Rotational and spin viscosities of water: Application to nanofluidics
DEFF Research Database (Denmark)
Hansen, Jesper Søndergaard; Bruus, Henrik; Todd, B.D.
2010-01-01
In this paper we evaluate the rotational viscosity and the two spin viscosities for liquid water using equilibrium molecular dynamics. Water is modeled via the flexible SPC/Fw model where the Coulomb interactions are calculated via the Wolf method which enables the long simulation times required....... We find that the rotational viscosity is independent of the temperature in the range from 284 to 319 K. The two spin viscosities, on the other hand, decrease with increasing temperature and are found to be two orders of magnitude larger than that estimated by Bonthuis et al. [Phys. Rev. Lett. 103...
Giant Viscosity Enhancement in a Spin-Polarized Fermi Liquid
International Nuclear Information System (INIS)
Akimoto, H.; Xia, J. S.; Adams, E. D.; Sullivan, N. S.; Candela, D.; Mullin, W. J.
2007-01-01
The viscosity is measured for a Fermi liquid, a dilute 3 He- 4 He mixture, under extremely high magnetic field/temperature conditions (B≤14.8 T, T≥1.5 mK). The spin-splitting energy μB is substantially greater than the Fermi energy k B T F ; as a consequence the polarization tends to unity and s-wave quasiparticle scattering is suppressed for T F . Using a novel composite vibrating-wire viscometer an enhancement of the viscosity is observed by a factor of more than 500 over its low-field value. Good agreement is found between the measured viscosity and theoretical predictions based upon a t-matrix formalism
A two-component wave equation for particles of spin 1/2 and non-zero rest mass
International Nuclear Information System (INIS)
Srivastava, T.
1981-11-01
We have discussed here the qualifications of the equation (delta 0 +sigmasup(k)deltasub(k))psi = -kappaTpsi, where deltasub(μ) is identical to delta/deltaxsup(μ), sigmasup(k) are the Pauli spin matrices, T is the linear operator which changes the sign of t, kappa=m 0 c/(h/2π) and psi a function with two components, as a suitable wave equation for a spin 1/2 particle with non-zero rest mass. We have established that both components of all its solutions satisfy the Klein-Gordon equation and that a 1-1 correspondence can be set up between its solutions and the positive energy solutions of the Dirac equation which preserves inner products (suitably defined for our case). We have then gone on to show covariance under transformations of the proper Lorentz group as also under space and time inversions and translations. Eigenfunctions of energy-momentum and spin have been explicitly found and it is shown that causality is preserved and a Green's function exists. A list appears, at the end, of points to be discussed in Part II of this paper, points which, it is hoped, will complete the acceptability of the theory. (author)
Bulk viscosity of spin-one color superconductors
Energy Technology Data Exchange (ETDEWEB)
Sa' d, Basil A.
2009-08-27
The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)
Bulk viscosity of spin-one color superconductors
International Nuclear Information System (INIS)
Sa'd, Basil A.
2009-01-01
The bulk viscosity of several quark matter phases is calculated. It is found that the effect of color superconductivity is not trivial, it may suppress, or enhance the bulk viscosity depending on the critical temperature and the temperature at which the bulk viscosity is calculated. Also, is it found that the effect of neutrino-emitting Urca processes cannot be neglected in the consideration of the bulk viscosity of strange quark matter. The results for the bulk viscosity of strange quark matter are used to calculate the r-mode instability window of quark stars with several possible phases. It is shown that each possible phase has a different structure for the r-mode instability window. (orig.)
International Nuclear Information System (INIS)
Derrick, G.H.
1987-12-01
This is the second of a series of papers preparing the mathematical framework for a past light cone formulation for the quantum mechanics of particles of arbitrary mass and spin. The aim of past light cone quantum theory is to define quantum states solely in terms of data accessible to an observer, i.e. information from within his current past light cone. In order to set up such a theory one needs to define on the past light cone complete orthonormal sets of functions which belong to the appropriate representation of the Poincare group. Such functions are interpreted as energy-momentum eigenfunctions. The present paper treats the case of spin 1/2 and non-zero rest mass. (author). 7 refs
Shear viscosity and spin-diffusion coefficient of a two-dimensional Fermi gas
DEFF Research Database (Denmark)
Bruun, Georg
2012-01-01
Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components. It is demonstr......Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components....... It is demonstrated that the minimum value of the viscosity decreases with the mass ratio, since Fermi blocking becomes less efficient. We furthermore analyze recent experimental results for the quadrupole mode of a two-dimensional gas in terms of viscous damping, obtaining a qualitative agreement using no fitting...
Bulk viscosity of spin-one color superconducting strange quark matter
International Nuclear Information System (INIS)
Wang Xinyang; Shovkovy, Igor A.
2010-01-01
The bulk viscosity in spin-one color superconducting strange quark matter is calculated by taking into account the interplay between the nonleptonic and semileptonic week processes. In agreement with previous studies, it is found that the inclusion of the semileptonic processes may result in non-negligible corrections to the bulk viscosity in a narrow window of temperatures. The effect is generally more pronounced for pulsars with longer periods. Compared to the normal phase, however, this effect due to the semileptonic processes is less pronounced in spin-one color superconductors. Assuming that the critical temperature of the phase transition is much larger than 40 keV, the main effect of spin-one color superconductivity in a wide range of temperatures is an overall increase of the bulk viscosity with respect to the normal phase. The corresponding enhancement factor reaches up to about 9 in the polar and A phases, about 25 in the planar phase, and about 29 in the color-spin-locked (CSL) phase. This factor is determined by the suppression of the nonleptonic rate in color superconducting matter and, therefore, may be even larger if all quark quasiparticles happen to be gapped.
Identification of irradiated peppers by electron spin resonance, thermoluminescence and viscosity
International Nuclear Information System (INIS)
Polonia, I.; Esteves, M.P.; Andrade, M.E.; Laboratorio Nacional de Engenharia e Tecnologia Industrial, Sacavem; Empis, J.
1995-01-01
White and black pepper purchased in local retailers were analysed by electron spin resonance (ESR), thermoluminescence (TL) and viscosimetry (VISC) in order to establish a viable method for identifying possibly irradiated peppers. Samples studied were non irradiated or irradiated in a cobalt-60 plant with the absorbed doses of 3, 5, 7 and 10 kGy. Confirming the data found in the literature TL was revealed by our results the best method to identify irradiated peppers. Nevertheless, the dose received by the samples could not be estimated. The ESR signal of irradiated peppers is similar to the spectrum of cellulose radical but very short lived at ambient temperature. The study on the alteration of viscosity of heat-treated alkaline pepper suspensions indicate that VISC is a very promising method for detection of irradiated peppers. (Author)
Influence of the spin and the Weinberg-angle on the bulk viscosity of a neutrino-electron mixture
International Nuclear Information System (INIS)
Siskens, Th.J.; Weerb, Ch.G. van; Boer, W.P.H. de
1977-01-01
Results are presented for the first approximation to the bulk viscosity of a non-degenerate electron-neutrino system interacting in accordance with the Weinberg-Salam model. The influence of the electron spin and the Weinberg-angle are taken into account separately. (Auth.)
Shimokawa, Y; Matsuura, Y; Hirano, T; Sakai, K
2016-12-01
Utilizing a graphite-disk probe attached with a thin aluminum disk, we have developed a friction-free viscosity measurement system. The probe is levitated above a NdFeB magnet because of diamagnetic effect and rotated by an electromagnetically induced torque. The probe is absolutely free form mechanical friction, and therefore, the accurate measurements of the viscosity of gases can be achieved. To demonstrate the accuracy and sensitivity of our method, we measured the viscosity of 8 kinds of gases and its temperature change from 278 K to 318 K, and we confirmed a good agreement between the obtained values and literature values. This paper demonstrates that our method has the ability to measure the fluid viscosity in the order of μPa ⋅ s.
Shimokawa, Y.; Matsuura, Y.; Hirano, T.; Sakai, K.
2016-12-01
Utilizing a graphite-disk probe attached with a thin aluminum disk, we have developed a friction-free viscosity measurement system. The probe is levitated above a NdFeB magnet because of diamagnetic effect and rotated by an electromagnetically induced torque. The probe is absolutely free form mechanical friction, and therefore, the accurate measurements of the viscosity of gases can be achieved. To demonstrate the accuracy and sensitivity of our method, we measured the viscosity of 8 kinds of gases and its temperature change from 278 K to 318 K, and we confirmed a good agreement between the obtained values and literature values. This paper demonstrates that our method has the ability to measure the fluid viscosity in the order of μPa ṡ s.
Properties Of Viscose Vortex Yarns Depending On Technological Parameters Of Spinning
Directory of Open Access Journals (Sweden)
Moučková Eva
2015-06-01
Full Text Available This paper analyzes the relationship between technological parameters of spinning of 100% CV Vortex yarns of different counts and its selected geometrical parameters (a lead of helix of wrapping fibre ribbon, yarn diameter as well as yarn properties. The number of twist of wrapping fibre layer is determined. The effect of the yarn delivery speed, hollow spindle diameter, and the main draft on the hairiness, mass irregularity, tenacity, elongation, resistance to abrasion and bending rigidity of Vortex yarn is observed. The yarn properties are compared with the properties of open-end rotor spun yarns. Slivers of the same spinning lot were used for the production of both kinds of yarn. The results showed that the delivery speed in combination with spindle diameter affects yarn diameter, hairiness and abrasion resistance. Mass irregularity and imperfections of yarn is mainly affected by the main draft of drafting unit. Technological parameters of spinning do not affect the level of bending rigidity of the Vortex yarn. Tested rotor spun yarns had a larger diameter, higher hairiness, lower tenacity and higher elongation, lower mass irregularity and number of imperfections, higher abrasion resistance and lower bending rigidity compared to tested Vortex spun yarns.
Canonical ensembles and nonzero density quantum chromodynamics
International Nuclear Information System (INIS)
Hasenfratz, A.; Toussaint, D.
1992-01-01
We study QCD with nonzero chemical potential on 4 4 lattices by averaging over the canonical partition functions, or sectors with fixed quark number. We derive a condensed matrix of size 2x3xL 3 whose eigenvalues can be used to find the canonical partition functions. We also experiment with a weight for configuration generation which respects the Z(3) symmetry which forces the canonical partition function to be zero for quark numbers that are not multiples of three. (orig.)
Large Nc QCD at nonzero chemical potential
International Nuclear Information System (INIS)
Cohen, Thomas D.
2004-01-01
The general issue of large N c QCD at nonzero chemical potential is considered with a focus on understanding the difference between large N c QCD with an isospin chemical potential and large N c QCD with a baryon chemical potential. A simple diagrammatic analysis analogous to 't Hooft's analysis at μ=0 implies that the free energy with a given baryon chemical potential is equal to the free energy with an isospin chemical potential of the same value plus 1/N c corrections. Phenomenologically, these two systems behave quite differently. A scenario to explain this difference in light of the diagrammatic analysis is explored. This scenario is based on a phase transition associated with pion condensation when the isospin chemical potential exceeds m π /2; associated with this transition there is breakdown of the 1/N c expansion--in the pion condensed phase there is a distinct 1/N c expansion including a larger set of diagrams. While this scenario is natural, there are a number of theoretical issues which at least superficially challenge it. Most of these can be accommodated. However, the behavior of quenched QCD which raises a number of apparently analogous issues cannot be easily understood completely in terms of an analogous scenario. Thus, the overall issue remains open
Non-zero total correlation means non-zero quantum correlation
International Nuclear Information System (INIS)
Li, Bo; Chen, Lin; Fan, Heng
2014-01-01
We investigated the super quantum discord based on weak measurements. The super quantum discord is an extension of the standard quantum discord defined by projective measurements and also describes the quantumness of correlations. We provide some equivalent conditions for zero super quantum discord by using quantum discord, classical correlation and mutual information. In particular, we find that the super quantum discord is zero only for product states, which have zero mutual information. This result suggests that non-zero correlations can always be detected using the quantum correlation with weak measurements. As an example, we present the assisted state-discrimination method.
Institute of Scientific and Technical Information of China (English)
赵建伟
2011-01-01
To develop and produce flax/viscose 80/20 blended yarn on cotton spinning equipment, through selec-ting raw material rationally, pretreating flax fiber, improving and optimizing spinning processing, controlling each process relative humidity, strengthening equipment management and running cleaning, problems in production were resolved, fi-nally blended yarn can be spun successfully, production efficiency is above 90% , product quality can be reached better level and user quality requirements can be satisfied.%为了使用棉纺设备开发和生产亚麻/粘胶80/20混纺纱,通过合理选用原料,对亚麻进行预处理,改进和优化纺纱工艺,控制好各工序的相对湿度,加强设备管理和运转清洁工作,解决了生产中出现的问题,使各工序的纺纱顺利进行,生产效率达到90%以上,产品质量达到了较好水平,满足了用户质量要求.
International Nuclear Information System (INIS)
Hara, Takaaki; Senami, Masato; Tachibana, Akitomo
2012-01-01
The spin torque and zeta force, which govern spin dynamics, are studied by using monoatoms in their steady states. We find nonzero local spin torque in transition metal atoms, which is in balance with the counter torque, the zeta force. We show that d-orbital electrons have a crucial effect on these torques. Nonzero local chirality density in transition metal atoms is also found, though the electron mass has the effect to wash out nonzero chirality density. Distribution patterns of the chirality density are the same for Sc–Ni atoms, though the electron density distributions are different. -- Highlights: ► Nonzero local spin torque is found in the steady states of transition metal atoms. ► The spin steady state is realized by the existence of a counter torque, zeta force. ► D-orbital electrons have a crucial effect on the spin torque and zeta force. ► Nonzero local chiral density is found in spite of the washout by the electron mass. ► Chiral density distribution have the same pattern for Sc–Ni atoms.
International Nuclear Information System (INIS)
Nakata, Kouki
2013-01-01
On the basis of the Schwinger–Keldysh formalism, we have closely investigated the temperature dependence of quantum spin pumping generated using electron spin resonance. We have clarified that three-magnon splittings excite non-zero modes of magnons and characterize the temperature dependence of quantum spin pumping generated using electron spin resonance. (paper)
Neutrino Mass Models: impact of non-zero reactor angle
International Nuclear Information System (INIS)
King, Stephen F.
2011-01-01
In this talk neutrino mass models are reviewed and the impact of a non-zero reactor angle and other deviations from tri-bi maximal mixing are discussed. We propose some benchmark models, where the only way to discriminate between them is by high precision neutrino oscillation experiments.
On Reggeon field theories and nonzero vacuum expectation values
International Nuclear Information System (INIS)
Venturi, G.
1976-01-01
In this note it is obtained a satisfactory ''nonrelativistic'' reggeon theory by starting from a ''relativistic'' one, examining its ''nonrelativistic'' limit and allowing a nonzero vacuum expectation value for the pomeron field. In such a context the introduction of secondary trajectories is also studied
Viscosities in the Gluon-Plasma within a Quasiparticle Model
Bluhm, M; Redlich, K
2009-01-01
A phenomenological quasiparticle model, featuring dynamically generated self-energies of excitation modes, successfully describes lattice QCD results relevant for the QCD equation of state and related quantities both at zero and non-zero net baryon density. Here, this model is extended to study bulk and shear viscosities of the gluon-plasma within an effective kinetic theory approach. In this way, the compatibility of the employed quasiparticle ansatz with the apparent low viscosities of the strongly coupled deconfined gluonic medium is shown.
The chirality operators for Heisenberg spin systems
International Nuclear Information System (INIS)
Subrahmanyam, V.
1994-01-01
The ground state of closed Heisenberg spin chains with an odd number of sites has a chiral degeneracy, in addition to a two-fold Kramers degeneracy. A non-zero chirality implies that the spins are not coplanar, and is a measure of handedness. The chirality operator, which can be treated as a spin-1/2 operator, is explicitly constructed in terms of the spin operators, and is given as commutator of permutation operators. (author). 3 refs
Phase diagram of the Dirac spectrum at nonzero chemical potential
International Nuclear Information System (INIS)
Osborn, J. C.; Splittorff, K.; Verbaarschot, J. J. M.
2008-01-01
The Dirac spectrum of QCD with dynamical fermions at nonzero chemical potential is characterized by three regions: a region with a constant eigenvalue density, a region where the eigenvalue density shows oscillations that grow exponentially with the volume and the remainder of the complex plane where the eigenvalue density is zero. In this paper we derive the phase diagram of the Dirac spectrum from a chiral Lagrangian. We show that the constant eigenvalue density corresponds to a pion condensed phase while the strongly oscillating region is given by a kaon condensed phase. The normal phase with nonzero chiral condensate but vanishing Bose condensates coincides with the region of the complex plane where there are no eigenvalues.
Fluctuation induced critical behavior at nonzero temperature and chemical potential
International Nuclear Information System (INIS)
Splittorff, K.; Lenaghan, J.T.; Wirstam, J.
2003-01-01
We discuss phase transitions in relativistic systems as a function of both the chemical potential and temperature. The presence of a chemical potential explicitly breaks Lorentz invariance and may additionally break other internal symmetries. This introduces new subtleties in the determination of the critical properties. We discuss separately three characteristic effects of a nonzero chemical potential. First, we consider only the explicit breaking of Lorentz invariance using a scalar field theory with a global U(1) symmetry. Second, we study the explicit breaking of an internal symmetry in addition to Lorentz invariance using two-color QCD at nonzero baryonic chemical potential. Finally, we consider the spontaneous breaking of a symmetry using three-color QCD at nonzero baryonic and isospin chemical potential. For each case, we derive the appropriate three-dimensional effective theory at criticality and study the effect of the chemical potential on the fixed point structure of the β functions. We find that the order of the phase transition is not affected by the explicit breaking of Lorentz invariance but is sensitive to the breaking of additional symmetries by the chemical potential
Helicity-dependent generalized parton distributions for nonzero skewness
Energy Technology Data Exchange (ETDEWEB)
Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)
2017-09-15
We investigate the helicity-dependent generalized parton distributions (GPDs) in momentum as well as transverse position (impact) spaces for the u and d quarks in a proton when the momentum transfer in both the transverse and the longitudinal directions are nonzero. The GPDs are evaluated using the light-front wave functions of a quark-diquark model for nucleon where the wave functions are constructed by the soft-wall AdS/QCD correspondence. We also express the GPDs in the boost-invariant longitudinal position space. (orig.)
Design objectives with non-zero prescribed support displacements
DEFF Research Database (Denmark)
Pedersen, Pauli; Pedersen, Niels Leergaard
2011-01-01
When non-zero prescribed support displacements are involved in addition to design independent loads for a continuum/structure, then the objectives of minimum compliance (total elastic energy) and of maximum strength lead to different designs. This is verified by the presented sensitivities. Designs...... minimization as well as that of direct strength maximization; we choose the objective of obtaining uniform energy density and show by examples that the obtained solutions are close to fulfilling also strength maximization, with the price of increased compliance. Optimal design examples are presented...
Magnetic and electric order in the spin-1/2 XX model with three-spin interactions
Energy Technology Data Exchange (ETDEWEB)
Thakur, Pradeep; Durganandini, P. [Department of Physics, University of Pune, Ganeshkhind, Pune - 411007 (India)
2016-05-23
We study the spin-1/2 XX model in the presence of three-spin interactions of the XZX+YZY and XZY-YZX types. We solve the problem exactly and show that there is both finite magnetization and electric polarization for low non-zero strengths of the three-spin interactions.
Bulk and shear viscosities of hot and dense hadron gas
International Nuclear Information System (INIS)
Kadam, Guru Prakash; Mishra, Hiranmaya
2015-01-01
We estimate the bulk and the shear viscosity at finite temperature and baryon densities of hadronic matter within a hadron resonance gas model which includes a Hagedorn spectrum. The parameters of the Hagedorn spectrum are adjusted to fit recent lattice QCD simulations at finite chemical potential. For the estimation of the bulk viscosity we use low energy theorems of QCD for the energy momentum tensor correlators. For the shear viscosity coefficient, we estimate the same using molecular kinetic theory to relate the shear viscosity coefficient to average momentum of the hadrons in the hot and dense hadron gas. The bulk viscosity to entropy ratio increases with chemical potential and is related to the reduction of velocity of sound at nonzero chemical potential. The shear viscosity to entropy ratio on the other hand, shows a nontrivial behavior with the ratio decreasing with chemical potential for small temperatures but increasing with chemical potential at high temperatures and is related to decrease of entropy density with chemical potential at high temperature due to finite volume of the hadrons
Implications of nonzero θ13 for the neutrino mass hierarchy
International Nuclear Information System (INIS)
Ernst, D J; Cogswell, B K; Burroughs, H R; Escamilla-Roa, J; Latimer, D C
2012-01-01
The Daya Bay, RENO, and Double Chooz experiments have discovered a large non-zero value for θ 13 . We present a global analysis that includes these three experiments, Chooz, the Super-K atmospheric data, and the ν μ → ν e T2K and MINOS experiments that are sensitive to the hierarchy and the sign of θ 13 . We report preliminary results in which we fix the mixing parameters other than θ 13 to those from a recent global analysis. Given there is no evidence for a non-zero CP violation, we assume δ = 0. T2K and MINOS lie in a region of L/E where there is a hierarchy degeneracy in the limit of θ 13 → 0 and no matter interaction. For nonzero θ 13 , the symmetry is partially broken, but a degeneracy under the simultaneous exchange of both hierarchy and the sign of θ 13 remains. Matter effects break this symmetry such that the positions of the peaks in the oscillation probabilities maintain the two-fold symmetry, while the magnitude of the oscillations is sensitive to the hierarchy. This renders T2K and NOvA, with different baselines and different matter effects, better able in combination to distinguish the hierarchy and the sign of θ 13 . The present T2K and MINOS data do not distinguish between hierarchies or the sign of θ 13 , but the large value of θ 13 yields effects from atmospheric data that do. We find for normal hierarchy, positive θ 13 , sin 2 2θ 13 = 0.090 ± 0.020 and is 0.2% probable it is the correct combination; for normal hierarchy, negative θ 13 , sin 2 2θ 13 = 0.108 ± 0.023 and is 2.2% probable; for inverse hierarchy, positive θ 13 , sin 2 2θ 13 = 0.110±0.022 and is 7.1% probable; for inverse hierarchy, negative θ 13 , sin 2 2θ 13 = 0.113 ± 0.022 and is 90.5% probable, results that are inconsistent with two similar analyses.
Corrigan-Ramond Extension of QCD at Nonzero Baryon Density
DEFF Research Database (Denmark)
T. Frandsen, M.; Kouvaris, Christoforos; Sannino, F.
2006-01-01
We investigate the Corrigan-Ramond extension of one massless flavor Quantum Chromo Dynamics at nonzero quark chemical potential. Since the extension requires the fermions to transform in the two index antisymmetric representation of the gauge group, one finds that the number of possible channels ......-Grigoriev-Rubakov chiral waves. We discover, differently from the 't Hooft limit, the possibility of a colored chiral wave breaking the color symmetry as well as translation invariance....... is richer than in the 't Hooft limit. We first discuss the diquark channels and show that for a number of colors larger than three a new diquark channel appears. We then study the infinite number of color limit and show that the Fermi surface is unstable to the formation of the Deryagin...
Hopping magnetotransport via nonzero orbital momentum states and organic magnetoresistance.
Alexandrov, Alexandre S; Dediu, Valentin A; Kabanov, Victor V
2012-05-04
In hopping magnetoresistance of doped insulators, an applied magnetic field shrinks the electron (hole) s-wave function of a donor or an acceptor and this reduces the overlap between hopping sites resulting in the positive magnetoresistance quadratic in a weak magnetic field, B. We extend the theory of hopping magnetoresistance to states with nonzero orbital momenta. Different from s states, a weak magnetic field expands the electron (hole) wave functions with positive magnetic quantum numbers, m>0, and shrinks the states with negative m in a wide region outside the point defect. This together with a magnetic-field dependence of injection/ionization rates results in a negative weak-field magnetoresistance, which is linear in B when the orbital degeneracy is lifted. The theory provides a possible explanation of a large low-field magnetoresistance in disordered π-conjugated organic materials.
Graphene nanoFlakes with large spin.
Wang, Wei L; Meng, Sheng; Kaxiras, Efthimios
2008-01-01
We investigate, using benzenoid graph theory and first-principles calculations, the magnetic properties of arbitrarily shaped finite graphene fragments to which we refer as graphene nanoflakes (GNFs). We demonstrate that the spin of a GNF depends on its shape due to topological frustration of the pi-bonds. For example, a zigzag-edged triangular GNF has a nonzero net spin, resembling an artificial ferrimagnetic atom, with the spin value scaling with its linear size. In general, the principle of topological frustration can be used to introduce large net spin and interesting spin distributions in graphene. These results suggest an avenue to nanoscale spintronics through the sculpting of graphene fragments.
International Nuclear Information System (INIS)
Peskin, M.E.
1994-01-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E. [Stanford Univ., CA (United States)
1994-12-01
When the strong interactions were a mystery, spin seemed to be just a complication on top of an already puzzling set of phenomena. But now that particle physicists have understood the strong, weak, and electromagnetic interactions, to be gauge theories, with matter built of quarks and leptons, it is recognized that the special properties of spin 1/2 and spin 1 particles have taken central role in the understanding of Nature. The lectures in this summer school will be devoted to the use of spin in unravelling detailed questions about the fundamental interactions. Thus, why not begin by posing a deeper question: Why is there spin? More precisely, why do the basic pointlike constituents of Nature carry intrinsic nonzero quanta of angular momentum? Though the authos has found no definite answer to this question, the pursuit of an answer has led through a wonderful tangle of speculations on the deep structure of Nature. Is spin constructed or is it fundamental? Is it the requirement of symmetry? In the furthest flights taken, it seems that space-time itself is too restrictive a notion, and that this must be generalized in order to gain a full appreciation of spin. In any case, there is no doubt that spin must play a central role in unlocking the mysteries of fundamental physics.
International Nuclear Information System (INIS)
Entin-Wohlman, O.
2005-01-01
Full Text:The spin-Hall effect is described. The Rashba and Dresselhaus spin-orbit interactions are both shown to yield the low temperature spin-Hall effect for strongly localized electrons coupled to phonons. A frequency-dependent electric field E(ω) generates a spin-polarization current, normal to E, due to interference of hopping paths. At zero temperature the corresponding spin-Hall conductivity is real and is proportional to ω 2 . At non-zero temperatures the coupling to the phonons yields an imaginary term proportional to ω. The interference also yields persistent spin currents at thermal equilibrium, at E = 0. The contributions from the Dresselhaus and Rashba interactions to the interference oppose each other
Solutions of q-deformed equations with quantum conformal symmetry and nonzero spin
International Nuclear Information System (INIS)
Dobrev, V.K.; Gushterski, R.I.; Petrov, S.T.
1998-09-01
We consider the construction of explicit solutions of a hierarchy of q-deformed equations which are (conditionally) quantum conformal invariant. We give two types of solutions - polynomial solutions and solutions in terms of q-deformations of the plane wave. We use two q-deformations of the plane wave as a formal power series in the noncommutative coordinates of q-Minkowski space-time and four-momenta. One q-plane wave was proposed earlier by the first named author and B.S. Kostadinov, the other is new. The difference between the two is that they are written in conjugated bases. These q-plane waves are used here for the construction of solutions of the massless Dirac equation - one is used for the neutrino, the other for the antineutrino. It is also interesting that the neutrino solutions are deformed only through the q-pane wave, while the prefactor is classical. Thus, we can speak of a definite left-right asymmetry of the quantum conformal deformation of the neutrino-antineutrino system. (author)
Performance of heat engines with non-zero heat capacity
International Nuclear Information System (INIS)
Odes, Ron; Kribus, Abraham
2013-01-01
Highlights: ► Finite heat capacity is a second irreversibility mechanism in addition to thermal resistance. ► Heat capacity introduces thermal transients and reverse heat flow. ► Engine maximum power and efficiency are lower for finite heat capacity. ► Implementing the optimal engine cycle requires active control. - Abstract: The performance of a heat engine is analyzed subject to two types of irreversibility: a non-zero heat capacity, together with the more common finite heat transfer rate between the engine and the external heat reservoirs. The heat capacity represents an engine body that undergoes significant temperature variations during the engine cycle. An option to cut off the heat exchange between the engine and the external surrounding for part of the engine cycle is also explored. A variational approach was taken to find the engine’s internal temperature profile (which defines the internal thermodynamic cycle) that would produce maximum power. The maximum power is shown to be lower than the case of zero heat capacity, due to a loss of heat that is stored in the engine body and then lost, bypassing the thermodynamic cycle. The maximum efficiency and the efficiency at maximum power are also lower than the zero heat capacity case. Similar to the Curzon–Ahlborn analysis, power can be traded for increased efficiency, but for high heat capacity, the range of efficiency that is available for such a trade is diminished. Isolating the engine during part of the cycle reduces maximum power, but the efficiency at maximum power and the maximum efficiency are improved, due to better exploitation of heat stored in the engine body. This might be useful for real engines that are limited by the internal energy change during a single engine cycle or by the operating frequency, leading to a broader power–efficiency curve.
Should tsunami simulations include a nonzero initial horizontal velocity?
Lotto, Gabriel C.; Nava, Gabriel; Dunham, Eric M.
2017-08-01
Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require initial conditions on sea surface height and depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). Full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor confirm that substantial horizontal momentum is imparted to the ocean. However, almost all of that initial momentum is carried away by ocean acoustic waves, with negligible momentum imparted to the tsunami. We also compare tsunami propagation in each simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial velocity. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves from ocean acoustic and seismic waves at some final time, and backpropagating the tsunami waves to their initial state by solving the
Nuclear and hadronic reaction mechanisms producing spin asymmetry
Indian Academy of Sciences (India)
naka
are predominantly u and d quarks, act as the leading partons to form the hyperons. Extension of the quark recombination concept with this mechanism is successful in providing a good account of the anomalous spin observables. Another kind of anomaly, the non-zero analysing power and spin depolarization in the A ...
Technological characteristics of meat - viscosity
DIBĎÁK, Tomáš
2012-01-01
This bachelor thesis is focused on the technological characteristics of meat, mainly viscosity of meat. At the beginning I dealt with construction of meat and various types of meat: beef, veal, pork, mutton, rabbit, poultry and venison. Then I described basic chemical composition of meat and it?s characteristic. In detail I dealt with viscosity of meat. Viscosity is the ability of meat to bind water both own and added. I mentioned influences, which effects viscosity and I presented the possib...
Dynamic viscosity of polymer solutions
Energy Technology Data Exchange (ETDEWEB)
Peterlin, A
1982-03-01
The dynamic viscosity investigation of solutions of long chain polymers in very viscous solvents has definitely shown the existence of the low and high frequency plateau with the gradual transition between them. In both extreme cases the extrapolation of the measured Newtonian viscosities of the plateaus to the infinite dilution yields the limiting intrinsic viscosities. Such a behavior is expected from the dynamic intrinsic viscosity of the necklace model of the linear polymer with finite internal viscosity. The plateau at low frequency shows up in any model of polymer solution. This work shows the constant dynamic intrinsic viscosity in both extreme cases is well reproducible by the necklace model with the internal viscosity acting only between the beads on the same link. 20 references.
Kim, Bom Soo
2018-05-01
We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physical quantities based on symmetries and have been previously applied to quantum Hall systems.
Generalization of Penrose's helicity theorem for space-times with nonzero dual mass
International Nuclear Information System (INIS)
Magnon, A.
1986-01-01
An algebraic definition of the helicity operator H is proposed for vacuum stationary and asymptotically flat wormholes (i.e., space-times where the manifold of orbits of the stationary Killing field has S 2 x R topology). The definition avoids the use of momentum space or Fourier decomposition of the gravitational degrees of freedom into positive and negative frequency parts, and is essentially geared to emphasize the role of nontrivial topology. It is obtained via the introduction of a total spin vector S/sup α/ derived from the dual Bondi four-momentum *P/sup α/, both vectors originating in the presence of nontrivial homotopy groups. (Space-times with nonzero dual mass can be characterized by a conformal null boundary I having the topology of an S 1 fiber bundle over S 2 with possible identifications along the fiber: lens space: or equivalently vanishing Bondi--News.) It is shown that S/sup α/ is a constant multiple of P/sup α/, the total Bondi four-momentum, and if in addition the space-time admits a point at spacelike infinity, there is strong support for the past limit of S/sup α/ to be a null vector. This can be viewed as a generalization of Penrose's result on the Pauli--Lubanski vector for classical zero rest-mass particles. The helicity operator at null infinity is rooted in the topology and turns out to be essentially the Hodge duality operator(*). The notion of duality appears as a global concept. Under such conditions, self- and anti-self-dual modes of the Weyl curvature could be viewed as states originating in the nontrivial topology
Hall viscosity of hierarchical quantum Hall states
Fremling, M.; Hansson, T. H.; Suorsa, J.
2014-03-01
Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.
Ergodic Capacity Analysis of Free-Space Optical Links with Nonzero Boresight Pointing Errors
Ansari, Imran Shafique; Alouini, Mohamed-Slim; Cheng, Julian
2015-01-01
A unified capacity analysis of a free-space optical (FSO) link that accounts for nonzero boresight pointing errors and both types of detection techniques (i.e. intensity modulation/ direct detection as well as heterodyne detection) is addressed
Lr-Lp Stability of the Incompressible Flows with Nonzero Far-Field Velocity
Directory of Open Access Journals (Sweden)
Jaiok Roh
2011-01-01
Full Text Available We consider the stability of stationary solutions w for the exterior Navier-Stokes flows with a nonzero constant velocity u∞ at infinity. For u∞=0 with nonzero stationary solution w, Chen (1993, Kozono and Ogawa (1994, and Borchers and Miyakawa (1995 have studied the temporal stability in Lp spaces for 11 and obtain Lr-Lp stability as Kozono and Ogawa and Borchers and Miyakawa obtained for u∞=0.
Pressure Effect on Extensional Viscosity
DEFF Research Database (Denmark)
Christensen, Jens Horslund; Kjær, Erik Michael
1999-01-01
The primary object of these experiments was to investigate the influence of hydrostatic pressure on entrance flow. The effect of pressure on shear and extensional viscosity was evaluated using an axis symmetric capillary and a slit die where the hydrostatic pressure was raised with valves....... The experiments show a significant increase in extensional viscosity with increasing pressure....
Spin relaxation in nanowires by hyperfine coupling
International Nuclear Information System (INIS)
Echeverria-Arrondo, C.; Sherman, E.Ya.
2012-01-01
Hyperfine interactions establish limits on spin dynamics and relaxation rates in ensembles of semiconductor quantum dots. It is the confinement of electrons which determines nonzero hyperfine coupling and leads to the spin relaxation. As a result, in nanowires one would expect the vanishing of this effect due to extended electron states. However, even for relatively clean wires, disorder plays a crucial role and makes electron localization sufficient to cause spin relaxation on the time scale of the order of 10 ns. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
The viscosity of dimethyl ether
DEFF Research Database (Denmark)
Sivebæk, Ion Marius; Jakobsen, Jørgen
2007-01-01
and NOx traps are installed. The most significant problem encountered when engines are fuelled with DME is that the injection equipment breaks down prematurely due to extensive wear. This tribology issue can be explained by the very low lubricity and viscosity of DME. Recently, laboratory methods have...... appeared capable of measuring these properties of DME. The development of this is rendered difficult because DME has to be pressurised to remain in the liquid state and it dissolves most of the commercially available elastomers. This paper deals fundamentally with the measurement of the viscosity of DME...... and extends the discussion to the difficulty of viscosity establishing of very thin fluids. The main issue here is that it is not easy to calibrate the viscometers in the very low viscosity range corresponding to about one-fifth of that of water. The result is that the low viscosity is measured at high...
Capillary waves with surface viscosity
Shen, Li; Denner, Fabian; Morgan, Neal; van Wachem, Berend; Dini, Daniele
2017-11-01
Experiments over the last 50 years have suggested a correlation between the surface (shear) viscosity and the stability of a foam or emulsion. With recent techniques allowing more accurate measurements of the elusive surface viscosity, we examine this link theoretically using small-amplitude capillary waves in the presence of the Marangoni effect and surface viscosity modelled via the Boussinesq-Scriven model. The surface viscosity effect is found to contribute a damping effect on the amplitude of the capillary wave with subtle differences to the effect of the convective-diffusive Marangoni transport. The general wave dispersion is augmented to take into account the Marangoni and surface viscosity effects, and a first-order correction to the critical damping wavelength is derived. The authors acknowledge the financial support of the Shell University Technology Centre for fuels and lubricants.
Viscosity bound violation in holographic solids and the viscoelastic response
Energy Technology Data Exchange (ETDEWEB)
Alberte, Lasma [Abdus Salam International Centre for Theoretical Physics (ICTP),Strada Costiera 11, 34151, Trieste (Italy); Baggioli, Matteo [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST),Campus UAB, 08193 Bellaterra, Barcelona (Spain); Department of Physics, Institute for Condensed Matter Theory, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States); Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST),Campus UAB, 08193 Bellaterra, Barcelona (Spain)
2016-07-14
We argue that the Kovtun-Son-Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a non-zero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.
Viscosity bound violation in holographic solids and the viscoelastic response
International Nuclear Information System (INIS)
Alberte, Lasma; Baggioli, Matteo; Pujolàs, Oriol
2016-01-01
We argue that the Kovtun-Son-Starinets (KSS) lower bound on the viscosity to entropy density ratio holds in fluid systems but is violated in solid materials with a non-zero shear elastic modulus. We construct explicit examples of this by applying the standard gauge/gravity duality methods to massive gravity and show that the KSS bound is clearly violated in black brane solutions whenever the massive gravity theories are of solid type. We argue that the physical reason for the bound violation relies on the viscoelastic nature of the mechanical response in these materials. We speculate on whether any real-world materials can violate the bound and discuss a possible generalization of the bound that involves the ratio of the shear elastic modulus to the pressure.
The quenched limit of lattice QCD at non-zero baryon number
International Nuclear Information System (INIS)
Engels, J.; Kaczmarek, O.; Karsch, F.; Laermann, E.
1999-01-01
We discuss the thermodynamics of gluons in the background of static quark sources. In order to do so we formulate the quenched limit of QCD at non-zero baryon number. A first numerical analysis of this system shows that it undergoes a smooth deconfining transition. We find evidence for a region of coexisting phases that becomes broader with increasing baryon number density. Although the action is in our formulation explicitly Z(3) symmetric the Polyakov loop expectation value becomes non-zero already in the low temperature phase. It indicates that the heavy quark potential stays finite at large distances, i.e. the string between static quarks breaks at non-zero baryon number density already in the hadronic phase
Viscosity of particle laden films
Timounay, Yousra; Rouyer, Florence
2017-06-01
We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational) of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.
S-parameter at Non-Zero Temperature and Chemical Potential
DEFF Research Database (Denmark)
Søndergaard, Ulrik Ishøj; Sannino, Francesco; Pica, Claudio
2011-01-01
We compute the finite-temperature and matter density corrections to the S-parameter at the one loop level. At non-zero temperature T and matter density Lorentz symmetry breaks and therefore we suggest a suitable generalization of the S-parameter. By computing the plasma correction, we discover...... a reduction of the S-parameter in the physically relevant region of small external momenta for any non-zero chemical potential and T. In particular, the S-parameter vanishes at small m/T, where m is the mass of the fermions, due to the finite extent of the temporal direction. Our results are directly...
On the proposed second law paradox in a nonzero floating potential
International Nuclear Information System (INIS)
Cruden, Brett A.
2001-01-01
A second law paradox was previously proposed for a plasma contained within an infinite blackbody. The proposed second law paradox was dependent on the plasma having a nonzero floating potential [D. P. Sheehan and J. D. Means, Phys. Plasmas 5, 2469 (1998)]. This work demonstrates that a nonzero floating potential is indicative of some energy contained within the plasma that can be withdrawn from the plasma without violation of the second law. Furthermore, it is shown from the probe theory that the plasma in this hypothetical configuration must have a floating potential of zero at steady state
International Nuclear Information System (INIS)
Bruk, Yulii M; Voloshchuk, Aleksandr N
2012-01-01
The functional Pais equation for scattering phases with nonzero orbital momenta is solved in the case of low-energy particles. For short-range screened potentials, in particular, Yukawa or Thomas-Fermi potentials, the Pais equation is shown to reduce to transcendental equations. For the potentials varying ∼r - n , n > 0, simple algebraic equations are obtained for determining the phases δ l , l≠0. Possible applications of the Pais approximation to the problem of finding resonance regimes in the scattering of low-energy particles with nonzero orbital momenta are discussed. (methodological notes)
Quantum dynamics of nuclear spins and spin relaxation in organic semiconductors
Mkhitaryan, V. V.; Dobrovitski, V. V.
2017-06-01
We investigate the role of the nuclear-spin quantum dynamics in hyperfine-induced spin relaxation of hopping carriers in organic semiconductors. The fast-hopping regime, when the carrier spin does not rotate much between subsequent hops, is typical for organic semiconductors possessing long spin coherence times. We consider this regime and focus on a carrier random-walk diffusion in one dimension, where the effect of the nuclear-spin dynamics is expected to be the strongest. Exact numerical simulations of spin systems with up to 25 nuclear spins are performed using the Suzuki-Trotter decomposition of the evolution operator. Larger nuclear-spin systems are modeled utilizing the spin-coherent state P -representation approach developed earlier. We find that the nuclear-spin dynamics strongly influences the carrier spin relaxation at long times. If the random walk is restricted to a small area, it leads to the quenching of carrier spin polarization at a nonzero value at long times. If the random walk is unrestricted, the carrier spin polarization acquires a long-time tail, decaying as 1 /√{t } . Based on the numerical results, we devise a simple formula describing the effect quantitatively.
Quantum communication through a spin ring with twisted boundary conditions
International Nuclear Information System (INIS)
Bose, S.; Jin, B.-Q.; Korepin, V.E.
2005-01-01
We investigate quantum communication between the sites of a spin ring with twisted boundary conditions. Such boundary conditions can be achieved by a magnetic flux through the ring. We find that a nonzero twist can improve communication through finite odd-numbered rings and enable high-fidelity multiparty quantum communication through spin rings (working near perfectly for rings of five and seven spins). We show that in certain cases, the twist results in the complete blockage of quantum-information flow to a certain site of the ring. This effect can be exploited to interface and entangle a flux qubit and a spin qubit without embedding the latter in a magnetic field
Motion of particles of non-zero rest masses exterior to ...
African Journals Online (AJOL)
In this article, we extend the metric tensor exterior to astrophysically real or imaginary spherical distributions of mass whose tensor field varies with polar angle only; to derive equations of motion for test particles in this field. The time, radial, polar and azimuthal equations of motion for particles of non-zero rest masses moving ...
Gravitational radiation in relativistic theory of gravity with a nonzero graviton mass
International Nuclear Information System (INIS)
Vlasov, A.A.; Chugreev, Yu.V.
1987-01-01
Radiation of gravitation waves have been analysed in the linear approximation of the relative theory of gravity, with the mass of graviton being nonzero. It is shown that the main contribution to the energy loss due to gravitational radiation has been described by the well-known quadrupole formula. Linear approximation applicability conditions have been analysed
First non-zero terms for the Taylor expansion at 1 of the Conway potential function
Buryak, A.Y.
2011-01-01
The Conway potential function ∇ L (t 1,...,t l ) of an ordered oriented link L = L 1 ∪ L 2 ∪ ... ∪ L l ⊂ S 3 is considered. In general, this function is not determined by the linking numbers and the Conway potential functions of the components. However, the first two nonzero terms of the Taylor
Generalized quantization scheme for two-person non-zero sum games
International Nuclear Information System (INIS)
Nawaz, Ahmad; Toor, A H
2004-01-01
We proposed a generalized quantization scheme for non-zero sum games which can be reduced to the two existing quantization schemes under an appropriate set of parameters. Some other important situations are identified which are not apparent in the two existing quantization schemes
An estimate of the bulk viscosity of the hadronic medium
Sarwar, Golam; Chatterjee, Sandeep; Alam, Jane
2017-05-01
The bulk viscosity (ζ) of the hadronic medium has been estimated within the ambit of the Hadron Resonance Gas (HRG) model including the Hagedorn density of states. The HRG thermodynamics within a grand canonical ensemble provides the mean hadron number as well as its fluctuation. The fluctuation in the chemical composition of the hadronic medium in the grand canonical ensemble can result in non-zero divergence of the hadronic fluid flow velocity, allowing us to estimate the ζ of the hadronic matter up to a relaxation time. We study the influence of the hadronic spectrum on ζ and find its correlation with the conformal symmetry breaking measure, ε -3P. We estimate ζ along the contours with constant, S/{N}B (total entropy/net baryon number) in the T-μ plane (temperature-baryonic chemical potential) for S/{N}B=30,45 and 300. We also assess the value of ζ on the chemical freeze-out curve for various centers of mass energy (\\sqrt{{s}{NN}}) and find that the bulk viscosity to entropy density ratio, \\zeta /s is larger in the energy range of the beam energy scan program of RHIC, low energy SPS run, AGS, NICA and FAIR, than LHC energies.
Comparison of parallel viscosity with neoclassical theory
International Nuclear Information System (INIS)
Ida, K.; Nakajima, N.
1996-04-01
Toroidal rotation profiles are measured with charge exchange spectroscopy for the plasma heated with tangential NBI in CHS heliotron/torsatron device to estimate parallel viscosity. The parallel viscosity derived from the toroidal rotation velocity shows good agreement with the neoclassical parallel viscosity plus the perpendicular viscosity. (μ perpendicular = 2 m 2 /s). (author)
Positivity of spin foam amplitudes
International Nuclear Information System (INIS)
Baez, John C; Christensen, J Daniel
2002-01-01
The amplitude for a spin foam in the Barrett-Crane model of Riemannian quantum gravity is given as a product over its vertices, edges and faces, with one factor of the Riemannian 10j symbols appearing for each vertex, and simpler factors for the edges and faces. We prove that these amplitudes are always nonnegative for closed spin foams. As a corollary, all open spin foams going between a fixed pair of spin networks have real amplitudes of the same sign. This means one can use the Metropolis algorithm to compute expectation values of observables in the Riemannian Barrett-Crane model, as in statistical mechanics, even though this theory is based on a real-time (e iS ) rather than imaginary-time e -S path integral. Our proof uses the fact that when the Riemannian 10j symbols are nonzero, their sign is positive or negative depending on whether the sum of the ten spins is an integer or half-integer. For the product of 10j symbols appearing in the amplitude for a closed spin foam, these signs cancel. We conclude with some numerical evidence suggesting that the Lorentzian 10j symbols are always nonnegative, which would imply similar results for the Lorentzian Barrett-Crane model
Suprathermal viscosity of dense matter
International Nuclear Information System (INIS)
Alford, Mark; Mahmoodifar, Simin; Schwenzer, Kai
2010-01-01
Motivated by the existence of unstable modes of compact stars that eventually grow large, we study the bulk viscosity of dense matter, taking into account non-linear effects arising in the large amplitude regime, where the deviation μ Δ of the chemical potentials from chemical equilibrium fulfills μ Δ > or approx. T. We find that this supra-thermal bulk viscosity can provide a potential mechanism for saturating unstable modes in compact stars since the viscosity is strongly enhanced. Our study confirms previous results on strange quark matter and shows that the suprathermal enhancement is even stronger in the case of hadronic matter. We also comment on the competition of different weak channels and the presence of suprathermal effects in various color superconducting phases of dense quark matter.
