryotic cells which synthesize the human D4 dopamine receptor, and methods for characterizing novel psychotropic compounds using such cultures.

  18. Turning skin into dopamine neurons

    Institute of Scientific and Technical Information of China (English)

    Malin Parmar; Johan Jakobsson

    2011-01-01

    The possibility to generate neurons from fibroblasts became a reality with the development of iPS technology a few years ago.By reprogramming somatic cells using transcription factor (TF) overexpression,it is possible to generate pluripotent stem cells that then can be differentiated into any somatic cell type including various subtypes of neurons.This raises the possibility of using donor-matched or even patientspecific cells for cell therapy of neurological disorders such as Parkinson's disease (PD),Huntington's disease and stroke.Supporting this idea,dopamine neurons,which are the cells dying in PD,derived from human iPS cells have been demonstrated to survive transplantation and reverse motor symptoms in animal models of PD [1].

  19. The role of dopamine in Drosophila larval classical olfactory conditioning.

    Directory of Open Access Journals (Sweden)

    Mareike Selcho

    Full Text Available Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt as well as appetitive (odor-sugar associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive

  20. Neonatal 6-hydroxydopamine treatment: Noradrenaline levels and in vitro 3H-catecholamine synthesis in discrete brain regions of adult rats

    NARCIS (Netherlands)

    Versteeg, D.H.G.; Ree, J.M. van; Provoost, Abraham P.; Jong, Wybren de

    1974-01-01

    Endogenous noradrenaline levels are elevated in medulla oblongata, mesencephalon, pons and thalamus of adult rats which had been treated with 6-hydroxydopamine on days 1, 2, 8 and 15 after birth. Levels in spinal cord, cerebellum, hippocampus/amygdala and cortex are depressed, whereas no significant

  1. Plasma cortisol and noradrenalin concentrations in pigs: automated sampling of freely moving pigs housed in PigTurn versus manually sampled and restrained pigs

    Science.gov (United States)

    Minimizing the effects of restraint and human interaction on the endocrine physiology of animals is essential for collection of accurate physiological measurements. Our objective was to compare stress-induced cortisol (CORT) and noradrenalin (NorA) responses in automated versus manual blood sampling...

  2. Whole body and regional clearances of noradrenaline and adrenaline in man

    DEFF Research Database (Denmark)

    Christensen, N J; Galbo, H; Gjerris, A

    1984-01-01

    the clearance values based on arterial and venous sampling averaged 1.4 and 2.5 l/min, respectively (p less than 0.02). The difference in clearance values was due to peripheral uptake of NA averaging 45%. The plasma appearance rate on NA averaged 2.4 nmol/min before surgery and it increased to 9.5 nmol...... we found no correlation between clearance values based on venous and arterial sampling. In other experiments we measured the influence of physical exercise in young healthy subjects on the clearance rate of plasma adrenaline (A). The clearance of A, which at rest averaged 1.9 l/min tended to increase...

  3. Detection of dopamine neurotransmission in 'real time'

    Directory of Open Access Journals (Sweden)

    Rajendra D Badgaiyan

    2013-07-01

    Full Text Available Current imaging techniques have limited ability to detect neurotransmitters released during brain processing. It is a critical limitation because neurotransmitters have significant control over the brain activity. In this context, recent development of single-scan dynamic molecular imaging technique is important because it allows detection, mapping, and measurement of dopamine released in the brain during task performance. The technique exploits the competition between endogenously released dopamine and its receptor ligand for occupancy of receptor sites. Dopamine released during task performance is detected by dynamically measuring concentration of intravenously injected radiolabeled ligand using a positron emission tomography camera. Based on the ligand concentration, values of receptor kinetic parameters are estimated. These estimates allow detection of dopamine released in the human brain during task performance.

  4. DOPA, norepinephrine, and dopamine in rat tissues

    DEFF Research Database (Denmark)

    Eldrup, E; Richter, Erik; Christensen, N J

    1989-01-01

    We studied the effect of unilateral sympathectomy on rat quadriceps and gastrocnemius muscle concentrations of endogenous dihydroxyphenylalanine (DOPA), dopamine (DA), and norepinephrine (NE) and assessed the relationships between these catecholamines in several rat tissues. Catecholamines were...

  5. The radioenzymatic determination of adrenaline and noradrenaline in plasma and its use in the diagnostic of pheochromocytomas

    International Nuclear Information System (INIS)

    Neuhaus, C.P.E.

    1982-01-01

    The radioenzymatic determination of adrenaline and noradrenaline in human plasma for the diagnosis of pheochromocytomas was put to use after improvements were made with respect to extraction and separation steps. The plasma catecholamines at rest were distinctly higher in patients with pheochromocytomas. The plasma catecholamine level showed a significant increase as well with the glucagon test between the second and fifth minute. The method was not well suited for the localisation diagnostic where the plasma catecholamines were determined in selectively taken blood from the lower vena cava. Overall, however, the radioenzymatic determination of catecholamines in plasma proved itself to be a relatively ponderous, but exact and sensitive method for the measuring of basal catecholamine level and its changes. In the clinical area it is used as a valuable supplement to the contemporary diagnostic of pheochromocytomas. (orig./TRV) [de

  6. Photoaffinity labeling of the dopamine reuptake carrier protein with 3-azido 3H GBR-12935

    International Nuclear Information System (INIS)

    Berger, S.P.; Martenson, R.E.; Laing, P.; Thurkauf, A.; Decosta, B.; Rice, K.C.; Paul, S.M.

    1991-01-01

    A high affinity tritiated azido-diphenylpiperazine derivative, 3-azido 3 H GBR-12935, was synthesized as a potential photoaffinity probe of the dopamine transporter. Initially, the reversible binding of 3-azido 3 H GBR-12935 to crude synaptosomal membranes from the rat striatum was characterized. Specific binding was sodium dependent and inhibited by a variety of drugs that are known to potently inhibit dopamine uptake. Other neurotransmitter uptake inhibitors, as well as cis-flupenthixol, a potent inhibitor of 3 H GBR-12935 binding to piperazine binding sites, failed to inhibit specific binding at concentrations of less than or equal to 10 microM. A good correlation was observed between the relative potencies of these drugs in inhibiting dopamine uptake into synaptosomes and in inhibiting specific 3-azido 3 H GBR-12935 binding to rat striatal membranes. These data suggest that 3-azido 3 H GBR-12935, like other diphenylpiperazines such as 3 H GBR-12935 and 3 H GBR-12909, binds primarily to the dopamine transporter under defined assay conditions. After UV photolysis of crude synaptosomal membranes preincubated with 3-azido 3 H GBR-12935 (1-2 nM), a single radiolabeled polypeptide with an apparent molecular mass of 80 kDa was observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Photoincorporation of 3-azido 3 H GBR-12935 into this polypeptide was inhibited selectively by compounds that inhibit the uptake of dopamine and was completely dependent on the presence of Na+. No photolabeled proteins were observed when cerebellar membranes were substituted for striatal membranes. Essentially complete adsorption of the radiolabeled 80-kDa polypeptide to wheat germ agglutinin and elution with N-acetyl-D-glucosamine strongly suggest that the dopamine transporter polypeptide photolabeled by 3-azido 3 H GBR-12935 is glycosylated

  7. Two-week administration of the combined serotonin-noradrenaline reuptake inhibitor duloxetine augments functioning of mesolimbic incentive processing circuits

    NARCIS (Netherlands)

    Ossewaarde, Lindsey; Verkes, Robbert J.; Hermans, Erno J.; Kooijman, Sabine C.; Urner, Maren; Tendolkar, Indira; van Wingen, Guido A.; Fernández, Guillén

    2011-01-01

    Anhedonia and lack of motivation are core symptoms of major depressive disorder (MDD). Neuroimaging studies in MDD patients have shown reductions in reward-related activity in terminal regions of the mesolimbic dopamine (DA) system, such as the ventral striatum. Monoamines have been implicated in

  8. Two-week administration of the combined serotonin-noradrenaline reuptake inhibitor duloxetine augments functioning of mesolimbic incentive processing circuits

    NARCIS (Netherlands)

    Ossewaarde, L.; Verkes, R.J.; Hermans, E.J.; Kooijman, S.C.; Urner, M.; Tendolkar, I.; Wingen, G.A. van; Fernandez, G.S.E.

    2011-01-01

    BACKGROUND: Anhedonia and lack of motivation are core symptoms of major depressive disorder (MDD). Neuroimaging studies in MDD patients have shown reductions in reward-related activity in terminal regions of the mesolimbic dopamine (DA) system, such as the ventral striatum. Monoamines have been

  9. The effects of compound stimulus extinction and inhibition of noradrenaline reuptake on the renewal of alcohol seeking

    Science.gov (United States)

    Furlong, T M; Pan, M J; Corbit, L H

    2015-01-01

    Alcohol-related stimuli can trigger relapse of alcohol-seeking behaviors even after extended periods of abstinence. Extinction of such stimuli can reduce their impact on relapse; however, the expression of extinction can be disrupted when testing occurs outside the context where extinction learning took place, an effect termed renewal. Behavioral and pharmacological methods have recently been shown to augment extinction learning; yet, it is not known whether the improved expression of extinction following these treatments remains context-dependent. Here we examined whether two methods, compound–stimulus extinction and treatment with the noradrenaline reuptake inhibitor atomoxetine, would reduce the vulnerability of extinction to a change in context. Following alcohol self-administration, responding was extinguished in a distinct context. After initial extinction, further extinction was given to a target stimulus presented in compound with another alcohol-predictive stimulus intended to augment prediction error (Experiment 1) or after a systemic injection of atomoxetine (1.0 mg kg−1; Experiment 2). A stimulus extinguished as part of a compound elicited less responding than a stimulus receiving equal extinction alone regardless of whether animals were tested in the training or extinction context; however, reliable renewal was not observed in this paradigm. Importantly, atomoxetine enhanced extinction relative to controls even in the presence of a reliable renewal effect. Thus, extinction of alcohol-seeking behavior can be improved by extinguishing multiple alcohol-predictive stimuli or enhancing noradrenaline neurotransmission during extinction training. Importantly, both methods improve extinction even when the context is changed between extinction training and test, and thus could be utilized to enhance the outcome of extinction-based treatments for alcohol-use disorders. PMID:26327688

  10. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain.

    Science.gov (United States)

    Kim, Youngsoo; Elmenhorst, David; Weisshaupt, Angela; Wedekind, Franziska; Kroll, Tina; McCarley, Robert W; Strecker, Robert E; Bauer, Andreas

    2015-10-01

    Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day(-1) for 5 consecutive days (SR1-SR5), followed by 3 unrestricted recovery sleep days (R1-R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26-31% from SR1 to R1). A decrease in β-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction. © 2015 European Sleep Research Society.

  11. Dopamine D(1) receptor-mediated control of striatal acetylcholine release by endogenous dopamine.

    Science.gov (United States)

    Acquas, E; Di Chiara, G

    1999-10-27

    The role of dopamine D(1) and D(2) receptors in the control of acetylcholine release in the dorsal striatum by endogenous dopamine was investigated by monitoring with microdialysis the effect of the separate or combined administration of the dopamine D(1) receptor antagonist, SCH 39166 ¿(-)-trans-6,7,7a,8,9, 13b-exahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo-[d]-nap hto-[2, 1b]-azepine hydrochloride¿ (50 microg/kg subcutaneous (s.c.)), of the dopamine D(2)/D(3) receptor agonist, quinpirole (trans-(-)-4aR, 4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo-(3,4-g)-quinoline hydrochloride) (5 and 10 microg/kg s.c.), and of the D(3) receptor selective agonist, PD 128,907 [S(+)-(4aR,10bR)-3,4,4a, 10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin -9-ol hydrochloride] (50 microg/kg s.c.), on in vivo dopamine and acetylcholine release. Microdialysis was performed with a Ringer containing low concentrations (0.01 microM) of the acetylcholinesterase inhibitor, neostigmine. Quinpirole (10 microg/kg s.c.) decreased striatal dopamine and acetylcholine release. Administration of PD 128,907 (50 microg/kg) decreased dopamine but failed to affect acetylcholine release. SCH 39166 (50 microg/kg s.c.) stimulated dopamine release and reduced acetylcholine release. Pretreatment with quinpirole reduced (5 microg/kg s.c.) or completely prevented (10 microg/kg s.c.) the stimulation of dopamine release elicited by SCH 39166 (50 microg/kg s.c.); on the other hand, pretreatment with quinpirole (5 and 10 microg/kg) potentiated the reduction of striatal acetylcholine release induced by SCH 39166 (50 microg/kg s.c.). Similarly, pretreatment with PD 128,907 (50 microg/kg) which prevented the increase of dopamine release induced by SCH 39166 (50 microg/kg), potentiated the reduction of striatal acetylcholine transmission elicited by SCH 39166. Thus, pretreatment with low doses of quinpirole or PD 128,907 influences in opposite manner the effect of SCH 39166 on striatal dopamine and

  12. Addiction: beyond dopamine reward circuitry.

    Science.gov (United States)

    Volkow, Nora D; Wang, Gene-Jack; Fowler, Joanna S; Tomasi, Dardo; Telang, Frank

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  13. Imaging dopamine transmission in schizophrenia

    International Nuclear Information System (INIS)

    Laruelle, M.

    1998-01-01

    Over the last ten years, several positron emission tomography (PET) and single photon computerized tomography (SPECT) studies of the dopamine (DA) system in patients with schizophrenia were performed to test the hypothesis that DA hyperactivity is associated with this illness. In this paper are reviewed the results of fifteen brain imaging studies comparing indices of DA function in drug naive or drug free patients with schizophrenia and healthy controls: thirteen studies included measurements of Da D 2 receptor density, two studies compared amphetamine-induced DA release, and two studies measured DOPA decarboxylase activity, an enzyme involved in DA synthesis. It was conducted a meta-analysis of the studies measuring D 2 receptor density parameters, under the assumption that all tracers labeled the same population of D 2 receptors. This analysis revealed that, compared to healthy controls, patients with schizophrenia present a significant but mild elevation of D 2 receptor density parameters and a significant larger variability of these indices. It was found no statistical evidence that studies performed with radiolabeled butyrophenones detected a larger increase in D 2 receptor density parameters than studies performed with other radioligands, such as benzamides. Studies of presynaptic activity revealed an increase in DA transmission response to amphetamine challenge, and an increase in DOPA decarboxylase activity. Together, these data are compatible with both pre- and post-synaptic alterations of DA transmission in schizophrenia. Future studies should aim at a better characterization of these alterations, and at defining their role in the pathophysiology of the illness

  14. Immunomodulatory Effects Mediated by Dopamine

    Science.gov (United States)

    Alvarez-Herrera, Samantha; Pérez-Sánchez, Gilberto; Becerril-Villanueva, Enrique; Cruz-Fuentes, Carlos; Flores-Gutierrez, Enrique Octavio; Quintero-Fabián, Saray

    2016-01-01

    Dopamine (DA), a neurotransmitter in the central nervous system (CNS), has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS) that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R) and D2-like receptors (D2R, D3R, and D4R). The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS), there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers. PMID:27795960

  15. Immunomodulatory Effects Mediated by Dopamine

    Directory of Open Access Journals (Sweden)

    Rodrigo Arreola

    2016-01-01

    Full Text Available Dopamine (DA, a neurotransmitter in the central nervous system (CNS, has modulatory functions at the systemic level. The peripheral and central nervous systems have independent dopaminergic system (DAS that share mechanisms and molecular machinery. In the past century, experimental evidence has accumulated on the proteins knowledge that is involved in the synthesis, reuptake, and transportation of DA in leukocytes and the differential expression of the D1-like (D1R and D5R and D2-like receptors (D2R, D3R, and D4R. The expression of these components depends on the state of cellular activation and the concentration and time of exposure to DA. Receptors that are expressed in leukocytes are linked to signaling pathways that are mediated by changes in cAMP concentration, which in turn triggers changes in phenotype and cellular function. According to the leukocyte lineage, the effects of DA are associated with such processes as respiratory burst, cytokine and antibody secretion, chemotaxis, apoptosis, and cytotoxicity. In clinical conditions such as schizophrenia, Parkinson disease, Tourette syndrome, and multiple sclerosis (MS, there are evident alterations during immune responses in leukocytes, in which changes in DA receptor density have been observed. Several groups have proposed that these findings are useful in establishing clinical status and clinical markers.

  16. Addiction: Beyond dopamine reward circuitry

    International Nuclear Information System (INIS)

    Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-01-01

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  17. Dopamine, behavioral economics, and effort

    Directory of Open Access Journals (Sweden)

    John D Salamone

    2009-09-01

    Full Text Available Abstract. There are numerous problems with the hypothesis that brain dopamine (DA systems, particularly in the nucleus accumbens, directly mediate the rewarding or primary motivational characteristics of natural stimuli such as food. Research and theory related to the functions of mesolimbic DA are undergoing a substantial conceptual restructuring, with the traditional emphasis on hedonia and primary reward yielding to other concepts and lines of inquiry. The present review is focused upon the involvement of nucleus accumbens DA in behavioral activation and effort-related processes. Viewed from the framework of behavioral economics, the effects of accumbens DA depletions and antagonism on food-reinforced behavior are highly dependent upon the work requirements of the instrumental task, and DA depleted rats are more sensitive to increases in response costs (i.e., ratio requirements. Moreover, interference with accumbens DA transmission exerts a powerful influence over effort-related choice behavior. Rats with accumbens DA depletions or antagonism reallocate their instrumental behavior away from food-reinforced tasks that have high response requirements, and instead these rats select a less-effortful type of food-seeking behavior. Nucleus accumbens DA and adenosine interact in the regulation of effort-related functions, and other brain structures (anterior cingulate cortex, amygdala, ventral pallidum also are involved. Studies of the brain systems regulating effort-based processes may have implications for understanding drug abuse, as well as energy-related disorders such as psychomotor slowing, fatigue or anergia in depression and other neurological disorders.

  18. Addiction: Beyond dopamine reward circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Volkow, N.D.; Wang, G.; Volkow, N.D.; Wang, G.-J.; Fowler, J.S.; Tomasi, D.; Telang, F.

    2011-09-13

    Dopamine (DA) is considered crucial for the rewarding effects of drugs of abuse, but its role in addiction is much less clear. This review focuses on studies that used PET to characterize the brain DA system in addicted subjects. These studies have corroborated in humans the relevance of drug-induced fast DA increases in striatum [including nucleus accumbens (NAc)] in their rewarding effects but have unexpectedly shown that in addicted subjects, drug-induced DA increases (as well as their subjective reinforcing effects) are markedly blunted compared with controls. In contrast, addicted subjects show significant DA increases in striatum in response to drug-conditioned cues that are associated with self-reports of drug craving and appear to be of a greater magnitude than the DA responses to the drug. We postulate that the discrepancy between the expectation for the drug effects (conditioned responses) and the blunted pharmacological effects maintains drug taking in an attempt to achieve the expected reward. Also, whether tested during early or protracted withdrawal, addicted subjects show lower levels of D2 receptors in striatum (including NAc), which are associated with decreases in baseline activity in frontal brain regions implicated in salience attribution (orbitofrontal cortex) and inhibitory control (anterior cingulate gyrus), whose disruption results in compulsivity and impulsivity. These results point to an imbalance between dopaminergic circuits that underlie reward and conditioning and those that underlie executive function (emotional control and decision making), which we postulate contributes to the compulsive drug use and loss of control in addiction.

  19. Pacemaker rate and depolarization block in nigral dopamine neurons: a somatic sodium channel balancing act

    Science.gov (United States)

    Tucker, Kristal R.; Huertas, Marco A.; Horn, John P.; Canavier, Carmen C.; Levitan, Edwin S.

    2012-01-01

    Midbrain dopamine (DA) neurons are slow intrinsic pacemakers that undergo depolarization (DP) block upon moderate stimulation. Understanding DP block is important because it has been correlated with the clinical efficacy of chronic antipsychotic drug treatment. Here we describe how voltage-gated sodium (NaV) channels regulate DP block and pacemaker activity in DA neurons of the substantia nigra using rat brain slices. The distribution, density and gating of NaV currents were manipulated by blocking native channels with tetrodotoxin and by creating virtual channels and anti-channels with dynamic clamp. Although action potentials initiate in the axon initial segment (AIS) and NaV channels are distributed in multiple dendrites, selective reduction of NaV channel activity in the soma was sufficient to decrease pacemaker frequency and increase susceptibility to DP block. Conversely, increasing somatic NaV current density raised pacemaker frequency and lowered susceptibility to DP block. Finally, when NaV currents were restricted to the soma, pacemaker activity occurred at abnormally high rates due to excessive local subthreshold NaV current. Together with computational simulations, these data show that both the slow pacemaker rate and the sensitivity to DP block that characterizes DA neurons result from the low density of somatic NaV channels. More generally, we conclude that the somatodendritic distribution of NaV channels is a major determinant of repetitive spiking frequency. PMID:23077037

  20. Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole.

    Science.gov (United States)

    MacDonald, Hayley J; Stinear, Cathy M; Ren, April; Coxon, James P; Kao, Justin; Macdonald, Lorraine; Snow, Barry; Cramer, Steven C; Byblow, Winston D

    2016-07-01

    Dopamine agonists can impair inhibitory control and cause impulse control disorders for those with Parkinson disease (PD), although mechanistically this is not well understood. In this study, we hypothesized that the extent of such drug effects on impulse control is related to specific dopamine gene polymorphisms. This double-blind, placebo-controlled study aimed to examine the effect of single doses of 0.5 and 1.0 mg of the dopamine agonist ropinirole on impulse control in healthy adults of typical age for PD onset. Impulse control was measured by stop signal RT on a response inhibition task and by an index of impulsive decision-making on the Balloon Analogue Risk Task. A dopamine genetic risk score quantified basal dopamine neurotransmission from the influence of five genes: catechol-O-methyltransferase, dopamine transporter, and those encoding receptors D1, D2, and D3. With placebo, impulse control was better for the high versus low genetic risk score groups. Ropinirole modulated impulse control in a manner dependent on genetic risk score. For the lower score group, both doses improved response inhibition (decreased stop signal RT) whereas the lower dose reduced impulsiveness in decision-making. Conversely, the higher score group showed a trend for worsened response inhibition on the lower dose whereas both doses increased impulsiveness in decision-making. The implications of the present findings are that genotyping can be used to predict impulse control and whether it will improve or worsen with the administration of dopamine agonists.

  1. Cerebral vascular effects of hypovolemia and dopamine infusions

    DEFF Research Database (Denmark)

    Holst Hahn, Gitte; Heiring, Christian; Pryds, Ole

    2012-01-01

    Despite widespread use, effects of volume boluses and dopamine in hypotensive newborn infants remain controversial. We aimed to elucidate if hypovolemia alone impairs cerebral autoregulation (CA) and if dopamine affects cerebral vasculature.......Despite widespread use, effects of volume boluses and dopamine in hypotensive newborn infants remain controversial. We aimed to elucidate if hypovolemia alone impairs cerebral autoregulation (CA) and if dopamine affects cerebral vasculature....

  2. Dopamine, T cells and multiple sclerosis (MS).

    Science.gov (United States)

    Levite, Mia; Marino, Franca; Cosentino, Marco

    2017-05-01

    Dopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R-D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells. Dopamine by itself (at an optimal concentration of~0.1 nM) induces multiple function of resting normal human T cells, among them: T cell adhesion, chemotactic migration, homing, cytokine secretion and others. Interestingly, dopamine activates resting effector T cells (Teffs), but suppresses regulatory T cells (Tregs), and both effects lead eventually to Teff activation. Dopamine-induced effects on T cells are dynamic, context-sensitive and determined by the: T cell activation state, T cell type, DR type, and dopamine concentration. Dopamine itself, and also few dopaminergic molecules/ drugs that are in clinical use for cardiac, neurological and other non-immune indications, have direct effects on human T cells (summarized in this review). These dopaminergic drugs include: dopamine = intropin, L-DOPA, bromocriptine, pramipexole, pergolide, haloperidol, pimozide, and amantadine. Other dopaminergic drugs were not yet tested for their direct effects on T cells. Extensive evidence in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) show dopaminergic dysregulations in T cells in these diseases: D1-like DRs are decreased in Teffs of MS patients, and dopamine does not affect these cells. In contrast, D1-like DRs are increased in Tregs of MS patients, possibly causing functional Treg impairment in MS. Treatment of MS patients with interferon β (IFN-β) increases D1-like DRs and decreases D2-like DRs in Teffs, decreases D1-like DRs in Tregs, and most important: restores responsiveness of patient's Teffs to dopamine. DR agonists and antagonists confer some benefits in

  3. ORAL IBOPAMINE SUBSTITUTION IN PATIENTS WITH INTRAVENOUS DOPAMINE DEPENDENCE

    NARCIS (Netherlands)

    GIRBES, ARJ; MILNER, AR; MCCLOSKEY, BV; ZWAVELING, JH; VANVELDHUISEN, DJ; ZIJLSTRA, JG; LIE, KI

    1995-01-01

    In a prospective open study we evaluated whether intravenous dopamine infusions can be safely switched to enterally administered ibopamine in dopamine-dependent patients. Six patients defined as being clinically stable, normovolaemic, but dopamine dependent, i.e. with repeated inability to stop

  4. The binding sites for cocaine and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Beuming, Thijs; Kniazeff, Julie; Bergmann, Marianne L

    2008-01-01

    Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog Leu......T. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed...... inhibition of dopamine transport by cocaine....

  5. Noradrenaline represses PPAR (peroxisome-proliferator-activated receptor) gamma2 gene expression in brown adipocytes: intracellular signalling and effects on PPARgamma2 and PPARgamma1 protein levels

    DEFF Research Database (Denmark)

    Lindgren, Eva M; Nielsen, Ronni; Petrovic, Natasa

    2004-01-01

    phases, with the highest mRNA levels being found at the time of transition between the phases. PPARgamma2 mRNA levels were downregulated by noradrenaline treatment (EC50, 0.1 microM) in both proliferative and differentiating cells, with a lagtime of 1 h and lasting up to 4 h, after which expression...... was thus to investigate the influence of noradrenaline on PPARgamma gene expression in brown adipocytes. In primary cultures of brown adipocytes, PPARgamma2 mRNA levels were 20-fold higher than PPARgamma1 mRNA levels. PPARgamma expression occurred during both the proliferation and the differentiation...... gradually recovered. The down-regulation was beta-adrenoceptor-induced and intracellularly mediated via cAMP and protein kinase A; the signalling pathway did not involve phosphoinositide 3-kinase, Src, p38 mitogen-activated protein kinase or extracellular-signal-regulated kinases 1 and 2. Treatment...

  6. Fluxes of lactate into, from, and among gap junction-coupled astrocytes and their interaction with noradrenaline

    Directory of Open Access Journals (Sweden)

    Leif eHertz

    2014-09-01

    Full Text Available Lactate is a versatile metabolite with important roles in modulation of brain glucose utilization rate (CMRglc, diagnosis of brain-injured patients, redox- and receptor-mediated signaling, memory, and alteration of gene transcription. Neurons and astrocytes release and accumulate lactate using equilibrative monocarboxylate transporters that carry out net transmembrane transport of lactate only until intra- and extracellular levels reach equilibrium. Astrocytes have much faster lactate uptake than neurons and shuttle more lactate among gap junction-coupled astrocytes than to nearby neurons. Lactate diffusion within syncytia can provide precursors for oxidative metabolism and glutamate synthesis and facilitate its release from endfeet to perivascular space to stimulate blood flow. Lactate efflux from brain during activation underlies the large underestimation of CMRglc with labeled glucose and fall in CMRO2/CMRglc ratio. Receptor-mediated effects of lactate on locus coeruleus neurons include noradrenaline release in cerebral cortex and c-AMP-mediated stimulation of astrocytic gap junctional coupling, thereby enhancing its dispersal and release from brain. Lactate transport is essential for its multifunctional roles.

  7. Contribution of vesicular and cytosolic dopamine to the increased striatal dopamine efflux elicited by intrastriatal injection of SKF38393.

    NARCIS (Netherlands)

    Saigusa, T.; Aono, Y.; Sekino, R.; Uchida, T.; Takada, K.; Oi, Y.; Koshikawa, N.; Cools, A.R.

    2009-01-01

    Like dexamphetamine, SKF38393 induces an increase in striatal dopamine efflux which is insensitive for tetrodotoxin, Ca(2+) independent and prevented by a dopamine transporter inhibitor. The dexamphetamine-induced striatal dopamine efflux originates from both the reserpine-sensitive vesicular

  8. Zn(2+) site engineering at the oligomeric interface of the dopamine transporter.

    Science.gov (United States)

    Norgaard-Nielsen, Kristine; Norregaard, Lene; Hastrup, Hanne; Javitch, Jonathan A; Gether, Ulrik

    2002-07-31

    Increasing evidence suggests that Na(+)/Cl(-)-dependent neurotransmitter transporters exist as homo-oligomeric proteins. However, the functional implication of this oligomerization remains unclear. Here we demonstrate the engineering of a Zn(2+) binding site at the predicted dimeric interface of the dopamine transporter (DAT) corresponding to the external end of transmembrane segment 6. Upon binding to this site, which involves a histidine inserted in position 310 (V310H) and the endogenous Cys306 within the same DAT molecule, Zn(2+) potently inhibits [(3)H]dopamine uptake. These data provide indirect evidence that conformational changes critical for the translocation process may occur at the interface between two transporter molecules in the oligomeric structure.

  9. Reduced capacity of cardiac efferent sympathetic neurons to release noradrenaline and modify cardiac function in tachycardia-induced canine heart failure.

    Science.gov (United States)

    Cardinal, R; Nadeau, R; Laurent, C; Boudreau, G; Armour, J A

    1996-09-01

    To investigate the capacity of efferent sympathetic neurons to modulate the failing heart, stellate ganglion stimulation was performed in dogs with biventricular heart failure induced by rapid ventricular pacing (240 beats/min) for 4-6 weeks. Less noradrenaline was released from cardiac myoneural junctions into coronary sinus blood in response to left stellate ganglion stimulation in anesthetized failing heart preparations (582 pg/mL, lower and upper 95% confidence intervals of 288 and 1174 pg/mL, n = 19) compared with healthy heart preparations (6391 pg/mL, 95% confidence intervals of 4180 and 9770 pg/mL, n = 14; p < 0.001). There was substantial adrenaline extraction by failing hearts (49 +/- 6%), although it was slightly lower than in healthy heart preparations (65 +/- 9%, p = 0.055). In contrast with healthy heart preparations, no net release of adrenaline occurred during stellate ganglion stimulation in any of the failing heart preparations, and ventricular tissue levels of adrenaline fell below the sensitivity limit of the HPLC technique. In failing heart preparations, maximal electrical stimulation of right or left stellate ganglia resulted in minimal augmentation of left ventricular intramyocardial (17%) and chamber (12%) systolic pressures. These indices were augmented by 145 and 97%, respectively, following exogenous noradrenaline administration. Thus, the cardiac efferent sympathetic neurons' reduced capacity to release noradrenaline and modify cardiac function can contribute to reduction of sympathetic support to the failing heart.

  10. Sex differences in effects of dopamine D1 receptors on social withdrawal.

    Science.gov (United States)

    Campi, Katharine L; Greenberg, Gian D; Kapoor, Amita; Ziegler, Toni E; Trainor, Brian C

    2014-02-01

    Dopamine signaling in the nucleus accumbens (NAc) plays a critical role in the regulation of motivational states. Recent studies in male rodents show that social defeat stress increases the activity of ventral tegmental dopamine neurons projecting to the NAc, and that this increased activity is necessary for stress-induced social withdrawal. Domestic female mice are not similarly aggressive, which has hindered complementary studies in females. Using the monogamous California mouse (Peromyscus californicus), we found that social defeat increased total dopamine, DOPAC, and HVA content in the NAc in both males and females. These results are generally consistent with previous studies in Mus, and suggest defeat stress also increases NAc dopamine signaling in females. However, these results do not explain our previous observations that defeat stress induces social withdrawal in female but not male California mice. Pharmacological manipulations provided more insights. When 500 ng of the D1 agonist SKF38393 was infused in the NAc shell of females that were naïve to defeat, social interaction behavior was reduced. This same dose of SKF38393 had no effect in males, suggesting that D1 receptor activation is sufficient to induce social withdrawal in females but not males. Intra-accumbens infusion of the D1 antagonist SCH23390 increased social approach behavior in females exposed to defeat but not in females naïve to defeat. This result suggests that D1 receptors are necessary for defeat-induced social withdrawal. Overall, our results suggest that sex differences in molecular pathways that are regulated by D1 receptors contribute to sex differences in social withdrawal behavior. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Dopamine induces neutrophil apoptosis through a dopamine D-1 receptor-independent mechanism.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    BACKGROUND: For the normal resolution of an acute inflammatory response, neutrophil (PMN) apoptosis is essential to maintain immune homeostasis and to limit inappropriate host tissue damage. A delay in PMN apoptosis has been implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS). Dopamine, a biogenic amine with known cardiovascular and neurotransmitter properties, is used in patients with SIRS to maintain hemodynamic stability. We sought to determine whether dopamine may also have immunoregulatory properties capable of influencing PMN apoptosis, function, and activation state in patients with SIRS. METHODS: PMNs were isolated from healthy volunteers and patients with SIRS and treated with varying doses of dopamine and a dopamine D-1 receptor agonist, fenoldopam. PMN apoptosis was assessed every 6 hours with use of propidium iodide DNA staining and PMN function was assessed with use of respiratory burst activity, phagocytosis ability, and CD11a, CD11b, and CD18 receptor expression as functional markers. RESULTS: There was a significant delay in PMN apotosis in patients with SIRS compared with controls. Treatment of isolated PMNs from both healthy controls and patients with SIRS with 10 and 100 mumol\\/L dopamine induced apoptosis. PMN ingestive and cytocidal capacity were both decreased in patients with SIRS compared with controls. Treatment with dopamine significantly increased phagocytic function. Fenoldopam did not induce PMN apoptosis. CONCLUSION: Our data demonstrate for the first time that dopamine induces PMN apoptosis and modulates PMN function both in healthy controls and in patients with SIRS. These results indicate that dopamine may be beneficial during SIRS through a nonhemodynamic PMN-dependent proapoptotic mechanism.

  12. Membrane permeable C-terminal dopamine transporter peptides attenuate amphetamine-evoked dopamine release

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Owens, WA; Winkler, Marie-Therese

    2013-01-01

    The dopamine transporter (DAT) is responsible for sequestration of extracellular dopamine (DA). The psychostimulant amphetamine (AMPH) is a DAT substrate, which is actively transported into the nerve terminal, eliciting vesicular depletion and reversal of DA transport via DAT. Here, we investigate......-terminal protein-protein interactions are critical for AMPH-evoked DA efflux and suggest that it may be possible to target protein-protein interactions to modulate transporter function and interfere with psychostimulant effects....

  13. Dopamine in heart failure and critical care

    NARCIS (Netherlands)

    Smit, AJ

    Dopamine is widely used in critical care to prevent renal function loss. Nevertheless sufficient evidence is still lacking of reduction in end points like mortality or renal replacement therapy. Dopaminergic treatment in chronic heart failure (CHF) has provided an example of unexpected adverse

  14. DOPAMINE EFFECT ON CARDIAC REMODELING IN EXPERIMENT

    Directory of Open Access Journals (Sweden)

    V. R. Veber

    2009-01-01

    Full Text Available Aim. To study morphologic changes in myocardium of Wistar rats caused by single and long term dopamine administration.Methods. In acute study dopamine 10 mkg/kg was administrated to 15 rats by a single intraperitoneal injection. The material was taken in 2, 6, 24 hours and in 1 month after drug administration. In chronic study dopamine 10 mkg/kg was administrated to 15 rats 3 times a day by intraperitoneal injections during 2 weeks. The material was taken just after the drug administration was stopped and in 1 month of animals keeping without stress and drug influences. Control group included 15 rats comparable with experimental animals in age and weight. They were keeped without stress and drug influences. Morphometric parameters of left and right ventricles were evaluated as well as density of cardiomyocytes, collagen, vessels and volume of extracellular space.Results. The enlargement of cardiac fibrosis is found both in acute, and in chronic study. In acute study cardiac fibrosis was located mainly in a right ventricle. In chronic study cardiac fibrosis was located in both ventricles, but also mainly in a right one.Conclusion. Significant morphological «asynchronism» of the left and right ventricles remodeling requires elaboration of methods of myocardium protection and cardiac function control during dopamine administration. 

  15. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    David R. Grattan

    2016-04-01

    Full Text Available In this issue of Cell Reports, Stagkourakis et al. (2016 report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits.

  16. Antagonism of presynaptic dopamine receptors by phenothiazine drug metabolites

    International Nuclear Information System (INIS)

    Nowak, J.Z.; Arbilla, S.; Langer, S.Z.; Dahl, S.G.

    1990-01-01

    Electrically evoked release of dopamine from the caudate nucleus is reduced by the dopamine receptor agonists, apomorphine and bromocriptine, and facilitated by neuroleptic drugs, which act as dopamine autoreceptor antagonists. The potencies of chlorpromazine, fluphenazine, levomepromazine and their hydroxy-metabolites in modulating electrically evoked release of dopamine were examined by superfusion of rabbit caudate nucleus slices pre-incubated with 3 H-dopamine. O-Desmethyl levomepromazine, 3-hydroxy- and 7-hydroxy metabolites of chlorpromazine and levomepromazine facilitated electrically evoked release of 3 H-dopamine, having potencies similar to that of the parent compounds. 7-Hydroxy fluphenazine was less active than fluphenazine in this system. These results indicate that phenolic metabolites of chlorpromazine and levomepromazine, but not of fluphenazine, may contribute to effects of the drugs mediated by presynaptic dopamine receptors

  17. Intranasal dopamine reduces in vivo [123I]FP-CIT binding to striatal dopamine transporter: correlation with behavioral changes and evidence for Pavlovian conditioned dopamine response

    OpenAIRE

    Maria A de Souza Silva; C. eMattern; C. eMattern; C.I. eDecheva; Joseph P. Huston; A. eSadile; M. eBeu; H.W. eMüller; Susanne eNikolaus

    2016-01-01

    Purpose: Dopamine (DA), which does not cross the blood-brain barrier, has central and behavioral effects when administered via the nasal route. Neither the mechanisms of central action of intranasal dopamine (IN-DA), nor its mechanisms of diffusion and transport into the brain are well understood. We here examined whether IN-DA application influences dopamine transporter (DAT) binding in the dorsal striatum and assessed the extent of binding in relation to motor and exploratory behaviors. We ...

