WorldWideScience

Sample records for nonzero boundary slip

  1. Lattice Boltzmann simulations of pressure-driven flows in microchannels using Navier–Maxwell slip boundary conditions

    KAUST Repository

    Reis, Tim

    2012-01-01

    We present lattice Boltzmann simulations of rarefied flows driven by pressure drops along two-dimensional microchannels. Rarefied effects lead to non-zero cross-channel velocities, nonlinear variations in the pressure along the channel. Both effects are absent in flows driven by uniform body forces. We obtain second-order accuracy for the two components of velocity the pressure relative to asymptotic solutions of the compressible Navier-Stokes equations with slip boundary conditions. Since the common lattice Boltzmann formulations cannot capture Knudsen boundary layers, we replace the usual discrete analogs of the specular diffuse reflection conditions from continuous kinetic theory with a moment-based implementation of the first-order Navier-Maxwell slip boundary conditions that relate the tangential velocity to the strain rate at the boundary. We use these conditions to solve for the unknown distribution functions that propagate into the domain across the boundary. We achieve second-order accuracy by reformulating these conditions for the second set of distribution functions that arise in the derivation of the lattice Boltzmann method by an integration along characteristics. Our moment formalism is also valuable for analysing the existing boundary conditions. It reveals the origin of numerical slip in the bounce-back other common boundary conditions that impose conditions on the higher moments, not on the local tangential velocity itself. © 2012 American Institute of Physics.

  2. Neutron transport assembly calculation with non-zero net current boundary condition

    International Nuclear Information System (INIS)

    Jo, Chang Keun

    1993-02-01

    Fuel assembly calculation for the homogenized group constants is one of the most important parts in the reactor core analysis. The homogenized group constants of one a quarter assembly are usually generated for the nodal calculation of the reactor core. In the current nodal calculation, one or a quarter of the fuel assembly corresponds to a unit node. The homogenized group constant calculation for a fuel assembly proceeds through cell spectrum calculations, group condensation and cell homogenization calculations, two dimensional fuel assembly calculation, and then depletion calculations of fuel rods. To obtain the assembly wise homogenized group constants, the two dimensional transport calculation is usually performed. Most codes for the assembly wise homogenized group constants employ a zero net current boundary condition. CASMO-3 is such a code that is in wide use. The zero net current boundary condition is plausible and valid in an infinite reactor composed of the same kind of assemblies. However, the reactor is finite and the core is constructed by different kinds of assemblies. Hence, the assumption of the zero net current boundary condition is not valid in the actual reactor. The objective of this study is to develop a homogenization methodology that can treat any actual boundary condition, i.e. non-zero net current boundary condition. In order to treat the non-zero net current boundary condition, we modify CASMO-3. For the two-dimensional treatment in CASMO-3, a multigroup integral transport routine based on the method of transmission probability is used. The code performs assembly calculation with zero net current boundary condition. CASMO-3 is modified to consider the inhomogeneous source at the assembly boundary surface due to the non-zero net current. The modified version of CASMO-3 is called CASMO-3M. CASMO-3M is applied to several benchmark problems. In order to obtain the inhomogeneous source, the global calculation is performed. The local calculation

  3. Slip patterns and preferred dislocation boundary planes

    DEFF Research Database (Denmark)

    Winther, G.

    2003-01-01

    The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single and polycryst......The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single...... and polycrystals of fcc metals in three deformation modes (rolling, tension and torsion). In the macroscopic system, boundaries lie close to the macroscopically most stressed planes. In the crystallographic system, the boundary plane depends on the grain/crystal orientation. The boundary planes in both co......-ordinate systems are rationalised based on the slip. The more the slip is concentrated on a slip plane, the closer the boundaries lie to this. The macroscopic preference arises from the macroscopic directionality of the slip. The established relations are applied to (a) prediction of boundary planes from slip...