Viscosity Control Experiment Feasibility Study
Energy Technology Data Exchange (ETDEWEB)
Morris, Heidi E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bradley, Paul Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2018-01-31
Turbulent mix has been invoked to explain many results in Inertial Confinement Fusion (ICF) and High Energy Density (HED) physics, such as reduced yield in capsule implosions. Many ICF capsule implosions exhibit interfacial instabilities seeded by the drive shock, but it is not clear that fully developed turbulence results from this. Many simulations use turbulent mix models to help match simulation results to data, but this is not appropriate if turbulence is not present. It would be useful to have an experiment where turbulent mixing could be turned on or off by design. The use of high-Z dopants to modify viscosity and the resulting influence on turbulence is considered here. A complicating factor is that the plasma in some implosions can become strongly coupled, which makes the Spitzer expression for viscosity invalid. We first consider equations that cover a broad parameter space in temperature and density to address regimes for various experimental applications. Next, a previous shock-tube and other ICF experiments that investigate viscosity or use doping to examine the effects on yield are reviewed. How viscosity and dopants play a role in capsule yield depends on the region and process under consideration. Experiments and simulations have been performed to study the effects of viscosity on both the hot spot and the fuel/ablator mix. Increases in yield have been seen for some designs, but not all. We then discuss the effect of adding krypton dopant to the gas region of a typical OMEGA and a 2-shock NIF implosion to determine approximately the effect of adding dopant on the computed Reynolds number. Recommendations for a path forward for possible experiments using high-Z dopants to affect viscosity and turbulence are made.
Bulk viscosity and cosmological evolution
International Nuclear Information System (INIS)
Beesham, A.
1996-01-01
In a recent interesting paper, Pimentel and Diaz-Rivera (Nuovo Cimento B, 109(1994) 1317) have derived several solutions with bulk viscosity in homogeneous and isotropic cosmological models. They also discussed the properties of these solutions. In this paper the authors relate the solutions of Pimentel and Diaz-Rivera by simple transformations to previous solutions published in the literature, showing that all the solutions can be derived from the known existing ones. Drawbacks to these approaches of studying bulk viscosity are pointed out, and better approaches indicated
Viscosity kernel of molecular fluids
DEFF Research Database (Denmark)
Puscasu, Ruslan; Todd, Billy; Daivis, Peter
2010-01-01
, temperature, and chain length dependencies of the reciprocal and real-space viscosity kernels are presented. We find that the density has a major effect on the shape of the kernel. The temperature range and chain lengths considered here have by contrast less impact on the overall normalized shape. Functional...... forms that fit the wave-vector-dependent kernel data over a large density and wave-vector range have also been tested. Finally, a structural normalization of the kernels in physical space is considered. Overall, the real-space viscosity kernel has a width of roughly 3–6 atomic diameters, which means...
Prinari, Barbara; Demontis, Francesco; Li, Sitai; Horikis, Theodoros P.
2018-04-01
The inverse scattering transform (IST) with non-zero boundary conditions at infinity is developed for an m × m matrix nonlinear Schrödinger-type equation which, in the case m = 2, has been proposed as a model to describe hyperfine spin F = 1 spinor Bose-Einstein condensates with either repulsive interatomic interactions and anti-ferromagnetic spin-exchange interactions (self-defocusing case), or attractive interatomic interactions and ferromagnetic spin-exchange interactions (self-focusing case). The IST for this system was first presented by Ieda et al. (2007) , using a different approach. In our formulation, both the direct and the inverse problems are posed in terms of a suitable uniformization variable which allows to develop the IST on the standard complex plane, instead of a two-sheeted Riemann surface or the cut plane with discontinuities along the cuts. Analyticity of the scattering eigenfunctions and scattering data, symmetries, properties of the discrete spectrum, and asymptotics are derived. The inverse problem is posed as a Riemann-Hilbert problem for the eigenfunctions, and the reconstruction formula of the potential in terms of eigenfunctions and scattering data is provided. In addition, the general behavior of the soliton solutions is analyzed in detail in the 2 × 2 self-focusing case, including some special solutions not previously discussed in the literature.
Viscosity of particle laden films
Directory of Open Access Journals (Sweden)
Timounay Yousra
2017-01-01
Full Text Available We perform retraction experiments on soap films where large particles bridge the two interfaces. Local velocities are measured by PIV during the unstationnary regime. The velocity variation in time and space can be described by a continuous fluid model from which effective viscosity (shear and dilatational of particulate films is measured. The 2D effective viscosity of particulate films η2D increases with particle surface fraction ϕ: at low ϕ, it tends to the interfacial dilatational viscosity of the liquid/air interfaces and it diverges at the critical particle surface fraction ϕc ≃ 0.84. Experimental data agree with classical viscosity laws of hard spheres suspensions adapted to the 2D geometry, assuming viscous dissipation resulting from the squeeze of the liquid/air interfaces between the particles. Finally, we show that the observed viscous dissipation in particulate films has to be considered to describe the edge velocity during a retraction experiment at large particle coverage.
Effective viscosity of confined hydrocarbons
DEFF Research Database (Denmark)
Sivebæk, Ion Marius; Samoilov, V.N.; Persson, B.N.J.
2012-01-01
We present molecular dynamics friction calculations for confined hydrocarbon films with molecular lengths from 20 to 1400 carbon atoms. We find that the logarithm of the effective viscosity ηeff for nanometer-thin films depends linearly on the logarithm of the shear rate: log ηeff=C-nlog γ̇, where...
Bulk viscosity of molecular fluids
Jaeger, Frederike; Matar, Omar K.; Müller, Erich A.
2018-05-01
The bulk viscosity of molecular models of gases and liquids is determined by molecular simulations as a combination of a dilute gas contribution, arising due to the relaxation of internal degrees of freedom, and a configurational contribution, due to the presence of intermolecular interactions. The dilute gas contribution is evaluated using experimental data for the relaxation times of vibrational and rotational degrees of freedom. The configurational part is calculated using Green-Kubo relations for the fluctuations of the pressure tensor obtained from equilibrium microcanonical molecular dynamics simulations. As a benchmark, the Lennard-Jones fluid is studied. Both atomistic and coarse-grained force fields for water, CO2, and n-decane are considered and tested for their accuracy, and where possible, compared to experimental data. The dilute gas contribution to the bulk viscosity is seen to be significant only in the cases when intramolecular relaxation times are in the μs range, and for low vibrational wave numbers (<1000 cm-1); This explains the abnormally high values of bulk viscosity reported for CO2. In all other cases studied, the dilute gas contribution is negligible and the configurational contribution dominates the overall behavior. In particular, the configurational term is responsible for the enhancement of the bulk viscosity near the critical point.
Fission hindrance and nuclear viscosity
Indian Academy of Sciences (India)
is in exact conformity with all the previous measurements [7,10–13]. The CASCADE calculations (solid lines in figure 1) used in this first level of analysis do not include any viscosity or temperature-dependent nuclear level density parameter a. The γ and particle decay are calculated using the standard prescriptions as ...
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2012-01-01
In a new branch of physics and technology called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called 'spin current', are manipulated and controlled together. This book provides an introduction and guide to the new physics and application of spin current.
Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill
2018-01-01
Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708
Geometrical spin symmetry and spin
International Nuclear Information System (INIS)
Pestov, I. B.
2011-01-01
Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.
Second viscosity effects in cosmology
International Nuclear Information System (INIS)
Potupa, A.S.
1978-01-01
The object of the investigation is to draw attention to two important aspects in the choice of a substance model, namely an allowance for the viscosity and behaviour of the metrics at the later stages of cosmological evolution. It is shown that in homogeneous cosmological models taking into account the viscosity there are solutions which realize interpolation between the Fridman and steady-state regimes. In a closed model a solution is obtained which corresponds to the ''curvature compensation'' regime with an unboundedly increasing radius. The problem of compensation of singularity at t → o is discussed as well as the choice of the equations of state for the early (hadron) stages of cosmological evolution in connection with the hydrodynamic theory of multiple hadron production
Effect of viscosity on learned satiation
Mars, M.; Hogenkamp, P.S.; Gosses, A.M.; Stafleu, A.; Graaf, C.de
2009-01-01
A higher viscosity of a food leads to a longer orosensory stimulation. This may facilitate the learned association between sensory signals and metabolic consequences. In the current study we investigated the effect of viscosity on learned satiation. In two intervention groups a low viscosity (LV)
Spin correlations in the decays of two unstable particles
International Nuclear Information System (INIS)
Lednicky, R.; Lyuboshitz, V.L.; Lyuboshitz, V.V.
2004-01-01
The general theory of angular correlations in the decays of two arbitrarily polarized particles (resonances), connected with the two-particle spin correlations, is constructed. In particular, the angular correlations between the flight directions of the decay, products of two identical particles with close momenta are considered in the model of independent particle sources emitting unpolarized particles with a nonzero spin. It is established that in this case the angular correlations reflect the spin correlations caused by the effects of quantum statistics and final-state interaction. (author)
Excitation spectrum of Heisenberg spin ladders
International Nuclear Information System (INIS)
Barnes, T.; Dagotto, E.; Riera, J.; Swanson, E.S.
1993-01-01
Heisenberg antiferromagnetic spin ''ladders'' (two coupled spin chains) are low-dimensional magnetic systems which for S=1/2 interpolate between half-integer-spin chains, when the chains are decoupled, and effective integer-spin one-dimensional chains in the strong-coupling limit. The spin-1/2 ladder may be realized in nature by vanadyl pyrophosphate, (VO) 2 P 2 O 7 . In this paper we apply strong-coupling perturbation theory, spin-wave theory, Lanczos techniques, and a Monte Carlo method to determine the ground-state energy and the low-lying excitation spectrum of the ladder. We find evidence of a nonzero spin gap for all interchain couplings J perpendicular >0. A band of spin-triplet excitations above the gap is also analyzed. These excitations are unusual for an antiferromagnet, since their long-wavelength dispersion relation behaves as (k-k 0 ) 2 (in the strong-coupling limit J perpendicular much-gt J, where J is the in-chain antiferromagnetic coupling). Their band is folded, with a minimum energy at k 0 =π, and a maximum between k 1 =π/2 (for J perpendicular =0) and 0 (for J perpendicular =∞). We also give numerical results for the dynamical structure factor S(q,ω), which can be determined in neutron scattering experiments. Finally, possible experimental techniques for studying the excitation spectrum are discussed
Slabs and plumes crossing a broad density/viscosity discontinuity in the mid lower mantle (Invited)
Morra, G.; Yuen, D. A.; Cammarano, F.
2010-12-01
The depth-dependence of the viscosity is not well constrained by observations alone. Non-monotonic viscosity profiles have been often proposed in the past and are in the range of possible solutions. Such viscosity structures find new vigor on the light of recent discoveries of iron-spin transition in mantle minerals and their consequences on seismic interpretation [1] and dynamical evolution of the mantle. Using the recently introduced Multipole-Accelerated Boundary Element Method, we study the entire space of possible models of plumes and slabs crossing a broad region where mantle viscosity and/or density are non-monotonic [2]. The viscosity peak considered are 1, to 100 times then the rest of the mantle, while the density step considered is 0 to 2% different from the adiabatic profile. We identify the critical viscosity and density profiles that produce stalling or penetration of slabs and the continuous or intermittent penetration of plumes through the mid lower mantle. Based on our results, we envisage possible dynamic scenarios that would separate the mantle in two regions,suggesting a long term bifurcation originating, probably, from the spin transition itself. References: [1] Cammarano, F.; Marquardt, H.; Speziale, S.; Tackley, P. J., 2010, Role of iron-spin transition in ferropericlase on seismic interpretation: A broad thermochemical transition in the mid mantle? Geophysical Research Letters, Volume 37, Issue 3, CiteID L03308 [2] G. Morra, D. A. Yuen, L. Boschi, P. Chatelain, P. Koumoutzakos and P. Tackley, 2010, The fate of the slabs interacting with a smooth viscosity discontinuity in the mid lower mantle, Physics of the Earth and Planetary Interiors, Volume 180, Issues 3-4, 271-282, doi:10.1016/j.pepi.2010.04.001
Spin observables in the NN→YΘ+ reaction at the threshold and quantum numbers of the Θ+ pentaquark
International Nuclear Information System (INIS)
Uzikov, Yu.N.
2004-01-01
General formulae for the spin-spin correlation parameters C i,j and spin-transfer coefficients K i j are derived for the reaction NN→YΘ + at the threshold for an arbitrary spin of the pentaquark Θ + . It is shown that measurement of the sign of C y,y or observation of the non-zero polarization transfer from the nucleon to the hyperon Y allows one to determine the P-parity of the Θ + unambiguously and independently of the spin of the Θ + . Measurement of these spin observables in both the pp- and pn-channels of this reaction determines also the isospin of the Θ +
Longitudinal and bulk viscosities of expanded rubidium
International Nuclear Information System (INIS)
Zaheri, Ali Hossein Mohammad; Srivastava, Sunita; Tankeshwar, K
2003-01-01
First three non-vanishing sum rules for the bulk and longitudinal stress auto-correlation functions have been evaluated for liquid Rb at six thermodynamic states along the liquid-vapour coexistence curve. The Mori memory function formalism and the frequency sum rules have been used to calculate bulk and longitudinal viscosities. The results thus obtained for the ratio of bulk viscosity to shear viscosity have been compared with experimental and other theoretical predictions wherever available. The values of the bulk viscosity have been found to be more than the corresponding values of the shear viscosity for all six thermodynamic states investigated here
Neutron transport assembly calculation with non-zero net current boundary condition
International Nuclear Information System (INIS)
Jo, Chang Keun
1993-02-01
Fuel assembly calculation for the homogenized group constants is one of the most important parts in the reactor core analysis. The homogenized group constants of one a quarter assembly are usually generated for the nodal calculation of the reactor core. In the current nodal calculation, one or a quarter of the fuel assembly corresponds to a unit node. The homogenized group constant calculation for a fuel assembly proceeds through cell spectrum calculations, group condensation and cell homogenization calculations, two dimensional fuel assembly calculation, and then depletion calculations of fuel rods. To obtain the assembly wise homogenized group constants, the two dimensional transport calculation is usually performed. Most codes for the assembly wise homogenized group constants employ a zero net current boundary condition. CASMO-3 is such a code that is in wide use. The zero net current boundary condition is plausible and valid in an infinite reactor composed of the same kind of assemblies. However, the reactor is finite and the core is constructed by different kinds of assemblies. Hence, the assumption of the zero net current boundary condition is not valid in the actual reactor. The objective of this study is to develop a homogenization methodology that can treat any actual boundary condition, i.e. non-zero net current boundary condition. In order to treat the non-zero net current boundary condition, we modify CASMO-3. For the two-dimensional treatment in CASMO-3, a multigroup integral transport routine based on the method of transmission probability is used. The code performs assembly calculation with zero net current boundary condition. CASMO-3 is modified to consider the inhomogeneous source at the assembly boundary surface due to the non-zero net current. The modified version of CASMO-3 is called CASMO-3M. CASMO-3M is applied to several benchmark problems. In order to obtain the inhomogeneous source, the global calculation is performed. The local calculation
Two observable features of the staggered-flux phase at nonzero doping
International Nuclear Information System (INIS)
Hsu, T.C.; Marston, J.B.; Affleck, I.
1991-01-01
We investigate whether the staggered-flux phase (SFP) is realized in slightly doped phases of the Cu-O high-T c superconductors. Using a mean-field solution of the t-J model, we calculate the size of circulating currents in the CuO 2 planes. For realistic parameters we find nonzero currents when the doping δ 2-x Sr x CuO 4 samples but additional structure along the (Q x ,0) and (0,Q y ) directions has not been seen. The absence of magnetic fields when δ>0.12 is consistent with the limits set by the muon experiments on superconducting samples
Monte Carlo simulations of the NJL model near the nonzero temperature phase transition
International Nuclear Information System (INIS)
Strouthos, Costas; Christofi, Stavros
2005-01-01
We present results from numerical simulations of the Nambu-Jona-Lasinio model with an SU(2)xSU(2) chiral symmetry and N c = 4,8, and 16 quark colors at nonzero temperature. We performed the simulations by utilizing the hybrid Monte Carlo and hybrid Molecular Dynamics algorithms. We show that the model undergoes a second order phase transition. The critical exponents measured are consistent with the classical 3d O(4) universality class and hence in accordance with the dimensional reduction scenario. We also show that the Ginzburg region is suppressed by a factor of 1/N c in accordance with previous analytical predictions. (author)
Calculation of nonzero-temperature Casimir forces in the time domain
International Nuclear Information System (INIS)
Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.
2011-01-01
We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.
Neutrino mass models and the implications of a non-zero reactor angle
International Nuclear Information System (INIS)
King, S.F.
2009-01-01
In this talk we survey some of the recent promising developments in the search for the theory behind neutrino mass and mixing, and indeed all fermion masses and mixing. The talk is organized in terms of a neutrino mass models decision tree according to which the answers to experimental questions provide sign posts to guide through the maze of theoretical models eventually towards a complete theory of flavour and unification. It is also discussed the theoretical implications of the measurement of non-zero reactor angle, as hinted at by recent experimental measurements.
International Nuclear Information System (INIS)
Batishchev, Pavel A.; Tolstikhin, Oleg I.
2007-01-01
The Siegert pseudostate (SPS) formulation of scattering theory, originally developed by Tolstikhin, Ostrovsky, and Nakamura [Phys. Rev. A, 58, 2077 (1998)] for s-wave scattering in a spherically symmetric finite-range potential, is generalized to nonzero angular momenta. The orthogonality and completeness properties of SPSs are established and SPS expansions for the outgoing-wave Green's function, physical states, and scattering matrix are obtained. The present formulation completes the theory of SPSs in the one-channel case, making its application to three-dimensional problems possible. The results are illustrated by calculations for several model potentials
Two-color QCD with non-zero chiral chemical potential
Energy Technology Data Exchange (ETDEWEB)
Braguta, V.V. [Institute for High Energy Physics NRC “Kurchatov Institute' ,142281 Protvino (Russian Federation); Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Goy, V.A. [Far Eastern Federal University, School of Natural Sciences,690950 Vladivostok (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Research,BLTP, 141980 Dubna (Russian Federation); Kotov, A.Yu. [Institute of Theoretical and Experimental Physics,117259 Moscow (Russian Federation); Molochkov, A.V. [Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Müller-Preussker, M.; Petersson, B. [Humboldt-Universität zu Berlin, Institut für Physik,12489 Berlin (Germany)
2015-06-16
The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.
Spin 0 and spin 1/2 quantum relativistic particles in a constant gravitational field
International Nuclear Information System (INIS)
Khorrami, M.; Alimohammadi, M.; Shariati, A.
2003-01-01
The Klein-Gordon and Dirac equations in a semi-infinite lab (x>0), in the background metric ds 2 =u 2 (x)(-dt 2 +dx 2 )+dy 2 +dz 2 , are investigated. The resulting equations are studied for the special case u(x)=1+gx. It is shown that in the case of zero transverse-momentum, the square of the energy eigenvalues of the spin-1/2 particles are less than the squares of the corresponding eigenvalues of spin-0 particles with same masses, by an amount of mgℎc. Finally, for non-zero transverse-momentum, the energy eigenvalues corresponding to large quantum numbers are obtained and the results for spin-0 and spin-1/2 particles are compared to each other
International Nuclear Information System (INIS)
Blum, T.; Creutz, M.
1999-01-01
The RIKEN BNL Research Center hosted its 19th workshop April 27th through May 1, 1999. The topic was Numerical Algorithms at Non-Zero Chemical Potential. QCD at a non-zero chemical potential (non-zero density) poses a long-standing unsolved challenge for lattice gauge theory. Indeed, it is the primary unresolved issue in the fundamental formulation of lattice gauge theory. The chemical potential renders conventional lattice actions complex, practically excluding the usual Monte Carlo techniques which rely on a positive definite measure for the partition function. This ''sign'' problem appears in a wide range of physical systems, ranging from strongly coupled electronic systems to QCD. The lack of a viable numerical technique at non-zero density is particularly acute since new exotic ''color superconducting'' phases of quark matter have recently been predicted in model calculations. A first principles confirmation of the phase diagram is desirable since experimental verification is not expected soon. At the workshop several proposals for new algorithms were made: cluster algorithms, direct simulation of Grassman variables, and a bosonization of the fermion determinant. All generated considerable discussion and seem worthy of continued investigation. Several interesting results using conventional algorithms were also presented: condensates in four fermion models, SU(2) gauge theory in fundamental and adjoint representations, and lessons learned from strong; coupling, non-zero temperature and heavy quarks applied to non-zero density simulations
Homogenization via the strong-permittivity-fluctuation theory with nonzero depolarization volume
Mackay, Tom G.
2004-08-01
The depolarization dyadic provides the scattering response of a single inclusion particle embedded within a homogenous background medium. These dyadics play a central role in formalisms used to estimate the effective constitutive parameters of homogenized composite mediums (HCMs). Conventionally, the inclusion particle is taken to be vanishingly small; this allows the pointwise singularity of the dyadic Green function associated with the background medium to be employed as the depolarization dyadic. A more accurate approach is pursued in this communication by taking into account the nonzero spatial extent of inclusion particles. Depolarization dyadics corresponding to inclusion particles of nonzero volume are incorporated within the strong-permittivity-fluctuation theory (SPFT). The linear dimensions of inclusion particles are assumed to be small relative to the electromagnetic wavelength(s) and the SPFT correlation length. The influence of the size of inclusion particles upon SPFT estimates of the HCM constitutive parameters is investigated for anisotropic dielectric HCMs.In particular, the interplay between correlation length and inclusion size is explored.
Generalization of the Child-Langmuir law for nonzero injection velocities in a planar diode
International Nuclear Information System (INIS)
Puri, R.R.; Biswas, Debabrata; Kumar, Raghwendra
2004-01-01
The Child-Langmuir law relates the voltage applied across a planar diode to the saturation value J CL of current density that can be transmitted through it in case the injection velocity of electrons is zero. The Child-Langmuir current density J CL is, at the same time: (i) the maximum current density that can be transmitted through a planar diode, (ii) the current density below which the flow is steady and unidirectional in the long time limit, and (iii) the average transmitted current density for any value of injected current density above J CL . Existing generalizations of Child-Langmuir law to nonzero velocities of injection are based on the characteristics (i) and (ii) of J CL . This paper generalizes the law to nonzero velocities of injection based on the characteristic (iii) by deriving an analytical expression for the saturation value of current density. The analytical expression for the saturation current density is found to be well supported by numerical computations. A reason behind preferring the saturation property of the Child-Langmuir current density as the basis for its generalization is the importance of that property in numerical simulations of high current diode devices
Nonzero-Sum Stochastic Differential Portfolio Games under a Markovian Regime Switching Model
Directory of Open Access Journals (Sweden)
Chaoqun Ma
2015-01-01
Full Text Available We consider a nonzero-sum stochastic differential portfolio game problem in a continuous-time Markov regime switching environment when the price dynamics of the risky assets are governed by a Markov-modulated geometric Brownian motion (GBM. The market parameters, including the bank interest rate and the appreciation and volatility rates of the risky assets, switch over time according to a continuous-time Markov chain. We formulate the nonzero-sum stochastic differential portfolio game problem as two utility maximization problems of the sum process between two investors’ terminal wealth. We derive a pair of regime switching Hamilton-Jacobi-Bellman (HJB equations and two systems of coupled HJB equations at different regimes. We obtain explicit optimal portfolio strategies and Feynman-Kac representations of the two value functions. Furthermore, we solve the system of coupled HJB equations explicitly in a special case where there are only two states in the Markov chain. Finally we provide comparative statics and numerical simulation analysis of optimal portfolio strategies and investigate the impact of regime switching on optimal portfolio strategies.
Quantum Quench Dynamics in the Transverse Field Ising Model at Non-zero Temperatures
Abeling, Nils; Kehrein, Stefan
The recently discovered Dynamical Phase Transition denotes non-analytic behavior in the real time evolution of quantum systems in the thermodynamic limit and has been shown to occur in different systems at zero temperature [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. In this talk we present the extension of the analysis to non-zero temperature by studying a generalized form of the Loschmidt echo, the work distribution function, of a quantum quench in the transverse field Ising model. Although the quantitative behavior at non-zero temperatures still displays features derived from the zero temperature non-analyticities, it is shown that in this model dynamical phase transitions do not exist if T > 0 . This is a consequence of the system being initialized in a thermal state. Moreover, we elucidate how the Tasaki-Crooks-Jarzynski relation can be exploited as a symmetry relation for a global quench or to obtain the change of the equilibrium free energy density. This work was supported through CRC SFB 1073 (Project B03) of the Deutsche Forschungsgemeinschaft (DFG).
Nonzero-Sum Relationships in Mitigating Urban Carbon Emissions: A Dynamic Network Simulation.
Chen, Shaoqing; Chen, Bin; Su, Meirong
2015-10-06
The "stove-pipe" way of thinking has been mostly used in mitigating carbon emissions and managing socioeconomics because of its convenience of implementation. However, systems-oriented approaches become imperative in pursuit of an efficient regulation of carbon emissions from systems as complicated as urban systems. The aim of this paper is to establish a dynamic network approach that is capable of assessing the effectiveness of carbon emissions mitigation in a more holistic way. A carbon metabolic network is constructed by modeling the carbon flows between economic sectors and environment. With the network shocked by interventions to the sectoral carbon flows, indirect emissions from the city are accounted for under certain carbon mitigation strategies. The nonzero-sum relationships between sectors and environmental components are identified based on utility analysis, which synthesize the nature of direct and indirect network interactions. The results of the case study of Beijing suggest that the stove-pipe mitigation strategies targeted the economic sectors might be not as efficient as they were expected. A direct cutting in material or energy import to the sectors may result in a rebound in indirect emissions and thus fails to achieve the carbon mitigation goal of the city as a whole. A promising way of foreseeing the dynamic mechanism of emissions is to analyze the nonzero-sum relationships between important urban components. Thinking cities as systems of interactions, the network approach is potentially a strong tool for appraising and filtering mitigation strategies of carbon emissions.
Nonzero θ13 and neutrino masses from the modified tri-bi-maximal neutrino mixing matrix
International Nuclear Information System (INIS)
Damanik, A.
2014-01-01
There are 3 types of neutrino mixing matrices: tri-bi-maximal, bi-maximal and democratic. These 3 types of neutrino mixing matrices predict that the mixing angle θ 13 should be null. Motivated by the recent experimental evidence of nonzero and relatively large θ 13 , we modified the tribimaximal mixing matrix by introducing a simple perturbation matrix into tribimaximal neutrino mixing matrix. In this scenario, we obtained nonzero mixing angle θ 13 =7.9 degrees which is in agreement with the present experimental results. By imposing 2 zeros texture into the obtained neutrino mass matrix from modified tribimaximal mixing matrix, we then have the neutrino mass spectrum in normal hierarchy. Some phenomenological implications are also discussed. It appears that if we use the solar neutrino squared-mass difference to determine the values of neutrino masses, then we cannot have the correct value for the atmospheric squared-mass difference. Conversely, if we use the experimental value of the squared-mass difference to determine the neutrino masses, then we cannot have the correct value for the solar neutrino squared-mass difference
Bayesian evidence for non-zero θ 13 and CP-violation in neutrino oscillations
Bergström, Johannes
2012-08-01
We present the Bayesian method for evaluating the evidence for a non-zero value of the leptonic mixing angle θ 13 and CP-violation in neutrino oscillation experiments. This is an application of the well-established method of Bayesian model selection, of which we give a concise and pedagogical overview. When comparing the hypothesis θ 13 = 0 with hypotheses where θ 13 > 0 using global data but excluding the recent reactor measurements, we obtain only a weak preference for a non-zero θ 13, even though the significance is over 3 σ. We then add the reactor measurements one by one and show how the evidence for θ 13 > 0 quickly increases. When including the D ouble C hooz, D aya B ay, and RENO data, the evidence becomes overwhelming with a posterior probability of the hypothesis θ 13 = 0 below 10-11. Owing to the small amount of information on the CP-phase δ, very similar evidences are obtained for the CP-conserving and CP-violating hypotheses. Hence, there is, not unexpectedly, neither evidence for nor against leptonic CP-violation. However, when future experiments aiming to search for CP-violation have started taking data, this question will be of great importance and the method described here can be used as an important complement to standard analyses.
Drop Spreading with Random Viscosity
Xu, Feng; Jensen, Oliver
2016-11-01
Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.
Viscosity of ring polymer melts
Pasquino, Rossana
2013-10-15
We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.
Viscosity of ring polymer melts
Pasquino, Rossana; Vasilakopoulos, Thodoris C.; Jeong, Youncheol; Lee, Hyojoon; Rogers, Simon A.; Sakellariou, Georgios; Allgaier, Jü rgen B.; Takano, Atsushi; Brá s, Ana Rita E; Chang, Taihyun; Gooß en, Sebastian; Pyckhout-Hintzen, Wim; Wischnewski, Andreas; Hadjichristidis, Nikolaos; Richter, Dieter R.; Rubinstein, Michael H.; Vlassopoulos, Dimitris
2013-01-01
We have measured the linear rheology of critically purified ring polyisoprenes, polystyrenes, and polyethyleneoxides of different molar masses. The ratio of the zero-shear viscosities of linear polymer melts η0,linear to their ring counterparts η0,ring at isofrictional conditions is discussed as a function of the number of entanglements Z. In the unentangled regime η0,linear/η 0,ring is virtually constant, consistent with the earlier data, atomistic simulations, and the theoretical expectation η0,linear/ η0,ring = 2. In the entanglement regime, the Z-dependence of ring viscosity is much weaker than that of linear polymers, in qualitative agreement with predictions from scaling theory and simulations. The power-law extracted from the available experimental data in the rather limited range 1 < Z < 20, η0,linear/η0,ring ∼ Z 1.2±0.3, is weaker than the scaling prediction (η0,linear/η0,ring ∼ Z 1.6±0.3) and the simulations (η0,linear/ η0,ring ∼ Z2.0±0.3). Nevertheless, the present collection of state-of-the-art experimental data unambiguously demonstrates that rings exhibit a universal trend clearly departing from that of their linear counterparts, and hence it represents a major step toward resolving a 30-year-old problem. © 2013 American Chemical Society.
Field dependent spin transport of anisotropic Heisenberg chain
Energy Technology Data Exchange (ETDEWEB)
Rezania, H., E-mail: rezania.hamed@gmail.com
2016-04-01
We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters. - Highlights: • Theoretical calculation of spin conductivity of spin chain Heisenberg model. • The investigation of the effects of anisotropy and magnetic field on the temperature dependence of spin conductivity. • The study of the effect of temperature on the spin Drude weight.
International Nuclear Information System (INIS)
Norzita Yacob; Norhashidah Talip; Maznah Mahmud
2011-01-01
Molecular weight of chitosan can be determined by different techniques such as Gel Permeation Chromatography (GPC), Static Light Scattering (SLS) and intrinsic viscosity measurement. Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (author)
VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber
Directory of Open Access Journals (Sweden)
Maja eBoric
2012-07-01
Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.
Directory of Open Access Journals (Sweden)
Iver Brevik
2012-11-01
Full Text Available A bulk viscosity is introduced in the formalism of modified gravity. It is shownthat, based on a natural scaling law for the viscosity, a simple solution can be found forquantities such as the Hubble parameter and the energy density. These solutions mayincorporate a viscosity-induced Big Rip singularity. By introducing a phase transition inthe cosmic fluid, the future singularity can nevertheless in principle be avoided.
Uniaxial Elongational viscosity of bidisperse polystyrene melts
DEFF Research Database (Denmark)
Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole
2006-01-01
The startup and steady uniaxial elongational viscosity have been measured for three bidisperse polystyrene (PS) melts, consisting of blends of monodisperse PS with molecular weights of 52 kg/mole or 103 kg/mole and 390 kg/mole. The bidisperse melts have a maximum in the steady elongational...... viscosity, of up to a factor of 7 times the Trouton limit of 3 times the zero-shear viscosity....
VISCOSITY TEST OF VEHICLE ENGINE OILS
Rita Prasetyowati
2016-01-01
This study aims to determine the value of the kinematic viscosity lubricants motorcycle that has been used at various temperatures and the use of distance. This study also aims to remedy mengtahui how the value of the kinematic viscosity of the lubricant car that has been used in a wide range of temperature variation and distance usage. Viscosity liquid, in this case is the lubricants, can be determined using the Redwood viscometer By using Redwood viscometer, can be measured flow time requir...
Spin dependent disorder in a junction device with spin orbit couplings
International Nuclear Information System (INIS)
Ganguly, Sudin; Basu, Saurabh
2016-01-01
Using the multi-probe Landauer-BUttiker formula and Green's function approach, we calculate the longitudinal conductance (LC) and spin Hall conductance (SHC) numerically in a two-dimensional junction system with the Rashba and Dresselhaus spin orbit coupling (SOC) and spin dependent disorder (SDD) in presence of both random onsite and hopping disorder strengths. It has been found that when the strengths of the RSOC and DSOC are same, the SHC vanishes. Further in presence of random onsite or hopping disorder, the SHC is still zero when the strengths of the two types of SOC, that is Rashba and Dressselhaus are the same. This indicates that the cancellation of SHC is robust even in the presence of random disorder. Only with the inclusion of SDD (onsite or hopping), a non-zero SHC is found and it increases as the strength of SDD increases. The physical implication of the existence of a non-zero SHC has been explored in this work. Finally, we have compared the effect of onsite SDD and hopping SDD on both longitudinal and spin Hall conductances. (paper)
Valenzuela, Sergio O; Saitoh, Eiji; Kimura, Takashi
2017-01-01
Since the discovery of the giant magnetoresistance effect in magnetic multilayers in 1988, a new branch of physics and technology, called spin-electronics or spintronics, has emerged, where the flow of electrical charge as well as the flow of electron spin, the so-called “spin current,” are manipulated and controlled together. The physics of magnetism and the application of spin current have progressed in tandem with the nanofabrication technology of magnets and the engineering of interfaces and thin films. This book aims to provide an introduction and guide to the new physics and applications of spin current, with an emphasis on the interaction between spin and charge currents in magnetic nanostructures.
Current interactions from the one-form sector of nonlinear higher-spin equations
Gelfond, O. A.; Vasiliev, M. A.
2018-06-01
The form of higher-spin current interactions in the sector of one-forms is derived from the nonlinear higher-spin equations in AdS4. Quadratic corrections to higher-spin equations are shown to be independent of the phase of the parameter η = exp iφ in the full nonlinear higher-spin equations. The current deformation resulting from the nonlinear higher-spin equations is represented in the canonical form with the minimal number of space-time derivatives. The non-zero spin-dependent coupling constants of the resulting currents are determined in terms of the higher-spin coupling constant η η bar . Our results confirm the conjecture that (anti-)self-dual nonlinear higher-spin equations result from the full system at (η = 0) η bar = 0.
Vozková, Markéta
2011-01-01
1 ABSTRACT The aim of this text is to provide an analysis of the phenomenon of spin doctoring in the Euro-Atlantic area. Spin doctors are educated people in the fields of semiotics, cultural studies, public relations, political communication and especially familiar with the infrastructure and the functioning of the media industry. Critical reflection of manipulative communication techniques puts spin phenomenon in historical perspective and traces its practical use in today's social communica...
The experimental viscosity and calculated relative viscosity of liquid In-Sn allcoys
International Nuclear Information System (INIS)
Wu, A.Q.; Guo, L.J.; Liu, C.S.; Jia, E.G.; Zhu, Z.G.
2007-01-01
The experimental measured viscosity of liquid pure Sn, In 20 Sn 80 and In 80 Sn 20 alloys was studied, and to make a comparison, the calculated relative viscosity based on the pair distribution functions, g(r), has also been studied. There is one peak in each experimental viscosity and calculated relative-viscosity curve of liquid pure Sn about 1000 deg. C. One valley appears in each experimental viscosity and calculated viscosity curve of liquid In 20 Sn 80 alloy about 700 deg. C. There is no abnormal behavior on In 80 Sn 20 alloy. The behavior of experimental viscosity and calculated relative viscosity is coincident with each other. Those results conformed that the temperature-induced structure anomalies reported before did take place
Double beta decay and majorana neutrinos. Right-handed currents or nonzero masses
International Nuclear Information System (INIS)
Rosen, S.P.; Perlmutter, A.
1981-01-01
This chapter describes some new developments concerning the mechanism for lepton number nonconservation in no-neutrino double beta decay. Explains that lepton number nonconservation in no-neutrino double beta decay comes about either because both left- and right-handed components of a Majorano neutrino are coupled to the electron in the weak leptonic current, or because the neutrino has nonzero mass. Shows that while nuclear ground-state to ground-state transitions arise from right-handed currents and from neutrino mass terms, transitions to low-lying excited states with J /SUP P/ =2 + can arise only from right-handed currents. Emphasizes that the possibilities of detecting small admixtures of right-handed currents, and of setting limits on neutrino masses that are either very small or very large, make double beta decay a most rewarding phenomenon to study
Ergodic Capacity Analysis of Free-Space Optical Links with Nonzero Boresight Pointing Errors
Ansari, Imran Shafique
2015-04-01
A unified capacity analysis of a free-space optical (FSO) link that accounts for nonzero boresight pointing errors and both types of detection techniques (i.e. intensity modulation/ direct detection as well as heterodyne detection) is addressed in this work. More specifically, an exact closed-form expression for the moments of the end-to-end signal-to-noise ratio (SNR) of a single link FSO transmission system is presented in terms of well-known elementary functions. Capitalizing on these new moments expressions, we present approximate and simple closedform results for the ergodic capacity at high and low SNR regimes. All the presented results are verified via computer-based Monte-Carlo simulations.
Maximum run-up behavior of tsunamis under non-zero initial velocity condition
Directory of Open Access Journals (Sweden)
Baran AYDIN
2018-03-01
Full Text Available The tsunami run-up problem is solved non-linearly under the most general initial conditions, that is, for realistic initial waveforms such as N-waves, as well as standard initial waveforms such as solitary waves, in the presence of initial velocity. An initial-boundary value problem governed by the non-linear shallow-water wave equations is solved analytically utilizing the classical separation of variables technique, which proved to be not only fast but also accurate analytical approach for this type of problems. The results provide important information on maximum tsunami run-up qualitatively. We observed that, although the calculated maximum run-ups increase significantly, going as high as double that of the zero-velocity case, initial waves having non-zero fluid velocity exhibit the same run-up behavior as waves without initial velocity, for all wave types considered in this study.
Chiral condensate at nonzero chemical potential in the microscopic limit of QCD
International Nuclear Information System (INIS)
Osborn, J. C.; Splittorff, K.; Verbaarschot, J. J. M.
2008-01-01
The chiral condensate in QCD at zero temperature does not depend on the quark chemical potential (up to one-third the nucleon mass), whereas the spectral density of the Dirac operator shows a strong dependence on the chemical potential. The cancellations which make this possible also occur on the microscopic scale, where they can be investigated by means of a random matrix model. We show that they can be understood in terms of orthogonality properties of orthogonal polynomials. In the strong non-Hermiticity limit they are related to integrability properties of the spectral density. As a by-product we find exact analytical expressions for the partially quenched chiral condensate in the microscopic domain at nonzero chemical potential.
Parity doubling structure of nucleon at non-zero density in the holographic mean field theory
Directory of Open Access Journals (Sweden)
He Bing-Ran
2014-06-01
Full Text Available We summarize our recent work in which we develope the holographic mean field approach to study the dense baryonic matter in a bottom-up holographic QCD model including baryons and scalar mesons in addition to vector mesons. We first show that, at zero density, the rate of the chiral invariant mass of nucleon is controlled by the ratio of the infrared boundary values of two baryon fields included in the model. Then, at non-zero density, we find that the chiral condensate decreases with the increasing density indicating the partial restoration of the chiral symmetry. Our result shows that the more amount of the proton mass comes from the chiral symmetry breaking, the faster the effective nucleon mass decrease with density.
Floating potential in electronegative plasmas for non-zero ion temperatures
Regodón, Guillermo Fernando; Fernández Palop, José Ignacio; Tejero-del-Caz, Antonio; Díaz-Cabrera, Juan Manuel; Carmona-Cabezas, Rafael; Ballesteros, Jerónimo
2018-02-01
The floating potential of a Langmuir probe immersed in an electronegative plasma is studied theoretically under the assumption of radial positive ion fluid movement for non-zero positive ion temperature: both cylindrical and spherical geometries are studied. The model is solvable exactly. The special characteristics of the electronegative pre-sheath are found and the influence of the stratified electronegative pre-sheath is shown to be very small in practical applications. It is suggested that the use of the floating potential in the measurement of negative ions population density is convenient, in view of the numerical results obtained. The differences between the two radial geometries, which become very important for small probe radii of the order of magnitude of the Debye length, are studied.
Correlation Decay in Fermionic Lattice Systems with Power-Law Interactions at Nonzero Temperature
Hernández-Santana, Senaida; Gogolin, Christian; Cirac, J. Ignacio; Acín, Antonio
2017-09-01
We study correlations in fermionic lattice systems with long-range interactions in thermal equilibrium. We prove a bound on the correlation decay between anticommuting operators and generalize a long-range Lieb-Robinson-type bound. Our results show that in these systems of spatial dimension D with, not necessarily translation invariant, two-site interactions decaying algebraically with the distance with an exponent α ≥2 D , correlations between such operators decay at least algebraically to 0 with an exponent arbitrarily close to α at any nonzero temperature. Our bound is asymptotically tight, which we demonstrate by a high temperature expansion and by numerically analyzing density-density correlations in the one-dimensional quadratic (free, exactly solvable) Kitaev chain with long-range pairing.
Interferometry with particles of non-zero rest mass: topological experiments
International Nuclear Information System (INIS)
Opat, G.I.
1994-01-01
Interferometry as a space-time process is described, together with its topology. Starting from this viewpoint, a convenient unified formalism for the phase shifts which arise in particle interferometry is developed. This formalism is based on a covariant form of Hamilton's action principle and Lagrange's equations of motion. It will be shown that this Lorentz invariant formalism yields a simple perturbation theoretic expression for the general phase shift that arises in matter-wave interferometry. The Lagrangian formalism is compared with the more usual formalism based on the wave propagation vector and frequency. The resulting formalism will be used to analyse the Sagnac effect, gravitational field measurements, and several Aharonov-Bohm-like topological phase shifts. Several topological interferometric experiments using particles of non-zero rest mass are discussed. These experiments involve the use of electrons, neutrons and neutral atoms. Neutron experiments will be emphasised. 45 refs., 15 figs
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
Koulouri, Alexandra; Brookes, Mike; Rimpiläinen, Ville
2017-01-01
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field.
Phases of a polar spin-1 Bose gas in a magnetic field
International Nuclear Information System (INIS)
Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely
2007-01-01
The two Bose-Einstein condensed phases of a polar spin-1 gas at nonzero magnetizations and temperatures are investigated. The Hugenholtz-Pines theorem is generalized to this system. Crossover to a quantum phase transition is also studied. Results are discussed in a mean field approximation
Projection operators and supplementary conditions for superfields with an arbitrary spin
International Nuclear Information System (INIS)
Sokatchev, E.
1975-01-01
It is shown that a superfield with an external spin j and a nonzero mass contains four non reducible representations of supersymmetry algebra. A general method is proposed for the evolution the representations out of the superfield by using projection operators, derived from Casimir operators. This expansion is also expressed in terms of additional differential conditions
Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália
2018-05-01
An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.
Analytic two-loop results for self-energy- and vertex-type diagrams with one non-zero mass
International Nuclear Information System (INIS)
Fleischer, J.; Kotikov, A.V.; Veretin, O.L.
1999-01-01
For a large class of two-loop self-energy- and vertex-type diagrams with only one non-zero mass (m) and the vertices also with only one non-zero external momentum squared (q 2 ) the first few expansion coefficients are calculated by the large mass expansion. This allows us to 'guess' the general structure of these coefficients and to verify them in terms of certain classes of 'basis elements', which are essentially harmonic sums. Since for this case with only one non-zero mass the large mass expansion and the Taylor series in terms of q 2 are identical, this approach yields analytic expressions of the Taylor coefficients, from which the diagram can be easily evaluated numerically in a large domain of the complex q 2 -plane by well known methods. It is also possible to sum the Taylor series and present the results in terms of polylogarithms
On the bulk viscosity of relativistic matter
International Nuclear Information System (INIS)
Canuto, V.; Hsieh, S.-H.
1978-01-01
An expression for the bulk viscosity coefficient in terms of the trace of the hydrodynamic energy-stress tensor is derived from the Kubo formula. This, along with a field-theoretic model of an interacting system of scalar particles, suggests that at high temperatures the bulk viscosity tends to zero, contrary to the often quoted resuls of Iso, Mori and Namiki. (author)
Viscosity evolution of anaerobic granular sludge
Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.
2006-01-01
The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent
Bulk-viscosity-driven asymmetric inflationary universe
International Nuclear Information System (INIS)
Waga, I.; Lima, J.A.S.; Portugal, R.
1987-01-01
A primordial net bosinic charge is introduced in the context of the bulk-viscosity-driven inflationary models. The analysis is carried through a macroscopic point of view in the framework of the causal thermodynamic theory. The conditions for having exponetial and generalized inflation are obtained. A phenomenological expression for the bulk viscosity coefficient is also derived. (author) [pt
International Nuclear Information System (INIS)
Anton, Gisela
1990-01-01
The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.
Energy Technology Data Exchange (ETDEWEB)
Anton, Gisela
1990-12-15
The idea of the intrinsic angular momentum, or 'spin', of a particle has played an essential part in fundamental physics for more than 60 years, and its continuing importance was underlined at the 9th International Symposium on High Energy Spin Physics, held in September in Bonn.
Energy Technology Data Exchange (ETDEWEB)
D' Ariano, G M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Maccone, L [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy); Paini, M [Quantum Optics and Information Group, INFM Udr Pavia, Dipartimento di Fisica ' Alessandro Volta' and INFM, Via Bassi 6, 27100 Pavia (Italy)
2003-02-01
We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique.
International Nuclear Information System (INIS)
D'Ariano, G M; Maccone, L; Paini, M
2003-01-01
We propose a tomographic reconstruction scheme for spin states. The experimental set-up, which is a modification of the Stern-Gerlach scheme, can be easily performed with currently available technology. The method is generalized to multiparticle states, analysing the spin-1/2 case for indistinguishable particles. Some Monte Carlo numerical simulations are given to illustrate the technique
The Friction Theory for Viscosity Modeling
DEFF Research Database (Denmark)
Cisneros, Sergio; Zeberg-Mikkelsen, Claus Kjær; Stenby, Erling Halfdan
2001-01-01
, in the case when experimental information is available a more accurate modeling can be obtained by means of a simple tuning procedure. A tuned f-theory general model can deliver highly accurate viscosity modeling above the saturation pressure and good prediction of the liquid-phase viscosity at pressures......In this work the one-parameter friction theory (f-theory) general models have been extended to the viscosity prediction and modeling of characterized oils. It is demonstrated that these simple models, which take advantage of the repulsive and attractive pressure terms of cubic equations of state...... such as the SRK, PR and PRSV, can provide accurate viscosity prediction and modeling of characterized oils. In the case of light reservoir oils, whose properties are close to those of normal alkanes, the one-parameter f-theory general models can predict the viscosity of these fluids with good accuracy. Yet...
Bovier, Anton
2007-01-01
Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.