  18. Dopamine Modulates Option Generation for Behavior.

    Science.gov (United States)

    Ang, Yuen-Siang; Manohar, Sanjay; Plant, Olivia; Kienast, Annika; Le Heron, Campbell; Muhammed, Kinan; Hu, Michele; Husain, Masud

    2018-05-21

    Animals make innumerable decisions every day, each of which involves evaluating potential options for action. But how are options generated? Although much is now known about decision making when a fixed set of potential options is provided, surprisingly little progress has been made on self-generated options. Some researchers have proposed that such abilities might be modulated by dopamine. Here, we used a new measure of option generation that is quantitative, objective, and culture fair to investigate how humans generate different behavioral options. Participants were asked to draw as many different paths (options) as they could between two points within a fixed time. Healthy individuals (n = 96) exhibited a trade-off between uniqueness (how individually different their options were) and fluency (number of options), generating either many similar or few unique options. To assess influence of dopamine, we first examined patients with Parkinson's disease (n = 35) ON and OFF their dopaminergic medication and compared them to elderly healthy controls (n = 34). Then we conducted a double-blind, placebo-controlled crossover study of the D2 agonist cabergoline in healthy older people (n = 29). Across both studies, dopamine increased fluency but diminished overall uniqueness of options generated, due to the effect of fluency trading off with uniqueness. Crucially, however, when this trade-off was corrected for, dopamine was found to increase uniqueness for any given fluency. Three carefully designed control studies showed that performance on our option-generation task was not related to executing movements, planning actions, or selecting between generated options. These findings show that dopamine plays an important role in modulating option generation. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. A Dopamine Hypothesis of Autism Spectrum Disorder.

    Science.gov (United States)

    Pavăl, Denis

    2017-01-01

    Autism spectrum disorder (ASD) comprises a group of neurodevelopmental disorders characterized by social deficits and stereotyped behaviors. While several theories have emerged, the pathogenesis of ASD remains unknown. Although studies report dopamine signaling abnormalities in autistic patients, a coherent dopamine hypothesis which could link neurobiology to behavior in ASD is currently lacking. In this paper, we present such a hypothesis by proposing that autistic behavior arises from dysfunctions in the midbrain dopaminergic system. We hypothesize that a dysfunction of the mesocorticolimbic circuit leads to social deficits, while a dysfunction of the nigrostriatal circuit leads to stereotyped behaviors. Furthermore, we discuss 2 key predictions of our hypothesis, with emphasis on clinical and therapeutic aspects. First, we argue that dopaminergic dysfunctions in the same circuits should associate with autistic-like behavior in nonautistic subjects. Concerning this, we discuss the case of PANDAS (pediatric autoimmune neuropsychiatric disorder associated with streptococcal infections) which displays behaviors similar to those of ASD, presumed to arise from dopaminergic dysfunctions. Second, we argue that providing dopamine modulators to autistic subjects should lead to a behavioral improvement. Regarding this, we present clinical studies of dopamine antagonists which seem to have improving effects on autistic behavior. Furthermore, we explore the means of testing our hypothesis by using neuroreceptor imaging, which could provide comprehensive evidence for dopamine signaling dysfunctions in autistic subjects. Lastly, we discuss the limitations of our hypothesis. Along these lines, we aim to provide a dopaminergic model of ASD which might lead to a better understanding of the ASD pathogenesis. © 2017 S. Karger AG, Basel.

  20. Catecholaminergic development of fetal rat ventral mesencephalon : Characterization by high-performance liquid chromatography with electrochemical detection and immunohistochemistry

    NARCIS (Netherlands)

    Tomasini, R; Kema, IP; Muskiet, FAJ; Meiborg, G; Staal, MJ; Go, KG

    We determined dopamine (DA), noradrenaline (NA), and adrenaline (A), as well as immunohistochemically stained tyrosine hydroxylase (TH) and DA in dissected rat ventral mesencephalon (VM) tissue from Embryonic Day (ED) 14 to Postnatal Day (P) 17. Whole VM tissue DA, NA, and A contents increased with

  1. Pharmacological characterization of the dopamine-sensitive adenylate cyclase in cockroach brain: evidence for a distinct dopamine receptor

    International Nuclear Information System (INIS)

    Orr, G.L.; Gole, J.W.D.; Notman, H.J.; Downer, R.G.H.

    1987-01-01

    Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 μM and 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 μM and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 μM respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D 2 -dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 μM. Other dopamine agonists have no stimulatory effects. With the exception of mianserin, 3 H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D 1 - and D 2 -dopamine receptors. 33 references, 3 figures, 2 tables

  2. Effects of cadmium on the uptake of dopamine and norepinephrine in rat brain synaptosomes

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Cadmium (Cd) a known environmental contaminant is neurotoxic. Kinetics of cadmium inhibition indicate that the metal may compete with ATP and Na + sites on Na + -K + ATPase in rat brain synaptosomes. Uptake and release processes of catecholamines into the central nervous system are dependent on membrane bound Na + -K + ATPase. It is suggested that the uptake and release processes of dopamine (DA) and norepinephrine (NE) in neurons are energy utilizing and hence are dependent on active ion transport. If the two aforementioned mechanisms are truly interdependent, then any alteration caused by a toxin to either of the above two mechanisms should also cause a parallel change in the other. The purpose of this study was to examine in vitro effects of cadmium chloride on the uptake of DA and NE and the activity of ATPase in the rat brain synaptosome

  3. Dopamine receptor activation increases HIV entry into primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Peter J Gaskill

    Full Text Available Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.

  4. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Science.gov (United States)

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  5. Preparation of copper (I) oxide nanohexagon decorated reduced graphene oxide nanocomposite and its application in electrochemical sensing of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Sivasubramanian, R., E-mail: rss@psgias.ac.in; Biji, P.

    2016-08-15

    Highlights: • Cu{sub 2}O nanohexagon–reduced graphene oxide (rGO) nanocomposite has been prepared by in-situ reduction method. • The rGO-Cu{sub 2}O/GCE exhibited excellent catalytic properties for dopamine due to the synergistic action of the nanocomposite. • The proposed sensor is highly selective toward dopamine in the presence of ascorbic acid and uric acid. - Graphical Abstract: - Abstract: An electrochemical sensor using copper (I) oxide nanostructure decorated reduced graphene oxide (rGO) nanocomposite has been proposed for selective detection of dopamine. The rGO–Cu{sub 2}O nanocomposite was synthesized by in-situ chemical reduction method and was characterized using Transmission Electron Microscope (TEM), Energy Dispersive X-ray (EDX) analysis, X-ray Diffraction (XRD) patterns, Fourier Transform Infrared (FTIR), UV–vis and Raman Spectroscopy, respectively. From Cyclic Voltammetric (CV) studies, it was inferred that rGO–Cu{sub 2}O/GCE exhibits excellent electrocatalytic activity toward dopamine, which is attributed to the enhanced conductivity as well as the synergistic effect of the nanocomposite. The sensing was carried out using Differential Pulse Voltammetry (DPV) wherefrom a Limit of Detection (LOD) of 50 nM with a linear range from 10 µM to 900 µM was estimated. The effect of potential interfering agents such as Uric Acid (UA), Ascorbic Acid (AA), glucose, K{sup +}, Na{sup +}, Cl{sup −}, and SO{sub 4}{sup −} ions toward sensing were investigated. The performance of the sensor toward the estimation of dopamine in human blood and urine samples were analyzed. The facile method for the preparation of a nanocomposite in conjunction with the low detection limit and the wide linear range for dopamine sensing is the advantage of this present study.

  6. Supersensitive Kappa Opioid Receptors Promotes Ethanol Withdrawal-Related Behaviors and Reduce Dopamine Signaling in the Nucleus Accumbens.

    Science.gov (United States)

    Rose, Jamie H; Karkhanis, Anushree N; Chen, Rong; Gioia, Dominic; Lopez, Marcelo F; Becker, Howard C; McCool, Brian A; Jones, Sara R

    2016-05-01

    Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety

  7. Dopamine mediates testosterone-induced social reward in male Syrian hamsters.

    Science.gov (United States)

    Bell, Margaret R; Sisk, Cheryl L

    2013-03-01

    Adolescent maturation of responses to social stimuli is essential for adult-typical sociosexual behavior. Naturally occurring developmental changes in male Syrian hamster responses to a salient social cue, female hamster vaginal secretions (VS), provide a good model system for investigating neuroendocrine mechanisms of adolescent change in social reward. Sexually naïve adult, but not juvenile, males show a conditioned place preference (CPP) to VS, indicating that VS is not rewarding before puberty. In this series of experiments, the authors examined the roles of testosterone and dopamine receptor activation in mediating the adolescent gain in positive valence of VS. Experiment 1 showed that testosterone replacement is necessary for gonadectomized adult hamsters to form a CPP to VS. Experiment 2 showed that testosterone treatment is sufficient for juvenile hamsters to form a CPP to VS, and that the dopamine receptor antagonist haloperidol blocks formation of a CPP to VS in these animals. Experiments 3 and 4 demonstrated that the disruption of VS CPP with low doses of haloperidol is the result of a reduction in the attractive properties of VS and not attributable to aversive properties of haloperidol. Together, these studies demonstrate that the unconditioned rewarding properties of a social cue necessary for successful adult sociosexual interactions come about as the result of the pubertal increase in circulating testosterone in male hamsters. Furthermore, this social reward can be prevented by dopamine receptor antagonism, indicating that hypothalamic and/or mesocorticolimbic dopaminergic circuits are targets for hormonal activation of social reward.

  8. Beta-alanine and dopamine in the reddish brown scales of Papilio butterflies

    International Nuclear Information System (INIS)

    Umebachi, Yoshishige; Ishizaki, Yumi

    1983-01-01

    (1) Reddish brown scales of the anal eye spot in the hind-wings of P. demoleus and P. machaon have been examined for β-alanine and dopamine. (2) The scales were fractionated into 70% ethanol-soluble fraction, 4% HCl-methanol-soluble fraction, and the residua l scales, and the β-alanine content of each fraction was determined. Most of the β-alanine present in the scales has been found in the residual scales. On acid hydrolysis of the residual scales, the β-alanine has been rather rapidly released, and the hydrolysate has contained a large amount of β-alanine. (3) The protein-bound brown pigment (HCl-ppt fraction), which was extracted with 1 N NaOH and precipitated by being acidified with HCl, has contained a large amount of β-alanine. In most or at least some of the β-alanine, the NH 2 -group has been proved to be free. (4) 14 C-Labelled β-alanine and 14 C-dopamine, which were injected at prepupal or pupal stage, have been incorporated in the highest degree into the residual scales. And the 14 C has been confirmed to be present in the HCl-ppt fraction. (5) All these results indicate that the pigment of the reddish brown scales contains β-alanine and dopamine. (author)

  9. NOVEL FLUORESCENT PROBES FOR THE DOPAMINE TRANSPORTER

    DEFF Research Database (Denmark)

    Cha, J; Vægter, Christian Bjerggaard; Adkins, Erica

    -reactive rhodamine red derivatives. The resulting N-substituted (JHC 1-64) and 2-substituted (JHC 1-53) ligands showed high affinity binding to DAT expressed in HEK 293 cells (Ki= 6.4 and 29 nM, respectively). Their ability to selectively label the DAT was demonstrated by confocal laser scanning microscopy of HEK......To enable visualization of the dopamine transporter (DAT) through fluorescence technologies we have synthesized a novel series of fluorescently tagged analogs of cocaine. Previous structure-activity relationship (SAR) studies have demonstrated that the dopamine transporter (DAT) can tolerate...... in untransfected control cells. The possibility of using these ligands for direct labeling of the DAT in living cells represents a new and important approach for understanding cellular targeting and trafficking of the DAT. Moreover, these fluorescent ligands might also provide the molecular tools...

  10. Clinical usefulness of dopamine transporter imaging

    International Nuclear Information System (INIS)

    Kim, Jong Min; Kim, Yu Kyeong; Kim, Sang Eun; Jeon, Beom S.

    2007-01-01

    Imaging of the dopamine transporter (DAT) provides a marker for the integrity of presynaptic nigrostriatal dopaminergic system. DAT density is reduced in Parkinson disease, multiple system atrophy, and progressive supranuclear palsy. In patients with suspicious parkinsonism, normal DAT imaging suggests an alternative diagnosis such as essential tremor, vascular parkinsonism, or drug-induced parkinsonism. DAT imaging is a useful tool to aid clinician's differential diagnosis in parkinsonism

  11. Dopamine Signaling in reward-related behaviors

    OpenAIRE

    Baik, Ja-Hyun

    2013-01-01

    Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specifi...

  12. Dopamine D2 receptors photolabeled by iodo-azido-clebopride.

    Science.gov (United States)

    Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P

    1985-04-19

    Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.

  13. Neuronal Depolarization Drives Increased Dopamine Synaptic Vesicle Loading via VGLUT.

    Science.gov (United States)

    Aguilar, Jenny I; Dunn, Matthew; Mingote, Susana; Karam, Caline S; Farino, Zachary J; Sonders, Mark S; Choi, Se Joon; Grygoruk, Anna; Zhang, Yuchao; Cela, Carolina; Choi, Ben Jiwon; Flores, Jorge; Freyberg, Robin J; McCabe, Brian D; Mosharov, Eugene V; Krantz, David E; Javitch, Jonathan A; Sulzer, David; Sames, Dalibor; Rayport, Stephen; Freyberg, Zachary

    2017-08-30

    The ability of presynaptic dopamine terminals to tune neurotransmitter release to meet the demands of neuronal activity is critical to neurotransmission. Although vesicle content has been assumed to be static, in vitro data increasingly suggest that cell activity modulates vesicle content. Here, we use a coordinated genetic, pharmacological, and imaging approach in Drosophila to study the presynaptic machinery responsible for these vesicular processes in vivo. We show that cell depolarization increases synaptic vesicle dopamine content prior to release via vesicular hyperacidification. This depolarization-induced hyperacidification is mediated by the vesicular glutamate transporter (VGLUT). Remarkably, both depolarization-induced dopamine vesicle hyperacidification and its dependence on VGLUT2 are seen in ventral midbrain dopamine neurons in the mouse. Together, these data suggest that in response to depolarization, dopamine vesicles utilize a cascade of vesicular transporters to dynamically increase the vesicular pH gradient, thereby increasing dopamine vesicle content. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The multiplicity of the D-1 dopamine receptor

    International Nuclear Information System (INIS)

    Mailman, R.B.; Klits, C.D.; Lewis, M.H.; Rollema, H.; Schulz, D.W.; Wyrick, S.

    1986-01-01

    The authors have sought to address two questions of some neuropharmacological importance in this chapter. First, they examine the nature of mechanisms by which dopamine initiates many psychopharmacological effects and, second, they study the possibility of designing highly specific drugs targeted only at a selected subpopulation of dopamine receptors. Effects of SCH23390 and haloperidol on concentrations of dopamine, DOPAC, and HVA in various rat brain regions are shown. In addition, the effects of SCH23390 on the in vivo binding of dipropyl-5, 6-ADTN are shown. Differential distribution of a dopamine sensitive adenylate cyclase and ( 3 H)-SCH23390 binding sites are examined. A model is presented of D 1 dopamine receptors in membrane, illustrating the lack of identity of some of the ( 3 H)-SCH23390 binding sites with the dopamine receptor linked to stimulation of cAMP synthesis

  15. Linking unfounded beliefs to genetic dopamine availability

    Science.gov (United States)

    Schmack, Katharina; Rössler, Hannes; Sekutowicz, Maria; Brandl, Eva J.; Müller, Daniel J.; Petrovic, Predrag; Sterzer, Philipp

    2015-01-01

    Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity toward unfounded beliefs. One hundred two healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818, and rs4680, also known as val158met) that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioral experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity toward unfounded beliefs, and that this effect was statistically mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world. PMID:26483654

  16. Linking unfounded beliefs to genetic dopamine availability

    Directory of Open Access Journals (Sweden)

    Katharina eSchmack

    2015-09-01

    Full Text Available Unfounded convictions involving beliefs in the paranormal, grandiosity ideas or suspicious thoughts are endorsed at varying degrees among the general population. Here, we investigated the neurobiopsychological basis of the observed inter-individual variability in the propensity towards unfounded beliefs. 109 healthy individuals were genotyped for four polymorphisms in the COMT gene (rs6269, rs4633, rs4818 and rs4680, also known as val158met that define common functional haplotypes with substantial impact on synaptic dopamine degradation, completed a questionnaire measuring unfounded beliefs, and took part in a behavioural experiment assessing perceptual inference. We found that greater dopamine availability was associated with a stronger propensity towards unfounded beliefs, and that this effect was mediated by an enhanced influence of expectations on perceptual inference. Our results indicate that genetic differences in dopaminergic neurotransmission account for inter-individual differences in perceptual inference linked to the formation and maintenance of unfounded beliefs. Thus, dopamine might be critically involved in the processes underlying one's interpretation of the relationship between the self and the world.

  17. Differential Activation in Amygdala and Plasma Noradrenaline during Colorectal Distention by Administration of Corticotropin-Releasing Hormone between Healthy Individuals and Patients with Irritable Bowel Syndrome.

    Directory of Open Access Journals (Sweden)

    Yukari Tanaka

    Full Text Available Irritable bowel syndrome (IBS often comorbids mood and anxiety disorders. Corticotropin-releasing hormone (CRH is a major mediator of the stress response in the brain-gut axis, but it is not clear how CRH agonists change human brain responses to interoceptive stimuli. We tested the hypothesis that brain activation in response to colorectal distention is enhanced after CRH injection in IBS patients compared to healthy controls. Brain H215O- positron emission tomography (PET was performed in 16 male IBS patients and 16 age-matched male controls during baseline, no distention, mild and intense distention of the colorectum using barostat bag inflation. Either CRH (2 μg/kg or saline (1:1 was then injected intravenously and the same distention protocol was repeated. Plasma adrenocorticotropic hormone (ACTH, serum cortisol and plasma noradrenaline levels were measured at each stimulation. At baseline, CRH without colorectal distention induced more activation in the right amygdala in IBS patients than in controls. During intense distention after CRH injection, controls showed significantly greater activation than IBS patients in the right amygdala. Plasma ACTH and serum cortisol secretion showed a significant interaction between drug (CRH, saline and distention. Plasma noradrenaline at baseline significantly increased after CRH injection compared to before injection in IBS. Further, plasma noradrenaline showed a significant group (IBS, controls by drug by distention interaction. Exogenous CRH differentially sensitizes brain regions of the emotional-arousal circuitry within the visceral pain matrix to colorectal distention and synergetic activation of noradrenergic function in IBS patients and healthy individuals.

  18. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    OpenAIRE

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abuse...

  19. The dopamine transporter: role in neurotoxicity and human disease

    International Nuclear Information System (INIS)

    Bannon, Michael J.

    2005-01-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  20. The dopamine transporter: role in neurotoxicity and human disease

    Energy Technology Data Exchange (ETDEWEB)

    Bannon, Michael J [Department of Psychiatry and Behavioral Neuroscience, Pharmacology, and Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201 (United States)

    2005-05-01

    The dopamine transporter (DAT) is a plasma membrane transport protein expressed exclusively within a small subset of CNS neurons. It plays a crucial role in controlling dopamine-mediated neurotransmission and a number of associated behaviors. This review focuses on recent data elucidating the role of the dopamine transporter in neurotoxicity and a number of CNS disorders, including Parkinson disease, drug abuse, and attention deficit hyperactivity disorder (ADHD)

  1. CRYSTAL STRUCTURE OF HUMAN DOPAMINE BETA-HYDROXYLASE

    DEFF Research Database (Denmark)

    2017-01-01

    A crystalline form of dopamine β-hydroxylase is provided. X-ray crystallography reveals the space group and cell dimensions, as well as the atomic coordinates. The information can be used for identifying one or more modulators of dopamine β-hydroxylase, which can then be chemically synthesised...... and used in treatment. A process for preparing the crystalline form of human dopamine β-hydroxylase is also provided....

  2. Practical Approach for the Clinical Use of Dopamine Transporter Imaging

    International Nuclear Information System (INIS)

    Kim, Jae Seung

    2008-01-01

    Dopamine transporter imaging is useful in the diagnosis of Parkinson's disease and the most successful technique in the clinical use of neuroreceptor imaging. Recently, several radiopharmaceuticals including I-123 FP-CIT, Tc-99m TRODAT, and F-18 FP-CIT for dopamine transporter imaging have been approved for the routine clinical use in several European countries, Taiwan and Korea, respectively. This review summarized the practical issue for the routine clinical examination of dopamine transporter imaging

  3. Successful treatment of dopamine dysregulation syndrome with dopamine D2 partial agonist antipsychotic drug

    Directory of Open Access Journals (Sweden)

    Mizushima Jin

    2012-07-01

    Full Text Available Abstract Dopamine dysregulation syndrome (DDS consists of a series of complications such as compulsive use of dopaminergic medications, aggressive or hypomanic behaviors during excessive use, and withdrawal states characterized by dysphoria and anxiety, caused by long-term dopaminergic treatment in patients with Parkinson’s disease (PD. Although several ways to manage DDS have been suggested, there has been no established treatment that can manage DDS without deterioration of motor symptoms. In this article, we present a case of PD in whom the administration of the dopamine D2 partial agonistic antipsychotic drug aripiprazole improved DDS symptoms such as craving and compulsive behavior without worsening of motor symptoms. Considering the profile of this drug as a partial agonist at D2 receptors, it is possible that it exerts its therapeutic effect on DDS by modulating the dysfunctional dopamine system.

  4. Interrupting prolonged sitting with brief bouts of light walking or simple resistance activities reduces resting blood pressure and plasma noradrenaline in type 2 diabetes.

    Science.gov (United States)

    Dempsey, Paddy C; Sacre, Julian W; Larsen, Robyn N; Straznicky, Nora E; Sethi, Parneet; Cohen, Neale D; Cerin, Ester; Lambert, Gavin W; Owen, Neville; Kingwell, Bronwyn A; Dunstan, David W

    2016-12-01

    Prolonged sitting is increasingly recognized as a ubiquitous cardiometabolic risk factor, possibly distinct from lack of physical exercise. We examined whether interrupting prolonged sitting with brief bouts of light-intensity activity reduced blood pressure (BP) and plasma noradrenaline in type 2 diabetes (T2D). In a randomized crossover trial, 24 inactive overweight/obese adults with T2D (14 men; mean ± SD; 62 ± 6 years) consumed standardized meals during 3 × 8 h conditions: uninterrupted sitting (SIT); sitting + half-hourly bouts of walking (3.2 km/h for 3-min) (light-intensity walking); and sitting + half-hourly bouts of simple resistance activities for 3 min (SRAs), each separated by 6-14 days washout. Resting seated BP was measured hourly (mean of three recordings, ≥20-min postactivity). Plasma noradrenaline was measured at 30-min intervals for the first hour after meals and hourly thereafter. Compared with SIT, mean resting SBP and DBP were significantly reduced (P light-intensity walking (mean ± SEM; -14 ± 1/-8 ± 1 mmHg) and SRA (-16 ± 1/-10 ± 1 mmHg), with a more pronounced effect for SRA (P light-intensity walking). Similarly, mean plasma noradrenaline was significantly reduced for both light-intensity walking (-0.3 ± 0.1 nmol/l) and SRA (-0.6 ± 0.1 nmol/l) versus SIT, with SRA lower than light-intensity walking (P light-intensity walking (-3 ± 1 bpm; P light-intensity walking or SRA reduces resting BP and plasma noradrenaline in adults with T2D, with SRA being more effective. Given the ubiquity of sedentary behaviors and poor adherence to structured exercise, this approach may have important implications for BP management in patients with T2D.

  5. Radioenzymatic assay of plasma adrenaline and noradrenaline: evidence for a catechol-O-methyltransferase (COMT) inhibiting factor associated with essential hypertension

    International Nuclear Information System (INIS)

    Hoffmann, J.J.M.L.; Willemsen, J.J.; Thien, Th.; Benraad, Th.J.

    1982-01-01

    During the evaluation of a modified radioenzymatic determination of plasma adrenaline and noradrenaline, it has been found that there exists a highly significant (p 0 C, but only in plasma from patients with essential hypertension. Plasma from normotensive persons exhibits a complete lack of correlation between these factors. The consequences of the hypertension-associated COMT-inhibiting factor for the assays' specifications are discussed and data are presented for comparison with a recently-described uremia-associated COMT-inhibitor (Demassieux et al, Clin Chim Acta 115, 377-391; 1981). (Auth.)

  6. Inverted-U-shaped correlation between dopamine receptor availability in striatum and sensation seeking

    DEFF Research Database (Denmark)

    Gjedde, Albert; Kumakura, Yoshitaka; Cumming, Paul

    2010-01-01

    to dopamine concentrations. Higher dopamine occupancy and dopamine concentrations explain the motivation that drives afflicted individuals to seek sensations, in agreement with reduced protection against addictive behavior that is characteristic of individuals with low binding potentials....

  7. Homeostatic mechanisms in dopamine synthesis and release: a mathematical model

    Directory of Open Access Journals (Sweden)

    Nijhout H Frederik

    2009-09-01

    Full Text Available Abstract Background Dopamine is a catecholamine that is used as a neurotransmitter both in the periphery and in the central nervous system. Dysfunction in various dopaminergic systems is known to be associated with various disorders, including schizophrenia, Parkinson's disease, and Tourette's syndrome. Furthermore, microdialysis studies have shown that addictive drugs increase extracellular dopamine and brain imaging has shown a correlation between euphoria and psycho-stimulant-induced increases in extracellular dopamine 1. These consequences of dopamine dysfunction indicate the importance of maintaining dopamine functionality through homeostatic mechanisms that have been attributed to the delicate balance between synthesis, storage, release, metabolism, and reuptake. Methods We construct a mathematical model of dopamine synthesis, release, and reuptake and use it to study homeostasis in single dopaminergic neuron terminals. We investigate the substrate inhibition of tyrosine hydroxylase by tyrosine, the consequences of the rapid uptake of extracellular dopamine by the dopamine transporters, and the effects of the autoreceoptors on dopaminergic function. The main focus is to understand the regulation and control of synthesis and release and to explicate and interpret experimental findings. Results We show that the substrate inhibition of tyrosine hydroxylase by tyrosine stabilizes cytosolic and vesicular dopamine against changes in tyrosine availability due to meals. We find that the autoreceptors dampen the fluctuations in extracellular dopamine caused by changes in tyrosine hydroxylase expression and changes in the rate of firing. We show that short bursts of action potentials create significant dopamine signals against the background of tonic firing. We explain the observed time courses of extracellular dopamine responses to stimulation in wild type mice and mice that have genetically altered dopamine transporter densities and the observed

  8. Influence of phasic and tonic dopamine release on receptor activation

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kristoffer Kisbye; Herrik, Kjartan F; Berg, Rune W

    2010-01-01

    Tonic and phasic dopamine release is implicated in learning, motivation, and motor functions. However, the relationship between spike patterns in dopaminergic neurons, the extracellular concentration of dopamine, and activation of dopamine receptors remains unresolved. In the present study, we...... develop a computational model of dopamine signaling that give insight into the relationship between the dynamics of release and occupancy of D(1) and D(2) receptors. The model is derived from first principles using experimental data. It has no free parameters and offers unbiased estimation...

  9. Cross-hemispheric dopamine projections have functional significance

    Science.gov (United States)

    Fox, Megan E.; Mikhailova, Maria A.; Bass, Caroline E.; Takmakov, Pavel; Gainetdinov, Raul R.; Budygin, Evgeny A.; Wightman, R. Mark

    2016-01-01

    Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson’s disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine–lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres. PMID:27298371

  10. Dopamine and dopamine receptor D1 associated with decreased social interaction.

    Science.gov (United States)

    Liu, Qiang; Shi, Jieyun; Lin, Rongfei; Wen, Tieqiao

    2017-05-01

    Deficits in social interaction are hallmarks of neurological and psychiatric disorders. However, its underlying mechanism is still unclear. Here, we show that the loss of dendritic cell factor 1 (Dcf1) in the nervous system of mice induces social interaction deficiency, autism-like behaviour, and influences social interaction via the dopamine system. Dopamine receptor D1 agonist rescues this social cognition phenotype, and improves short-term plasticity. Together, this study presents a new genetic mechanism that affects social interaction and may provide a new way to improve positive social interaction and treat autism spectrum disorders. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Demonstration of conjugated dopamine in monkey CSF by gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Elchisak, M A; Powers, K H; Ebert, M H

    1982-09-01

    A method for measuring unconjugated and conjugated dopamine in body tissues and fluids is described. Conjugated dopamine was hydrolyzed in acid to unconjugated dopamine, separated from the sample matrix by alumina chromatography, and assayed by gas chromatography-mass spectrometry. Conjugated dopamine was detected in greater concentrations than unconjugated dopamine in CSF taken from lateral ventricle or thecal sac of the Rhesus monkey. Haloperidol administration did not increase the levels of conjugated dopamine in lumbar CSF.

  12. Presence and function of dopamine transporter (DAT in stallion sperm: dopamine modulates sperm motility and acrosomal integrity.

    Directory of Open Access Journals (Sweden)

    Javier A Urra

    Full Text Available Dopamine is a catecholamine with multiple physiological functions, playing a key role in nervous system; however its participation in reproductive processes and sperm physiology is controversial. High dopamine concentrations have been reported in different portions of the feminine and masculine reproductive tract, although the role fulfilled by this catecholamine in reproductive physiology is as yet unknown. We have previously shown that dopamine type 2 receptor is functional in boar sperm, suggesting that dopamine acts as a physiological modulator of sperm viability, capacitation and motility. In the present study, using immunodetection methods, we revealed the presence of several proteins important for the dopamine uptake and signalling in mammalian sperm, specifically monoamine transporters as dopamine (DAT, serotonin (SERT and norepinephrine (NET transporters in equine sperm. We also demonstrated for the first time in equine sperm a functional dopamine transporter using 4-[4-(Dimethylaminostyryl]-N-methylpyridinium iodide (ASP(+, as substrate. In addition, we also showed that dopamine (1 mM treatment in vitro, does not affect sperm viability but decreases total and progressive sperm motility. This effect is reversed by blocking the dopamine transporter with the selective inhibitor vanoxerine (GBR12909 and non-selective inhibitors of dopamine reuptake such as nomifensine and bupropion. The effect of dopamine in sperm physiology was evaluated and we demonstrated that acrosome integrity and thyrosine phosphorylation in equine sperm is significantly reduced at high concentrations of this catecholamine. In summary, our results revealed the presence of monoamine transporter DAT, NET and SERT in equine sperm, and that the dopamine uptake by DAT can regulate sperm function, specifically acrosomal integrity and sperm motility.

  13. Central actions of a novel and selective dopamine antagonist

    International Nuclear Information System (INIS)

    Schulz, D.W.

    1985-01-01

    Receptors for the neurotransmitter dopamine traditionally have been divided into two subgroups: the D 1 class, which is linked to the stimulation of adenylate cyclase-activity, and the D 2 class which is not. There is much evidence suggesting that it is the D 2 class which is not. There is much evidence suggesting that it is the D 2 dopamine receptor that mediates the physiological and behavioral actions of dopamine in the intact animal. However, the benzazepine SCH23390 is a dopamine antagonist which has potent behavioral actions while displaying apparent neurochemical selectivity for the D 1 class of dopamine receptors. The purpose of this dissertation was to (1) confirm and characterize this selectivity, and (2) test certain hypothesis related to possible modes of action of SCH233390. The inhibition of adenylate cyclase by SCH23390 occurred via an action at the dopamine receptor only. A radiolabeled analog of SCH23390 displayed the receptor binding properties of a specific high-affinity ligand, and regional receptor densities were highly correlated with dopamine levels. The subcellular distribution of [ 3 H]-SCH23390 binding did not correspond completely with that of dopamine-stimulated adenylate cyclase. The neurochemical potency of SCH23390 as a D 1 receptor antagonist was preserved following parental administration. A variety of dopamine agonists and antagonists displayed a high correlation between their abilities to compete for [ 3 H]-SCH23390 binding in vitro and to act at an adenylate cyclase-linked receptor. Finally, the relative affinities of dopamine and SCH23390 for both D 1 receptors and [ 3 H]-SCH23390 binding sites were comparable. It is concluded that the behavioral effects of SCH23390 are mediated by actions at D 1 dopamine receptors only, and that the physiological importance of this class of receptors should be reevaluated

  14. Accumulation of radioactivity after repeated infusion of 3H-adrenaline and 3H-noradrenaline in the rat as a model animal.

    Science.gov (United States)

    Lepschy, M; Filip, T; Palme, R G

    2014-10-01

    Besides enzymatic inactivation, catecholamines bind non-enzymatically and irreversible to proteins. The physiological impact of these catecholamine adducts is still unclear. We therefore collected basic data about the distribution of catecholamine adducts in the rat after repeated intravenous administration of (3)H-adrenaline and (3)H-noradrenaline. In all animals radioactivity in blood increased until the last injection on Day 7 and decreased then slowly close to background values (plasma) or remained higher (erythrocytes). In all sampled tissues radioactivity could be found, but only in hair high amounts remained present even after 3 weeks. Half-life of rat serum albumin loaded with (3)H-adrenaline or (3)H-noradrenaline was not altered. This study provides basic knowledge about the distribution of catecholamines or their adducts, but physiological effects could not be demonstrated. However, for the first time deposition and accumulation of catecholamines (adducts) in the hair could be proven, suggesting that hair might be used for evaluating long term stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Interaction of structural analogs of dopamine, chlorpromazine and sulpiride with striatal dopamine receptors

    International Nuclear Information System (INIS)

    Wallace, R.A.

    1987-01-01

    The objectives of these studies were to determine if the nitrogen atom of dopaminergic agonists and antagonists drugs is required for interaction with the D-1 and D-2 dopamine receptors and whether the positively charged or uncharged molecular species interacts with these receptors. To address these issues, permanently charged analogs of dopamine, chlorpromazine and sulpiride were synthesized in which a dimethylsulfonium, dimethylselenonium or quaternary ammonium group replaced the amine group. Permanently uncharged analogs which contained a methylsulfide, methylselenide and sulfoxide group instead of an amine group were also synthesized. The interactions of these compounds with striatal dopamine receptors were studied. We found that the permanently charged dopamine analogs bound to the D-2 receptor of striatal membranes like conventional dopaminergic agonists and displayed agonist activity at the D-2 receptor regulating potassium-evoked [ 3 H] acetylcholine release. In contrast, the permanently uncharged analogs bound only to the high affinity state of the D-2 receptor and had neither agonist or antagonist activity

  16. Effects of alkylating agents on dopamine D(3) receptors in rat brain: selective protection by dopamine.

    Science.gov (United States)

    Zhang, K; Weiss, N T; Tarazi, F I; Kula, N S; Baldessarini, R J

    1999-11-13

    Dopamine D(3) receptors are structurally highly homologous to other D(2)-like dopamine receptors, but differ from them pharmacologically. D(3) receptors are notably resistant to alkylation by 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), which readily alkylates D(2) receptors. We compared EEDQ with N-(p-isothiocyanatophenethyl)spiperone (NIPS), a selective D(2)-like receptor alkylating agent, for effects on D(3) and D(2) receptors in rat brain using autoradiographic analysis. Neither agent occluded D(3) receptors in vivo at doses that produced substantial blockade of D(2) receptors, even after catecholamine-depleting pretreatments. In vitro, however, D(3) receptors were readily alkylated by both NIPS (IC(50)=40 nM) and EEDQ (IC(50)=12 microM). These effects on D(3) sites were blocked by nM concentrations of dopamine, whereas microM concentrations were required to protect D(2) receptors from the alkylating agents. The findings are consistent with the view that alkylation of D(3) receptors in vivo is prevented by its high affinity for even minor concentrations of endogenous dopamine.

  17. Serotonin-S2 and dopamine-D2 receptors are the same size in membranes

    International Nuclear Information System (INIS)

    Brann, M.R.

    1985-01-01

    Target size analysis was used to compare the sizes of serotonin-S2 and dopamine-D2 receptors in rat brain membranes. The sizes of these receptors were standardized by comparison with the muscarinic receptor, a receptor of known size. The number of serotonin-S2 receptors labeled with (3H)ketanserin or (3H)spiperone in frontal cortex decreased as an exponential function of radiation dose, and receptor affinity was not affected. The number of dopamine-D2 receptors labeled with (3H)spiperone in striatum also decreased as an exponential function of radiation dose, and D2 and S2 receptors were equally sensitive to radiation. In both striatum and frontal cortex, the number of muscarinic receptors labeled with (3H)QNB decreased as an exponential function of radiation dose, and were much less sensitive to radiation than S2 and D2 receptors. These data indicate that in rat brain membranes, S2 and D2 receptors are of similar size, and both molecules are much larger than the muscarinic receptor

  18. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    DEFF Research Database (Denmark)

    Jensen, Heidi Bisgaard; Larsen, M Andreas B; Mazier, Sonia

    2011-01-01

    Analogs of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational...

  19. Syntaxin 1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux

    DEFF Research Database (Denmark)

    Binda, Francesca; Dipace, Concetta; Bowton, Erica

    2008-01-01

    of the dopamine (DA) transporter (DAT) as the site of direct interaction with SYN1A. Amphetamine (AMPH) increases the association of SYN1A with human DAT (hDAT) in a heterologous expression system (hDAT cells) and with native DAT in murine striatal synaptosomes. Immunoprecipitation of DAT from the biotinylated...

  20. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder

    DEFF Research Database (Denmark)

    Hamilton, P J; Campbell, N G; Sharma, S

    2013-01-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution...

  1. SPECT imaging of D2 dopamine receptors and endogenous dopamine release in mice

    NARCIS (Netherlands)

    Jongen, C.; De Bruin, K.; Beekman, F.J.; Booij, J.

    2008-01-01

    Purpose: The dopamine D2 receptor (D2R) is important in the mediation of addiction. [123I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [123I]IBZM

  2. Preparation of [123I]- and [125I]epidepride: a dopamine D-2 receptor antagonist radioligand

    International Nuclear Information System (INIS)

    Clanton, J.A.; Schmidt, D.E.; Ansari, M.S.; Manning, R.G.; Kessler, R.M.; Paulis, T. de; Vanderbilt Univ., Nashville, TN; Baldwin, R.M.