  4. Axisymmetric Tornado Simulations with a Semi-Slip Boundary

    Directory of Open Access Journals (Sweden)

    Brian H. Fiedler

    2017-12-01

    Full Text Available The structure of natural tornadoes and simulated analogs are sensitive to the lower boundary condition for friction. Three-dimensional numerical simulations of storms require a choice for turbulence parameterizations and resolution of wind near the lower boundary. This article explores some of the consequences of choices of a surface drag coefficient on the structure of a mature simulated tornado, using a conventional axisymmetric model. The surface drag parameterization is explored over the range of the semi-slip condition, including the extremes of no-slip and free-slip. A moderate semi-slip condition allows for an extreme pressure deficit, but without the unrealistic vortex breakdown of the no-slip condition.

  5. Boundary Slip and Surface Interaction: A Lattice Boltzmann Simulation

    International Nuclear Information System (INIS)

    Yan-Yan, Chen; Hua-Bing, Li; Hou-Hui, Yi

    2008-01-01

    The factors affecting slip length in Couette geometry flows are analysed by means of a two-phase mesoscopic lattice Boltzmann model including non-ideal fluid-fluid and fluid-wall interactions. The main factors influencing the boundary slip are the strength of interactions between fluid-fluid and fluid-wall particles. Other factors, such as fluid viscosity, bulk pressure may also change the slip length. We find that boundary slip only occurs under a certain density (bulk pressure). If the density is large enough, the slip length will tend to zero. In our simulations, a low density layer near the wall does not need to be postulated a priori but emerges naturally from the underlying non-ideal mesoscopic dynamics. It is the low density layer that induces the boundary slip. The results may be helpful to understand recent experimental observations on the slippage of micro flows

  6. MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate

    International Nuclear Information System (INIS)

    Bhattacharyya, Krishnendu; Mukhopadhyay, Swati; Layek, G. C.

    2011-01-01

    An analysis of magnetohydrodynamic (MHD) boundary layer flow and heat transfer over a flat plate with slip condition at the boundary is presented. A complete self-similar set of equations are obtained from the governing equations using similarity transformations and are solved by a shooting method. In the boundary slip condition no local similarity occurs. Velocity and temperature distributions within the boundary layer are presented. Our analysis reveals that the increase of magnetic and slip parameters reduce the boundary layer thickness and also enhance the heat transfer from the plate. (fundamental areas of phenomenology(including applications))

  7. Entropy Stability and the No-Slip Wall Boundary Condition

    KAUST Repository

    Svä rd, Magnus; Carpenter, Mark H.; Parsani, Matteo

    2018-01-01

    We present an entropy stable numerical scheme subject to no-slip wall boundary conditions. To enforce entropy stability only the no-penetration boundary condition and a temperature condition are needed at a wall, and this leads to an L bound on the conservative variables. In this article, we take the next step and design a finite difference scheme that also bounds the velocity gradients. This necessitates the use of the full no-slip conditions.

  8. Entropy Stability and the No-Slip Wall Boundary Condition

    KAUST Repository

    Svärd, Magnus

    2018-01-18

    We present an entropy stable numerical scheme subject to no-slip wall boundary conditions. To enforce entropy stability only the no-penetration boundary condition and a temperature condition are needed at a wall, and this leads to an L bound on the conservative variables. In this article, we take the next step and design a finite difference scheme that also bounds the velocity gradients. This necessitates the use of the full no-slip conditions.

  9. Dislocation content of geometrically necessary boundaries aligned with slip planes in rolled aluminium

    DEFF Research Database (Denmark)

    Hong, Chuanshi; Huang, Xiaoxu; Winther, Grethe

    2013-01-01

    Previous studies have revealed that dislocation structures in metals with medium-to-high stacking fault energy, depend on the grain orientation and therefore on the slip systems. In the present work, the dislocations in eight slip-plane-aligned geometrically necessary boundaries (GNBs) in three...... expected active dominate. The dislocations predicted inactive are primarily attributed to dislocation reactions in the boundary. Two main types of dislocation networks in the boundaries were identified: (1) a hexagonal network of the three dislocations in the slip plane with which the boundary was aligned......; two of these come from the active slip systems, the third is attributed to dislocation reactions (2) a network of three dislocations from both of the active slip planes; two of these react to form Lomer locks. The results indicate a systematic boundary formation process for the GNBs. Redundant...