Energy Technology Data Exchange (ETDEWEB)
Anon.
1989-01-15
The recent 8th International Symposium on High Energy Spin Physics at the University of Minnesota in Minneapolis, Minnesota, opened with a bang when L. Pondrom (Wisconsin), donning a hard hat borrowed from construction workers, ventured that 'spin, the notorious inessential complication of hadronic physics, is finally telling us what real QCD (quantum chromodynamics, the field theory of quarks and gluons) looks like.' He was referring to an animated discussion on the meaning of the recent spin oriented (polarized) scattering results from the European Muon Collaboration (EMC) at CERN and reported at the Symposium by R. Garnet (Liverpool) and P. Schuler (Yale) which show that the proton spin is not simply a reflection of the spins of its constituent quarks.
Energy Technology Data Exchange (ETDEWEB)
Molavi, Mohamad, E-mail: Mo_molavi@yahoo.com [Faculty of Physics, Kharazmi University, Tehran (Iran, Islamic Republic of); Faizabadi, Edris, E-mail: Edris@iust.ac.ir [School of Physics, Iran University of Science and Technology, 16846 Tehran (Iran, Islamic Republic of)
2017-04-15
By using the Green's function formalism, we investigate the effects of single particle energy levels of a quantum dot on the spin-dependent transmission properties through a triple-quantum-dot ring structure. In this structure, one of the quantum dots has been regarded to be non-magnetic and the Rashba spin-orbit interaction is imposed locally on this dot while the two others can be magnetic. The on-site energy of dots, manipulates the interference of the electron spinors that are transmitted to output leads. Our results show that the effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots, which is applicable by a controllable lateral bias voltage externally. Besides, by tuning the parameters such as Rashba spin-orbit interaction, and on-site energy of dots and magnetic flux inside the ring, the structure can be indicated the spin-flip effect and behave as a full spin polarizer or splitter. - Highlights: • The effects of magnetic dots on spin-dependent transmission properties are the same as the difference of on-site energies of the various dots. • In the situation that the QDs have non-zero on-site energies, the system can demonstrate the full spin-polarization. • By tuning the Rashba spin-orbit strength and magnetic flux encountered by the ring the system operates as a Stern-Gerlach apparatus.
International Nuclear Information System (INIS)
Norzita Yacob; Norhashidah Talip; Maznah Mahmud; Nurul Aizam Idayu Mat Sani; Nor Akma Samsuddin; Norafifah Ahmad Fabillah
2013-01-01
Determination of molecular weight by intrinsic viscosity measurement is a simple method for characterization of chitosan. To study the effect of radiation on molecular weight, chitosan was first irradiated using electron beam at different doses prior to measurement. Different concentrations of chitosan were prepared and measurement was done at room temperature. The flow time data was used to calculate the intrinsic viscosity by extrapolating the reduced viscosity to zero concentration. The value of intrinsic viscosity was then recalculated into the viscosity-average molecular weight using Mark-Houwink equation. (Author)
Eruptive viscosity and volcano morphology
International Nuclear Information System (INIS)
Posin, S.B.; Greeley, R.
1988-01-01
Terrestrial central volcanoes formed predominantly from lava flows were classified as shields, stratovolcanoes, and domes. Shield volcanoes tend to be large in areal extent, have convex slopes, and are characterized by their resemblance to inverted hellenic war shields. Stratovolcanoes have concave slopes, whereas domes are smaller and have gentle convex slopes near the vent that increase near the perimeter. In addition to these differences in morphology, several other variations were observed. The most important is composition: shield volcanoes tend to be basaltic, stratovolcanoes tend to be andesitic, and domes tend to be dacitic. However, important exceptions include Fuji, Pico, Mayon, Izalco, and Fuego which have stratovolcano morphologies but are composed of basaltic lavas. Similarly, Ribkwo is a Kenyan shield volcano composed of trachyte and Suswa and Kilombe are shields composed of phonolite. These exceptions indicate that eruptive conditions, rather than composition, may be the primary factors that determine volcano morphology. The objective of this study is to determine the relationships, if any, between eruptive conditions (viscosity, erupted volume, and effusion rate) and effusive volcano morphology. Moreover, it is the goal of this study to incorporate these relationships into a model to predict the eruptive conditions of extraterrestrial (Martian) volcanoes based on their morphology
Steady flow on to a conveyor belt - Causal viscosity and shear shocks
Syer, D.; Narayan, Ramesh
1993-01-01
Some hydrodynamical consequences of the adoption of a causal theory of viscosity are explored. Causality is introduced into the theory by letting the coefficient of viscosity go to zero as the flow velocity approaches a designated propagation speed for viscous signals. Consideration is given to a model of viscosity which has a finite propagation speed of shear information, and it is shown that it produces two kinds of shear shock. A 'pure shear shock' corresponds to a transition from a superviscous to a subviscous state with no discontinuity in the velocity. A 'mixed shear shock' has a shear transition occurring at the same location as a normal adiabatic or radiative shock. A generalized version of the Rankine-Hugoniot conditions for mixed shear shocks is derived, and self-consistent numerical solutions to a model 2D problem in which an axisymmetric radially infalling stream encounters a spinning star are presented.
Vector tomography for reconstructing electric fields with non-zero divergence in bounded domains
Energy Technology Data Exchange (ETDEWEB)
Koulouri, Alexandra, E-mail: koulouri@uni-muenster.de [Institute for Computational and Applied Mathematics, University of Münster, Einsteinstrasse 62, D-48149 Münster (Germany); Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT (United Kingdom); Brookes, Mike [Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London SW7 2BT (United Kingdom); Rimpiläinen, Ville [Institute for Biomagnetism and Biosignalanalysis, University of Münster, Malmedyweg 15, D-48149 Münster (Germany); Department of Mathematics, University of Auckland, Private bag 92019, Auckland 1142 (New Zealand)
2017-01-15
In vector tomography (VT), the aim is to reconstruct an unknown multi-dimensional vector field using line integral data. In the case of a 2-dimensional VT, two types of line integral data are usually required. These data correspond to integration of the parallel and perpendicular projection of the vector field along the integration lines and are called the longitudinal and transverse measurements, respectively. In most cases, however, the transverse measurements cannot be physically acquired. Therefore, the VT methods are typically used to reconstruct divergence-free (or source-free) velocity and flow fields that can be reconstructed solely from the longitudinal measurements. In this paper, we show how vector fields with non-zero divergence in a bounded domain can also be reconstructed from the longitudinal measurements without the need of explicitly evaluating the transverse measurements. To the best of our knowledge, VT has not previously been used for this purpose. In particular, we study low-frequency, time-harmonic electric fields generated by dipole sources in convex bounded domains which arise, for example, in electroencephalography (EEG) source imaging. We explain in detail the theoretical background, the derivation of the electric field inverse problem and the numerical approximation of the line integrals. We show that fields with non-zero divergence can be reconstructed from the longitudinal measurements with the help of two sparsity constraints that are constructed from the transverse measurements and the vector Laplace operator. As a comparison to EEG source imaging, we note that VT does not require mathematical modeling of the sources. By numerical simulations, we show that the pattern of the electric field can be correctly estimated using VT and the location of the source activity can be determined accurately from the reconstructed magnitudes of the field. - Highlights: • Vector tomography is used to reconstruct electric fields generated by dipole
Spin current pumped by a rotating magnetic field in zigzag graphene nanoribbons
International Nuclear Information System (INIS)
Wang, J; Chan, K S
2010-01-01
We study electron spin resonance in zigzag graphene nanoribbons by applying a rotating magnetic field on the system without any bias. By using the nonequilibrium Green's function technique, the spin-resolved pumped current is explicitly derived in a rotating reference frame. The pumped spin current density increases with the system size and the intensity of the transverse rotating magnetic field. For graphene nanoribbons with an even number of zigzag chains, there is a nonzero pumped charge current in addition to the pumped spin current owing to the broken spatial inversion symmetry of the system, but its magnitude is much smaller than the spin current. The short-ranged static disorder from either impurities or defects in the ribbon can depress the spin current greatly due to the localization effect, whereas the long-ranged disorder from charge impurities can avoid inter-valley scattering so that the spin current can survive in the strong disorder for the single-energy mode.
Caspers, W J
1989-01-01
This book is about spin systems as models for magnetic materials, especially antiferromagnetic lattices. Spin-systems are well-defined models, for which, in special cases, exact properties may be derived. These special cases are for the greater part, one- dimensional and restricted in their applicability, but they may give insight into general properties that also exist in higher dimension. This work pays special attention to qualitative differences between spin lattices of different dimensions. It also replaces the traditional picture of an (ordered) antiferromagnetic state of a Heisenberg sy
Excessive Additive Effect On Engine Oil Viscosity
Directory of Open Access Journals (Sweden)
Vojtěch Kumbár
2014-01-01
Full Text Available The main goal of this paper is excessive additive (for oil filling effect on engine oil dynamic viscosity. Research is focused to commercially distribute automotive engine oil with viscosity class 15W–40 designed for vans. There were prepared blends of new and used engine oil without and with oil additive in specific ratio according manufacturer’s recommendations. Dynamic viscosity of blends with additive was compared with pure new and pure used engine oil. The temperature dependence dynamic viscosity of samples was evaluated by using rotary viscometer with standard spindle. Concern was that the oil additive can moves engine oil of several viscosity grades up. It is able to lead to failure in the engine. Mathematical models were used for fitting experimental values of dynamic viscosity. Exponential fit function was selected, which was very accurate because the coefficient of determination R2 achieved high values (0.98–0.99. These models are able to predict viscosity behaviour blends of engine oil and additive.
Viscosity measurement techniques in Dissipative Particle Dynamics
Boromand, Arman; Jamali, Safa; Maia, Joao M.
2015-11-01
In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.
Comparative evaluation of aqueous humor viscosity.
Davis, Kyshia; Carter, Renee; Tully, Thomas; Negulescu, Ioan; Storey, Eric
2015-01-01
To evaluate aqueous humor viscosity in the raptor, dog, cat, and horse, with a primary focus on the barred owl (Strix varia). Twenty-six raptors, ten dogs, three cats, and one horse. Animals were euthanized for reasons unrelated to this study. Immediately, after horizontal and vertical corneal dimensions were measured, and anterior chamber paracentesis was performed to quantify anterior chamber volume and obtain aqueous humor samples for viscosity analysis. Dynamic aqueous humor viscosity was measured using a dynamic shear rheometer (AR 1000 TA Instruments, New Castle, DE, USA) at 20 °C. Statistical analysis included descriptive statistics, unpaired t-tests, and Tukey's test to evaluate the mean ± standard deviation for corneal diameter, anterior chamber volume, and aqueous humor viscosity amongst groups and calculation of Spearman's coefficient for correlation analyses. The mean aqueous humor viscosity in the barred owl was 14.1 centipoise (cP) ± 9, cat 4.4 cP ± 0.2, and dog 2.9 cP ± 1.3. The aqueous humor viscosity for the horse was 1 cP. Of the animals evaluated in this study, the raptor aqueous humor was the most viscous. The aqueous humor of the barred owl is significantly more viscous than the dog (P humor viscosity of the raptor, dog, cat, and horse can be successfully determined using a dynamic shear rheometer. © 2014 American College of Veterinary Ophthalmologists.
Bulk viscosity in holographic Lifshitz hydrodynamics
International Nuclear Information System (INIS)
Hoyos, Carlos; Kim, Bom Soo; Oz, Yaron
2014-01-01
We compute the bulk viscosity in holographic models dual to theories with Lifshitz scaling and/or hyperscaling violation, using a generalization of the bulk viscosity formula derived in arXiv:1103.1657 from the null focusing equation. We find that only a class of models with massive vector fields are truly Lifshitz scale invariant, and have a vanishing bulk viscosity. For other holographic models with scalars and/or massless vector fields we find a universal formula in terms of the dynamical exponent and the hyperscaling violation exponent
Shear viscosity of liquid mixtures: Mass dependence
International Nuclear Information System (INIS)
Kaushal, Rohan; Tankeshwar, K.
2002-06-01
Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model. (author)
Rapid viscosity measurements of powdered thermosetting resins
Price, H. L.; Burks, H. D.; Dalal, S. K.
1978-01-01
A rapid and inexpensive method of obtaining processing-related data on powdered thermosetting resins has been investigated. The method involved viscosity measurements obtained with a small specimen (less than 100 mg) parallel plate plastometer. A data acquisition and reduction system was developed which provided a value of viscosity and strain rate about 12-13 second intervals during a test. The effects of specimen compaction pressure and reduction of adhesion between specimen and parallel plates were examined. The plastometer was used to measure some processing-related viscosity changes of an addition polyimide resin, including changes caused by pre-test heat treatment, test temperature, and strain rate.
Laboratory Tests for Dispersive Soil Viscosity Determining
Ter-Martirosyan, Z. G.; Ter-Martirosyan, A. Z.; Sobolev, E. S.
2017-11-01
There are several widespread methods for soil viscosity determining now. The standard shear test device and torsion test apparatus are the most commonly used installations to do that. However, the application of them has a number of disadvantages. Therefore, the specialists of Moscow State University of Civil Engineering proposed a new device to determine the disperse soil viscosity on the basis of a stabilometer with the B-type camera (viscosimeter). The paper considers the construction of a viscosimeter and the technique for determining soil viscosity inside this tool as well as some experimental verification results of its work.
Viscosity of liquid sulfur under high pressure
International Nuclear Information System (INIS)
Terasaki, Hidenori; Kato, T; Funakoshi, K; Suzuki, A; Urakawa, S
2004-01-01
The viscosity of liquid sulfur up to 9.7 GPa and 1067 K was measured using the in situ x-ray radiography falling sphere method. The viscosity coefficients were found to range from 0.11 to 0.69 Pa s, and decreased continuously with increasing pressure under approximately constant homologous temperature conditions. The observed viscosity variation suggests that a gradual structural change occurs in liquid sulfur with pressure up to 10 GPa. The L-L' transition in liquid sulfur proposed by Brazhkin et al (1991 Phys. Lett. A 154 413) from thermobaric measurements has not been confirmed by the present viscometry
Intrinsic viscosity of a suspension of cubes
Mallavajula, Rajesh K.
2013-11-06
We report on the viscosity of a dilute suspension of cube-shaped particles. Irrespective of the particle size, size distribution, and surface chemistry, we find empirically that cubes manifest an intrinsic viscosity [η]=3.1±0.2, which is substantially higher than the well-known value for spheres, [η]=2.5. The orientation-dependent intrinsic viscosity of cubic particles is determined theoretically using a finite-element solution of the Stokes equations. For isotropically oriented cubes, these calculations show [η]=3.1, in excellent agreement with our experimental observations. © 2013 American Physical Society.
Shear viscosity of liquid mixtures Mass dependence
Kaushal, R
2002-01-01
Expressions for zeroth, second, and fourth sum rules of transverse stress autocorrelation function of two component fluid have been derived. These sum rules and Mori's memory function formalism have been used to study shear viscosity of Ar-Kr and isotopic mixtures. It has been found that theoretical result is in good agreement with the computer simulation result for the Ar-Kr mixture. The mass dependence of shear viscosity for different mole fraction shows that deviation from ideal linear model comes even from mass difference in two species of fluid mixture. At higher mass ratio shear viscosity of mixture is not explained by any of the emperical model.
Flavor origin of dark matter and its relation with leptonic nonzero θ{sub 13} and Dirac CP phase δ
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, Subhaditya; Karmakar, Biswajit [Department of Physics, Indian Institute of Technology Guwahati,781039 Assam (India); Sahu, Narendra [Department of Physics, Indian Institute of Technology,Hyderabad, Kandi, Sangareddy 502285, Medak, Telengana (India); Sil, Arunansu [Department of Physics, Indian Institute of Technology Guwahati,781039 Assam (India)
2017-05-12
We propose a minimal extension of the standard model by including a U(1) flavor symmetry to establish a correlation between the relic abundance of dark matter, measured by WMAP and PLANCK satellite experiments and non-zero value of sin θ{sub 13} observed at DOUBLE CHOOZ, Daya Bay, RENO and T2K. The flavour symmetry is allowed to be broken at a high scale to a remnant Z{sub 2} symmetry, which not only ensures the stability to the dark matter, but also gives rise to a modification to the existing A{sub 4}-based tri-bimaximal neutrino mixing. This deviation in turn suggests the required non-zero value of sin θ{sub 13}. We assume the dark matter to be neutral under the existing A{sub 4} symmetry while charged under the U(1) flavor symmetry. Hence in this set-up, the non-zero value of sin θ{sub 13} predicts the dark matter charge under U(1), which can be tested at various ongoing and future direct and collider dark matter search experiments. We also point out the involvement of nonzero leptonic CP phase δ, which plays an important role in the analysis.
Spin-flip and spin orbit interactions in heavy ion systems
International Nuclear Information System (INIS)
Bybell, D.P.
1983-01-01
The role of spin orbit forces in heavy ion reactions is not completely understood. Experimental data is scarce for these systems but the data that does exist indicates a stronger spin orbit force than predicted by the folding models. The spin-flip probability of non-spin zero projectiles is one technique used for these measurements and is often taken as a direct indicator of a spin orbit interaction. This work measures the projectile spin-flip probability for three inelastic reactions; 13 C + 24 Mg, E/sub cm/ = 22.7 MeV; 13 C + 12 C, E/sub cm/ = 17.3 MeV; and 6 Li + 12 C, E/sub cm/ = 15.2 MeV, all leading to the first J/sup π/ = 2 + state of the target. The technique of particle-γ angular correlations was used for measuring the final state density matrix elements, of which the absolute value M = 1 magnetic substate population is equivalent to the spin-flip probability. The method was explored in detail and found to be sensitive to spin-flip probabilities smaller than 1%. The technique was also found to be a good indicator of the reaction mechanism involved. Nonzero and occasionally large spin-flip probabilities were observed in all systems, much larger than the folding model predictions. Information was obtained on the non-spin-flip density matrix elements. In the 13 C + 24 Mg reaction, these were found to agree with calculations when the finite size of the particle detector is included
Buhrman, Robert; Daughton, James; Molnár, Stephan; Roukes, Michael
2004-01-01
This report is a comparative review of spin electronics ("spintronics") research and development activities in the United States, Japan, and Western Europe conducted by a panel of leading U.S. experts in the field. It covers materials, fabrication and characterization of magnetic nanostructures, magnetism and spin control in magnetic nanostructures, magneto-optical properties of semiconductors, and magnetoelectronics and devices. The panel's conclusions are based on a literature review and a series of site visits to leading spin electronics research centers in Japan and Western Europe. The panel found that Japan is clearly the world leader in new material synthesis and characterization; it is also a leader in magneto-optical properties of semiconductor devices. Europe is strong in theory pertaining to spin electronics, including injection device structures such as tunneling devices, and band structure predictions of materials properties, and in development of magnetic semiconductors and semiconductor heterost...
The effect of non-zero radial velocity on the impulse and circulation of starting jets
Krieg, Michael; Mohseni, Kamran
2011-11-01
Vortex ring formation dynamics are generally studied using two basic types of vortex generators. Piston cylinder vortex generators eject fluid through a long tube which ensures a purely axial jet; whereas, vortex ring generators which expel fluid through a flat plate with a circular orifice produce 2-D jets (non-zero radial velocity). At the nozzle exit plane of the orifice type vortex generator the radial component of velocity is linearly proportional to the radial distance from the axis of symmetry, reaching a maximum at the edge of the orifice with a magnitude around 10 % of the piston velocity (the ratio of the volume flux and the nozzle area). As the jet advances downstream the radial velocity quickly dissipates, and becomes purely axial less than a diameter away from the nozzle exit plane. The radial velocity gradient in the axial direction plays a key role in the rate at which circulation and impulse are ejected from the vortex generator. Though the radial component of velocity is small compared to the axial velocity, it has a significant effect on both the circulation and impulse of the starting jet because of this gradient. The extent of circulation and impulse enhancement is investigated through experimental DPIV data showing that the orifice device produces nearly double both circulation and energy (with identical piston velocity and stroke ratios).
Gravitational instabilities of the cosmic neutrino background with non-zero lepton number
Directory of Open Access Journals (Sweden)
Neil D. Barrie
2017-09-01
Full Text Available We argue that a cosmic neutrino background that carries non-zero lepton charge develops gravitational instabilities. Fundamentally, these instabilities are related to the mixed gravity-lepton number anomaly. We have explicitly computed the gravitational Chern–Simons term which is generated quantum-mechanically in the effective action in the presence of a lepton number asymmetric neutrino background. The induced Chern–Simons term has a twofold effect: (i gravitational waves propagating in such a neutrino background exhibit birefringent behaviour leading to an enhancement/suppression of the gravitational wave amplitudes depending on the polarisation, where the magnitude of this effect is related to the size of the lepton asymmetry; (ii Negative energy graviton modes are induced in the high frequency regime, which leads to very fast vacuum decay producing, e.g., positive energy photons and negative energy gravitons. From the constraint on the present radiation energy density, we obtain an interesting bound on the lepton asymmetry of the universe.
International Nuclear Information System (INIS)
Boche, H.; Nötzel, J.
2014-01-01
This work is motivated by a quite general question: Under which circumstances are the capacities of information transmission systems continuous? The research is explicitly carried out on finite arbitrarily varying quantum channels (AVQCs). We give an explicit example that answers the recent question whether the transmission of messages over AVQCs can benefit from assistance by distribution of randomness between the legitimate sender and receiver in the affirmative. The specific class of channels introduced in that example is then extended to show that the unassisted capacity does have discontinuity points, while it is known that the randomness-assisted capacity is always continuous in the channel. We characterize the discontinuity points and prove that the unassisted capacity is always continuous around its positivity points. After having established shared randomness as an important resource, we quantify the interplay between the distribution of finite amounts of randomness between the legitimate sender and receiver, the (nonzero) probability of a decoding error with respect to the average error criterion and the number of messages that can be sent over a finite number of channel uses. We relate our results to the entanglement transmission capacities of finite AVQCs, where the role of shared randomness is not yet well understood, and give a new sufficient criterion for the entanglement transmission capacity with randomness assistance to vanish
Varotsos, G. K.; Nistazakis, H. E.; Petkovic, M. I.; Djordjevic, G. T.; Tombras, G. S.
2017-11-01
Over the last years terrestrial free-space optical (FSO) communication systems have demonstrated an increasing scientific and commercial interest in response to the growing demands for ultra high bandwidth, cost-effective and secure wireless data transmissions. However, due the signal propagation through the atmosphere, the performance of such links depends strongly on the atmospheric conditions such as weather phenomena and turbulence effect. Additionally, their operation is affected significantly by the pointing errors effect which is caused by the misalignment of the optical beam between the transmitter and the receiver. In order to address this significant performance degradation, several statistical models have been proposed, while particular attention has been also given to diversity methods. Here, the turbulence-induced fading of the received optical signal irradiance is studied through the M (alaga) distribution, which is an accurate model suitable for weak to strong turbulence conditions and unifies most of the well-known, previously emerged models. Thus, taking into account the atmospheric turbulence conditions along with the pointing errors effect with nonzero boresight and the modulation technique that is used, we derive mathematical expressions for the estimation of the average bit error rate performance for SIMO FSO links. Finally, proper numerical results are given to verify our derived expressions and Monte Carlo simulations are also provided to further validate the accuracy of the analysis proposed and the obtained mathematical expressions.
Nonthreshold D-brane bound states and black holes with nonzero entropy
International Nuclear Information System (INIS)
Costa, M.S.; Cvetic, M.
1997-01-01
We start with Bogomol close-quote nyi-Prasad-Sommerfield- (BPS) saturated configurations of two (orthogonally) intersecting M-branes and use the electromagnetic duality or dimensional reduction along a boost, in order to obtain new p-brane bound states. In the first case the resulting configurations are interpreted as BPS-saturated nonthreshold bound states of intersecting p-branes, and in the second case as p-branes intersecting at angles and their duals. As a by-product we deduce the enhancement of supersymmetry as the angle approaches zero. We also comment on the D-brane theory describing these new bound states, and a connection between the angle and the world-volume gauge fields of the D-brane system. We use these configurations to find new embeddings of the four- and five-dimensional black holes with nonzero entropy, whose entropy now also depends on the angle and world-volume gauge fields. The corresponding D-brane configuration sheds light on the microscopic entropy of such black holes. copyright 1997 The American Physical Society
Experience Replay for Optimal Control of Nonzero-Sum Game Systems With Unknown Dynamics.
Zhao, Dongbin; Zhang, Qichao; Wang, Ding; Zhu, Yuanheng
2016-03-01
In this paper, an approximate online equilibrium solution is developed for an N -player nonzero-sum (NZS) game systems with completely unknown dynamics. First, a model identifier based on a three-layer neural network (NN) is established to reconstruct the unknown NZS games systems. Moreover, the identifier weight vector is updated based on experience replay technique which can relax the traditional persistence of excitation condition to a simplified condition on recorded data. Then, the single-network adaptive dynamic programming (ADP) with experience replay algorithm is proposed for each player to solve the coupled nonlinear Hamilton- (HJ) equations, where only the critic NN weight vectors are required to tune for each player. The feedback Nash equilibrium is provided by the solution of the coupled HJ equations. Based on the experience replay technique, a novel critic NN weights tuning law is proposed to guarantee the stability of the closed-loop system and the convergence of the value functions. Furthermore, a Lyapunov-based stability analysis shows that the uniform ultimate boundedness of the closed-loop system is achieved. Finally, two simulation examples are given to verify the effectiveness of the proposed control scheme.
On finitely generated modules whose first nonzero Fitting ideals are regular
Directory of Open Access Journals (Sweden)
Somayeh Hadjirezaei
2018-01-01
Full Text Available A finitely generated $R$-module is said to be a module of type ($F_r$ if its $(r-1$-th Fitting ideal is the zero ideal and its $r$-th Fitting ideal is a regular ideal. Let $R$ be a commutative ring and $N$ be a submodule of $R^n$ which is generated by columns of a matrix $A=(a_{ij}$ with $a_{ij}in R$ for all $1leq ileq n$, $jin Lambda$, where $Lambda $ is a (possibly infinite index set. Let $M=R^n/N$ be a module of type ($F_{n-1}$ and ${rm T}(M$ be the submodule of $M$ consisting of all elements of $M$ that are annihilated by a regular element of $R$. For $ lambdain Lambda $, put $M_lambda=R^n/$. The main result of this paper asserts that if $M_lambda $ is a regular $R$-module, for some $lambdainLambda$, then $M/{rm T}(Mcong M_lambda/{rm T}(M_lambda$. Also it is shown that if $M_lambda$ is a regular torsionfree $R$-module, for some $lambdain Lambda$, then $ Mcong M_lambda. $ As a consequence we characterize all non-torsionfree modules over a regular ring, whose first nonzero Fitting ideals are maximal.
Approximate N-Player Nonzero-Sum Game Solution for an Uncertain Continuous Nonlinear System.
Johnson, Marcus; Kamalapurkar, Rushikesh; Bhasin, Shubhendu; Dixon, Warren E
2015-08-01
An approximate online equilibrium solution is developed for an N -player nonzero-sum game subject to continuous-time nonlinear unknown dynamics and an infinite horizon quadratic cost. A novel actor-critic-identifier structure is used, wherein a robust dynamic neural network is used to asymptotically identify the uncertain system with additive disturbances, and a set of critic and actor NNs are used to approximate the value functions and equilibrium policies, respectively. The weight update laws for the actor neural networks (NNs) are generated using a gradient-descent method, and the critic NNs are generated by least square regression, which are both based on the modified Bellman error that is independent of the system dynamics. A Lyapunov-based stability analysis shows that uniformly ultimately bounded tracking is achieved, and a convergence analysis demonstrates that the approximate control policies converge to a neighborhood of the optimal solutions. The actor, critic, and identifier structures are implemented in real time continuously and simultaneously. Simulations on two and three player games illustrate the performance of the developed method.
International Nuclear Information System (INIS)
Anon.
1983-01-01
The 5th International Symposium on High Energy Spin Physics met in September at Brookhaven. The symposium has evolved to include a number of diverse specialities: theory, including parity violations and proposed quantum chromodynamics (QCD) tests with polarized beams; experiment, including the large spin effects discovered in high transverse momentum elastic scattering and hyperon production, dibaryons, and magnetic moments; acceleration and storage of polarized protons and electrons; and development of polarized sources and targets
Tkachenko modes as sources of quasiperiodic pulsar spin variations
International Nuclear Information System (INIS)
Noronha, Jorge; Sedrakian, Armen
2008-01-01
We study the long wavelength shear modes (Tkachenko waves) of triangular lattices of singly quantized vortices in neutron star interiors taking into account the mutual friction between the superfluid and the normal fluid as well as the shear viscosity of the normal fluid. The set of Tkachenko modes that propagate in the plane orthogonal to the spin vector are weakly damped if the coupling between the superfluid and the normal fluid is small. In strong coupling, their oscillation frequencies are lower and are undamped for small and moderate shear viscosities. The periods of these modes are consistent with the observed ∼100-1000 day variations of spin for PSR 1828-11
Charges in nonlinear higher-spin theory
Energy Technology Data Exchange (ETDEWEB)
Didenko, V.E. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Misuna, N.G. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation); Moscow Institute of Physics and Technology,Institutsky lane 9, 141700, Dolgoprudny, Moscow region (Russian Federation); Vasiliev, M.A. [I.E. Tamm Department of Theoretical Physics, Lebedev Physical Institute,Leninsky prospect 53, 119991, Moscow (Russian Federation)
2017-03-30
Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various lower- and higher-spin chemical potentials identified with modules of topological fields in the theory. The vacuum contribution to the partition is calculated to the first nontrivial order for a solution to higher-spin equations that generalizes AdS{sub 4} Kerr black hole of General Relativity. The resulting partition is non-zero being in parametric agreement with the ADM-like behavior of a rotating source. The linear response of chemical potentials to the partition function is also extracted. The explicit unfolded form of 4d GR black holes is given. An explicit formula relating asymptotic higher-spin charges expressed in terms of the generalized higher-spin Weyl tensor with those expressed in terms of Fronsdal fields is obtained.
Charges in nonlinear higher-spin theory
International Nuclear Information System (INIS)
Didenko, V.E.; Misuna, N.G.; Vasiliev, M.A.
2017-01-01
Nonlinear higher-spin equations in four dimensions admit a closed two-form that defines a gauge-invariant global charge as an integral over a two-dimensional cycle. In this paper we argue that this charge gives rise to partitions depending on various lower- and higher-spin chemical potentials identified with modules of topological fields in the theory. The vacuum contribution to the partition is calculated to the first nontrivial order for a solution to higher-spin equations that generalizes AdS 4 Kerr black hole of General Relativity. The resulting partition is non-zero being in parametric agreement with the ADM-like behavior of a rotating source. The linear response of chemical potentials to the partition function is also extracted. The explicit unfolded form of 4d GR black holes is given. An explicit formula relating asymptotic higher-spin charges expressed in terms of the generalized higher-spin Weyl tensor with those expressed in terms of Fronsdal fields is obtained.
Static properties and spin dynamics of the ferromagnetic spin-1 Bose gas in a magnetic field
International Nuclear Information System (INIS)
Kis-Szabo, Krisztian; Szepfalusy, Peter; Szirmai, Gergely
2005-01-01
The properties of spin-1 Bose gases with ferromagnetic interactions in the presence of a nonzero magnetic field are studied. The equation of state and thermodynamic quantities are worked out with the help of a mean-field approximation. The phase diagram besides Bose-Einstein condensation contains a first-order transition where two values of the magnetization coexist. The dynamics is investigated with the help of the random phase approximation. The soft mode corresponding to the critical point of the magnetic phase transition is found to behave like in conventional theory
Imaging by the SSFSE single slice method at different viscosities of bile
Energy Technology Data Exchange (ETDEWEB)
Kubo, Hiroya; Usui, Motoki; Fukunaga, Kenichi; Yamamoto, Naruto; Ikegami, Toshimi [Kawasaki Hospital, Kobe (Japan)
2001-11-01
The single shot fast spin echo single thick slice method (single slice method) is a technique that visualizes the water component alone using a heavy T{sub 2}. However, this method is considered to be markedly affected by changes in the viscosity of the material because a very long TE is used, and changes in the T{sub 2} value, which are related to viscosity, directly affect imaging. In this study, we evaluated the relationship between the effects of TE and the T{sub 2} value of bile in the single slice method and also examined the relationship between the signal intensity of bile on T{sub 1}- and T{sub 2}-weighted images and imaging by MR cholangiography (MRC). It was difficult to image bile with high viscosities at a usual effective TE level of 700-1,500 ms. With regard to the relationship between the signal intensity of bile and MRC imaging, all T{sub 2} values of the bile samples showing relatively high signal intensities on the T{sub 1}-weighted images suggested high viscosities, and MRC imaging of these bile samples was poor. In conclusion, MRC imaging of bile with high viscosities was poor with the single slice method. Imaging by the single slice method alone of bile showing a relatively high signal intensity on T{sub 1}-weighted images should be avoided, and combination with other MRC sequences should be used. (author)
Imaging by the SSFSE single slice method at different viscosities of bile
International Nuclear Information System (INIS)
Kubo, Hiroya; Usui, Motoki; Fukunaga, Kenichi; Yamamoto, Naruto; Ikegami, Toshimi
2001-01-01
The single shot fast spin echo single thick slice method (single slice method) is a technique that visualizes the water component alone using a heavy T 2 . However, this method is considered to be markedly affected by changes in the viscosity of the material because a very long TE is used, and changes in the T 2 value, which are related to viscosity, directly affect imaging. In this study, we evaluated the relationship between the effects of TE and the T 2 value of bile in the single slice method and also examined the relationship between the signal intensity of bile on T 1 - and T 2 -weighted images and imaging by MR cholangiography (MRC). It was difficult to image bile with high viscosities at a usual effective TE level of 700-1,500 ms. With regard to the relationship between the signal intensity of bile and MRC imaging, all T 2 values of the bile samples showing relatively high signal intensities on the T 1 -weighted images suggested high viscosities, and MRC imaging of these bile samples was poor. In conclusion, MRC imaging of bile with high viscosities was poor with the single slice method. Imaging by the single slice method alone of bile showing a relatively high signal intensity on T 1 -weighted images should be avoided, and combination with other MRC sequences should be used. (author)
Viscosity effect in Landau's hydrodynamical model
International Nuclear Information System (INIS)
Hoang, T.F.; Phua, K.K.; Nanyang Univ., Singapore
1979-01-01
The Bose-Einstein distribution is used to investigate Landau's hydrodynamical model with viscosity. In case the viscosity dependence on the temperature is T 3 , the correction to the multiplicity behaves like I/E and is found to be negligible for the pp data. A discussion is presented on a possibility of reconciling E 1 / 2 and logE dependence of the multiplicity law. (orig.)
A Simple BODIPY-Based Viscosity Probe for Imaging of Cellular Viscosity in Live Cells
Directory of Open Access Journals (Sweden)
Dongdong Su
2016-08-01
Full Text Available Intracellular viscosity is a fundamental physical parameter that indicates the functioning of cells. In this work, we developed a simple boron-dipyrromethene (BODIPY-based probe, BTV, for cellular mitochondria viscosity imaging by coupling a simple BODIPY rotor with a mitochondria-targeting unit. The BTV exhibited a significant fluorescence intensity enhancement of more than 100-fold as the solvent viscosity increased. Also, the probe showed a direct linear relationship between the fluorescence lifetime and the media viscosity, which makes it possible to trace the change of the medium viscosity. Furthermore, it was demonstrated that BTV could achieve practical applicability in the monitoring of mitochondrial viscosity changes in live cells through fluorescence lifetime imaging microscopy (FLIM.
Viscosity properties of sodium borophosphate glasses
International Nuclear Information System (INIS)
Gaylord, S.; Tincher, B.; Petit, L.; Richardson, K.
2009-01-01
The viscosity behavior of (1 - x)NaPO 3 -xNa 2 B 4 O 7 glasses (x = 0.05-0.20) have been measured as a function of temperature using beam-bending and parallel-plate viscometry. The viscosity was found to shift to higher temperatures with increasing sodium borate content. The kinetic fragility parameter, m, estimated from the viscosity curve, decreases from 52 to 33 when x increases from 0.05 to 0.20 indicating that the glass network transforms from fragile to strong with the addition of Na 2 B 4 O 7 . The decrease in fragility with increasing x is due to the progressive depolymerization of the phosphate network by the preferred four-coordinated boron atoms present in the low alkali borate glasses. As confirmed by Raman spectroscopy increasing alkali borate leads to enhanced B-O-P linkages realized with the accompanying transition from solely four-coordinated boron (in BO 4 units) to mixed BO 4 /BO 3 structures. The glass viscosity characteristics of the investigated glasses were compared to those of P-SF67 and N-FK5 commercial glasses from SCHOTT. We showed that the dependence of the viscosity of P-SF67 was similar to the investigated glasses due to similar phosphate network organization confirmed by Raman spectroscopy, whereas N-FK5 exhibited a very different viscosity curve and fragility parameter due to its highly coordinated silicate network
Nakada, Masao; Okuno, Jun'ichi; Irie, Yoshiya
2018-03-01
A viscosity model with an exponential profile described by temperature (T) and pressure (P) distributions and constant activation energy (E_{{{um}}}^{{*}} for the upper mantle and E_{{{lm}}}^* for the lower mantle) and volume (V_{{{um}}}^{{*}} and V_{{{lm}}}^*) is employed in inferring the viscosity structure of the Earth's mantle from observations of glacial isostatic adjustment (GIA). We first construct standard viscosity models with an average upper-mantle viscosity ({\\bar{η }_{{{um}}}}) of 2 × 1020 Pa s, a typical value for the oceanic upper-mantle viscosity, satisfying the observationally derived three GIA-related observables, GIA-induced rate of change of the degree-two zonal harmonic of the geopotential, {\\dot{J}_2}, and differential relative sea level (RSL) changes for the Last Glacial Maximum sea levels at Barbados and Bonaparte Gulf in Australia and for RSL changes at 6 kyr BP for Karumba and Halifax Bay in Australia. Standard viscosity models inferred from three GIA-related observables are characterized by a viscosity of ˜1023 Pa s in the deep mantle for an assumed viscosity at 670 km depth, ηlm(670), of (1 - 50) × 1021 Pa s. Postglacial RSL changes at Southport, Bermuda and Everglades in the intermediate region of the North American ice sheet, largely dependent on its gross melting history, have a crucial potential for inference of a viscosity jump at 670 km depth. The analyses of these RSL changes based on the viscosity models with {\\bar{η }_{{{um}}}} ≥ 2 × 1020 Pa s and lower-mantle viscosity structures for the standard models yield permissible {\\bar{η }_{{{um}}}} and ηlm (670) values, although there is a trade-off between the viscosity and ice history models. Our preferred {\\bar{η }_{{{um}}}} and ηlm (670) values are ˜(7 - 9) × 1020 and ˜1022 Pa s, respectively, and the {\\bar{η }_{{{um}}}} is higher than that for the typical value of oceanic upper mantle, which may reflect a moderate laterally heterogeneous upper
Should tsunami models use a nonzero initial condition for horizontal velocity?
Nava, G.; Lotto, G. C.; Dunham, E. M.
2017-12-01
Tsunami propagation in the open ocean is most commonly modeled by solving the shallow water wave equations. These equations require two initial conditions: one on sea surface height and another on depth-averaged horizontal particle velocity or, equivalently, horizontal momentum. While most modelers assume that initial velocity is zero, Y.T. Song and collaborators have argued for nonzero initial velocity, claiming that horizontal displacement of a sloping seafloor imparts significant horizontal momentum to the ocean. They show examples in which this effect increases the resulting tsunami height by a factor of two or more relative to models in which initial velocity is zero. We test this claim with a "full-physics" integrated dynamic rupture and tsunami model that couples the elastic response of the Earth to the linearized acoustic-gravitational response of a compressible ocean with gravity; the model self-consistently accounts for seismic waves in the solid Earth, acoustic waves in the ocean, and tsunamis (with dispersion at short wavelengths). We run several full-physics simulations of subduction zone megathrust ruptures and tsunamis in geometries with a sloping seafloor, using both idealized structures and a more realistic Tohoku structure. Substantial horizontal momentum is imparted to the ocean, but almost all momentum is carried away in the form of ocean acoustic waves. We compare tsunami propagation in each full-physics simulation to that predicted by an equivalent shallow water wave simulation with varying assumptions regarding initial conditions. We find that the initial horizontal velocity conditions proposed by Song and collaborators consistently overestimate the tsunami amplitude and predict an inconsistent wave profile. Finally, we determine tsunami initial conditions that are rigorously consistent with our full-physics simulations by isolating the tsunami waves (from ocean acoustic and seismic waves) at some final time, and backpropagating the tsunami
Optimum Drafting Conditions Of Polyester And Viscose Blend Yarns
Directory of Open Access Journals (Sweden)
Hatamvand Mohammad
2017-09-01
Full Text Available In this study, we used an experimental design to investigate the influence of the total draft, break draft, distance between the aprons (Clips and production roller pressure on yarn quality in order to obtain optimum drafting conditions for polyester and viscose (PES/CV blend yarns in ring spinning frame. We used PES fibers (1.4 dtex × 38 mm long and CV fibers (1.6 dtex × 38 mm long to spin a 20 Tex blend yarn of PES (70%/CV (30% blend ratio. When the break draft, adjustment of distance between of aprons and roller pressure is not reasonable, controlling and leading of the fibers is not sufficient for proper orientation of the fibers in the yarn structure to produce a high quality yarn. Experimental results and statistical analysis show that the best yarn quality will be obtained under drafting conditions total draft of 38, 1.2 break draft, 2.8 mm distance between of aprons and maximum pressure of the production top roller (18daN.
International Nuclear Information System (INIS)
Gaarde, C.
1985-01-01
An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)
Zhang, Huaguang; Jiang, He; Luo, Chaomin; Xiao, Geyang
2017-10-01
In this paper, we investigate the nonzero-sum games for a class of discrete-time (DT) nonlinear systems by using a novel policy iteration (PI) adaptive dynamic programming (ADP) method. The main idea of our proposed PI scheme is to utilize the iterative ADP algorithm to obtain the iterative control policies, which not only ensure the system to achieve stability but also minimize the performance index function for each player. This paper integrates game theory, optimal control theory, and reinforcement learning technique to formulate and handle the DT nonzero-sum games for multiplayer. First, we design three actor-critic algorithms, an offline one and two online ones, for the PI scheme. Subsequently, neural networks are employed to implement these algorithms and the corresponding stability analysis is also provided via the Lyapunov theory. Finally, a numerical simulation example is presented to demonstrate the effectiveness of our proposed approach.
Entropy viscosity method applied to Euler equations
International Nuclear Information System (INIS)
Delchini, M. O.; Ragusa, J. C.; Berry, R. A.
2013-01-01
The entropy viscosity method [4] has been successfully applied to hyperbolic systems of equations such as Burgers equation and Euler equations. The method consists in adding dissipative terms to the governing equations, where a viscosity coefficient modulates the amount of dissipation. The entropy viscosity method has been applied to the 1-D Euler equations with variable area using a continuous finite element discretization in the MOOSE framework and our results show that it has the ability to efficiently smooth out oscillations and accurately resolve shocks. Two equations of state are considered: Ideal Gas and Stiffened Gas Equations Of State. Results are provided for a second-order time implicit schemes (BDF2). Some typical Riemann problems are run with the entropy viscosity method to demonstrate some of its features. Then, a 1-D convergent-divergent nozzle is considered with open boundary conditions. The correct steady-state is reached for the liquid and gas phases with a time implicit scheme. The entropy viscosity method correctly behaves in every problem run. For each test problem, results are shown for both equations of state considered here. (authors)
International Nuclear Information System (INIS)
Mineev, Vladimir N; Funtikov, Aleksandr I
2004-01-01
A review is given of experimental and calculated data on the viscosity of iron-based melts on the melting curve. The interest in these data originates in the division of opinion on whether viscosity increases rather moderately or considerably in the high-pressure range. This disagreement is especially pronounced in the interpretation of the values of molten iron and its compounds in the environment of the earth's outer core. The conclusion on a substantial rise in viscosity mostly follows from the universal law, proposed by Brazhkin and Lyapin [1], of viscosity changing along the metal melting curve in the high-pressure range. The review analyzes available experimental and computational data, including the most recent ones. Data on viscosity of metals under shock wave compression in the megabar pressure range are also discussed. It is shown that data on viscosity of metal melts point to a small increase of viscosity on the melting curve. Specifics are discussed of the phase diagram of iron made more complex by the presence of several phase transitions and by the uncertainty in the position of the melting curve in the high-pressure range. Inaccuracies that arise in extrapolating the results of viscosity measurements to the pressure range corresponding to the earth's core environment are pointed out. (reviews of topical problems)
Schwarz, H.
2017-01-01
The thesis "Spinning Worlds" is about the characterisation of two types of gas-giant exoplanets: Hot Jupiters, with orbital periods of fewer than five days, and young, wide-orbit gas giants, with orbital periods as long as thousands of years. The thesis is based on near-infrared observations of 1
The Viscosity of Organic Liquid Mixtures
Len, C. W.; Trusler, J. P. M.; Vesovic, V.; Wakeham, W. A.
2006-01-01
The paper reports measurements of the viscosity and density of two heavy hydrocarbon mixtures, Dutrex and Arab Light Flashed Distillate (ALFD), and of their mixtures with hydrogen. The measurements have been carried out with a vibrating-wire device over a range of temperatures from 399 to 547 K and at pressures up to 20 MPa. Measurements have also been carried out on systems in which hydrogen at different concentrations has been dissolved in the liquids. The measurements have an estimated uncertainty of ±5% for viscosity and ±2% for density and represent the first results on these prototypical heavy hydrocarbons. The results reveal that the addition of hydrogen reduces both the density and viscosity of the original hydrocarbon mixture at a particular temperature and pressure.
Viscosity of Ga-Li liquid alloys
Vidyaev, Dmitriy; Boretsky, Evgeny; Verkhorubov, Dmitriy
2018-03-01
The measurement of dynamic viscosity of Ga-Li liquid alloys has been performed using low-frequency vibrational viscometer at five temperatures in the range 313-353 K and four gallium-based dilute alloy compositions containing 0-1.15 at.% Li. It was found that the viscosity of the considered alloys increases with decreasing temperature and increasing lithium concentration in the above ranges. It was shown that dependence of the viscosity of Ga-Li alloys in the investigated temperature range has been described by Arrhenius equation. For this equation the activation energy of viscous flow and pre-exponential factor were calculated. This study helped to determine the conditions of the alkali metals separating process in gallam-exchange systems.
Viscosity Meaurement Technique for Metal Fuels
Energy Technology Data Exchange (ETDEWEB)
Ban, Heng [Utah State Univ., Logan, UT (United States). Mechanical and Aerospace Engineering; Kennedy, Rory [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-02-09
Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.