    1991-01-01

    (S)-(-)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-5-[ 123 I] iodo-2,3-dimethoxybenzamide (TDP 517) (proposed generic name, [ 123 I]epidepride) is the iodine-123 substituted analogue of isoremoxipride (FLB 457), both of which are very potent dopamine D-2 antagonists (epidepride K D 0.024 nM). [ 123 I] Epidepride was radioiodinated in 60-70% radiochemical yields in 35 min from the corresponding 5-(tributyltin) derivative using Na 123 I with a specific radioactivity of 3000 Ci/mmol, and oxidized in situ with chloramine-T. The aryltin precursor was prepared from non-labelled epidepride by palladium-catalyzed stannylation using bis(tri-n-butyltin) in triethylamine. Alternatively, using no carrier-added Na 125 I as the radioisotope, [ 125 I] epidepride at 2000 Ci/mmol specific radioactivity was prepared in 86% radiochemical yield and 99% radiochemical purity after purification by reverse phase HPLC in ethanolic phosphate buffer. (author)

  3. Dopamine-independent locomotor actions of amphetamines in a novel acute mouse model of Parkinson disease.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available Brain dopamine is critically involved in movement control, and its deficiency is the primary cause of motor symptoms in Parkinson disease. Here we report development of an animal model of acute severe dopamine deficiency by using mice lacking the dopamine transporter. In the absence of transporter-mediated recycling mechanisms, dopamine levels become entirely dependent on de novo synthesis. Acute pharmacological inhibition of dopamine synthesis in these mice induces transient elimination of striatal dopamine accompanied by the development of a striking behavioral phenotype manifested as severe akinesia, rigidity, tremor, and ptosis. This phenotype can be reversed by administration of the dopamine precursor, L-DOPA, or by nonselective dopamine agonists. Surprisingly, several amphetamine derivatives were also effective in reversing these behavioral abnormalities in a dopamine-independent manner. Identification of dopamine transporter- and dopamine-independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs.

  4. Retinal dopamine mediates multiple dimensions of light-adapted vision.

    Science.gov (United States)

    Jackson, Chad R; Ruan, Guo-Xiang; Aseem, Fazila; Abey, Jane; Gamble, Karen; Stanwood, Greg; Palmiter, Richard D; Iuvone, P Michael; McMahon, Douglas G

    2012-07-04

    Dopamine is a key neuromodulator in the retina and brain that supports motor, cognitive, and visual function. Here, we developed a mouse model on a C57 background in which expression of the rate-limiting enzyme for dopamine synthesis, tyrosine hydroxylase, is specifically disrupted in the retina. This model enabled assessment of the overall role of retinal dopamine in vision using electrophysiological (electroretinogram), psychophysical (optokinetic tracking), and pharmacological techniques. Significant disruptions were observed in high-resolution, light-adapted vision caused by specific deficits in light responses, contrast sensitivity, acuity, and circadian rhythms in this retinal dopamine-depleted mouse model. These global effects of retinal dopamine on vision are driven by the differential actions of dopamine D1 and D4 receptors on specific retinal functions and appear to be due to the ongoing bioavailability of dopamine rather than developmental effects. Together, our data indicate that dopamine is necessary for the circadian nature of light-adapted vision as well as optimal contrast detection and acuity.

  5. Layered reward signalling through octopamine and dopamine in Drosophila.

    Science.gov (United States)

    Burke, Christopher J; Huetteroth, Wolf; Owald, David; Perisse, Emmanuel; Krashes, Michael J; Das, Gaurav; Gohl, Daryl; Silies, Marion; Certel, Sarah; Waddell, Scott

    2012-12-20

    Dopamine is synonymous with reward and motivation in mammals. However, only recently has dopamine been linked to motivated behaviour and rewarding reinforcement in fruitflies. Instead, octopamine has historically been considered to be the signal for reward in insects. Here we show, using temporal control of neural function in Drosophila, that only short-term appetitive memory is reinforced by octopamine. Moreover, octopamine-dependent memory formation requires signalling through dopamine neurons. Part of the octopamine signal requires the α-adrenergic-like OAMB receptor in an identified subset of mushroom-body-targeted dopamine neurons. Octopamine triggers an increase in intracellular calcium in these dopamine neurons, and their direct activation can substitute for sugar to form appetitive memory, even in flies lacking octopamine. Analysis of the β-adrenergic-like OCTβ2R receptor reveals that octopamine-dependent reinforcement also requires an interaction with dopamine neurons that control appetitive motivation. These data indicate that sweet taste engages a distributed octopamine signal that reinforces memory through discrete subsets of mushroom-body-targeted dopamine neurons. In addition, they reconcile previous findings with octopamine and dopamine and suggest that reinforcement systems in flies are more similar to mammals than previously thought.

  6. Free and conjugated dopamine in human ventricular fluid

    International Nuclear Information System (INIS)

    Sharpless, N.S.; Thal, L.J.; Wolfson, L.I.; Tabaddor, K.; Tyce, G.M.; Waltz, J.M.

    1981-01-01

    Free dopamine and an acid hydrolyzable conjugate of dopamine were measured in human ventricular fluid specimens with a radioenzymatic assay and by high performance liquid chromatography (HPLC) with electrochemical detection. Only trace amounts of free norepinephrine and dopamine were detected in ventricular fluid from patients with movement disorders. When the ventricular fluid was hydrolyzed by heating in HClO 4 or by lyophilization in dilute HClO 4 , however, a substantial amount of free dopamine was released. Values for free plus conjugated dopamine in ventricular fluid from patients who had never taken L-DOPA ranged from 139 to 340 pg/ml when determined by HPLC and from 223 to 428 pg/ml when measured radioenzymatically. The correlation coefficient for values obtained by the two methods in the same sample of CSF was 0.94 (P<0.001). Patients who had been treated with L-DOPA had higher levels of conjugated dopamine in their ventricular CSF which correlated inversely with the time between the last dose of L-DOPA and withdrawal of the ventricular fluid. Additionally, one patient with acute cerebral trauma had elevated levels of free norepinephrine and both free and conjugated dopamine in his ventricular fluid. Conjugation may be an important inactivation pathway for released dopamine in man. (Auth.)

  7. Dopamine D2 receptors in the pathophysiology of insulin resistance

    NARCIS (Netherlands)

    Leeuw van Weenen, Judith Elisabeth de

    2011-01-01

    Extensive literature links the dopamine receptor D2 to insulin resistance and diabetes mellitus type 2. However, many aspects of the functional relationship remain unclear. In this thesis we focused on unraveling the characteristics of the interplay between dopamine D2 receptors and glucose

  8. Novos agonistas dopaminérgicos

    Directory of Open Access Journals (Sweden)

    MATTOS JAMES PITÁGORAS DE

    1999-01-01

    Full Text Available Apresentamos breve revisão da literatura sobre os agonistas dopaminérgicos. Referimos os cinco receptores conhecidos e onde estão localizados, as vantagens e as desvantagens de sua utilização nos pacientes com a doença de Parkinson.Introduzidos com o objetivo principal de controlar as limitações da levodopa, aumentando a janela terapêutica, analisamos a farmacocinética, a eficácia e os efeitos colaterais da cabergolina, do ropinirole e do pramipexole.

  9. Graphene Oxide Modified Electrodes for Dopamine Sensing

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2017-01-01

    Full Text Available Dopamine (DA is one of the most important catecholamine neurotransmitters that plays an important role in the central nervous, renal, hormonal, and cardiovascular systems. Since its discovery, tremendous effort has been made and various techniques have been developed for the DA detection. Recently, graphene-based materials have attracted a tremendous amount of attention due to their high sensitivity and rapid response towards effective detection of DA. This review focuses on current advances of graphene-based materials for DA detection based on recent articles published in the last five years.

  10. Illicit dopamine transients: reconciling actions of abused drugs.

    Science.gov (United States)

    Covey, Dan P; Roitman, Mitchell F; Garris, Paul A

    2014-04-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. Although compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyperactivating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyperactivation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural rewards and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. ILLICIT DOPAMINE TRANSIENTS: RECONCILING ACTIONS OF ABUSED DRUGS

    Science.gov (United States)

    Covey, Dan P.; Roitman, Mitchell F.; Garris, Paul A.

    2014-01-01

    Phasic increases in brain dopamine are required for cue-directed reward seeking. While compelling within the framework of appetitive behavior, the view that illicit drugs hijack reward circuits by hyper-activating these dopamine transients is inconsistent with established psychostimulant pharmacology. However, recent work reclassifying amphetamine (AMPH), cocaine, and other addictive dopamine-transporter inhibitors (DAT-Is) supports transient hyper-activation as a unifying hypothesis of abused drugs. We argue here that reclassification also identifies generating burst firing by dopamine neurons as a keystone action. Unlike natural rewards, which are processed by sensory systems, drugs act directly on the brain. Consequently, to mimic natural reward and exploit reward circuits, dopamine transients must be elicited de novo. Of available drug targets, only burst firing achieves this essential outcome. PMID:24656971

  12. Dopamine release in ventral striatum of pathological gamblers losing money

    DEFF Research Database (Denmark)

    Linnet, J; Peterson, E; Doudet, D J

    2010-01-01

    Linnet J, Peterson E, Doudet DJ, Gjedde A, Møller A. Dopamine release in ventral striatum of pathological gamblers losing money. Objective: To investigate dopaminergic neurotransmission in relation to monetary reward and punishment in pathological gambling. Pathological gamblers (PG) often continue...... gambling despite losses, known as 'chasing one's losses'. We therefore hypothesized that losing money would be associated with increased dopamine release in the ventral striatum of PG compared with healthy controls (HC). Method: We used Positron Emission Tomography (PET) with [(11)C]raclopride to measure...... dopamine release in the ventral striatum of 16 PG and 15 HC playing the Iowa Gambling Task (IGT). Results: PG who lost money had significantly increased dopamine release in the left ventral striatum compared with HC. PG and HC who won money did not differ in dopamine release. Conclusion: Our findings...

  13. A causal link between prediction errors, dopamine neurons and learning.

    Science.gov (United States)

    Steinberg, Elizabeth E; Keiflin, Ronald; Boivin, Josiah R; Witten, Ilana B; Deisseroth, Karl; Janak, Patricia H

    2013-07-01

    Situations in which rewards are unexpectedly obtained or withheld represent opportunities for new learning. Often, this learning includes identifying cues that predict reward availability. Unexpected rewards strongly activate midbrain dopamine neurons. This phasic signal is proposed to support learning about antecedent cues by signaling discrepancies between actual and expected outcomes, termed a reward prediction error. However, it is unknown whether dopamine neuron prediction error signaling and cue-reward learning are causally linked. To test this hypothesis, we manipulated dopamine neuron activity in rats in two behavioral procedures, associative blocking and extinction, that illustrate the essential function of prediction errors in learning. We observed that optogenetic activation of dopamine neurons concurrent with reward delivery, mimicking a prediction error, was sufficient to cause long-lasting increases in cue-elicited reward-seeking behavior. Our findings establish a causal role for temporally precise dopamine neuron signaling in cue-reward learning, bridging a critical gap between experimental evidence and influential theoretical frameworks.

  14. Two-week administration of the combined serotonin-noradrenaline reuptake inhibitor duloxetine augments functioning of mesolimbic incentive processing circuits.

    Science.gov (United States)

    Ossewaarde, Lindsey; Verkes, Robbert J; Hermans, Erno J; Kooijman, Sabine C; Urner, Maren; Tendolkar, Indira; van Wingen, Guido A; Fernández, Guillén

    2011-09-15

    Anhedonia and lack of motivation are core symptoms of major depressive disorder (MDD). Neuroimaging studies in MDD patients have shown reductions in reward-related activity in terminal regions of the mesolimbic dopamine (DA) system, such as the ventral striatum. Monoamines have been implicated in both mesolimbic incentive processing and the mechanism of action of antidepressant drugs. However, not much is known about antidepressant effects on mesolimbic incentive processing in humans, which might be related to the effects on anhedonia. To investigate the short-term effects of antidepressants on reward-related activity in the ventral striatum, we investigated the effect of the combined serotonin-norepinephrine reuptake inhibitor duloxetine. Healthy volunteers underwent functional magnetic resonance imaging in a randomized, double-blind, placebo-controlled, crossover study. After taking duloxetine (60 mg once a day) or placebo for 14 days, participants completed a monetary incentive delay task that activates the ventral striatum during reward anticipation. Our results (n = 19) show enhanced ventral striatal responses after duloxetine administration compared with placebo. Moreover, this increase in ventral striatal activity was positively correlated with duloxetine plasma levels. This is the first study to demonstrate that antidepressants augment neural activity in mesolimbic DA incentive processing circuits in healthy volunteers. These effects are likely caused by the increase in monoamine neurotransmission in the ventral striatum. Our findings suggest that antidepressants may alleviate anhedonia by stimulating incentive processing. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Temporal Profiles Dissociate Regional Extracellular Ethanol versus Dopamine Concentrations

    Science.gov (United States)

    2015-01-01

    In vivo monitoring of dopamine via microdialysis has demonstrated that acute, systemic ethanol increases extracellular dopamine in regions innervated by dopaminergic neurons originating in the ventral tegmental area and substantia nigra. Simultaneous measurement of dialysate dopamine and ethanol allows comparison of the time courses of their extracellular concentrations. Early studies demonstrated dissociations between the time courses of brain ethanol concentrations and dopaminergic responses in the nucleus accumbens (NAc) elicited by acute ethanol administration. Both brain ethanol and extracellular dopamine levels peak during the first 5 min following systemic ethanol administration, but the dopamine response returns to baseline while brain ethanol concentrations remain elevated. Post hoc analyses examined ratios of the dopamine response (represented as a percent above baseline) to tissue concentrations of ethanol at different time points within the first 25–30 min in the prefrontal cortex, NAc core and shell, and dorsomedial striatum following a single intravenous infusion of ethanol (1 g/kg). The temporal patterns of these “response ratios” differed across brain regions, possibly due to regional differences in the mechanisms underlying the decline of the dopamine signal associated with acute intravenous ethanol administration and/or to the differential effects of acute ethanol on the properties of subpopulations of midbrain dopamine neurons. This Review draws on neurochemical, physiological, and molecular studies to summarize the effects of acute ethanol administration on dopamine activity in the prefrontal cortex and striatal regions, to explore the potential reasons for the regional differences observed in the decline of ethanol-induced dopamine signals, and to suggest directions for future research. PMID:25537116

  16. Dopamine receptors in the Parkinsonian brain

    Energy Technology Data Exchange (ETDEWEB)

    Rinne, U K; Loennberg, P; Koskinen, V [Turku Univ. (Finland). Dept. of Neurology

    1981-01-01

    Striatal dopamine receptors were studied in 44 patients with Parkinson disease by the radioligand-binding technique using /sup 3/H-spiroperidol. The specific binding of /sup 3/H-spiroperidol was either significantly increased or reduced in the caudate nucleus and putamen of parkinsonian patients without levodopa therapy. Scatchard analysis showed that there were corresponding changes in the receptor number, but no significant changes in the mean dissociation constant. The increased binding of /sup 3/H-spiroperidol in the basal ganglia was also found in parkinsonian patients suffering from psychotic episodes and treated with neuroleptic drugs. Normal and low binding of /sup 3/H-spiroperidol was found in patients treated with levodopa. Clinically, the patient with low binding were more disabled and had lost the beneficial response to levodopa. Thus in Parkinson disease in some patients a denervation supersensitivity seemed to develop and in some others a loss of postsynaptic dopamine receptor sites in the neostriatium. The latter alteration may contribute to the decreased response of parkinsonian patients to chronic levodopa therapy.

  17. Dopamine receptors in the Parkinsonian brain

    International Nuclear Information System (INIS)

    Rinne, U.K.; Loennberg, P.; Koskinen, V.

    1981-01-01

    Striatal dopamine receptors were studied in 44 patients with Parkinson disease by the radioligand-binding technique using 3 H-spiroperidol. The specific binding of 3 H-spiroperidol was either significantly increased or reduced in the caudate nucleus and putamen of parkinsonian patients without levodopa therapy. Scatchard analysis showed that there were corresponding changes in the receptor number, but no significant changes in the mean dissociation constant. The increased binding of 3 H-spiroperidol in the basal ganglia was also found in parkinsonian patients suffering from psychotic episodes and treated with neuroleptic drugs. Normal and low binding of 3 H-spiroperidol was found in patients treated with levodopa. Clinically, the patient with low binding were more disabled and had lost the beneficial response to levodopa. Thus in Parkinson disease in some patients a denervation supersensitivity seemed to develop and in some others a loss of postsynaptic dopamine receptor sites in the neostriatium. The latter alteration may contribute to the decreased response of parkinsonian patients to chronic levodopa therapy. (author)

  18. [Scans without Evidence of Dopamine Deficit (SWEDDs)].

    Science.gov (United States)

    Mukai, Yohei; Murata, Miho

    2016-01-01

    Dopamine transporter (DaT) single-photon emission computed tomography (SPECT) and [18F]fluoro-L-DOPA ([18F]DOPA) positron emission tomography (PET) facilitate the investigation of dopaminergic hypofunction in neurodegenerative diseases. DaT SPECT and [18F]DOPA PET have been adopted as survey tools in clinical trials. In a large study on Parkinson's disease, 4-15% of subjects clinically diagnosed with early-stage Parkinson's disease had normal dopaminergic functional imaging scans. These are called Scans without Evidence of Dopamine Deficit (SWEDDs), and are considered to represent a state different from Parkinson's disease. Neurological diseases that exhibit parkinsonism and have normal dopaminergic cells in the nigrostriatal system (e.g., essential tremor, psychogenic parkinsonism, DOPA-responsive dystonia, vascular parkinsonism, drug-induced parkinsonism, manganism, brain tumor, myoclonus-dystonia (DYT11), and fragile X syndrome) might be diagnosed with SWEDDs. True bradykinesia with fatigue or decrement may be useful for distinguishing between Parkinson's disease and SWEDDs. However, because SWEDDs encompass many diseases, their properties may not be uniform. In this review, we discuss DaT SPECT, the concept of SWEDDs, and differential diagnosis.

  19. Striatal dopamine D1 and D2 receptors: widespread influences on methamphetamine-induced dopamine and serotonin neurotoxicity.

    Science.gov (United States)

    Gross, Noah B; Duncker, Patrick C; Marshall, John F

    2011-11-01

    Methamphetamine (mAMPH) is an addictive psychostimulant drug that releases monoamines through nonexocytotic mechanisms. In animals, binge mAMPH dosing regimens deplete markers for monoamine nerve terminals, for example, dopamine and serotonin transporters (DAT and SERT), in striatum and cerebral cortex. Although the precise mechanism of mAMPH-induced damage to monoaminergic nerve terminals is uncertain, both dopamine D1 and D2 receptors are known to be important. Systemic administration of dopamine D1 or D2 receptor antagonists to rodents prevents mAMPH-induced damage to striatal dopamine nerve terminals. Because these studies employed systemic antagonist administration, the specific brain regions involved remain to be elucidated. The present study examined the contribution of dopamine D1 and D2 receptors in striatum to mAMPH-induced DAT and SERT neurotoxicities. In this experiment, either the dopamine D1 antagonist, SCH23390, or the dopamine D2 receptor antagonist, sulpiride, was intrastriatally infused during a binge mAMPH regimen. Striatal DAT and cortical, hippocampal, and amygdalar SERT were assessed as markers of mAMPH-induced neurotoxicity 1 week following binge mAMPH administration. Blockade of striatal dopamine D1 or D2 receptors during an otherwise neurotoxic binge mAMPH regimen produced widespread protection against mAMPH-induced striatal DAT loss and cortical, hippocampal, and amygdalar SERT loss. This study demonstrates that (1) dopamine D1 and D2 receptors in striatum, like nigral D1 receptors, are needed for mAMPH-induced striatal DAT reductions, (2) these same receptors are needed for mAMPH-induced SERT loss, and (3) these widespread influences of striatal dopamine receptor antagonists are likely attributable to circuits connecting basal ganglia to thalamus and cortex. Copyright © 2011 Wiley-Liss, Inc.

  20. α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.

    Science.gov (United States)

    Sánchez-Soto, Marta; Casadó-Anguera, Verònica; Yano, Hideaki; Bender, Brian Joseph; Cai, Ning-Sheng; Moreno, Estefanía; Canela, Enric I; Cortés, Antoni; Meiler, Jens; Casadó, Vicent; Ferré, Sergi

    2018-03-18

    The poor norepinephrine innervation and high density of Gi/o-coupled α 2A - and α 2C -adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D 2 -like receptor ligands, such as the D 3 receptor agonist 7-OH-PIPAT and the D 4 receptor agonist RO-105824, to α 2 -adrenoceptors in cortical and striatal tissue, which express α 2A -adrenoceptors and both α 2A - and α 2C -adrenoceptors, respectively. The affinity of dopamine for α 2 -adrenoceptors was found to be similar to that for D 1 -like and D 2 -like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α 2A - and α 2C -adrenoceptors. Their ability to activate Gi/o proteins through α 2A - and α 2C -adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α 2 -adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α 2A - and α 2C -adrenoceptors was nearly identical to its binding to the crystallized D 3 receptor. Therefore, we provide conclusive evidence that α 2A - and α 2C -adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D 2 -like receptor ligands, which calls for revisiting previous studies with those ligands.

  1. Amine metabolism in the human brain : evaluation of the probenecid test

    NARCIS (Netherlands)

    Korf, Jacob

    1971-01-01

    There are indirect indications, that biogenic amines in the brain are concerned with pathological states such as depression (serotonin, 5HT and noradrenaline, NA) and Parkonsonism (dopamine, DA). These indications were obtained from measurements of amines and their metabolites in pe - ripheral

  2. The role of dopamine receptors in the neurotoxicity of methamphetamine.

    Science.gov (United States)

    Ares-Santos, S; Granado, N; Moratalla, R

    2013-05-01

    Methamphetamine is a synthetic drug consumed by millions of users despite its neurotoxic effects in the brain, leading to loss of dopaminergic fibres and cell bodies. Moreover, clinical reports suggest that methamphetamine abusers are predisposed to Parkinson's disease. Therefore, it is important to elucidate the mechanisms involved in methamphetamine-induced neurotoxicity. Dopamine receptors may be a plausible target to prevent this neurotoxicity. Genetic inactivation of dopamine D1 or D2 receptors protects against the loss of dopaminergic fibres in the striatum and loss of dopaminergic neurons in the substantia nigra. Protection by D1 receptor inactivation is due to blockade of hypothermia, reduced dopamine content and turnover and increased stored vesicular dopamine in D1R(-/-) mice. However, the neuroprotective impact of D2 receptor inactivation is partially dependent on an effect on body temperature, as well as on the blockade of dopamine reuptake by decreased dopamine transporter activity, which results in reduced intracytosolic dopamine levels in D2R(-/-) mice. © 2013 The Association for the Publication of the Journal of Internal Medicine.

  3. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Emese Prandovszky

    Full Text Available The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans.

  4. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration.

    Science.gov (United States)

    Mor, Danielle E; Tsika, Elpida; Mazzulli, Joseph R; Gould, Neal S; Kim, Hanna; Daniels, Malcolm J; Doshi, Shachee; Gupta, Preetika; Grossman, Jennifer L; Tan, Victor X; Kalb, Robert G; Caldwell, Kim A; Caldwell, Guy A; Wolfe, John H; Ischiropoulos, Harry

    2017-11-01

    Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.

  5. Noncovalent Interactions between Dopamine and Regular and Defective Graphene.

    Science.gov (United States)

    Fernández, Ana C Rossi; Castellani, Norberto J

    2017-08-05

    The role of noncovalent interactions in the adsorption of biological molecules on graphene is a subject of fundamental interest regarding the use of graphene as a material for sensing and drug delivery. The adsorption of dopamine on regular graphene and graphene with monovacancies (GV) is theoretically studied within the framework of density functional theory. Several adsorption modes are considered, and notably those in which the dopamine molecule is oriented parallel or quasi-parallel to the surface are the more stable. The adsorption of dopamine on graphene implies an attractive interaction of a dispersive nature that competes with Pauli repulsion between the occupied π orbitals of the dopamine ring and the π orbitals of graphene. If dopamine adsorbs at the monovacancy in the A-B stacking mode, a hydrogen bond is produced between one of the dopamine hydroxy groups and one carbon atom around the vacancy. The electronic charge redistribution due to adsorption is consistent with an electronic drift from the graphene or GV surface to the dopamine molecule. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Dopamine-imprinted monolithic column for capillary electrochromatography.

    Science.gov (United States)

    Aşır, Süleyman; Sarı, Duygu; Derazshamshir, Ali; Yılmaz, Fatma; Şarkaya, Koray; Denizli, Adil

    2017-11-01

    A dopamine-imprinted monolithic column was prepared and used in capillary electrochromatography as stationary phase for the first time. Dopamine was selectively separated from aqueous solution containing the competitor molecule norepinephrine, which is similar in size and shape to the template molecule. Morphology of the dopamine-imprinted column was observed by scanning electron microscopy. The influence of the organic solvent content of mobile phase, applied pressure and pH of the mobile phase on the recognition of dopamine by the imprinted monolithic column has been evaluated, and the imprinting effect in the dopamine-imprinted monolithic polymer was verified. Developed dopamine-imprinted monolithic column resulted in excellent separation of dopamine from structurally related competitor molecule, norepinephrine. Separation was achieved in a short period of 10 min, with the electrophoretic mobility of 5.81 × 10 -5  m 2 V -1 s -1 at pH 5.0 and 500 mbar pressure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Taro Ueno

    Full Text Available Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine, which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  8. 5-HT has contrasting effects in the frontal cortex, but not the hypothalamus, on changes in noradrenaline efflux induced by the monoamine releasing-agent, d-amphetamine, and the reuptake inhibitor, BTS 54 354.

    Science.gov (United States)

    Géranton, Sandrine M; Heal, David J; Stanford, S Clare

    2004-03-01

    There is extensive evidence for functional interactions between central noradrenergic and serotonergic neurones. Here, dual-probe microdialysis was used in freely-moving rats to compare the effects of 5-HT on noradrenergic transmission in the rat frontal cortex and hypothalamus. We studied the effects of the 5-HT synthesis inhibitor, para-chlorophenylalanine (pCPA; which depleted 5-HT stores in both the frontal cortex and the hypothalamus), on spontaneous efflux of noradrenaline and on the noradrenergic responses to d-amphetamine, and the monoamine reuptake inhibitor, BTS 54 354. pCPA pretreatment alone did not affect spontaneous noradrenaline efflux in either brain region, whether or not alpha2-autoreceptors were inactivated by administration of the alpha2-antagonist, atipamezole (1 mg/kg i.p). However, in the frontal cortex, pCPA pretreatment augmented the amplitude of, and prolonged, the noradrenergic response to local infusion of d-amphetamine (10 microM). In contrast, pCPA abolished the increase in cortical noradrenaline efflux induced by local infusion of BTS 54 354 (50 microM). In the hypothalamus, pCPA did not affect the amplitude of the response to either of these agents but did prolong the effects of d-amphetamine on noradrenaline efflux. These findings suggest that serotonergic transmission has complex effects on the noradrenergic response to drugs that increase noradrenergic transmission in the frontal cortex, but has less influence in the hypothalamus.

  9. Dopamine agonist withdrawal syndrome: implications for patient care.

    Science.gov (United States)

    Nirenberg, Melissa J

    2013-08-01

    Dopamine agonists are effective treatments for a variety of indications, including Parkinson's disease and restless legs syndrome, but may have serious side effects, such as orthostatic hypotension, hallucinations, and impulse control disorders (including pathological gambling, compulsive eating, compulsive shopping/buying, and hypersexuality). The most effective way to alleviate these side effects is to taper or discontinue dopamine agonist therapy. A subset of patients who taper a dopamine agonist, however, develop dopamine agonist withdrawal syndrome (DAWS), which has been defined as a severe, stereotyped cluster of physical and psychological symptoms that correlate with dopamine agonist withdrawal in a dose-dependent manner, cause clinically significant distress or social/occupational dysfunction, are refractory to levodopa and other dopaminergic medications, and cannot be accounted for by other clinical factors. The symptoms of DAWS include anxiety, panic attacks, dysphoria, depression, agitation, irritability, suicidal ideation, fatigue, orthostatic hypotension, nausea, vomiting, diaphoresis, generalized pain, and drug cravings. The severity and prognosis of DAWS is highly variable. While some patients have transient symptoms and make a full recovery, others have a protracted withdrawal syndrome lasting for months to years, and therefore may be unwilling or unable to discontinue DA therapy. Impulse control disorders appear to be a major risk factor for DAWS, and are present in virtually all affected patients. Thus, patients who are unable to discontinue dopamine agonist therapy may experience chronic impulse control disorders. At the current time, there are no known effective treatments for DAWS. For this reason, providers are urged to use dopamine agonists judiciously, warn patients about the risks of DAWS prior to the initiation of dopamine agonist therapy, and follow patients closely for withdrawal symptoms during dopamine agonist taper.

  10. Steroidogenic disruptive effects of the serotonin-noradrenaline reuptake inhibitors duloxetine, venlafaxine and tramadol in the H295R cell assay and in a recombinant CYP17 assay

    DEFF Research Database (Denmark)

    Islin, Julie; Munkboel, Cecilie Hurup; Styrishave, Bjarne

    2018-01-01

    The aim of this study was to determine the steroidogenic endocrine disrupting effect of the three most widely used serotonin-noradrenaline reuptake inhibitors duloxetine, venlafaxine and tramadol, using two in vitro models, the H295R assay and a recombinant CYP17 enzyme assay. Steroid hormones were...... quantified using LC-MS/MS. Duloxetine showed endocrine disrupting effects at 5-20μM with CYP17 being the main target. Venlafaxine also affected the steroidogenesis, mainly by affecting the CYP17 lyase reaction, although at much higher concentrations i.e. 100μM. Tramadol only exerted minor effects...... on the steroidogenesis with the lowest observed effect at 314μM. Based on the H295R results, the inhibition of CYP17 by duloxetine and venlafaxine was investigated in a recombinant CYP17 assay with the use of the 4 major CYP17 substrates pregnenolone, progesterone, 17α-hydroxypregnenolone and 17α...

  11. Dopamine does double duty in motivating cognitive effort

    Science.gov (United States)

    Westbrook, Andrew; Braver, Todd S.

    2015-01-01

    Cognitive control is subjectively costly, suggesting that engagement is modulated in relationship to incentive state. Dopamine appears to play key roles. In particular, dopamine may mediate cognitive effort by two broad classes of functions: 1) modulating the functional parameters of working memory circuits subserving effortful cognition, and 2) mediating value-learning and decision-making about effortful cognitive action. Here we tie together these two lines of research, proposing how dopamine serves “double duty”, translating incentive information into cognitive motivation. PMID:26889810

  12. Elevated Striatal Dopamine Function in Immigrants and Their Children: A Risk Mechanism for Psychosis

    OpenAIRE

    Egerton, A.; Howes, O. D.; Houle, S.; McKenzie, K.; Valmaggia, L. R.; Bagby, M. R.; Tseng, H-H; Bloomfield, M. A. P.; Kenk, M.; Bhattacharyya, S.; Suridjan, I.; Chaddock, C. A.; Winton-Brown, T. T.; Allen, P.; Rusjan, P.

    2017-01-01

    Migration is a major risk factor for schizophrenia but the neurochemical processes involved are unknown. One candidate mechanism is through elevations in striatal dopamine synthesis and release. The objective of this research was to determine whether striatal dopamine function is elevated in immigrants compared to nonimmigrants and the relationship with psychosis. Two complementary case–control studies of in vivo dopamine function (stress-induced dopamine release and dopamine synthesis capaci...

  13. Dopamine synthesis and dopamine receptor expression are disturbed in recurrent miscarriages.

    Science.gov (United States)

    Gratz, Michael J; Stavrou, Stavroula; Kuhn, Christina; Hofmann, Simone; Hermelink, Kerstin; Heidegger, Helene; Hutter, Stefan; Mayr, Doris; Mahner, Sven; Jeschke, Udo; Vattai, Aurelia

    2018-05-01

    l-dopa decarboxylase (DDC) is responsible for the synthesis of dopamine. Dopamine, which binds to the D 2 -dopamine receptor (D2R), plays an important role in the maintenance of pregnancy. Aim of our study was the analysis of DDC and D2R expression in placentas of spontaneous miscarriages (SMs) and recurrent miscarriages (RMs) in comparison to healthy controls. Patients with SM (n = 15) and RM (n = 15) were compared with patients from healthy pregnancies (n = 15) (pregnancy weeks 7-13 each). Placental tissue has been collected from SMs and RMs from the first trimester (Department of Gynaecology and Obstetrics, LMU Munich) and from abruptions (private practice, Munich). Placental cell lines, BeWo- and JEG-3 cells, were stimulated with the trace amines T 0 AM and T 1 AM in vitro . Levels of DDC and D2R in trophoblasts and the decidua were lower in RMs in comparison to healthy controls. Stimulation of BeWo cells with T 1 AM significantly reduced DDC mRNA and protein levels. Via double-immunofluorescence, a DDC-positive cell type beneath decidual stromal cells and foetal EVT in the decidua could be detected. Downregulation of DDC and D2R in trophoblasts of RMs reflects a reduced signal cascade of catecholamines on the foetal side. © 2018 The authors.

  14. Mechanisms of isoform-specific Na/K pump regulation by short- and long-term adrenergic activation in rat ventricular myocytes.

    Science.gov (United States)

    Yin, Jian; Guo, Hui-Cai; Yu, Ding; Wang, Hui-Ci; Li, Jun-Xia; Wang, Yong-Li

    2014-01-01

    Many stressful conditions, including cardiovascular diseases, induce long-term elevations in circulating catecholamines, thereby leading to changes of the Na/K pump and thus affecting myocardial functions. However, only short-term adrenergic regulation of the Na/K pump has been reported. The present study is the first investigation of long-term adrenergic regulation of the Na/K pump and the potential mechanism. After acutely isolated Sprague-Dawley rat myocytes were incubated with noradrenaline or isoprenaline for 24 h, Na/K pump high- (IPH) and low-affinity current (IPL), α-isoform mRNA, and α-isoform protein were examined using patch-clamp, RT-PCR, and Western blotting techniques, respectively. After the short-term incubation, isoprenaline reduced the IPL through a PKA-dependent pathway that involves α1-isoform translocation from the membrane to early endosomes, and noradrenaline increased the IPH through a PKC-dependent pathway that involves α2-isoform translocation from late endosomes to the membrane. After long-term incubation, isoprenaline increased the IPL, α1-isoform mRNA, and α1-isoform protein, and noradrenaline reduced the IPH, α2-isoform mRNA, and α1-isoform protein through a PKA-or PKC-dependent pathway, respectively. These results suggest that long-term adrenergic Na/K pump regulation is isoform-specific and negatively feeds back on the short-term response. Furthermore, long-term regulation involves transcription and translation of the respective α-isoform, whereas short-term regulation involves the translocation of the available α-isoform to the plasma membrane. © 2014 S. Karger AG, Basel.

  15. Mechanisms of Isoform-Specific Na/K Pump Regulation by Short- and Long-Term Adrenergic Activation in Rat Ventricular Myocytes

    Directory of Open Access Journals (Sweden)

    Jian Yin

    2014-05-01

    Full Text Available Background: Many stressful conditions, including cardiovascular diseases, induce long-term elevations in circulating catecholamines, thereby leading to changes of the Na/K pump and thus affecting myocardial functions. However, only short-term adrenergic regulation of the Na/K pump has been reported. The present study is the first investigation of long-term adrenergic regulation of the Na/K pump and the potential mechanism. Methods: After acutely isolated Sprague-Dawley rat myocytes were incubated with noradrenaline or isoprenaline for 24 h, Na/K pump high- (IPH and low-affinity current (IPL, α-isoform mRNA, and α-isoform protein were examined using patch-clamp, RT-PCR, and Western blotting techniques, respectively. Results: After the short-term incubation, isoprenaline reduced the IPL through a PKA-dependent pathway that involves α1-isoform translocation from the membrane to early endosomes, and noradrenaline increased the IPH through a PKC-dependent pathway that involves α2-isoform translocation from late endosomes to the membrane. After long-term incubation, isoprenaline increased the IPL, α1-isoform mRNA, and α1-isoform protein, and noradrenaline reduced the IPH, α2-isoform mRNA, and α1-isoform protein through a PKA-or PKC-dependent pathway, respectively. Conclusions: These results suggest that long-term adrenergic Na/K pump regulation is isoform-specific and negatively feeds back on the short-term response. Furthermore, long-term regulation involves transcription and translation of the respective α-isoform, whereas short-term regulation involves the translocation of the available α-isoform to the plasma membrane.

  16. Dopamine signaling in reward-related behaviors.

    Science.gov (United States)

    Baik, Ja-Hyun

    2013-01-01

    Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA mesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural reward such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  17. Role of Dopamine Signaling in Drug Addiction.

    Science.gov (United States)

    Chen, Wan; Nong, Zhihuan; Li, Yaoxuan; Huang, Jianping; Chen, Chunxia; Huang, Luying

    2017-01-01

    Addiction is a chronic, relapsing disease of the brain that includes drug-induced compulsive seeking behavior and consumption of drugs. Dopamine (DA) is considered to be critical in drug addiction due to reward mechanisms in the midbrain. In this article, we review the major animal models in addictive drug experiments in vivo and in vitro. We discuss the relevance of the structure and pharmacological function of DA receptors. To improve the understanding of the role of DA receptors in reward pathways, specific brain regions, including the Ventral tegmental area, Nucleus accumbens, Prefrontal cortex, and Habenula, are highlighted. These factors contribute to the development of novel therapeutic targets that act at DA receptors. In addiction, the development of neuroimaging method will increase our understanding of the mechanisms underlying drug addiction. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Dopamine Signaling in reward-related behaviors

    Directory of Open Access Journals (Sweden)

    Ja-Hyun eBaik

    2013-10-01

    Full Text Available Dopamine (DA regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DAmesolimbic neurotransmission have been found to modify behavioral responses to various environmental stimuli associated with reward behaviors. Psychostimulants, drugs of abuse, and natural rewards such as food can cause substantial synaptic modifications to the mesolimbic DA system. Recent studies using optogenetics and DREADDs, together with neuron-specific or circuit-specific genetic manipulations have improved our understanding of DA signaling in the reward circuit, and provided a means to identify the neural substrates of complex behaviors such as drug addiction and eating disorders. This review focuses on the role of the DA system in drug addiction and food motivation, with an overview of the role of D1 and D2 receptors in the control of reward-associated behaviors.

  19. Prefrontal cortex, dopamine, and jealousy endophenotype.

    Science.gov (United States)

    Marazziti, Donatella; Poletti, Michele; Dell'Osso, Liliana; Baroni, Stefano; Bonuccelli, Ubaldo

    2013-02-01

    Jealousy is a complex emotion characterized by the perception of a threat of loss of something that the person values,particularly in reference to a relationship with a loved one, which includes affective, cognitive, and behavioral components. Neural systems and cognitive processes underlying jealousy are relatively unclear, and only a few neuroimaging studies have investigated them. The current article discusses recent empirical findings on delusional jealousy, which is the most severe form of this feeling, in neurodegenerative diseases. After reviewing empirical findings on neurological and psychiatric disorders with delusional jealousy, and after considering its high prevalence in patients with Parkinson's disease under dopamine agonist treatment, we propose a core neural network and core cognitive processes at the basis of (delusional) jealousy, characterizing this symptom as possible endophenotype. In any case,empirical investigation of the neural bases of jealousy is just beginning, and further studies are strongly needed to elucidate the biological roots of this complex emotion.