  10. Simple Navier’s slip boundary condition for the non-Newtonian Lattice Boltzmann fluid dynamics solver

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skoček, Jan

    2013-01-01

    The ability of the Lattice Boltzmann method, as the fluid dynamics solver, to properly simulate macroscopic Navier’s slip boundary condition is investigated. An approximate equation relating the Lattice Boltzmann variable slip boundary condition with the macroscopic Navier’s slip boundary condition...

  11. EBSD analysis of subgrain boundaries and dislocation slip systems in Antarctic and Greenland ice

    Science.gov (United States)

    Weikusat, Ilka; Kuiper, Ernst-Jan N.; Pennock, Gill M.; Kipfstuhl, Sepp; Drury, Martyn R.

    2017-09-01

    Ice has a very high plastic anisotropy with easy dislocation glide on basal planes, while glide on non-basal planes is much harder. Basal glide involves dislocations with the Burgers vector b = 〈a〉, while glide on non-basal planes can involve dislocations with b = 〈a〉, b = [c], and b = 〈c + a〉. During the natural ductile flow of polar ice sheets, most of the deformation is expected to occur by basal slip accommodated by other processes, including non-basal slip and grain boundary processes. However, the importance of different accommodating processes is controversial. The recent application of micro-diffraction analysis methods to ice, such as X-ray Laue diffraction and electron backscattered diffraction (EBSD), has demonstrated that subgrain boundaries indicative of non-basal slip are present in naturally deformed ice, although so far the available data sets are limited. In this study we present an analysis of a large number of subgrain boundaries in ice core samples from one depth level from two deep ice cores from Antarctica (EPICA-DML deep ice core at 656 m of depth) and Greenland (NEEM deep ice core at 719 m of depth). EBSD provides information for the characterization of subgrain boundary types and on the dislocations that are likely to be present along the boundary. EBSD analyses, in combination with light microscopy measurements, are presented and interpreted in terms of the dislocation slip systems. The most common subgrain boundaries are indicative of basal 〈a〉 slip with an almost equal occurrence of subgrain boundaries indicative of prism [c] or 〈c + a〉 slip on prism and/or pyramidal planes. A few subgrain boundaries are indicative of prism 〈a〉 slip or slip of 〈a〉 screw dislocations on the basal plane. In addition to these classical polygonization processes that involve the recovery of dislocations into boundaries, alternative mechanisms are discussed for the formation of subgrain boundaries that are not related to the

  12. On flows of viscoelastic fluids under threshold-slip boundary conditions

    Science.gov (United States)

    Baranovskii, E. S.

    2018-03-01

    We investigate a boundary-value problem for the steady isothermal flow of an incompressible viscoelastic fluid of Oldroyd type in a 3D bounded domain with impermeable walls. We use the Fujita threshold-slip boundary condition. This condition states that the fluid can slip along a solid surface when the shear stresses reach a certain critical value; otherwise the slipping velocity is zero. Assuming that the flow domain is not rotationally symmetric, we prove an existence theorem for the corresponding slip problem in the framework of weak solutions. The proof uses methods for solving variational inequalities with pseudo-monotone operators and convex functionals, the method of introduction of auxiliary viscosity, as well as a passage-to-limit procedure based on energy estimates of approximate solutions, Korn’s inequality, and compactness arguments. Also, some properties and estimates of weak solutions are established.

  13. EBSD analysis of subgrain boundaries and dislocation slip systems in Antarctic and Greenland ice

    Directory of Open Access Journals (Sweden)