Viscosity Meaurement Technique for Metal Fuels
International Nuclear Information System (INIS)
Ban, Heng
2015-01-01
Metallic fuels have exceptional transient behavior, excellent thermal conductivity, and a more straightforward reprocessing path, which does not separate out pure plutonium from the process stream. Fabrication of fuel containing minor actinides and rare earth (RE) elements for irradiation tests, for instance, U-20Pu-3Am-2Np-1.0RE-15Zr samples at the Idaho National Laboratory, is generally done by melt casting in an inert atmosphere. For the design of a casting system and further scale up development, computational modeling of the casting process is needed to provide information on melt flow and solidification for process optimization. Therefore, there is a need for melt viscosity data, the most important melt property that controls the melt flow. The goal of the project was to develop a measurement technique that uses fully sealed melt sample with no Americium vapor loss to determine the viscosity of metallic melts and at temperatures relevant to the casting process. The specific objectives of the project were to: develop mathematical models to establish the principle of the measurement method, design and build a viscosity measurement prototype system based on the established principle, and calibrate the system and quantify the uncertainty range. The result of the project indicates that the oscillation cup technique is applicable for melt viscosity measurement. Detailed mathematical models of innovative sample ampoule designs were developed to not only determine melt viscosity, but also melt density under certain designs. Measurement uncertainties were analyzed and quantified. The result of this project can be used as the initial step toward the eventual goal of establishing a viscosity measurement system for radioactive melts.
Chiral properties of two-flavour QCD at zero and non-zero temperature
Energy Technology Data Exchange (ETDEWEB)
Brandt, Bastian Benjamin
2012-11-22
Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by now entered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbatively O(a)-improved Wilson fermions to produce reliable results in the chiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. This thesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phase transition in the chiral limit of two-flavour QCD. The electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer q{sup 2}, where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to q{sup 2}=0 which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike q{sup 2}-value available so far and q{sup 2}=0, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge
Chiral properties of two-flavour QCD at zero and non-zero temperature
International Nuclear Information System (INIS)
Brandt, Bastian Benjamin
2012-01-01
Lattice Quantum Chromodynamics (LQCD) is the preferred tool for obtaining non-perturbative results from QCD in the low-energy regime. It has by now entered the era in which high precision calculations for a number of phenomenologically relevant observables at the physical point, with dynamical quark degrees of freedom and controlled systematics, become feasible. Despite these successes there are still quantities where control of systematic effects is insufficient. The subject of this thesis is the exploration of the potential of todays state-of-the-art simulation algorithms for non-perturbatively O(a)-improved Wilson fermions to produce reliable results in the chiral regime and at the physical point both for zero and non-zero temperature. Important in this context is the control over the chiral extrapolation. This thesis is concerned with two particular topics, namely the computation of hadronic form factors at zero temperature, and the properties of the phase transition in the chiral limit of two-flavour QCD. The electromagnetic iso-vector form factor of the pion provides a platform to study systematic effects and the chiral extrapolation for observables connected to the structure of mesons (and baryons). Mesonic form factors are computationally simpler than their baryonic counterparts but share most of the systematic effects. This thesis contains a comprehensive study of the form factor in the regime of low momentum transfer q 2 , where the form factor is connected to the charge radius of the pion. A particular emphasis is on the region very close to q 2 =0 which has not been explored so far, neither in experiment nor in LQCD. The results for the form factor close the gap between the smallest spacelike q 2 -value available so far and q 2 =0, and reach an unprecedented accuracy at full control over the main systematic effects. This enables the model-independent extraction of the pion charge radius. The results for the form factor and the charge radius are used to
Communication: Simple liquids' high-density viscosity
Costigliola, Lorenzo; Pedersen, Ulf R.; Heyes, David M.; Schrøder, Thomas B.; Dyre, Jeppe C.
2018-02-01
This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.
Measuring Viscosities of Gases at Atmospheric Pressure
Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini
1987-01-01
Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.
Entropy viscosity method for nonlinear conservation laws
Guermond, Jean-Luc
2011-05-01
A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.
Communication: Simple liquids' high-density viscosity.
Costigliola, Lorenzo; Pedersen, Ulf R; Heyes, David M; Schrøder, Thomas B; Dyre, Jeppe C
2018-02-28
This paper argues that the viscosity of simple fluids at densities above that of the triple point is a specific function of temperature relative to the freezing temperature at the density in question. The proposed viscosity expression, which is arrived at in part by reference to the isomorph theory of systems with hidden scale invariance, describes computer simulations of the Lennard-Jones system as well as argon and methane experimental data and simulation results for an effective-pair-potential model of liquid sodium.
Gravimetric capillary method for kinematic viscosity measurements
Rosenberger, Franz; Iwan, J.; Alexander, D.; Jin, Wei-Qing
1992-01-01
A novel version of the capillary method for viscosity measurements of liquids is presented. Viscosity data can be deduced in a straightforward way from mass transfer data obtained by differential weighing during the gravity-induced flow of the liquid between two cylindrical chambers. Tests of this technique with water, carbon tetrachloride, and ethanol suggest that this arrangement provides an accuracy of about +/- 1 percent. The technique facilitates operation under sealed, isothermal conditions and, thus can readily be applied to reactive and/or high vapor pressure liquids.
Entropy viscosity method for nonlinear conservation laws
Guermond, Jean-Luc; Pasquetti, Richard; Popov, Bojan
2011-01-01
A new class of high-order numerical methods for approximating nonlinear conservation laws is described (entropy viscosity method). The novelty is that a nonlinear viscosity based on the local size of an entropy production is added to the numerical discretization at hand. This new approach does not use any flux or slope limiters, applies to equations or systems supplemented with one or more entropy inequalities and does not depend on the mesh type and polynomial approximation. Various benchmark problems are solved with finite elements, spectral elements and Fourier series to illustrate the capability of the proposed method. © 2010 Elsevier Inc.
Toward spin-based Magneto Logic Gate in Graphene
Wen, Hua; Dery, Hanan; Amamou, Walid; Zhu, Tiancong; Lin, Zhisheng; Shi, Jing; Zutic, Igor; Krivorotov, Ilya; Sham, Lu; Kawakami, Roland
Graphene has emerged as a leading candidate for spintronic applications due to its long spin diffusion length at room temperature. A universal magnetologic gate (MLG) based on spin transport in graphene has been recently proposed as the building block of a logic circuit which could replace the current CMOS technology. This MLG has five ferromagnetic electrodes contacting a graphene channel and can be considered as two three-terminal XOR logic gates. Here we demonstrate this XOR logic gate operation in such a device. This was achieved by systematically tuning the injection current bias to balance the spin polarization efficiency of the two inputs, and offset voltage in the detection circuit to obtain binary outputs. The output is a current which corresponds to different logic states: zero current is logic `0', and nonzero current is logic `1'. We find improved performance could be achieved by reducing device size and optimizing the contacts.
On induced action for conformal higher spins in curved background
Energy Technology Data Exchange (ETDEWEB)
Beccaria, Matteo, E-mail: matteo.beccaria@le.infn.it [Dipartimento di Matematica e Fisica Ennio De Giorgi, Università del Salento & INFN, Via Arnesano, 73100 Lecce (Italy); Tseytlin, Arkady A., E-mail: tseytlin@imperial.ac.uk [The Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)
2017-06-15
We continue the investigation of the structure of the action for a tower of conformal higher spin fields in non-trivial 4d background metric recently discussed in Grigoriev and Tseytlin (2016). The action is defined as an induced one from path integral of a conformal scalar field in curved background coupled to higher spin fields. We analyze in detail the dependence of the quadratic part of the induced action on the spin 1 and spin 3 fields, determining the presence of a curvature-dependent mixed spin 1–3 term. One consequence is that the pure spin 3 kinetic term cannot be gauge-invariant on its own beyond the leading term in small curvature expansion. We also compute the non-zero contribution of the 1–3 mixing term to the conformal anomaly c-coefficient. One is thus to determine all such mixing terms before addressing the question of possible vanishing of the total c-coefficient in the conformal higher spin theory.
On induced action for conformal higher spins in curved background
Directory of Open Access Journals (Sweden)
Matteo Beccaria
2017-06-01
Full Text Available We continue the investigation of the structure of the action for a tower of conformal higher spin fields in non-trivial 4d background metric recently discussed in Grigoriev and Tseytlin (2016 [15]. The action is defined as an induced one from path integral of a conformal scalar field in curved background coupled to higher spin fields. We analyze in detail the dependence of the quadratic part of the induced action on the spin 1 and spin 3 fields, determining the presence of a curvature-dependent mixed spin 1–3 term. One consequence is that the pure spin 3 kinetic term cannot be gauge-invariant on its own beyond the leading term in small curvature expansion. We also compute the non-zero contribution of the 1–3 mixing term to the conformal anomaly c-coefficient. One is thus to determine all such mixing terms before addressing the question of possible vanishing of the total c-coefficient in the conformal higher spin theory.
Research on the development of the centrifugal spinning
Directory of Open Access Journals (Sweden)
Zhang Zhiming
2017-01-01
Full Text Available Centrifugal spinning is a new and efficient method to produce nanofibers quickly. It makes use of the centrifugal force instead of high voltage to produce the nanofibers. The centrifugal spinning has many advantages such as no high voltage, high yield, simple structure, no pollution and can be applied to high polymer material, ceramic and metal material. In order to have more understand about this novel nanofibers formation method, this paper introduces the method of centrifugal spinning and the effect of rotation speed, the properties of material such as viscosity and solvent evaporation, collector distance which have an impact on nanofibers morphology and diameter were also analyzed.
Gluon gas viscosity in nonperturbative region
International Nuclear Information System (INIS)
Il'in, S.V.; Mogilevskij, O.A.; Smolyanskij, S.A.; Zinov'ev, G.M.
1992-01-01
Using the Green-Kubo-type formulae and the cutoff model motivated by Monte Carlo lattice gluodynamics simulations we find the temperature behaviour of shear viscosity of gluon gas in the region of deconfinement phase transition. 22 refs.; 1 fig. (author)
Bulk viscosity in 2SC quark matter
International Nuclear Information System (INIS)
Alford, Mark G; Schmitt, Andreas
2007-01-01
The bulk viscosity of three-flavour colour-superconducting quark matter originating from the nonleptonic process u + s ↔ u + d is computed. It is assumed that up and down quarks form Cooper pairs while the strange quark remains unpaired (2SC phase). A general derivation of the rate of strangeness production is presented, involving contributions from a multitude of different subprocesses, including subprocesses that involve different numbers of gapped quarks as well as creation and annihilation of particles in the condensate. The rate is then used to compute the bulk viscosity as a function of the temperature, for an external oscillation frequency typical of a compact star r-mode. We find that, for temperatures far below the critical temperature T c for 2SC pairing, the bulk viscosity of colour-superconducting quark matter is suppressed relative to that of unpaired quark matter, but for T ∼> T c /30 the colour-superconducting quark matter has a higher bulk viscosity. This is potentially relevant for the suppression of r-mode instabilities early in the life of a compact star
Jet collimation by turbulent viscosity. I
International Nuclear Information System (INIS)
Henriksen, R.N.
1987-01-01
In this paper it is assumed that the subscale turbulent eddies induced in an ambient medium by the emergence of a (already collimated) jet from a galactic nucleus (VLBI jet) are the source of the viscosity which causes material to be entrained into the large-scale (VLA) jet. New analytic solutions are derived by a generalization of the self-similar Ansatz used in the Landau-Squires solution to include variable density and viscosity. It is shown that such a process of viscous collimation of the VLA jets can account for the observed collimation-luminosity correlation, the magnetic flux, and the inferred mass flux of these jets. Order of magnitude comparisons of velocity and density fields with recently observed emission-line flow regions near radio jets are made. All of the viscosity-dependent observational checks imply roughly the same plausible value for the eddy viscosity. It is emphasized that storing the initial VLBI jet energy in the intermediate scales occupied by the turbulent eddies allows this energy to be largely undetected. 35 references
On the measurement of magnetic viscosity
Energy Technology Data Exchange (ETDEWEB)
Serletis, C. [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece); Efthimiadis, K.G., E-mail: kge@auth.gr [Department of Physics, Aristotle University, Thessaloniki 54124 (Greece)
2012-08-15
This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved. - Highlights: Black-Right-Pointing-Pointer Magnetic viscosity is affected by initial measurement conditions. Black-Right-Pointing-Pointer Minor field deviations prior to its stabilization cause large changes in viscosity. Black-Right-Pointing-Pointer Viscosity is strongly dependent on the field change rate from saturation to the measurement field. Black-Right-Pointing-Pointer Small changes in field and temperature during the experiment can lead to false measurements. Black-Right-Pointing-Pointer Errors in measurements can be eliminated through the use of a proper fitting function.
Effect of Viscosity on Liquid Curtain Stability
Mohammad Karim, Alireza; Suszynski, Wieslaw; Francis, Lorraine; Carvalho, Marcio; Dow Chemical Company Collaboration; PUC Rio Collaboration; University of Minnesota, Twin Cities Collaboration
2016-11-01
The effect of viscosity on the stability of Newtonian liquid curtains was explored by high-speed visualization. Glycerol/water solutions with viscosity ranging from 19.1 to 210 mPa.s were used as coating liquids. The experimental set-up used a slide die delivery and steel tube edge guides. The velocity along curtain at different positions was measured by tracking small particles at different flow conditions. The measurements revealed that away from edge guides, velocity is well described by free fall effect. However, close to edge guides, liquid moves slower, revealing formation of a viscous boundary layer. The size of boundary layer and velocity near edge guides are strong function of viscosity. The critical condition was determined by examining flow rate below which curtain broke. Curtain failure was initiated by growth of a hole within liquid curtain, close to edge guides. Visualization results showed that the hole forms in a circular shape then becomes elliptical as it grows faster in vertical direction compared to horizontal direction. As viscosity rises, minimum flow rate for destabilization of curtain increased, indicating connection between interaction with edge guides and curtain stability. We would like to acknowledge the financial support from the Dow Chemical Company.
Sensor for Viscosity and Shear Strength Measurement
International Nuclear Information System (INIS)
Dillon, J.; Moore, J.E. Jr.; Ebadian, M.A.; Jones, W.K.
1998-01-01
Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation
Role of viscosity in nonlinear effects
Energy Technology Data Exchange (ETDEWEB)
Petrov, G V; Peshkin, M A; Polyakov, Ye Ye
1980-01-01
Data are presented on laboratory experiments for filtering of gases of liquids in clay, slightly permeable core samples. A method is proposed for processing the results of experiments which makes it possible to isolate the effect of viscosity of the fluid on the defined quantity of maximum pressure differential.
Spin Coherence in Semiconductor Nanostructures
National Research Council Canada - National Science Library
Flatte, Michael E
2006-01-01
... dots, tuning of spin coherence times for electron spin, tuning of dipolar magnetic fields for nuclear spin, spontaneous spin polarization generation and new designs for spin-based teleportation and spin transistors...
Conditions of viscosity measurement for detecting irradiated peppers
International Nuclear Information System (INIS)
Hayashi, Toru; Todoriki, Setsuko; Okadome, Hiroshi; Kohyama, Kaoru
1995-01-01
Viscosity of gelatinized suspensions of black and white peppers decreased depending upon dose. The viscosity was influenced by gelatinization and viscosity measurement conditions. The difference between unirradiated pepper and an irradiated one was larger at a higher pH and temperature for gelatinization. A viscosity parameter normalized with the starch content of pepper sample and the viscosity of a 5% suspension of corn starch could get rid of the influence of the conditions for viscosity measurement such as type of viscometer, shear rate and temperature. (author)
Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes
Green, B. L.; Mottishaw, S.; Breeze, B. G.; Edmonds, A. M.; D'Haenens-Johansson, U. F. S.; Doherty, M. W.; Williams, S. D.; Twitchen, D. J.; Newton, M. E.
2017-09-01
We demonstrate optical spin polarization of the neutrally charged silicon-vacancy defect in diamond (SiV0 ), an S =1 defect which emits with a zero-phonon line at 946 nm. The spin polarization is found to be most efficient under resonant excitation, but nonzero at below-resonant energies. We measure an ensemble spin coherence time T2>100 μ s at low-temperature, and a spin relaxation limit of T1>25 s . Optical spin-state initialization around 946 nm allows independent initialization of SiV0 and NV- within the same optically addressed volume, and SiV0 emits within the telecoms down-conversion band to 1550 nm: when combined with its high Debye-Waller factor, our initial results suggest that SiV0 is a promising candidate for a long-range quantum communication technology.
Bianchi type I universe in brane world scenario with non-zero Weyl tensor of the bulk
Energy Technology Data Exchange (ETDEWEB)
Chaudhuri, S. [University of Burdwan, Department of Physics, Burdwan (India)
2017-09-15
In the paper, we present exact solutions of gravitational field equations for an anisotropic brane with a Bianchi type I universe with perfect fluid having non-vanishing Weyl tensor of the bulk. It is assumed that the thermodynamic pressure bears a linear relation with the energy density. For a particular non-zero value of the pressure the solutions are obtained in an exact analytic form with and without the cosmological constant for a Bianchi type I universe. The relevant physical quantities associated with the evolution of the universe are also derived in the two cases. (orig.)
Nonperturbative stochastic method for driven spin-boson model
Orth, Peter P.; Imambekov, Adilet; Le Hur, Karyn
2013-01-01
We introduce and apply a numerically exact method for investigating the real-time dissipative dynamics of quantum impurities embedded in a macroscopic environment beyond the weak-coupling limit. We focus on the spin-boson Hamiltonian that describes a two-level system interacting with a bosonic bath of harmonic oscillators. This model is archetypal for investigating dissipation in quantum systems, and tunable experimental realizations exist in mesoscopic and cold-atom systems. It finds abundant applications in physics ranging from the study of decoherence in quantum computing and quantum optics to extended dynamical mean-field theory. Starting from the real-time Feynman-Vernon path integral, we derive an exact stochastic Schrödinger equation that allows us to compute the full spin density matrix and spin-spin correlation functions beyond weak coupling. We greatly extend our earlier work [P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.032118 82, 032118 (2010)] by fleshing out the core concepts of the method and by presenting a number of interesting applications. Methodologically, we present an analogy between the dissipative dynamics of a quantum spin and that of a classical spin in a random magnetic field. This analogy is used to recover the well-known noninteracting-blip approximation in the weak-coupling limit. We explain in detail how to compute spin-spin autocorrelation functions. As interesting applications of our method, we explore the non-Markovian effects of the initial spin-bath preparation on the dynamics of the coherence σx(t) and of σz(t) under a Landau-Zener sweep of the bias field. We also compute to a high precision the asymptotic long-time dynamics of σz(t) without bias and demonstrate the wide applicability of our approach by calculating the spin dynamics at nonzero bias and different temperatures.
Prarokijjak, Worasak; Soodchomshom, Bumned
2018-04-01
Spin-valley transport and magnetoresistance are investigated in silicene-based N/TB/N/TB/N junction where N and TB are normal silicene and topological barriers. The topological phase transitions in TB's are controlled by electric, exchange fields and circularly polarized light. As a result, we find that by applying electric and exchange fields, four groups of spin-valley currents are perfectly filtered, directly induced by topological phase transitions. Control of currents, carried by single, double and triple channels of spin-valley electrons in silicene junction, may be achievable by adjusting magnitudes of electric, exchange fields and circularly polarized light. We may identify that the key factor behind the spin-valley current filtered at the transition points may be due to zero and non-zero Chern numbers. Electrons that are allowed to transport at the transition points must obey zero-Chern number which is equivalent to zero mass and zero-Berry's curvature, while electrons with non-zero Chern number are perfectly suppressed. Very large magnetoresistance dips are found directly induced by topological phase transition points. Our study also discusses the effect of spin-valley dependent Hall conductivity at the transition points on ballistic transport and reveals the potential of silicene as a topological material for spin-valleytronics.
Mechanism of viscosity effect on magnetic island rotation
Energy Technology Data Exchange (ETDEWEB)
Mikhailovskii, A.B.; Konovalov, S.V. [Institute of Nuclear Fusion, Russian Research Centre ' Kurchatov Institute' , Kurchatov Sq., 1, Moscow (Russian Federation); Pustovitov, V.D. [National Inst. for Fusion Science, Toki, Gifu (Japan); Tsypin, V.S. [Institute of Physics, University of Sao Paulo, Rua do Matao, Travessa R, SP (Brazil)
2000-04-01
It is shown that plasma viscosity does not influence the magnetic island rotation directly. Nevertheless, it leads to nonstationarity of the plasma velocity. This nonstationarity is the reason of the viscosity effect on island rotation. (author)
Evaluation of Relative Blood Viscosity During Menstruation in ...
African Journals Online (AJOL)
USER
ABSTRACT. The changes in blood viscosity, plasma viscosity, haematocrit and erythrocyte sedimentation rate before ... higher (6.78±0.18mm/hr) during the menstrual phase than during the premenstrual phase ... MATERIALS AND METHODS.
Viscose kink and drift-kink modes in a tokamak
International Nuclear Information System (INIS)
Kuvshinov, B.N.; Mikhajlovskij, A.B.
1988-01-01
Intristic kink modes in a tokamak are theoretically investigated taking account of longitudinal viscosity of ions and electrons and drift effect. It is marked that dispersion equation of investigated modes coinsides in form with that for ballooning modes. It is shown that five types of intrinsic kink instability may be distinguished in disregard of viscosity and drift effects. Effect of stabilizing quasiideal viscose kink and viscose resistive kink modes by finite Larmuir ion radius is investigated. A branch of viscose reclosure mode which instability is due to electron viscosity is pointed out. A series of other viscose and drift-kink tokamak modes is considered. Both general disperse equations of the above-mentioned kink instability varieties, taking account of viscose and drift ones, and disperse equations of separate branches are presented
Gravity dual of spin and charge density waves
Jokela, Niko; Järvinen, Matti; Lippert, Matthew
2014-12-01
At high enough charge density, the homogeneous state of the D3-D7' model is unstable to fluctuations at nonzero momentum. We investigate the end point of this instability, finding a spatially modulated ground state, which is a charge and spin density wave. We analyze the phase structure of the model as a function of chemical potential and magnetic field and find the phase transition from the homogeneous state to be first order, with a second-order critical point at zero magnetic field.
Caldera resurgence driven by magma viscosity contrasts.
Galetto, Federico; Acocella, Valerio; Caricchi, Luca
2017-11-24
Calderas are impressive volcanic depressions commonly produced by major eruptions. Equally impressive is the uplift of the caldera floor that may follow, dubbed caldera resurgence, resulting from magma accumulation and accompanied by minor eruptions. Why magma accumulates, driving resurgence instead of feeding large eruptions, is one of the least understood processes in volcanology. Here we use thermal and experimental models to define the conditions promoting resurgence. Thermal modelling suggests that a magma reservoir develops a growing transition zone with relatively low viscosity contrast with respect to any newly injected magma. Experiments show that this viscosity contrast provides a rheological barrier, impeding the propagation through dikes of the new injected magma, which stagnates and promotes resurgence. In explaining resurgence and its related features, we provide the theoretical background to account for the transition from magma eruption to accumulation, which is essential not only to develop resurgence, but also large magma reservoirs.
Shear viscosity, cavitation and hydrodynamics at LHC
International Nuclear Information System (INIS)
Bhatt, Jitesh R.; Mishra, Hiranmaya; Sreekanth, V.
2011-01-01
We study evolution of quark-gluon matter in the ultrarelativistic heavy-ion collisions within the frame work of relativistic second-order viscous hydrodynamics. In particular, by using the various prescriptions of a temperature-dependent shear viscosity to the entropy ratio, we show that the hydrodynamic description of the relativistic fluid becomes invalid due to the phenomenon of cavitation. For most of the initial conditions relevant for LHC, the cavitation sets in very early stage. The cavitation in this case is entirely driven by the large values of shear viscosity. Moreover we also demonstrate that the conformal terms used in equations of the relativistic dissipative hydrodynamic can influence the cavitation time.
Pendulum Underwater - An Approach for Quantifying Viscosity
Leme, José Costa; Oliveira, Agostinho
2017-12-01
The purpose of the experiment presented in this paper is to quantify the viscosity of a liquid. Viscous effects are important in the flow of fluids in pipes, in the bloodstream, in the lubrication of engine parts, and in many other situations. In the present paper, the authors explore the oscillations of a physical pendulum in the form of a long and lightweight wire that carries a ball at its lower end, which is totally immersed in water, so as to determine the water viscosity. The system used represents a viscous damped pendulum and we tried different theoretical models to describe it. The experimental part of the present paper is based on a very simple and low-cost image capturing apparatus that can easily be replicated in a physics classroom. Data on the pendulum's amplitude as a function of time were acquired using digital video analysis with the open source software Tracker.
Viscosity, ion mobility, and the lambda transition
International Nuclear Information System (INIS)
Goodstein, D.L.
1977-01-01
A model is presented of the lambda transition in superfluid helium in which fluctuations near the transition are approximated by distinct regions of normal fluid and superfluid. The macroscopic viscosity of such a medium is computed. The ion mobility is also computed, taking into account a region of normal fluid around the ion induced by electrostriction. The results are, for the viscosity, eta/sub lambda/ - eta approx. t/sup 0.67/ and for the mobility μ - μ/sub lambda/ approx. t/sup 0.92/, both in excellent agreement with recent experiments. The model suggests that the lambda transition itself is the point at which superfluid regions become macroscopically connected
International Nuclear Information System (INIS)
Mookerjee, Abhijit
1976-01-01
''Spin glasses'', are entire class of magnetic alloys of moderate dilution, in which the magnetic atoms are far enough apart to be unlike the pure metal, but close enough so that the indirect exchange energy between them (mediated by the s-d interaction between local moments and conduction electrons) dominates all other energies. Characteristic critical phenomena displayed such as freezing of spin orientation at 'Tsub(c)' and spreading of magnetic ordering, are pointed out. Anomalous behaviour, associated with these critical phenomena, as reflected in : (i) Moessbauer spectroscopy giving hyperfine splitting at Tsub(c), (ii) maxima in susceptibility and remanent magnetism, (iii) thermopower maxima and change in slope, (iv) Characteristic cusp in susceptibility and its removal by very small magnetic fields, and (v) conductivity-resistivity measurements, are discussed. Theoretical developments aimed at explaining these phenomena, in particular, the ideas from percolation and localisation theories, and the approach based on the gellations of polymers, are discussed. Finally, a new approach based on renormalisation group in disordered systems is also briefly mentioned. (K.B.)
An empirical model for the melt viscosity of polymer blends
International Nuclear Information System (INIS)
Dobrescu, V.
1981-01-01
On the basis of experimental data for blends of polyethylene with different polymers an empirical equation is proposed to describe the dependence of melt viscosity of blends on component viscosities and composition. The model ensures the continuity of viscosity vs. composition curves throughout the whole composition range, the possibility of obtaining extremum values higher or lower than the viscosities of components, allows the calculation of flow curves of blends from the flow curves of components and their volume fractions. (orig.)
Elongational viscosity of narrow molar mass distribution polystyrene
DEFF Research Database (Denmark)
Bach, Anders; Almdal, Kristoffer; Rasmussen, Henrik Koblitz
2003-01-01
Transient and steady elongational viscosity has been measured for two narrow molar mass distribution polystyrene melts of molar masses 200 000 and 390 000 by means of a filament stretching rheometer. Total Hencky strains of about five have been obtained. The transient elongational viscosity rises...... above the linear viscoelastic prediction at intermediate strains, indicating strain hardening. The steady elongational viscosities are monotone decreasing functions of elongation rate. At elongation rates larger than the inverse reptation time, the steady elongational viscosity scales linearly...
Measurement of viscosity of slush at high shear rates
小林, 俊一; 川村, 公之; 津川, 圭一; 和泉, 薫; Kobayashi, Shun'ichi; Kawamura, Kimiyuki; Tugawa, Keiichi; Izumi, Kaoru
1988-01-01
Measurements of viscosity of slush were carried out using a method of flow along an inclined smooth surface in a 0℃cold room. The method was used to get the values of viscosity under high shear rates (25 and 75s^). From our experiments two important results were obtained: 1) the viscosity of slush decreases with increasing shear rates; 2) The fluid behavior is pseudoplastic that the values of non-Newtonian index of viscosity were less than unity.
Alternative derivation of the parallel ion viscosity
International Nuclear Information System (INIS)
Bravenec, R.V.; Berk, H.L.; Hammer, J.H.
1982-01-01
A set of double-adiabatic fluid equations with additional collisional relaxation between the ion temperatures parallel and perpendicular to a magnetic field are shown to reduce to a set involving a single temperature and a parallel viscosity. This result is applied to a recently published paper [R. V. Bravenec, A. J. Lichtenberg, M. A. Leiberman, and H. L. Berk, Phys. Fluids 24, 1320 (1981)] on viscous flow in a multiple-mirror configuration
Viscosity and Plasticity of Latvian Illite Clays
Jurgelāne, I; Vecstaudža, J; Stepanova, V; Mālers, J; Bērziņa-Cimdiņa, L
2012-01-01
Due to viscosity and plasticity, clays and clay minerals are used in civil engineering, pottery and also in cosmetics and medicine as thickening agents and emulsion and suspension stabilizers. The rheological properties of clay suspensions are complex. Mostly it is an interaction between mineral composition, clay particle size and pH value and also depends on clay minerals. Clay-water suspension is non-Newtonian fluid showing thixotropic and pseudoplastic properties. Results showed that plast...
A bulk viscosity driven inflationary model
International Nuclear Information System (INIS)
Waga, I.; Falcao, R.C.; Chanda, R.
1985-01-01
Bulk viscosity associated with the production of heavy particles during the GUT phase transition can lead to exponential or 'generalized' inflation. The condition of inflation proposed is independent of the details of the phase transition and remains unaltered in presence of a cosmological constant. Such mechanism avoids the extreme supercooling and reheating needed in the usual inflationary models. The standard baryongenesis mechanism can be maintained. (Author) [pt
On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures
Energy Technology Data Exchange (ETDEWEB)
Hoffmann, Ingo, E-mail: ingo.hoffmann@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Farago, Bela; Schweins, Ralf; Falus, Peter; Sharp, Melissa [Institut Max von Laue-Paul Langevin (ILL), F-38042 Grenoble Cedex 9 (France); Prévost, Sylvain [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany); Helmholtz-Zentrum Berlin, D-14109 Berlin (Germany); Gradzielski, Michael, E-mail: michael.gradzielski@tu-berlin.de [Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, D-10623 Berlin (Germany)
2015-08-21
Oppositely charged polyelectrolyte (PE) surfactant mixtures allow the control of rheological parameters of a solution even at fairly low concentrations. For example, addition of 0.3 wt. % of anionic surfactant to a 1 wt. % solution of the polycation JR 400 increases the viscosity by 4 orders of magnitude. Recently, we could show that this increase is related to the formation of mixed, rod-like PE/surfactant aggregates which interconnect several polyelectrolyte chains [Hoffmann et al., Europhys. Lett. 104, 28001 (2013)]. In this paper, we refine our structural model of the aggregates to obtain a more consistent picture of their internal structure for different anionic surfactants. Combining small angle neutron scattering (SANS) and neutron spin-echo (NSE) allows us to determine the size of the aggregates. By comparing different contrasts, the internal structure of the aggregates can be elucidated and it is seen that the PE in the aggregates retains a relatively high freedom of movement. We proceeded to investigate the influence of the surfactant concentration and the surfactant type on structure and dynamics of the mixed aggregates. It is seen that the structural parameters of the aggregates depend very little on the surfactant concentration and headgroup. However, it is crucial to incorporate a sufficient amount of PE in the aggregates to increase the viscosity of the aggregates. By comparing viscous samples at 1 wt. % PE concentration with samples at a PE concentration of 0.3 wt. %, where no significant increase in viscosity is observed, we find that similar aggregates are formed already at this lower PE concentrations. However, the amount of PE incorporated in them is insufficient to interconnect several PE chains and therefore, they do not increase viscosity. So, our detailed investigation combining contrast variation SANS and NSE does not only allow to explain the viscosity behavior but also to deduced detailed information regarding the structures and
The long-term stability of self-esteem: its time-dependent decay and nonzero asymptote.
Kuster, Farah; Orth, Ulrich
2013-05-01
How stable are individual differences in self-esteem? We examined the time-dependent decay of rank-order stability of self-esteem and tested whether stability asymptotically approaches zero or a nonzero value across long test-retest intervals. Analyses were based on 6 assessments across a 29-year period of a sample of 3,180 individuals aged 14 to 102 years. The results indicated that, as test-retest intervals increased, stability exponentially decayed and asymptotically approached a nonzero value (estimated as .43). The exponential decay function explained a large proportion of variance in observed stability coefficients, provided a better fit than alternative functions, and held across gender and for all age groups from adolescence to old age. Moreover, structural equation modeling of the individual-level data suggested that a perfectly stable trait component underlies stability of self-esteem. The findings suggest that the stability of self-esteem is relatively large, even across very long periods, and that self-esteem is a trait-like characteristic.
Viscosity characteristics of selected volcanic rock melts
Hobiger, Manuel; Sonder, Ingo; Büttner, Ralf; Zimanowski, Bernd
2011-02-01
A basic experimental study of the behavior of magma rheology was carried out on remelted volcanic rocks using wide gap viscometry. The complex composition of magmatic melts leads to complicated rheologic behavior which cannot be described with one simple model. Therefore, measurement procedures which are able to quantify non-Newtonian behavior have to be employed. Furthermore, the experimental apparatus must be able to deal with inhomogeneities of magmatic melts. We measured the viscosity of a set of materials representing a broad range of volcanic processes. For the lower viscous melts (low-silica compositions), non-Newtonian behavior is observed, whereas the high-silica melts show Newtonian behavior in the measured temperature and shear rate range (T = 1423 K - 1623 K, γ˙ = 10 - 2 s - 1 - 20 s - 1 ). The non-Newtonian materials show power-law behavior. The measured viscosities η and power-law indexes m lie in the intervals 8 Pa s ≤ η ≤ 210 3 Pa s, 0.71 ≤ m ≤ 1.0 (Grímsvötn basalt), 0.9 Pa s ≤ η ≤ 350 Pa s, 0.61 ≤ m ≤ 0.93 (Hohenstoffeln olivine-melilitite), and 8 Pa s ≤ η ≤ 1.510 4 Pa s, 0.55 ≤ m ≤ 1.0 (Sommata basalt). Measured viscosities of the Newtonian high-silica melts lie in the range 10 4 Pa s ≤ η ≤ 310 5 Pa s.
Turbulent viscosity optimized by data assimilation
Directory of Open Access Journals (Sweden)
Y. Leredde
Full Text Available As an alternative approach to classical turbulence modelling using a first or second order closure, the data assimilation method of optimal control is applied to estimate a time and space-dependent turbulent viscosity in a three-dimensional oceanic circulation model. The optimal control method, described for a 3-D primitive equation model, involves the minimization of a cost function that quantifies the discrepancies between the simulations and the observations. An iterative algorithm is obtained via the adjoint model resolution. In a first experiment, a k + L model is used to simulate the one-dimensional development of inertial oscillations resulting from a wind stress at the sea surface and with the presence of a halocline. These results are used as synthetic observations to be assimilated. The turbulent viscosity is then recovered without the k + L closure, even with sparse and noisy observations. The problems of controllability and of the dimensions of the control are then discussed. A second experiment consists of a two-dimensional schematic simulation. A 2-D turbulent viscosity field is estimated from data on the initial and final states of a coastal upwelling event.
Key words. Oceanography: general (numerical modelling · Oceanography: physical (turbulence · diffusion · and mixing processes
RELAP-7 Numerical Stabilization: Entropy Viscosity Method
Energy Technology Data Exchange (ETDEWEB)
R. A. Berry; M. O. Delchini; J. Ragusa
2014-06-01
The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at the Idaho National Laboratory (INL). The code is based on the INL's modern scientific software development framework, MOOSE (Multi-Physics Object Oriented Simulation Environment). The overall design goal of RELAP-7 is to take advantage of the previous thirty years of advancements in computer architecture, software design, numerical integration methods, and physical models. The end result will be a reactor systems analysis capability that retains and improves upon RELAP5's capability and extends the analysis capability for all reactor system simulation scenarios. RELAP-7 utilizes a single phase and a novel seven-equation two-phase flow models as described in the RELAP-7 Theory Manual (INL/EXT-14-31366). The basic equation systems are hyperbolic, which generally require some type of stabilization (or artificial viscosity) to capture nonlinear discontinuities and to suppress advection-caused oscillations. This report documents one of the available options for this stabilization in RELAP-7 -- a new and novel approach known as the entropy viscosity method. Because the code is an ongoing development effort in which the physical sub models, numerics, and coding are evolving, so too must the specific details of the entropy viscosity stabilization method. Here the fundamentals of the method in their current state are presented.
International Nuclear Information System (INIS)
Ohnuma, Yuichi; Matsuo, Mamoru; Maekawa, Sadamichi; Saitoh, Eeiji
2017-01-01
Spin Seebeck and spin Peltier effects, which are mutual conversion phenomena of heat and spin, are discussed on the basis of the microscopic theory. First, the spin Seebeck effect, which is the spin-current generation due to heat current, is discussed. The recent progress in research on the spin Seebeck effect are introduced. We explain the origin of the observed sign changes of the spin Seebeck effect in compensated ferromagnets. Next, the spin Peltier effect, which is the heat-current generation due to spin current, is discussed. Finally, we show that the spin Seebeck and spin Peltier effects are summarized by Onsager's reciprocal relation and derive Kelvin's relation for the spin and heat transports. (author)
Entangled spins and ghost-spins
Directory of Open Access Journals (Sweden)
Dileep P. Jatkar
2017-09-01
Full Text Available We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves, the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.
Theory of spin-dependent tunnelling in magnetic junctions
International Nuclear Information System (INIS)
Mathon, J.
2002-01-01
Rigorous theory of the tunnelling magnetoresistance (TMR) based on the real-space Kubo formula and fully realistic tight-binding bands fitted to an ab initio band structure is described. It is first applied to calculate the TMR of two Co electrodes separated by a vacuum gap. The calculated TMR ratio reaches ∼65% in the tunnelling regime but can be as high as 280% in the metallic regime when the vacuum gap is of the order of the Co interatomic distance (abrupt domain wall). It is also shown that the spin polarization P of the tunnelling current is negative in the metallic regime but becomes positive P∼35% in the tunnelling regime. Calculation of the TMR of an epitaxial Fe/MgO/Fe(001) junction is also described. The calculated optimistic TMR ratio is in excess of 1000% for an MgO barrier of ∼20 atomic planes and the spin polarization of the tunnelling current is positive for all MgO thicknesses. It is also found that spin-dependent tunnelling in an Fe/MgO/Fe(001) junction is not entirely determined by states at the Γ point (k parallel = 0) even for MgO thicknesses as large as ∼20 atomic planes. Finally, it is demonstrated that the TMR ratio calculated from the Kubo formula remains non-zero when one of the Co electrodes is covered with a copper layer. It is shown that non-zero TMR is due to quantum well states in the Cu layer which do not participate in transport. Since these only occur in the down-spin channel, their loss from transport creates a spin asymmetry of electrons tunnelling from a Cu interlayer, i.e. non-zero TMR. Numerical modelling is used to show that diffuse scattering from a random distribution of impurities in the barrier may cause quantum well states to evolve into propagating states, in which case the spin asymmetry of the non-magnetic layer is lost and with it the TMR. (author)
International Nuclear Information System (INIS)
Yin Shao-Ying; Song Jie; Xu Xue-Xin; Zhou Ke-Ya; Liu Shu-Tian; Liu Qing-Xin
2017-01-01
We investigate the prominent impacts of coupling strengths on the evolution of entanglement and quantum discord for a three-qubit system coupled to an XY spin-chain environment. In the case of a pure W state, more robust, even larger nonzero quantum correlations can be obtained by tailoring the coupling strengths between the qubits and the environment. For a mixed state consisting of the GHZ and W states, the dynamics of entanglement and quantum discord can characterize the critical point of quantum phase transition. Remarkably, a large nonzero quantum discord is generally retained, while the nonzero entanglement can only be obtained as the system-environment coupling satisfies certain conditions. We also find that the impact of each qubit’s coupling strength on the quantum correlation dynamics strongly depends on the variation schemes of the system-environment couplings. (paper)
International Nuclear Information System (INIS)
Laloee, F.; Freed, J.H.
1988-01-01
Low-density gases, in which atoms are separated by large distances, have long provided an enjoyable playground for physicists. One might suppose the pleasure of the playground would by now have been exhausted by the very simplicity of low-density gases. Recent work by a number of investigators including the author shows that this is not the case low-density gases continue to serve up a rich variety of phenomena as well as counterintuitive surprises. In particular, the macroscopic properties of a gas composed of individual hydrogen or helium atoms can under special circumstances by changed dramatically by quantum-mechanical effects. According to quantum theory, the nucleus of an atom behaves in a way similar to a rotating top, which has angular momentum about its axis of rotation; that is, the nucleus has spin, known more precisely as spin angular momentum. If the atoms of a gas are spin-polarized, so that their nuclei all have their spins pointing in the same direction, the viscosity of the gas can be changed enormously and so can its ability to conduct heat. Quantum-mechanical correlations among the nuclei called spin waves, which up to now had been observed only in certain liquids and solids such as magnets, can also arise. The changes are large enough for one to say the quantum-mechanical effects have caused the gas to take on entirely new properties. In a certain sense it is amazing to think that polarizing the nuclear spins can have any effect on the macroscopic properties of the gas, since the nuclear spins are son weakly coupled to the outside world. Yet the observations are in full agreement with with theory. Moreover, because spin-polarized gases are still fairly simple systems, they can be understood in terms fundamental principles, something that is still not possible to do in the case of liquids and solids
Pramanik, S.; bandyopadhyay, S.; Cahay, M.
2003-01-01
We study high-field spin transport of electrons in a quasi one-dimensional channel of a $GaAs$ gate controlled spin interferometer (SPINFET) using a semiclassical formalism (spin density matrix evolution coupled with Boltzmann transport equation). Spin dephasing (or depolarization) is predominantly caused by D'yakonov-Perel' relaxation associated with momentum dependent spin orbit coupling effects that arise due to bulk inversion asymmetry (Dresselhaus spin orbit coupling) and structural inve...
Acoustically induced spin transport in (110)GaAs quantum wells
Energy Technology Data Exchange (ETDEWEB)
Couto, Odilon D.D. Jr.
2008-09-29
In this work, we employ surface acoustic waves (SAWs) to transport and manipulate optically generated spin ensembles in (110) GaAs quantum wells (QWs). The strong carrier confinement into the SAW piezoelectric potential allows for the transport of spin-polarized carrier packets along well-defined channels with the propagation velocity of the acoustic wave. In this way, spin transport over distances exceeding 60 m is achieved, corresponding to spin lifetimes longer than 20 ns. The demonstration of such extremely long spin lifetimes is enabled by three main factors: (i) Suppression of the D'yakonov-Perel' spin relaxation mechanism for z-oriented spins in (110) IIIV QWs; (ii) Suppression of the Bir-Aronov-Pikus spin relaxation mechanism caused by the type-II SAW piezoelectric potential; (iii) Suppression of spin relaxation induced by the mesoscopic carrier confinement into narrow stripes along the SAW wave front direction. A spin transport anisotropy under external magnetic fields (B{sub ext}) is demonstrated for the first time. Employing the well-defined average carrier momentum impinged by the SAW, we analyze the spin dephasing dynamics during transport along the [001] and [1 anti 10] in-plane directions. For transport along [001], fluctuations of the internal magnetic field (B{sub int}), which arises from the spin-orbit interaction associated with the bulk inversion asymmetry of the crystal, lead to decoherence within 2 ns as the spins precess around B{sub ext}. In contrast, for transport along the [1 anti 10] direction, the z-component of the spin polarization is maintained for times one order of magnitude longer due to the non-zero average value of B{sub int}. The dephasing anisotropy between the two directions is fully understood in terms of the dependence of the spin-orbit coupling on carrier momentum direction, as predicted by the D'yakonov-Perel' mechanism for the (110) system. (orig.)
Magnetic properties of a classical XY spin dimer in a “planar” magnetic field
Energy Technology Data Exchange (ETDEWEB)
Ciftja, Orion, E-mail: ogciftja@pvamu.edu [Department of Physics, Prairie View A& M University, Prairie View, TX 77446 (United States); Prenga, Dode [Department of Physics, Faculty of Natural Sciences, University of Tirana, Bul. Zog I, Tirana (Albania)
2016-10-15
Single-molecule magnetism originates from the strong intra-molecular magnetic coupling of a small number of interacting spins. Such spins generally interact very weakly with the neighboring spins in the other molecules of the compound, therefore, inter-molecular spin couplings are negligible. In certain cases the number of magnetically coupled spins is as small as a dimer, a system that can be considered the smallest nanomagnet capable of storing non-trivial magnetic information on the molecular level. Additional interesting patterns arise if the spin motion is confined to a two-dimensional space. In such a scenario, clusters consisting of spins with large-spin values are particularly attractive since their magnetic interactions can be described well in terms of classical Heisenberg XY spins. In this work we calculate exactly the magnetic properties of a nanomagnetic dimer of classical XY spins in a “planar” external magnetic field. The problem is solved by employing a mathematical approach whose idea is the introduction of auxiliary spin variables into the starting expression of the partition function. Results for the total internal energy, total magnetic moment, spin–spin correlation function and zero-field magnetic susceptibility can serve as a basis to understand the magnetic properties of large-spin dimer building blocks. - Highlights: • Exact magnetic properties of a dimer system of classical XY spins in magnetic field. • Partition function in nonzero magnetic field obtained in closed-form. • Novel exact analytic results are important for spin models in a magnetic field. • Result provides benchmarks to gauge the accuracy of computational techniques.
About the velocity operator for spinning particles in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica]|[Istituto Nazionale di Fisica Nucleare, Catania (Italy); Recami, Erasmo; Rodrigues Junior, Waldyr A. [Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada
1995-12-01
Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, we introduce - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into sensor algebra, we also propose a new (non-relativistic) velocity operator for a spin 1/2 particle. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of-mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current. We find furthermore that the Zitterbewegung motion involves a velocity field which is solenoidal, and that the local angular velocity is parallel to the spin vector. In presence of a non-constant spin vector (Pauli case) we have, besides the component normal to spin present even in the Schroedinger theory, also a component of the local velocity which is parallel to the rotor of the spin vector. (author). 19 refs.
About the velocity operator for spinning particles in quantum mechanics
International Nuclear Information System (INIS)
Salesi, Giovanni; Recami, Erasmo; Rodrigues Junior, Waldyr A.
1995-12-01
Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, we introduce - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into sensor algebra, we also propose a new (non-relativistic) velocity operator for a spin 1/2 particle. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of-mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current. We find furthermore that the Zitterbewegung motion involves a velocity field which is solenoidal, and that the local angular velocity is parallel to the spin vector. In presence of a non-constant spin vector (Pauli case) we have, besides the component normal to spin present even in the Schroedinger theory, also a component of the local velocity which is parallel to the rotor of the spin vector. (author). 19 refs
The distribution of tilt angles in newly born NSs: role of interior viscosity and magnetic field
Dall'Osso, Simone; Perna, Rosalba
2017-12-01
We study how the viscosity of neutron star (NS) matter affects the distribution of tilt angles (χ) between the spin and magnetic axes in young pulsars. Under the hypothesis that the NS shape is determined by the magnetically induced deformation, and that the toroidal component of the internal magnetic field exceeds the poloidal one, we show that the dissipation of precessional motions by bulk viscosity can naturally produce a bi-modal distribution of tilt angles, as observed in radio/γ-ray pulsars, with a low probability of achieving χ ˜ (20°-70°) if the interior B-field is ˜(1011-1015) G and the birth spin period is ˜10-300 ms. As a corollary of the model, the idea that the NS shape is solely determined by the poloidal magnetic field, or by the centrifugal deformation of the crust, is found to be inconsistent with the tilt angle distribution in young pulsars. When applied to the Crab pulsar, with χ ˜ 45°-70° and birth spin ≳20 ms, our model implies that: (I) the magnetically induced ellipticity is ɛB ≳ 3 × 10-6; and (II) the measured positive\\dot{χ } ˜ 3.6 × 10^{-12} rad s-1 requires an additional viscous process, acting on a time-scale ≲104 yr. We interpret the latter as crust-core coupling via mutual friction in the superfluid NS interior. One critical implication of our model is a gravitational wave signal at (twice) the spin frequency of the NS. For ɛB ˜ 10-6, this could be detectable by Advanced LIGO/Virgo operating at design sensitivity.