  20. The Area Method and the Table-Look-Up Method for 123I Epidepride SPECT Studies of Dopamine D2 Receptors

    DEFF Research Database (Denmark)

    Videbæk, Charlotte; Pindborg, Lars; Haldin, C

    1998-01-01

    Videbæk, C., Pinborg, L.H., Lassen, A., Halldin, C., Swahn, C-G., Yndgaard, S., Paulson, O.B. and Lassen, N.A. The Area Method and the Table-Look-Up Method for 123I Epidepride SPECT Studies of Dopamine D2 Receptors Abstract in Neuroimage 5(4), A21 Neurobiology Research Unit, Rigshospitalet, DENMA....... Dept of Nuclear Medicine, Bispebjerg Hospital, DENMARK. Dept of Anaesthesia, Rigshospitalet, DENMARK. Pept. Of Psych and Psyc. Karolinska Hospital, SVERIGE...

  1. Molecular and functional differences in voltage-activated sodium currents between GABA projection neurons and dopamine neurons in the substantia nigra

    OpenAIRE

    Ding, Shengyuan; Wei, Wei; Zhou, Fu-Ming

    2011-01-01

    GABA projection neurons (GABA neurons) in the substantia nigra pars reticulata (SNr) and dopamine projection neurons (DA neurons) in substantia nigra pars compacta (SNc) have strikingly different firing properties. SNc DA neurons fire low-frequency, long-duration spikes, whereas SNr GABA neurons fire high-frequency, short-duration spikes. Since voltage-activated sodium (NaV) channels are critical to spike generation, the different firing properties raise the possibility that, compared with DA...

  2. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain—striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [11C]raclopride to measure...... dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand...

  3. Genetics Home Reference: dopamine beta-hydroxylase deficiency

    Science.gov (United States)

    ... common features include an unusually large range of joint movement (hypermobility) and muscle weakness. Related Information What ... Dopamine beta-hydroxylase deficiency Washington Univeristy, St. Louis: Neuromuscular Disease Center Patient Support and Advocacy Resources (1 ...

  4. Missense dopamine transporter mutations associate with adult parkinsonism and ADHD

    DEFF Research Database (Denmark)

    Hansen, Freja H; Skjørringe, Tina; Yasmeen, Saiqa

    2014-01-01

    experiments suggested that the disrupted function of the DAT-Asp421Asn mutant is the result of compromised sodium binding, in agreement with Asp421 coordinating sodium at the second sodium site. For DAT-Asp421Asn, substrate efflux experiments revealed a constitutive, anomalous efflux of dopamine......Parkinsonism and attention deficit hyperactivity disorder (ADHD) are widespread brain disorders that involve disturbances of dopaminergic signaling. The sodium-coupled dopamine transporter (DAT) controls dopamine homeostasis, but its contribution to disease remains poorly understood. Here, we......-deoxy-glucose-PET/MRI (FDG-PET/MRI) scan, the patient suffered from progressive dopaminergic neurodegeneration. In heterologous cells, both DAT variants exhibited markedly reduced dopamine uptake capacity but preserved membrane targeting, consistent with impaired catalytic activity. Computational simulations and uptake...

  5. Striatal dopamine release codes uncertainty in pathological gambling

    DEFF Research Database (Denmark)

    Linnet, Jakob; Mouridsen, Kim; Peterson, Ericka

    2012-01-01

    Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear...... function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C......]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand...

  6. Selective response of dopamine in the presence of ascorbic acid ...

    African Journals Online (AJOL)

    Selective response of dopamine in the presence of ascorbic acid and uric acid at gold nanoparticles and multi-walled carbon nanotubes grafted with ethylene diamine tetraacetic acid modified electrode.

  7. Diversion of the melanin synthetic pathway by dopamine product

    African Journals Online (AJOL)

    acetylcysteine adducts of dopamine studied using quantum chemical ... cyclization reaction of dopaminoquinone which leads to the synthesis of melanin. ..... a hydrogen bond with the carbonyl oxygen (−O−H---O=C− and the second one points ...

  8. Effects of chronic fructose overload on renal dopaminergic system: alteration of urinary L-dopa/dopamine index correlates to hypertension and precedes kidney structural damage.

    Science.gov (United States)

    Rukavina Mikusic, Natalia L; Kouyoumdzian, Nicolás M; Del Mauro, Julieta S; Cao, Gabriel; Trida, Verónica; Gironacci, Mariela M; Puyó, Ana M; Toblli, Jorge E; Fernández, Belisario E; Choi, Marcelo R

    2018-01-01

    Insulin resistance induced by a high-fructose diet has been associated to hypertension and renal damage. The aim of this work was to assess alterations in the urinary L-dopa/dopamine ratio over three time periods in rats with insulin resistance induced by fructose overload and its correlation with blood pressure levels and the presence of microalbuminuria and reduced nephrin expression as markers of renal structural damage. Male Sprague-Dawley rats were randomly divided into six groups: control (C) (C4, C8 and C12) with tap water to drink and fructose-overloaded (FO) rats (FO4, FO8 and FO12) with a fructose solution (10% w/v) to drink for 4, 8 and 12 weeks. A significant increase of the urinary L-dopa/dopamine ratio was found in FO rats since week 4, which positively correlated to the development of hypertension and preceded in time the onset of microalbuminuria and reduced nephrin expression observed on week 12 of treatment. The alteration of this ratio was associated to an impairment of the renal dopaminergic system, evidenced by a reduction in renal dopamine transporters and dopamine D1 receptor expression, leading to an overexpression and overactivation of the enzyme Na + , K + -ATPase with sodium retention. In conclusion, urinary L-dopa/dopamine ratio alteration in rats with fructose overload positively correlated to the development of hypertension and preceded in time the onset of renal structural damage. This is the first study to propose the use of the urinary L-dopa/dopamine index as marker of renal dysfunction that temporarily precedes kidney structural damage induced by fructose overload. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    Science.gov (United States)

    Frank, Guido K. W.

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways. PMID:25988121

  10. PCBs Alter Dopamine Mediated Function in Aging Workers

    Science.gov (United States)

    2011-01-01

    PCBs Alter Dopamine Mediated Function in Aging Workers 5a. CONTRACT NUMBER 5b. GRANT NUMBER DAMD17-02-1-0173 5c. PROGRAM ELEMENT...hypothesized that occupational exposure to polychlorinated biphenyls (PCBs) reduces dopamine (DA) terminal densities in the basal ganglia. We found...motor function in women compared to similarly aged men with similar bone lead levels. These latter findings are the first to demonstrate a sexual

  11. SEP-225289 serotonin and dopamine transporter occupancy: a PET study.

    Science.gov (United States)

    DeLorenzo, Christine; Lichenstein, Sarah; Schaefer, Karen; Dunn, Judith; Marshall, Randall; Organisak, Lisa; Kharidia, Jahnavi; Robertson, Brigitte; Mann, J John; Parsey, Ramin V

    2011-07-01

    SEP-225289 is a novel compound that, based on in vitro potencies for transporter function, potentially inhibits reuptake at dopamine, norepinephrine, and serotonin transporters. An open-label PET study was conducted during the development of SEP-225289 to investigate its dopamine and serotonin transporter occupancy. Different single doses of SEP-225289 were administered to healthy volunteers in 3 cohorts: 8 mg (n = 7), 12 mg (n = 5), and 16 mg (n = 7). PET was performed before and approximately 24 h after oral administration of SEP-225289, to assess occupancy at trough levels. Dopamine and serotonin transporter occupancies were estimated from PET using (11)C-N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane ((11)C-PE2I) and (11)C-N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ((11)C-DASB), respectively. Plasma concentration of SEP-225289 was assessed before ligand injection, and subjects were monitored for adverse events. Average dopamine and serotonin transporter occupancies increased with increasing doses of SEP-225289. Mean dopamine and serotonin transporter occupancies were 33% ± 11% and 2% ± 13%, respectively, for 8 mg; 44% ± 4% and 9% ± 10%, respectively, for 12 mg; and 49% ± 7% and 14% ± 15%, respectively, for 16 mg. On the basis of the relationship between occupancy and plasma concentration, dopamine transporter IC(50) (the plasma concentration of drug at 50% occupancy) was determined (4.5 ng/mL) and maximum dopamine transporter occupancy was extrapolated (85%); however, low serotonin transporter occupancy prevented similar serotonin transporter calculations. No serious adverse events were reported. At the doses evaluated, occupancy of the dopamine transporter was significantly higher than that of the serotonin transporter, despite similar in vitro potencies, confirming that, in addition to in vitro assays, PET occupancy studies can be instrumental to the drug development process by informing early decisions about

  12. Developmental changes in human dopamine neurotransmission: cortical receptors and terminators

    Directory of Open Access Journals (Sweden)

    Rothmond Debora A

    2012-02-01

    Full Text Available Abstract Background Dopamine is integral to cognition, learning and memory, and dysfunctions of the frontal cortical dopamine system have been implicated in several developmental neuropsychiatric disorders. The dorsolateral prefrontal cortex (DLPFC is critical for working memory which does not fully mature until the third decade of life. Few studies have reported on the normal development of the dopamine system in human DLPFC during postnatal life. We assessed pre- and postsynaptic components of the dopamine system including tyrosine hydroxylase, the dopamine receptors (D1, D2 short and D2 long isoforms, D4, D5, catechol-O-methyltransferase, and monoamine oxidase (A and B in the developing human DLPFC (6 weeks -50 years. Results Gene expression was first analysed by microarray and then by quantitative real-time PCR. Protein expression was analysed by western blot. Protein levels for tyrosine hydroxylase peaked during the first year of life (p O-methyltransferase (p = 0.024 were significantly higher in neonates and infants as was catechol-O-methyltransferase protein (32 kDa, p = 0.027. In contrast, dopamine D1 receptor mRNA correlated positively with age (p = 0.002 and dopamine D1 receptor protein expression increased throughout development (p Conclusions We find distinct developmental changes in key components of the dopamine system in DLPFC over postnatal life. Those genes that are highly expressed during the first year of postnatal life may influence and orchestrate the early development of cortical neural circuitry while genes portraying a pattern of increasing expression with age may indicate a role in DLPFC maturation and attainment of adult levels of cognitive function.

  13. Could dopamine agonists aid in drug development for anorexia nervosa?

    Science.gov (United States)

    Frank, Guido K W

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  14. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    Directory of Open Access Journals (Sweden)

    Guido eFrank

    2014-11-01

    Full Text Available Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  15. Dopamine and glucose, obesity and Reward Deficiency Syndrome

    Directory of Open Access Journals (Sweden)

    Kenneth eBlum

    2014-09-01

    Full Text Available Obesity and many well described eating disorders are accurately considered a global epidemic. The consequences of Reward Deficiency Syndrome, a genetic and epigenetic phenomena that involves the interactions of powerful neurotransmitters, are impairments of brain reward circuitry, hypodopaminergic function and abnormal craving behavior. Numerous sound neurochemical and genetic studies provide strong evidence that food addiction is similar to psychoactive drug addiction. Important facts which could translate to potential therapeutic targets espoused in this review include: 1 brain dopamine (DA production and use is stimulated by consumption of alcohol in large quantities or carbohydrates bingeing; 2 in the mesolimbic system the enkephalinergic neurons are in close proximity, to glucose receptors; 3 highly concentrated glucose activates the calcium channel to stimulate dopamine release from P12 cells; 4 blood glucose and cerebrospinal fluid concentrations of homovanillic acid, the dopamine metabolite, are significantly correlated and 5 2-deoxyglucose the glucose analogue, in pharmacological doses associates with enhanced dopamine turnover and causes acute glucoprivation. Evidence from animal studies and human fMRI support the hypothesis that multiple, but similar brain circuits are disrupted in obesity and drug dependence and DA-modulated reward circuits are involved in pathologic eating behaviors. Treatment for addiction to glucose and drugs alike, based on a consensus of neuroscience research, should incorporate dopamine agonist therapy, in contrast to current theories and practices that use dopamine antagonists. Until now, powerful dopamine-D2 agonists have failed clinically, due to chronic down regulation of D2 receptors instead, consideration of novel less powerful D2 agonists that up-regulate D2 receptors seems prudent. We encourage new strategies targeted at improving DA function in the treatment and prevention of obesity a subtype of

  16. Infantile parkinsonism-dystonia: a dopamine “transportopathy”

    OpenAIRE

    Blackstone, Craig

    2009-01-01

    The dopamine transporter (DAT) retrieves the neurotransmitter dopamine from the synaptic cleft at dopaminergic synapses. Variations in solute carrier family 6A, member 3 (SLC6A3/DAT1), the human gene encoding DAT, have been implicated in attention deficit hyperactivity and bipolar disorders, and DAT is a prominent site of action for drugs such as amphetamines and cocaine. In this issue of the JCI, Kurian et al. report that an autosomal recessive infantile parkinsonism-dystonia is caused by lo...

  17. Dopamine and Reward: The Anhedonia Hypothesis 30 years on

    OpenAIRE

    Wise, Roy A.

    2008-01-01

    The anhedonia hypothesis – that brain dopamine plays a critical role in the subjective pleasure associated with positive rewards – was intended to draw the attention of psychiatrists to the growing evidence that dopamine plays a critical role in the objective reinforcement and incentive motivation associated with food and water, brain stimulation reward, and psychomotor stimulant and opiate reward. The hypothesis called to attention the apparent paradox that neuroleptics, drugs used to treat ...

  18. In vivo neurochemical characterization of clothianidin induced striatal dopamine release.

    Science.gov (United States)

    Faro, L R F; Oliveira, I M; Durán, R; Alfonso, M

    2012-12-16

    Clothianidin (CLO) is a neonicotinoid insecticide with selective action on nicotinic acetylcholine receptors. The aim of this study was to determine the neurochemical basis for CLO-induced striatal dopamine release using the microdialysis technique in freely moving and conscious rats. Intrastriatal administration of CLO (3.5mM), produced an increase in both spontaneous (2462 ± 627% with respect to basal values) and KCl-evoked (4672 ± 706% with respect to basal values) dopamine release. This effect was attenuated in Ca(2+)-free medium, and was prevented in reserpine pre-treated animals or in presence of tetrodotoxin (TTX). To investigate the involvement of dopamine transporter (DAT), the effect of CLO was observed in presence of nomifensine. The coadministration of CLO and nomifensine produced an additive effect on striatal dopamine release. The results suggest that the effect of CLO on striatal dopamine release is predominantly mediated by an exocytotic mechanism, Ca(2+), vesicular and TTX-dependent and not by a mechanism mediated by dopamine transporter. Published by Elsevier Ireland Ltd.

  19. Dopamine in the medial amygdala network mediates human bonding.

    Science.gov (United States)

    Atzil, Shir; Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M; Dickerson, Bradford C; Catana, Ciprian; Barrett, Lisa Feldman

    2017-02-28

    Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers' dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the "medial amygdala network") that supports social functioning. We also measured the mothers' behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother's infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted.

  20. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    Science.gov (United States)

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  1. Demonstration of specific dopamine receptors on human pituitary adenomas

    International Nuclear Information System (INIS)

    Koga, Masafumi; Nakao, Haruyoshi; Arao, Masayo; Sato, Bunzo; Noma, Keizo; Morimoto, Yasuhiko; Kishimoto, Susumu; Mori, Shintaro; Uozumi, Toru

    1987-01-01

    Dopamine receptors on human pituitary adenoma membranes were characterized using [ 3 H]spiperone as the radioligand. The specific [ 3 H]spiperone binding sites on prolactin (PRL)-secreting adenoma membranes were recognized as a dopamine receptor, based upon the data showing high affinity binding, saturability, specificity, temperature dependence, and reversibility. All of 14 PRL-secreting adenomas had high affinity dopamine receptors, with a dissociation constant (Kd) of 0.85±0.11 nmol/l (mean±SEM) and a maximal binding capacity (Bmax) of 428±48.6 fmol/mg protein. Among 14 growth hormone (GH)-secreting adenomas examined, 8 (57%) had dopamine receptors with a Kd of 1.90±0.47 nmol/l and a Bmax of 131±36.9 fmol/mg protein. Furthermore, 15 of 24 (58%) nonsecreting pituitary adenomas also had dopamine receptors with a Kd of 1.86±0.37 nmol/l and a Bmax of 162±26.0 fmol/mg protein. These results indicate that some GH-secreting adenomas as well as some nonsecreting pituitary adenomas contain dopamine receptors. But their affinity and number of binding sites are significantly lower (P<0.05) and fewer (P<0.001) respectively, than those in PRL-secreting adenomas. (author)

  2. Development of specific dopamine D-1 agonists and antagonists

    International Nuclear Information System (INIS)

    Sakolchai, S.

    1987-01-01

    To develop potentially selective dopamine D-1 agonists and to investigate on the structural requirement for D-1 activity, the derivatives of dibenzocycloheptadiene are synthesized and pharmacologically evaluated. The target compounds are 5-aminomethyl-10,11-dihydro-1,2-dihydroxy-5H-dibenzo[a,d]cycloheptene hydrobromide 10 and 9,10-dihydroxy-1,2,3,7,8,12b-hexahydrobenzo[1,2]cyclohepta[3,4,5d,e]isoquinoline hydrobromide 11. In a dopamine-sensitive rat retinal adenylate cyclase assay, a model for D-1 activity, compound 10 is essentially inert for both agonist and antagonist activity. In contrast, compound 11 is approximately equipotent to dopamine in activation of the D-1 receptor. Based on radioligand and binding data, IC 50 of compound 11 for displacement of 3 H-SCH 23390, a D-1 ligand, is about 7 fold less than that for displacement of 3 H-spiperone, a D-2 ligand. These data indicate that compound 11 is a potent selective dopamine D-1 agonist. This study provides a new structural class of dopamine D-1 acting agent: dihydroxy-benzocycloheptadiene analog which can serve as a lead compound for further drug development and as a probe for investigation on the nature of dopamine D-1 receptor

  3. Demonstration of specific dopamine receptors on human pituitary adenomas

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Masafumi; Nakao, Haruyoshi; Arao, Masayo; Sato, Bunzo; Noma, Keizo; Morimoto, Yasuhiko; Kishimoto, Susumu; Mori, Shintaro; Uozumi, Toru

    1987-01-01

    Dopamine receptors on human pituitary adenoma membranes were characterized using (/sup 3/H)spiperone as the radioligand. The specific (/sup 3/H)spiperone binding sites on prolactin (PRL)-secreting adenoma membranes were recognized as a dopamine receptor, based upon the data showing high affinity binding, saturability, specificity, temperature dependence, and reversibility. All of 14 PRL-secreting adenomas had high affinity dopamine receptors, with a dissociation constant (Kd) of 0.85 +- 0.11 nmol/l (mean+-SEM) and a maximal binding capacity (Bmax) of 428 +- 48.6 fmol/mg protein. Among 14 growth hormone (GH)-secreting adenomas examined, 8 (57%) had dopamine receptors with a Kd of 1.90 +- 0.47 nmol/l and a Bmax of 131 +- 36.9 fmol/mg protein. Furthermore, 15 of 24 (58%) nonsecreting pituitary adenomas also had dopamine receptors with a Kd of 1.86 +- 0.37 nmol/l and a Bmax of 162 +- 26.0 fmol/mg protein. These results indicate that some GH-secreting adenomas as well as some nonsecreting pituitary adenomas contain dopamine receptors. But their affinity and number of binding sites are significantly lower (P<0.05) and fewer (P<0.001) respectively, than those in PRL-secreting adenomas.

  4. Effect of dopamine injection on the hemocyte count and prophenoloxidase system of the white shrimp Litopenaeus vannamei

    Science.gov (United States)

    Pan, Luqing; Hu, Fawen; Zheng, Debin

    2011-09-01

    Effects of dopamine injection on the hemocyte count, phenoloxidase activity, serine proteinase activity, proteinase inhibitor activity and α2-macroglobulin-like activity in L. vannamei were studied. Results showed that dopamine injection resulted in a significant effect on the parameters measured ( P < 0.05), while no significant difference was observed in the control group (0.85% NaCl). In the experimental groups, the hemocyte count reached the minimum in 3 h; granular and semi-granular cells became stable after 12 h and hyaline cells and the total hemocyte count became stable after 18 h. Phenoloxidase activity reached the minimum in 6 h, and then became stable after 9 h. Serine protease activity and proteinase inhibitor activity reached the minimum in 3 h, and α2-macroglobulin-like activity reached the maximum in 3 h, and all the three parameters became stable after 12 h. The results suggest that the activating mechanisms of the proPO system triggered by dopamine are different from those triggered by invasive agents or spontaneously activated under a normal physical condition.

  5. Flipped Phenyl Ring Orientations of Dopamine Binding with Human and Drosophila Dopamine Transporters: Remarkable Role of Three Nonconserved Residues.

    Science.gov (United States)

    Yuan, Yaxia; Zhu, Jun; Zhan, Chang-Guo

    2018-03-09

    Molecular modeling and molecular dynamics simulations were performed in the present study to examine the modes of dopamine binding with human and Drosophila dopamine transporters (hDAT and dDAT). The computational data revealed flipped binding orientations of dopamine in hDAT and dDAT due to the major differences in three key residues (S149, G153, and A423 of hDAT vs A117, D121, and S422 of dDAT) in the binding pocket. These three residues dictate the binding orientation of dopamine in the binding pocket, as the aromatic ring of dopamine tends to take an orientation with both the para- and meta-hydroxyl groups being close to polar residues and away from nonpolar residues of the protein. The flipped binding orientations of dopamine in hDAT and dDAT clearly demonstrate a generally valuable insight concerning how the species difference could drastically affect the protein-ligand binding modes, demonstrating that the species difference, which is a factor rarely considered in early drug design stage, must be accounted for throughout the ligand/drug design and discovery processes in general.

  6. 6-hydroxydopamine-induced degeneration of nigral dopamine neurons: differential effect on nigral and striatal D-1 dopamine receptors

    International Nuclear Information System (INIS)

    Porceddu, M.L.; Giorgi, O.; De Montis, G.; Mele, S.; Cocco, L.; Ongini, E.; Biggio, G.

    1987-01-01

    Dopamine-sensitive adenylate cyclase and 3 H-SCH 23390 binding parameters were measured in the rat substantia nigra and striatum 15 days after the injection of 6-hydroxydopamine into the medial forebrain bundle. The activity of nigral dopamine-sensitive adenylate cyclase and the binding of 3 H-SCH 23390 to rat nigral D-1 dopamine receptors were markedly decreased after the lesion. On the contrary, 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway enhanced both adenylate cyclase activity and the density of 3 H-SCH 23390 binding sites in striatal membrane preparations. The changes in 3 H-SCH 23390 binding found in both nigral and striatal membrane preparations were associated with changes in the total number of binding sites with no modifications in their apparent affinity. The results indicate that: a) within the substantia nigra a fraction (30%) of D-1 dopamine receptors coupled to the adenylate cyclase is located on cell bodies and and/or dendrites of dopaminergic neurons; b) striatal D-1 dopamine receptors are tonically innervated by nigrostriatal afferent fibers. 24 references, 1 figure, 1 table

  7. SPECT imaging of D{sub 2} dopamine receptors and endogenous dopamine release in mice

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Cynthia [University Medical Center Utrecht, Image Sciences Institute, Q0S.459, P.O. Box 85500, Utrecht (Netherlands); Bruin, Kora de; Booij, Jan [University of Amsterdam, Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Beekman, Freek [University Medical Center Utrecht, Image Sciences Institute, Q0S.459, P.O. Box 85500, Utrecht (Netherlands); University Medical Center Utrecht, Department of Neuroscience and Pharmacology, Utrecht (Netherlands); Technical University Delft, Department R3, Section Radiation, Detection and Matter, Delft (Netherlands)

    2008-09-15

    The dopamine D{sub 2} receptor (D2R) is important in the mediation of addiction. [{sup 123}I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [{sup 123}I]IBZM has not been used in mice SPECT studies. This study evaluates the use of [{sup 123}I]IBZM for measuring D2R availability in mice. Pharmacokinetics of [{sup 123}I]IBZM in mice were studied with pinhole SPECT imaging after intravenous (i.v.) injection of [{sup 123}I]IBZM (20, 40, and 70 MBq). In addition, the ability to measure the release of endogenous dopamine after amphetamine administration with [{sup 123}I]IBZM SPECT was investigated. Thirdly, i.v. administration, the standard route of administration, and intraperitoneal (i.p.) administration of [{sup 123}I]IBZM were compared. Specific binding of [{sup 123}I]IBZM within the mouse striatum could be clearly visualized with SPECT. Peak specific striatal binding ratios were reached around 90 min post-injection. After amphetamine administration, the specific binding ratios of [{sup 123}I]IBZM decreased significantly (-27.2%; n=6; p=0.046). Intravenous administration of [{sup 123}I]IBZM led to significantly higher specific binding than i.p. administration of the same dose. However, we found that i.v. administration of a dose of 70 MBq [{sup 123}I]IBZM might result in acute ethanol intoxication because ethanol is used as a preparative aid for the routine production of [{sup 123}I]IBZM. Imaging of D2R availability and endogenous dopamine release in mice is feasible using [{sup 123}I]IBZM single pinhole SPECT. Using commercially produced [{sup 123}I]IBZM, a dose of 40 MBq injected i.v. can be recommended. (orig.)

  8. SPECT imaging of D2 dopamine receptors and endogenous dopamine release in mice

    International Nuclear Information System (INIS)

    Jongen, Cynthia; Bruin, Kora de; Booij, Jan; Beekman, Freek

    2008-01-01

    The dopamine D 2 receptor (D2R) is important in the mediation of addiction. [ 123 I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [ 123 I]IBZM has not been used in mice SPECT studies. This study evaluates the use of [ 123 I]IBZM for measuring D2R availability in mice. Pharmacokinetics of [ 123 I]IBZM in mice were studied with pinhole SPECT imaging after intravenous (i.v.) injection of [ 123 I]IBZM (20, 40, and 70 MBq). In addition, the ability to measure the release of endogenous dopamine after amphetamine administration with [ 123 I]IBZM SPECT was investigated. Thirdly, i.v. administration, the standard route of administration, and intraperitoneal (i.p.) administration of [ 123 I]IBZM were compared. Specific binding of [ 123 I]IBZM within the mouse striatum could be clearly visualized with SPECT. Peak specific striatal binding ratios were reached around 90 min post-injection. After amphetamine administration, the specific binding ratios of [ 123 I]IBZM decreased significantly (-27.2%; n=6; p=0.046). Intravenous administration of [ 123 I]IBZM led to significantly higher specific binding than i.p. administration of the same dose. However, we found that i.v. administration of a dose of 70 MBq [ 123 I]IBZM might result in acute ethanol intoxication because ethanol is used as a preparative aid for the routine production of [ 123 I]IBZM. Imaging of D2R availability and endogenous dopamine release in mice is feasible using [ 123 I]IBZM single pinhole SPECT. Using commercially produced [ 123 I]IBZM, a dose of 40 MBq injected i.v. can be recommended. (orig.)

  9. Frequency-Dependent Modulation of Dopamine Release by Nicotine and Dopamine D1 Receptor Ligands: An In Vitro Fast Cyclic Voltammetry Study in Rat Striatum.

    Science.gov (United States)

    Goutier, W; Lowry, J P; McCreary, A C; O'Connor, J J

    2016-05-01

    Nicotine is a highly addictive drug and exerts this effect partially through the modulation of dopamine release and increasing extracellular dopamine in regions such as the brain reward systems. Nicotine acts in these regions on nicotinic acetylcholine receptors. The effect of nicotine on the frequency dependent modulation of dopamine release is well established and the purpose of this study was to investigate whether dopamine D1 receptor (D1R) ligands have an influence on this. Using fast cyclic voltammetry and rat corticostriatal slices, we show that D1R ligands are able to modulate the effect of nicotine on dopamine release. Nicotine (500 nM) induced a decrease in dopamine efflux at low frequency (single pulse or five pulses at 10 Hz) and an increase at high frequency (100 Hz) electrical field stimulation. The D1R agonist SKF-38393, whilst having no effect on dopamine release on its own or on the effect of nicotine upon multiple pulse evoked dopamine release, did significantly prevent and reverse the effect of nicotine on single pulse dopamine release. Interestingly similar results were obtained with the D1R antagonist SCH-23390. In this study we have demonstrated that the modulation of dopamine release by nicotine can be altered by D1R ligands, but only when evoked by single pulse stimulation, and are likely working via cholinergic interneuron driven dopamine release.

  10. Oxytocin, Motivation and the Role of Dopamine

    Science.gov (United States)

    Love, Tiffany M.

    2013-01-01

    The hypothalamic neuropeptide oxytocin has drawn the attention of scientists for more than a century. The understanding of the function of oxytocin has expanded dramatically over the years from a simple peptide adept at inducing uterine contractions and milk ejection to a complex neuromodulator with a capacity to shape human social behavior. Decades of research have outlined oxytocin’s ability to enhance intricate social activities ranging from pair bonding, sexual activity, affiliative preferences, and parental behaviors. The precise neural mechanisms underlying oxytocin’s influence on such behaviors have just begun to be understood. Research suggests that oxytocin interacts closely with the neural pathways responsible for processing motivationally relevant stimuli. In particular, oxytocin appears to impact dopaminergic activity within the mesocorticolimbic dopamine system, which is crucial not only for reward and motivated behavior but also for the expression of affiliative behaviors. Though most of the work performed in this area has been done using animal models, several neuroimaging studies suggest similar relationships may be observed in humans. In order to introduce this topic further, this paper will review the recent evidence that oxytocin may exert some of its social-behavioral effects through its impact on motivational networks. PMID:23850525

  11. Biophysically realistic minimal model of dopamine neuron

    Science.gov (United States)

    Oprisan, Sorinel

    2008-03-01

    We proposed and studied a new biophysically relevant computational model of dopaminergic neurons. Midbrain dopamine neurons are involved in motivation and the control of movement, and have been implicated in various pathologies such as Parkinson's disease, schizophrenia, and drug abuse. The model we developed is a single-compartment Hodgkin-Huxley (HH)-type parallel conductance membrane model. The model captures the essential mechanisms underlying the slow oscillatory potentials and plateau potential oscillations. The main currents involved are: 1) a voltage-dependent fast calcium current, 2) a small conductance potassium current that is modulated by the cytosolic concentration of calcium, and 3) a slow voltage-activated potassium current. We developed multidimensional bifurcation diagrams and extracted the effective domains of sustained oscillations. The model includes a calcium balance due to the fundamental importance of calcium influx as proved by simultaneous electrophysiological and calcium imaging procedure. Although there are significant evidences to suggest a partially electrogenic calcium pump, all previous models considered only elecrtogenic pumps. We investigated the effect of the electrogenic calcium pump on the bifurcation diagram of the model and compared our findings against the experimental results.

  12. Decreased lymphocyte dopamine transporter in romantic lovers.

    Science.gov (United States)

    Marazziti, Donatella; Baroni, Stefano; Giannaccini, Gino; Piccinni, Armando; Mucci, Federico; Catena-Dell'Osso, Mario; Rutigliano, Grazia; Massimetti, Gabriele; Dell'Osso, Liliana

    2017-06-01

    The role of dopamine (DA) in romantic love is suggested by different evidence and is supported by the findings of some brain imaging studies. The DA transporter (DAT) is a key structure in regulating the concentration of the neurotransmitter in the synaptic cleft. Given the presence of DAT in blood cells, the present study aimed to explore it in resting lymphocytes of 30 healthy subjects of both sexes in the early stage of romantic love (no longer than 6 months), as compared with 30 subjects involved in a long-lasting relationship. All subjects had no physical or psychiatric illness. The DAT was measured by means of the [3H]-WIN 35,428 binding and the [3H]-DA reuptake to resting lymphocytes membranes. Romantic love was assessed by a specific questionnaire developed by us. The results showed that the subjects in the early phase of romantic love had a global alteration of the lymphocyte DAT involving both a decreased number of proteins (Bmax) and a reduced functionality (Vmax). Taken together, these findings would indicate the presence of increased levels of DA in romantic love that, if paralleled by similar concentrations in the brain, would explain some peculiar features of this human feeling.

  13. Modulation for emergent networks: serotonin and dopamine.

    Science.gov (United States)

    Weng, Juyang; Paslaski, Stephen; Daly, James; VanDam, Courtland; Brown, Jacob

    2013-05-01

    In autonomous learning, value-sensitive experiences can improve the efficiency of learning. A learning network needs be motivated so that the limited computational resources and the limited lifetime are devoted to events that are of high value for the agent to compete in its environment. The neuromodulatory system of the brain is mainly responsible for developing such a motivation system. Although reinforcement learning has been extensively studied, many existing models are symbolic whose internal nodes or modules have preset meanings. Neural networks have been used to automatically generate internal emergent representations. However, modeling an emergent motivational system for neural networks is still a great challenge. By emergent, we mean that the internal representations emerge autonomously through interactions with the external environments. This work proposes a generic emergent modulatory system for emergent networks, which includes two subsystems - the serotonin system and the dopamine system. The former signals a large class of stimuli that are intrinsically aversive (e.g., stress or pain). The latter signals a large class of stimuli that are intrinsically appetitive (e.g., pleasure or sweet). We experimented with this motivational system for two settings. The first is a visual recognition setting to investigate how such a system can learn through interactions with a teacher, who does not directly give answers, but only punishments and rewards. The second is a setting for wandering in the presence of a friend and a foe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Prefrontal Dopamine in Associative Learning and Memory

    Science.gov (United States)

    Puig, M. Victoria; Antzoulatos, Evan G.; Miller, Earl K.

    2014-01-01

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulate associative learning and memory processes in frontostriatal systems. PMID:25241063

  15. Dopamine and Effort-Based Decision Making

    Directory of Open Access Journals (Sweden)

    Irma Triasih Kurniawan

    2011-06-01

    Full Text Available Motivational theories of choice focus on the influence of goal values and strength of reinforcement to explain behavior. By contrast relatively little is known concerning how the cost of an action, such as effort expended, contributes to a decision to act. Effort-based decision making addresses how we make an action choice based on an integration of action and goal values. Here we review behavioral and neurobiological data regarding the representation of effort as action cost, and how this impacts on decision making. Although organisms expend effort to obtain a desired reward there is a striking sensitivity to the amount of effort required, such that the net preference for an action decreases as effort cost increases. We discuss the contribution of the neurotransmitter dopamine (DA towards overcoming response costs and in enhancing an animal’s motivation towards effortful actions. We also consider the contribution of brain structures, including the basal ganglia (BG and anterior cingulate cortex (ACC, in the internal generation of action involving a translation of reward expectation into effortful action.

  16. Local control of striatal dopamine release

    Directory of Open Access Journals (Sweden)

    Roger eCachope

    2014-05-01

    Full Text Available The mesolimbic and nigrostriatal dopamine (DA systems play a key role in the physiology of reward seeking, motivation and motor control. Importantly, they are also involved in the pathophysiology of Parkinson’s and Huntington’s disease, schizophrenia and addiction. Control of DA release in the striatum is tightly linked to firing of DA neurons in the ventral tegmental area (VTA and the substantia nigra (SN. However, local influences in the striatum affect release by exerting their action directly on axon terminals. For example, endogenous glutamatergic and cholinergic activity is sufficient to trigger striatal DA release independently of cell body firing. Recent developments involving genetic manipulation, pharmacological selectivity or selective stimulation have allowed for better characterization of these phenomena. Such termino-terminal forms of control of DA release transform considerably our understanding of the mesolimbic and nigrostriatal systems, and have strong implications as potential mechanisms to modify impaired control of DA release in the diseased brain. Here, we review these and related mechanisms and their implications in the physiology of ascending DA systems.

  17. Prefrontal dopamine in associative learning and memory.

    Science.gov (United States)

    Puig, M V; Antzoulatos, E G; Miller, E K

    2014-12-12

    Learning to associate specific objects or actions with rewards and remembering the associations are everyday tasks crucial for our flexible adaptation to the environment. These higher-order cognitive processes depend on the prefrontal cortex (PFC) and frontostriatal circuits that connect areas in the frontal lobe with the striatum in the basal ganglia. Both structures are densely innervated by dopamine (DA) afferents that originate in the midbrain. Although the activity of DA neurons is thought to be important for learning, the exact role of DA transmission in frontostriatal circuits during learning-related tasks is still unresolved. Moreover, the neural substrates of this modulation are poorly understood. Here, we review our recent work in monkeys utilizing local pharmacology of DA agents in the PFC to investigate the cellular mechanisms of DA modulation of associative learning and memory. We show that blocking both D1 and D2 receptors in the lateral PFC impairs learning of new stimulus-response associations and cognitive flexibility, but not the memory of highly familiar associations. In addition, D2 receptors may also contribute to motivation. The learning deficits correlated with reductions of neural information about the associations in PFC neurons, alterations in global excitability and spike synchronization, and exaggerated alpha and beta neural oscillations. Our findings provide new insights into how DA transmission modulates associative learning and memory processes in frontostriatal systems. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. De novo mutation in the dopamine transporter gene associates dopamine dysfunction with autism spectrum disorder.

    Science.gov (United States)

    Hamilton, P J; Campbell, N G; Sharma, S; Erreger, K; Herborg Hansen, F; Saunders, C; Belovich, A N; Sahai, M A; Cook, E H; Gether, U; McHaourab, H S; Matthies, H J G; Sutcliffe, J S; Galli, A

    2013-12-01

    De novo genetic variation is an important class of risk factors for autism spectrum disorder (ASD). Recently, whole-exome sequencing of ASD families has identified a novel de novo missense mutation in the human dopamine (DA) transporter (hDAT) gene, which results in a Thr to Met substitution at site 356 (hDAT T356M). The dopamine transporter (DAT) is a presynaptic membrane protein that regulates dopaminergic tone in the central nervous system by mediating the high-affinity reuptake of synaptically released DA, making it a crucial regulator of DA homeostasis. Here, we report the first functional, structural and behavioral characterization of an ASD-associated de novo mutation in the hDAT. We demonstrate that the hDAT T356M displays anomalous function, characterized as a persistent reverse transport of DA (substrate efflux). Importantly, in the bacterial homolog leucine transporter, substitution of A289 (the homologous site to T356) with a Met promotes an outward-facing conformation upon substrate binding. In the substrate-bound state, an outward-facing transporter conformation is required for substrate efflux. In Drosophila melanogaster, the expression of hDAT T356M in DA neurons-lacking Drosophila DAT leads to hyperlocomotion, a trait associated with DA dysfunction and ASD. Taken together, our findings demonstrate that alterations in DA homeostasis, mediated by aberrant DAT function, may confer risk for ASD and related neuropsychiatric conditions.