    I. Weikusat

    2017-09-01

    Full Text Available Ice has a very high plastic anisotropy with easy dislocation glide on basal planes, while glide on non-basal planes is much harder. Basal glide involves dislocations with the Burgers vector b = 〈a〉, while glide on non-basal planes can involve dislocations with b = 〈a〉, b = [c], and b = 〈c + a〉. During the natural ductile flow of polar ice sheets, most of the deformation is expected to occur by basal slip accommodated by other processes, including non-basal slip and grain boundary processes. However, the importance of different accommodating processes is controversial. The recent application of micro-diffraction analysis methods to ice, such as X-ray Laue diffraction and electron backscattered diffraction (EBSD, has demonstrated that subgrain boundaries indicative of non-basal slip are present in naturally deformed ice, although so far the available data sets are limited. In this study we present an analysis of a large number of subgrain boundaries in ice core samples from one depth level from two deep ice cores from Antarctica (EPICA-DML deep ice core at 656 m of depth and Greenland (NEEM deep ice core at 719 m of depth. EBSD provides information for the characterization of subgrain boundary types and on the dislocations that are likely to be present along the boundary. EBSD analyses, in combination with light microscopy measurements, are presented and interpreted in terms of the dislocation slip systems. The most common subgrain boundaries are indicative of basal 〈a〉 slip with an almost equal occurrence of subgrain boundaries indicative of prism [c] or 〈c + a〉 slip on prism and/or pyramidal planes. A few subgrain boundaries are indicative of prism 〈a〉 slip or slip of 〈a〉 screw dislocations on the basal plane. In addition to these classical polygonization processes that involve the recovery of dislocations into boundaries, alternative mechanisms are discussed for the formation of subgrain

  14. The effect of grain boundary chemistry on the slip transmission process through grain boundaries in Ni3Al

    International Nuclear Information System (INIS)

    Robertson, I.M.; Lee, T.C.; Subramanian, R.; Birnbaum, H.K.

    1992-01-01

    This paper reports on the conditions established in disordered FCC systems for predicting the slip system that will be activated by a grain boundary to relieve a local stress concentration that have been applied to the ordered FCC alloy Ni 3 Al. The slip transfer behavior in hypo-stoichiometric Ni 3 Al with (0.2 at. %B) and without boron was directly observed by performing the deformation experiments in situ in the transmission electron microscope. In the boron-free and boron-doped alloys, lattice dislocations were incorporated in the grain boundary, but did not show evidence of dissociation to grain boundary dislocations or of movement in the grain boundary plane. The stress concentration associated with the dislocation pileup at the grain boundary are relieved by the emission of dislocations from the grain boundary in the boron-doped alloy. The slip system initiated in the adjoining grain obeyed the conditions established for disordered FCC systems. In the boron-free alloy, the primary stress relief mechanism was grain-boundary cracking, although dislocation emission from the grain boundary also occurred and accompanied intergranular crack advance

  15. The Magnetohydrodynamic Boundary Layer Flow of a Nanofluid past a Stretching/Shrinking Sheet with Slip Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Syahira Mansur

    2014-01-01

    Full Text Available The magnetohydrodynamic (MHD boundary layer flow of a nanofluid past a stretching/shrinking sheet with velocity, thermal, and solutal slip boundary conditions is studied. Numerical solutions to the governing equations were obtained using a shooting method. The skin friction coefficient and the local Sherwood number increase as the stretching/shrinking parameter increases. However, the local Nusselt number decreases with increasing the stretching/shrinking parameter. The range of the stretching/shrinking parameter for which the solution exists increases as the velocity slip parameter and the magnetic parameter increase. For the shrinking sheet, the skin friction coefficient increases as the velocity slip parameter and the magnetic parameter increase. For the stretching sheet, it decreases when the velocity slip parameter and the magnetic parameter increase. The local Nusselt number diminishes as the thermal slip parameter increases while the local Sherwood number decreases with increasing the solutal slip parameter. The local Nusselt number is lower for higher values of Lewis number, Brownian motion parameter, and thermophoresis parameter.

  16. Slip, twinning, and fracture at a grain boundary in the L1/sub 2/ ordered structure: A. sigma. = 9 tilt boundary

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, M.H.; King, A.H.

    1988-09-01

    The role of interaction between slip dislocations and a ..sigma.. = 9 tilt boundary in localized microplastic deformation, cleavage, or intergranular fracture in the L1/sub 2/ ordered structure has been analyzed by using the anisotropic elasticity theory of dislocations and fracture. Screw superpartials cross slip easily at the boundary onto the (11-bar1) and the (001) planes at low and high temperatures, respectively. Transmission of primary slip dislocations onto the conjugate slip system occurs with a certain degree of difficulty, which is eased by localized disordering. When the transmission is impeded, cleavage fracture on the (1-bar11) plane is predicted to occur, not intergranular fracture, unless a symmetric double pileup occurs simultaneously. Absorption (or emission) of superpartials occurs only when the boundary region is disordered. Slip initiation from pre-existing sources near the boundary can occur under the local stress concentration. Implications of the present result on the inherent brittleness of grain boundaries in Ni/sub 3/ Al and its improvement by boron segregation are discussed.