The role of viscosity in TATB hot spot ignition
Fried, Laurence E.; Zepeda-Ruis, Luis; Howard, W. Michael; Najjar, Fady; Reaugh, John E.
2012-03-01
The role of dissipative effects, such as viscosity, in the ignition of high explosive pores is investigated using a coupled chemical, thermal, and hydrodynamic model. Chemical reactions are tracked with the Cheetah thermochemical code coupled to the ALE3D hydrodynamic code. We perform molecular dynamics simulations to determine the viscosity of liquid TATB. We also analyze shock wave experiments to obtain an estimate for the shock viscosity of TATB. Using the lower bound liquid-like viscosities, we find that the pore collapse is hydrodynamic in nature. Using the upper bound viscosity from shock wave experiments, we find that the pore collapse is closest to the viscous limit.
Lee, Ki Hoon; Chung, Suk Bum; Park, Kisoo; Park, Je-Geun
2018-05-01
We investigated the topological property of magnon bands in the collinear magnetic orders of zigzag and stripe phases for the antiferromagnetic honeycomb lattice and identified Berry curvature and symmetry constraints on the magnon band structure. Different symmetries of both zigzag and stripe phases lead to different topological properties, in particular, the magnon bands of the stripe phase being disentangled with a finite Dzyaloshinskii-Moriya (DM) term with nonzero spin Chern number. This is corroborated by calculating the spin Nernst effect. Our study establishes the existence of a nontrivial magnon band topology for all observed collinear antiferromagnetic honeycomb lattices in the presence of the DM term.
Magnetization processes in quantum spin chains with regularly alternating intersite interactions
International Nuclear Information System (INIS)
Derzhko, O.
2001-01-01
We consider the dependence of magnetization on field at zero temperature for spin-1/2 chains in which intersite interactions regularly vary from site to site with period p. In the limiting case, where the smallest value of the intersite interactions tends to zero, the chain splits into noninteracting identical fragments of p sites and the dependence of magnetization on field can be examined rigorously. We comment on the influence of an anisotropy in the inter spin interaction on the magnetization profiles. Finally, we show how the case of a nonzero smallest value of the intersite interactions can be considered
Electron treatment of wood pulp for the viscose process
Stepanik, T. M.; Ewing, D. E.; Whitehouse, R.
2000-03-01
Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion's efforts in developing this technology.
Magnetic Nanostructures Spin Dynamics and Spin Transport
Farle, Michael
2013-01-01
Nanomagnetism and spintronics is a rapidly expanding and increasingly important field of research with many applications already on the market and many more to be expected in the near future. This field started in the mid-1980s with the discovery of the GMR effect, recently awarded with the Nobel prize to Albert Fert and Peter Grünberg. The present volume covers the most important and most timely aspects of magnetic heterostructures, including spin torque effects, spin injection, spin transport, spin fluctuations, proximity effects, and electrical control of spin valves. The chapters are written by internationally recognized experts in their respective fields and provide an overview of the latest status.
Nuclear viscosity of hot rotating 240Cf
International Nuclear Information System (INIS)
Shaw, N. P.; Dioszegi, I.; Mazumdar, I.; Buda, A.; Morton, C. R.; Velkovska, J.; Beene, J. R.; Stracener, D. W.; Varner, R. L.; Thoennessen, M.
2000-01-01
The absolute γ-ray/fission multiplicities from hot rotating 240 Cf, populated at seven bombarding energies using the reaction 32 S+ 208 Pb, are reported. Statistical model calculations including nuclear dissipation have been performed to extract the dependence of the nuclear viscosity on temperature and/or nuclear deformation. The extracted nuclear dissipation coefficient is found to be independent of temperature. Large dissipation during the saddle to scission path provides a good fit to the γ-ray spectra. (c) 2000 The American Physical Society
From Suitable Weak Solutions to Entropy Viscosity
Guermond, Jean-Luc
2010-12-16
This paper focuses on the notion of suitable weak solutions for the three-dimensional incompressible Navier-Stokes equations and discusses the relevance of this notion to Computational Fluid Dynamics. The purpose of the paper is twofold (i) to recall basic mathematical properties of the three-dimensional incompressible Navier-Stokes equations and to show how they might relate to LES (ii) to introduce an entropy viscosity technique based on the notion of suitable weak solution and to illustrate numerically this concept. © 2010 Springer Science+Business Media, LLC.
Viscosity in the edge of tokamak plasmas
International Nuclear Information System (INIS)
Stacey, W.M.
1993-05-01
A fluid representation of viscosity has been incorporated into a set of fluid equations that are maximally ordered in the ''short-radial-gradient-scale-length'' (srgsl) ordering that is appropriate for the edge of tokamak plasmas. The srgsl ordering raises viscous drifts and other viscous terms to leading order and fundamentally alters the character of the fluid equations. A leasing order viscous drift is identified. Viscous-driven radial particle and energy fluxes in the scrape-off layer and divertor channel are estimated to have an order unity effect in reducing radial peaking of energy fluxes transported along the field lines to divertor collector plates
On the measurement of magnetic viscosity
Serletis, C.; Efthimiadis, K. G.
2012-08-01
This work is an investigation of the experimental method used for measuring the magnetic viscosity in a hard ferromagnetic material, i.e. the recording of the magnetization under constant applied field and temperature, after the material has been magnetically saturated. It investigates how the experimental results are affected by the initial conditions of the method (saturation field, field change rate and field oscillation prior to its stabilization), and by minor variations of field and temperature during the recording. Based on the arising conclusions and the use of a more complex fitting function of measurements, the accuracy and repeatability of experimental results is improved.
Viscosity of many-component glasses
International Nuclear Information System (INIS)
Hrma, Pavel R.; Arrigoni, Benjamin M.; Schweiger, Michael J.
2009-01-01
The effect of composition on the viscosity of multicomponent glasses was expressed as a function of temperature and composition for three composition regions containing various subsets of Al2O3, B2O3, Bi2O3, CaO, Cr2O3, F, Fe2O3, K2O, Li2O, MgO, MnO, Na2O, NiO, P2O5, SiO2, UO2, and ZrO2. Limits of applicability of the composition models are discussed
Viscosity calculations at molecular dynamics simulations
International Nuclear Information System (INIS)
Kirova, E M; Norman, G E
2015-01-01
Viscosity and diffusion are chosen as an example to demonstrate the universality of diagnostics methods in the molecular dynamics method. To emphasize the universality, three diverse systems are investigated, which differ from each other drastically: liquids with embedded atom method and pairwise interatomic interaction potentials and dusty plasma with a unique multiparametric interparticle interaction potential. Both the Einstein-Helfand and Green-Kubo relations are used. Such a particular process as glass transition is analysed at the simulation of the aluminium melt. The effect of the dust particle charge fluctuation is considered. The results are compared with the experimental data. (paper)
Semileptonic B to D Decays at Nonzero Recoil with 2+1 Flavors of Improved Staggered Quarks
International Nuclear Information System (INIS)
Qiu, Si-Wei; DeTar, Carleton; Du, Daping; Kronfeld, Andreas S.; Laiho, Jack; Van de Water, Ruth S.
2011-01-01
The Fermilab Lattice-MILC collaboration is completing a comprehensive program of heavy-light physics on the MILC (2+1)-flavor asqtad ensembles with lattice spacings as small as 0.045 fm and light-to-strange-quark mass ratios as low as 1/20. We use the Fermilab interpretation of the clover action for heavy valence quarks and the asqtad action for light valence quarks. The central goal of the program is to provide ever more exacting tests of the unitarity of the CKM matrix. We give a progress report on one part of the program, namely the analysis of the semileptonic decay B to D at both zero and nonzero recoil. Although final results are not presented, we discuss improvements in the analysis methods, the statistical errors, and the parameter coverage that we expect will lead to a significant reduction in the final error for |V cb | from this decay channel.
International Nuclear Information System (INIS)
Akemann, Gernot; Bittner, Elmar
2006-01-01
We compare analytic predictions of non-Hermitian chiral random matrix theory with the complex Dirac operator eigenvalue spectrum of two-color lattice gauge theory with dynamical fermions at nonzero chemical potential. The Dirac eigenvalues come in complex conjugate pairs, making the action of this theory real and positive for our choice of two staggered flavors. This enables us to use standard Monte Carlo simulations in testing the influence of the chemical potential and quark mass on complex eigenvalues close to the origin. We find excellent agreement between the analytic predictions and our data for two different volumes over a range of chemical potentials below the chiral phase transition. In particular, we detect the effect of unquenching when going to very small quark masses
Bandwidth broadening and asymmetric softening of collective spin waves in magnonic crystals
International Nuclear Information System (INIS)
Montoncello, F.; Giovannini, L.
2014-01-01
We investigate the dependence on the applied field of the frequency/wavevector dispersion relations of collective spin waves in arrays of dots, close to a magnetic transition. In particular, we focus on the low frequency “soft” modes in three different cases: end modes in the transition between two different saturated states in ellipses, fundamental mode in the saturated-to-vortex transition in disks, and gyrotropic mode in the vortex-to-saturated transition in disks. Noteworthy, the spin waves with nonzero Bloch wavevector along the direction of the applied field happen to soften earlier than spin waves with a Bloch wavevector along different directions, and this feature is responsible for an asymmetric broadening of the bandwidth along the different lattice directions. This is particularly useful in magnonic/spin-logic device research, if different binary digits are associated to modes with the same cell function but different propagation directions.
Theory of generation of angular momentum of phonons by heat current and its conversion to spins
Hamada, Masato; Murakami, Shuichi
Spin-rotation coupling in crystals will enable us to convert between spin current and mechanical rotations, as has been studied in surface acoustic waves, in liquid metals, and in carbon nanotubes. In this presentation we focus on angular momentum of phonons. In nonmagnetic crystals without inversion symmetry, we theoretically demonstrate that phonon modes generally have angular momenta depending on their wave vectors. In equilibrium the sum of the angular momenta is zero. On the other hand, if a heat current flows in the crystal, nonequilibrium phonon distribution leads to nonzero total angular momentum of phonons. It can be observed as a rotation of crystal itself, and as a spin current induced by these phonons via the spin-rotation coupling.
Stability of global entanglement in thermal states of spin chains
International Nuclear Information System (INIS)
Brennen, Gavin K.; Bullock, Stephen S.
2004-01-01
We investigate the entanglement properties of a one-dimensional chain of qubits coupled via nearest-neighbor spin-spin interactions. The entanglement measure used is the n-concurrence, which is distinct from other measures on spin chains such as bipartite entanglement in that it can quantify 'global' entanglement across the spin chain. Specifically, it computes the overlap of a quantum state with its time-reversed state. As such, this measure is well suited to study ground states of spin-chain Hamiltonians that are intrinsically time-reversal-symmetric. We study the robustness of n-concurrence of ground states when the interaction is subject to a time-reversal antisymmetric magnetic field perturbation. The n-concurrence in the ground state of the isotropic XX model is computed and it is shown that there is a critical magnetic field strength at which the entanglement experiences a jump discontinuity from the maximum value to zero. The n-concurrence for thermal mixed states is derived and a threshold temperature is computed below which the system has nonzero entanglement
Shear viscosity and out of equilibrium dynamics
El, Andrej; Xu, Zhe; Greiner, Carsten
2009-01-01
Using Grad’s method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio η/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with η/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling αs ∼ 0.3 (with η/s ≈ 0.18) and is a factor of 2–3 larger at a small coupling αs ∼ 0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on η/s, except when employing a small αs . On the other hand, we demonstrate that for such small αs , the gluon syst...
Shear viscosity and out of equilibrium dynamics
El, Andrej; Xu, Zhe; Greiner, Carsten
2009-01-01
Using the Grad's method we calculate the entropy production and derive a formula for the second order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance the shear tensor and the shear viscosity to entropy density ratio $\\eta/s$ are numerically calculated by an iterative and self-consistent prescription within the second order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with $\\eta/s$ obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling $\\alpha_s \\sim 0.3$(with $\\eta/s\\approx 0.18$) and is a factor of 2-3 larger at a small coupling $\\alpha_s \\sim 0.01$. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on $\\eta/s$, except when employing a small $\\alpha_s$. On the other hand, we demonstrate th...
Shear viscosity coefficient from microscopic models
International Nuclear Information System (INIS)
Muronga, Azwinndini
2004-01-01
The transport coefficient of shear viscosity is studied for a hadron matter through microscopic transport model, the ultrarelativistic quantum molecular dynamics (UrQMD), using the Green-Kubo formulas. Molecular-dynamical simulations are performed for a system of light mesons in a box with periodic boundary conditions. Starting from an initial state composed of π,η,ω,ρ,φ with a uniform phase-space distribution, the evolution takes place through elastic collisions, production, and annihilation. The system approaches a stationary state of mesons and their resonances, which is characterized by common temperature. After equilibration, thermodynamic quantities such as the energy density, particle density, and pressure are calculated. From such an equilibrated state the shear viscosity coefficient is calculated from the fluctuations of stress tensor around equilibrium using Green-Kubo relations. We do our simulations here at zero net baryon density so that the equilibration times depend on the energy density. We do not include hadron strings as degrees of freedom so as to maintain detailed balance. Hence we do not get the saturation of temperature but this leads to longer equilibration times
Shear viscosity and out of equilibrium dynamics
International Nuclear Information System (INIS)
El, Andrej; Xu Zhe; Greiner, Carsten; Muronga, Azwinndini
2009-01-01
Using Grad's method, we calculate the entropy production and derive a formula for the second-order shear viscosity coefficient in a one-dimensionally expanding particle system, which can also be considered out of chemical equilibrium. For a one-dimensional expansion of gluon matter with Bjorken boost invariance, the shear tensor and the shear viscosity to entropy density ratio η/s are numerically calculated by an iterative and self-consistent prescription within the second-order Israel-Stewart hydrodynamics and by a microscopic parton cascade transport theory. Compared with η/s obtained using the Navier-Stokes approximation, the present result is about 20% larger at a QCD coupling α s ∼0.3 (with η/s≅0.18) and is a factor of 2-3 larger at a small coupling α s ∼0.01. We demonstrate an agreement between the viscous hydrodynamic calculations and the microscopic transport results on η/s, except when employing a small α s . On the other hand, we demonstrate that for such small α s , the gluon system is far from kinetic and chemical equilibrium, which indicates the break down of second-order hydrodynamics because of the strong nonequilibrium evolution. In addition, for large α s (0.3-0.6), the Israel-Stewart hydrodynamics formally breaks down at large momentum p T > or approx. 3 GeV but is still a reasonably good approximation.
Viscosity properties of tellurite-based glasses
International Nuclear Information System (INIS)
Tincher, B.; Massera, J.; Petit, L.; Richardson, K.
2010-01-01
The viscosity behavior of glasses with the composition (90-x)TeO 2 -10Bi 2 O 3 -xZnO with x = 15, 17.5, and 20 (TBZ glasses) and 80TeO 2 -(20-y)Na 2 O-yZnO system with y = 0, 5, and 10 (TNZ glasses) have been measured as a function of temperature using a beam-bending (BBV) and a parallel-plate (PPV) viscometer. The structure of the glass' network has been characterized using Raman spectroscopy and has been related to the viscosity temperature behavior and the fragility parameter (m) of the glasses. As the concentration of ZnO in the TBZ system (x) increases, the fragility parameter of the glass increases, whereas it decreases with an increase of the ZnO concentration (y) in the TNZ system. In both glasses, these variations in m have been related to the partial depolymerization of the tellurite network associated with the level of modifier content. The depolymerization of the tellurite network is believed to be the result of a reduction in the number of [TeO 4 ] units and the formation of [TeO 3 ] and [TeO 3+1 ] units that occurs with a change in TeO 2 content in the TBZ system and modifier content in the TNZ system.
Spin-polarized spin excitation spectroscopy
International Nuclear Information System (INIS)
Loth, Sebastian; Lutz, Christopher P; Heinrich, Andreas J
2010-01-01
We report on the spin dependence of elastic and inelastic electron tunneling through transition metal atoms. Mn, Fe and Cu atoms were deposited onto a monolayer of Cu 2 N on Cu(100) and individually addressed with the probe tip of a scanning tunneling microscope. Electrons tunneling between the tip and the substrate exchange energy and spin angular momentum with the surface-bound magnetic atoms. The conservation of energy during the tunneling process results in a distinct onset threshold voltage above which the tunneling electrons create spin excitations in the Mn and Fe atoms. Here we show that the additional conservation of spin angular momentum leads to different cross-sections for spin excitations depending on the relative alignment of the surface spin and the spin of the tunneling electron. For this purpose, we developed a technique for measuring the same local spin with a spin-polarized and a non-spin-polarized tip by exchanging the last apex atom of the probe tip between different transition metal atoms. We derive a quantitative model describing the observed excitation cross-sections on the basis of an exchange scattering process.
Viscosity of glasses containing simulated Savannah River Plant waste
International Nuclear Information System (INIS)
Plodinec, M.J.
1978-08-01
The viscosity of glass melts containing four simulated sludge types and two frit candidates (Frits 18 and 21) was measured over the temperature range 750 to 1200 0 C. The viscosity of melts made with either frit was reduced by the addition of high iron sludge, unchanged by average sludge, and increased by composite and high aluminum sludge. High aluminium sludge greatly increased the viscosity. Frit 21 (containing 4 wt % Li 2 O substituted for 4 wt % Na 2 O in Frit 18) was clearly better than Frit 18 in terms of its low viscosity. However, further reductions in viscosity are desirable, especially for glasses containing high aluminum sludge. Changing any frit component by 1 wt % did not significantly affect the viscosity of the glasses. Therefore, variability of 1 wt % in any frit component can be tolerated
Viscosity calculations of simulated ion-exchange resin waste glasses
International Nuclear Information System (INIS)
Kim, Cheon Woo; Park, Jong Kil; Lee, Kyung Ho; Lee, Myung Chan; Song, Myung Jae; BRUNELOT, Pierre
2000-01-01
An induction cold crucible melter (CCM) located in the NETEC-KEPCO has been used to vitrify simulated ion-exchange resin. During vitrification, the CCM operations were tightly constrained by glass viscosity as an important process parameter. Understanding the role of viscosity and quantifying viscosity is highly required in the determination of optimized feed formulations and in the selection of the processing temperature. Therefore, existing process models of glass viscosity based on a relationship between the glass composition, its structure polymerization, and the temperature were searched and adapted to our borosilicate glass systems. Calculated data using a viscosity model based on calculation of non-bridging oxygen (NBO) were in good agreement with the measured viscosity data of benchmark glasses
Spin nematics next to spin singlets
Yokoyama, Yuto; Hotta, Chisa
2018-05-01
We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.
Modeling of Viscosity and Thermal Expansion of Bioactive Glasses
Farid, Saad B. H.
2012-01-01
The behaviors of viscosity and thermal expansion for different compositions of bioactive glasses have been studied. The effect of phosphorous pentoxide as a second glass former in addition to silica was investigated. Consequently, the nonlinear behaviors of viscosity and thermal expansion with respect to the oxide composition have been modeled. The modeling uses published data on bioactive glass compositions with viscosity and thermal expansion. -regression optimization technique has been uti...
Viscosity, thermal diffusivity and Prandtl number of nanoparticle suspensions
Institute of Scientific and Technical Information of China (English)
WANG Buxuan; ZHOU Leping; PENG Xiaofeng
2004-01-01
Using our reported experimental data of effective thermal conductivity, specific heat capacity and viscosity for CuO nanoparticle suspensions, the corresponding thermal diffusivity and Prandtl number are calculated. With the hard sphere model and considering effects of particle clustering and surface adsorption, the increase of viscosity for nanoparticle suspension observed is explained. It is shown that the effective thermal conductivity will be strongly affected by the formation and correlated spatial distribution of nanoparticle clusters when compared to viscosity in hosting liquid.
Applicability of viscosity measurement to the detection of irradiated peppers
International Nuclear Information System (INIS)
Hayashi, T.; Todoriki, S.; Kohyama, K.
1996-01-01
Starch is degraded by ionising radiation, resulting in a decrease in viscosity. The viscosities of black and white peppers which contain large amounts of starch are reduced by irradiation so, therefore, viscosity measurement has been proposed as a method to detect the irradiation treatment of these food products. Although detection of irradiated spices by thermoluminescence measurement has been established, it is useful to establish the viscosity measuring technique for detecting irradiated peppers, as this method is carried out widely in the laboratories of food controlling authorities and food processing companies. (author)
Viscosity of Heterogeneous Silicate Melts: A Non-Newtonian Model
Liu, Zhuangzhuang; Blanpain, Bart; Guo, Muxing
2017-12-01
The recently published viscosity data of heterogeneous silicate melts with well-documented structure and experimental conditions are critically re-analyzed and tabulated. By using these data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate is proposed on the basis of the power-law equation. This model allows calculating the viscosity of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large error in viscosity measurement of the completely liquid silicate melt.
In situ viscosity of oil sands using low field NMR
International Nuclear Information System (INIS)
Bryan, J.; Moon, D.; Kantzas, A.
2005-01-01
In heavy oil and bitumen reservoirs, oil viscosity is a vital piece of information that will have great bearing on the chosen EOR scheme and the recovery expected. Prediction of in situ viscosity with a logging tool would he very beneficial in reservoir characterization and exploitation design. Low field NMR is a technology that has shown great potential as a tool for characterizing hydrocarbon properties in heavy oil and bitumen reservoirs. An oil viscosity correlation has previously been developed that is capable of providing order of magnitude viscosity estimates for a wide range of oils taken from various fields in Alberta. This paper presents tuning procedures to improve the NMR predictions for different viscosity ranges, and extends the NMR viscosity model to in situ heavy oil in unconsolidated sands. The results of this work show that the NMR oil peak can be de-convoluted from the in situ signals of the oil and water, and the bulk viscosity correlation that was developed for bulk oils can he applied to predict the in situ oil viscosity. These results can be translated to an NMR logging tool algorithm, allowing for in situ measurements of oil viscosity at the proper reservoir conditions. (author)
Determination of viscosity in recirculating fluidized bed using radioactive tracer
International Nuclear Information System (INIS)
Silva, G.G. da.
1986-01-01
The use of radioactive tracer for measuring viscosity is proposed. The methodology relates the terminal velocity of a radioactive sphere in interior of fluid with the viscosity, which can be a fluidized bed or total flow of solids. The arrangement is composed by two γ detectors placed externally and along the bed. Both detectors are coupled by amplifier to electronic clock. The drop time of sphere between two detectors is measured. The bed viscosity two detectors is measured. The bed viscosity is calculated from mathematical correlations of terminal velocity of the sphere. (M.C.K.)
On bulk viscosity and moduli decay
International Nuclear Information System (INIS)
Laine, Mikko
2010-01-01
This pedagogically intended lecture, one of four under the header 'Basics of thermal QCD', reviews an interesting relationship, originally pointed out by Boedeker, that exists between the bulk viscosity of Yang-Mills theory (of possible relevance to the hydrodynamics of heavy ion collision experiments) and the decay rate of scalar fields coupled very weakly to a heat bath (appearing in some particle physics inspired cosmological scenarios). This topic serves, furthermore, as a platform on which a number of generic thermal field theory concepts are illustrated. The other three lectures (on the QCD equation of state and the rates of elastic as well as inelastic processes experienced by heavy quarks) are recapitulated in brief encyclopedic form. (author)
Sensor for viscosity and shear strength measurement
Energy Technology Data Exchange (ETDEWEB)
Ebadian, M.A.; Dillion, J.; Moore, J.; Jones, K.
1998-01-01
Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. Two different viscometer techniques are being investigated in this study, based on: magnetostrictive pulse generated acoustic waves; and an oscillating cylinder. Prototype sensors have been built and tested which are based on both techniques. A base capability instrumentation system has been designed, constructed, and tested which incorporates both of these sensors. It requires manual data acquisition and off-line calculation. A broad range of viscous media has been tested using this system. Extensive test results appear in this report. The concept for each technique has been validated by these test results. This base capability system will need to be refined further before it is appropriate for field tests. The mass of the oscillating system structure will need to be reduced. A robust acoustic probe assembly will need to be developed. In addition, in March 1997 it was made known for the first time that the requirement was for a deliverable automated viscosity instrumentation system. Since then such a system has been designed, and the hardware has been constructed so that the automated concept can be proved. The rest of the hardware, which interfaced to a computer, has also been constructed and tested as far as possible. However, for both techniques the computer software for automated data acquisition, calculation, and logging had not been completed before funding and time ran out.
The peak in anomalous magnetic viscosity
International Nuclear Information System (INIS)
Collocott, S.J.; Watterson, P.A.; Tan, X.H.; Xu, H.
2014-01-01
Anomalous magnetic viscosity, where the magnetization as a function of time exhibits non-monotonic behaviour, being seen to increase, reach a peak, and then decrease, is observed on recoil lines in bulk amorphous ferromagnets, for certain magnetic prehistories. A simple geometrical approach based on the motion of the state line on the Preisach plane gives a theoretical framework for interpreting non-monotonic behaviour and explains the origin of the peak. This approach gives an expression for the time taken to reach the peak as a function of the applied (or holding) field. The theory is applied to experimental data for bulk amorphous ferromagnet alloys of composition Nd 60−x Fe 30 Al 10 Dy x , x = 0, 1, 2, 3 and 4, and it gives a reasonable description of the observed behaviour. The role played by other key magnetic parameters, such as the intrinsic coercivity and fluctuation field, is also discussed. When the non-monotonic behaviour of the magnetization of a number of alloys is viewed in the context of the model, features of universal behaviour emerge, that are independent of alloy composition. - Highlights: • Development of a simple geometrical model based on the Preisach model which gives a complete explanation of the peak in the magnetic viscosity. • Geometrical approach is extended by considering equations that govern the motion of the state line. • The model is used to deduce the relationship between the holding field and the time it takes to reach the peak. • The model is tested with experimental results for a range of Nd–Fe–Al–Dy bulk amorphous ferromagnets. • There is good agreement between the model and the experimental data
Matsuo, Mamoru; Saitoh, Eiji; Maekawa, Sadamichi
2017-01-01
We investigate the interconversion phenomena between spin and mechanical angular momentum in moving objects. In particular, the recent results on spin manipulation and spin-current generation by mechanical motion are examined. In accelerating systems, spin-dependent gauge fields emerge, which enable the conversion from mechanical angular momentum into spins. Such a spin-mechanical effect is predicted by quantum theory in a non-inertial frame. Experiments which confirm the effect, i.e., the resonance frequency shift in nuclear magnetic resonance, the stray field measurement of rotating metals, and electric voltage generation in liquid metals, are discussed.
Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver
2017-08-01
Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.
Viscosity of iodinated contrast agents during renal excretion
International Nuclear Information System (INIS)
Jost, Gregor; Lengsfeld, Philipp; Lenhard, Diana C.; Pietsch, Hubertus; Huetter, Joachim; Sieber, Martin A.
2011-01-01
Objective: Modern iodinated non-ionic contrast agents (CAs) can be classified based on their molecular structure into monomeric and dimeric CAs and have at comparable iodine concentrations a different viscosity and osmolality. During their renal excretion, CAs are concentrated in the renal tubuli which might enhance the viscosity difference between monomeric and dimeric CAs. The viscosity of a CA might have an underestimated importance for renal safety, as suggested by recent publications. In this study, we investigated the viscosities of CAs at the concentrations expected to be present in renal tubules. This concentration process was simulated in vitro using dialysis. Furthermore, we investigated urine viscosity and urine flow in rodents after administration of several non-ionic monomeric and dimeric CAs. Materials and methods: To estimate the viscosity of the CAs in vivo, we performed an in vitro dialysis of monomeric and dimeric CAs at various physiological osmolalities of the renal tubulus (290, 400, 500, 700 and 1000 mOsm/kg H 2 O). Following the dialysis, the iodine concentrations and the viscosities of the CAs were determined. Furthermore, to investigate the concentration process in vivo, we measured the urine viscosity and the urine flow in Han Wister rats after the administration of Iopromide, Iohexol, Ioversol, Iomeprol, Iodixanol, and Iosimenol at comparable iodine concentrations. As a control, saline was injected at the same volume. Results: In vitro dialysis of the dimeric CA increased the iodine concentration and strongly increased the viscosity at all tested osmolalities. In contrast, for the monomeric agents an increase in concentration and viscosity was observed only at 700 as well 1000 mOsm/kg H 2 O but to a lesser extent. In summary, dialysis strongly enhanced the viscosity differences between the non-ionic monomeric and dimeric CAs. The administration of dimeric CAs leads to a strong increase in urine viscosity; this was not observed for the
Viscosity of iodinated contrast agents during renal excretion
Energy Technology Data Exchange (ETDEWEB)
Jost, Gregor, E-mail: Gregor.Jost@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Lengsfeld, Philipp, E-mail: Philipp.Lengsfeld@bayer.com [Global Medical Affairs Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Lenhard, Diana C., E-mail: Diana.Lenhard@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Pietsch, Hubertus, E-mail: Hubertus.Pietsch@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Huetter, Joachim, E-mail: Joachim.Huetter@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany); Sieber, Martin A., E-mail: Martin.Sieber@bayer.com [TRG Diagnostic Imaging, Bayer Schering Pharma AG, Berlin (Germany)
2011-11-15
Objective: Modern iodinated non-ionic contrast agents (CAs) can be classified based on their molecular structure into monomeric and dimeric CAs and have at comparable iodine concentrations a different viscosity and osmolality. During their renal excretion, CAs are concentrated in the renal tubuli which might enhance the viscosity difference between monomeric and dimeric CAs. The viscosity of a CA might have an underestimated importance for renal safety, as suggested by recent publications. In this study, we investigated the viscosities of CAs at the concentrations expected to be present in renal tubules. This concentration process was simulated in vitro using dialysis. Furthermore, we investigated urine viscosity and urine flow in rodents after administration of several non-ionic monomeric and dimeric CAs. Materials and methods: To estimate the viscosity of the CAs in vivo, we performed an in vitro dialysis of monomeric and dimeric CAs at various physiological osmolalities of the renal tubulus (290, 400, 500, 700 and 1000 mOsm/kg H{sub 2}O). Following the dialysis, the iodine concentrations and the viscosities of the CAs were determined. Furthermore, to investigate the concentration process in vivo, we measured the urine viscosity and the urine flow in Han Wister rats after the administration of Iopromide, Iohexol, Ioversol, Iomeprol, Iodixanol, and Iosimenol at comparable iodine concentrations. As a control, saline was injected at the same volume. Results: In vitro dialysis of the dimeric CA increased the iodine concentration and strongly increased the viscosity at all tested osmolalities. In contrast, for the monomeric agents an increase in concentration and viscosity was observed only at 700 as well 1000 mOsm/kg H{sub 2}O but to a lesser extent. In summary, dialysis strongly enhanced the viscosity differences between the non-ionic monomeric and dimeric CAs. The administration of dimeric CAs leads to a strong increase in urine viscosity; this was not observed for
Understanding the Viscosity of Liquids used in Infant Dysphagia Management
Frazier, Jackie; Chestnut, Amanda; Jackson, Arwen; Barbon, Carly E. A.; Steele, Catriona M.; Pickler, Laura
2016-01-01
When assessing swallowing in infants, it is critical to have confidence that the liquids presented during the swallow study closely replicate the viscosity of liquids in the infant's typical diet. However, we lack research on rheological properties of frequently used infant formulas or breastmilk, and various forms of barium contrast media used in swallow studies. The aim of the current study was to provide objective viscosity measurements for typical infant liquid diet options and barium contrast media. A TA-Instruments AR2000 Advanced Rheometer was used to measure the viscosity, five standard infant formulas, three barium products and two breastmilk samples. Additionally, this study measured the viscosity of infant formulas and breastmilk when mixed with powdered barium contrast in a 20% weight-to-volume (w/v) concentration. Study findings determined that standard infant formulas and the two breastmilk samples had low viscosities, at the lower end of the National Dysphagia Diet (NDD) thin liquid range. Two specialty formulas tested had much thicker viscosities, close to the NDD nectar-thick liquid range lower boundary. The study showed differences in viscosity between two 60% w/v barium products (Liquid E-Z-Paque® and E-Z-Paque® powder); the powdered product had a much lower viscosity, despite identical barium concentration. When E-Z-Paque® powdered barium was mixed in a 20% w/v concentration using water, standard infant formulas or breastmilk, the resulting viscosities were at the lower end of the NDD thin range, and only slightly thicker than the non-barium comparator liquids. When E-Z-Paque® powdered barium was mixed in a 20% w/v concentration with the two thicker specialty formulas (Enfamil AR 20kcal and 24 kcal), unexpected alterations in their original viscosity occurred. These findings highlight the clinical importance of objective measures of viscosity as well as objective data on how infant formulas or breastmilk may change in consistency when mixed
Whole-blood viscosity and the insulin-resistance syndrome.
Høieggen, A; Fossum, E; Moan, A; Enger, E; Kjeldsen, S E
1998-02-01
In a previous study we found that elevated blood viscosity was linked to the insulin resistance syndrome, and we proposed that high blood viscosity may increase insulin resistance. That study was based on calculated viscosity. To determine whether directly measured whole-blood viscosity was related to the insulin-resistance syndrome in the same way as calculated viscosity had been found to be. Healthy young men were examined with the hyperinsulinemic isoglycemic glucose clamp technique, and we related insulin sensitivity (glucose disposal rate) to other metabolic parameters and to blood viscosity. We established a technique for direct measurement of whole-blood viscosity. There were statistically significant negative correlations between glucose disposal rate and whole-blood viscosity at low and high shear rates (r = -0.41, P = 0.007 for both, n = 42). Whole-blood viscosity was correlated positively (n = 15) to serum triglyceride (r = 0.54, P = 0.04) and total cholesterol (r = 0.52, P = 0.05), and negatively with high-density lipoprotein cholesterol (r = -0.53, P = 0.04) concentrations. Insulin sensitivity index was correlated positively to high-density lipoprotein cholesterol (r = 0.54, P = 0.04) and negatively to serum triglyceride (r = -0.69, P = 0.005) and to total cholesterol (r = -0.81, P = 0.0003) concentrations. The present results demonstrate for the first time that there is a negative relationship between directly measured whole-blood viscosity and insulin sensitivity as a part of the insulin-resistance syndrome. Whole-blood viscosity contributes to the total peripheral resistance, and these results support the hypothesis that insulin resistance has a hemodynamic basis.
Vilardy, Juan M.; Millán, María S.; Pérez-Cabré, Elisabet
2017-02-01
A novel nonlinear image encryption scheme based on a fully phase nonzero-order joint transform correlator architecture (JTC) in the Gyrator domain (GD) is proposed. In this encryption scheme, the two non-overlapping data distributions of the input plane of the JTC are fully encoded in phase and this input plane is transformed using the Gyrator transform (GT); the intensity distribution captured in the GD represents a new definition of the joint Gyrator power distribution (JGPD). The JGPD is modified by two nonlinear operations with the purpose of retrieving the encrypted image, with enhancement of the decrypted signal quality and improvement of the overall security. There are three keys used in the encryption scheme, two random phase masks and the rotation angle of the GT, which are all necessary for a proper decryption. Decryption is highly sensitivity to changes of the rotation angle of the GT as well as to little changes in other parameters or keys. The proposed encryption scheme in the GD still preserves the shift-invariance properties originated in the JTC-based encryption in the Fourier domain. The proposed encryption scheme is more resistant to brute force attacks, chosen-plaintext attacks, known-plaintext attacks, and ciphertext-only attacks, as they have been introduced in the cryptanalysis of the JTC-based encryption system. Numerical results are presented and discussed in order to verify and analyze the feasibility and validity of the novel encryption-decryption scheme.
Maelger, J.; Reinosa, U.; Serreau, J.
2018-04-01
We extend a previous investigation [U. Reinosa et al., Phys. Rev. D 92, 025021 (2015), 10.1103/PhysRevD.92.025021] of the QCD phase diagram with heavy quarks in the context of background field methods by including the two-loop corrections to the background field effective potential. The nonperturbative dynamics in the pure-gauge sector is modeled by a phenomenological gluon mass term in the Landau-DeWitt gauge-fixed action, which results in an improved perturbative expansion. We investigate the phase diagram at nonzero temperature and (real or imaginary) chemical potential. Two-loop corrections yield an improved agreement with lattice data as compared to the leading-order results. We also compare with the results of nonperturbative continuum approaches. We further study the equation of state as well as the thermodynamic stability of the system at two-loop order. Finally, using simple thermodynamic arguments, we show that the behavior of the Polyakov loops as functions of the chemical potential complies with their interpretation in terms of quark and antiquark free energies.
International Nuclear Information System (INIS)
Lenaghan, J.T.; Rischke, D.H.
2000-01-01
The temperature dependence of the sigma meson and pion masses is studied in the framework of the O(N ) model. The Cornwall-Jackiw-Tomboulis formalism is applied to derive gap equations for the masses in the Hartree and large-N approximations. Renormalization of the gap equations is carried out within the cut-off and counter-term renormalization schemes. A consistent renormalization of the gap equations within the cut-off scheme is found to be possible only in the large-N approximation and for a finite value of the cut-off. On the other hand, the counter-term scheme allows for a consistent renormalization of both the large-N and Hartree approximations. In these approximations, the meson masses at a given nonzero temperature depend in general on the choice of the cut-off or renormalization scale. As an application, we also discuss the in-medium on-shell decay widths for sigma mesons and pions at rest. (author)
Klimchitskaya, G. L.; Mostepanenko, V. M.; Petrov, V. M.
2017-12-01
The complete theory of electrical conductivity of graphene at arbitrary temperature is developed with taking into account mass-gap parameter and chemical potential. Both the in-plane and out-of-plane conductivities of graphene are expressed via the components of the polarization tensor in (2+1)-dimensional space-time analytically continued to the real frequency axis. Simple analytic expressions for both the real and imaginary parts of the conductivity of graphene are obtained at zero and nonzero temperature. They demonstrate an interesting interplay depending on the values of mass gap and chemical potential. In the local limit, several results obtained earlier using various approximate and phenomenological approaches are reproduced, refined, and generalized. The numerical computations of both the real and imaginary parts of the conductivity of graphene are performed to illustrate the obtained results. The analytic expressions for the conductivity of graphene obtained in this paper can serve as a guide in the comparison between different theoretical approaches and between experiment and theory.
Phonon self-energy corrections to non-zero wavevector phonon modes in single-layer graphene
Araujo, Paulo; Mafra, Daniela; Sato, Kentaro; Saito, Richiiro; Kong, Jing; Dresselhaus, Mildred
2012-02-01
Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q = 0) wave-vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene (1LG) in the frequency range from 2350 to 2750 cm-1, which shows the G* and the G'-band features originating from a double-resonant Raman process with q 0. The observed phonon renormalization effects are different from what is observed for the zone-center q = 0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with non-zero wave-vectors (q 0) in 1LG in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q = 0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G* Raman feature at 2450 cm-1 to include the iTO+LA combination modes with q 0 and the 2iTO overtone modes with q = 0, showing both to be associated with wave-vectors near the high symmetry point K in the Brillouin zone.
Phonon Self-Energy Corrections to Nonzero Wave-Vector Phonon Modes in Single-Layer Graphene
Araujo, P. T.; Mafra, D. L.; Sato, K.; Saito, R.; Kong, J.; Dresselhaus, M. S.
2012-07-01
Phonon self-energy corrections have mostly been studied theoretically and experimentally for phonon modes with zone-center (q=0) wave vectors. Here, gate-modulated Raman scattering is used to study phonons of a single layer of graphene originating from a double-resonant Raman process with q≠0. The observed phonon renormalization effects are different from what is observed for the zone-center q=0 case. To explain our experimental findings, we explored the phonon self-energy for the phonons with nonzero wave vectors (q≠0) in single-layer graphene in which the frequencies and decay widths are expected to behave oppositely to the behavior observed in the corresponding zone-center q=0 processes. Within this framework, we resolve the identification of the phonon modes contributing to the G⋆ Raman feature at 2450cm-1 to include the iTO+LA combination modes with q≠0 and also the 2iTO overtone modes with q=0, showing both to be associated with wave vectors near the high symmetry point K in the Brillouin zone.
The chiral critical line of $N_{f}=2+1$ QCD at ero and non-zero baryon density
De Forcrand, Philippe; Forcrand, Philippe de; Philipsen, Owe
2007-01-01
We present numerical results for the location of the chiral critical line at finite temperature and zero and non-zero baryon density for QCD with N_f=2+1 flavours of staggered fermions on lattices with temporal extent N_t=4. For degenerate quark masses, we compare our results obtained with the exact RHMC algorithm with earlier, inexact R-algorithm results and find a reduction of 25% in the critical quark mass, for which the first order phase transition changes to a smooth crossover. Extending our analysis to non-degenerate quark masses, we map out the chiral critical line up to the neighbourhood of the physical point, which we confirm to be in the crossover region. Our data are consistent with a tricritical point at a strange quark mass of ~500 MeV. Finally, we investigate the shift of the critical line with finite baryon density, by simulating with an imaginary chemical potential for which there is no sign problem. We observe this shift to be very small or, conversely, the critical endpoint \\mu^c(m_{u,d},m_s...
Directory of Open Access Journals (Sweden)
Mei-Yu LEE
2014-11-01
Full Text Available This paper investigates the effect of the nonzero autocorrelation coefficients on the sampling distributions of the Durbin-Watson test estimator in three time-series models that have different variance-covariance matrix assumption, separately. We show that the expected values and variances of the Durbin-Watson test estimator are slightly different, but the skewed and kurtosis coefficients are considerably different among three models. The shapes of four coefficients are similar between the Durbin-Watson model and our benchmark model, but are not the same with the autoregressive model cut by one-lagged period. Second, the large sample case shows that the three models have the same expected values, however, the autoregressive model cut by one-lagged period explores different shapes of variance, skewed and kurtosis coefficients from the other two models. This implies that the large samples lead to the same expected values, 2(1 – ρ0, whatever the variance-covariance matrix of the errors is assumed. Finally, comparing with the two sample cases, the shape of each coefficient is almost the same, moreover, the autocorrelation coefficients are negatively related with expected values, are inverted-U related with variances, are cubic related with skewed coefficients, and are U related with kurtosis coefficients.
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-07-01
The following topics were ealt with: Hadron physics with proton and deuteron probes, physics projects with Georgian participation, spin physics with antiprotons and leptons, spin filtering experiments, ISTC projects, technical issues for FAIR. (HSI)
Dynamic nuclear spin polarization
Energy Technology Data Exchange (ETDEWEB)
Stuhrmann, H B [GKSS-Forschungszentrum Geesthacht GmbH (Germany)
1996-11-01
Polarized neutron scattering from dynamic polarized targets has been applied to various hydrogenous materials at different laboratories. In situ structures of macromolecular components have been determined by nuclear spin contrast variation with an unprecedented precision. The experiments of selective nuclear spin depolarisation not only opened a new dimension to structural studies but also revealed phenomena related to propagation of nuclear spin polarization and the interplay of nuclear polarisation with the electronic spin system. The observation of electron spin label dependent nuclear spin polarisation domains by NMR and polarized neutron scattering opens a way to generalize the method of nuclear spin contrast variation and most importantly it avoids precontrasting by specific deuteration. It also likely might tell us more about the mechanism of dynamic nuclear spin polarisation. (author) 4 figs., refs.
International Nuclear Information System (INIS)
Ji Xiangdong
2003-01-01
Spin is a beautiful concept that plays an ever important role in modern physics. In this talk, I start with a discussion of the origin of spin, and then turn to three themes in which spin has been crucial in subatomic physics: a lab to explore physics beyond the standard model, a tool to measure physical observables that are hard to obtain otherwise, a probe to unravel nonperturbative QCD. I conclude with some remarks on a world without spin
Should you trust your heavy oil viscosity measurement?
Energy Technology Data Exchange (ETDEWEB)
Nelson, L.; Miller, K.; Almond, R. [Petrovera Resources Ltd., Edmonton, AB (Canada)
2003-07-01
For the last 60 years, the heavy oil and bitumen reservoirs from western Canada have been exploited with varying degrees of success. There are many factors that may effect heavy oil and bitumen production rates. Primary production rates, which vary greatly from field to field, were found to improve with the addition of steam. Viscosity is the single most valued criteria in predicting cold production response from a new field. It is also the criteria used to determine whether thermal process are needed to reduce oil viscosity, or whether horizontal or vertical wells should be used. This study examined why production forecasts based on oil viscosity alone have been poor. It is based on an extensive data collection project in the Elk Point area reservoir which has lower than expected and erratic cold production rates. Viscosity values from the same wells were found to vary by a factor of four or more. One of the objectives of this study was to encourage commercial labs to develop an industry-wide standard method of heavy oil sample cleaning and viscosity measurement. It is generally understood that viscosity increases with an increase in the concentration of asphaltenes, but there is little information to quantify the relationship. Some studies suggest that viscosity increases logarithmically with increasing asphaltenes. It was concluded that the prediction of the viscosity of heavy oils and bitumens is very empirical, but there are ways to improve data comparisons and evaluation by applying available information from other scientific fields. 23 refs., 5 tabs., 6 figs.
Heritability and Seasonal Changes in Viscosity of Slash Pine Oleoresin
Robert D. McReynolds
1971-01-01
Oleoresin viscosity was measured in slash pine (Pinus elliottii var. elliottii) trees of known genetic origin over a 1-year period. A strong broad-sense heritability of this trait was found. Seasonal variation followed a definite pattern, with the highest viscosities occurring in early spring and a gradual decline occurring in...
Viscosity of liquids theory, estimation, experiment, and data
Viswanath, Dabir S; Prasad, Dasika HL; Dutt, Nidamarty VK; Rani, Kalipatnapu Y
2007-01-01
Single comprehensive book on viscosity of liquids, as opposed to most of the books in this area which are data books, i.e., a compilation of viscosity data from the literature, where the information is scattered and the description and analysis of the experimental methods and governing theory are not readily available in a single place.
Viscosity of low-temperature substances at pressure
International Nuclear Information System (INIS)
Rudenko, N.S.; Slyusar', V.P.
1976-01-01
The review presents an analysis of data available on the viscosity coefficients of hydrogen, deuterohydrogen, deuterium, neon, argon, krypton, xenon, nitrogen and methane under pressure in the temperature range from triple points to 300 deg K. Averaged values of viscosity coefficients for all the substances listed above versus temperature, pressure and density are tabulated
Elongational viscosity of monodisperse and bidisperse polystyrene melts
DEFF Research Database (Denmark)
Nielsen, Jens Kromann; Rasmussen, Henrik K.; Hassager, Ole
2006-01-01
The start-up and steady uniaxial elongational viscosity have been measured for two monodisperse polystyrene melts with molecular weights of 52 and 103 kg/mole, and for three bidisperse polystyrene melts. The monodisperse melts show a maximum in the steady elongational viscosity vs. the elongational...