  19. Conformational Dynamics on the Extracellular Side of LeuT Controlled by Na+ and K+ Ions and the Protonation State of Glu(290)

    DEFF Research Database (Denmark)

    Khelashvili, George; Schmidt, Solveig Gaarde; Shi, Lei

    2016-01-01

    Na+ ions and substrate have left, and the transporter prepares for a new cycle. We compare the results with the consequences of binding Na+ in the same apo system. Analysis of >50-μs atomistic molecular dynamics and enhanced sampling trajectories of constructs with Glu290, either charged or neutral......Ions play key mechanistic roles in the gating dynamics of neurotransmitter:sodium symporters (NSSs). In recent microsecond scale molecular dynamics simulations of a complete model of the dopamine transporter, a NSS protein, we observed a partitioning of K+ ions from the intracellular side toward...... the unoccupied Na2 site of dopamine transporter following the release of the Na2-bound Na+. Here we evaluate with computational simulations and experimental measurements of ion affinities under corresponding conditions, the consequences of K+ binding in the Na2 site of LeuT, a bacterial homolog of NSS, when both...

  20. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons

    Directory of Open Access Journals (Sweden)

    W. Romero-Fernandez

    2014-07-01

    Full Text Available Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tubero-infundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region.  Dopamine D1 and D2 receptors may therefore directly

  1. The Impact of Exercise on the Vulnerability of Dopamine Neurons to Cell Death in Animal Models of Parkinson's Disease

    National Research Council Canada - National Science Library

    Zigmond, Michael J; Smith, Amanda; Liou, Anthony

    2006-01-01

    Parkinson's disease results in part from the loss of dopamine neurons. We hypothesize that exercise reduces the vulnerability of dopamine neurons to neurotoxin exposure, whereas stress increases vulnerability...

  2. Dopamine synapse is a neuroligin-2–mediated contact between dopaminergic presynaptic and GABAergic postsynaptic structures

    Science.gov (United States)

    Uchigashima, Motokazu; Ohtsuka, Toshihisa; Kobayashi, Kazuto; Watanabe, Masahiko

    2016-01-01

    Midbrain dopamine neurons project densely to the striatum and form so-called dopamine synapses on medium spiny neurons (MSNs), principal neurons in the striatum. Because dopamine receptors are widely expressed away from dopamine synapses, it remains unclear how dopamine synapses are involved in dopaminergic transmission. Here we demonstrate that dopamine synapses are contacts formed between dopaminergic presynaptic and GABAergic postsynaptic structures. The presynaptic structure expressed tyrosine hydroxylase, vesicular monoamine transporter-2, and plasmalemmal dopamine transporter, which are essential for dopamine synthesis, vesicular filling, and recycling, but was below the detection threshold for molecules involving GABA synthesis and vesicular filling or for GABA itself. In contrast, the postsynaptic structure of dopamine synapses expressed GABAergic molecules, including postsynaptic adhesion molecule neuroligin-2, postsynaptic scaffolding molecule gephyrin, and GABAA receptor α1, without any specific clustering of dopamine receptors. Of these, neuroligin-2 promoted presynaptic differentiation in axons of midbrain dopamine neurons and striatal GABAergic neurons in culture. After neuroligin-2 knockdown in the striatum, a significant decrease of dopamine synapses coupled with a reciprocal increase of GABAergic synapses was observed on MSN dendrites. This finding suggests that neuroligin-2 controls striatal synapse formation by giving competitive advantage to heterologous dopamine synapses over conventional GABAergic synapses. Considering that MSN dendrites are preferential targets of dopamine synapses and express high levels of dopamine receptors, dopamine synapse formation may serve to increase the specificity and potency of dopaminergic modulation of striatal outputs by anchoring dopamine release sites to dopamine-sensing targets. PMID:27035941

  3. Dopamine and the Brainstem Locomotor Networks: From Lamprey to Human

    Directory of Open Access Journals (Sweden)

    Dimitri Ryczko

    2017-05-01

    Full Text Available In vertebrates, dopamine neurons are classically known to modulate locomotion via their ascending projections to the basal ganglia that project to brainstem locomotor networks. An increased dopaminergic tone is associated with increase in locomotor activity. In pathological conditions where dopamine cells are lost, such as in Parkinson's disease, locomotor deficits are traditionally associated with the reduced ascending dopaminergic input to the basal ganglia. However, a descending dopaminergic pathway originating from the substantia nigra pars compacta was recently discovered. It innervates the mesencephalic locomotor region (MLR from basal vertebrates to mammals. This pathway was shown to increase locomotor output in lampreys, and could very well play an important role in mammals. Here, we provide a detailed account on the newly found dopaminergic pathway in lamprey, salamander, rat, monkey, and human. In lampreys and salamanders, dopamine release in the MLR is associated with the activation of reticulospinal neurons that carry the locomotor command to the spinal cord. Dopamine release in the MLR potentiates locomotor movements through a D1-receptor mechanism in lampreys. In rats, stimulation of the substantia nigra pars compacta elicited dopamine release in the pedunculopontine nucleus, a known part of the MLR. In a monkey model of Parkinson's disease, a reduced dopaminergic innervation of the brainstem locomotor networks was reported. Dopaminergic fibers are also present in human pedunculopontine nucleus. We discuss the conserved locomotor role of this pathway from lamprey to mammals, and the hypothesis that this pathway could play a role in the locomotor deficits reported in Parkinson's disease.

  4. Plasma functionalized surface of commodity polymers for dopamine detection

    Energy Technology Data Exchange (ETDEWEB)

    Fabregat, Georgina [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); Osorio, Joaquin [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Castedo, Alejandra [Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); Institut de Tècniques Energètiques, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Armelin, Elaine [Departament d’Enginyeria Química, E.T.S. d’Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, 08028, Barcelona (Spain); Center for Research in Nano-Engineering, Universitat Politècnica de Catalunya, Campus Sud, Edifici C’, C/Pasqual i Vila s/n, Barcelona, E-08028 (Spain); and others

    2017-03-31

    Highlights: • Electrochemically inert polymers become electroactive after plasma functionalization. • Selective dopamine detection has been achieved functionalizing polymers with plasma. • Plasma-functionalized polymers are sensitive dopamine detectors. • XPS analyses reflect the transformation of inert polymers into electrosensors. - Abstract: We have fabricated potentially generalizable sensors based on polymeric-modified electrodes for the electrochemical detection of dopamine. Sensitive and selective sensors have been successfully obtained by applying a cold-plasma treatment during 1–2 min not only to conducting polymers but also to electrochemically inert polymers, such as polyethylene, polypropylene, polyvinylpyrrolidone, polycaprolactone and polystyrene. The effects of the plasma in the electrode surface activation, which is an essential requirement for the dopamine detection when inert polymers are used, have been investigated using X-ray photoelectron spectroscopy. Results indicate that exposure of polymer-modified electrodes to cold-plasma produces the formation of a large variety of reactive species adsorbed on the electrode surface, which catalyse the dopamine oxidation. With this technology, which is based on the application of a very simple physical functionalization, we have defined a paradox-based paradigm for the fabrication of electrochemical sensors by using inert and cheap plastics.

  5. Tyrosinase-Based Biosensors for Selective Dopamine Detection

    Directory of Open Access Journals (Sweden)

    Monica Florescu

    2017-06-01

    Full Text Available A novel tyrosinase-based biosensor was developed for the detection of dopamine (DA. For increased selectivity, gold electrodes were previously modified with cobalt (II-porphyrin (CoP film with electrocatalytic activity, to act both as an electrochemical mediator and an enzyme support, upon which the enzyme tyrosinase (Tyr was cross-linked. Differential pulse voltammetry was used for electrochemical detection and the reduction current of dopamine-quinone was measured as a function of dopamine concentration. Our experiments demonstrated that the presence of CoP improves the selectivity of the electrode towards dopamine in the presence of ascorbic acid (AA, with a linear trend of concentration dependence in the range of 2–30 µM. By optimizing the conditioning parameters, a separation of 130 mV between the peak potentials for ascorbic acid AA and DA was obtained, allowing the selective detection of DA. The biosensor had a sensitivity of 1.22 ± 0.02 µA·cm−2·µM−1 and a detection limit of 0.43 µM. Biosensor performances were tested in the presence of dopamine medication, with satisfactory results in terms of recovery (96%, and relative standard deviation values below 5%. These results confirmed the applicability of the biosensors in real samples such as human urine and blood serum.

  6. Dopamine alleviates nutrient deficiency-induced stress in Malus hupehensis.

    Science.gov (United States)

    Liang, Bowen; Li, Cuiying; Ma, Changqing; Wei, Zhiwei; Wang, Qian; Huang, Dong; Chen, Qi; Li, Chao; Ma, Fengwang

    2017-10-01

    Dopamine mediates many physiological processes in plants. We investigated its role in regulating growth, root system architecture, nutrient uptake, and responses to nutrient deficiencies in Malus hupehensis Rehd. Under a nutrient deficiency, plants showed significant reductions in growth, chlorophyll concentrations, and net photosynthesis, along with disruptions in nutrient uptake, transport, and distribution. However, pretreatment with 100 μM dopamine markedly alleviated such inhibitions. Supplementation with that compound enabled plants to maintain their photosynthetic capacity and development of the root system while promoting the uptake of N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B, altering the way in which those nutrients were partitioned throughout the plant. The addition of dopamine up-regulated genes for antioxidant enzymes involved in the ascorbate-glutathione cycle (MdcAPX, MdcGR, MdMDHAR, MdDHAR-1, and MdDHAR-2) but down-regulated genes for senescence (SAG12, PAO, and MdHXK). These results indicate that exogenous dopamine has an important antioxidant and anti-senescence effect that might be helpful for improving nutrient uptake. Our findings demonstrate that dopamine offers new opportunities for its use in agriculture, especially when addressing the problem of nutrient deficiencies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  7. Increased dopamine tone during meditation-induced change of consciousness

    DEFF Research Database (Denmark)

    Kjaer, Troels W; Bertelsen, Camilla; Piccini, Paola

    2002-01-01

    This is the first in vivo demonstration of an association between endogenous neurotransmitter release and conscious experience. Using 11C-raclopride PET we demonstrated increased endogenous dopamine release in the ventral striatum during Yoga Nidra meditation. Yoga Nidra is characterized by a dep......This is the first in vivo demonstration of an association between endogenous neurotransmitter release and conscious experience. Using 11C-raclopride PET we demonstrated increased endogenous dopamine release in the ventral striatum during Yoga Nidra meditation. Yoga Nidra is characterized...... the frontal cortex to striatal neurons, which in turn project back to the frontal cortex via the pallidum and ventral thalamus. The present study was designed to investigate whether endogenous dopamine release increases during loss of executive control in meditation. Participants underwent two 11C......-raclopride PET scans: one while attending to speech with eyes closed, and one during active meditation. The tracer competes with endogenous dopamine for access to dopamine D2 receptors predominantly found in the basal ganglia. During meditation, 11C-raclopride binding in ventral striatum decreased by 7...

  8. Does human presynaptic striatal dopamine function predict social conformity?

    Science.gov (United States)

    Stokes, Paul R A; Benecke, Aaf; Puraite, Julita; Bloomfield, Michael A P; Shotbolt, Paul; Reeves, Suzanne J; Lingford-Hughes, Anne R; Howes, Oliver; Egerton, Alice

    2014-03-01

    Socially desirable responding (SDR) is a personality trait which reflects either a tendency to present oneself in an overly positive manner to others, consistent with social conformity (impression management (IM)), or the tendency to view one's own behaviour in an overly positive light (self-deceptive enhancement (SDE)). Neurochemical imaging studies report an inverse relationship between SDR and dorsal striatal dopamine D₂/₃ receptor availability. This may reflect an association between SDR and D₂/₃ receptor expression, synaptic dopamine levels or a combination of the two. In this study, we used a [¹⁸F]-DOPA positron emission tomography (PET) image database to investigate whether SDR is associated with presynaptic dopamine function. Striatal [¹⁸F]-DOPA uptake, (k(i)(cer), min⁻¹), was determined in two independent healthy participant cohorts (n=27 and 19), by Patlak analysis using a cerebellar reference region. SDR was assessed using the revised Eysenck Personality Questionnaire (EPQ-R) Lie scale, and IM and SDE were measured using the Paulhus Deception Scales. No significant associations were detected between Lie, SDE or IM scores and striatal [¹⁸F]-DOPA k(i)(cer). These results indicate that presynaptic striatal dopamine function is not associated with social conformity and suggests that social conformity may be associated with striatal D₂/₃ receptor expression rather than with synaptic dopamine levels.

  9. The dopamine motive system: implications for drug and food addiction.

    Science.gov (United States)

    Volkow, Nora D; Wise, Roy A; Baler, Ruben

    2017-11-16

    Behaviours such as eating, copulating, defending oneself or taking addictive drugs begin with a motivation to initiate the behaviour. Both this motivational drive and the behaviours that follow are influenced by past and present experience with the reinforcing stimuli (such as drugs or energy-rich foods) that increase the likelihood and/or strength of the behavioural response (such as drug taking or overeating). At a cellular and circuit level, motivational drive is dependent on the concentration of extrasynaptic dopamine present in specific brain areas such as the striatum. Cues that predict a reinforcing stimulus also modulate extrasynaptic dopamine concentrations, energizing motivation. Repeated administration of the reinforcer (drugs, energy-rich foods) generates conditioned associations between the reinforcer and the predicting cues, which is accompanied by downregulated dopaminergic response to other incentives and downregulated capacity for top-down self-regulation, facilitating the emergence of impulsive and compulsive responses to food or drug cues. Thus, dopamine contributes to addiction and obesity through its differentiated roles in reinforcement, motivation and self-regulation, referred to here as the 'dopamine motive system', which, if compromised, can result in increased, habitual and inflexible responding. Thus, interventions to rebalance the dopamine motive system might have therapeutic potential for obesity and addiction.

  10. Divergent effects of norepinephrine, dopamine and substance P on the activation, differentiation and effector functions of human cytotoxic T lymphocytes

    Directory of Open Access Journals (Sweden)

    Niggemann Bernd

    2009-12-01

    Full Text Available Abstract Background Neurotransmitters are important regulators of the immune system, with very distinct and varying effects on different leukocyte subsets. So far little is known about the impact of signals mediated by neurotransmitters on the function of CD8+ T lymphocytes. Therefore, we investigated the influence of norepinephrine, dopamine and substance P on the key tasks of CD8+ T lymphocytes: activation, migration, extravasation and cytotoxicity. Results The activation of naïve CD8+ T lymphocytes by CD3/CD28 cross-linking was inhibited by norepinephrine and dopamine, which was caused by a downregulation of interleukin (IL-2 expression via Erk1/2 and NF-κB inhibition. Furthermore, all of the investigated neurotransmitters increased the spontaneous migratory activity of naïve CD8+ T lymphocytes with dopamine being the strongest inducer. In contrast, activated CD8+ T lymphocytes showed a reduced migratory activity in the presence of norepinephrine and substance P. With regard to extravasation we found norepinephrine to induce adhesion of activated CD8+ T cells: norepinephrine increased the interleukin-8 release from endothelium, which in turn had effect on the activated CXCR1+ CD8+ T cells. At last, release of cytotoxic granules from activated cells in response to CD3 cross-linking was not influenced by any of the investigated neurotransmitters, as we have analyzed by measuring the β-hexosamidase release. Conclusion Neurotransmitters are specific modulators of CD8+ T lymphocytes not by inducing any new functions, but by fine-tuning their key tasks. The effect can be either stimulatory or suppressive depending on the activation status of the cells.

  11. Working memory capacity predicts dopamine synthesis capacity in the human striatum.

    NARCIS (Netherlands)

    Cools, R.; Gibbs, S.E.; Miyakawa, A.; Jagust, W.; D'Esposito, M.

    2008-01-01

    Evidence from psychopharmacological research has revealed that dopamine receptor agents have opposite effects on cognitive function depending on baseline levels of working memory capacity. These contrasting effects have been interpreted to reflect differential baseline levels of dopamine. Here we

  12. Genetic Variation in the Dopamine System Influences Intervention Outcome in Children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Rochellys Diaz Heijtz

    2018-02-01

    Interpretation: Naturally occurring genetic variation in the dopamine system can influence treatment outcomes in children with cerebral palsy. A polygenic dopamine score might be valid for treatment outcome prediction and for designing individually tailored interventions for children with cerebral palsy.

  13. Dopamine precursor depletion improves punishment prediction during reversal learning in healthy females but not males.

    NARCIS (Netherlands)

    Robinson, O.J.; Standing, H.R.; DeVito, E.E.; Cools, R.; Sahakian, B.J.

    2010-01-01

    INTRODUCTION: The neurotransmitter dopamine has frequently been implicated in reward processing but is also, increasingly, implicated in punishment processing. We have previously shown that both patients with Parkinson's disease and healthy individuals with low dopamine (DA) synthesis are better at

  14. Donor dopamine treatment limits pulmonary oedema and inflammation in lung allografts subjected to prolonged hypothermia

    NARCIS (Netherlands)

    Hanusch, Christine; Nowak, Kai; Toerlitz, Patrizia; Gill, Ishar S.; Song, Hui; Rafat, Neysan; Brinkkoetter, Paul T.; Leuvenink, Henri G.; Van Ackern, Klaus C.; Yard, Benito A.; Beck, Grietje C.

    2008-01-01

    Background. Endothelial barrier dysfunction severely compromises organ function after reperfusion. Because dopamine pretreatment improves hypothermia mediated barrier dysfunction, we tested the hypothesis that dopamine treatment of lung allografts positively affects tissue damage associated with

  15. Five Patients With Burning Mouth Syndrome in Whom an Antidepressant (Serotonin-Noradrenaline Reuptake Inhibitor) Was Not Effective, but Pregabalin Markedly Relieved Pain.

    Science.gov (United States)

    Ito, Mikiko; Tokura, Tatsuya; Yoshida, Keizo; Nagashima, Wataru; Kimura, Hiroyuki; Umemura, Eri; Tachibana, Masako; Miyauchi, Tomoya; Kobayashi, Yuka; Arao, Munetaka; Ozaki, Norio; Kurita, Kenichi

    2015-01-01

    Burning mouth syndrome (BMS) causes idiopathic pain or a burning sensation in clinically normal oral mucosa. Burning mouth syndrome is a chronic disease with an unknown etiology. Burning mouth syndrome is also idiopathic, and a consensus regarding diagnosis/treatment has not been reached yet. Recent studies have supported the suggestion that BMS is a neuropathic pain disorder in which both the peripheral and central nervous systems are involved. Tricyclic antidepressants (nortriptyline and amitriptyline), serotonin-noradrenaline reuptake inhibitors (SNRIs) (duloxetine and milnacipran), and antiepileptic drugs, potential-dependent calcium channel α2δ subunit ligands (gabapentine and pregabalin), are currently recommended as the first-choice drugs for neuropathic pain. In this study, we report 5 patients with BMS in whom there was no response to SNRI (milnacipran or duloxetine), or administration was discontinued because of adverse reactions, but in whom pregabalin therapy markedly reduced or led to the disappearance of pain in a short period. Pregabalin, whose mechanism of action differs from that of SNRIs, may become a treatment option for BMS patients who are not responsive to or are resistant to SNRIs.

  16. The evolution of dopamine systems in chordates

    Directory of Open Access Journals (Sweden)

    Kei eYamamoto

    2011-03-01

    Full Text Available Dopamine (DA neurotransmission in the central nervous system (CNS is found throughout chordates, and its emergence predates the divergence of chordates. Many of the molecular components of DA systems, such as biosynthetic enzymes, transporters and receptors, are shared with those of other monoamine systems, suggesting the common origin of these systems. In the mammalian CNS, the DA neurotransmitter systems are diversified and serve for visual and olfactory perception, sensory-motor programming, motivation, memory, emotion, and endocrine regulations. Some of the functions are conserved among different vertebrate groups, while others are not, and this is reflected in the anatomical aspects of DA systems in the forebrain and midbrain. Recent findings concerning a second tyrosine hydroxylase gene (TH2 revealed new populations of DA synthesizing cells, as evidenced in the periventricular hypothalamic zones of teleost fish. It is likely that the ancestor of vertebrates possessed TH2 DA-synthesizing cells, and the TH2 gene has been lost secondarily in placental mammals. All the vertebrates possess DA cells in the olfactory bulb, retina and in the diencephalon. Midbrain DA cells are abundant in amniotes while absent in some groups, e.g. teleosts. Studies of protochordate DA cells suggest that the diencephalic DA cells were present before the divergence of the chordate lineage. In contrast, the midbrain cell populations have probably emerged in the vertebrate lineage following the development of the midbrain-hindbrain boundary. The functional flexibility of the DA systems, and the evolvability provided by duplication of the corresponding genes permitted a large diversification of these systems. These features were instrumental in the adaptation of brain functions to the very variable way of life of vertebrates.

  17. Development and function of the midbrain dopamine system: what we know and what we need to

    OpenAIRE

    Bissonette, G. B.; Roesch, M. R.

    2015-01-01

    The past two decades have seen an explosion in our understanding of the origin and development of the midbrain dopamine system. Much of this work has been focused on the aspects of dopamine neuron development related to the onset of movement disorders such as Parkinson’s disease, with the intent of hopefully delaying, preventing or fixing symptoms. While midbrain dopamine degeneration is a major focus for treatment and research, many other human disorders are impacted by abnormal dopamine, in...

  18. Sources Contributing to the Average Extracellular Concentration of Dopamine in the Nucleus Accumbens

    OpenAIRE

    Owesson-White, CA; Roitman, MF; Sombers, LA; Belle, AM; Keithley, RB; Peele, JL; Carelli, RM; Wightman, RM

    2012-01-01

    Mesolimbic dopamine neurons fire in both tonic and phasic modes resulting in detectable extracellular levels of dopamine in the nucleus accumbens (NAc). In the past, different techniques have targeted dopamine levels in the NAc to establish a basal concentration. In this study we used in vivo fast scan cyclic voltammetry (FSCV) in the NAc of awake, freely moving rats. The experiments were primarily designed to capture changes in dopamine due to phasic firing – that is, the measurement of dopa...

  19. Reliance on habits at the expense of goal-directed control following dopamine precursor depletion

    OpenAIRE

    de Wit, Sanne; Standing, Holly R.; DeVito, Elise E.; Robinson, Oliver J.; Ridderinkhof, K. Richard; Robbins, Trevor W.; Sahakian, Barbara J.

    2011-01-01

    Rationale Dopamine is well known to play an important role in learning and motivation. Recent animal studies have implicated dopamine in the reinforcement of stimulus?response habits, as well as in flexible, goal-directed action. However, the role of dopamine in human action control is still not well understood. Objectives We present the first investigation of the effect of reducing dopamine function in healthy volunteers on the balance between habitual and goal-directed action control. Metho...

  20. Developmental origins of brain disorders: roles for dopamine

    Directory of Open Access Journals (Sweden)

    Kelli M Money

    2013-12-01

    Full Text Available Neurotransmitters and neuromodulators, such as dopamine, participate in a wide range of behavioral and cognitive functions in the adult brain, including movement, cognition, and reward. Dopamine-mediated signaling plays a fundamental neurodevelopmental role in forebrain differentiation and circuit formation. These developmental effects, such as modulation of neuronal migration and dendritic growth, occur before synaptogenesis and demonstrate novel roles for dopaminergic signaling beyond neuromodulation at the synapse. Pharmacologic and genetic disruptions demonstrate that these effects are brain region- and receptor subtype-specific. For example, the striatum and frontal cortex exhibit abnormal neuronal structure and function following prenatal disruption of dopamine receptor signaling. Alterations in these processes are implicated in the pathophysiology of neuropsychiatric disorders, and emerging studies of neurodevelopmental disruptions may shed light on the pathophysiology of abnormal neuronal circuitry in neuropsychiatric disorders.

  1. Dopamine D1 signaling organizes network dynamics underlying working memory.

    Science.gov (United States)

    Roffman, Joshua L; Tanner, Alexandra S; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J; Ho, New Fei; Nitenson, Adam Z; Chonde, Daniel B; Greve, Douglas N; Abi-Dargham, Anissa; Buckner, Randy L; Manoach, Dara S; Rosen, Bruce R; Hooker, Jacob M; Catana, Ciprian

    2016-06-01

    Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography-magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory-emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits.

  2. Dopamine reward prediction errors reflect hidden state inference across time

    Science.gov (United States)

    Starkweather, Clara Kwon; Babayan, Benedicte M.; Uchida, Naoshige; Gershman, Samuel J.

    2017-01-01

    Midbrain dopamine neurons signal reward prediction error (RPE), or actual minus expected reward. The temporal difference (TD) learning model has been a cornerstone in understanding how dopamine RPEs could drive associative learning. Classically, TD learning imparts value to features that serially track elapsed time relative to observable stimuli. In the real world, however, sensory stimuli provide ambiguous information about the hidden state of the environment, leading to the proposal that TD learning might instead compute a value signal based on an inferred distribution of hidden states (a ‘belief state’). In this work, we asked whether dopaminergic signaling supports a TD learning framework that operates over hidden states. We found that dopamine signaling exhibited a striking difference between two tasks that differed only with respect to whether reward was delivered deterministically. Our results favor an associative learning rule that combines cached values with hidden state inference. PMID:28263301

  3. Preparation of (7,8-3H) dopamine

    International Nuclear Information System (INIS)

    Shen Qiyuan; Tang Guozhong; Guo Zili

    1986-01-01

    Dopamine is a neurotransmitter in the central nervous system. (7,8- 3 H) dopamine is an important tracer for the study of physiological functions and metabolic processes. It was prepared by catalytic reduction of 3-hydroxy-4-methoxy-8-nitro-styrene with tritium gas. At the end of reaction, hydrobromic acid was added and heated to remove the methoxyl group. The crude product was purified by paper chromatography. The purity of (7,8- 3 H) dopamine was identified by IR, UV, PC and 3 H-NMR spectra. The radiochemical purity was over 95% and the specific activity was 1.26 x 10 12 Bq/mmol (34 Ci/mmol). The distribution of labelled tritium in molecule was shown as follows: 55.4% at position 7 and 44.6% at position 8

  4. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Donald A., E-mail: dafox@uh.edu [College of Optometry, University of Houston, Houston, TX (United States); Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Department of Pharmacology and Pharmaceutical Sciences, University of Houston, Houston, TX (United States); Hamilton, W. Ryan [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Johnson, Jerry E. [Department of Natural Sciences, University of Houston-Downtown, Houston, TX (United States); Xiao, Weimin [College of Optometry, University of Houston, Houston, TX (United States); Chaney, Shawntay; Mukherjee, Shradha [Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Miller, Diane B.; O' Callaghan, James P. [Toxicology and Molecular Biology Branch, Health Effects Research Laboratory, Centers for Disease Control and Prevention-NIOSH, Morgantown, WV USA (United States)

    2011-11-15

    -Right-Pointing-Pointer Gestational lead exposure dose-dependently decreased the number of TH-immunoreactive dopaminergic amacrine cells Black-Right-Pointing-Pointer Gestational lead exposure selectively decreased dopaminergic, but not GABAergic, glycinergic or cholinergic, amacrine cells Black-Right-Pointing-Pointer Gestational lead exposure dose-dependently decreased retinal dopamine content, its metabolites and dopamine utilization Black-Right-Pointing-Pointer A decrease in dopamine can alter ERG amplitudes, circadian rhythms, dark/light adaptation and spatial contrast sensitivity.

  5. Gestational lead exposure selectively decreases retinal dopamine amacrine cells and dopamine content in adult mice

    International Nuclear Information System (INIS)

    Fox, Donald A.; Hamilton, W. Ryan; Johnson, Jerry E.; Xiao, Weimin; Chaney, Shawntay; Mukherjee, Shradha; Miller, Diane B.; O'Callaghan, James P.

    2011-01-01

    -immunoreactive dopaminergic amacrine cells ► Gestational lead exposure selectively decreased dopaminergic, but not GABAergic, glycinergic or cholinergic, amacrine cells ► Gestational lead exposure dose-dependently decreased retinal dopamine content, its metabolites and dopamine utilization ► A decrease in dopamine can alter ERG amplitudes, circadian rhythms, dark/light adaptation and spatial contrast sensitivity

  6. Raman Spectroscopic Signature Markers of Dopamine-Human Dopamine Transporter Interaction in Living Cells.

    Science.gov (United States)

    Silwal, Achut P; Yadav, Rajeev; Sprague, Jon E; Lu, H Peter

    2017-07-19

    Dopamine (DA) controls many psychological and behavioral activities in the central nervous system (CNS) through interactions with the human dopamine transporter (hDAT) and dopamine receptors. The roles of DA in the function of the CNS are affected by the targeted binding of drugs to hDAT; thus, hDAT plays a critical role in neurophysiology and neuropathophysiology. An effective experimental method is necessary to study the DA-hDAT interaction and effects of variety of drugs like psychostimulants and antidepressants that are dependent on this interaction. In searching for obtaining and identifying the Raman spectral signatures, we have used surface enhanced Raman scattering (SERS) spectroscopy to record SERS spectra from DA, human embryonic kidney 293 cells (HEK293), hDAT-HEK293, DA-HEK293, and DA-hDAT-HEK293. We have demonstrated a specific 2D-distribution SERS spectral analytical approach to analyze DA-hDAT interaction. Our study shows that the Raman modes at 807, 839, 1076, 1090, 1538, and 1665 cm -1 are related to DA-hDAT interaction, where Raman shifts at 807 and 1076 cm -1 are the signature markers for the bound state of DA to probe DA-hDAT interaction. On the basis of density function theory (DFT) calculation, Raman shift of the bound state of DA at 807 cm -1 is related to combination of bending modes α(C3-O10-H21), α(C2-O11-H22), α(C7-C8-H18), α(C6-C4-H13), α(C7-C8-H19), and α(C7-C8-N9), and Raman shift at 1076 cm -1 is related to combination of bending modes α(H19-N9-C8), γ(N9-H19), γ(C8-H19), γ(N9-H20), γ(C8-H18), and α(C7-C8-H18). These findings demonstrate that protein-ligand interactions can be confirmed by probing change in Raman shift of ligand molecules, which could be crucial to understanding molecular interactions between neurotransmitters and their receptors or transporters.

  7. Optogenetic stimulation of VTA dopamine neurons reveals that tonic but not phasic patterns of dopamine transmission reduce ethanol self-administration

    Directory of Open Access Journals (Sweden)

    Caroline E Bass

    2013-11-01

    Full Text Available There is compelling evidence that acute ethanol exposure stimulates ventral tegmental area (VTA dopamine cell activity and that VTA-dependent dopamine release in terminal fields within the nucleus accumbens plays an integral role in the regulation of ethanol drinking behaviors. Unfortunately, due to technical limitations, the specific temporal dynamics linking VTA dopamine cell activation and ethanol self-administration are not known. In fact, establishing a causal link between specific patterns of dopamine transmission and ethanol drinking behaviors has proven elusive. Here, we sought to address these gaps in our knowledge using a newly developed viral-mediated gene delivery strategy to selectively express Channelrhodopsin-2 (ChR2 on dopamine cells in the VTA of wild-type rats. We then used this approach to precisely control VTA dopamine transmission during voluntary ethanol drinking sessions. The results confirmed that ChR2 was selectively expressed on VTA dopamine cells and delivery of blue light pulses to the VTA induced dopamine release in accumbal terminal fields with very high temporal and spatial precision. Brief high frequency VTA stimulation induced phasic patterns of dopamine release in the nucleus accumbens. Lower frequency stimulation, applied for longer periods mimicked tonic increases in accumbal dopamine. Notably, using this optogenetic approach in rats engaged in an intermittent ethanol drinking procedure, we found that tonic, but not phasic, stimulation of VTA dopamine cells selectively attenuated ethanol drinking behaviors. Collectively, these data demonstrate the effectiveness of a novel viral targeting strategy that can be used to restrict opsin expression to dopamine cells in standard outbred animals and provide the first causal evidence demonstrating that tonic activation of VTA dopamine neurons selectively decreases ethanol self-administration behaviors.

  8. Study and development of retinal dopamine nervous system in experimental myopia

    International Nuclear Information System (INIS)

    Zhao Juan; Liu Xingdang

    2007-01-01

    Myopia is the most familiar ametropia. Animal experimental models include form deprivation myopia and defocus myopia. Experimental animals we often use are chicken and mammals. The retinal dopamine system and vision experience have close relations with the regulation of eyeball's growth after birth, while the change of dopamine transporter may reflect the change of dopamine in the synaptic cleft more directly. (authors)

  9. The crystal structure of human dopamine  β-hydroxylase at 2.9 Å resolution

    DEFF Research Database (Denmark)

    Vendelboe, Trine Vammen; Harris, Pernille; Zhao, Y.

    2016-01-01

    , Alzheimer’s disease, attention deficit hyperactivity disorder, and cocaine dependence. We report the crystal structure of human dopamine β-hydroxylase, which is the enzyme converting dopamine to norepinephrine. The structure of the DOMON (dopamine β-monooxygenase N-terminal) domain, also found in >1600...

  10. The Aversive Agent Lithium Chloride Suppresses Phasic Dopamine Release Through Central GLP-1 Receptors.

    Science.gov (United States)

    Fortin, Samantha M; Chartoff, Elena H; Roitman, Mitchell F

    2016-02-01

    Unconditioned rewarding stimuli evoke phasic increases in dopamine concentration in the nucleus accumbens (NAc) while discrete aversive stimuli elicit pauses in dopamine neuron firing and reductions in NAc dopamine concentration. The unconditioned effects of more prolonged aversive states on dopamine release dynamics are not well understood and are investigated here using the malaise-inducing agent lithium chloride (LiCl). We used fast-scan cyclic voltammetry to measure phasic increases in NAc dopamine resulting from electrical stimulation of dopamine cell bodies in the ventral tegmental area (VTA). Systemic LiCl injection reduced electrically evoked dopamine release in the NAc of both anesthetized and awake rats. As some behavioral effects of LiCl appear to be mediated through glucagon-like peptide-1 receptor (GLP-1R) activation, we hypothesized that the suppression of phasic dopamine by LiCl is GLP-1R dependent. Indeed, peripheral pretreatment with the GLP-1R antagonist exendin-9 (Ex-9) potently attenuated the LiCl-induced suppression of dopamine. Pretreatment with Ex-9 did not, however, affect the suppression of phasic dopamine release by the kappa-opioid receptor agonist, salvinorin A, supporting a selective effect of GLP-1R stimulation in LiCl-induced dopamine suppression. By delivering Ex-9 to either the lateral or fourth ventricle, we highlight a population of central GLP-1 receptors rostral to the hindbrain that are involved in the LiCl-mediated suppression of NAc dopamine release.

  11. No association between striatal dopamine transporter binding and body mass index

    DEFF Research Database (Denmark)

    van de Giessen, Elsmarieke; Hesse, Swen; Caan, Matthan W A

    2013-01-01

    Dopamine is one among several neurotransmitters that regulate food intake and overeating. Thus, it has been linked to the pathophysiology of obesity and high body mass index (BMI). Striatal dopamine D(2) receptor availability is lower in obesity and there are indications that striatal dopamine...... transporter (DAT) availability is also decreased. In this study, we tested whether BMI and striatal DAT availability are associated....

  12. Functional characterization of dopamine transporter in vivo using Drosophila melanogaster behavioral analysis.

    Directory of Open Access Journals (Sweden)

    Taro eUeno

    2014-09-01

    Full Text Available Dopamine mediates diverse functions such as motivation, reward, attention, learning/memory and sleep/arousal. Recent studies using model organisms including the fruit fly, have elucidated various physiological functions of dopamine, and identified specific neural circuits for these functions. Flies with mutations in the Drosophila dopamine transporter (dDAT gene show enhanced dopamine signaling, and short sleep and memory impairment phenotypes. However, understanding the mechanism by which dopamine signaling causes these phenotypes requires an understanding of the dynamics of dopamine release. Here we report the effects of dDAT expression on behavioral traits. We show that dDAT expression in a subset of dopaminergic neurons is sufficient for normal sleep. dDAT expression in other cell types such as Kenyon cells and glial cells can also rescue the short sleep phenotype of dDAT mutants. dDAT mutants also show a down-regulation of the D1-like dopamine receptor dDA1, and this phenotype is rescued when dDAT is expressed in the same cell types in which it rescues sleep. On the other hand, dDAT overexpression in mushroom bodies, which are the target of memory forming dopamine neurons, abolishes olfactory aversive memory. Our data demonstrate that expression of extrasynaptic dopamine transporters can rescue some aspects of dopamine signaling in dopamine transporter mutants. These results provide novel insights into regulatory systems that modulate dopamine signaling.

  13. Reliance on habits at the expense of goal-directed control following dopamine precursor depletion

    NARCIS (Netherlands)

    de Wit, S.; Standing, H.R.; DeVito, E.E.; Robinson, O.J.; Ridderinkhof, K.R.; Robbins, T.W.; Sahakian, B.J.

    2012-01-01

    Rationale Dopamine is well known to play an important role in learning and motivation. Recent animal studies have implicated dopamine in the reinforcement of stimulus-response habits, as well as in flexible, goal-directed action. However, the role of dopamine in human action control is still not

  14. Research Review: Dopamine Transfer Deficit: A Neurobiological Theory of Altered Reinforcement Mechanisms in ADHD

    Science.gov (United States)

    Tripp, Gail; Wickens, Jeff R.

    2008-01-01

    This review considers the hypothesis that changes in dopamine signalling might account for altered sensitivity to positive reinforcement in children with ADHD. The existing evidence regarding dopamine cell activity in relation to positive reinforcement is reviewed. We focus on the anticipatory firing of dopamine cells brought about by a transfer…

  15. Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus.

    Science.gov (United States)

    Dirkx, Michiel F; den Ouden, Hanneke E M; Aarts, Esther; Timmer, Monique H M; Bloem, Bastiaan R; Toni, Ivan; Helmich, Rick C

    2017-03-01

    Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic medication reduces tremor in some patients, but many patients have a dopamine-resistant tremor. Using pharmacological functional magnetic resonance imaging, we test how a dopaminergic intervention influences the cerebral circuit involved in Parkinson's tremor. From a sample of 40 patients with Parkinson's disease, we selected 15 patients with a clearly tremor-dominant phenotype. We compared tremor-related activity and effective connectivity (using combined electromyography-functional magnetic resonance imaging) on two occasions: ON and OFF dopaminergic medication. Building on a recently developed cerebral model of Parkinson's tremor, we tested the effect of dopamine on cerebral activity associated with the onset of tremor episodes (in the basal ganglia) and with tremor amplitude (in the cerebello-thalamo-cortical circuit). Dopaminergic medication reduced clinical resting tremor scores (mean 28%, range -12 to 68%). Furthermore, dopaminergic medication reduced tremor onset-related activity in the globus pallidus and tremor amplitude-related activity in the thalamic ventral intermediate nucleus. Network analyses using dynamic causal modelling showed that dopamine directly increased self-inhibition of the ventral intermediate nucleus, rather than indirectly influencing the cerebello-thalamo-cortical circuit through the basal ganglia. Crucially, the magnitude of thalamic self-inhibition predicted the clinical dopamine response of tremor. Dopamine reduces resting tremor by potentiating inhibitory mechanisms in a cerebellar nucleus of the thalamus (ventral intermediate nucleus). This suggests that altered dopaminergic projections to the cerebello-thalamo-cortical circuit have a role

  16. Pyrethroid pesticide-induced alterations in dopamine transporter function

    International Nuclear Information System (INIS)

    Elwan, Mohamed A.; Richardson, Jason R.; Guillot, Thomas S.; Caudle, W. Michael; Miller, Gary W.