  17. Investigation of slip transfer across HCP grain boundaries with application to cold dwell facet fatigue

    International Nuclear Information System (INIS)

    Zheng, Zebang; Balint, Daniel S.; Dunne, Fionn P.E.

    2017-01-01

    This paper addresses the role of grain boundary slip transfer and thermally-activated discrete dislocation plasticity in the redistribution of grain boundary stresses during cold dwell fatigue in titanium alloys. Atomistic simulations have been utilised to calculate the grain boundary energies for titanium with respect to the misorientation angles. The grain boundary energies are utilised within a thermally-activated discrete dislocation plasticity model incorporating slip transfer controlled by energetic and grain boundary geometrical criteria. The model predicts the grain size effect on the flow strength in Ti alloys. Cold dwell fatigue behaviour in Ti-6242 alloy is investigated and it is shown that significant stress redistribution from soft to hard grains occurs during the stress dwell, which is observed both for grain boundaries for which slip transfer is permitted and inhibited. However, the grain boundary slip penetration is shown to lead to significantly higher hard-grain basal stresses near the grain boundary after dwell, thus exacerbating the load shedding stress compared to an impenetrable grain boundary. The key property controlling the dwell fatigue response is argued to remain the time constant associated with the thermal activation process for dislocation escape, but the slip penetrability is also important and exacerbates the load shedding. The inclusion of a macrozone does not significantly change the conclusions but does potentially lead to the possibility of a larger initial facet.

  18. Velocity- and slip-dependent weakening on the Tohoku plate boundary fault: shallow coseismic slip facilitated by foreshock afterslip

    Science.gov (United States)

    Ito, Y.; Ikari, M.; Ujiie, K.; Kopf, A.

    2016-12-01

    Understanding of role of slow earthquakes as they relate to the occurrence of both megathrust earthquakes and tsunami earthquakes is necessary to mitigate these disasters in the near future. Laboratory shearing experiments is one of important approach to evaluate these relationships. Here, we use powdered gouge samples from JFAST (IODP Expedition 343) Hole C0019E, core sample 17R-1, which is the plate boundary fault zone in the Japan Trench subduction zone. In this region, both large coseismic slip during the 2011 Tohoku-Oki earthquake as well as discrete slow slip events (SSE) have occurred. Experiments were conducted in a single-direct shear apparatus under normal stress of 16 MPa, with total shear displacements of up to 16 mm. We evaluate both the velocity- and slip-dependence of friction by extracting the velocity-dependent friction parameters a, b, and Dc, and measuring the rate of change in friction coefficient with shear displacement as the slip-dependence of friction. We report that in friction experiments using the Tohoku fault zone samples, an increase in sliding velocity exceeding that of earthquake afterslip can induce a change from steady-state frictional strength or slip hardening friction to slip-weakening frictional behavior. Our results show that the slip weakening is observed when the slip velocity exceeds 1 x 10-6 m/s during our experiments, while steady-state frictional strength or slip hardening is observed below 1x10-6 m/s. In the Japan Trench region, two slow events were observed at the downdip edge of the mainshock coseismic slip zone (< 30 m) were observed. These are an episodic SSE with a slip velocity of 0.1 x 10-6, and afterslip after the largest foreshock with a slip velocity of 2 x 10-6 m/s. This suggests that the afterslip may have facilitated the large coseismic slip during the mainshock on the plate boundary fault of the Tohoku-Oki earthquake.