Effective viscosity of dispersions approached by a statistical continuum method
Mellema, J.; Willemse, M.W.M.
1983-01-01
The problem of the determination of the effective viscosity of disperse systems (emulsions, suspensions) is considered. On the basis of the formal solution of the equations governing creeping flow in a statistically homogeneous dispersion, the effective viscosity is expressed in a series expansion
On-line measurement of food viscosity during flow
DEFF Research Database (Denmark)
Mason, Sarah Louise; Friis, Alan
2006-01-01
Sarah L. Mason and Alan Friis discuss some of the principles and equipment used to monitor food viscosity in real time.......Sarah L. Mason and Alan Friis discuss some of the principles and equipment used to monitor food viscosity in real time....
A Riemann problem with small viscosity and dispersion
Directory of Open Access Journals (Sweden)
Kayyunnapara Thomas Joseph
2006-09-01
Full Text Available In this paper we prove existence of global solutions to a hyperbolic system in elastodynamics, with small viscosity and dispersion terms and derive estimates uniform in the viscosity-dispersion parameters. By passing to the limit, we prove the existence of solution the Riemann problem for the hyperbolic system with arbitrary Riemann data.
Viscosity measurements of molten refractory metals using an electrostatic levitator
International Nuclear Information System (INIS)
Ishikawa, Takehiko; Paradis, Paul-François; Okada, Junpei T; Watanabe, Yuki
2012-01-01
Viscosities of several refractory metals (titanium, nickel, zirconium, niobium, ruthenium, rhodium, hafnium, iridium and platinum) and terbium have been measured by the oscillation drop method with an improved procedure. The measured data were less scattered than our previous measurements. Viscosities at their melting temperatures showed good agreement with literature values and some predicted values. (paper)
Nonlinear Eddy Viscosity Models applied to Wind Turbine Wakes
DEFF Research Database (Denmark)
Laan, van der, Paul Maarten; Sørensen, Niels N.; Réthoré, Pierre-Elouan
2013-01-01
The linear k−ε eddy viscosity model and modified versions of two existing nonlinear eddy viscosity models are applied to single wind turbine wake simulations using a Reynolds Averaged Navier-Stokes code. Results are compared with field wake measurements. The nonlinear models give better results...
Viscosity Prediction of Hydrocarbon Mixtures Based on the Friction Theory
DEFF Research Database (Denmark)
Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan
2001-01-01
The application and capability of the friction theory (f-theory) for viscosity predictions of hydrocarbon fluids is further illustrated by predicting the viscosity of binary and ternary liquid mixtures composed of n-alkanes ranging from n-pentane to n-decane for wide ranges of temperature and from...
Fluctuation expressions for fast thermal transport processes: Vortex viscosity
International Nuclear Information System (INIS)
Evans, D.J.; Hanley, H.J.M.
1982-01-01
The vortex viscosity of a model diatomic fluid is calculated using both equilibrium and nonequilibrium molecular dynamics. The two calculations agree within statistical uncertainties. The results show that vortex viscosity does not have a conventional Kubo-Green relation. An argument as to why this is so is presented
Spin light of neutrino in matter and electromagnetic fields
International Nuclear Information System (INIS)
Lobanov, A.; Studenikin, A.
2003-01-01
A new type of electromagnetic radiation by a neutrino with non-zero magnetic (and/or electric) moment moving in background matter and electromagnetic field is considered. This radiation originates from the quantum spin flip transitions and we have named it as 'spin light of neutrino' (SLν). The neutrino initially unpolarized beam (equal mixture of ν L and ν R ) can be converted to the totally polarized beam composed of only ν R by the neutrino spin light in matter and electromagnetic fields. The quasi-classical theory of this radiation is developed on the basis of the generalized Bargmann-Michel-Telegdi equation. The considered radiation is important for environments with high effective densities, n, because the total radiation power is proportional to n 4 . The spin light of neutrino, in contrast to the Cherenkov or transition radiation of neutrino in matter, does not vanish in the case of the refractive index of matter is equal to unit. The specific features of this new radiation are: (i) the total power of the radiation is proportional to γ 4 , and (ii) the radiation is beamed within a small angle δθ∼γ -1 , where γ is the neutrino Lorentz factor. Applications of this new type of neutrino radiation to astrophysics, in particular to gamma-ray bursts, and the early universe should be important
Impact of mass generation for spin-1 mediator simplified models
International Nuclear Information System (INIS)
Bell, Nicole F.; Cai, Yi; Leane, Rebecca K.
2017-01-01
In the simplified dark matter models commonly studied, the mass generation mechanism for the dark fields is not typically specified. We demonstrate that the dark matter interaction types, and hence the annihilation processes relevant for relic density and indirect detection, are strongly dictated by the mass generation mechanism chosen for the dark sector particles, and the requirement of gauge invariance. We focus on the class of models in which fermionic dark matter couples to a spin-1 vector or axial-vector mediator. However, in order to generate dark sector mass terms, it is necessary in most cases to introduce a dark Higgs field and thus a spin-0 scalar mediator will also be present. In the case that all the dark sector fields gain masses via coupling to a single dark sector Higgs field, it is mandatory that the axial-vector coupling of the spin-1 mediator to the dark matter is non-zero; the vector coupling may also be present depending on the charge assignments. For all other mass generation options, only pure vector couplings between the spin-1 mediator and the dark matter are allowed. If these coupling restrictions are not obeyed, unphysical results may be obtained such as a violation of unitarity at high energies. These two-mediator scenarios lead to important phenomenology that does not arise in single mediator models. We survey two-mediator dark matter models which contain both vector and scalar mediators, and explore their relic density and indirect detection phenomenology.
International Nuclear Information System (INIS)
Anon.
1980-01-01
From 25 September to 1 October, some 150 spin enthusiasts gathered in Lausanne for the 1980 International Symposium on High Energy Physics with Polarized Beams and Polarized Targets. The programme was densely packed, covering physics interests with spin as well as the accelerator and target techniques which make spin physics possible
DEFF Research Database (Denmark)
Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang
2017-01-01
The thermoelectric performance of a topological energy converter is analyzed. The H-shaped device is based on a combination of transverse topological effects involving the spin: the inverse spin Hall effect and the spin Nernst effect. The device can convert a temperature drop in one arm into an e...
Cross, Rod
2013-01-01
Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…
Viscosity of melts in the sodium borosilicate system
International Nuclear Information System (INIS)
Tait, J.C.; Mandolesi, D.L.; Rummens, H.E.C.
1984-01-01
The viscosities of a series of glasses in the sodium borosilicate system (5-35Na 2 O, 5-35B 2 O 3 , 45-80SiO 2 mol%) have been determined between 950 and 1500 deg C, using a rotating bob viscometer. A simplex lattice experimental design was used to define a series of compositions suitable for numerical analysis of the data. The viscosity data were fitted using the Fulcher equation for each composition. Nonlinear regression analysis of the viscosities at constant temperatures gave expressions for the variation in viscosity as a function of composition. The results are displayed as isoviscosity contours on the Na 2 O-B 2 O 3 -SiO 2 composition diagram. The viscosity behaviour as a function of composition is discussed in terms of structural bonding in the melt. (author)
Temperature dependence of bulk viscosity in water using acoustic spectroscopy
International Nuclear Information System (INIS)
Holmes, M J; Parker, N G; Povey, M J W
2011-01-01
Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 0 C. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.
Viscosity Prediction of Natural Gas Using the Friction Theory
DEFF Research Database (Denmark)
Zeberg-Mikkelsen, Claus Kjær; Cisneros, Sergio; Stenby, Erling Halfdan
2002-01-01
Based on the concepts of the friction theory (f-theory) for viscosity modeling, a procedure is introduced for predicting the viscosity of hydrocarbon mixtures rich in one component, which is the case for natural gases. In this procedure, the mixture friction coefficients are estimated with mixing...... rules based on the values of the pure component friction coefficients. Since natural gases contain mainly methane, two f-theory models are combined, where the friction coefficients of methane are estimated by a seven-constant f-theory model directly fitted to methane viscosities, and the friction...... coefficients of the other components are estimated by the one-parameter general f-theory model. The viscosity predictions are performed with the SRK, the PR, and the PRSV equations of state, respectively. For recently measured viscosities of natural gases, the resultant AAD (0.5 to 0.8%) is in excellent...
Crustal Viscosity Structure Estimated from Multi-Phase Mixing Theory
Shinevar, W. J.; Behn, M. D.; Hirth, G.
2014-12-01
Estimates of lower crustal viscosity are typically constrained by analyses of isostatic rebound, post seismic creep, and laboratory-derived flow laws for crustal rocks and minerals. Here we follow a new approach for calculating the viscosity structure of the lower continental crust. We use Perple_X to calculate mineral assemblages for different crustal compositions. Effective viscosity is then calculated using the rheologic mixing model of Huet et al. (2014) incorporating flow laws for each mineral phase. Calculations are performed along geotherms appropriate for the Basin and Range, Tibetan Plateau, Colorado Plateau, and the San Andreas Fault. To assess the role of crustal composition on viscosity, we examined two compositional gradients extending from an upper crust with ~67 wt% SiO2 to a lower crust that is either: (i) basaltic with ~53 wt% SiO2 (Rudnick and Gao, 2003), or (ii) andesitic with ~64% SiO2 (Hacker et al., 2011). In all cases, the middle continental crust has a viscosity that is 2-3 orders of magnitude greater than that inferred for wet quartz, a common proxy for mid-crustal viscosities. An andesitic lower crust results in viscosities of 1020-1021 Pa-s and 1021-1022 Pa-s for hotter and colder crustal geotherms, respectively. A mafic lower crust predicts viscosities that are an order of magnitude higher for the same geotherm. In all cases, the viscosity calculated from the mixing model decreases less with depth compared to single-phase estimates. Lastly, for anhydrous conditions in which alpha quartz is stable, we find that there is a strong correlation between Vp/Vs and bulk viscosity; in contrast, little to no correlation exists for hydrous conditions.
Elongational viscosity of photo-oxidated LDPE
Rolón-Garrido, Víctor H.; Wagner, Manfred H.
2014-05-01
Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, timedeformation separability is confirmed for all samples, independent of the degree of photo-oxidation.
Wave anisotropy of shear viscosity and elasticity
Rudenko, O. V.; Sarvazyan, A. P.
2014-11-01
The paper presents the theory of shear wave propagation in a "soft solid" material possessing anisotropy of elastic and dissipative properties. The theory is developed mainly for understanding the nature of the low-frequency acoustic characteristics of skeletal muscles, which carry important diagnostic information on the functional state of muscles and their pathologies. It is shown that the shear elasticity of muscles is determined by two independent moduli. The dissipative properties are determined by the fourth-rank viscosity tensor, which also has two independent components. The propagation velocity and attenuation of shear waves in muscle depend on the relative orientation of three vectors: the wave vector, the polarization vector, and the direction of muscle fiber. For one of the many experiments where attention was distinctly focused on the vector character of the wave process, it was possible to make a comparison with the theory, estimate the elasticity moduli, and obtain agreement with the angular dependence of the wave propagation velocity predicted by the theory.
Methods of viscosity measurements in sealed ampoules
Mazuruk, Konstantin
1999-07-01
Viscosity of semiconductors and metallic melts is usually measured by oscillating cup method. This method utilizes the melts contained in vacuum sealed silica ampoules, thus the problems related to volatility, contamination, and high temperature and pressure can be alleviate. In a typical design, the time required for a single measurement is of the order of one hour. In order to reduce this time to a minute range, a high resolution angular detection system is implemented in our design of the viscometer. Furthermore, an electromagnet generating a rotational magnetic field (RMF) is incorporated into the apparatus. This magnetic field can be used to remotely and nonintrusively measure the electrical conductivity of the melt. It can also be used to induce a well controlled rotational flow in the system. The transient behavior of this flow can potentially yield of the fluid. Based on RMF implementation, two novel viscometry methods are proposed in this work: a) the transient torque method, b) the resonance method. A unified theoretical approach to the three methods is presented along with the initial test result of the constructed apparatus. Advantages of each of the method are discussed.
International Nuclear Information System (INIS)
Aspelin, P.
1978-01-01
The effect of the ionic contrast media diatrizoate, iocarmate and metrizoate and the non-ionic metrizamide on whole blood viscosity, plasma viscosity and hematocrit was investigated. All the contrast media increased whole blood and plasma viscosity and reduced the hematocrit. The whole blood viscosity increased with increasing osmolality of the contrast medium solutions, whereas the plasma viscosity increased with increasing viscosity of the contrast medium solutions. The higher the osmolality of the contrast media, the lower the hematocrit became. The normal shear-thinning (decreasing viscosity with increasing shear rate) property of blood was reduced when contrast medium was added to the blood. At 50 per cent volume ratio (contrast medium to blood), the ionic contrast media converted the blood into a shear-thickening (increasing viscosity with increasing shear rate) suspension, indicating a marked rigidification of the single red cell, while the non-ionic contrast medium still produced shear-thinning, indicating less rigidification of the red cell (p<0.01). (Auth.)
Spin physics in semiconductors
2017-01-01
This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.
Inverse spin Hall effect by spin injection
Liu, S. Y.; Horing, Norman J. M.; Lei, X. L.
2007-09-01
Motivated by a recent experiment [S. O. Valenzuela and M. Tinkham, Nature (London) 442, 176 (2006)], the authors present a quantitative microscopic theory to investigate the inverse spin-Hall effect with spin injection into aluminum considering both intrinsic and extrinsic spin-orbit couplings using the orthogonalized-plane-wave method. Their theoretical results are in good agreement with the experimental data. It is also clear that the magnitude of the anomalous Hall resistivity is mainly due to contributions from extrinsic skew scattering.
Marek, Lindsay C.
2011-01-01
Boundary layer stability was analyzed for the HIFiRE-1 flight vehicle geometry for ground tests conducted at the CUBRC LENS I hypersonic shock test facility and the Langley Research Center (LaRC) 20- inch Mach 6 Tunnel. Boundary layer stability results were compared to transition onset location obtained from discrete heat transfer measurements from thin film gauges during the CUBRC test and spatially continuous heat transfer measurements from thermal phosphor paint data during the LaRC test. The focus of this analysis was on conditions at non-zero angles of attack as stability analysis has already been performed at zero degrees angle of attack. Also, the transition onset data obtained during flight testing was at nonzero angles of attack, so this analysis could be expanded in the future to include the results of the flight test data. Stability analysis was performed using the 2D parabolized stability software suite STABL (Stability and Transition Analysis for Hypersonic Boundary Layers) developed at the University of Minnesota and the mean flow solutions were computed using the DPLR finite volume Navier-Stokes computational fluid dynamics (CFD) solver. A center line slice of the 3D mean flow solution was used for the stability analysis to incorporate the angle of attack effects while still taking advantage of the 2D STABL software suite. The N-factors at transition onset and the value of Re(sub theta)/M(sub e), commonly used to predict boundary layer transition onset, were compared for all conditions analyzed. Ground test data was analyzed at Mach 7.2 and Mach 6.0 and angles of attack of 1deg, 3deg and 5deg. At these conditions, the flow was found to be second mode dominant for the HIFiRE-1 slender cone geometry. On the leeward side of the vehicle, a strong trend of transition onset location with angle of attack was observed as the boundary layer on the leeward side of the vehicle developed inflection points at streamwise positions on the vehicle that correlated to
Kotlarchyk, Michael; Thurston, George M
2016-12-28
In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.
Suppression of quantum tunneling for all spins for easy-axis systems
International Nuclear Information System (INIS)
Khare, Avinash; Paranjape, M. B.
2011-01-01
The semiclassical limit of quantum spin systems corresponds to a dynamical Lagrangian which contains the usual kinetic energy, the couplings and interactions of the spins, and an additional, first-order kinematical term which corresponds to the Wess-Zumino-Novikov-Witten (WZNW) term for the spin degree of freedom. It was shown that in the case of the kinetic dynamics determined only by the WZNW term, half-odd integer spin systems show a lack of tunneling phenomena, whereas integer spin systems are subject to it in the case of potentials with easy-plane easy-axis symmetry. Here we prove for the theory with a normal quadratic kinetic term of arbitrary strength or the first-order theory with azimuthal symmetry (which is equivalently the so-called easy-axis situation), that the tunneling is in fact suppressed for all nonzero values of spin. This model exemplifies the concept that in the presence of complex Euclidean action, it is necessary to use the ensuing complex critical points in order to define the quantum (perturbation) theory. In the present example, if we do not do so, exactly the opposite, erroneous conclusion that the tunneling is unsuppressed for all spins, is reached.
Lateral spin-orbit coupling and the Kondo effect in quantum dots
Vernek, Edson; Ngo, Anh; Ulloa, Sergio
2010-03-01
We present studies of the Coulomb blockade and Kondo regimes of transport of a quantum dot connected to current leads through spin-polarizing quantum point contacts (QPCs) [1]. This configuration, arising from the effect of lateral spin-orbit fields, results in spin-polarized currents even in the absence of external magnetic fields and greatly affects the correlations in the dot. Using an equation-of-motion technique and numerical renormalization group calculations we obtain the conductance and spin polarization for this system under different parameter regimes. Our results show that both the Coulomb blockade and Kondo regimes exhibit non-zero spin-polarized conductance. We analyze the role that the spin-dependent tunneling amplitudes of the QPC play in determining the charge and net magnetic moment in the dot. We find that the Kondo regime exhibits a strongly dependent Kondo temperature on the QPC polarizability. These effects, controllable by lateral gate voltages, may provide a new approach for exploring Kondo correlations, as well as possible spin devices. Supported by NSF DMR-MWN and PIRE. [1] P. Debray et al., Nature Nanotech. 4, 759 (2009).
Bulk electron spin polarization generated by the spin Hall current
Korenev, V. L.
2005-01-01
It is shown that the spin Hall current generates a non-equilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known equilibrium polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.
Bulk electron spin polarization generated by the spin Hall current
Korenev, V. L.
2006-07-01
It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.
Design of Oil Viscosity Sensor Based on Plastic Optical Fiber
Yunus, Muhammad; Arifin, A.
2018-03-01
A research of plastic optical fiber based sensors have been studied for measurement of oil viscosity. This sensor was made with straight configuration, U configuration, and gamma configuration have two types, there are optical fiber sensor with cladding and without cladding. Viscosity sensor was made, dipped into an oil sample with a concentration of viscosity percentage about 270 mPa.s - 350 mPa.s. The light from the LED propagated into the optical fiber, then it was received by the photodetector converted to output power. When plastic optical fiber dipped into an oil sample, viscosity of oil affect increase of refractive index on optical fiber resulting in a bigger loss of power so the light intensity will be smaller, consequences the measured output power will be smaller. Sensitivity and resolution viscosity sensor without cladding peel showed the best result rather than viscosity sensor with cladding peel. The best result in the measurement showed in gamma configuration with 3 cm length of cladding peel and the diameter of bending 0,25 cm is the range 103,090 nWatt, sensitivity 1,289 nWatt/mPa.s, and resolution 0,776 mPa.s. This method is effectively and efficiently used as an oil viscosity sensor with high sensitivity and resolution.
Singularities and Entropy in Bulk Viscosity Dark Energy Model
International Nuclear Information System (INIS)
Meng Xinhe; Dou Xu
2011-01-01
In this paper bulk viscosity is introduced to describe the effects of cosmic non-perfect fluid on the cosmos evolution and to build the unified dark energy (DE) with (dark) matter models. Also we derive a general relation between the bulk viscosity form and Hubble parameter that can provide a procedure for the viscosity DE model building. Especially, a redshift dependent viscosity parameter ζ ∝ λ 0 + λ 1 (1 + z) n proposed in the previous work [X.H. Meng and X. Dou, Commun. Theor. Phys. 52 (2009) 377] is investigated extensively in this present work. Further more we use the recently released supernova dataset (the Constitution dataset) to constrain the model parameters. In order to differentiate the proposed concrete dark energy models from the well known ΛCDM model, statefinder diagnostic method is applied to this bulk viscosity model, as a complementary to the Om parameter diagnostic and the deceleration parameter analysis performed by us before. The DE model evolution behavior and tendency are shown in the plane of the statefinder diagnostic parameter pair {r, s} as axes where the fixed point represents the ΛCDM model. The possible singularity property in this bulk viscosity cosmology is also discussed to which we can conclude that in the different parameter regions chosen properly, this concrete viscosity DE model can have various late evolution behaviors and the late time singularity could be avoided. We also calculate the cosmic entropy in the bulk viscosity dark energy frame, and find that the total entropy in the viscosity DE model increases monotonously with respect to the scale factor evolution, thus this monotonous increasing property can indicate an arrow of time in the universe evolution, though the quantum version of the arrow of time is still very puzzling. (geophysics, astronomy, and astrophysics)
An eddy viscosity model for flow in a tube bundle
International Nuclear Information System (INIS)
Soussan, D.; Grandotto, M.
1998-01-01
The work described in this paper is part of the development of GENEPI a 3-dimensional finite element code, designed for the thermalhydraulic analysis of steam generators. It focuses on the implementation of two-phase flow turbulence-induced viscosity in a tube bundle. The GENEPI code, as other industrial codes, uses the eddy viscosity concept introduced by Boussinesq for single phase flow. The concept assumes that the turbulent momentum transfer is similar to the viscous shear stresses. Eddy viscosity formulation is reasonably well known for single phase flows, especially in simple geometries (i.e., in smooth tube, around a single body, or behind a row of bars/tubes), but there exists very little information on it for two-phase flows. An analogy between single and two-phases is used to set up a model for eddy viscosity. The eddy viscosity model examined in this paper is used for a tube bundle geometry and, therefore, is extended to include anisotropy to the classic model. Each of the main flow directions (cross flow inline, cross flow staggered, and parallel flows) gives rise to a specific eddy viscosity formula. The results from a parametric study indicate that the eddy viscosity in the staggered flow is roughly 1.5 times as large as that for the inline cross flow, 60 times as large as that for the parallel flow, and 105 as large as that for the molecular viscosity. Then, the different terms are combined with each other to result in a global eddy viscosity model for a steam generator tube bundle flow. (author)
Effect of viscosity on tear drainage and ocular residence time.
Zhu, Heng; Chauhan, Anuj
2008-08-01
An increase in residence time of dry eye medications including artificial tears will likely enhance therapeutic benefits. The drainage rates and the residence time of eye drops depend on the viscosity of the instilled fluids. However, a quantitative understanding of the dependence of drainage rates and the residence time on viscosity is lacking. The current study aims to develop a mathematical model for the drainage of Newtonian fluids and also for power-law non-Newtonian fluids of different viscosities. This study is an extension of our previous study on the mathematical model of tear drainage. The tear drainage model is modified to describe the drainage of Newtonian fluids with viscosities higher than the tear viscosity and power-law non-Newtonian fluids with rheological parameters obtained from fitting experimental data in literature. The drainage rate through canaliculi was derived from the modified drainage model and was incorporated into a tear mass balance to calculate the transients of total solute quantity in ocular fluids and the bioavailability of instilled drugs. For Newtonian fluids, increasing the viscosity does not affect the drainage rate unless the viscosity exceeds a critical value of about 4.4 cp. The viscosity has a maximum impact on drainage rate around a value of about 100 cp. The trends are similar for shear thinning power law fluids. The transients of total solute quantity, and the residence time agrees at least qualitatively with experimental studies. A mathematical model has been developed for the drainage of Newtonian fluids and power-law fluids through canaliculi. The model can quantitatively explain different experimental observations on the effect of viscosity on the residence of instilled fluids on the ocular surface. The current study is helpful for understanding the mechanism of fluid drainage from the ocular surface and for improving the design of dry eye treatments.
Muon spin relaxation in random spin systems
International Nuclear Information System (INIS)
Toshimitsu Yamazaki
1981-01-01
The longitudinal relaxation function Gsub(z)(t) of the positive muon can reflect dynamical characters of local field in a unique way even when the correlation time is longer than the Larmor period of local field. This method has been applied to studies of spin dynamics in spin glass systems, revealing sharp but continuous temperature dependence of the correlation time. Its principle and applications are reviewed. (author)
Viscosity and attenuation of sound wave in high density deuterium
International Nuclear Information System (INIS)
Inoue, Kazuko; Ariyasu, Tomio
1985-01-01
The penetration of low frequency sound wave into the fuel deuterium is discussed as for laser fusion. The sound velocity and the attenuation constant due to viscosity are calculated for high density (n = 10 24 -- 10 27 cm -3 , T = 10 -1 -- 10 4 eV) deuterium. The shear viscosity of free electron gas and the bulk viscosity due to ion-ion interaction mainly contribute to the attenuation of sound wave. The sound wave of the frequency below 10 10 Hz can easily penetrate through the compressed fuel deuterium of diameter 1 -- 10 3 μm. (author)
Effect of ion viscosity on neoclassical tearing mode
International Nuclear Information System (INIS)
Yoshida, Shigeki; Itoh, Sanae-I.; Yagi, Masatoshi; Azumi, Masafumi
2004-01-01
Linear stability analysis of neoclassical tearing mode (NTM) is performed on the basis of four-field reduced magnetohydrodynamic (MHD) model which takes account of fluctuating ion parallel flow and ion neoclassical viscosity. The dependence of the growth rate on the kinetic effects is investigated. It is shown that the linear NTM is stabilized by ion neoclassical viscosity and that the stabilizing effect of ion parallel compressibility is weak in the banana-plateau regime. It is found that not only ion neoclassical viscosity but also both ion and electron diamagnetic effects are important for the stabilization of NTM. (author)
Plasma viscosity increase with progression of peripheral arterial atherosclerotic disease.
Poredos, P; Zizek, B
1996-03-01
Increased blood and plasma viscosity has been described in patients with coronary and peripheral arterial disease. However, the relation of viscosity to the extent of arterial wall deterioration--the most important determinant of clinical manifestation and prognosis of the disease--is not well known. Therefore, the authors studied plasma viscosity as one of the major determinants of blood viscosity in patients with different stages of arterial disease of lower limbs (according to Fontaine) and its relation to the presence of some risk factors of atherosclerosis. The study encompassed four groups of subjects: 19 healthy volunteers (group A), 18 patients with intermittent claudication up to 200 m (stage II; group B), 15 patients with critical ischemia of lower limbs (stage III and IV; group C), and 16 patients with recanalization procedures on peripheral arteries. Venous blood samples were collected from an antecubital vein without stasis for the determination of plasma viscosity (with a rotational capillary microviscometer, PAAR), fibrinogen, total cholesterol, alpha-2-macroglobulin, and glucose concentrations. In patients with recanalization procedure local plasma viscosity was also determined from blood samples taken from a vein on the dorsum of the foot. Plasma viscosity was most significantly elevated in the patients with critical ischemia (1.78 mPa.sec) and was significantly higher than in the claudicants (1.68 mPa.sec), and the claudicants also had significantly higher viscosity than the controls (1.58 mPa.sec). In patients in whom a recanalization procedure was performed, no differences in systemic and local plasma viscosity were detected, neither before nor after recanalization of the diseased artery. In all groups plasma viscosity was correlated with fibrinogen concentration (r=0.70, P < 0.01) and total cholesterol concentration (r=0.24, P < 0.05), but in group C (critical ischemia) plasma viscosity was most closely linked to the concentration of alpha-2
Elongational viscosity of multiarm (Pom-Pom) polystyrene
DEFF Research Database (Denmark)
Nielsen, Jens Kromann; Rasmussen, Henrik K.; Almdal, Kristoffer
2006-01-01
-Pom was estimated to have 2.5 arms on average, while the estimate is 3.3 for the asymmetric star. The molar mass of each arm is about 27 kg/mol. The melts were characterized in the linear viscoelastic regime and in non-linear elongational rheometry. The transient elongational viscosity for the Pom-Pom molecule...... it corresponds well with an estimate of the maximum stretchability of the backbone. Time-strain separability was not observed for the 'Asymmetric star' molecule at the elongation rates investigated. The transient elongational viscosity for the 'Pom-Pom' molecule went through a reproducible maximum...... in the viscosity at the highest elongational rate....
Shear viscosities of photons in strongly coupled plasmas
Directory of Open Access Journals (Sweden)
Di-Lun Yang
2016-09-01
Full Text Available We investigate the shear viscosity of thermalized photons in the quark gluon plasma (QGP at weak coupling and N=4 super Yang–Mills plasma (SYMP at both strong and weak couplings. We find that the shear viscosity due to the photon–parton scattering up to the leading order of electromagnetic coupling is suppressed when the coupling of the QGP/SYMP is increased, which stems from the blue-shift of the thermal-photon spectrum at strong coupling. In addition, the shear viscosity rapidly increases near the deconfinement transition in a phenomenological model analogous to the QGP.
Chebyshev super spectral viscosity method for water hammer analysis
Directory of Open Access Journals (Sweden)
Hongyu Chen
2013-09-01
Full Text Available In this paper, a new fast and efficient algorithm, Chebyshev super spectral viscosity (SSV method, is introduced to solve the water hammer equations. Compared with standard spectral method, the method's advantage essentially consists in adding a super spectral viscosity to the equations for the high wave numbers of the numerical solution. It can stabilize the numerical oscillation (Gibbs phenomenon and improve the computational efficiency while discontinuities appear in the solution. Results obtained from the Chebyshev super spectral viscosity method exhibit greater consistency with conventional water hammer calculations. It shows that this new numerical method offers an alternative way to investigate the behavior of the water hammer in propellant pipelines.
Shear viscosity of liquid argon and liquid rubidium
International Nuclear Information System (INIS)
Chiakwelu, O.
1978-01-01
A direct evaluation of the shear viscosity coefficient for models of liquid rubidium and liquid argon is presented by neglecting the cross-terms in the autocorrelation function of the transverse component of the momentum stress tensor. The time dependence of the shear viscosity for liquid argon is found to display a long decaying tail in qualitative agreement with a computer calculation of Levesque et al. However, the numerical values of the shear viscosity coefficients are smaller than the experimentally determined values of about 45% for liquid rubidium and 35% for liquid argon
Directory of Open Access Journals (Sweden)
T.-T. Phu
2016-12-01
Full Text Available In this paper, we evaluate probability of non-zero secrecy capacity of multi-hop relay networks over Nakagami-m fading channels in presence of hardware impairments. In the considered protocol, a source attempts to transmit its data to a destination by using multi-hop randomize-and-forward (RF strategy. The data transmitted by the source and relays are overheard by an eavesdropper. For performance evaluation, we derive exact expressions of probability of non-zero secrecy capacity (PoNSC, which are expressed by sums of infinite series of exponential functions and exponential integral functions. We then perform Monte Carlo simulations to verify the theoretical analysis.
Chen, Jiangwei; Dai, Yuyao; Yan, Lin; Zhao, Huimin
2018-04-01
In this paper, we shall demonstrate theoretically that steady bound electromagnetic eigenstate can arise in an infinite homogeneous isotropic linear metamaterial with zero-real-part-of-impedance and nonzero-imaginary-part-of-wave-vector, which is partly attributed to that, here, nonzero-imaginary-part-of-wave-vector is not involved with energy losses or gain. Altering value of real-part-of-impedance of the metamaterial, the bound electromagnetic eigenstate may become to be a progressive wave. Our work may be useful to further understand energy conversion and conservation properties of electromagnetic wave in the dispersive and absorptive medium and provides a feasible route to stop, store and release electromagnetic wave (light) conveniently by using metamaterial with near-zero-real-part-of-impedance.
Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.
2015-10-01
Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical
The susceptibilities in the spin-S Ising model
International Nuclear Information System (INIS)
Ainane, A.; Saber, M.
1995-08-01
The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs
Neutron spin quantum precession using multilayer spin splitters and a phase-spin echo interferometer
International Nuclear Information System (INIS)
Ebisawa, Toru; Tasaki, Seiji; Kawai, Takeshi; Hino, Masahiro; Akiyoshi, Tsunekazu; Achiwa, Norio; Otake, Yoshie; Funahashi, Haruhiko.
1996-01-01
Neutron spin quantum precession by multilayer spin splitter has been demonstrated using a new spin interferometer. The multilayer spin splitter consists of a magnetic multilayer mirror on top, followed by a gap layer and a non magnetic multilayer mirror which are evaporated on a silicon substrate. Using the multilayer spin splitter, a polarized neutron wave in a magnetic field perpendicular to the polarization is split into two spin eigenstates with a phase shift in the direction of the magnetic field. The spin quantum precession is equal to the phase shift, which depends on the effective thickness of the gap layer. The demonstration experiments verify the multilayer spin splitter as a neutron spin precession device as well as the coherent superposition principle of the two spin eigenstates. We have developed a new phase-spin echo interferometer using the multilayer spin splitters. We present successful performance tests of the multilayer spin splitter and the phase-spin echo interferometer. (author)
Henneaux, Marc; Vasiliev, Mikhail A
2017-01-01
Symmetries play a fundamental role in physics. Non-Abelian gauge symmetries are the symmetries behind theories for massless spin-1 particles, while the reparametrization symmetry is behind Einstein's gravity theory for massless spin-2 particles. In supersymmetric theories these particles can be connected also to massless fermionic particles. Does Nature stop at spin-2 or can there also be massless higher spin theories. In the past strong indications have been given that such theories do not exist. However, in recent times ways to evade those constraints have been found and higher spin gauge theories have been constructed. With the advent of the AdS/CFT duality correspondence even stronger indications have been given that higher spin gauge theories play an important role in fundamental physics. All these issues were discussed at an international workshop in Singapore in November 2015 where the leading scientists in the field participated. This volume presents an up-to-date, detailed overview of the theories i...
Molecular dynamics calculation of shear viscosity for molten salt
International Nuclear Information System (INIS)
Okamoto, Yoshihiro; Yokokawa, Mitsuo; Ogawa, Toru
1993-12-01
A computer program of molecular dynamics simulation has been made to calculate shear viscosity of molten salt. Correlation function for an off-diagonal component of stress tensor can be obtained as the results of calculation. Shear viscosity is calculated by integration of the correlation function based on the Kubo-type formula. Shear viscosities for a molten KCl ranging in temperature from 1047K to 1273K were calculated using the program. Calculation of 10 5 steps (1 step corresponds to 5 x 10 -15 s) was performed for each temperature in the 216 ions system. The obtained results were in good agreement with the reported experimental values. The program has been vectorized to achieve a faster computation in supercomputer. It makes possible to calculate the viscosity using a large number of statistics amounting to several million MD steps. (author)
Relating Fresh Concrete Viscosity Measurements from Different Rheometers.
Ferraris, Chiara F; Martys, Nicos S
2003-01-01
Concrete rheological properties need to be properly measured and predicted in order to characterize the workability of fresh concrete, including special concretes such as self-consolidating concrete (SCC). It was shown by a round-robin test held in 2000 [1,2] that different rheometer designs gave different values of viscosity for the same concrete. While empirical correlation between different rheometers was possible, for a procedure that is supposed to "scientifically" improve on the empirical slump tests, this situation is unsatisfactory. To remedy this situation, a new interpretation of the data was developed. In this paper, it is shown that all instruments tested could be directly and quantitatively compared in terms of relative plastic viscosity instead of the plastic viscosity alone. This should eventually allow the measurements from various rheometer designs to be directly calibrated against known standards of plastic viscosity, putting concrete rheometry and concrete workability on a sounder materials science basis.
Determination of the viscosity by spherical drop using nuclear tecniques
International Nuclear Information System (INIS)
Silva, F.V. da; Qassim, R.Y.; Souza, Roberto de; Rio de Janeiro Univ.
1983-01-01
The measurements of the drop limit velocity of a Sphere in a fluid using a radiotracer method are analyzed. The dynamic process involved was observed, identifying the density and viscosity of the fluid. (E.G.) [pt
Diffusivities and Viscosities of Poly(ethylene oxide) Oligomers †
Hong, Bingbing; Escobedo, Fernando; Panagiotopoulos, Athanassios Z.
2010-01-01
Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The simulations generated diffusion coefficients
High Ra, high Pr convection with viscosity gradients
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. High Ra, high Pr convection with viscosity gradients. Weak upward flow through mesh. Top fluid more viscous. Unstable layer Instability Convection.
Viscosity and density tables of sodium chloride solutions
Energy Technology Data Exchange (ETDEWEB)
Fair, J.A.; Ozbek, H. (comps.)
1977-04-01
A file is presented containing tabulated data extracted from the scientific literature on the density and viscosity of aqueous sodium chloride solutions. Also included is a bibliography of the properties of aqueous sodium chloride solutions. (MHR)
The viscosity window of the silicate glass foam production
DEFF Research Database (Denmark)
Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng
2017-01-01
which can offer a practical starting point for the optimisation procedure. The melt viscosity might be the most important parameter for controlling the foaming process and the glass foam density. In this work, we attempt to define a viscosity range in which foaming of different glasses results...... in a maximum of foam expansion. The expansion maximum is obtained for different glasses (labware, E-glass, CRT panel, soda-lime-silica) by foaming with CaCO3 at isokom temperature and from literature data. In general, the viscosity window was found to be within 104–106 Pa s when foaming with MnO2 or metal...... carbonates (CaCO3, Na2CO3, MgCO3, SrCO3, dolomite) whereas SiC requires higher temperatures and correspondingly lower viscosities (103.3–104.0 Pa s). These findings can help assessing the implementation of new resources in the glass foam production....
PVT characterization and viscosity modeling and prediction of crude oils
DEFF Research Database (Denmark)
Cisneros, Eduardo Salvador P.; Dalberg, Anders; Stenby, Erling Halfdan
2004-01-01
In previous works, the general, one-parameter friction theory (f-theory), models have been applied to the accurate viscosity modeling of reservoir fluids. As a base, the f-theory approach requires a compositional characterization procedure for the application of an equation of state (EOS), in most...... pressure, is also presented. The combination of the mass characterization scheme presented in this work and the f-theory, can also deliver accurate viscosity modeling results. Additionally, depending on how extensive the compositional characterization is, the approach,presented in this work may also...... deliver accurate viscosity predictions. The modeling approach presented in this work can deliver accurate viscosity and density modeling and prediction results over wide ranges of reservoir conditions, including the compositional changes induced by recovery processes such as gas injection....
Shear viscosity enhancement in water–nanoparticle suspensions
International Nuclear Information System (INIS)
Balasubramanian, Ganesh; Sen, Swarnendu; Puri, Ishwar K.
2012-01-01
Equilibrium molecular dynamics simulations characterize the increase in the shear viscosity of water around a suspended silicon dioxide nanoparticle. Water layering on the solid surface decreases the fraction of adjacent fluid molecules that are more mobile and hence less viscous, thereby increasing the shear viscosity. The contribution of the nanoparticle surface area to this rheological behavior is identified and an empirical model that accounts for it is provided. The model successfully reproduces the shear viscosity predictions from previous experimental measurements as well as our simulations. -- Highlights: ► Layering of water on the solid surfaces increases the fraction of less mobile molecules adjacent to them. ► A nondimensional parameter predicts of viscosity enhancement due to particle shape, volume fraction. ► Model predictions agree with the results of atomistic simulations and experimental measurements.
Measurement of viscosity as a means to identify irradiated food
International Nuclear Information System (INIS)
Nuernberger, E.; Heide, L.; Boegl, K.W.
1990-01-01
The measurement of viscosity is a simple method to identify previous irradiation of some kinds of spices and foods, at least in combination with other methods. A possible change of the soaking capacity was examined up to a storage period of 18 months after irradiation of black pepper, white pepper, cinnamon, ginger and onion powder with a radiation dose of 10 kGy each. After irradiation, either increased or decreased viscosity values were measured; the results showed, also after the 18-months-storage period, considerable differences of the viscosity behaviour in non-irradiated and irradiated samples. The time of storage had no effect to the individual viscosity values, so that this method could also be applied to the examined spices after a longer storage period. (orig.) With 51 figs., 25 tabs [de
Effect of soft mode on shear viscosity of quark matter
International Nuclear Information System (INIS)
Fukutome, Takahiko; Iwasaki, Masaharu
2008-01-01
We calculate the shear viscosity of quark matter at finite temperature and density. If we assume that the quark interacts with the soft mode, which is a collective mode of a quark-antiquark pair, the self-energy of the quark is calculated by quasi-particle random phase approximation. It is shown that its imaginary part is large and its mean free path is short. With the use of the Kubo formula, the shear viscosity of quark matter decreases. The Reynolds number of quark matter is estimated to be about 10. As temperature increases, shear viscosity increases gradually for T>200 MeV. Moreover it is shown that the shear viscosity also increases with the chemical potential for μ>200 MeV. (author)
effect of electrochemical oxidation of a viscose rayon based ...
African Journals Online (AJOL)
DJFLEX
KEYWORDS: Viscose rayon based activated carbon cloth; Sorption isotherms; Electrochemical oxidation; Arsenic .... (AAS ) in acetylene-air flame emission mode. 2.9. Quality ..... of the EO ACC thereby restricting the number of binding sites for ...
Directory of Open Access Journals (Sweden)
H. Wang
2008-06-01
Full Text Available This study concentrates on the FACs distribution for the varying northward and duskward interplanetary magnetic field (IMF conditions when the dipole tilt is nonzero. A global MHD simulation (the Space Weather Modeling Framework, SWMF has been used to perform this study. Hemispheric asymmetry of the time evolution of northward IMF Bz (NBZ FACs is found. As the IMF changes from strictly northward to duskward, NBZ FACs shift counterclockwise in both summer and winter hemispheres. However, in the winter hemisphere, the counterclockwise rotation prohibits the duskward NBZ FACs from evolving into the midday R1 FACs. The midday R1 FACs seem to be an intrusion of dawnside R1 FACs. In the summer hemisphere, the NBZ FACs can evolve into the DPY FACs, consisting of the midday R0 and R1 FACs, after the counterclockwise rotation. The hemispheric asymmetry is due to the fact that the dipole tilt favors more reconnection between the IMF and the summer magnetosphere. When mapping the NBZ and DPY FACs into the magnetosphere it is found that the NBZ currents are located on both open and closed field lines, irrespective of the IMF direction. For the DPY FACs the hemispheric asymmetry emerges: the midday R1 FACs and a small part of R0 FACs are on closed field lines in the winter hemisphere, while a small part of the midday R1 FACs and all the R0 FACs are on open field lines in the summer hemisphere. Both IMF By and dipole tilt cause the polar cap hemispheric and local time asymmetric. When the IMF is northward, the summer polar cap is closed on the nightside while the winter polar cap is open. The polar cap boundary tends to move equatorward as the IMF rotates from northward to duskward, except in the summer hemisphere, the polar cap on the dawnside shifts poleward when the clock angle is less than 10°. The further poleward displacement of the polar cap boundary on one oval side is caused by the twist of the tail plasma sheet, which is in accordance with the
Dorville, Nicolas; Belmont, Gérard; Aunai, Nicolas; Dargent, Jérémy; Rezeau, Laurence
2015-09-01
, 110702 (2013)], and more recently in a fully kinetic simulation as well [J. Dargent and N. Aunai, Phys. Plasmas (submitted)]. Nevertheless, in most asymmetric layers like the terrestrial magnetopause, one would indeed expect a magnetic field rotation from one direction to another without going through zero [J. Berchem and C. T. Russell, J. Geophys. Res. 87, 8139-8148 (1982)], and a non-zero normal electric field. In this paper, we propose the corresponding generalization: in the model presented, the profiles can be freely imposed for the magnetic field rotation (although restricted to a 180 rotation hitherto) and for the normal electric field. As it was done previously, the equilibrium is tested with a hybrid simulation.
International Nuclear Information System (INIS)
Dorville, Nicolas; Belmont, Gérard; Aunai, Nicolas; Dargent, Jérémy; Rezeau, Laurence
2015-01-01
) 20, 110702 (2013)], and more recently in a fully kinetic simulation as well [J. Dargent and N. Aunai, Phys. Plasmas (submitted)]. Nevertheless, in most asymmetric layers like the terrestrial magnetopause, one would indeed expect a magnetic field rotation from one direction to another without going through zero [J. Berchem and C. T. Russell, J. Geophys. Res. 87, 8139–8148 (1982)], and a non-zero normal electric field. In this paper, we propose the corresponding generalization: in the model presented, the profiles can be freely imposed for the magnetic field rotation (although restricted to a 180 rotation hitherto) and for the normal electric field. As it was done previously, the equilibrium is tested with a hybrid simulation
Understanding the Viscosity of Liquids used in Infant Dysphagia Management.
Frazier, Jacqueline; Chestnut, Amanda H; Jackson, Arwen; Barbon, Carly E A; Steele, Catriona M; Pickler, Laura
2016-10-01
When assessing swallowing in infants, it is critical to have confidence that the liquids presented during the swallow study closely replicate the viscosity of liquids in the infant's typical diet. However, we lack research on rheological properties of frequently used infant formulas or breastmilk, and various forms of barium contrast media used in swallow studies. The aim of the current study was to provide objective viscosity measurements for typical infant liquid diet options and barium contrast media. A TA-Instruments AR2000 Advanced Rheometer was used to measure the viscosity of five standard infant formulas, three barium products, and two breastmilk samples. Additionally, this study measured the viscosity of infant formulas and breastmilk when mixed with powdered barium contrast in a 20 % weight-to-volume (w/v) concentration. The study findings determined that standard infant formulas and the two breastmilk samples had low viscosities, at the lower end of the National Dysphagia Diet (NDD) thin liquid range. Two specialty formulas tested had much thicker viscosities, close to the lower boundary of the NDD nectar-thick liquid range. The study showed differences in viscosity between 60 % w/v barium products (Liquid E-Z-Paque(®) and E-Z-Paque(®) powder); the powdered product had a much lower viscosity, despite identical barium concentration. When E-Z-Paque(®) powdered barium was mixed in a 20 % w/v concentration using water, standard infant formulas, or breastmilk, the resulting viscosities were at the lower end of the NDD thin range and only slightly thicker than the non-barium comparator liquids. When E-Z-Paque(®) powdered barium was mixed in a 20 % w/v concentration with the two thicker specialty formulas (Enfamil AR 20 and 24 kcal), unexpected alterations in their original viscosity occurred. These findings highlight the clinical importance of objective measures of viscosity as well as objective data on how infant formulas or breastmilk may change in
Korenev, V. L.
2007-01-01
Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei brings the optical transition energy into resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of...
Convergence of a residual based artificial viscosity finite element method
Nazarov, Murtazo
2013-02-01
We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.
Chebyshev super spectral viscosity method for a fluidized bed model
International Nuclear Information System (INIS)
Sarra, Scott A.
2003-01-01
A Chebyshev super spectral viscosity method and operator splitting are used to solve a hyperbolic system of conservation laws with a source term modeling a fluidized bed. The fluidized bed displays a slugging behavior which corresponds to shocks in the solution. A modified Gegenbauer postprocessing procedure is used to obtain a solution which is free of oscillations caused by the Gibbs-Wilbraham phenomenon in the spectral viscosity solution. Conservation is maintained by working with unphysical negative particle concentrations
A note on the mixture viscosity using the Shannak definition
International Nuclear Information System (INIS)
Awad, M.M.