    2006-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disease affecting the nigrostriatal dopaminergic pathway. Several epidemiological studies have demonstrated an association between pesticide exposure and the incidence of PD. Studies from our laboratory and others have demonstrated that certain pesticides increase levels of the dopamine transporter (DAT), an integral component of dopaminergic neurotransmission and a gateway for dopaminergic neurotoxins. Here, we report that repeated exposure (3 injections over 2 weeks) of mice to two commonly used pyrethroid pesticides, deltamethrin (3 mg/kg) and permethrin (0.8 mg/kg), increases DAT-mediated dopamine uptake by 31 and 28%, respectively. Using cells stably expressing DAT, we determined that exposure (10 min) to deltamethrin and permethrin (1 nM-100 μM) had no effect on DAT-mediated dopamine uptake. Extending exposures to both pesticides for 30 min (10 μM) or 24 h (1, 5, and 10 μM) resulted in significant decrease in dopamine uptake. This reduction was not the result of competitive inhibition, loss of DAT protein, or cytotoxicity. However, there was an increase in DNA fragmentation, an index of apoptosis, in cells exhibiting reduced uptake at 30 min and 24 h. These data suggest that up-regulation of DAT by in vivo pyrethroid exposure is an indirect effect and that longer-term exposure of cells results in apoptosis. Since DAT can greatly affect the vulnerability of dopamine neurons to neurotoxicants, up-regulation of DAT by deltamethrin and permethrin may increase the susceptibility of dopamine neurons to toxic insult, which may provide insight into the association between pesticide exposure and PD

  17. Diet-induced obesity: dopamine transporter function, impulsivity and motivation.

    Science.gov (United States)

    Narayanaswami, V; Thompson, A C; Cassis, L A; Bardo, M T; Dwoskin, L P

    2013-08-01

    A rat model of diet-induced obesity (DIO) was used to determine dopamine transporter (DAT) function, impulsivity and motivation as neurobehavioral outcomes and predictors of obesity. To evaluate neurobehavioral alterations following the development of DIO induced by an 8-week high-fat diet (HF) exposure, striatal D2-receptor density, DAT function and expression, extracellular dopamine concentrations, impulsivity, and motivation for high- and low-fat reinforcers were determined. To determine predictors of DIO, neurobehavioral antecedents including impulsivity, motivation for high-fat reinforcers, DAT function and extracellular dopamine were evaluated before the 8-week HF exposure. Striatal D2-receptor density was determined by in vitro kinetic analysis of [(3)H]raclopride binding. DAT function was determined using in vitro kinetic analysis of [(3)H]dopamine uptake, methamphetamine-evoked [(3)H]dopamine overflow and no-net flux in vivo microdialysis. DAT cell-surface expression was determined using biotinylation and western blotting. Impulsivity and food-motivated behavior were determined using a delay discounting task and progressive ratio schedule, respectively. Relative to obesity-resistant (OR) rats, obesity-prone (OP) rats exhibited 18% greater body weight following an 8-week HF-diet exposure, 42% lower striatal D2-receptor density, 30% lower total DAT expression, 40% lower in vitro and in vivo DAT function, 45% greater extracellular dopamine and twofold greater methamphetamine-evoked [(3)H]dopamine overflow. OP rats exhibited higher motivation for food, and surprisingly, were less impulsive relative to OR rats. Impulsivity, in vivo DAT function and extracellular dopamine concentration did not predict DIO. Importantly, motivation for high-fat reinforcers predicted the development of DIO. Human studies are limited by their ability to determine if impulsivity, motivation and DAT function are causes or consequences of DIO. The current animal model shows that

  18. Dopamine Manipulation Affects Response Vigor Independently of Opportunity Cost.

    Science.gov (United States)

    Zénon, Alexandre; Devesse, Sophie; Olivier, Etienne

    2016-09-14

    Dopamine is known to be involved in regulating effort investment in relation to reward, and the disruption of this mechanism is thought to be central in some pathological situations such as Parkinson's disease, addiction, and depression. According to an influential model, dopamine plays this role by encoding the opportunity cost, i.e., the average value of forfeited actions, which is an important parameter to take into account when making decisions about which action to undertake and how fast to execute it. We tested this hypothesis by asking healthy human participants to perform two effort-based decision-making tasks, following either placebo or levodopa intake in a double blind within-subject protocol. In the effort-constrained task, there was a trade-off between the amount of force exerted and the time spent in executing the task, such that investing more effort decreased the opportunity cost. In the time-constrained task, the effort duration was constant, but exerting more force allowed the subject to earn more substantial reward instead of saving time. Contrary to the model predictions, we found that levodopa caused an increase in the force exerted only in the time-constrained task, in which there was no trade-off between effort and opportunity cost. In addition, a computational model showed that dopamine manipulation left the opportunity cost factor unaffected but altered the ratio between the effort cost and reinforcement value. These findings suggest that dopamine does not represent the opportunity cost but rather modulates how much effort a given reward is worth. Dopamine has been proposed in a prevalent theory to signal the average reward rate, used to estimate the cost of investing time in an action, also referred to as opportunity cost. We contrasted the effect of dopamine manipulation in healthy participants in two tasks, in which increasing response vigor (i.e., the amount of effort invested in an action) allowed either to save time or to earn more

  19. Carbon nanopillars for enhanced stem cell differentiation and dopamine detection

    DEFF Research Database (Denmark)

    Bunea, Ada-Ioana; Amato, Letizia; Valsesia, Andrea

    of human neural stem cells (hNSCs) into dopaminergic neurons and that they can also be employed for detecting dopamine release from mature neurons attached to them [1]. Here, we report 3D carbon nanopillars, fabricated through colloidal lithography, with even more pronounced effect on the electrochemical......Parkinson’s disease is characterized by a deficit of dopamine in the brain, a neurotransmitter involved in the motor function. One of the future ideas for treatment is cell replacement therapy. Our group has previously shown that pyrolysed 3D carbon micropillars induce spontaneous differentiation...

  20. Effects of chronic cocaine abuse on postsynaptic dopamine receptors

    International Nuclear Information System (INIS)

    Volkow, N.D.; Fowler, J.S.; Wolf, A.P.; Schlyer, D.; Shiue, C.Y.; Alpert, R.; Dewey, S.L.; Logan, J.; Bendriem, B.; Christman, D.

    1990-01-01

    To assess the effects of chronic cocaine intoxication on dopamine receptors in human subjects, the authors evaluated [ 18 F]N-methylspiroperidol binding using positron emission tomography in 10 cocaine abusers and 10 normal control subjects. Cocaine abusers who had been detoxified for 1 week or less showed significantly lower values for uptake of [ 18 F]N-methylspiroperidol in striatum than the normal subjects, whereas the cocaine abusers who had been detoxified for 1 month showed values comparable to those obtained from normal subjects. The authors conclude that postsynaptic dopamine receptor availability decreases with chronic cocaine abuse but may recover after a drug-free interval

  1. Strontium vanadate nanoribbons: Synthesis, characterization and detection of dopamine

    International Nuclear Information System (INIS)

    Zhou, Qing; Shao, Mingwang; Chen, Tao; Xu, Hongyan

    2010-01-01

    Large-scale, high-purity and uniform strontium vanadate (Sr 2 V 2 O 7 ) nanoribbons were easily synthesized via a hydrothermal process without any surfactants. The as-prepared products were up to hundreds of micrometers in length, 200-600 nm in width, and 20 nm in thickness. These nanomaterials were employed to modify glassy carbon electrode, which displayed excellent electrochemical sensitivity in detecting dopamine in the presence of ascorbic acid. A linear relationship between the concentrations of dopamine and its oxidation peak currents was obtained. The modified electrode exhibited high reproducibility and stability, which might be found potential application in the biosensors.

  2. [11]Cocaine: PET studies of cocaine pharmacokinetics, dopamine transporter availability and dopamine transporter occupancy

    International Nuclear Information System (INIS)

    Fowler, Joanna S.; Volkow, Nora D.; Wang, Gene-Jack; Gatley, S. John; Logan, Jean

    2001-01-01

    Cocaine was initially labeled with carbon-11 in order to track the distribution and pharmacokinetics of this powerful stimulant and drug of abuse in the human brain and body. It was soon discovered that [ 11 C]cocaine was not only useful for measuring cocaine pharmacokinetics and its relationship to behavior but that it is also a sensitive radiotracer for dopamine transporter (DAT) availability. Measures of DAT availability were facilitated by the development of a graphical analysis method (Logan Plot) for reversible systems which streamlined kinetic analysis. This expanded the applications of [ 11 C]cocaine to studies of DAT availability in the human brain and allowed the first comparative measures of the degree of DAT occupancy by cocaine and another stimulant drug methylphenidate. This article will summarize preclinical and clinical research with [ 11 C]cocaine

  3. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis.

    Science.gov (United States)

    Glimcher, Paul W

    2011-09-13

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modifications, in turn, provide the mechanistic underpinning for a specific class of reinforcement learning mechanisms that now seem to underlie much of human and animal behavior. This review describes both the critical empirical findings that are at the root of this conclusion and the fantastic theoretical advances from which this conclusion is drawn.

  4. Estradiol increases the sensitivity of ventral tegmental area dopamine neurons to dopamine and ethanol.

    Directory of Open Access Journals (Sweden)

    Bertha J Vandegrift

    Full Text Available Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2, the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2 or estrus (low E2 for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780 reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission.

  5. Dopamine enhances duodenal epithelial permeability via the dopamine D5 receptor in rodent.

    Science.gov (United States)

    Feng, X-Y; Zhang, D-N; Wang, Y-A; Fan, R-F; Hong, F; Zhang, Y; Li, Y; Zhu, J-X

    2017-05-01

    The intestinal barrier is made up of epithelial cells and intercellular junctional complexes to regulate epithelial ion transport and permeability. Dopamine (DA) is able to promote duodenal epithelial ion transport through D1-like receptors, which includes subtypes of D 1 (D 1 R) and D 5 (D 5 R), but whether D1-like receptors influence the duodenal permeability is unclear. FITC-dextran permeability, short-circuit current (I SC ), Western blot, immunohistochemistry and ELISA were used in human D 5 R transgenic mice and hyperendogenous enteric DA (HEnD) rats in this study. Dopamine induced a downward deflection in I SC and an increase in FITC-dextran permeability of control rat duodenum, which were inhibited by the D1-like receptor antagonist, SCH-23390. However, DA decreased duodenal transepithelial resistance (TER), an effect also reversed by SCH-23390. A strong immunofluorescence signal for D 5 R, but not D 1 R, was observed in the duodenum of control rat. In human D 5 R knock-in transgenic mice, duodenal mucosa displayed an increased basal I SC with high FITC-dextran permeability and decreased TER with a lowered expression of tight junction proteins, suggesting attenuated duodenal barrier function in these transgenic mice. D 5 R knock-down transgenic mice manifested a decreased basal I SC with lowered FITC-dextran permeability. Moreover, an increased FITC-dextran permeability combined with decreased TER and tight junction protein expression in duodenal mucosa were also observed in HEnD rats. This study demonstrates, for the first time, that DA enhances duodenal permeability of control rat via D 5 R, which provides new experimental and theoretical evidence for the influence of DA on duodenal epithelial barrier function. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  6. Regenerative, Highly-Sensitive, Non-Enzymatic Dopamine Sensor and Impact of Different Buffer Systems in Dopamine Sensing

    Directory of Open Access Journals (Sweden)

    Saumya Joshi

    2018-01-01

    Full Text Available Carbon nanotube field-effect transistors are used extensively in ultra-sensitive biomolecule sensing applications. Along with high sensitivity, the possibility of regeneration is highly desired in bio-sensors. An important constituent of such bio-sensing systems is the buffer used to maintain pH and provide an ionic conducting medium, among its other properties. In this work, we demonstrate highly-sensitive regenerative dopamine sensors and the impact of varying buffer composition and type on the electrolyte gated field effect sensors. The role of the buffer system is an often ignored condition in the electrical characterization of sensors. Non-enzymatic dopamine sensors are fabricated and regenerated in hydrochloric acid (HCl solution. The sensors are finally measured against four different buffer solutions. The impact of the nature and chemical structure of buffer molecules on the dopamine sensors is shown, and the appropriate buffer systems are demonstrated.

  7. Intranasal dopamine reduces in vivo [123I]FP-CIT binding to striatal dopamine transporter: correlation with behavioral changes and evidence for Pavlovian conditioned dopamine response

    Directory of Open Access Journals (Sweden)

    Maria A de Souza Silva

    2016-04-01

    Full Text Available Purpose: Dopamine (DA, which does not cross the blood-brain barrier, has central and behavioral effects when administered via the nasal route. Neither the mechanisms of central action of intranasal dopamine (IN-DA, nor its mechanisms of diffusion and transport into the brain are well understood. We here examined whether IN-DA application influences dopamine transporter (DAT binding in the dorsal striatum and assessed the extent of binding in relation to motor and exploratory behaviors. We hypothesized that, based on the finding of increased extracellular DA in the striatum induced by application of IN-DA, binding of [123I]FP-CIT to the DAT should be decreased due to competition at the receptor.Methods: Rats were administered intranasal application of 3 mg/kg IN-DA and vehicle (VEH, with IN-DA injection either preceding or following VEH. Then motor and exploratory behaviors (traveled distance, velocity, center time, sitting, rearing, head-shoulder motility, grooming were assessed for 30 min in an open field prior to administration of [123I]FP-CIT. DAT binding after IN-DA and VEH was measured with small animal SPECT two hours following administration of the radioligand. Results: 1 After IN-DA application, striatal DAT binding was significantly lower as compared to VEH, indicating that the nasally delivered dopamine had central action and increased DA levels comparable to that found previously with L-DOPA administration. 2 DAT binding in response to intranasal VEH was lower when IN-DA application preceded VEH treatment. This finding is suggestive of Pavlovian conditioning of DA at the level of the DAT, since the DA treatment modified (decreased the binding in response to the subsequent VEH treatment. VEH treatment also reduced motor and exploratory behaviors more when applied before, as compared to when it followed IN-DA application, also indicative of behavioral Pavlovian conditioning akin to that found upon application of various psychostimulant

  8. Extrastriatal dopamine D-2/3 receptors and cortical grey matter volumes in antipsychotic-naive schizophrenia patients before and after initial antipsychotic treatment

    DEFF Research Database (Denmark)

    Nørbak-Emig, Henrik; Pinborg, Lars H.; Raghava, Jayachandra M.

    2017-01-01

    OBJECTIVES: Long-term dopamine D2/3 receptor blockade, common to all antipsychotics, may underlie progressive brain volume changes observed in patients with chronic schizophrenia. In the present study, we examined associations between cortical volume changes and extrastriatal dopamine D2/3 recept...... binding potentials (BPND) in first-episode schizophrenia patents at baseline and after antipsychotic treatment. METHODS: Twenty-two initially antipsychotic-naïve patients underwent magnetic resonance imaging (MRI), [(123)I]epidepride single-photon emission computerised tomography (SPECT......), and psychopathology assessments before and after 3 months of treatment with either risperidone (N = 13) or zuclopenthixol (N = 9). Twenty healthy controls matched on age, gender and parental socioeconomic status underwent baseline MRI and SPECT. RESULTS: Neither extrastriatal D2/3 receptor BPND at baseline, nor...

  9. Putting Desire on a Budget: Dopamine and Energy Expenditure, Reconciling Reward and Resources

    Directory of Open Access Journals (Sweden)

    Jeff A Beeler

    2012-07-01

    Full Text Available Accumulating evidence indicates integration of dopamine function with metabolic signals, highlighting a potential role for dopamine in energy balance, frequently construed as modulating reward in response to homeostatic state. Though its precise role remains controversial, the reward perspective of dopamine has dominated investigation of motivational disorders, including obesity. In the hypothesis outlined here, we suggest instead that the primary role of dopamine in behavior is to modulate activity to adapt behavioral energy expenditure to the prevailing environmental energy conditions, with the role of dopamine in reward and motivated behaviors derived from its primary role in energy balance. Dopamine has long been known to modulate activity, exemplified by psychostimulants that act via dopamine. More recently, there has been nascent investigation into the role of dopamine in modulating voluntary activity, with some investigators suggesting that dopamine may serve as a final common pathway that couples energy sensing to regulated voluntary energy expenditure. We suggest that interposed between input from both the internal and external world, dopamine modulates behavioral energy expenditure along two axes: a conserve-expend axis that regulates generalized activity and an explore-exploit axes that regulates the degree to which reward value biases the distribution of activity. In this view, increased dopamine does not promote consumption of tasty food. Instead increased dopamine promotes energy expenditure and exploration while decreased dopamine favors energy conservation and exploitation. This hypothesis provides a mechanistic interpretation to an apparent paradox: the well-established role of dopamine in food seeking and the findings that low dopaminergic functions are associated with obesity. Our hypothesis provides an alternative perspective on the role of dopamine in obesity and reinterprets the ‘reward deficiency hypothesis’ as a

  10. Dopamine system: Manager of neural pathways

    Directory of Open Access Journals (Sweden)

    Simon eHong

    2013-12-01

    Full Text Available There are a growing number of roles that midbrain dopamine (DA neurons assume, such as, reward, aversion, alerting and vigor. Here I propose a theory that may be able to explain why the suggested functions of DA came about. It has been suggested that largely parallel cortico-basal ganglia-thalamo-cortico loops exist to control different aspects of behavior. I propose that (1 the midbrain DA system is organized in a similar manner, with different groups of DA neurons corresponding to these parallel neural pathways (NPs. The DA system can be viewed as the manager of these parallel NPs in that it recruits and activates only the task-relevant NPs when they are needed. It is likely that the functions of those NPs that have been consistently activated by the corresponding DA groups are facilitated. I also propose that (2 there are two levels of DA roles: the How and What roles. The How role is encoded in tonic and phasic DA neuron firing patterns and gives a directive to its target NP: how vigorously its function needs to be carried out. The tonic DA firing is to maintain a certain level of DA in the target NPs to support their expected behavioral and mental functions; it is only when a sudden unexpected boost or suppression of activity is required by the relevant target NP that DA neurons in the corresponding NP act in a phasic manner. The What role is the implementational aspect of the role of DA in the target NP, such as binding to D1 receptors to boost working memory. This What aspect of DA explains why DA seems to assume different functions depending on the region of the brain in which it is involved. In terms of the role of the lateral habenula (LHb, the LHb is expected to suppress maladaptive behaviors and mental processes by controlling the DA system. The demand-based smart management by the DA system may have given animals an edge in evolution with adaptive behaviors and a better survival rate in resource-scarce situations.

  11. Striatal dopamine in Parkinson disease: A meta-analysis of imaging studies.

    Science.gov (United States)

    Kaasinen, Valtteri; Vahlberg, Tero

    2017-12-01

    A meta-analysis of 142 positron emission tomography and single photon emission computed tomography studies that have investigated striatal presynaptic dopamine function in Parkinson disease (PD) was performed. Subregional estimates of striatal dopamine metabolism are presented. The aromatic L-amino-acid decarboxylase (AADC) defect appears to be consistently smaller than the dopamine transporter and vesicular monoamine transporter 2 defects, suggesting upregulation of AADC function in PD. The correlation between disease severity and dopamine loss appears linear, but the majority of longitudinal studies point to a negative exponential progression pattern of dopamine loss in PD. Ann Neurol 2017;82:873-882. © 2017 American Neurological Association.

  12. Načrtovan porod na domu

    OpenAIRE

    Todorović, Tamara; Takač, Iztok

    2017-01-01

    Izhodišča: Porod na domu je sicer star toliko kot človeštvo, pa vendar v veliki večini srednje in visoko razvitih držav prevladuje mnenje, da so zaradi nepredvidljivosti zapletov porodnišnice najbolj varno okolje za rojevanje. Kljub temu obstaja peščica držav, v katerih je porod na domu integriran v sistem zdravstvenega varstva (npr. Nizozemska, Velika Britanija, Kanada). Pri porodih na domu ločimo nenačrtovane in načrtovane porode na domu, slednje pa lahko nadalje razdelimo še na porode s sp...

  13. Blockade of dopamine D1-family receptors attenuates the mania-like hyperactive, risk-preferring, and high motivation behavioral profile of mice with low dopamine transporter levels.

    Science.gov (United States)

    Milienne-Petiot, Morgane; Groenink, Lucianne; Minassian, Arpi; Young, Jared W

    2017-10-01

    Patients with bipolar disorder mania exhibit poor cognition, impulsivity, risk-taking, and goal-directed activity that negatively impact their quality of life. To date, existing treatments for bipolar disorder do not adequately remediate cognitive dysfunction. Reducing dopamine transporter expression recreates many bipolar disorder mania-relevant behaviors (i.e. hyperactivity and risk-taking). The current study investigated whether dopamine D 1 -family receptor blockade would attenuate the risk-taking, hypermotivation, and hyperactivity of dopamine transporter knockdown mice. Dopamine transporter knockdown and wild-type littermate mice were tested in mouse versions of the Iowa Gambling Task (risk-taking), Progressive Ratio Breakpoint Test (effortful motivation), and Behavioral Pattern Monitor (activity). Prior to testing, the mice were treated with the dopamine D 1 -family receptor antagonist SCH 23390 hydrochloride (0.03, 0.1, or 0.3 mg/kg), or vehicle. Dopamine transporter knockdown mice exhibited hyperactivity and hyperexploration, hypermotivation, and risk-taking preference compared with wild-type littermates. SCH 23390 hydrochloride treatment decreased premature responding in dopamine transporter knockdown mice and attenuated their hypermotivation. SCH 23390 hydrochloride flattened the safe/risk preference, while reducing activity and exploratory levels of both genotypes similarly. Dopamine transporter knockdown mice exhibited mania-relevant behavior compared to wild-type mice. Systemic dopamine D 1 -family receptor antagonism attenuated these behaviors in dopamine transporter knockdown, but not all effects were specific to only the knockdown mice. The normalization of behavior via blockade of dopamine D 1 -family receptors supports the hypothesis that D 1 and/or D 5 receptors could contribute to the mania-relevant behaviors of dopamine transporter knockdown mice.

  14. Dopamine en overmatig alcoholgebruik: genen in interactie met hun omgeving [Dopamine and excessive alcohol consumption: how genes interact with their environment

    OpenAIRE

    Schellekens, A.F.A.; Scholte, R.H.J.; Engels, R.C.M.E.; Verkes, R.J.

    2013-01-01

    background Hereditary factors account for approximately 50% of the risk of developing alcohol dependence. Genes that affect the dopamine function in the brain have been extensively studied as candidate genes. aim To present the results of recent Dutch studies on the interaction between genes and their environment in relation to dopamine function and excessive alcohol use. method Two large scale research projects were recently carried out in order to study the relation between dopamine genes a...

  15. The role of the dopamine D1 receptor in social cognition: studies using a novel genetic rat model

    NARCIS (Netherlands)

    Homberg, J.R.; Olivier, J.D.; VandenBroeke, M.; Youn, J.; Ellenbroek, A.K.; Karel, P.; Shan, L.; Boxtel, R. van; Ooms, S.; Balemans, M.; Langedijk, J.; Muller, M.; Vriend, G.; Cools, A.R.; Cuppen, E.; Ellenbroek, B.A.

    2016-01-01

    Social cognition is an endophenotype that is impaired in schizophrenia and several other (comorbid) psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1

  16. The role of the dopamine D1 receptor in social cognition : Studies using a novel genetic rat model

    NARCIS (Netherlands)

    Homberg, Judith R.; Olivier, Jocelien D A; VandenBroeke, Marie; Youn, Jiun; Ellenbroek, Arabella K.; Karel, Peter; Shan, Ling; Van Boxtel, Ruben; Ooms, Sharon; Balemans, Monique; Langedijk, Jacqueline; Muller, Mareike; Vriend, Gert; Cools, Alexander R.; Cuppen, Edwin; Ellenbroek, Bart A.

    2016-01-01

    Social cognitionisan endophenotype that is impaired in schizophrenia and several other (comorbid) psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1

  17. The role of the dopamine D1 receptor in social cognition : Studies using a novel genetic rat model

    NARCIS (Netherlands)

    Homberg, J R; Olivier, J D A; VandenBroeke, M; Youn, J; Ellenbroek, A K; Karel, P; Shan, L; van Boxtel, R; Ooms, S; Balemans, M; Langedijk, J; Muller, M; Vriend, G; Cools, A R; Cuppen, E; Ellenbroek, B A

    2016-01-01

    Social cognition is an endophenotype that is impaired in schizophrenia and several other (comorbid) psychiatric disorders. One of the modulators of social cognition is dopamine, but its role is not clear. The effects of dopamine are mediated through dopamine receptors, including the dopamine D1

  18. Dopamine Dysfunction in DYT1 Dystonia

    Science.gov (United States)

    2015-07-01

    20mM Tris-Cl (pH 7.6), 137 mM NaCl, 0.1% Tween 20, the membranes were incubated overnight at 4°C with rabbit anti-tor- sinA antibody (1:500; Abcam...during the juvenile period to changes in tor- sinA expression or function. Another consideration is the potential compensatory effects of torsinB, which...Buckley AC, Burdette AJ, et al. (2010) Chemical enhancement of tor- sinA function in cell and animal models of torsion dystonia. Dis Model Mech 3: 386–396

  19. Isoproterenol potentiation of methyl mercury effects in vivo cardiac ATPasees and 3H-dopamine uptake

    International Nuclear Information System (INIS)

    Ahammad-Sahib, K.I.; Moorthy, K.S.; Cameron, J.A.; Desaiah, D.

    1988-01-01

    Isoproterenol, a potent B-adrenergic receptor agonist, has been known to produce infarct-like myocardial lesions in rats characterized by swelling of endoplasmic reticulum. The swelling of this system is interpreted as an influx of large amount of extracellular fluid into myocardial cells by disturbances of the electrolyte metabolism. Isoproterenol is employed clinically as a bronchodilator in respiratory disorders and as a stimulant in heart block and cardiogenic shocks. In spite of its clinical use, possible drug-chemical interactions leading to adverse health effects are obvious when individuals on a regular isoproterenol treatment are exposed to an environmental contaminant such as methyl mercury. Consumption of fish and fish products is by far the most significant route of exposure to environmental mercury. In spite of such a possibility, little is know about isoproterenol-methyl mercury interaction. The present study forms the first of this kind to report such interactions and their effects on cardiac membrane bound enzymes such as Na + -K + and Ca 2+ -ATPases. Since Na + -K + ATPase has been implicated in uptake and release processes of catecholamines, the effects were also studied on 3 H-dopamine uptake by sarcoplasmic reticulum. As a prelude to these proposed long-term chronic studies with non-lethal doses in the present report only single and sub-lethal doses were used for a shorter (48h) duration

  20. A Markov State-based Quantitative Kinetic Model of Sodium Release from the Dopamine Transporter

    Science.gov (United States)

    Razavi, Asghar M.; Khelashvili, George; Weinstein, Harel

    2017-01-01

    The dopamine transporter (DAT) belongs to the neurotransmitter:sodium symporter (NSS) family of membrane proteins that are responsible for reuptake of neurotransmitters from the synaptic cleft to terminate a neuronal signal and enable subsequent neurotransmitter release from the presynaptic neuron. The release of one sodium ion from the crystallographically determined sodium binding site Na2 had been identified as an initial step in the transport cycle which prepares the transporter for substrate translocation by stabilizing an inward-open conformation. We have constructed Markov State Models (MSMs) from extensive molecular dynamics simulations of human DAT (hDAT) to explore the mechanism of this sodium release. Our results quantify the release process triggered by hydration of the Na2 site that occurs concomitantly with a conformational transition from an outward-facing to an inward-facing state of the transporter. The kinetics of the release process are computed from the MSM, and transition path theory is used to identify the most probable sodium release pathways. An intermediate state is discovered on the sodium release pathway, and the results reveal the importance of various modes of interaction of the N-terminus of hDAT in controlling the pathways of release.

  1. The influence of μ-opioid and noradrenaline reuptake inhibition in the modulation of pain responsive neurones in the central amygdala by tapentadol in rats with neuropathy

    Science.gov (United States)

    Gonçalves, Leonor; Friend, Lauren V.; Dickenson, Anthony H.

    2015-01-01

    Treatments for neuropathic pain are either not fully effective or have problematic side effects. Combinations of drugs are often used. Tapentadol is a newer molecule that produces analgesia in various pain models through two inhibitory mechanisms, namely central μ-opioid receptor (MOR) agonism and noradrenaline reuptake inhibition. These two components interact synergistically, resulting in levels of analgesia similar to opioid analgesics such as oxycodone and morphine, but with more tolerable side effects. The right central nucleus of the amygdala (CeA) is critical for the lateral spinal ascending pain pathway, regulates descending pain pathways and is key in the emotional-affective components of pain. Few studies have investigated the pharmacology of limbic brain areas in pain models. Here we determined the actions of systemic tapentadol on right CeA neurones of animals with neuropathy and which component of tapentadol contributes to its effect. Neuronal responses to multimodal peripheral stimulation of animals with spinal nerve ligation or sham surgery were recorded before and after two doses of tapentadol. After the higher dose of tapentadol either naloxone or yohimbine were administered. Systemic tapentadol resulted in dose-dependent decrease in right CeA neuronal activity only in neuropathy. Both naloxone and yohimbine reversed this effect to an extent that was modality selective. The interactions of the components of tapentadol are not limited to the synergy between the MOR and α2-adrenoceptors seen at spinal levels, but are seen at this supraspinal site where suppression of responses may relate to the ability of the drug to alter affective components of pain. PMID:25576174

  2. A conformational study of protonated noradrenaline by UV-UV and IR dip double resonance laser spectroscopy combined with an electrospray and a cold ion trap method.

    Science.gov (United States)

    Wako, Hiromichi; Ishiuchi, Shun-Ichi; Kato, Daichi; Féraud, Géraldine; Dedonder-Lardeux, Claude; Jouvet, Christophe; Fujii, Masaaki

    2017-05-03

    The conformer-selected ultraviolet (UV) and infrared (IR) spectra of protonated noradrenaline were measured using an electrospray/cryogenic ion trap technique combined with photo-dissociation spectroscopy. By comparing the UV photo dissociation (UVPD) spectra with the UV-UV hole burning (HB) spectra, it was found that five conformers coexist under ultra-cold conditions. Based on the spectral features of the IR dip spectra of each conformer, two different conformations on the amine side chain were identified. Three conformers (group I) were assigned to folded and others (group II) to extended structures by comparing the observed IR spectra with the calculated ones. Observation of the significantly less-stable extended conformers strongly suggests that the extended structures are dominant in solution and are detected in the gas phase by kinetic trapping. The conformers in each group are assignable to rotamers of OH orientations in the catechol ring. By comparing the UV-UV HB spectra and the calculated Franck-Condon spectra obtained by harmonic vibrational analysis of the S 1 state, with the aid of relative stabilization energies of each conformer in the S 0 state, the absolute orientations of catechol OHs of the observed five conformers were successfully determined. It was found that the 0-0 transition of one folded conformer is red-shifted by about 1000 cm -1 from the others. The significant red-shift was explained by a large contribution of the πσ* state to S 1 in the conformer in which an oxygen atom of the meta-OH group is close to the ammonium group.

  3. Enhanced striatal dopamine release during food stimulation in binge eating disorder

    Energy Technology Data Exchange (ETDEWEB)

    Wang, g.j.; Wang, G.-J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, Jaynbe, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; Wong, C.T.; Fowler, J.S.

    2011-01-13

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [{sup 11}C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  4. Enhanced striatal dopamine release during food stimulation in binge eating disorder

    International Nuclear Information System (INIS)

    Wang, G.-J.; Geliebter, A.; Volkow, N.D.; Telang, F.W.; Logan, J.; Jaynbe, M.C.; Galanti, K.; Selig, P.A.; Han, H.; Zhu, W.; Wong, C.T.; Fowler, J.S.

    2011-01-01

    Subjects with binge eating disorder (BED) regularly consume large amounts of food in short time periods. The neurobiology of BED is poorly understood. Brain dopamine, which regulates motivation for food intake, is likely to be involved. We assessed the involvement of brain dopamine in the motivation for food consumption in binge eaters. Positron emission tomography (PET) scans with [ 11 C]raclopride were done in 10 obese BED and 8 obese subjects without BED. Changes in extracellular dopamine in the striatum in response to food stimulation in food-deprived subjects were evaluated after placebo and after oral methylphenidate (MPH), a drug that blocks the dopamine reuptake transporter and thus amplifies dopamine signals. Neither the neutral stimuli (with or without MPH) nor the food stimuli when given with placebo increased extracellular dopamine. The food stimuli when given with MPH significantly increased dopamine in the caudate and putamen in the binge eaters but not in the nonbinge eaters. Dopamine increases in the caudate were significantly correlated with the binge eating scores but not with BMI. These results identify dopamine neurotransmission in the caudate as being of relevance to the neurobiology of BED. The lack of correlation between BMI and dopamine changes suggests that dopamine release per se does not predict BMI within a group of obese individuals but that it predicts binge eating.

  5. A peptide disrupting the D2R-DAT interaction protects against dopamine neurotoxicity.

    Science.gov (United States)

    Su, Ping; Liu, Fang

    2017-09-01

    Dopamine reuptake from extracellular space to cytosol leads to accumulation of dopamine, which triggers neurotoxicity in dopaminergic neurons. Previous studies have shown that both dopamine D2 receptor (D2R) and dopamine transporter (DAT) are involved in dopamine neurotoxicity. However, blockade of either D2R or DAT causes side effects due to antagonism of other physiological functions of these two proteins. We previously found that DAT can form a protein complex with D2R and its cell surface expression is facilitated via D2R-DAT interaction, which regulates dopamine reuptake and intracellular dopamine levels. Here we found that an interfering peptide (DAT-S1) disrupting the D2R-DAT interaction protects neurons against dopamine neurotoxicity, and this effect is mediated by inhibiting DAT cell surface expression and inhibiting both caspase-3 and PARP-1 cleavage. This study demonstrates the role of the D2R-DAT complex in dopamine neurotoxicity and investigated the potential mechanisms, which might help better understand the mechanisms of dopamine neurotoxicity. The peptide may provide some insights to improve treatments for dopamine neurotoxicity and related diseases, such as Parkinson's disease, as well as methamphetamine- and 3,4-methsylenedioxy methamphetamine-induced neurotoxicity. Copyright © 2017. Published by Elsevier Inc.

  6. Dopamine and serotonin: influences on male sexual behavior.

    Science.gov (United States)

    Hull, Elaine M; Muschamp, John W; Sato, Satoru

    2004-11-15

    Steroid hormones regulate sexual behavior primarily by slow, genomically mediated effects. These effects are realized, in part, by enhancing the processing of relevant sensory stimuli, altering the synthesis, release, and/or receptors for neurotransmitters in integrative areas, and increasing the responsiveness of appropriate motor outputs. Dopamine has facilitative effects on sexual motivation, copulatory proficiency, and genital reflexes. Dopamine in the nigrostriatal tract influences motor activity; in the mesolimbic tract it activates numerous motivated behaviors, including copulation; in the medial preoptic area (MPOA) it controls genital reflexes, copulatory patterns, and specifically sexual motivation. Testosterone increases nitric oxide synthase in the MPOA; nitric oxide increases basal and female-stimulated dopamine release, which in turn facilitates copulation and genital reflexes. Serotonin (5-HT) is primarily inhibitory, although stimulation of 5-HT(2C) receptors increases erections and inhibits ejaculation, whereas stimulation of 5-HT(1A) receptors has the opposite effects: facilitation of ejaculation and, in some circumstances, inhibition of erection. 5-HT is released in the anterior lateral hypothalamus at the time of ejaculation. Microinjections of selective serotonin reuptake inhibitors there delay the onset of copulation and delay ejaculation after copulation begins. One means for this inhibition is a decrease in dopamine release in the mesolimbic tract.

  7. Parkinsonism in phenylketonuria: a consequence of dopamine depletion?

    NARCIS (Netherlands)

    Velema, Marieke; Boot, Erik; Engelen, Marc; Hollak, Carla

    2015-01-01

    Phenylketonuria (PKU) is caused by a deficiency or inactivity of the enzyme phenylalanine hydroxylase that converts phenylalanine (Phe) to tyrosine (Tyr). It has been proposed that a reduction of brain Tyr levels, as well as reduced activity of the key regulatory enzyme of dopamine (DA) synthesis

  8. The dopamine metabolite 3-methoxytyramine is a neuromodulator.

    Directory of Open Access Journals (Sweden)

    Tatyana D Sotnikova

    2010-10-01

    Full Text Available Dopamine (3-hydroxytyramine is a well-known catecholamine neurotransmitter involved in multiple physiological functions including movement control. Here we report that the major extracellular metabolite of dopamine, 3-methoxytyramine (3-MT, can induce behavioral effects in a dopamine-independent manner and these effects are partially mediated by the trace amine associated receptor 1 (TAAR1. Unbiased in vivo screening of putative trace amine receptor ligands for potential effects on the movement control revealed that 3-MT infused in the brain is able to induce a complex set of abnormal involuntary movements in mice acutely depleted of dopamine. In normal mice, the central administration of 3-MT caused a temporary mild hyperactivity with a concomitant set of abnormal movements. Furthermore, 3-MT induced significant ERK and CREB phosphorylation in the mouse striatum, signaling events generally related to PKA-mediated cAMP accumulation. In mice lacking TAAR1, both behavioral and signaling effects of 3-MT were partially attenuated, consistent with the ability of 3-MT to activate TAAR1 receptors and cause cAMP accumulation as well as ERK and CREB phosphorylation in cellular assays. Thus, 3-MT is not just an inactive metabolite of DA, but a novel neuromodulator that in certain situations may be involved in movement control. Further characterization of the physiological functions mediated by 3-MT may advance understanding of the pathophysiology and pharmacology of brain disorders involving abnormal dopaminergic transmission, such as Parkinson's disease, dyskinesia and schizophrenia.

  9. Photoaffinity labelling of high affinity dopamine binding proteins

    International Nuclear Information System (INIS)

    Ross, G.M.; McCarry, B.E.; Mishra, R.K.