  19. Detection of grain-boundary resistance to slip transfer using nanoindentation

    NARCIS (Netherlands)

    Soer, WA; De Hosson, JTM

    2005-01-01

    Nanoindentation measurements near a high-angle grain boundary in a Fe-14%Si bicrystal showed dislocation pile-up and transmission across the boundary. The latter is observed as a characteristic displacement jump, from which the Hall-Petch slope can be calculated as a measure for the slip

  20. Effective Boundary Slip Induced by Surface Roughness and Their Coupled Effect on Convective Heat Transfer of Liquid Flow

    Directory of Open Access Journals (Sweden)

    Yunlu Pan

    2018-05-01

    Full Text Available As a significant interfacial property for micro/nano fluidic system, the effective boundary slip can be induced by the surface roughness. However, the effect of surface roughness on the effective slip is still not clear, both increased and decreased effective boundary slip were found with increased roughness. The present work develops a simplified model to study the effect of surface roughness on the effective boundary slip. In the created rough models, the reference position of the rough surfaces to determinate effective boundary slip was set based on ISO/ASME standard and the surface roughness parameters including Ra (arithmetical mean deviation of the assessed profile, Rsm (mean width of the assessed profile elements and shape of the texture varied to form different surface roughness. Then, the effective boundary slip of fluid flow through the rough surface was analyzed by using COMSOL 5.3. The results show that the effective boundary slip induced by surface roughness of fully wetted rough surface keeps negative and further decreases with increasing Ra or decreasing Rsm. Different shape of roughness texture also results in different effective slip. A simplified corrected method for the measured effective boundary slip was developed and proved to be efficient when the Rsm is no larger than 200 nm. Another important finding in the present work is that the convective heat transfer firstly increases followed by an unobvious change with increasing Ra, while the effective boundary slip keeps decreasing. It is believed that the increasing Ra enlarges the area of solid-liquid interface for convective heat transfer, however, when Ra is large enough, the decreasing roughness-induced effective boundary slip counteracts the enhancement effect of roughness itself on the convective heat transfer.

  1. Transformation of slip dislocation in ä3 grain boundary

    Czech Academy of Sciences Publication Activity Database

    Gemperlová, Juliana; Jacques, A.; Gemperle, Antonín; Zárubová, Niva

    2002-01-01

    Roč. 10, - (2002), s. 51-57 ISSN 0927-7056 R&D Projects: GA ČR GA202/98/1281; GA ČR GA202/01/0670 Institutional research plan: CEZ:AV0Z1010914 Keywords : in situ TEM * slip dislocations * grain boundary * grain boundary dislocations * plasticity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.767, year: 2002

  2. Slip-dependent weakening on shallow plate boundary fault in the Japan subduction zone: shallow coseismic slip facilitated by foreshock afterslip

    Science.gov (United States)

    Ito, Yoshi; Ikari, Matt; Ujiie, Kohtaro; Kopf, Achim

    2017-04-01

    Understanding of role of slow earthquakes as they relate to the occurrence of both megathrust earthquakes and tsunami earthquakes is necessary to mitigate these disasters in the near future. Laboratory shearing experiments is one of important approach to evaluate these relationships. Here, we use powdered gouge samples from JFAST (IODP Expedition 343) Hole C0019E, core sample 17R-1, which is the plate boundary fault zone in the Japan Trench subduction zone. In this region, both large coseismic slip during the 2011 Tohoku-Oki earthquake as well as discrete slow slip events (SSE) have occurred. Experiments were conducted in a single-direct shear apparatus under normal stress of 16 MPa, with total shear displacements of up to 16 mm. We evaluate the slip-dependence of friction by extracting the velocity-dependent friction parameters a, b, and Dc , and also measure the rate of change in friction coefficient with shear displacement as the slip-dependence of friction. We report that in friction experiments using the Tohoku fault zone samples, an increase in sliding velocity exceeding that of earthquake afterslip can induce a change from steady-state frictional strength or slip hardening friction to slip-weakening frictional behavior. Our results show that the slip weakening is observed when the slip velocity exceeds 3.7 × 10-6 m/s during our experiments, while steady-state frictional strength or slip hardening is observed below 1 × 10-6 m/s. In the Japan Trench region, two slow events prior to the mainshock were observed in the mainshock area with a coseismic slip exceeding 30 m . One event is an episodic SSE with a slip velocity of 0.1 × 10-6 , and the other is afterslip after the largest Tohoku earthquake foreshock with a slip velocity exceeding 2 × 10-6 m/s. Our experiments show that slip-weakening friction should be expected at the afterslip rate, suggesting that the afterslip may have facilitated the large coseismic slip during the mainshock on the plate boundary