2014-01-01
Highlights: • A note on the mixture viscosity using the Shannak definition is presented. • The Shannak definition gives μ (2ph) > μ f at low x. • Attention must be taken when using the Shannak definition at low x. - Abstract: In this study, a note on the mixture viscosity using the Shannak definition is presented [Shannak, B. A., 2008. Frictional pressure drop of gas liquid two-phase flow in pipes. Nucl. Eng. Des. 238, 3277–3284]. From his definition of the two-phase Reynolds number (Re (2ph) ), an expression of the two-phase viscosity (μ (2ph) ) is obtained. This expression of the two-phase viscosity (μ (2ph) ) satisfies the following important limiting conditions: i. at x = 0, μ (2ph) = μ f , and at x = 1, μ (2ph) = μ g . This definition of the two-phase viscosity (μ (2ph) ) can be used to compute the two-phase frictional pressure gradient using the homogeneous modeling approach in circular pipes, minichannels and microchannels. By plotting μ (2ph) /μ f versus x for air–water system at atmospheric conditions using the Shannak definition as well as the other most commonly used formulas of the two-phase viscosity (μ (2ph) ) in gas–liquid two-phase flows such as McAdams et al. (1942), Cicchitti et al. (1960), and Awad and Muzychka (2008) (Definition 1, Definition 2, Definition 3, and Definition 4), it is clear that the Shannak definition of the two-phase viscosity gives μ (2ph) > μ f at low x. This is impossible because we must have μ g (2ph) f for 0 < x < 1. Therefore, attention must be taken when using the Shannak definition of the two-phase viscosity at low x
Magnetic viscosity study in FePt/C granular films
International Nuclear Information System (INIS)
Huang, Y.; Butler, W.; Zhang, Y.; Hadjipanayis, G.C.; Weller, D.
2004-01-01
The magnetic viscosity of FePt/C granular thin films was studied in the temperature range from 2 to 300 K in order to examine the thermal stability of the nanoparticles. The magnetic viscosity coefficient (S max ) was found to decrease with temperature because of decreased thermal activation. At low temperatures, S max showed an almost linear dependence on temperature. However, S max does not extrapolate to zero but seems to have a finite value at cryogenic temperatures
Effect of Fluid Dynamic Viscosity on the Strength of Chalk
DEFF Research Database (Denmark)
Hedegaard, K.; Fabricius, Ida Lykke
The mechanical strength of high porosity and weakly cemented chalk is affected by the fluid in the pores. In this study, the effect of the dynamic viscosity of non-polar fluids has been measured on outcrop chalk from Sigerslev Quarry, Stevns, Denmark. The outcome is that the measured strength...... of the chalk decreases with increasing dynamic viscosity. The proposed qualitative explanation is that pressure difference supports and enhances the generation of microscopic shear and tensile failures....
Coefficients of viscosity for heavy impurity element in tokamak
Energy Technology Data Exchange (ETDEWEB)
El-Sharif, R N; Bekhit, A M [Plasma Physics dept., NRC, Atomic energy Authority, Cairo, (Egypt)
1997-12-31
The transport of heavy impurity element in to tokamak was studied theoretically. The viscosity coefficients of chromium impurities has been calculated in 13 and 21 moment approximation, in the limit of strong fields where is the gyrofrequency of species it was found that the off diagonal coefficient approximately tends to zero. This means that the friction force in the off-diagonal direction is very small, for the perpendicular viscosity coefficient the two approximation coincide to each other. 3 figs.
Vanishing Shear Viscosity Limit in the Magnetohydrodynamic Equations
Fan, Jishan; Jiang, Song; Nakamura, Gen
2007-03-01
We study an initial boundary value problem for the equations of plane magnetohydrodynamic compressible flows, and prove that as the shear viscosity goes to zero, global weak solutions converge to a solution of the original equations with zero shear viscosity. As a by-product, this paper improves the related results obtained by Frid and Shelukhin for the case when the magnetic effect is neglected.
Refractive index and viscosity: dual sensing with plastic fibre gratings
Ferreira, Ricardo; Bilro, Lúcia; Marques, Carlos; Oliveira, Ricardo; Nogueira, Rogério
2014-05-01
A refractive index and viscosity sensor based on FBGs in mPOF is reported for the first time. The refractive index was measured with a sensitivity of -10:98nm=RIU and a resolution of 1 - 10-4RIU. Viscosity measurements were performed with acousto-optic modulation, obtaining a sensitivity of -94:42%=mPa • s and a resolution of 0:06mPa • s.
Viscosity and density models for copper electrorefining electrolytes
Kalliomäki Taina; Aji Arif T.; Aromaa Jari; Lundström Mari
2016-01-01
Viscosity and density are highly important physicochemical properties of copper electrolyte since they affect the purity of cathode copper and energy consumption [1, 2] affecting the mass and heat transfer conditions in the cell [3]. Increasing viscosity and density decreases the rate in which the anode slime falls to the bottom of the cell [4, 5] and lowers the diffusion coefficient of cupric ion (DCu2+) [6]. Decreasing the falling rate of anode slime increases movement of the slime to other...
Predicting specific gravity and viscosity of biodiesel fuels
Tesfa, Belachew; Mishra, Rakesh; Gu, Fengshou; Ball, Andrew
2009-01-01
Biodiesel is a promising non-toxic and biodegradable alternative fuel in transport sector. Of all the biodiesel properties, specific gravity and viscosity are the most significant for the effects they have on the utilization of biodiesel fuels in unmodified engines. This paper presents models, which have been derived from experimental data, for predicting the specific gravity and dynamic viscosity of biodiesel at various temperatures and fractions. In addition a model has also been developed ...
International Nuclear Information System (INIS)
Hakioglu, T
2009-01-01
Based on Khodas et al (2004 Phys. Rev. Lett. 92 086602), we propose a device acting like a controllable prism for an incident spin. The device is a large quantum well where Rashba and Dresselhaus spin-orbit interactions are present and controlled by the plunger gate potential, the electric field and the barrier height. A totally destructive interference can be manipulated externally between the Rashba and Dresselhaus couplings. The spin-dependent transmission/reflection amplitudes are calculated as the control parameters are changed. The device operates as a spin prism/converter/filter in different regimes and may stimulate research in promising directions in spintronics in analogy with linear optics.
International Nuclear Information System (INIS)
Bahr, Benjamin; Hellmann, Frank; Kaminski, Wojciech; Kisielowski, Marcin; Lewandowski, Jerzy
2011-01-01
The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as our main tool. A set of moves we define in the set of the operator spin foams (among other operations) allows us to split the faces and the edges of the foams. We assign to each operator spin foam a contracted operator, by using the contractions at the vertices and suitably adjusted face amplitudes. The emergence of the face amplitudes is the consequence of assuming the invariance of the contracted operator with respect to the moves. Next, we define spin foam models and consider the class of models assumed to be symmetric with respect to the moves we have introduced, and assuming their partition functions (state sums) are defined by the contracted operators. Briefly speaking, those operator spin foam models are invariant with respect to the cellular decomposition, and are sensitive only to the topology and colouring of the foam. Imposing an extra symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with assumed invariance with respect to the edge splitting move, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on a spin(4) BF spin foam model is exactly the way we tend to view 4D quantum gravity, starting with the BC model and continuing with the Engle-Pereira-Rovelli-Livine (EPRL) or Freidel-Krasnov (FK) models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. Among our natural spin foam models there are the BF spin foam model, the BC model, and a model corresponding to the EPRL intertwiners. Our operator spin foam framework can also be used for more general spin
Dieny, B.; Sousa, R.; Prejbeanu, L.
2007-04-01
Conventional electronics has in the past ignored the spin on the electron, however things began to change in 1988 with the discovery of giant magnetoresistance in metallic thin film stacks which led to the development of a new research area, so called spin-electronics. In the last 10 years, spin-electronics has achieved a number of breakthroughs from the point of view of both basic science and application. Materials research has led to several major discoveries: very large tunnel magnetoresistance effects in tunnel junctions with crystalline barriers due to a new spin-filtering mechanism associated with the spin-dependent symmetry of the electron wave functions new magnetic tunnelling barriers leading to spin-dependent tunnelling barrier heights and acting as spin-filters magnetic semiconductors with increasingly high ordering temperature. New phenomena have been predicted and observed: the possibility of acting on the magnetization of a magnetic nanostructure with a spin-polarized current. This effect, due to a transfer of angular momentum between the spin polarized conduction electrons and the local magnetization, can be viewed as the reciprocal of giant or tunnel magnetoresistance. It can be used to switch the magnetization of a magnetic nanostructure or to generate steady magnetic excitations in the system. the possibility of generating and manipulating spin current without charge current by creating non-equilibrium local accumulation of spin up or spin down electrons. The range of applications of spin electronics materials and phenomena is expanding: the first devices based on giant magnetoresistance were the magnetoresistive read-heads for computer disk drives. These heads, introduced in 1998 with current-in plane spin-valves, have evolved towards low resistance tunnel magnetoresistice heads in 2005. Besides magnetic recording technology, these very sensitive magnetoresistive sensors are finding applications in other areas, in particular in biology. magnetic
Negative viscosity can enhance learning of inertial dynamics.
Huang, Felix C; Patton, James L; Mussa-Ivaldi, Ferdinando A
2009-06-01
We investigated how learning of inertial load manipulation is influenced by movement amplification with negative viscosity. Using a force-feedback device, subjects trained on anisotropic loads (5 orientations) with free movements in one of three conditions (inertia only, negative viscosity only, or combined), prior to common evaluation conditions (prescribed circular pattern with inertia only). Training with Combined-Load resulted in lower error (6.89±3.25%) compared to Inertia-Only (8.40±4.32%) and Viscosity-Only (8.17±4.13%) according to radial deviation analysis (% of trial mean radius). Combined-Load and Inertia-Only groups exhibited similar unexpected no-load trials (8.38±4.31% versus 8.91±4.70% of trial mean radius), which suggests comparable low-impedance strategies. These findings are remarkable since negative viscosity, only available during training, evidently enhanced learning when combined with inertia. Modeling analysis suggests that a feedforward after-effect of negative viscosity cannot predict such performance gains. Instead, results from Combined-Load training are consistent with greater feedforward inertia compensation along with a small increase in impedance control. The capability of the nervous system to generalize learning from negative viscosity suggests an intriguing new method for enhancing sensorimotor adaptation.
Local viscosity distribution in bifurcating microfluidic blood flows
Kaliviotis, E.; Sherwood, J. M.; Balabani, S.
2018-03-01
The red blood cell (RBC) aggregation phenomenon is majorly responsible for the non-Newtonian nature of blood, influencing the blood flow characteristics in the microvasculature. Of considerable interest is the behaviour of the fluid at the bifurcating regions. In vitro experiments, using microchannels, have shown that RBC aggregation, at certain flow conditions, affects the bluntness and skewness of the velocity profile, the local RBC concentration, and the cell-depleted layer at the channel walls. In addition, the developed RBC aggregates appear unevenly distributed in the outlets of these channels depending on their spatial distribution in the feeding branch, and on the flow conditions in the outlet branches. In the present work, constitutive equations of blood viscosity, from earlier work of the authors, are applied to flows in a T-type bifurcating microchannel to examine the local viscosity characteristics. Viscosity maps are derived for various flow distributions in the outlet branches of the channel, and the location of maximum viscosity magnitude is obtained. The viscosity does not appear significantly elevated in the branches of lower flow rate as would be expected on the basis of the low shear therein, and the maximum magnitude appears in the vicinity of the junction, and towards the side of the outlet branch with the higher flow rate. The study demonstrates that in the branches of lower flow rate, the local viscosity is also low, helping us to explain why the effects of physiological red blood cell aggregation have no adverse effects in terms of in vivo vascular resistance.
A viscosity and density meter with a magnetically suspended rotor
International Nuclear Information System (INIS)
Bano, Mikulas; Strharsky, Igor; Hrmo, Igor
2003-01-01
A device for measuring the viscosity and density of liquids is presented. It is a Couette-type viscometer that uses a submerged rotor to measure the viscosity without errors originating in the contact of the rotor with the sample/air boundary. The inner cylinder is a glass rotor suspended in the liquid, and the outer cylinder is also made of glass. The rotor is stabilized on the axis of the outer cylinder by an electromagnetic force controlled by feedback from the rotor's vertical position. In the lower part of the rotor is an aluminum cylinder located in a magnetic field generated by rotating permanent magnets. The interaction of this rotating magnetic field with eddy currents generated in the aluminum cylinder causes rotation of the rotor. This rotation is optically detected, and viscosity is calculated from the measured angular velocity of rotor. The density of the liquid is calculated from the applied vertical equilibrating force. A computer controls the whole measurement. The device works at constant temperature or while scanning temperature. The sample volume is 1.6 ml, and the accuracy of measurement of both viscosity and density is ∼0.1%. The range of measured densities is (0.7-1.4) g/ml, and viscosity can be measured in the range (3x10 -4 -0.3) Pa s. The shear rate of the viscosity measurement varies in the range (20-300) s-1. The accuracy of the temperature measurement is 0.02 K
Temperature dependent kinematic viscosity of different types of engine oils
Directory of Open Access Journals (Sweden)
Libor Severa
2009-01-01
Full Text Available The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using several mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993. Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.
Relaxation-based viscosity mapping for magnetic particle imaging
Utkur, M.; Muslu, Y.; Saritas, E. U.
2017-05-01
Magnetic particle imaging (MPI) has been shown to provide remarkable contrast for imaging applications such as angiography, stem cell tracking, and cancer imaging. Recently, there is growing interest in the functional imaging capabilities of MPI, where ‘color MPI’ techniques have explored separating different nanoparticles, which could potentially be used to distinguish nanoparticles in different states or environments. Viscosity mapping is a promising functional imaging application for MPI, as increased viscosity levels in vivo have been associated with numerous diseases such as hypertension, atherosclerosis, and cancer. In this work, we propose a viscosity mapping technique for MPI through the estimation of the relaxation time constant of the nanoparticles. Importantly, the proposed time constant estimation scheme does not require any prior information regarding the nanoparticles. We validate this method with extensive experiments in an in-house magnetic particle spectroscopy (MPS) setup at four different frequencies (between 250 Hz and 10.8 kHz) and at three different field strengths (between 5 mT and 15 mT) for viscosities ranging between 0.89 mPa · s-15.33 mPa · s. Our results demonstrate the viscosity mapping ability of MPI in the biologically relevant viscosity range.
Temperature Dependence Viscosity and Density of Different Biodiesel Blends
Directory of Open Access Journals (Sweden)
Vojtěch Kumbár
2015-01-01
Full Text Available The main goal of this paper is to assess the effect of rapeseed oil methyl ester (RME concentration in diesel fuel on its viscosity and density behaviour. The density and dynamic viscosity were observed at various mixing ratios of RME and diesel fuel. All measurements were performed at constant temperature of 40 °C. Increasing ratio of RME in diesel fuel was reflected in increased density value and dynamic viscosity of the blend. In case of pure RME, pure diesel fuel, and a blend of both (B30, temperature dependence of dynamic viscosity and density was examined. Temperature range in the experiment was −10 °C to 80 °C. Considerable temperature dependence of dynamic viscosity and density was found and demonstrated for all three samples. This finding is in accordance with theoretical assumptions and reference data. Mathematical models were developed and tested. Temperature dependence of dynamic viscosity was modeled using a polynomial 3rd polynomial degree. Correlation coefficients R −0.796, −0.948, and −0.974 between measured and calculated values were found. Temperature dependence of density was modeled using a 2nd polynomial degree. Correlation coefficients R −0.994, −0.979, and −0.976 between measured and calculated values were acquired. The proposed models can be used for flow behaviour prediction of RME, diesel fuel, and their blends.
Topologically Massive Higher Spin Gravity
Bagchi, A.; Lal, S.; Saha, A.; Sahoo, B.
2011-01-01
We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special "chiral" point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the
Energy Technology Data Exchange (ETDEWEB)
Ellingsen, Simen Andreas Aadnoey
2011-01-15
The present thesis focuses on several topics within three separate but related branches of the overall field of dispersion forces. The three branches are: temperature corrections to the Casimir force between real materials (Part 1), explicit calculation of Casimir energy in wedge geometries (Part 2), and Casimir-Polder forces on particles out of thermal equilibrium (Part 3). Part 1 deals primarily with analysis of a previously purported thermodynamic inconsistency in the Casimir-Lifshitz free energy of the interaction of two plane mirrors - violation of the third law of thermodynamics - when the latter's dielectric response is described with dissipative models. It is shown analytically and numerically that the Casimir entropy of the interaction between two metallic mirrors described by the Drude model does tend to zero at zero temperature, provided electronic relaxation does not vanish. The leading order terms at low temperature are found. A similar calculation is carried out for the interaction of semiconductors with small but non-zero DC conductivity. In a generalisation, it is shown that a violation of the third law can only occur for permittivities whose low-frequency behaviour is temperature dependent near zero temperature. A calculation using path integral methods shows that the low temperature behaviour of the interaction of fluctuating Foucault currents in two mirrors of Drude metal is identical to that of the full Casimir-Lifshitz free energy, reasserting a previous finding by Intravaia and Henkel that such fluctuating bulk currents are the physical reason for the anomalous entropy behaviour. In a related effort, an analysis of the frequency dependence of the Casimir force by Ford is generalised to imperfectly reflecting mirrors. A paradox is pointed out, in that the effects of a perturbation of the reflecting properties of the mirrors in a finite frequency window can be calculated in two ways giving different results. It is concluded that optimistic
Beam spin asymmetry in deep and exclusive pi0 electroproduction
International Nuclear Information System (INIS)
R. De Masi
2007-01-01
The beam spin asymmetry (BSA) in the exclusive reaction ep->ep pi0 was measured with the CEBAF 5.77 GeV polarized electron beam and Large Acceptance Spectrometer(CLAS). The xB, Q2, t and phi dependences of the pi0 BSA are presented in the deep inelastic regime. The asymmetries are fitted with a sin(phi) function and their amplitudes are extracted. Overall, they are of the order of 0.04 - 0.11 and roughly independent of t. This is the signature of a non-zero longitudinal-transverse interference. The implications concerning the applicability of a formalism based on generalized parton distributions, as well as the extension of a Regge formalism at high photon virtualities, are discussed
Phase-space lagrangians for null spinning strings
International Nuclear Information System (INIS)
Barcelos-Neto, J.; Ruiz-Altaba, M.; Ramirez, C.
1990-01-01
The striking fact that normal-ordered null strings have the same critical dimension as their usual non-zero tension siblings can be understood from the observation that one must, in the tensionless case, keep all the conjugate momenta as independent dynamical variables, thus doubling the number of physical degrees of freedom. The fermionic momenta give rise to a second-class constraint which cannot be solved covariantly, but can be successfully incorporated into the first-class constraint algebra after gauge-fixing. The ghost contributions to the anomaly consist of two b-c (and also two β-γ systems in the supersymmetric case), of the single Virasoro sub(super)algebra for the closed null (spinning) string. In the appropriate gauge, the null (super)string is (super)chiral. (orig.)
Spin-orbit and spin-lattice coupling
International Nuclear Information System (INIS)
Bauer, Gerrit E.W.; Ziman, Timothy; Mori, Michiyasu
2014-01-01
We pursued theoretical research on the coupling of electron spins in the condensed matter to the lattice as mediated by the spin-orbit interaction with special focus on the spin and anomalous Hall effects. (author)
Spin Current Noise of the Spin Seebeck Effect and Spin Pumping
Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.
2018-01-01
We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.
Effect of spin rotation coupling on spin transport
International Nuclear Information System (INIS)
Chowdhury, Debashree; Basu, B.
2013-01-01
We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k → ⋅p → perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k → ⋅p → framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied
Effect of spin rotation coupling on spin transport
Energy Technology Data Exchange (ETDEWEB)
Chowdhury, Debashree, E-mail: debashreephys@gmail.com; Basu, B., E-mail: sribbasu@gmail.com
2013-12-15
We have studied the spin rotation coupling (SRC) as an ingredient to explain different spin-related issues. This special kind of coupling can play the role of a Dresselhaus like coupling in certain conditions. Consequently, one can control the spin splitting, induced by the Dresselhaus like term, which is unusual in a semiconductor heterostructure. Within this framework, we also study the renormalization of the spin-dependent electric field and spin current due to the k{sup →}⋅p{sup →} perturbation, by taking into account the interband mixing in the rotating system. In this paper we predict the enhancement of the spin-dependent electric field resulting from the renormalized spin rotation coupling. The renormalization factor of the spin electric field is different from that of the SRC or Zeeman coupling. The effect of renormalized SRC on spin current and Berry curvature is also studied. Interestingly, in the presence of this SRC-induced SOC it is possible to describe spin splitting as well as spin galvanic effect in semiconductors. -- Highlights: •Studied effect of spin rotation coupling on the spin electric field, spin current and Berry curvature. •In the k{sup →}⋅p{sup →} framework we study the renormalization of spin electric field and spin current. •For an inertial system we have discussed the spin splitting. •Expression for the Berry phase in the inertial system is discussed. •The inertial spin galvanic effect is studied.
Spin temperature concept verified by optical magnetometry of nuclear spins
Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.
2018-01-01
We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.
International Nuclear Information System (INIS)
Sharma, Prerana; Chhajlani, R. K.
2014-01-01
The effect of spin induced magnetization and electrical resistivity incorporating the viscosity of the medium is examined on the Jeans instability of quantum magnetoplasma. Formulation of the system is done by using the quantum magnetohydrodynamic model. The analysis of the problem is carried out by normal mode analysis theory. The general dispersion relation is derived from set of perturbed equations to analyse the growth rate and condition of self-gravitational Jeans instability. To discuss the influence of resistivity, magnetization, and viscosity parameters on Jeans instability, the general dispersion relation is reduced for both transverse and longitudinal mode of propagations. In the case of transverse propagation, the gravitating mode is found to be affected by the viscosity, magnetization, resistivity, and magnetic field strength whereas Jeans criterion of instability is modified by the magnetization and quantum parameter. In the longitudinal mode of propagation, the gravitating mode is found to be modified due to the viscosity and quantum correction in which the Jeans condition of instability is influenced only by quantum parameter. The other non-gravitating Alfven mode in this direction is affected by finite electrical resistivity, spin induced magnetization, and viscosity. The numerical study for the growth rate of Jeans instability is carried out for both in the transverse and longitudinal direction of propagation to the magnetic field. The effect of various parameters on the growth rate of Jeans instability in quantum plasma is analysed
Spin labels. Applications in biology
International Nuclear Information System (INIS)
Frangopol, T.P.; Frangopol, M.; Ionescu, S.M.; Pop, I.V.; Benga, G.
1980-11-01
The main applications of spin labels in the study of biomembranes, enzymes, nucleic acids, in pharmacology, spin immunoassay are reviewed along with the fundamentals of the spin label method. 137 references. (author)
Spin Switching via Quantum Dot Spin Valves
Gergs, N. M.; Bender, S. A.; Duine, R. A.; Schuricht, D.
2018-01-01
We develop a theory for spin transport and magnetization dynamics in a quantum dot spin valve, i.e., two magnetic reservoirs coupled to a quantum dot. Our theory is able to take into account effects of strong correlations. We demonstrate that, as a result of these strong correlations, the dot gate voltage enables control over the current-induced torques on the magnets and, in particular, enables voltage-controlled magnetic switching. The electrical resistance of the structure can be used to read out the magnetic state. Our model may be realized by a number of experimental systems, including magnetic scanning-tunneling microscope tips and artificial quantum dot systems.
Hawkes, N
1999-01-01
RAL is fostering commerical exploitation of its research and facilities in two main ways : spin-out companies exploit work done at the lab, spin-in companies work on site taking advantage of the facilities and the expertise available (1/2 page).
International Nuclear Information System (INIS)
Haxton, W.C.
1988-01-01
I discuss a number of the themes of the Symmetries and Spin session of the 8th International Symposium on High Energy Spin Physics: parity nonconservation, CP/T nonconservation, and tests of charge symmetry and charge independence. 28 refs., 1 fig
Classical spins in superconductors
Energy Technology Data Exchange (ETDEWEB)
Shiba, H [Tokyo Univ.; Maki, K
1968-08-01
It is shown that there exists a localized excited state in the energy gap in a superconductor with a classical spin. At finite concentration localized excited states around classical spins form an impurity band. The process of growth of the impurity band and its effects on observable quantities are investigated.
International Nuclear Information System (INIS)
Masaike, Akira
1993-01-01
Despite playing a major role in today's Standard Model, spin - the intrinsic angular momentum carried by particles - is sometimes dismissed as an inessential complication. However several major spin questions with important implications for the Standard Model remain unanswered, and recent results and new technological developments made the 10th International Symposium on High Energy Spin Physics, held in Nagoya, Japan, in November, highly topical. The symposium covered a wide range of physics, reflecting the diversity of spin effects, however four main themes were - the spin content of the nucleon, tests of symmetries and physics beyond standard models, intermediate energy physics, and spin technologies. Opening the meeting, T. Kinoshita reviewed the status of measurements of the anomalous magnetic moment (g-2) of the electron and the muon. The forthcoming experiment at Brookhaven (September 1991, page 23) will probe beyond the energy ranges open to existing electronpositron colliders. For example muon substructure will be opened up to 5 TeV and Ws to 2 TeV. R.L. Jaffe classified quark-parton distributions in terms of their spin dependence, pointing out their leftright attributes, and emphasized the importance of measuring transverse spin distributions through lepton pair production
Li, Rui
2018-02-01
The Kronig-Penney model, an exactly solvable one-dimensional model of crystal in solid physics, shows how the allowed and forbidden bands are formed in solids. In this paper, we study this model in the presence of both strong spin-orbit coupling and the Zeeman field. We analytically obtain four transcendental equations that represent an implicit relation between the energy and the Bloch wave vector. Solving these four transcendental equations, we obtain the spin-orbital bands exactly. In addition to the usual band gap opened at the boundary of the Brillouin zone, a much larger spin-orbital band gap is also opened at some special sites inside the Brillouin zone. The x component of the spin-polarization vector is an even function of the Bloch wave vector, while the z component of the spin-polarization vector is an odd function of the Bloch wave vector. At the band edges, the optical transition rates between adjacent bands are nonzero.
The influence of tongue strength on oral viscosity discrimination acuity.
Steele, Catriona M
2018-06-01
The ability to generate tongue pressures is widely considered to be critical for liquid bolus propulsion in swallowing. It has been proposed that the application of tongue pressure may also serve the function of collecting sensory information regarding bolus viscosity (resistance to flow). In this study, we explored the impact of age-related reductions in tongue strength on oral viscosity discrimination acuity. The experiment employed a triangle test discrimination protocol with an array of xanthan-gum thickened liquids in the mildly to moderately thick consistency range. A sample of 346 healthy volunteers was recruited, with age ranging from 12 to 86 (164 men, 182 women). On average, participants were able to detect a 0.29-fold increase in xanthan-gum concentration, corresponding to a 0.5-fold increase in viscosity at 50/s. Despite having significantly reduced tongue strength on maximum isometric tongue-palate pressure tasks, and regardless of sex, older participants in this study showed no reductions in viscosity discrimination acuity. In this article, the relationship between tongue strength and the ability to discriminate small differences in liquid viscosity during oral processing is explored. Given that tongue strength declines with age in healthy adults and is also reduced in individuals with dysphagia, it is interesting to determine whether reduced tongue strength might contribute to difficulties in evaluating liquid viscosity during the oral stage of swallowing. Using an array of mildly to moderately thick xanthan-gum thickened liquids, this experiment failed to find any evidence that reductions in tongue strength influence oral viscosity discrimination acuity. © 2017 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Jin Lan (兰金
2015-12-01
Full Text Available A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.
International Nuclear Information System (INIS)
Lowenstein, D.I.
1985-01-01
Spin Physics at the Alternating Gradient Synchrotron (AGS) of Brookhaven National Laboratory is the most recent of new capabilities being explored at this facility. During the summer of 1984 the AGS accelerated beams of polarized protons to 16.5 GeV/c at 40% polarization to two experiments (E782, E785). These experiments; single spin asymmetry in inclusive polarized pp interactions; and spin-spin effects in polarized pp elastic scattering, operated at the highest polarized proton energy ever achieved by any accelerator in the world. These experiments are reviewed after the complementary spin physics program with unpolarized protons, and the future possibilities with a booster injector for the AGS and the secondary benefits of a Relativisitic Heavy Ion Collider (RHIC), are placed within the context of the present physics program
Superconductivity and spin fluctuations
International Nuclear Information System (INIS)
Scalapino, D.J.
1999-01-01
The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations
Spin Hall and spin swapping torques in diffusive ferromagnets
Pauyac, C. O.
2017-12-08
A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.
Spin Hall and spin swapping torques in diffusive ferromagnets
Pauyac, C. O.; Chshiev, M.; Manchon, Aurelien; Nikolaev, S. A.
2017-01-01
A complete set of the generalized drift-diffusion equations for a coupled charge and spin dynamics in ferromagnets in the presence of extrinsic spin-orbit coupling is derived from the quantum kinetic approach, covering major transport phenomena, such as the spin and anomalous Hall effects, spin swapping, spin precession and relaxation processes. We argue that the spin swapping effect in ferromagnets is enhanced due to spin polarization, while the overall spin texture induced by the interplay of spin-orbital and spin precessional effects displays a complex spatial dependence that can be exploited to generate torques and nucleate/propagate domain walls in centrosymmetric geometries without use of external polarizers, as opposed to the conventional understanding of spin-orbit mediated torques.
Determination of Viscosity Versus Pressure by Means of a Clearance Seal
DEFF Research Database (Denmark)
Christiansen, Peter; Schmidt Hansen, Niels; Lund, Martin Thomas Overdahl
2018-01-01
This paper describes the construction and testing of a simple, experimental tool setup that enables determination of the pressure–viscosity relationship for high viscosity oils. Comparing the determined pressure–viscosity relationship with a reference rheometer measuring the viscosity at ambient ...
The influence of magnetic fields on crude oils viscosity
Energy Technology Data Exchange (ETDEWEB)
Goncalves, Jose L.; Bombard, Antonio J. F. [Universidade Federal de Itajuba (UNIFEI), Itajuba, MG (Brazil). Instituto de Ciencias Exatas. Lab. de Reologia
2009-07-01
The crystallization of paraffin causes serious problems in the process of transportation of petroleum. This phenomenon increases the crude oil viscosity and implies an organic resin accumulation on pipeline wall, resulting in a reduced flux area or totally blocked pipes. One of the most challenging tasks for pipeline maintenance is solving this problem at low cost. Therefore, a method that inhibits the crystallization of paraffin and reduces the viscosity of crude oil could have many useful applications within the petroleum industry. Recent studies showed that magnetic fields reduce the Wax Appearance Temperature (WAT) and the viscosity of paraffin-based crude oil. For better understanding of this discovery, a series of tests was performed. This paper will show the influence of a DC magnetic field on rheological proprieties of three crude oils with different paraffin concentrations: a crude oil sample with 11 % p/p of paraffin concentration (sample 1); a crude oil sample with 6 % p/p of paraffin concentration (sample 2); a mixture of paraffin plus light crude oil with a total of 11 % p/p of paraffin concentration. These samples were placed in an electromagnet that generates a magnetic field of 1.3 Tesla. The samples' temperatures were conditioned around their Wax Appearance Temperature (WAT), and they were exposed to the field. As the viscosity of crude oil is very sensitive to the changes in temperature, it was ensured that the temperature has remained constant throughout the process. The sample 1 revealed a considerable reduction of viscosity: its original viscosity was 66 cP before magnetic field exposure, after that its viscosity was reduced to 39 cP. The other samples showed the same viscosity, before and after the magnetic field exposure. Since the samples 1 and 3 have the same paraffin concentrations, the viscosity reduction is not due only to the presence of paraffin; there must be other factors responsible for the interaction of sample 1 with the
Structural and molecular basis of starch viscosity in hexaploid wheat.
Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K
2008-06-11
Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.
Calculated viscosity-distance dependence for some actively flowing lavas
International Nuclear Information System (INIS)
Pieri, D.
1987-01-01
The importance of viscosity as a gauge of the various energy and momentum dissipation regimes of lava flows has been realized for a long time. Nevertheless, despite its central role in lava dynamics and kinematics, it remains among the most difficult of flow physical properties to measure in situ during an eruption. Attempts at reconstructing the actual emplacement viscosities of lava flows from their solidified topographic form are difficult. Where data are available on the position of an advancing flow front as a function of time, it is possible to calculate the effective viscosity of the front as a function of distance from the vent, under the assumptions of a steady state regime. As an application and test of an equation given, relevant parameters from five recent flows on Mauna Loa and Kilauea were utilized to infer the dynamic structure of their aggregate flow front viscosity as they advanced, up to cessation. The observed form of the viscosity-distance relation for the five active Hawaiian flows examined appears to be exponential, with a rapid increase just before the flows stopped as one would expect
Viscosity of diluted suspensions of vegetal particles in water
Directory of Open Access Journals (Sweden)
Szydłowska Adriana
2017-01-01
Full Text Available Viscosity and rheological behaviour of sewage as well as sludge are essential while designing apparatuses and operations employed in the sewage treatment process and its processing. With reference to these substances, the bio-suspensions samples of three size fractions ((i 150÷212 μm, (ii 106÷150 μm and (iii below106 μm of dry grass in water with solid volume fraction 8%, 10% and 11% were prepared. After twenty four hours prior to their preparation time, the suspension samples underwent rheometeric measurements with the use of a rotational rheometer with coaxial cylinders. On the basis of the obtained results, flow curves were plotted and described with both the power model and Herschel-Bulkley model. Moreover, the viscosity of the studied substances was determined that allowed to conclude that the studied bio-suspensions display features of viscoelastic fluids. The experimentally established viscosity was compared to the calculated one according to Manley and Manson equation, recommended in the literature. It occurred that the measured viscosity values substantially exceed the calculation viscosity values, even by 105 times. The observations suggest that it stems from water imbibition of fibrous vegetal particles, which causes their swelling and decreases the amount of liquid phase in the suspension.
Microfluidic method for measuring viscosity using images from smartphone
Kim, Sooyeong; Kim, Kyung Chun; Yeom, Eunseop
2018-05-01
The viscosity of a fluid is the most important characteristic in fluid rheology. Many microfluidic devices have been proposed for easily measuring the fluid viscosity of small samples. A hybrid system consisting of a smartphone and microfluidic device can offer a mobile laboratory for performing a wide range of detection and analysis functions related to healthcare. In this study, a new mobile sensing method based on a microfluidic device was proposed for fluid viscosity measurements. By separately delivering sample and reference fluids into the two inlets of a Y-shaped microfluidic device, an interfacial line is induced at downstream of the device. Because the interfacial width (W) between the sample and reference fluid flows was determined by their pressure ratio, the viscosity (μ) of the sample could be estimated by measuring the interfacial width. To distinguish the interfacial width of a sample, optical images of the flows at downstream of the Y-shaped microfluidic device were acquired using a smartphone. To check the measurement accuracy of the proposed method, the viscosities of glycerol mixtures were compared with those measured by a conventional viscometer. The proposed technique was applied to monitor the variations in blood and oil samples depending on storage or rancidity. We expect that this mobile sensing method based on a microfluidic device could be utilized as a viscometer with significant advantages in terms of mobility, ease-of-operation, and data management.
Dynamic viscosity study of barley malt and chicory concentrates
Directory of Open Access Journals (Sweden)
G. O. Magomedov
2016-01-01
Full Text Available The purpose of research is to find optimal conditions for dispersing and subsequent dehydration of liquid food environments in the nozzle spray drying chamber through the study of dynamic changes in viscosity according to temperature, velocities gradients and dry residue content. The objects of study were roasted chicory and malt barley concentrates with dry residue content of 20, 40, 60 and 80%. Research of dynamic viscosity were carried out at the measuring complex based on the rotational viscometer Rheotest II, analog-to-digital converter, module Laurent and a personal computer with a unique software that allows to record in real time (not only on a tape recorder, but also in the form of graphic files the behavior of the viscosity characteristics of concentrates. Registration of changes of dynamic viscosity was carried out at a shear rate gradient from 1,0 с -1 to 27,0 с -1 and the products temperature thermostating : 35, 55, 75˚ C. The research results are presented in the form of graphic dependences of effective viscosity on shear rate and flow curves (dependencies of shear stresses on the velocity gradient, which defined flow regimes, the optimal modes of dispersion concentrates into spray dryer chambers in obtaining of powdered semi-finished products and instanting were found: dry residue content - 40 %, concentrate temperature - 75 ˚C, velocity gradient in the air channel of the nozzle at least 20 c-1
Drop splashing: the role of surface wettability and liquid viscosity
Almohammadi, Hamed; Amirfazli, Alidad; -Team
2017-11-01
There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.
Bulk viscosity, interaction and the viability of phantom solutions
Energy Technology Data Exchange (ETDEWEB)
Leyva, Yoelsy; Sepulveda, Mirko [Universidad de Tarapaca, Departamento de Fisica, Facultad de Ciencias, Arica (Chile)
2017-06-15
We study the dynamics of a bulk viscosity model in the Eckart approach for a spatially flat Friedmann-Robertson-Walker (FRW) Universe. We have included radiation and dark energy, assumed as perfect fluids, and dark matter treated as an imperfect fluid having bulk viscosity. We also introduce an interaction term between the dark matter and dark energy components. Considering that the bulk viscosity is proportional to the dark matter energy density and imposing a complete cosmological dynamics, we find bounds on the bulk viscosity in order to reproduce a matter-dominated era (MDE). This constraint is independent of the interaction term. Some late time phantom solutions are mathematically possible. However, the constraint imposed by a MDE restricts the interaction parameter, in the phantom solutions, to a region consistent with a null value, eliminating the possibility of late time stable solutions with w < -1. From the different cases that we study, the only possible scenario, with bulk viscosity and interaction term, belongs to the quintessence region. In the latter case, we find bounds on the interaction parameter compatible with latest observational data. (orig.)
The effect of gasses on the viscosity of dimethyl ether
DEFF Research Database (Denmark)
Sivebæk, Ion Marius; Jakobsen, Jørgen
2008-01-01
media, but their effect on DME viscosity is unknown. Argon (Ar), nitrogen (NA carbon dioxide (CO2), hydrogen (H-2) and propane (C3H8) have been investigated at pressure levels of 12-15 bar. A Cannon-Manning semi-micro capillary glass viscometer, size 25, enclosed in a cylindrical pressure container......, of glass, submerged completely in a constant temperature bath, has been used. A distinct reduction of efflux times was found only for the gas, CO2. The reduction in efflux time was about 9%. The kinematic viscosity of pure DME was determined to be: 0.188 +/- 0.001 cSt, 25 degrees C. A previously reported...... viscosity of pure DME has been corrected for the surface tension effect. Viscosity determination was initially based on a direct comparison of efflux times of DME with that of distilled water. The calculation gave a revised viscosity of 0.186 +/- 0.002 cSt, 25 degrees C, consistent with the above...
Investigation of viscosity of whole hydrolyze sweetened condensed milk
Directory of Open Access Journals (Sweden)
O. Kalinina
2015-05-01
Full Text Available Introduction. Рaper is aimed at developing of low-lactose (hydrolyzed sweetened condensed milk products technology for lactose intolerant people and for the whole population. Materials and methods: Rheological characteristics were determined on a Reotest device by the 2 nd method of viscometry Results and discussion. Reasonability of ß-galactosidase use for milk lactose hydrolyze during the production of canned products with sugar was proved in the previous works. This technology gives possibility to increase the quality of condensed canned foods, to reduce sugar concentration till 50 %, to increase dietary properties. Due to the reducing of saccharose mass part till 22 and 31 % the products had a liquid consistency that’s why was a necessity to increase the viscosity properties of condensed products. One of method to increase the product viscosity is inoculation of stabilization systems. Reasonability of the usage of stabilization system Bivicioc 1L was proved. The researches of viscosity determination in whole hydrolyzed sweetened condensed milk were shown in the work. Relations of viscosity of whole hydrolyzed condensed milk to the deformation rate were presented. Conclusions Viscosity indices of experimental samples in the fresh produced products and during storage are determined and justified.
Ting, David Z.
2007-01-01
The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.
Nuclear spins in nanostructures
International Nuclear Information System (INIS)
Coish, W.A.; Baugh, J.
2009-01-01
We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through ''state narrowing.'' These results demonstrate the richness of this physical system and promise many new mysteries for the future. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Energy Technology Data Exchange (ETDEWEB)
Frins, E [Universidad de la Republica, Montevideo (Uruguay); Dultz, W [J.W.v.Goethe Universitaet Frankfurt/Main (Germany); Schmitzer, H, E-mail: requalivahanus@t-online.de [Xavier University, Cincinnati (United States)
2011-01-01
Rotating small birefringent particles with the spin angular momentum of light is a key experiment of quantum optics. We derive the equation of motion of small retarders in viscose liquids, demonstrate their some times irregular rotation in polarized light, and discuss possible technical applications.
Spin drift and spin diffusion currents in semiconductors
Energy Technology Data Exchange (ETDEWEB)
Idrish Miah, M [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)], E-mail: m.miah@griffith.edu.au
2008-09-15
On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.
Spin drift and spin diffusion currents in semiconductors
Directory of Open Access Journals (Sweden)
M Idrish Miah
2008-01-01
Full Text Available On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.
Spin drift and spin diffusion currents in semiconductors
International Nuclear Information System (INIS)
Idrish Miah, M
2008-01-01
On the basis of a spin drift-diffusion model, we show how the spin current is composed and find that spin drift and spin diffusion contribute additively to the spin current, where the spin diffusion current decreases with electric field while the spin drift current increases, demonstrating that the extension of the spin diffusion length by a strong field does not result in a significant increase in spin current in semiconductors owing to the competing effect of the electric field on diffusion. We also find that there is a spin drift-diffusion crossover field for a process in which the drift and diffusion contribute equally to the spin current, which suggests a possible method of identifying whether the process for a given electric field is in the spin drift or spin diffusion regime. Spin drift-diffusion crossover fields for GaAs are calculated and are found to be quite small. We derive the relations between intrinsic spin diffusion length and the spin drift-diffusion crossover field of a semiconductor for different electron statistical regimes. The findings resulting from this investigation might be important for semiconductor spintronics.
Quantifying Spin Hall Angles from Spin Pumping : Experiments and Theory
Mosendz, O.; Pearson, J.E.; Fradin, F.Y.; Bauer, G.E.W.; Bader, S.D.; Hoffmann, A.
2010-01-01
Spin Hall effects intermix spin and charge currents even in nonmagnetic materials and, therefore, ultimately may allow the use of spin transport without the need for ferromagnets. We show how spin Hall effects can be quantified by integrating Ni80Fe20|normal metal (N) bilayers into a coplanar
Compound nucleus effects in spin-spin cross sections
International Nuclear Information System (INIS)
Thompson, W.J.
1976-01-01
By comparison with recent data, it is shown that spin-spin cross sections for low-energy neutrons may be dominated by a simple compound-elastic level-density effect, independent of spin-spin terms in the nucleon-nucleus optical-model potential. (Auth.)
The thermo magnetic instability in hot viscose plasmas
Haghani, A.; Khosravi, A.; Khesali, A.
2017-10-01
Magnetic Rotational Instability (MRI) can not performed well in accretion disks with strong magnetic field. Studies have indicated a new type of instability called thermomagnetic instability (TMI) in systems where Nernst coefficient and gradient temperature were considered. Nernst coefficient would appear if Boltzman equation could be expanded through ω_{Be} (cyclotron frequency). However, the growth rate of this instability was two magnitude orders below MRI growth (Ωk), which could not act the same as MRI. Therefor, a higher growth rate of unstable modes was needed. In this paper, rotating viscid hot plasma with strong magnetic filed was studied. Firstly, a constant alpha viscosity was studied and then a temperature sensitive viscosity. The results showed that the temperature sensitive viscosity would be able to increase the growth rate of TMI modes significantly, hence capable of acting similar to MRI.
Separation of gold nanorods by viscosity gradient centrifugation
International Nuclear Information System (INIS)
Dong, Suli; Wang, Yawei; Li, Xiaogang; Zhang, Qingquan; Liu, Xiaojun; Tu, Yang; Liang, Aiye
2016-01-01
Size-uniform gold nanorods (Au-NRs) are used in biosensing, bioimaging, photothermal therapy, drug and gene delivery, and controlled release. Monodisperse Au-NRs are usually obtained by separation steps following their synthesis, and centrifugation is widely used because of the ease of operation, high recovery, and the good availability of equipment. So far, the effect of viscosity on the separation of Au-NRs has not been investigated. We have developed a method for separation of monodisperse Au-NRs that is based on centrifugation in a viscosity gradient. Monodisperse Au-NRs obtained from gold nanoparticles were obtained by centrifugation in viscosity gradient adjusted with poly(2-ethyl-2-oxazoline). Au-NRs in sizes ranging from 25.6 to 26.1 nm in effective radius can be separated 5500 g within 5 min, which appears to be the fastest method for separation of Au-NRs. (author)
Pipeline flow of heavy oil with temperature-dependent viscosity
Energy Technology Data Exchange (ETDEWEB)
Maza Quinones, Danmer; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msc@puc-rio.br
2010-07-01
The heavy oil produced offshore needs to be transported through pipelines between different facilities. The pipelines are usually laid down on the seabed and are submitted to low temperatures. Although heavy oils usually present Newtonian behavior, its viscosity is a strong function of temperature. Therefore, the prediction of pressure drops along the pipelines should include the solution of the energy equation and the dependence of viscosity to temperature. In this work, an asymptotic model is developed to study this problem. The flow is considered laminar and the viscosity varies exponentially with temperature. The model includes one-dimensional equations for the temperature and pressure distribution along the pipeline at a prescribed flow rate. The solution of the coupled differential equation is obtained by second-order finite difference. Results show a nonlinear behavior as a result of coupled interaction between the velocity, temperature, and temperature dependent material properties. (author)
Experimental viscosity measurements of biodiesels at high pressure
Directory of Open Access Journals (Sweden)
Schaschke C.J.
2016-01-01
Full Text Available The viscosity of biodiesels of soybean and rapeseed biodiesels blended with mineral diesel fuel were measured at pressures of up to 200 MPa. Using a falling sinker-type viscometer reproducible viscosity data were obtained based on the time taken for a sinker to descend a fixed distance down an enclosed tube under the influence of gravity. Measurements were taken using pressures which correspond to those of interest in automotive common rail diesel engines, and at temperatures of between 25ºC and 80ºC. In all cases, the viscosity of the biodiesel blends were found to increase exponentially for which the blends were noted as being more viscous than pure mineral fuels. A pressure-freezing effect was not observed for the blends.
Estimation of shear viscosity based on transverse momentum correlations
International Nuclear Information System (INIS)
Sharma, Monika
2009-01-01
Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of 'shear viscosity-to-entropy' ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at √(s NN )=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.
Estimation of shear viscosity based on transverse momentum correlations
STAR Collaboration; Sharma, Monika; STAR Collaboration
2009-11-01
Event anisotropy measurements at RHIC suggest the strongly interacting matter created in heavy ion collisions flows with very little shear viscosity. Precise determination of “shear viscosity-to-entropy” ratio is currently a subject of extensive study [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302]. We present preliminary results of measurements of the evolution of transverse momentum correlation function with collision centrality of Au+Au interactions at s=200 GeV. We compare two differential correlation functions, namely inclusive [J. Adams et al. (STAR Collaboration), Phys. Rev. C 72 (2005) 044902] and a differential version of the correlation measure C˜ introduced by Gavin et al. [S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97 (2006) 162302; M. Sharma and C. A. Pruneau, Phys. Rev. C 79 (2009) 024905.]. These observables can be used for the experimental study of the shear viscosity per unit entropy.