    1986-01-01

    A photoactive analogue of the dopamine agonist 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene (ADTN) has been synthesized and used to photoaffinity label dopamine binding proteins prepared from bovine caudate nucleus. N-(3-]N'-4-azidobenzamidol]-aminopropyl)-aminopropyl)-ADTN (AzB-AP-ADTN) was incubated with caudate membranes and irradiated with UV light. Membranes were then repeatedly washed by centrifugation to remove excess photolabel. A binding assay, using ( 3 H)-SCH 23390 (a D 1 specific antagonist), was then performed to evaluate the loss of receptor density in the photolyzed preparation. AzB-AP-ADTN irreversibly blocked ( 3 H)-SCH 23390 binding in a dose-dependent manner. Scatchard analysis revealed a decrease in the B/sub max/, with no significant change in the K/sub d/, of ( 3 H)-SCH 23390 binding. Compounds which compete for D 1 receptor binding (such as dopamine, SKF 38393 or apomorphine), proteted the SCH 23390 binding site from inactivation. This data would suggest that the novel photoaffinity ligand, AzB-AP-ADTN, can covalently label the D 1 (adenylate cyclase linked) dopamine receptor

  10. Imaging of dopamine release induced by pharmacologic and nonpharmacologic stimulations

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Kim, Sang Eun [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Technological advances in molecular imaging made it possible to image synaptic neurotransmitter concentration in living human brain. The dopaminergic system has been most intensively studied because of its importance in neurological as well as psychiatric disorders. This paper provides a brief overview of recent progress in imaging studies of dopamine release induced by pharmacologic and nonpharmacologic stimulations.

  11. Dopamine receptors - physiological understanding to therapeutic intervention potential

    NARCIS (Netherlands)

    Emilien, G; Maloteaux, JM; Hoogenberg, K; Cragg, S

    1999-01-01

    There are two families of dopamine (DA) receptors, called D(1) and D(2), respectively. The D(1) family consists of D(1)- and D(5)-receptor subtypes and the D(2) family consists of D(2)-, D(3)-, and D(4)-receptor subtypes. The amino acid sequences of these receptors show that they all belong to a

  12. Dopamine controls Parkinson's tremor by inhibiting the cerebellar thalamus

    NARCIS (Netherlands)

    Dirkx, M.F.M.; Ouden, H.E.M. den; Aarts, E.; Timmer, M.H.M.; Bloem, B.R.; Toni, I.; Helmich, R.C.G.

    2017-01-01

    Parkinson's resting tremor is related to altered cerebral activity in the basal ganglia and the cerebello-thalamo-cortical circuit. Although Parkinson's disease is characterized by dopamine depletion in the basal ganglia, the dopaminergic basis of resting tremor remains unclear: dopaminergic

  13. Regulation of dopamine transporter activity by carboxypeptidase E

    Directory of Open Access Journals (Sweden)

    Zhang Heping

    2009-05-01

    Full Text Available Abstract Background The dopamine transporter (DAT plays a critical role in terminating the action of dopamine by rapid reuptake into the presynaptic neuron. Previous studies have revealed that the DAT carboxyl terminus (DAT-CT can directly interact with other cellular proteins and regulate DAT function and trafficking. Results Here, we have identified that carboxypeptidase E (CPE, a prohormone processing exopeptidase and sorting receptor for the regulated secretory pathway, interacts with the DAT-CT and affects DAT function. Mammalian cell lines coexpressing CPE and DAT exhibited increased DAT-mediated dopamine uptake activity compared to cells expressing DAT alone. Moreover, coexpression of an interfering DAT-CT minigene inhibited the effects of CPE on DAT. Functional changes caused by CPE could be attributed to enhanced DAT expression and subsequent increase in DAT cell surface localization, due to decreased DAT degradation. In addition, CPE association could reduce the phosphorylation state of DAT on serine residues, potentially leading to reduced internalization, thus stabilizing plasmalemmal DAT localization. Conclusion Taken together, our results reveal a novel role for CPE in the regulation of DAT trafficking and DAT-mediated DA uptake, which may provide a novel target in the treatment of dopamine-governed diseases such as drug addiction and obesity.

  14. TFH-derived dopamine accelerates productive synapses in germinal centres.

    Science.gov (United States)

    Papa, Ilenia; Saliba, David; Ponzoni, Maurilio; Bustamante, Sonia; Canete, Pablo F; Gonzalez-Figueroa, Paula; McNamara, Hayley A; Valvo, Salvatore; Grimbaldeston, Michele; Sweet, Rebecca A; Vohra, Harpreet; Cockburn, Ian A; Meyer-Hermann, Michael; Dustin, Michael L; Doglioni, Claudio; Vinuesa, Carola G

    2017-07-20

    Protective high-affinity antibody responses depend on competitive selection of B cells carrying somatically mutated B-cell receptors by follicular helper T (T FH ) cells in germinal centres. The rapid T-B-cell interactions that occur during this process are reminiscent of neural synaptic transmission pathways. Here we show that a proportion of human T FH cells contain dense-core granules marked by chromogranin B, which are normally found in neuronal presynaptic terminals storing catecholamines such as dopamine. T FH cells produce high amounts of dopamine and release it upon cognate interaction with B cells. Dopamine causes rapid translocation of intracellular ICOSL (inducible T-cell co-stimulator ligand, also known as ICOSLG) to the B-cell surface, which enhances accumulation of CD40L and chromogranin B granules at the human T FH cell synapse and increases the synapse area. Mathematical modelling suggests that faster dopamine-induced T-B-cell interactions increase total germinal centre output and accelerate it by days. Delivery of neurotransmitters across the T-B-cell synapse may be advantageous in the face of infection.

  15. Dopamine natriuresis in salt-repleted, water-loaded humans

    DEFF Research Database (Denmark)

    Olsen, Niels Vidiendal; Olsen, M H; Bonde, J

    1997-01-01

    The purpose of the present study was to define the dose-response relationship between exogenous dopamine and systemic haemodynamics, renal haemodynamics, and renal excretory function at infusion rates in the range 0 to 12.5 microg kg(-1) min(-1) in normal volunteers....

  16. Leptin regulates dopamine responses to sustained stress in humans.

    Science.gov (United States)

    Burghardt, Paul R; Love, Tiffany M; Stohler, Christian S; Hodgkinson, Colin; Shen, Pei-Hong; Enoch, Mary-Anne; Goldman, David; Zubieta, Jon-Kar

    2012-10-31

    Neural systems that identify and respond to salient stimuli are critical for survival in a complex and changing environment. In addition, interindividual differences, including genetic variation and hormonal and metabolic status likely influence the behavioral strategies and neuronal responses to environmental challenges. Here, we examined the relationship between leptin allelic variation and plasma leptin levels with DAD2/3R availability in vivo as measured with [(11)C]raclopride PET at baseline and during a standardized pain stress challenge. Allelic variation in the leptin gene was associated with varying levels of dopamine release in response to the pain stressor, but not with baseline D2/3 receptor availability. Circulating leptin was also positively associated with stress-induced dopamine release. These results show that leptin serves as a regulator of neuronal function in humans and provides an etiological mechanism for differences in dopamine neurotransmission in response to salient stimuli as related to metabolic function. The capacity for leptin to influence stress-induced dopaminergic function is of importance for pathological states where dopamine is thought to play an integral role, such as mood, substance-use disorders, eating disorders, and obesity.

  17. Preparation and characterization of dopamine-decorated hydrophilic carbon black

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Lijun; Lu Yonglai [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Yiqing [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China); Zhang Liqun [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing 100029 (China); Wang Wencai, E-mail: wangw@mail.buct.edu.cn [State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029 (China); Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing 100029 (China)

    2012-05-01

    Inspired by the bio-adhesive proteins secreted by mussels for attachment to almost all wet substrates, a facile method involving oxidative polymerization of dopamine was proposed to prepare highly hydrophilic carbon black (CB) particles. A self-assembled polydopamine (PDA) ad-layer was formed via the oxidative polymerization of dopamine on the surface of CB simply by dipping the CB into an alkaline dopamine solution and mildly stirring at room temperature. The process is simple, controllable, and environment-friendly. The surface composition and structure of the CB were characterized by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The surface morphology of the CB was observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the PDA ad-layer was successfully deposited on the CB surfaces. The PDA-functionalized CB (CB-PDA) gave a stable colloidal dispersion in water. Contact angle measurement results indicated that the hydrophilicity of CB was significantly improved after dopamine modification. TGA results confirmed that the modified CB maintained good heat resistance. The method provided a facile route to prepare hydrophilic CB having terminal hydroxyl groups.

  18. Dopamine receptors - physiological understanding to therapeutic intervention potential

    NARCIS (Netherlands)

    Emilien, G; Maloteaux, JM; Hoogenberg, K; Cragg, S

    There are two families of dopamine (DA) receptors, called D(1) and D(2), respectively. The D(1) family consists of D(1)- and D(5)-receptor subtypes and the D(2) family consists of D(2)-, D(3)-, and D(4)-receptor subtypes. The amino acid sequences of these receptors show that they all belong to a

  19. Study on dopamine D2 binding capacity in vascular parkinsonism

    International Nuclear Information System (INIS)

    Terashi, Hiroo; Nagata, Ken; Hirata, Yutaka; Hatazawa, Jun; Utsumi, Hiroya

    2001-01-01

    To investigate whether the striatal dopamine receptor function is involved in the development of vascular parkinsonism (VP), a positron emission tomography (PET) study was conducted on 9 patients with VP by using [ 11 C] N-methylspiperone as the tracer. The rate of binding availability in the striatal dopamine D 2 receptor (k 3 ) was determined semiquantitatively, and the values were compared to the predicted normal values based on the results from 7 normal volunteers. Of 9 patients with VP, the normalized D 2 receptor binding [%k 3 ] was more than 90% in 5 patients, 89 to 87% in 3, and 75% in one. These values showed no evident correlation with the Hoehn and Yahr stage. The laterality of the striatal %k 3 did not correspond to that of the parkinsonism. Thus, the striatal dopamine D 2 receptor binding was not severely impaired and did not correlate with the neurological status in patients with VP. This may indicate that striatal dopamine D 2 receptor function is not primarily associated with the development of the parkinsonism in VP. (author)

  20. Dopamine and reward: the anhedonia hypothesis 30 years on.

    Science.gov (United States)

    Wise, Roy A

    2008-10-01

    The anhedonia hypothesis--that brain dopamine plays a critical role in the subjective pleasure associated with positive rewards--was intended to draw the attention of psychiatrists to the growing evidence that dopamine plays a critical role in the objective reinforcement and incentive motivation associated with food and water, brain stimulation reward, and psychomotor stimulant and opiate reward. The hypothesis called to attention the apparent paradox that neuroleptics, drugs used to treat a condition involving anhedonia (schizophrenia), attenuated in laboratory animals the positive reinforcement that we normally associate with pleasure. The hypothesis held only brief interest for psychiatrists, who pointed out that the animal studies reflected acute actions of neuroleptics whereas the treatment of schizophrenia appears to result from neuroadaptations to chronic neuroleptic administration, and that it is the positive symptoms of schizophrenia that neuroleptics alleviate, rather than the negative symptoms that include anhedonia. Perhaps for these reasons, the hypothesis has had minimal impact in the psychiatric literature. Despite its limited heuristic value for the understanding of schizophrenia, however, the anhedonia hypothesis has had major impact on biological theories of reinforcement, motivation, and addiction. Brain dopamine plays a very important role in reinforcement of response habits, conditioned preferences, and synaptic plasticity in cellular models of learning and memory. The notion that dopamine plays a dominant role in reinforcement is fundamental to the psychomotor stimulant theory of addiction, to most neuroadaptation theories of addiction, and to current theories of conditioned reinforcement and reward prediction. Properly understood, it is also fundamental to recent theories of incentive motivation.

  1. Dopamine and Impulse Control Disorders in Parkinson's Disease

    NARCIS (Netherlands)

    Weintraub, Daniel

    2008-01-01

    There is an increasing awareness that impulse control disorders (ICDs), including compulsive gambling, buying, sexual behavior, and eating, can occur as a complication of Parkinson's disease (PD). In addition, other impulsive or compulsive disorders have been reported to occur, including dopamine

  2. Nucleus Accumbens Acetylcholine Receptors Modulate Dopamine and Motivation.

    Science.gov (United States)

    Collins, Anne L; Aitken, Tara J; Greenfield, Venuz Y; Ostlund, Sean B; Wassum, Kate M

    2016-11-01

    Environmental reward-predictive cues can motivate reward-seeking behaviors. Although this influence is normally adaptive, it can become maladaptive in disordered states, such as addiction. Dopamine release in the nucleus accumbens core (NAc) is known to mediate the motivational impact of reward-predictive cues, but little is known about how other neuromodulatory systems contribute to cue-motivated behavior. Here, we examined the role of the NAc cholinergic receptor system in cue-motivated behavior using a Pavlovian-to-instrumental transfer task designed to assess the motivating influence of a reward-predictive cue over an independently-trained instrumental action. Disruption of NAc muscarinic acetylcholine receptor activity attenuated, whereas blockade of nicotinic receptors augmented cue-induced invigoration of reward seeking. We next examined a potential dopaminergic mechanism for this behavioral effect by combining fast-scan cyclic voltammetry with local pharmacological acetylcholine receptor manipulation. The data show evidence of opposing modulation of cue-evoked dopamine release, with muscarinic and nicotinic receptor antagonists causing suppression and augmentation, respectively, consistent with the behavioral effects of these manipulations. In addition to demonstrating cholinergic modulation of naturally-evoked and behaviorally-relevant dopamine signaling, these data suggest that NAc cholinergic receptors may gate the expression of cue-motivated behavior through modulation of phasic dopamine release.

  3. Does activation of midbrain dopamine neurons promote or reduce feeding?

    NARCIS (Netherlands)

    Boekhoudt, L.; Roelofs, T. J.M.; de Jong, J. W.; de Leeuw, A. E.; Luijendijk, M. C.M.; Wolterink-Donselaar, I. G.; van der Plasse, G.; Adan, R. A.H.

    Background:Dopamine (DA) signalling in the brain is necessary for feeding behaviour, and alterations in the DA system have been linked to obesity. However, the precise role of DA in the control of food intake remains debated. On the one hand, food reward and motivation are associated with enhanced

  4. Does activation of midbrain dopamine neurons promote or reduce feeding?

    NARCIS (Netherlands)

    Boekhoudt, L.; Roelofs, T. J. M.; de Jong, J. W.; de Leeuw, A. E.; Luijendijk, M. C. M.; Wolterink-Donselaar, I. G.; van der Plasse, G.; Adan, R. A. H.

    2017-01-01

    BACKGROUND: Dopamine (DA) signalling in the brain is necessary for feeding behaviour, and alterations in the DA system have been linked to obesity. However, the precise role of DA in the control of food intake remains debated. On the one hand, food reward and motivation are associated with enhanced

  5. Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning.

    Science.gov (United States)

    Hart, Andrew S; Clark, Jeremy J; Phillips, Paul E M

    2015-01-01

    Cue- and reward-evoked phasic dopamine activity during Pavlovian and operant conditioning paradigms is well correlated with reward-prediction errors from formal reinforcement learning models, which feature teaching signals in the form of discrepancies between actual and expected reward outcomes. Additionally, in learning tasks where conditioned cues probabilistically predict rewards, dopamine neurons show sustained cue-evoked responses that are correlated with the variance of reward and are maximal to cues predicting rewards with a probability of 0.5. Therefore, it has been suggested that sustained dopamine activity after cue presentation encodes the uncertainty of impending reward delivery. In the current study we examined the acquisition and maintenance of these neural correlates using fast-scan cyclic voltammetry in rats implanted with carbon fiber electrodes in the nucleus accumbens core during probabilistic Pavlovian conditioning. The advantage of this technique is that we can sample from the same animal and recording location throughout learning with single trial resolution. We report that dopamine release in the nucleus accumbens core contains correlates of both expected value and variance. A quantitative analysis of these signals throughout learning, and during the ongoing updating process after learning in probabilistic conditions, demonstrates that these correlates are dynamically encoded during these phases. Peak CS-evoked responses are correlated with expected value and predominate during early learning while a variance-correlated sustained CS signal develops during the post-asymptotic updating phase. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Aspects of dopamine and acetylcholine release induced by glutamate receptors

    International Nuclear Information System (INIS)

    Paes, Paulo Cesar de Arruda

    2002-01-01

    The basal ganglia play an important role in the motor control of rats and humans. This control involves different neurotransmitters and the mutual control of these key elements has been subject to several studies. In this work we determined the role of glutamate on the release of radioactively labelled dopamine and acetylcholine from chopped striatal tissue in vitro. The values of Effective Concentration 50% for glutamate, NMDA, kainic, quisqualic acids and AMPA on the release of dopamine and acetylcholine were obtained. The inhibitory effects of magnesium, tetrodotoxin, MK-801, AP5 and MCPG, as well as the effects of glycin were evaluated. The results suggested that dopamine is influenced by the NMDA type glutamate receptor while acetylcholine seems to be influenced by NMDA, kainate and AMPA receptors. Tetrodotoxin experiments suggested that kainate receptors are both present in cholinergic terminals and cell bodies while AMPA and NMDA receptors are preferentially distributed in cell bodies. Magnesium effectively blocked the NMDA stimulation and unexpectedly also AMPA- and quisqualate-induced acetylcholine release. The latter could not be blocked by MCPG ruling out the participation of methabotropic receptors. MK-801 also blocked NMDA-receptors. Results point out the importance of the glutamic acid control of dopamine and acetylcholine release in striatal tissue. (author)

  7. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism

    Science.gov (United States)

    The common parasite Toxoplasma gondii induces behavioral alterations in its hosts including phenotypes increasing the likelihood of its transmission in rodents and reports of psychobehavioral alterations in humans. We have found that elevated levels of dopamine are associated with the encysted stage...

  8. Copper nanoparticle modified carbon electrode for determination of dopamine

    International Nuclear Information System (INIS)

    Oztekin, Yasemin; Tok, Mutahire; Bilici, Esra; Mikoliunaite, Lina; Yazicigil, Zafer; Ramanaviciene, Almira; Ramanavicius, Arunas

    2012-01-01

    This paper reports the synthesis and characterization of copper nanoparticles (CuNPs) and application of copper nanoparticle-modified glassy carbon electrode for the electrochemical determination of dopamine. Electrochemical measurements were performed using differently modified glassy carbon (GC) electrodes. Bare, oxidized before modification and copper nanoparticle-modified glassy carbon electrodes (bare-GC, ox-GC and CuNP/GC electrodes, respectively) were characterized by cyclic voltammetry and electrochemical impedance spectroscopy in the presence of redox probes. Atomic force microscopy was used for the visualization of electrode surfaces. The CuNP/GC electrode was found to be suitable for the selective determination of dopamine even in the presence of ascorbic acid, uric acid, and p-acetamidophenol. The observed linear range of CuNP/GC for dopamine was from 0.1 nM to 1.0 μM while the detection limit was estimated to be 50 pM. It was demonstrated that here reported glassy carbon electrode modified by copper nanoparticles is suitable for the determination of dopamine in real samples such as human blood serum.

  9. Hybrid CMOS-Graphene Sensor Array for Subsecond Dopamine Detection.

    Science.gov (United States)

    Nasri, Bayan; Wu, Ting; Alharbi, Abdullah; You, Kae-Dyi; Gupta, Mayank; Sebastian, Sunit P; Kiani, Roozbeh; Shahrjerdi, Davood

    2017-12-01

    We introduce a hybrid CMOS-graphene sensor array for subsecond measurement of dopamine via fast-scan cyclic voltammetry (FSCV). The prototype chip has four independent CMOS readout channels, fabricated in a 65-nm process. Using planar multilayer graphene as biologically compatible sensing material enables integration of miniaturized sensing electrodes directly above the readout channels. Taking advantage of the chemical specificity of FSCV, we introduce a region of interest technique, which subtracts a large portion of the background current using a programmable low-noise constant current at about the redox potentials. We demonstrate the utility of this feature for enhancing the sensitivity by measuring the sensor response to a known dopamine concentration in vitro at three different scan rates. This strategy further allows us to significantly reduce the dynamic range requirements of the analog-to-digital converter (ADC) without compromising the measurement accuracy. We show that an integrating dual-slope ADC is adequate for digitizing the background-subtracted current. The ADC operates at a sampling frequency of 5-10 kHz and has an effective resolution of about 60 pA, which corresponds to a theoretical dopamine detection limit of about 6 nM. Our hybrid sensing platform offers an effective solution for implementing next-generation FSCV devices that can enable precise recording of dopamine signaling in vivo on a large scale.

  10. Sub-second changes in accumbal dopamine during sexual behavior in male rats.

    Science.gov (United States)

    Robinson, D L; Phillips, P E; Budygin, E A; Trafton, B J; Garris, P A; Wightman, R M

    2001-08-08

    Transient (200--900 ms), high concentrations (200--500 nM) of dopamine, measured using fast-scan cyclic voltammetry, occurred in the nucleus accumbens core of male rats at the presentation of a receptive female. Additional dopamine signals were observed during subsequent approach behavior. Background-subtracted cyclic voltammograms of the naturally-evoked signals matched those of electrically-evoked dopamine measured at the same recording sites. Administration of nomifensine amplified natural and evoked dopamine release, and increased the frequency of detectable signals. While gradual changes in dopamine concentration during sexual behavior have been well established, these findings dramatically improve the time resolution. The observed dopamine transients, probably resulting from neuronal burst firing, represent the first direct correlation of dopamine with sexual behavior on a sub-second time scale.

  11. The dopamine theory of addiction: 40 years of highs and lows.

    Science.gov (United States)

    Nutt, David J; Lingford-Hughes, Anne; Erritzoe, David; Stokes, Paul R A

    2015-05-01

    For several decades, addiction has come to be viewed as a disorder of the dopamine neurotransmitter system; however, this view has not led to new treatments. In this Opinion article, we review the origins of the dopamine theory of addiction and discuss the ability of addictive drugs to elicit the release of dopamine in the human striatum. There is robust evidence that stimulants increase striatal dopamine levels and some evidence that alcohol may have such an effect, but little evidence, if any, that cannabis and opiates increase dopamine levels. Moreover, there is good evidence that striatal dopamine receptor availability and dopamine release are diminished in individuals with stimulant or alcohol dependence but not in individuals with opiate, nicotine or cannabis dependence. These observations have implications for understanding reward and treatment responses in various addictions.

  12. Antibodies to dopamine: radioimmunological study of specificity in relation to immunocytochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Geffard, M.; Kah, O.; Onteniente, B.; Seguela, P.; Le Moal, M.; Delaage, M.

    1984-06-01

    Two classes of anti-3,4- dihydroxyphenylethylamine (dopamine) antibodies were raised in rabbits using dopamine conjugated to albumin either via formaldehyde or via glutaraldehyde. Each was usable for immunohistochemical detection of dopamine neurons provided that the tissue was fixed by the homologous cross-linking agent. However, anti-dopamine-glutaraldehyde antibodies turned out to be of more general use because of the better fixative properties of glutaraldehyde which fixed dopamine in rat and in teleost, whereas formaldehyde only worked in lower vertebrates (such as goldfish) and not in rat brain. The specificity of anti-dopamine-glutaraldehyde antibodies was firmly established by competition experiments in equilibrium dialysis, using an immunoreactive tritiated derivative synthesized by coupling dopamine to N-alpha-acetyl-L-lysine N-methylamide via glutaraldehyde. Specificity studies in vitro and immunohistological results demonstrating the specific staining of dopaminergic neurons were found to correlate well.

  13. Bitropic D3 Dopamine Receptor Selective Compounds as Potential Antipsychotics.

    Science.gov (United States)

    Luedtke, Robert R; Rangel-Barajas, Claudia; Malik, Mahinder; Reichert, David E; Mach, R H

    2015-01-01

    Neuropsychiatric disorders represent a substantial social and health care issue. The National Institutes of Health estimates that greater than 2 million adults suffer from neuropsychiatric disorders in the USA. These individuals experience symptoms that can include auditory hallucinations, delusions, unrealistic beliefs and cognitive dysfunction. Although antipsychotic medications are available, suboptimal therapeutic responses are observed for approximately one-third of patients. Therefore, there is still a need to explore new pharmacotherapeutic strategies for the treatment of neuropsychiatric disorders. Many of the medications that are used clinically to treat neuropsychiatric disorders have a pharmacological profile that includes being an antagonist at D2-like (D2, D3 and D4) dopamine receptor subtypes. However, dopamine receptor subtypes are involved in a variety of neuronal circuits that include movement coordination, cognition, emotion, affect, memory and the regulation of prolactin. Consequently, antagonism at D2-like receptors can also contribute to some of the adverse side effects associated with the long-term use of antipsychotics including the a) adverse extrapyramidal symptoms associated with the use of typical antipsychotics and b) metabolic side effects (weight gain, hyperglycemia, increased risk of diabetes mellitus, dyslipidemia and gynecomastia) associated with atypical antipsychotic use. Preclinical studies suggest that D3 versus D2 dopamine receptor selective compounds might represent an alternative strategy for the treatment of the symptoms of schizophrenia. In this review we discuss a) how bitropic Nphenylpiperazine D3 dopamine receptor selective compounds have been developed by modification of the primary (orthosteric) and secondary (allosteric or modulatory) pharmacophores to optimize D3 receptor affinity and D2/D3 binding selectivity ratios and b) the functional selectivity of these compounds. Examples of how these compounds might be

  14. Chronic Inhibition of Dopamine β-Hydroxylase Facilitates Behavioral Responses to Cocaine in Mice

    Science.gov (United States)

    Gaval-Cruz, Meriem; Liles, Larry Cameron; Iuvone, Paul Michael; Weinshenker, David

    2012-01-01

    The anti-alcoholism medication, disulfiram (Antabuse), decreases cocaine use in humans regardless of concurrent alcohol consumption and facilitates cocaine sensitization in rats, but the functional targets are unknown. Disulfiram inhibits dopamine β-hydroxylase (DBH), the enzyme that converts dopamine (DA) to norepinephrine (NE) in noradrenergic neurons. The goal of this study was to test the effects of chronic genetic or pharmacological DBH inhibition on behavioral responses to cocaine using DBH knockout (Dbh −/−) mice, disulfiram, and the selective DBH inhibitor, nepicastat. Locomotor activity was measured in control (Dbh +/−) and Dbh −/− mice during a 5 day regimen of saline+saline, disulfiram+saline, nepicastat+saline, saline+cocaine, disulfiram+cocaine, or nepicastat+cocaine. After a 10 day withdrawal period, all groups were administered cocaine, and locomotor activity and stereotypy were measured. Drug-naïve Dbh −/− mice were hypersensitive to cocaine-induced locomotion and resembled cocaine-sensitized Dbh +/− mice. Chronic disulfiram administration facilitated cocaine-induced locomotion in some mice and induced stereotypy in others during the development of sensitization, while cocaine-induced stereotypy was evident in all nepicastat-treated mice. Cocaine-induced stereotypy was profoundly increased in the disulfiram+cocaine, nepicastat+cocaine, and nepicastat+saline groups upon cocaine challenge after withdrawal in Dbh +/− mice. Disulfiram or nepicastat treatment had no effect on behavioral responses to cocaine in Dbh −/− mice. These results demonstrate that chronic DBH inhibition facilitates behavioral responses to cocaine, although different methods of inhibition (genetic vs. non-selective inhibitor vs. selective inhibitor) enhance qualitatively different cocaine-induced behaviors. PMID:23209785

  15. Chronic inhibition of dopamine β-hydroxylase facilitates behavioral responses to cocaine in mice.

    Directory of Open Access Journals (Sweden)

    Meriem Gaval-Cruz

    Full Text Available The anti-alcoholism medication, disulfiram (Antabuse, decreases cocaine use in humans regardless of concurrent alcohol consumption and facilitates cocaine sensitization in rats, but the functional targets are unknown. Disulfiram inhibits dopamine β-hydroxylase (DBH, the enzyme that converts dopamine (DA to norepinephrine (NE in noradrenergic neurons. The goal of this study was to test the effects of chronic genetic or pharmacological DBH inhibition on behavioral responses to cocaine using DBH knockout (Dbh -/- mice, disulfiram, and the selective DBH inhibitor, nepicastat. Locomotor activity was measured in control (Dbh +/- and Dbh -/- mice during a 5 day regimen of saline+saline, disulfiram+saline, nepicastat+saline, saline+cocaine, disulfiram+cocaine, or nepicastat+cocaine. After a 10 day withdrawal period, all groups were administered cocaine, and locomotor activity and stereotypy were measured. Drug-naïve Dbh -/- mice were hypersensitive to cocaine-induced locomotion and resembled cocaine-sensitized Dbh +/- mice. Chronic disulfiram administration facilitated cocaine-induced locomotion in some mice and induced stereotypy in others during the development of sensitization, while cocaine-induced stereotypy was evident in all nepicastat-treated mice. Cocaine-induced stereotypy was profoundly increased in the disulfiram+cocaine, nepicastat+cocaine, and nepicastat+saline groups upon cocaine challenge after withdrawal in Dbh +/- mice. Disulfiram or nepicastat treatment had no effect on behavioral responses to cocaine in Dbh -/- mice. These results demonstrate that chronic DBH inhibition facilitates behavioral responses to cocaine, although different methods of inhibition (genetic vs. non-selective inhibitor vs. selective inhibitor enhance qualitatively different cocaine-induced behaviors.

  16. A C-terminal PDZ domain-binding sequence is required for striatal distribution of the dopamine transporter

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Hansen, Freja Herborg; Sørensen, Gunnar

    2013-01-01

    believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different dopamine transporter knock-in mice with disrupted PDZ-binding motifs (dopamine transporter-AAA and dopamine transporter+Ala) are characterized by dramatic loss of dopamine......The dopamine transporter mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling dopamine transporter levels in striatal nerve terminals remain poorly understood. The dopamine transporters contain a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain-binding sequence...... transporter expression in the striatum, causing hyperlocomotion and attenuated response to amphetamine. In cultured dopaminergic neurons and striatal slices from dopamine transporter-AAA mice, we find markedly reduced dopamine transporter surface levels and evidence for enhanced constitutive internalization...

  17. The treatment of Parkinson's disease with dopamine agonists

    Directory of Open Access Journals (Sweden)

    Frank, Wilhelm

    2008-06-01

    Full Text Available Parkinson’s disease is a chronic degenerative organic disease with unknown causes. A disappearance of cells with melanin in the substantia nigra is considered as biological artefact of the disease, which causes a degenerative loss of neurons in the corpus striatum of mesencephalon. This structure produces also the transmitter substance dopamine. Due to this disappearance of cells dopamine is not produced in a sufficient quantity which is needed for movement of the body. The questions of this report are concerned the efficiency and safety of a treatment with dopamine agonists. Furthermore the cost-effectiveness is investigated as well as ethic questions. The goal is to give recommendation for the use of dopamine agonists to the German health system. A systematic literature search was done. The identified studies have different methodological quality and investigate different hypothesis and different outcome criteria. Therefore a qualitative method of information synthesis was chosen. Since the introduction of L-Dopa in the 1960´s it is considered as the most effective substance to reduce all the cardinal symptoms of Parkinson disease. This substance was improved in the course of time. Firstly some additional substances were given (decarbonxylase inhibitors, catechol-o-transferase inhibitors (COMT-inhibitors, monoaminoxydase-inhibitors (MAO-inhibitors and NMDA-antagonists (N-Methyl-d-aspartat-antagonists. In the practical therapy of Parkinson dopamine agonists play an important role, because they directly use the dopamine receptors. The monotherapy of Parkinson disease is basically possible and is used in early stages of the disease. Clinical practise has shown, that an add on therapy with dopamine agonists can led to a reduction of the dose of L-dopa and a reduction of following dyskinesia. The studies for effectiveness include studies for the initial therapy, monotherapy and add-on-therapy. Basically there is a good effectiveness of dopamine

  18. Testosterone induces molecular changes in dopamine signaling pathway molecules in the adolescent male rat nigrostriatal pathway.

    Directory of Open Access Journals (Sweden)

    Tertia D Purves-Tyson

    Full Text Available Adolescent males have an increased risk of developing schizophrenia, implicating testosterone in the precipitation of dopamine-related psychopathology. Evidence from adult rodent brain indicates that testosterone can modulate nigrostriatal dopamine. However, studies are required to understand the role testosterone plays in maturation of dopamine pathways during adolescence and to elucidate the molecular mechanism(s by which testosterone exerts its effects. We hypothesized that molecular indices of dopamine neurotransmission [synthesis (tyrosine hydroxylase, breakdown (catechol-O-methyl transferase; monoamine oxygenase, transport [vesicular monoamine transporter (VMAT, dopamine transporter (DAT] and receptors (DRD1-D5] would be changed by testosterone or its metabolites, dihydrotestosterone and 17β-estradiol, in the nigrostriatal pathway of adolescent male rats. We found that testosterone and dihydrotestosterone increased DAT and VMAT mRNAs in the substantia nigra and that testosterone increased DAT protein at the region of the cell bodies, but not in target regions in the striatum. Dopamine receptor D2 mRNA was increased and D3 mRNA was decreased in substantia nigra and/or striatum by androgens. These data suggest that increased testosterone at adolescence may change dopamine responsivity of the nigrostriatal pathway by modulating, at a molecular level, the capacity of neurons to transport and respond to dopamine. Further, dopamine turnover was increased in the dorsal striatum following gonadectomy and this was prevented by testosterone replacement. Gene expression changes in the dopaminergic cell body region may serve to modulate both dendritic dopamine feedback inhibition and reuptake in the dopaminergic somatodendritic field as well as dopamine release and re-uptake dynamics at the presynaptic terminals in the striatum. These testosterone-induced changes of molecular indices of dopamine neurotransmission in males are primarily androgen

  19. Dopamine agonists and risk: impulse control disorders in Parkinson's disease.

    Science.gov (United States)

    Voon, Valerie; Gao, Jennifer; Brezing, Christina; Symmonds, Mkael; Ekanayake, Vindhya; Fernandez, Hubert; Dolan, Raymond J; Hallett, Mark

    2011-05-01

    Impulse control disorders are common in Parkinson's disease, occurring in 13.6% of patients. Using a pharmacological manipulation and a novel risk taking task while performing functional magnetic resonance imaging, we investigated the relationship between dopamine agonists and risk taking in patients with Parkinson's disease with and without impulse control disorders. During functional magnetic resonance imaging, subjects chose between two choices of equal expected value: a 'Sure' choice and a 'Gamble' choice of moderate risk. To commence each trial, in the 'Gain' condition, individuals started at $0 and in the 'Loss' condition individuals started at -$50 below the 'Sure' amount. The difference between the maximum and minimum outcomes from each gamble (i.e. range) was used as an index of risk ('Gamble Risk'). Sixteen healthy volunteers were behaviourally tested. Fourteen impulse control disorder (problem gambling or compulsive shopping) and 14 matched Parkinson's disease controls were tested ON and OFF dopamine agonists. Patients with impulse control disorder made more risky choices in the 'Gain' relative to the 'Loss' condition along with decreased orbitofrontal cortex and anterior cingulate activity, with the opposite observed in Parkinson's disease controls. In patients with impulse control disorder, dopamine agonists were associated with enhanced sensitivity to risk along with decreased ventral striatal activity again with the opposite in Parkinson's disease controls. Patients with impulse control disorder appear to have a bias towards risky choices independent of the effect of loss aversion. Dopamine agonists enhance sensitivity to risk in patients with impulse control disorder possibly by impairing risk evaluation in the striatum. Our results provide a potential explanation of why dopamine agonists may lead to an unconscious bias towards risk in susceptible individuals.

  20. VMN hypothalamic dopamine and serotonin in anorectic septic rats.

    Science.gov (United States)

    Torelli, G F; Meguid, M M; Miyata, G; Fetissov, S O; Carter, J L; Kim, H J; Muscaritoli, M; Rossi Fanelli, F

    2000-03-01

    During sepsis, catabolism of proteins and associated changes in plasma amino acids occur. Tryptophan and tyrosine, and their derivatives serotonin (5-HT) and dopamine (DA), influence hypothalamic feeding-related areas and are associated with the onset of anorexia. We hypothesized that anorexia of sepsis is associated with changes in serotonin and dopamine in the ventromedial nucleus (VMN) of the hypothalamus. The aim of this study was to test our hypothesis by measuring intra-VMN changes of these two neurotransmitters at the onset of anorexia during sepsis. Fischer 344 male rats had an intracerebral guide cannula stereotaxically implanted into the VMN. Ten days later, in awake, overnight-food-deprived rats, a microdialysis probe was inserted through the in situ VMN cannula. Two hours thereafter, serial baseline serotonin and dopamine concentrations were measured. Then cecal ligation and puncture to induce sepsis or a control laparotomy was performed under isoflurane anesthesia. VMN microdialysis samples were serially collected every 30 min for 8 h after the surgical procedure to determine 5-HT and DA changes in response to sepsis. During the hypermetabolic response to sepsis, a strong association occurred between anorexia and a significant reduction of VMN dopamine concentration (P anorexia of sepsis. Six hours after operation, a single meal was offered for 20 min to assess the response of neurotransmitters to food ingestion. Food intake was minimal in anorectic septic rats (mean size of the after food-deprived meal in the Septic group was 0.03+/-0.01 g, that of the Control group was 1.27+/-0.14 g; P = 0.0001), while Control rats demonstrated anticipated changes in neurotransmitters in response to eating. We conclude that the onset of anorexia in septic rats is associated with a reduction in VMN dopamine.

  1. Developmental imaging genetics: linking dopamine function to adolescent behavior.

    Science.gov (United States)

    Padmanabhan, Aarthi; Luna, Beatriz

    2014-08-01

    Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to non-invasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Altered dopamine signaling in naturally occurring maternal neglect.