Using Quartz Crystal Microbalance for Field Measurement of Liquid Viscosities
Directory of Open Access Journals (Sweden)
Qingsong Bai
2016-01-01
Full Text Available The field measurement of liquid viscosities, especially the high viscous liquids, is challenging and often requires expensive equipment, long processing time, and lots of reagent. We use quartz crystal microbalances (QCMs operating in solution which are also sensitive to the viscosity and density of the contacting solution. QCMs are typically investigated for sensor applications in which one surface of QCM completely immersed in Newtonian liquid, but the viscous damping in liquids would cause not only large frequency shifts but also large losses in the quality factor Q leading to instability and even cessation of oscillation. A novel mass-sensitivity-based method for field measurement of liquid viscosities using a QCM is demonstrated in this paper and a model describing the influence of the liquid properties on the oscillation frequency is established as well. Two groups of verified experiments were performed and the experimental results show that the presented method is effective and possesses potential applications.
Dependence of Helium II viscosity properties on oscillation frequency
International Nuclear Information System (INIS)
Nadirashvili, Z.S.; Tsakadze, J.S.
1979-01-01
The causes of a discrepancy in the results of measurements of He II viscosity below Tapprox. =1.6 K obtained with different measurement methods are investigated. It is shown that to obtain correct results in oscillation experiments, the condition delta>>lambda/sub ph/ should obtain, where delta is the depth of viscous wave penetration and lambda/sub ph/ is the phonon free path length. Results of viscosity measurements at different ratios delta/lambda/sub ph/ (by a wire viscometer) are presented. It is shown that for the condition delta>>lambda/sub ph/, the results obtained are in good agreement with the results of Andronikashvili (in which delta/lambda/sub ph/>100). If the mentioned relation is not satisfied, then as the value of the ratio delta/lambda/sub ph/ is decreased, the value measured for the viscosity is increasingly lower than the results of Andronikashvili
Viscosity and transient electric birefringence study of clay colloidal aggregation.
Bakk, Audun; Fossum, Jon O; da Silva, Geraldo J; Adland, Hans M; Mikkelsen, Arne; Elgsaeter, Arnljot
2002-02-01
We study a synthetic clay suspension of laponite at different particle and NaCl concentrations by measuring stationary shear viscosity and transient electrically induced birefringence (TEB). On one hand the viscosity data are consistent with the particles being spheres and the particles being associated with large amount bound water. On the other hand the viscosity data are also consistent with the particles being asymmetric, consistent with single laponite platelets associated with a very few monolayers of water. We analyze the TEB data by employing two different models of aggregate size (effective hydrodynamic radius) distribution: (1) bidisperse model and (2) log-normal distributed model. Both models fit, in the same manner, fairly well to the experimental TEB data and they indicate that the suspension consists of polydisperse particles. The models also appear to confirm that the aggregates increase in size vs increasing ionic strength. The smallest particles at low salt concentrations seem to be monomers and oligomers.
Diffusivities and Viscosities of Poly(ethylene oxide) Oligomers †
Hong, Bingbing
2010-10-14
Diffusivities and viscosities of poly(ethylene oxide) (PEO) oligomer melts with 1 to 12 repeat units have been obtained from equilibrium molecular dynamics simulations using the TraPPE-UA force field. The simulations generated diffusion coefficients with high accuracy for all of the molar masses studied, but the statistical uncertainties in the viscosity calculations were significantly larger for longer chains. There is good agreement of the calculated viscosities and densities with available experimental data, and thus, the simulations can be used to bridge gaps in the data and for extrapolations with respect to chain length, temperature, and pressure. We explored the convergence characteristics of the Green-Kubo formulas for different chain lengths and propose minimal production times required for convergence of the transport properties. The chain-length dependence of the transport properties suggests that neither Rouse nor reptation models are applicable in the short-chain regime investigated. © 2010 American Chemical Society.
Temperature Dependence of the Viscosity of Isotropic Liquids
Jadzyn, J.; Czechowski, G.; Lech, T.
1999-04-01
Temperature dependence of the shear viscosity measured for isotropic liquids belonging to the three homologous series: 4-(trans-4'-n-alkylcyclohexyl) isothiocyanatobenzenes (Cn H2n+1 CyHx Ph NCS; nCHBT, n=0-12), n-alkylcyanobiphenyls (CnH2n+1 Ph Ph CN; nCB, n=2-12) and 1,n-alkanediols (HO(CH2)nOH; 1,nAD, n=2-10) were analysed with the use of Arrhenius equation and its two modifications: Vogel--Fulcher and proposed in this paper. The extrapolation of the isothermal viscosity of 1,n-alkanediols (n=2-10) to n=1 leads to an interesting conclusion concerning the expected viscosity of methanediol, HOCH2OH, the compound strongly unstable in a pure state.
Energy Technology Data Exchange (ETDEWEB)
Stasyuk, I.V.; Krasnov, V.O., E-mail: krasnoff@icmp.lviv.ua
2017-04-15
Phase transitions at non-zero temperatures in ultracold Bose- and Fermi-particles mixture in optical lattices using the Bose-Fermi-Hubbard model in the mean field and hard-core boson approximations are investigated. The case of infinitely small fermion transfer and the repulsive on-site boson-fermion interaction is considered. The possibility of change of order (from the 2nd to the 1st one) of the phase transition to the superfluid phase in the regime of fixed values of the chemical potentials of Bose- and Fermi-particles is established. The relevant phase diagrams determining the conditions at which such a change takes place, are built.
Yang, Liang; Alouini, Mohamed-Slim; Ansari, Imran Shafique
2018-01-01
In this correspondence, an asymptotic performance analysis for two-way relaying free-space optical (FSO) communication systems with nonzero boresight pointing errors over double-generalized gamma fading channels is presented. Assuming amplify-and-forward (AF) relaying, two nodes having the FSO ability can communicate with each other through the optical links. With this setup, an approximate cumulative distribution function (CDF) expression for the overall signal-to-noise ratio (SNR) is presented. With this statistic distribution, we derive the asymptotic analytical results for the outage probability and average bit error rate. Furthermore, we provide the asymptotic average capacity analysis for high SNR by using the momentsbased method.
Yang, Liang
2018-05-07
In this correspondence, an asymptotic performance analysis for two-way relaying free-space optical (FSO) communication systems with nonzero boresight pointing errors over double-generalized gamma fading channels is presented. Assuming amplify-and-forward (AF) relaying, two nodes having the FSO ability can communicate with each other through the optical links. With this setup, an approximate cumulative distribution function (CDF) expression for the overall signal-to-noise ratio (SNR) is presented. With this statistic distribution, we derive the asymptotic analytical results for the outage probability and average bit error rate. Furthermore, we provide the asymptotic average capacity analysis for high SNR by using the momentsbased method.
2013-01-01
This book covers all principal aspects of currently investigated frustrated systems, from exactly solved frustrated models to real experimental frustrated systems, going through renormalization group treatment, Monte Carlo investigation of frustrated classical Ising and vector spin models, low-dimensional systems, spin ice and quantum spin glass. The reader can - within a single book - obtain a global view of the current research development in the field of frustrated systems.This new edition is updated with recent theoretical, numerical and experimental developments in the field of frustrated
SPINning parallel systems software
International Nuclear Information System (INIS)
Matlin, O.S.; Lusk, E.; McCune, W.
2002-01-01
We describe our experiences in using Spin to verify parts of the Multi Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of processes connected by Unix network sockets. MPD is dynamic processes and connections among them are created and destroyed as MPD is initialized, runs user processes, recovers from faults, and terminates. This dynamic nature is easily expressible in the Spin/Promela framework but poses performance and scalability challenges. We present here the results of expressing some of the parallel algorithms of MPD and executing both simulation and verification runs with Spin
McWeeny, Roy
2004-01-01
Originally delivered as a series of lectures, this volume systematically traces the evolution of the ""spin"" concept from its role in quantum mechanics to its assimilation into the field of chemistry. Author Roy McWeeny presents an in-depth illustration of the deductive methods of quantum theory and their application to spins in chemistry, following the path from the earliest concepts to the sophisticated physical methods employed in the investigation of molecular structure and properties. Starting with the origin and development of the spin concept, the text advances to an examination of sp
NUCLEON SPIN: Enigma confirmed
International Nuclear Information System (INIS)
Anon.
1994-01-01
In 1987 the European Muon Collaboration (EMC - June 1988, page 9) reported results from a polarized muon-proton scattering experiment at CERN which puzzled the particle and nuclear physics communities. Contrary to the prediction of the naive quark model, the EMC found that little of the proton spin seemed to be carried by the spins of the quarks. An extensive experimental programme was therefore immediately proposed at CERN, SLAC (Stanford) and DESY (Hamburg) to measure the spin structure function of the neutron and to repeat the proton measurement with improved accuracy
International Nuclear Information System (INIS)
Konoto, Makoto
2007-01-01
Development of highly effective evaluation technology of magnetic structures on a nanometric scale is a key to understanding spintronics and related phenomena. A high-resolution spin-polarized scanning electron microscope (spin SEM) developed recently is quite suitable for probing such nanostructures because of the capability of analyzing local magnetization vectors in three dimensions. Utilizing the spin SEM, a layered antiferromagnetic structure with the 1nm-alternation of bilayer-sheet magnetization has been successfully resolved. The real-space imaging with full analysis of the temperature-dependent magnetization vectors will be demonstrated. (author)
International Nuclear Information System (INIS)
Khan, H.
1990-01-01
This thesis explores deep inelastic scattering of a lepton beam from a polarized nuclear target with spin J=1. After reviewing the formation for spin-1/2, the structure functions for a spin-1 target are defined in terms of the helicity amplitudes for forward compton scattering. A version of the convolution model, which incorporates relativistic and binding energy corrections is used to calculate the structure functions of a neutron target. A simple parameterization of these structure functions is given in terms of a few neutron wave function parameters and the free nucleon structure functions. This allows for an easy comparison of structure functions calculated using different neutron models. (author)
Czech Academy of Sciences Publication Activity Database
Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš
2010-01-01
Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010
International Nuclear Information System (INIS)
Chang Wenkua; Zheng Han
1989-01-01
The effects of spinning process parameters including max. pass percentage reduction, spinning temperature, feed rate, lubricant and annealing technology on the quality of shaped components are summarized and discussed in the present paper. The above mentioned parameters are adopted in the process of spinning of barrel-shaped and specially shaped components of refractory metals and their alloys W, Mo, Nb, Zr, TZM molybdenum alloy, C-103, C-752 niobium alloy etc. The cause of leading to usual defects of spun products of refractory metals such as lamellar as 'scaling', crack, swelling, wrinkle, etc. have been analysed and the ways to eliminate the defects have been put forward. 8 figs., 5 tabs. (Author)
Spin transfer torque with spin diffusion in magnetic tunnel junctions
Manchon, Aurelien
2012-08-09
Spin transport in magnetic tunnel junctions in the presence of spin diffusion is considered theoretically. Combining ballistic tunneling across the barrier and diffusive transport in the electrodes, we solve the spin dynamics equation in the metallic layers. We show that spin diffusion mixes the transverse spin current components and dramatically modifies the bias dependence of the effective spin transfer torque. This leads to a significant linear bias dependence of the out-of-plane torque, as well as a nonconventional thickness dependence of both spin torque components.
Electron spin and nuclear spin manipulation in semiconductor nanosystems
International Nuclear Information System (INIS)
Hirayama, Yoshiro; Yusa, Go; Sasaki, Satoshi
2006-01-01
Manipulations of electron spin and nuclear spin have been studied in AlGaAs/GaAs semiconductor nanosystems. Non-local manipulation of electron spins has been realized by using the correlation effect between localized and mobile electron spins in a quantum dot- quantum wire coupled system. Interaction between electron and nuclear spins was exploited to achieve a coherent control of nuclear spins in a semiconductor point contact device. Using this device, we have demonstrated a fully coherent manipulation of any two states among the four spin levels of Ga and As nuclei. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Blood viscosity during coagulation at different shear rates
Ranucci, Marco; Laddomada, Tommaso; Ranucci, Matteo; Baryshnikova, Ekaterina
2014-01-01
Abstract During the coagulation process, blood changes from a liquid to a solid gel phase. These changes are reflected by changes in blood viscosity; however, blood viscosity at different shear rates (SR) has not been previously explored during the coagulation process. In this study, we investigated the viscosity changes of whole blood in 10 subjects with a normal coagulation profile, using a cone‐on‐plate viscosimeter. For each subject, three consecutive measurements were performed, at a SR of 20, 40, 80 sec−1. On the basis of the time‐dependent changes in blood viscosity, we identified the gel point (GP), the time‐to‐gel point (TGP), the maximum clot viscosity (MCV), and the clot lysis half‐time (CLH). The TGP significantly (P = 0.0023) shortened for increasing SR, and was significantly associated with the activated partial thromboplastin time at a SR of 20 sec−1 (P = 0.038) and 80 sec−1 (P = 0.019). The MCV was significantly lower at a SR of 80 sec−1 versus 40 sec−1 (P = 0.027) and the CLH significantly (P = 0.048) increased for increasing SR. These results demonstrate that measurement of blood viscosity during the coagulation process offers a number of potentially useful parameters. In particular, the association between the TGP and the activated partial thromboplastin time is an expression of the clotting time (intrinsic and common pathway), and its shortening for increasing SR may be interpreted the well‐known activating effects of SR on platelet activation and thrombin generation. Further studies focused on the TGP under conditions of hypo‐ or hypercoagulability are required to confirm its role in the clinical practice. PMID:24994896
VISCOSITY ANALYSIS OF EMPTY FRUIT BUNCH (EFB BIO-OIL
Directory of Open Access Journals (Sweden)
Z.S. Nazirah
2013-12-01
Full Text Available Empty fruit bunches (EFB are one of the solid wastes produced by the palm oil industry, which is increasing rapidly. The aim of this paper is to analyse the viscosity of empty fruit bunch (EFB bio-oil that can be extracted from all solid waste EFB as a sample, and a few processes were executed. The samples underwent two processes, which were pre-treatment and pyrolysis. The pre-treatment involved three processes, namely, cutting, shredding and sieving, which were necessary in order to prepare EFB into a particle size suitable for the reactor. After that, the samples were fed into the feedback reactor as feedstock for the pyrolysis process to produce bio-oil. Once the bio-oil was produced, its viscosity was tested using the Brookfield Viscometer in two conditions: before and after the chemical reaction. The bio-oil was treated by adding 10 ml and 20 ml of acetone respectively through the chemical reaction. The viscosity test was carried out at different temperatures, which were 25°C, 30°C, 35°C, 40°C, 45°C and 50°C respectively. The observed viscosity of the EFB bio-oil varied and was higher as the temperature decreased. In addition, the viscosity of the EFB bio-oil was higher when it reacted chemically with the acetone added. Therefore, the results showed that the chemical reaction with acetone has the potential to increase the viscosity of EFB bio-oil.
Spin dynamics in polarized neutron interferometry
International Nuclear Information System (INIS)
Buchelt, R.J.
2000-05-01
Since its first implementation in 1974, perfect crystal neutron interferometry has become an extremely successful method applicable to a variety of research fields. Moreover, it proved as an illustrative and didactically valuable experiment for the demonstration of the fundamental principles of quantum mechanics, the neutron being an almost ideal probe for the detection of various effects, as it interacts by all four forces of nature. For instance, the first experimental verification of the 4-pi-periodicity of spinor wave functions was performed with perfect crystal neutron interferometry, and it remains the only method known which demonstrates the quantum mechanical wave-particle-duality of massive particles at a macroscopic separation of the coherent matter waves of several centimeters. A particular position is taken herein by polarized neutron interferometry, which as a collective term comprises all techniques and experiments which not only aim at the coherent splitting and macroscopic separation of neutron beams in the interferometer with the purpose of their separate treatment, but which aim to do so with explicit employment of the spin-magnetic properties of the neutron as a fermion. Remarkable aspects may arise, for example, if nuclear and magnetic potentials are concurrently applied to a partial beam of the interferometer: among other results, it is found that - in perfect agreement to the theoretical predictions - the neutron beam leaving the interferometer features non-zero polarization, even if the incident neutron beam, and hence either of the partial beams, is unpolarized. The main emphasis of the present work lies on the development of an appropriate formalism that describes the effect of simultaneous occurrence of nuclear and magnetic interaction on the emerging intensity and polarization for an arbitrary number of sequential magnetic regions, so-called domains. The confrontation with subtle theoretical problems was inevitable during the experimental
Effect of viscosity on seismic response of waste storage tanks
International Nuclear Information System (INIS)
Tang, Yu; Uras, R.A.; Chang, Yao-Wen.
1992-06-01
The dynamic response of liquid-storage tanks subjected to harmonic excitations and earthquake ground motions has been studied. A rigid tank of negligible mass, rigidly supported at the base having a diameter of 50 ft. and fluid height of 20.4 ft. was used in the computer analysis. The liquid is assumed to have a density of 1.5 g/ml. Viscosity values, μ = 60, 200, 100, and 10,000 cP, were used in the numerical analyses to study the effects of viscosity on sloshing wave height, impulsive and convective pressure on the tank wall, base shear and base moments. Harmonic excitations as well as earthquake ground motions were used as input motions. The harmonic excitations used in the analyses covers a wide range of frequencies, including both the resonant and non-resonant frequencies. Two earthquake motions were used. One matches the Newmark-Hall median response spectrum and is anchored at 0.24 g for a rock site with a damping of 2% and a time duration of 10 s. The other is the 1978 Tabas earthquake which had a peak ZPA of 0.81 g and a time duration of 29 s. A small tank, about 1/15 the size of the typical waste storage tank, was used in the harmonic excitation study to investigate the effect of viscosity on the response of liquid-storage tanks and how the viscosity effect is affected by the size of the storage tank. The results of this study show that for the typical waste storage tank subjected to earthquake motions, the effect of viscosity on sloshing wave height and impulsive and convective pressures is very small and can be neglected. For viscosity effect to become noticeable in the response of the typical waste storage tank, the waste viscosity must be greater than 10,000 cP. This value is far greater than the estimated viscosity value of the high level wastes, which may range from 60 to 200 cP for some tanks
Determination of liquid viscosity at high pressure by DLS
International Nuclear Information System (INIS)
Fukui, K; Asakuma, Y; Maeda, K
2010-01-01
The movement of particles with a size smaller than few microns is governed by random Brownian motion. This motion causes the fluid to flow around the particles. The force acting upon Brownian particles as well as their velocities are measured by using the dynamic light scattering (DLS) technique. It provides the relationship between fluid shear stress and shear rate over the Brownian particle and determines the viscosity properties of the fluid. In this study, we propose a new rheometer which is widely applicable to fluid viscosity measurements at both normal and high pressure levels for Newtonian and non- Newtonian fluids.
NVP melt/magma viscosity: insight on Mercury lava flows
Rossi, Stefano; Morgavi, Daniele; Namur, Olivier; Vetere, Francesco; Perugini, Diego; Mancinelli, Paolo; Pauselli, Cristina
2016-04-01
After more than four years of orbiting Mercury, NASA's MESSENGER spacecraft came to an end in late April 2015. MESSENGER has provided many new and surprising results. This session will again highlight the latest results on Mercury based on MESSENGER observations or updated modelling. The session will further address instrument calibration and science performance both retrospective on MESSENGER and on the ESA/JAXA BepiColombo mission. Papers covering additional themes related to Mercury are also welcomed. Please be aware that this session will be held as a PICO session. This will allow an intensive exchange of expertise and experience between the individual instruments and mission. NVP melt/magma viscosity: insight on Mercury lava flows S. Rossi1, D. Morgavi1, O. Namur2, D. Perugini1, F.Vetere1, P. Mancinelli1 and C. Pauselli1 1 Dipartimento di Fisica e Geologia, Università di Perugia, piazza Università 1, 06123 Perugia, Italy 2 Uni Hannover Institut für Mineralogie, Leibniz Universität Hannover, Callinstraβe 3, 30167 Hannover, Germany In this contribution we report new measurements of viscosity of synthetic komatitic melts, used the behaviour of silicate melts erupted at the surface of Mercury. Composition of Mercurian surface magmas was calculated using the most recent maps produced from MESSENGER XRS data (Weider et al., 2015). We focused on the northern hemisphere (Northern Volcanic Province, NVP, the largest lava flow on Mercury and possibly in the Solar System) for which the spatial resolution of MESSENGER measurements is high and individual maps of Mg/Si, Ca/Si, Al/Si and S/Si were combined. The experimental starting material contains high Na2O content (≈7 wt.%) that strongly influences viscosity. High temperature viscosity measurements were carried out at 1 atm using a concentric cylinder apparatus equipped with an Anton Paar RheolabQC viscometer head at the Department of Physics and Geology (PVRG_lab) at the University of Perugia (Perugia, Italy
Shear viscosity and thermal conductivity of nuclear 'pasta'
International Nuclear Information System (INIS)
Horowitz, C. J.; Berry, D. K.
2008-01-01
We calculate the shear viscosity η and thermal conductivity κ of a nuclear pasta phase in neutron star crusts. This involves complex nonspherical shapes. We use semiclassical molecular dynamics simulations involving 40, 000 to 100, 000 nucleons. The viscosity η can be simply expressed in terms of the height Z* and width Δq of the peak in the static structure factor S p (q). We find that η increases somewhat, compared to a lower density phase involving spherical nuclei, because Z* decreases from form factor and ion screening effects. However, we do not find a dramatic increase in η from nonspherical shapes, as may occur in conventional complex fluids
Viscosity-Induced Crossing of the Phantom Barrier
Directory of Open Access Journals (Sweden)
Iver Brevik
2015-09-01
Full Text Available We show explicitly, by using astrophysical data plus reasonable assumptions for the bulk viscosity in the cosmic fluid, how the magnitude of this viscosity may be high enough to drive the fluid from its position in the quintessence region at present time t = 0 across the barrier w = −1 into the phantom region in the late universe. The phantom barrier is accordingly not a sharp mathematical divide, but rather a fuzzy concept. We also calculate the limiting forms of various thermodynamical quantities, including the rate of entropy production, for a dark energy fluid near the future Big Rip singularity.
Composition and Temperature Dependence of Shear Viscosity of Hydrocarbon Mixtures
1980-07-01
HNN- XTHDCPD Binary System IX. VTF Eq. Parameters for Shear Viscosities Using Constant B Parameter X. Results of Fits to Master Viscosity Eqs. (43...T(K) for 5 C10 Hydrocarbons I Fig. 2a. log n versus 103/T(K) for HNNi I Fig. 2b. log n versus 103/T(K) for XTHDCPD Fig. 3. Isothem of log n versus X...CD for CO-MO Binary System Fig. 4. Isotherm of log n versus XNBC for NBC-DMO Binary System ( ~Fig. 5. Isotherm of log n versus XfINN for HNN- XTHDCPD
VARIATION IN MEAT COMPOSITION VISCOSITY DURING THE MIXING PROCESS
Directory of Open Access Journals (Sweden)
DANIELA IANIłCHI
2008-10-01
Full Text Available Animal raw material processing is directly influenced by the physical and chemical characteristics of the materials which also influence their water holding capacity. The various combinations and status of the raw materials used in the food industry determine specific behaviours that may influence the processing equipment performance and construction. The study on meat composition viscosity depending upon the added components, temperature and mixing time length, has shown that viscosity is increasing with lower added water percentage, lower mixing temperature and higher mixing time length.
Time Dependent and Steady Uni-axial Elongational Viscosity
DEFF Research Database (Denmark)
Nielsen, Jens K.; Rasmussen, Henrik Koblitz; Hassager, Ole
2005-01-01
Here we present measurements of transient and steady uni-axial elongational viscosity, using the Filament Stretching Rheometer1 or FSR1 (see Fig. 1) of the following melts: Four narrow MMD polystyrene (PS) samples with weight-average molar mass Mw in the range of 50k to 390k. Three different bi......-disperse samples, mixed from the narrow MMD PS. Two low-density polyethylene (LDPE) melts (Lupolen 1840D and 3020D). A steady-state viscosity was kept for 1-2.5 Hencky strain units in all measurements....
Density and viscosity modeling and characterization of heavy oils
DEFF Research Database (Denmark)
Cisneros, Sergio; Andersen, Simon Ivar; Creek, J
2005-01-01
to thousands of mPa center dot s. Essential to the presented extended approach for heavy oils is, first, achievement of accurate P nu T results for the EOS-characterized fluid. In particular, it has been determined that, for accurate viscosity modeling of heavy oils, a compressibility correction in the way...... are widely used within the oil industry. Further work also established the basis for extending the approach to heavy oils. Thus, in this work, the extended f-theory approach is further discussed with the study and modeling of a wider set of representative heavy reservoir fluids with viscosities up...
Calculation of the viscosity of nuclear waste glass systems
International Nuclear Information System (INIS)
Shah, R.; Behrman, E.C.; Oksoy, D.
1990-01-01
Viscosity is one of the most important processing parameters and one of the most difficult to calculate theoretically, particularly for multicomponent systems like nuclear waste glasses. Here, the authors propose a semi-empirical approach based on the Fulcher equation, involving identification of key variables, for which coefficients are then determined by regression analysis. Results are presented for two glass systems, and compared to results of previous workers and to experiment. The authors also sketch a first-order statistical mechanical perturbation theory calculation for the effects on viscosity of a change in composition of the melt
When measured spin polarization is not spin polarization
International Nuclear Information System (INIS)
Dowben, P A; Wu Ning; Binek, Christian
2011-01-01
Spin polarization is an unusually ambiguous scientific idiom and, as such, is rarely well defined. A given experimental methodology may allow one to quantify a spin polarization but only in its particular context. As one might expect, these ambiguities sometimes give rise to inappropriate interpretations when comparing the spin polarizations determined through different methods. The spin polarization of CrO 2 and Cr 2 O 3 illustrate some of the complications which hinders comparisons of spin polarization values. (viewpoint)
Spin-4 extended conformal algebras
International Nuclear Information System (INIS)
Kakas, A.C.
1988-01-01
We construct spin-4 extended conformal algebras using the second hamiltonian structure of the KdV hierarchy. In the presence of a U(1) current a family of spin-4 algebras exists but the additional requirement that the spin-1 and spin-4 currents commute fixes the algebra uniquely. (orig.)
Anisotropic spin relaxation in graphene
Tombros, N.; Tanabe, S.; Veligura, A.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J.
2008-01-01
Spin relaxation in graphene is investigated in electrical graphene spin valve devices in the nonlocal geometry. Ferromagnetic electrodes with in-plane magnetizations inject spins parallel to the graphene layer. They are subject to Hanle spin precession under a magnetic field B applied perpendicular
Spin squeezing and quantum correlations
Indian Academy of Sciences (India)
2 states. A coherent spin-s state. (CSS) θ φ can then be thought of as having no quantum correlations as the constituent. 2s elementary spins point in the same direction ˆn(θ φ) which is the mean spin direction. 2. State classification and squeezing. In order to discuss squeezing, we begin with the squeezing condition itself.
Geometry of spin coherent states
Chryssomalakos, C.; Guzmán-González, E.; Serrano-Ensástiga, E.
2018-04-01
Spin states of maximal projection along some direction in space are called (spin) coherent, and are, in many respects, the ‘most classical’ available. For any spin s, the spin coherent states form a 2-sphere in the projective Hilbert space \
International Nuclear Information System (INIS)
O'FAllon, J.R.
1991-01-01
The history of spin physics experiments is presented, with emphasis of Kent Terwilliger's involvement. Development of polarized beams and targets at the ZGS and AGS is recalled. P-P elastic scattering experiments are reviewed
International Nuclear Information System (INIS)
Ratcliffe, P.G.
1993-01-01
A discussion is presented of the role that transverse spin physics can play in providing information on the bound state dynamics in hadronic physics. Care is taken to distinguish between single- and double-spin measurements, each being discussed separately. In the case of single-spin effects it is stressed that as yet no satisfactory explanation has been provided within the framework if perturbative QCD which in fact generally predicts negligible effects. In order to clarify the situation experimental data at yet higher p T are necessary and semi-leptonic data could shed some light on the underlying scattering mechanisms. As regards double-spin correlations, the theoretical picture (although clouded by some ill-informed, often erroneous statements and even recent papers) is rather well understood and what is dearly missing is the experimental study of, for example, g 2 in deep-inelastic scattering. (author). 31 refs
International Nuclear Information System (INIS)
Glyde, H.R.; Hernadi, S.I.
1986-01-01
Several ground state properties of (electron) spin-polarized deuterium (D) such as the energy, single quasiparticle energies and lifetimes, Landau parameters and sound velocities are evaluated. The calculations begin with the Kolos-Wolneiwicz potential and use the Galitskii-FeynmanHartree-Fock (GFHF) approximation. The deuteron nucleas has spin I = 1, and spin states I/sub z/ = 1,0,-1. We explore D 1 , D 2 and D 3 in which, respectively, one spin state only is populated, two states are equally populated, and three states are equally populated. We find the GFHF describes D 1 well, but D 2 and D 3 less well. The Landau parameters, F/sub L/, are small compared to liquid 3 He and very small for doubly polarized D 1 (i.e. the F/sub L/ decrease with nuclear polarization)
On the non-local obstruction to interacting higher spins in flat space
Energy Technology Data Exchange (ETDEWEB)
Taronna, Massimo [Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,ULB-Campus Plaine CP231, 1050 Brussels (Belgium)
2017-05-04
Owing to a renewed interest in flat space higher spin gauge theories, in this note we provide further details and clarifications on the results presented in arXiv:1107.5843 and arXiv: 1209.5755, which investigated their locality properties. Focusing, for simplicity, on quartic couplings with one of the external legs having non-zero integer spin (which can be considered as a prototype for Weinberg-type arguments), we review the appearance of 1/◻ non-localities. In particular, we emphasise that it appears to be not possible to eliminate all of the aforementioned non-localities in the general quartic Noether procedure solution with a judicious choice of coupling constants and spectrum. We also discuss the light-cone gauge fixing in d=4, and argue that the non-local obstruction discussed in the covariant language cannot be avoided using light-cone gauge formalism.
Spin-glass-like transition in the majority-vote model with anticonformists
Krawiecki, Andrzej
2018-03-01
Majority-vote model on scale-free networks and random graphs is investigated in which a randomly chosen fraction p of agents (called anticonformists) follows an antiferromagnetic update rule, i.e., they assume, with probability governed by a parameter q (0 transition from a disordered (paramagnetic) state to a spin-glass-like state, characterized by a non-zero value of the spin-glass order parameter measuring the overlap of agents' opinions in two replicas of the system, and simultaneously by the magnetization close to zero. In the case of the model on scale-free networks the critical value of the parameter q weakly depends on the details of the degree distribution. As p is decreased, the critical value of q falls quickly to zero and only the disordered phase is observed. On the other hand, for p close to zero for decreasing q the usual ferromagnetic transition is observed.
Resonance-sum model for Reggeization in the scattering of particles with arbitrary spin
International Nuclear Information System (INIS)
King, M.J.; Durand, L.; Wali, K.C.
1976-01-01
Using a field-theoretic description of nonzero-spin particles, center-of-mass helicity amplitudes have been obtained which correspond to pole terms in four-particle reactions with arbitrary-spin external particles. Construction of a van Hove-Durand--type model starting from these helicity amplitudes (which have a well specified kinematic structure in the field-theoretic description) is discussed. Special attention has been paid to boson-fermion scattering. Straightforward Reggeization of helicity amplitudes assuming linear trajectories is known to produce parity doubling. One cannot have a pure fermion Regge pole unaccompanied by cuts. This conclusion has important consequences on both fitting data using Regge formulas in, say, backward scattering in boson-fermion scattering and theoretical considerations such as dual bootstrap models
International Nuclear Information System (INIS)
Kent, R.D.; Schlesinger, M.
1987-01-01
For the purpose of computing matrix elements of quantum mechanical operators in complex N-particle systems it is necessary that as much of each irreducible representation be stored in high-speed memory as possible in order to achieve the highest possible rate of computations. A graph theoretic approach to the representation of N-particle systems involving arbitrary single-particle spin is presented. The method involves a generalization of a technique employed by Shavitt in developing the graphical group approach (GUGA) to electronic spin-orbitals. The methods implemented in GENDRT and DRTDIM overcome many deficiencies inherent in other approaches, particularly with respect to utilization of memory resources, computational efficiency in the recognition and evaluation of non-zero matrix elements of certain group theoretic operators and complete labelling of all the basis states of the permutation symmetry (S N ) adapted irreducible representations of SU(n) groups. (orig.)
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Energy Technology Data Exchange (ETDEWEB)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris, E-mail: hammel@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)
2015-05-07
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-05-01
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.
Microscopic studies of nonlocal spin dynamics and spin transport (invited)
International Nuclear Information System (INIS)
Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris
2015-01-01
Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems
Zhu, M.; Wang, F. G.; Wang, F. Z.; Liu, Y. P.
2017-02-01
The plastic viscosity of mortar and concrete with different binder content, sand ratio, water-binder ratio, microbead dosage and different class and dosage of fly ash were tested and calculated according tomicromechanics model proposed by A. Ghanbari and B.L. Karihaloo, The correlations between these parameters and fresh concrete workability were also investigated, which showed i. high consistence with the objective reality. When binder content, microbead dosage, fly ash dosage or the water-binder ratio was increased or sand ratio was reduced, the fresh concrete viscosity would decrease correspondingly. However their effects were not that same. The relationships between T50 a, V-funnel and inverted slump time with fresh concrete viscosity were established, respectively.
Exertional Rhabdomyolysis after Spinning
Jeong, Youjin; Kweon, Hyuk-Jung; Oh, Eun-Jung; Ahn, Ah-Leum; Choi, Jae-Kyung; Cho, Dong-Yung
2016-01-01
Any strenuous muscular exercise may trigger rhabdomyolysis. We report an episode of clinically manifested exertional rhabdomyolysis due to stationary cycling, commonly known as spinning. Reports of spinning-related rhabdomyolysis are rare in the English literature, and the current case appears to be the first such case reported in South Korea. A previously healthy 21-year-old Asian woman presented with severe thigh pain and reddish-brown urinary discoloration 24?48 hours after attending a spi...
CERN. Geneva
2014-01-01
The conjectured relation between higher spin theories on anti de-Sitter (AdS) spaces and weakly coupled conformal field theories is reviewed. I shall then outline the evidence in favour of a concrete duality of this kind, relating a specific higher spin theory on AdS3 to a family of 2d minimal model CFTs. Finally, I shall explain how this relation fits into the framework of the familiar stringy AdS/CFT correspondence.
International Nuclear Information System (INIS)
Alécio, Raphael C.; Lyra, Marcelo L.; Strečka, Jozef
2016-01-01
The ground-state phase diagram, magnetization process and bipartite entanglement of the frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tube (three-leg ladder) are investigated in a non-zero external magnetic field. The exact ground-state phase diagram of the spin-1/2 Ising-Heisenberg tube with Heisenberg intra-rung and Ising inter-rung couplings consists of six distinct gapped phases, which manifest themselves in a magnetization curve as intermediate plateaus at zero, one-third and two-thirds of the saturation magnetization. Four out of six available ground states exhibit quantum entanglement between two spins from the same triangular unit evidenced by a non-zero concurrence. Density-matrix renormalization group calculations are used in order to construct the ground-state phase diagram of the analogous but purely quantum spin-1/2 Heisenberg tube with Heisenberg intra- and inter-rung couplings, which consists of four gapped and three gapless phases. The Heisenberg tube shows a continuous change of the magnetization instead of a plateau at zero magnetization, while the intermediate one-third and two-thirds plateaus may be present or not in the zero-temperature magnetization curve. - Highlights: • Ground-state properties of Ising-Heisenberg and full Heisenberg spin tubes are studied. • Phases with 1/3 and 2/3 magnetization plateaus are present in both models. • We unveil the region in the parameter space on which inter-rung quantum fluctuations are relevant. • The full Heisenberg tube exhibits quantum bipartite entanglement between intra- as well as inter-rung spins.
Železný, J.
2017-01-10
One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.
Železný , J.; Gao, H.; Manchon, Aurelien; Freimuth, Frank; Mokrousov, Yuriy; Zemen, J.; Mašek, J.; Sinova, Jairo; Jungwirth, T.
2017-01-01
One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Železný, Phys. Rev. Lett. 113, 157201 (2014)]PRLTAO0031-900710.1103/PhysRevLett.113.157201, the electrical switching of magnetic moments in an antiferromagnet was demonstrated [P. Wadley, Science 351, 587 (2016)]SCIEAS0036-807510.1126/science.aab1031. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.
Ground state properties of the bond alternating spin-1/2 anisotropic Heisenberg chain
Directory of Open Access Journals (Sweden)
S. Paul
2017-06-01
Full Text Available Ground state properties, dispersion relations and scaling behaviour of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain have been studied where the exchange interactions on alternate bonds are ferromagnetic (FM and antiferromagnetic (AFM in two separate cases. The resulting models separately represent nearest neighbour (NN AFM-AFM and AFM-FM bond alternating chains. Ground state energy has been estimated analytically by using both bond operator and Jordan-Wigner representations and numerically by using exact diagonalization. Dispersion relations, spin gap and several ground state orders have been obtained. Dimer order and string orders are found to coexist in the ground state. Spin gap is found to develop as soon as the non-uniformity in alternating bond strength is introduced in the AFM-AFM chain which further remains non-zero for the AFM-FM chain. This spin gap along with the string orders attribute to the Haldane phase. The Haldane phase is found to exist in most of the anisotropic region similar to the isotropic point.
Salberger, Olof; Korepin, Vladimir
We introduce a new model of interacting spin 1/2. It describes interactions of three nearest neighbors. The Hamiltonian can be expressed in terms of Fredkin gates. The Fredkin gate (also known as the controlled swap gate) is a computational circuit suitable for reversible computing. Our construction generalizes the model presented by Peter Shor and Ramis Movassagh to half-integer spins. Our model can be solved by means of Catalan combinatorics in the form of random walks on the upper half plane of a square lattice (Dyck walks). Each Dyck path can be mapped on a wave function of spins. The ground state is an equally weighted superposition of Dyck walks (instead of Motzkin walks). We can also express it as a matrix product state. We further construct a model of interacting spins 3/2 and greater half-integer spins. The models with higher spins require coloring of Dyck walks. We construct a SU(k) symmetric model (where k is the number of colors). The leading term of the entanglement entropy is then proportional to the square root of the length of the lattice (like in the Shor-Movassagh model). The gap closes as a high power of the length of the lattice [5, 11].
Chudnovsky, Eugene M.
2007-01-01
An extension of Drude model is proposed that accounts for spin and spin-orbit interaction of charge carriers. Spin currents appear due to combined action of the external electric field, crystal field and scattering of charge carriers. The expression for spin Hall conductivity is derived for metals and semiconductors that is independent of the scattering mechanism. In cubic metals, spin Hall conductivity $\\sigma_s$ and charge conductivity $\\sigma_c$ are related through $\\sigma_s = [2 \\pi \\hbar...
Physical Properties of AR-Glass Fibers in Continuous Fiber Spinning Conditions
Energy Technology Data Exchange (ETDEWEB)
Lee, Ji-Sun; Lee, MiJai; Lim, Tae-Young; Lee, Youngjin; Jeon, Dae-Woo; Kim, Jin-Ho [Korea Institute of Ceramic Engineering and Technology, Jinju (Korea, Republic of); Hyun, Soong-Keun [Inha University, Incheon (Korea, Republic of)
2017-04-15
In this study, a glass fiber is fabricated using a continuous spinning process from alkali resistant (AR) glass with 4 wt%zirconia. In order to confirm the melting properties of the marble glass, the raw material is placed into a Pt crucible and melted at 1650 ℃ for 2 h, and then annealed. In order to confirm the transparency of the clear marble glass, the visible transmittance is measured and the fiber spinning condition is investigated by using high temperature viscosity measurements. A change in the diameter is observed according to the winding speed in the range of 100–900 rpm; it is also verified as a function of the fiberizing temperature in the range of 1200–1260 ℃. The optimum winding speed and spinning temperature are 500 rpm and 1240 ℃, respectively. The properties of the prepared spinning fiber are confirmed using optical microscope, tensile strength, modulus, and alkali-resistant tests.
Nonlinear second order evolution inclusions with noncoercive viscosity term
Papageorgiou, Nikolaos S.; Rădulescu, Vicenţiu D.; Repovš, Dušan D.
2018-04-01
In this paper we deal with a second order nonlinear evolution inclusion, with a nonmonotone, noncoercive viscosity term. Using a parabolic regularization (approximation) of the problem and a priori bounds that permit passing to the limit, we prove that the problem has a solution.
On the density and viscosity of (water + dimethylsulphoxide) binary mixtures
International Nuclear Information System (INIS)
Carmen Grande, Maria del; Julia, Jorge Alvarez; Garcia, Mariano; Marschoff, Carlos M.
2007-01-01
Density and viscosity of (water + dimethylsulphoxide) were measured precisely over the whole composition range at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K. Differences between values from different authors are clarified and more reliable partial molar volumes are obtained
Effect of electrochemical oxidation of a viscose rayon based ...
African Journals Online (AJOL)
A viscose rayon based activated carbon cloth (ACC) was electrochemically oxidised to enhance its cation sorption capacity for comparison with as-received ACC. ACCs were characterised by sodium capacity measurement, pH titration, zeta potential measurement, elemental analysis, Brunauer-Emmet- Teller surface area ...
Variable viscosity effects on mixed convection heat and mass ...
African Journals Online (AJOL)
DR OKE
the effects of viscous dissipation and variable viscosity on the flow of heat and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate in the ..... been solved by Gauss-. Seidel iteration method and numerical values are carried out after executing the computer program for it. In order to prove.
Intrinsic viscosity of guar gum in sweeteners solutions | Samavati ...
African Journals Online (AJOL)
Rheological methods were applied to study the effect of sweeteners on the rheological behavior of guar gum in dilute solutions. The concentration of the sweeteners were 0.1, 0.2%w/v for aspartame, acesulfame-k and cyclamate, and 0.001, 0.002%w/v for neotame. Gum was evaluated for intrinsic viscosity by various ...
The Unsteady Variable – Viscosity Free Convection Flow on a ...
African Journals Online (AJOL)
The unsteady variable-viscosity free convection flow of a viscous incompressible fluid near an infinite vertical plate (or wall) is investigated under an arbitrary timedependent heating of the plates, and the governing equations of motion and energy transformed into ordinary differential equations. Employing asymptotic ...
The Asymptotic Solution for the Steady Variable-Viscosity Free ...
African Journals Online (AJOL)
Under an arbitrary time-dependent heating of an infinite vertical plate (or wall), the steady viscosity-dependent free convection flow of a viscous incompressible fluid is investigated. Using the asymptotic method of solution on the governing equations of motion and energy, the resulting Ordinary differential equations were ...
Thermal ignition in a reactive variable viscosity Poiseuille flow ...
African Journals Online (AJOL)
In this paper, we investigate the thermal ignition in a strongly exothermic reaction of a variable viscosity combustible material flowing through a channel with isothermal walls under Arrhenius kinetics, neglecting the consumption of the material. Analytical solutions are constructed for the governing nonlinear boundary-value ...
Measurement of viscosity of gaseous mixtures at atmospheric pressure
Singh, J. J.; Mall, G. H.; Chegini, H.
1986-01-01
Coefficients of viscosity of various types of gas mixtures, including simulated natural-gas samples, have been measured at atmospheric pressure and room temperature using a modified capillary tube method. Pressure drops across the straight capillary tube section of a thermal mass flowmeter were measured for small, well-defined, volume flow rates for the test gases and for standard air. In this configuration, the flowmeter provides the volumetric flow rates as well as a well-characterized capillary section for differential pressure measurements across it. The coefficients of viscosity of the test gases were calculated using the reported value of 185.6 micro P for the viscosity of air. The coefficients of viscosity for the test mixtures were also calculated using Wilke's approximation of the Chapman-Enskog (C-E) theory. The experimental and calculated values for binary mixtures are in agreement within the reported accuracy of Wilke's approximation of the C-E theory. However, the agreement for multicomponent mixtures is less satisfactory, possible because of the limitations of Wilkes's approximation of the classical dilute-gas state model.
Variable viscosity effects on mixed convection heat and mass ...
African Journals Online (AJOL)
An analysis is carried out to study the viscous dissipation and variable viscosity effects on the flow, heat and mass transfer characteristics in a viscous fluid over a semi-infinite vertical porous plate in the presence of chemical reaction. The governing boundary layer equations are written into a dimensionless form by similarity ...
Estimation of the viscosities of liquid binary alloys
Wu, Min; Su, Xiang-Yu
2018-01-01
As one of the most important physical and chemical properties, viscosity plays a critical role in physics and materials as a key parameter to quantitatively understanding the fluid transport process and reaction kinetics in metallurgical process design. Experimental and theoretical studies on liquid metals are problematic. Today, there are many empirical and semi-empirical models available with which to evaluate the viscosity of liquid metals and alloys. However, the parameter of mixed energy in these models is not easily determined, and most predictive models have been poorly applied. In the present study, a new thermodynamic parameter Δ G is proposed to predict liquid alloy viscosity. The prediction equation depends on basic physical and thermodynamic parameters, namely density, melting temperature, absolute atomic mass, electro-negativity, electron density, molar volume, Pauling radius, and mixing enthalpy. Our results show that the liquid alloy viscosity predicted using the proposed model is closely in line with the experimental values. In addition, if the component radius difference is greater than 0.03 nm at a certain temperature, the atomic size factor has a significant effect on the interaction of the binary liquid metal atoms. The proposed thermodynamic parameter Δ G also facilitates the study of other physical properties of liquid metals.
The adhesive strength and initial viscosity of denture adhesives.
Han, Jian-Min; Hong, Guang; Dilinuer, Maimaitishawuti; Lin, Hong; Zheng, Gang; Wang, Xin-Zhi; Sasaki, Keiichi
2014-11-01
To examine the initial viscosity and adhesive strength of modern denture adhesives in vitro. Three cream-type denture adhesives (Poligrip S, Corect Cream, Liodent Cream; PGS, CRC, LDC) and three powder-type denture adhesives (Poligrip Powder, New Faston, Zanfton; PGP, FSN, ZFN) were used in this study. The initial viscosity was measured using a controlled-stress rheometer. The adhesive strength was measured according to ISO-10873 recommended procedures. All data were analyzed independently by one-way analysis of variance combined with a Student-Newman-Keuls multiple comparison test at a 5% level of significance. The initial viscosity of all the cream-type denture adhesives was lower than the powder-type adhesives. Before immersion in water, all the powder-type adhesives exhibited higher adhesive strength than the cream-type adhesives. However, the adhesive strength of cream-type denture adhesives increased significantly and exceeded the powder-type denture adhesives after immersion in water. For powder-type adhesives, the adhesive strength significantly decreased after immersion in water for 60 min, while the adhesive strength of the cream-type adhesives significantly decreased after immersion in water for 180 min. Cream-type denture adhesives have lower initial viscosity and higher adhesive strength than powder type adhesives, which may offer better manipulation properties and greater efficacy during application.
Viscosity and Electrical Conductivity of Concentrated Solutions of Soluble Coffee
Czech Academy of Sciences Publication Activity Database
Sobolík, Václav; Žitný, R.; Tovčigrečko, Valentin; Delgado, M.; Allaf, K.
2002-01-01
Roč. 51, č. 2 (2002), s. 93-98 ISSN 0260-8774 Institutional research plan: CEZ:AV0Z4072921; CEZ:MSM 212200008 Keywords : coffee extract * soluble coffee * viscosity Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.085, year: 2002