    Directory of Open Access Journals (Sweden)

    Stephen C Gammie

    2008-04-01

    Full Text Available Child neglect is the most common form of child maltreatment, yet the biological basis of maternal neglect is poorly understood and a rodent model is lacking.The current study characterizes a population of mice (MaD1 which naturally exhibit maternal neglect (little or no care of offspring at an average rate of 17% per generation. We identified a set of risk factors that can predict future neglect of offspring, including decreased self-grooming and elevated activity. At the time of neglect, neglectful mothers swam significantly more in a forced swim test relative to nurturing mothers. Cross-fostered offspring raised by neglectful mothers in turn exhibit increased expression of risk factors for maternal neglect and decreased maternal care as adults, suggestive of possible epigenetic contributions to neglect. Unexpectedly, offspring from neglectful mothers elicited maternal neglect from cross-fostered nurturing mothers, suggesting that factors regulating neglect are not solely within the mother. To identify a neurological pathway underlying maternal neglect, we examined brain activity in neglectful and nurturing mice. c-Fos expression was significantly elevated in neglectful relative to nurturing mothers in the CNS, particularly within dopamine associated areas, such as the zona incerta (ZI, ventral tegmental area (VTA, and nucleus accumbens. Phosphorylated tyrosine hydroxylase (a marker for dopamine production was significantly elevated in ZI and higher in VTA (although not significantly in neglectful mice. Tyrosine hydroxylase levels were unaltered, suggesting a dysregulation of dopamine activity rather than cell number. Phosphorylation of DARPP-32, a marker for dopamine D1-like receptor activation, was elevated within nucleus accumbens and caudate-putamen in neglectful versus nurturing dams.These findings suggest that atypical dopamine activity within the maternal brain, especially within regions involved in reward, is involved in naturally

  3. Dopamine receptor repertoire of human granulosa cells

    Directory of Open Access Journals (Sweden)

    Kunz Lars

    2007-10-01

    Full Text Available Abstract Background High levels of dopamine (DA were described in human ovary and recently evidence for DA receptors in granulosa and luteal cells has been provided, as well. However, neither the full repertoire of ovarian receptors for DA, nor their specific role, is established. Human granulosa cells (GCs derived from women undergoing in vitro fertilization (IVF are an adequate model for endocrine cells of the follicle and the corpus luteum and were therefore employed in an attempt to decipher their DA receptor repertoire and functionality. Methods Cells were obtained from patients undergoing IVF and examined using cDNA-array, RT-PCR, Western blotting and immunocytochemistry. In addition, calcium measurements (with FLUO-4 were employed. Expression of two DA receptors was also examined by in-situ hybridization in rat ovary. Effects of DA on cell viability and cell volume were studied by using an ATP assay and an electronic cell counter system. Results We found members of the two DA receptor families (D1- and D2 -like associated with different signaling pathways in human GCs, namely D1 (as expected and D5 (both are Gs coupled and linked to cAMP increase and D2, D4 (Gi/Gq coupled and linked to IP3/DAG. D3 was not found. The presence of the trophic hormone hCG (10 IU/ml in the culture medium for several days did not alter mRNA (semiquantitative RT-PCR or protein levels (immunocytochemistry/Western blotting of D1,2,4,5 DA receptors. Expression of prototype receptors for the two families, D1 and D2, was furthermore shown in rat granulosa and luteal cells by in situ hybridization. Among the DA receptors found in human GCs, D2 expression was marked both at mRNA and protein levels and it was therefore further studied. Results of additional RT-PCR and Western blots showed two splice variants (D2L, D2S. Irrespective of these variants, D2 proved to be functional, as DA raised intracellular calcium levels. This calcium mobilizing effect of DA was observed

  4. Dopamine D1 receptors and phosphorylation of dopamine- and cyclic AMP-regulated phosphoprotein-32 in the medial preoptic area are involved in experience-induced enhancement of male sexual behavior in rats.

    Science.gov (United States)

    McHenry, Jenna A; Bell, Genevieve A; Parrish, Bradley P; Hull, Elaine M

    2012-08-01

    The medial preoptic area (MPOA) is an integral site for male sexual behavior. Dopamine is released in the MPOA before and during copulation and facilitates male rat sexual behavior. Repeated sexual experience and noncopulatory exposures to an estrous female facilitate subsequent copulation. However, the neurobiological mechanisms that mediate such enhancement remain unclear. Here, we examined the role of dopamine D₁ receptors in the MPOA in experience-induced enhancement of male sexual behavior in rats. In experiment 1, microinjections of the D₁ antagonist SCH-23390 into the MPOA before each of seven daily 30-min noncopulatory exposures to a receptive female impaired copulation on a drug-free test on Day 8, compared to vehicle-treated female-exposed animals. Copulatory performance in drug-treated animals was similar to that of vehicle-treated males that had not been preexposed to females. This effect was site specific. There were no group differences in locomotor activity in an open field on the copulation test day. In experiment 2, a separate cohort of animals was used to examine phosphorylation of dopamine- and cAMP-regulated phosphoprotein (DARPP-32) in the MPOA of animals with acute and/or chronic sexual experience. DARPP-32 is a downstream marker of D₁ receptor signaling and substrate of cAMP-dependent protein kinase (PKA). Western immunoblot analysis revealed that p-DARPP-32 expression was greatest in the MPOA of males that received both acute and chronic sexual experience, compared to all other mated conditions and naïve controls. These data suggest that D₁ receptors in the MPOA contribute to experience-induced enhancement of male sexual behavior, perhaps through a PKA regulated mechanism.

  5. Distinctive Modulation of Dopamine Release in the Nucleus Accumbens Shell Mediated by Dopamine and Acetylcholine Receptors.

    Science.gov (United States)

    Shin, Jung Hoon; Adrover, Martin F; Alvarez, Veronica A

    2017-11-15

    Nucleus accumbens (NAc) shell shows unique dopamine (DA) signals in vivo and plays a unique role in DA-dependent behaviors such as reward-motivated learning and the response to drugs of abuse. A disynaptic mechanism for DA release was reported and shown to require synchronized firing of cholinergic interneurons (CINs) and activation of nicotinic acetylcholine (ACh) receptors (nAChRs) in DA neuron (DAN) axons. The properties of this disynaptic mechanism of DA transmission are not well understood in the NAc shell. In this study, in vitro fast-scan cyclic voltammetry was used to examine the modulation of DA transmission evoked by CINs firing in the shell of mice and compared with other striatal regions. We found that DA signals in the shell displayed significant degree of summation in response to train stimulation of CINs, contrary to core and dorsal striatum. The summation was amplified by a D2-like receptor antagonist and experiments with mice with targeted deletion of D2 receptors to DANs or CINs revealed that D2 receptors in CINs mediate a fast inhibition observed within 100 ms of the first pulse, whereas D2 autoreceptors in DAN terminals are engaged in a slower inhibition that peaks at ∼500 ms. ACh also contributes to the use-dependent inhibition of DA release through muscarinic receptors only in the shell, where higher activity of acetylcholinesterase minimizes nAChR desensitization and promotes summation. These findings show that DA signals are modulated differentially by endogenous DA and ACh in the shell, which may underlie the unique features of shell DA signals in vivo SIGNIFICANCE STATEMENT The present study reports that dopamine (DA) release evoked by activation of cholinergic interneurons displays a high degree of summation in the shell and shows unique modulation by endogenous DA and acetylcholine. Desensitization of nicotinic receptors, which is a prevailing mechanism for use-dependent inhibition in the nucleus accumbens core and dorsal striatum, is

  6. Layer-by-layer composite film of nickel phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine

    Science.gov (United States)

    de Lucena, Nathalia C.; Miyazaki, Celina M.; Shimizu, Flávio M.; Constantino, Carlos J. L.; Ferreira, Marystela

    2018-04-01

    Dopamine (DA) abnormal levels are related to diseases which makes important the development of fast, reliable, low-cost and sensitive devices for diagnosis and pharmaceutical controls. Nanostructured film composite of sodium montmorillonite clay (Na+MMT) and nickel phthalocyanine (NiTsPc) was self-assembled by layer-by-layer (LbL) technique and applied as electrochemical sensor for DA in the presence of common natural interferents as ascorbic acid (AA) and uric acid (UA). Three different LbL architecture films were investigated: LbL films of clay (PEI/Na+MMT) and phthalocyanine (PEI/NiTsPc) in a bilayer structure with a conventional polyelectrolyte (PEI) and a composite film formed by both materials to verify the synergistic effect in the LbL film in a quadri-layer assembly (PEI/Na+MMT/PEI/NiTsPc). Structural characterization indicated molecular level interactions between the layers forming the LbL films. The ITO/(PEI/Na+MMT/PEI/NiTsPc)10 electrode exhibited a LOD of 1.0 μmol L-1 and linear range 5-150 μmol L-1.

  7. Morphine disinhibits glutamatergic input to VTA dopamine neurons and promotes dopamine neuron excitation.

    Science.gov (United States)

    Chen, Ming; Zhao, Yanfang; Yang, Hualan; Luan, Wenjie; Song, Jiaojiao; Cui, Dongyang; Dong, Yi; Lai, Bin; Ma, Lan; Zheng, Ping

    2015-07-24

    One reported mechanism for morphine activation of dopamine (DA) neurons of the ventral tegmental area (VTA) is the disinhibition model of VTA-DA neurons. Morphine inhibits GABA inhibitory neurons, which shifts the balance between inhibitory and excitatory input to VTA-DA neurons in favor of excitation and then leads to VTA-DA neuron excitation. However, it is not known whether morphine has an additional strengthening effect on excitatory input. Our results suggest that glutamatergic input to VTA-DA neurons is inhibited by GABAergic interneurons via GABAB receptors and that morphine promotes presynaptic glutamate release by removing this inhibition. We also studied the contribution of the morphine-induced disinhibitory effect on the presynaptic glutamate release to the overall excitatory effect of morphine on VTA-DA neurons and related behavior. Our results suggest that the disinhibitory action of morphine on presynaptic glutamate release might be the main mechanism for morphine-induced increase in VTA-DA neuron firing and related behaviors.

  8. Atypical dopamine efflux caused by 3,4-methylenedioxypyrovalerone (MDPV) via the human dopamine transporter.

    Science.gov (United States)

    Shekar, Aparna; Aguilar, Jenny I; Galli, Greta; Cozzi, Nicholas V; Brandt, Simon D; Ruoho, Arnold E; Baumann, Michael H; Matthies, Heinrich J G; Galli, Aurelio

    2017-10-01

    Synthetic cathinones are similar in chemical structure to amphetamines, and their behavioral effects are associated with enhanced dopaminergic signaling. The past ten years of research on the common constituent of bath salts, MDPV (the synthetic cathinone 3,4-methylenedioxypyrovalerone), has aided the understanding of how synthetic cathinones act at the dopamine (DA) transporter (DAT). Several groups have described the ability of MDPV to block the DAT with high-affinity. In this study, we demonstrate for the first time a new mode of action of MDPV, namely its ability to promote DAT-mediated DA efflux. Using single cell amperometric assays, we determined that low concentrations of MDPV (1nM) can cause reverse transport of DA via DAT. Notably, administration of MDPV leads to hyperlocomotion in Drosophila melanogaster. These data describe further how MDPV acts at the DAT, possibly paving the way for novel treatment strategies for individuals who abuse bath salts. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Dopamine and extinction: a convergence of theory with fear and reward circuitry.

    Science.gov (United States)

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2014-02-01

    Research on dopamine lies at the intersection of sophisticated theoretical and neurobiological approaches to learning and memory. Dopamine has been shown to be critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in reward-related tasks. A parallel and growing literature indicates that dopamine is involved in fear conditioning and extinction. These studies are consistent with long-standing ideas about appetitive-aversive interactions in learning theory and they speak to the general nature of cellular and molecular processes that underlie behavior. We review the behavioral and neurobiological literature showing a role for dopamine in fear conditioning and extinction. At a cellular level, we review dopamine signaling and receptor pharmacology, cellular and molecular events that follow dopamine receptor activation, and brain systems in which dopamine functions. At a behavioral level, we describe theories of learning and dopamine function that could describe the fundamental rules underlying how dopamine modulates different aspects of learning and memory processes. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.

    Science.gov (United States)

    Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim

    2018-07-01

    The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.

  11. The role of dopamine in human addiction: from reward to motivated attention.

    Science.gov (United States)

    Franken, Ingmar H A; Booij, Jan; van den Brink, Wim

    2005-12-05

    There is general consensus among preclinical researchers that dopamine plays an important role in the development and persistence of addiction. However, the precise role of dopamine in addictive behaviors is far from clear and only a few clinical studies on the role of dopamine in human addiction have been conducted so far. The present paper reviews studies addressing the role of dopamine in humans. There is substantial and consistent evidence that dopamine is involved in the experience of drug reward in humans. Dopamine may also be involved in motivational processes such as drug craving. However, given the inconsistent findings of studies using dopamine receptor (ant)agonists, the role of dopamine in the experience of craving is far from resolved. Recent theories claiming that dopamine signals salience and makes the brain paying attention to biological relevant stimuli may provide an interesting framework for explaining addictive behaviors. There is accumulating evidence that patients with drug and alcohol addiction have an aberrant focus on drug-related stimuli. Although there is some preliminary support for the role of dopamine in these attention processes, more studies have to be carried out in order to test the validity of these theories in human subjects.

  12. Thorndike’s Law 2.0: Dopamine and the regulation of thrift

    Directory of Open Access Journals (Sweden)

    Jeff A Beeler

    2012-08-01

    Full Text Available Dopamine is widely associated with reward, motivation and reinforcement learning. Research on dopamine has emphasized its contribution to compulsive behaviors, such as addiction and overeating, with less examination of its potential role in behavioral flexibility in normal, non-pathological states. In the study reviewed here, we investigated the effect of increased tonic dopamine in a two-lever homecage operant paradigm where the relative value of the levers was dynamic, requiring the mice to constantly monitor reward outcome and adapt their behavior. The data were fit to a temporal difference learning model that showed that mice with elevated dopamine exhibited less coupling between reward history and behavioral choice. This work suggests a way to integrate motivational and learning theories of dopamine into a single formal model where tonic dopamine regulates the expression of prior reward learning by controlling the degree to which learned reward values bias behavioral choice. Here I place these results in a broader context of dopamine’s role in instrumental learning and suggest a novel hypothesis that tonic dopamine regulates thrift, the degree to which an animal needs to exploit its prior reward learning to maximize return on energy expenditure. Our data suggest that increased dopamine decreases thriftiness, facilitating energy expenditure and permitting greater exploration. Conversely, this implies that decreased dopamine increases thriftiness, favoring the exploitation of prior reward learning and diminishing exploration. This perspective provides a different window onto the role dopamine may play in behavioral flexibility and its failure, compulsive behavior.

  13. Development of an enzyme-radioimmunoassay for the measurement of dopamine in human plasma and urine

    International Nuclear Information System (INIS)

    Faraj, B.A.; Walker, W.R.; Camp, V.M.; Ali, F.M.; Cobbs, W.B. Jr.

    1978-01-01

    An enzyme-radioimmunoassay for the measurement of dopamine is described. It is based on the incubation of plasma or urine in the presence of catechol-0-methyltransferase and S-adenosylmethionine. The 0-methylated dopamine metabolite formed (3-0-methyldopamine) was characterized by radioimmunoassay. As little as 0.5 ng of dopamine can be detected. The assay was found to be specific, since no cross-reactivity was noted for several compounds related to dopamine. The enzyme-radioimmunoassay of dopamine was used to determine the concentrations of dopamine in urine and plasma of normal volunteers. In this group, urinary dopamine averaged 182.1 +- 2.2 μg/24 hr, and the plasma concentration 0.211 +- 0.052 ng/ml. However, in children wPth neuroblastoma, there was a several-fold increase over controls in the average urinary and plasma levels of dopamine (8,500 μ/24 hr and 2.3 ng/ml). The assay was also used to monitor blood levels of dopamine following the administration of L-dopa and dopamine to patients with cardiomyopathy

  14. Subsecond dopamine fluctuations in human striatum encode superposed error signals about actual and counterfactual reward

    Science.gov (United States)

    Kishida, Kenneth T.; Saez, Ignacio; Lohrenz, Terry; Witcher, Mark R.; Laxton, Adrian W.; Tatter, Stephen B.; White, Jason P.; Ellis, Thomas L.; Phillips, Paul E. M.; Montague, P. Read

    2016-01-01

    In the mammalian brain, dopamine is a critical neuromodulator whose actions underlie learning, decision-making, and behavioral control. Degeneration of dopamine neurons causes Parkinson’s disease, whereas dysregulation of dopamine signaling is believed to contribute to psychiatric conditions such as schizophrenia, addiction, and depression. Experiments in animal models suggest the hypothesis that dopamine release in human striatum encodes reward prediction errors (RPEs) (the difference between actual and expected outcomes) during ongoing decision-making. Blood oxygen level-dependent (BOLD) imaging experiments in humans support the idea that RPEs are tracked in the striatum; however, BOLD measurements cannot be used to infer the action of any one specific neurotransmitter. We monitored dopamine levels with subsecond temporal resolution in humans (n = 17) with Parkinson’s disease while they executed a sequential decision-making task. Participants placed bets and experienced monetary gains or losses. Dopamine fluctuations in the striatum fail to encode RPEs, as anticipated by a large body of work in model organisms. Instead, subsecond dopamine fluctuations encode an integration of RPEs with counterfactual prediction errors, the latter defined by how much better or worse the experienced outcome could have been. How dopamine fluctuations combine the actual and counterfactual is unknown. One possibility is that this process is the normal behavior of reward processing dopamine neurons, which previously had not been tested by experiments in animal models. Alternatively, this superposition of error terms may result from an additional yet-to-be-identified subclass of dopamine neurons. PMID:26598677

  15. Systemic effects of low-dose dopamine during administration of cytarabine.

    Science.gov (United States)

    Connelly, James; Benani, Dina J; Newman, Matthew; Burton, Bradley; Crow, Jessica; Levis, Mark

    2017-09-01

    Purpose Low-dose dopamine has been utilized to improve renal blood flow, urine output, and reduce drug-induced nephrotoxicity. The purpose of this study was to assess changes in renal function, cardiovascular adverse events, and neurologic toxicity in patients receiving cytarabine with or without low-dose dopamine. Methods A retrospective, single-center, cohort study of patients receiving cytarabine at 667 mg/m 2 /dose or greater, with or without dopamine at ≤5 mcg/kg/min. Cohorts were based upon initiation or absence of low-dose dopamine; cytarabine only, cytarabine + pre- and day of low-dose dopamine, and cytarabine + post-low-dose dopamine. Renal outcomes (urine output, serum creatinine, and creatinine clearance) were compared with baseline and between cohorts. Safety endpoints (arrhythmias, tachycardia, and neurotoxicity) were compared between cohorts based on low-dose dopamine exposure. Results There was no difference in urine output from baseline in all cohorts. Comparing cytarabine only and pre- and day of low-dose dopamine cohorts, there was no difference in urine output. In those receiving low-dose dopamine, there was no difference in serum creatinine and creatinine clearance from baseline. No arrhythmias were documented during the study period, and there was no difference in the incidence of tachycardia between groups (P = 0.66). Neurotoxicity was reported in three patients who were on low-dose dopamine. Conclusion Though variation existed in individual patients administered low-dose dopamine, the use of low-dose dopamine did not significantly impact renal function in this small sample at a single institution. In addition, low-dose dopamine did not negatively impact cardiovascular function.

  16. Pharmacological differences between the D-2 autoreceptor and the D-1 dopamine receptor in rabbit retina

    International Nuclear Information System (INIS)

    Dubocovich, M.L.; Weiner, N.

    1985-01-01

    The effect of dopamine receptor agonists and antagonists was studied on the calcium-dependent release of [ 3 H]dopamine elicited by field stimulation at 3 Hz for a duration of 1 min (20 mA, 2 msec) from the rabbit retina in vitro and on adenylate cyclase activity in homogenates of rabbit retina. The relative order of potency of dopamine receptor agonists to inhibit the stimulation-evoked [ 3 H]dopamine release was pergolide greater than bromocriptine greater than apomorphine greater than LY 141865 greater than N,N-di-n-propyldopamine greater than or equal to dopamine. The relative order of potencies of dopamine receptor antagonists to increase [ 3 H]dopamine release was: S-sulpiride greater than or equal to domperidone greater than or equal to spiroperidol greater than metoclopramide greater than fluphenazine greater than or equal to R-sulpiride. alpha-Flupenthixol (0.01-1 microM) and (+)-butaclamol (0.01-1 microM) did not increase [ 3 H]dopamine overflow when added alone, but they antagonized the concentration-dependent inhibitory effect of apomorphine (0.1-10 microM). These results suggest that the dopamine inhibitory autoreceptor involved in the modulation of dopamine release from the rabbit retina possesses the pharmacological characteristics of a D-2 dopamine receptor. Maximal stimulation by 30 microM dopamine resulted in a 3-fold increase in adenylate cyclase activity with half-maximal stimulation occurring at a concentration of 2.46 microM. Apomorphine and pergolide elicited a partial stimulation of adenylate cyclase activity. However, at low concentrations both compounds were more potent than dopamine

  17. Acute phenylalanine/tyrosine depletion of phasic dopamine in the rat brain.

    Science.gov (United States)

    Shnitko, Tatiana A; Taylor, Sarah C; Stringfield, Sierra J; Zandy, Shannon L; Cofresí, Roberto U; Doherty, James M; Lynch, William B; Boettiger, Charlotte A; Gonzales, Rueben A; Robinson, Donita L

    2016-06-01

    Dopamine plays a critical role in striatal and cortical function, and depletion of the dopamine precursors phenylalanine and tyrosine is used in humans to temporarily reduce dopamine and probe the role of dopamine in behavior. This method has been shown to alter addiction-related behaviors and cognitive functioning presumably by reducing dopamine transmission, but it is unclear what specific aspects of dopamine transmission are altered. We performed this study to confirm that administration of an amino acid mixture omitting phenylalanine and tyrosine (Phe/Tyr[-]) reduces tyrosine tissue content in the prefrontal cortex (PFC) and nucleus accumbens (NAc), and to test the hypothesis that Phe/Tyr[-] administration reduces phasic dopamine release in the NAc. Rats were injected with a Phe/Tyr[-] amino acid mixture, a control amino acid mixture, or saline. High-performance liquid chromatography was used to determine the concentration of tyrosine, dopamine, or norepinephrine in tissue punches from the PFC and ventral striatum. In a separate group of rats, phasic dopamine release was measured with fast-scan cyclic voltammetry in the NAc core after injection with either the Phe/Tyr[-] mixture or the control amino acid solution. Phe/Tyr[-] reduced tyrosine content in the PFC and NAc, but dopamine and norepinephrine tissue content were not reduced. Moreover, Phe/Tyr[-] decreased the frequency of dopamine transients, but not their amplitude, in freely moving rats. These results indicate that depletion of tyrosine via Phe/Tyr[-] decreases phasic dopamine transmission, providing insight into the mechanism by which this method modifies dopamine-dependent behaviors in human imaging studies.

  18. Effect of dopamine, dopamine D-1 and D-2 receptor modulation on ACTH and cortisol levels in normal men and women

    DEFF Research Database (Denmark)

    Boesgaard, S; Hagen, C; Andersen, A N

    1990-01-01

    The regulation of the hypothalamic-pituitary-adrenal axis by dopamine is not fully understood. Therefore, we have studied the effect of dopamine, metoclopramide, a D-2 receptor antagonist, and fenoldopam, a specific D-1 receptor agonist, on ACTH and cortisol levels in normal subjects. Normal women...

  19. Striatal dopamine D2 receptor binding and dopamine release during cue-elicited craving in recently abstinent opiate-dependent males

    NARCIS (Netherlands)

    Zijlstra, Fleur; Booij, Jan; van den Brink, Wim; Franken, Ingmar H. A.

    2008-01-01

    Opiate addiction is a chronic disorder characterized by relapse behaviour, often preceded by craving and anhedonia. Chronic craving and anhedonia have been associated with low availability of dopamine D2 receptors (D2Rs) and cue-elicited craving has been linked with endogenous dopamine release. We

  20. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Rajib Paul

    Full Text Available Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer's disease while its role in the occurrence of Parkinson's disease (PD is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia.

  1. Cholesterol contributes to dopamine-neuronal loss in MPTP mouse model of Parkinson's disease: Involvement of mitochondrial dysfunctions and oxidative stress.

    Science.gov (United States)

    Paul, Rajib; Choudhury, Amarendranath; Kumar, Sanjeev; Giri, Anirudha; Sandhir, Rajat; Borah, Anupom

    2017-01-01

    Hypercholesterolemia is a known contributor to the pathogenesis of Alzheimer's disease while its role in the occurrence of Parkinson's disease (PD) is only conjecture and far from conclusive. Altered antioxidant homeostasis and mitochondrial functions are the key mechanisms in loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain in PD. Hypercholesterolemia is reported to cause oxidative stress and mitochondrial dysfunctions in the cortex and hippocampus regions of the brain in rodents. However, the impact of hypercholesterolemia on the midbrain dopaminergic neurons in animal models of PD remains elusive. We tested the hypothesis that hypercholesterolemia in MPTP model of PD would potentiate dopaminergic neuron loss in SN by disrupting mitochondrial functions and antioxidant homeostasis. It is evident from the present study that hypercholesterolemia in naïve animals caused dopamine neuronal loss in SN with subsequent reduction in striatal dopamine levels producing motor impairment. Moreover, in the MPTP model of PD, hypercholesterolemia exacerbated MPTP-induced reduction of striatal dopamine as well as dopaminergic neurons in SN with motor behavioral depreciation. Activity of mitochondrial complexes, mainly complex-I and III, was impaired severely in the nigrostriatal pathway of hypercholesterolemic animals treated with MPTP. Hypercholesterolemia caused oxidative stress in the nigrostriatal pathway with increased generation of hydroxyl radicals and enhanced activity of antioxidant enzymes, which were further aggravated in the hypercholesterolemic mice with Parkinsonism. In conclusion, our findings provide evidence of increased vulnerability of the midbrain dopaminergic neurons in PD with hypercholesterolemia.

  2. Decoding the dopamine signal in macaque prefrontal cortex: a simulation study using the Cx3Dp simulator.

    Directory of Open Access Journals (Sweden)

    Isabelle Ayumi Spühler

    Full Text Available Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated 'teaching' signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson's disease, or induced through drugs blocking dopamine reuptake.

  3. Decoding the Dopamine Signal in Macaque Prefrontal Cortex: A Simulation Study Using the Cx3Dp Simulator

    Science.gov (United States)

    Spühler, Isabelle Ayumi; Hauri, Andreas

    2013-01-01

    Dopamine transmission in the prefrontal cortex plays an important role in reward based learning, working memory and attention. Dopamine is thought to be released non-synaptically into the extracellular space and to reach distant receptors through diffusion. This simulation study examines how the dopamine signal might be decoded by the recipient neuron. The simulation was based on parameters from the literature and on our own quantified, structural data from macaque prefrontal area 10. The change in extracellular dopamine concentration was estimated at different distances from release sites and related to the affinity of the dopamine receptors. Due to the sparse and random distribution of release sites, a transient heterogeneous pattern of dopamine concentration emerges. Our simulation predicts, however, that at any point in the simulation volume there is sufficient dopamine to bind and activate high-affinity dopamine receptors. We propose that dopamine is broadcast to its distant receptors and any change from the local baseline concentration might be decoded by a transient change in the binding probability of dopamine receptors. Dopamine could thus provide a graduated ‘teaching’ signal to reinforce concurrently active synapses and cell assemblies. In conditions of highly reduced or highly elevated dopamine levels the simulations predict that relative changes in the dopamine signal can no longer be decoded, which might explain why cognitive deficits are observed in patients with Parkinson’s disease, or induced through drugs blocking dopamine reuptake. PMID:23951205

  4. Distinctive striatal dopamine signaling after dieting and gastric bypass.

    Science.gov (United States)

    Hankir, Mohammed K; Ashrafian, Hutan; Hesse, Swen; Horstmann, Annette; Fenske, Wiebke K

    2015-05-01

    Highly palatable and/or calorically dense foods, such as those rich in fat, engage the striatum to govern and set complex behaviors. Striatal dopamine signaling has been implicated in hedonic feeding and the development of obesity. Dieting and bariatric surgery have markedly different outcomes on weight loss, yet how these interventions affect central homeostatic and food reward processing remains poorly understood. Here, we propose that dieting and gastric bypass produce distinct changes in peripheral factors with known roles in regulating energy homeostasis, resulting in differential modulation of nigrostriatal and mesolimbic dopaminergic reward circuits. Enhancement of intestinal fat metabolism after gastric bypass may also modify striatal dopamine signaling contributing to its unique long-term effects on feeding behavior and body weight in obese individuals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Dorsal Raphe Dopamine Neurons Represent the Experience of Social Isolation

    Science.gov (United States)

    Matthews, Gillian A.; Nieh, Edward H.; Vander Weele, Caitlin M.; Halbert, Sarah A.; Pradhan, Roma V.; Yosafat, Ariella S.; Glober, Gordon F.; Izadmehr, Ehsan M.; Thomas, Rain E.; Lacy, Gabrielle D.; Wildes, Craig P.; Ungless, Mark A.; Tye, Kay M.

    2016-01-01

    Summary The motivation to seek social contact may arise from either positive or negative emotional states, as social interaction can be rewarding and social isolation can be aversive. While ventral tegmental area (VTA) dopamine (DA) neurons may mediate social reward, a cellular substrate for the negative affective state of loneliness has remained elusive. Here, we identify a functional role for DA neurons in the dorsal raphe nucleus (DRN), in which we observe synaptic changes following acute social isolation. DRN DA neurons show increased activity upon social contact following isolation, revealed by in vivo calcium imaging. Optogenetic activation of DRN DA neurons increases social preference but causes place avoidance. Furthermore, these neurons are necessary for promoting rebound sociability following an acute period of isolation. Finally, the degree to which these neurons modulate behavior is predicted by social rank, together supporting a role for DRN dopamine neurons in mediating a loneliness-like state. PaperClip PMID:26871628

  6. Dopamine agonists and risk: impulse control disorders in Parkinson's; disease

    OpenAIRE

    Voon, Valerie; Gao, Jennifer; Brezing, Christina; Symmonds, Mkael; Ekanayake, Vindhya; Fernandez, Hubert; Dolan, Raymond J.; Hallett, Mark

    2011-01-01

    Impulse control disorders are common in Parkinson's; disease, occurring in 13.6% of patients. Using a pharmacological manipulation and a novel risk taking task while performing functional magnetic resonance imaging, we investigated the relationship between dopamine agonists and risk taking in patients with Parkinson's; disease with and without impulse control disorders. During functional magnetic resonance imaging, subjects chose between two choices of equal expected value: a ‘Sure’ choice an...

  7. APRESS: apical regulatory super system, serotonin, and dopamine interaction

    Directory of Open Access Journals (Sweden)

    Hinz M

    2011-08-01

    Full Text Available Marty Hinz1, Alvin Stein2, Thomas Uncini31Clinical Research, NeuroResearch Clinics, Inc, Cape Coral, FL, USA; 2Stein Orthopedic Associates, Plantation, FL, USA; 3DBS Labs, Duluth, MN, USABackground: The monoamines serotonin and dopamine are known to exist in two separate states: the endogenous state and the competitive inhibition state. The presence of the competitive inhibition state has been known to science for many years, but from a functional standpoint it has been noted in the literature as being "meaningless."Methods: A large database of monoamine transporter response to amino acid precursor administration variations with clinical outcomes was accumulated. In the process, a new organic cation transporter (OCT model has been published, and OCT functional status determination along with amino acid precursor manipulation methods have been invented and refined.Results: Methodology was developed whereby manipulation of the OCT, in the competitive inhibition state, is carried out in a predictable manner. This, in turn, has disproved the long-held assertion that the monoamine competitive inhibition state is functionally meaningless.Conclusion: The most significant aspect of this paper is the documentation of newly recognized relationships between serotonin and dopamine. When transport of serotonin and dopamine are both in the competitive inhibition state, manipulation of the concentrations of one will lead to predictable changes in concentrations of the other. From a functional standpoint, processes regulated and controlled by changes to only serotonin can now be controlled by changes to dopamine, and vice versa, in a predictable manner.Keywords: catecholamine, monoamine, competitive inhibition state

  8. Dopamine improves hypothermic machine preservation of the liver.

    Science.gov (United States)

    Minor, Thomas; Lüer, Bastian; Efferz, Patrik

    2011-10-01

    Hypothermic machine preservation (HMP) is currently reconsidered as alternative to standard cold storage of organs from non-heart-beating donors. The present study was aimed at investigating the possible synergistic effect of HMP and the addition of dopamine to the circulating perfusate during preservation. Cardiac arrest was induced in male Wistar rats (250-300 g) by phrenotomy. Thirty minutes later livers were flushed via the portal vein and subjected to 20 h of HMP at 5ml/min at 4°C. During HMP the preservation solution was equilibrated with 100% oxygen and dopamine was added at 0, 10, 50 or 100 μM (D0, D10, D50, D100; n=6 resp.). Graft viability was assessed thereafter upon warm reperfusion in vitro for 2h. During HMP, D50 and D100 significantly reduced hepatic release of ALT to about 50%. No influence of dopamine was found on vascular resistance, oxygen uptake or lactate production at any concentration. D50 significantly reduced enzyme release during reperfusion (∼50%), enhanced bile flow and oxygen consumption. D10 was less effective while D100 even rose enzyme release compared with D0. Enhanced oxygen free radical mediated lipid peroxidation (LPO), found in the tissue of D0 livers was significantly reduced by D50; D50 significantly abrogated molecular upregulation of vWillebrand factor upon reperfusion suggesting vascular protection of the endothelial cell. Efficiency of HMP might be increased by stimulating livers with dopamine during ex vivo preservation, limiting vascular side effects and improving functional recovery upon early reperfusion. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. On the role of subsecond dopamine release in conditioned avoidance

    Directory of Open Access Journals (Sweden)

    Erik B Oleson

    2013-06-01

    Full Text Available Using shock avoidance procedures to study conditioned behavioral responses has a rich history within the field of experimental psychology. Such experiments led to the formulation of the general concept of negative reinforcement and specific theories attempting to explain escape and avoidance behavior, or why animals choose to either terminate or prevent the presentation of an aversive event. For example, the two-factor theory of avoidance holds that cues preceding an aversive event begin to evoke conditioned fear responses, and these conditioned fear responses reinforce the instrumental avoidance response. Current neuroscientific advances are providing new perspectives into this historical literature. Due to its well-established role in reinforcement processes and behavioral control, the mesolimbic dopamine system presented itself as a logical starting point in the search for neural correlates of avoidance and escape behavior. We recently demonstrated that phasic dopamine release events are inhibited by stimuli associated with aversive events but increased by stimuli preceding the successful avoidance of the aversive event. The latter observation is inconsistent with the second component of the two-factor theory of avoidance and; therefore, led us propose a new theoretical explanation of conditioned avoidance: 1 fear is initially conditioned to the warning signal and dopamine computes this fear association as a decrease in release, 2 the warning signal, now capable of producing a negative emotional state, suppresses dopamine release and behavior, 3 over repeated trials the warning signal becomes associated with safety rather than fear; dopaminergic neurons already compute safety as an increase in release and begin to encode the warning signal as the earliest predictor of safety 4 the warning signal now promotes conditioned avoidance via dopaminergic modulation of the brain’s incentive-motivational circuitry.

  10. Inverted-U shaped dopamine actions on human working memory and cognitive control

    Science.gov (United States)

    Cools, R; D’Esposito, M

    2011-01-01

    Brain dopamine has long been implicated in cognitive control processes, including working memory. However, the precise role of dopamine in cognition is not well understood, partly because there is large variability in the response to dopaminergic drugs both across different behaviors and across different individuals. We review evidence from a series of studies with experimental animals, healthy humans and patients with Parkinson’s disease, which highlight two important factors that contribute to this large variability. First, the existence of an optimum dopamine level for cognitive function implicates the need to take into account baseline levels of dopamine when isolating dopamine’s effects. Second, cognitive control is a multi-factorial phenomenon, requiring a dynamic balance between cognitive stability and cognitive flexibility. These distinct components might implicate the prefrontal cortex and the striatum respectively. Manipulating dopamine will thus have paradoxical consequences for distinct cognitive control processes depending on distinct basal or optimal levels of dopamine in different brain regions. PMID:21531388

  11. Progress of study on the dopamine D4 receptor imaging agent

    International Nuclear Information System (INIS)

    Tian Haibin; Zhang Lan; Zhang Chunfu; Li Junling; Yin Duanzhi

    2001-01-01

    Dopamine receptors were originally classified into five receptors subtypes, the dopamine D 4 receptor was included. Schizophrenic pathophysiology may be associated with expression and function of the dopamine D 4 receptor; it is of great importance to study the imaging agent of dopamine D 4 receptor. The study on radioactivity distribution and metabolize of radioligand remains hampered by the lack radioligand for the D 4 receptor which can be labeled using suitable nuclei. This paper reviews the progress of study on the dopamine D 4 receptor imaging agent, with particular emphasis vary nuclei, for example 11 C, 18 F, 123 I, labeled D 4 receptor ligands, antagonists and analogs as PET or SPECT imaging agents. Authors estimated affinity and selectivity of radioligands for the dopamine D 4 receptor in laboratory animal tests

  12. Dopamine therapy does not affect cerebral autoregulation during hypotension in newborn piglets

    DEFF Research Database (Denmark)

    Eriksen, Vibeke Ramsgaard; Rasmussen, Martin Bo; Hahn, Gitte Holst

    2017-01-01

    measurements, PaCO2 and arterial saturation were stable. MAP levels ranged between 14 and 82 mmHg. Cerebral autoregulation (CA) capacity was calculated as the ratio between %-change in cerebrovascular resistance and %-change in MAP induced by the in/deflation of the arterial balloon. A breakpoint in CA...... capacity was identified at a MAP of 38±18 mmHg without dopamine and at 44±18, 31±14, and 24±14 mmHg with dopamine infusion rates of 10, 25, and 40 μg/kg/min (p = 0.057). Neither the index of steady-state cerebral perfusion nor cerebral venous saturation were affected by dopamine infusion. Conclusion......: Dopamine infusion tended to improve CA capacity at low blood pressures while an index of steady-state cerebral blood flow and cerebral venous saturation were unaffected by dopamine infusion. Thus, dopamine does not appear to impair CA in newborn piglets....

  13. Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing

    Directory of Open Access Journals (Sweden)

    Roger Cachope

    2012-07-01

    Full Text Available Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.

  14. Quantum chemical study of TiO2/dopamine-DNA triads

    International Nuclear Information System (INIS)

    Vega-Arroyo, Manuel; LeBreton, Pierre R.; Zapol, Peter; Curtiss, Larry A.; Rajh, Tijana

    2007-01-01

    Photoinduced charge separation in triads of DNA covalently linked to an anatase nanoparticle via a dopamine bridge was studied by ab initio calculations of the oxidation potentials of carboxyl-DNA trimers and the TiO 2 /dopamine complex. Conjugation of dopamine to the TiO 2 surface results in a lower oxidation potential of the complex relative to the surface and in localization of photogenerated holes on dopamine, while photogenerated electrons are excited into the conduction band of TiO 2 . Linking dopamine to the DNA trimers at the 5' end of the oligonucleotide may lead to further hole migration to the DNA. Calculations show that for several different sequences hole migration is favorable in double stranded DNA and unfavorable in single-stranded DNA. This extended charge separation was shown to follow from the redox properties of DNA sequence rather than from the modification of DNA's electron donating properties by the dopamine linker, which explains experimental observations

  15. Dopamine Signaling Regulates Fat Content through β-Oxidation in Caenorhabditis elegans

    Science.gov (United States)

    Barros, Alexandre Guimarães de Almeida; Bridi, Jessika Cristina; de Souza, Bruno Rezende; de Castro Júnior, Célio; de Lima Torres, Karen Cecília; Malard, Leandro; Jorio, Ado; de Miranda, Débora Marques; Ashrafi, Kaveh; Romano-Silva, Marco Aurélio

    2014-01-01

    The regulation of energy balance involves an intricate interplay between neural mechanisms that respond to internal and external cues of energy demand and food availability. Compelling data have implicated the neurotransmitter dopamine as an important part of body weight regulation. However, the precise mechanisms through which dopamine regulates energy homeostasis remain poorly understood.