  3. Analysis of boundary layer flow over a porous nonlinearly stretching sheet with partial slip at

    Directory of Open Access Journals (Sweden)

    Swati Mukhopadhyay

    2013-12-01

    Full Text Available The boundary layer flow of a viscous incompressible fluid toward a porous nonlinearly stretching sheet is considered in this analysis. Velocity slip is considered instead of no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equation corresponding to the momentum equation into nonlinear ordinary differential equation. Numerical solution of this equation is obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter.

  4. Discrete Boltzmann Method with Maxwell-Type Boundary Condition for Slip Flow

    Science.gov (United States)

    Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua

    2018-01-01

    The rarefied effect of gas flow in microchannel is significant and cannot be well described by traditional hydrodynamic models. It has been known that discrete Boltzmann model (DBM) has the potential to investigate flows in a relatively wider range of Knudsen number because of its intrinsic kinetic nature inherited from Boltzmann equation. It is crucial to have a proper kinetic boundary condition for DBM to capture the velocity slip and the flow characteristics in the Knudsen layer. In this paper, we present a DBM combined with Maxwell-type boundary condition model for slip flow. The tangential momentum accommodation coefficient is introduced to implement a gas-surface interaction model. Both the velocity slip and the Knudsen layer under various Knudsen numbers and accommodation coefficients can be well described. Two kinds of slip flows, including Couette flow and Poiseuille flow, are simulated to verify the model. To dynamically compare results from different models, the relation between the definition of Knudsen number in hard sphere model and that in BGK model is clarified. Support of National Natural Science Foundation of China under Grant Nos. 11475028, 11772064, and 11502117 Science Challenge Project under Grant Nos. JCKY2016212A501 and TZ2016002

  5. Flows of Incompressible Fluids subject to Navier’s slip on the boundary

    Czech Academy of Sciences Publication Activity Database

    Hron, J.; Le Roux, C.; Málek, Josef; Rajagopal, K.R.

    2008-01-01

    Roč. 56, č. 8 (2008), s. 2128-2143 ISSN 0898-1221 R&D Projects: GA ČR GA101/05/2537 Institutional research plan: CEZ:AV0Z20760514 Keywords : boundary conditions * navier’s slip * no-slip Subject RIV: BK - Fluid Dynamics Impact factor: 0.997, year: 2008 http://www.sciencedirect.com

  6. Slip systems, dislocation boundaries and lattice rotations in deformed metals

    DEFF Research Database (Denmark)

    Winther, Grethe

    2009-01-01

    Metals are polycrystals and consist of grains, which are subdivided on a finer scale upon plastic deformation due to formation of dislocation boundaries. The crystallographic alignment of planar dislocation boundaries in face centred cubic metals, like aluminium and copper, deformed to moderate...... of the mechanical anisotropy of rolled sheets. The rotation of the crystallographic lattice in each grain during deformation also exhibits grain orientation dependence, originating from the slip systems. A combined analysis of dislocation boundaries and lattice rotations concludes that the two phenomena are coupled...

  7. Low-Energy Dislocation Structure (LEDS) character of dislocation boundaries aligned with slip planes in rolled aluminium

    DEFF Research Database (Denmark)

    Winther, Grethe; Hong, Chuanshi; Huang, Xiaoxu

    2015-01-01

    For the specific slip geometry of two sets of coplanar systems (a total of four systems) in fcc metals, the range of dislocation networks in boundaries aligned with one of the two active slip planes is predicted from the Frank equation for boundaries free of long-range elastic stresses. Detailed...

  8. A Possible Differentially Shortened Strike-slip Plate Boundary: the Okhotsk Plate Example.

    Science.gov (United States)

    Hindle, D.; Egorov, V.; Mackey, K. G.; Fujita, K.

    2004-12-01

    The Okhotsk plate has been postulated based on a combination of GPS geodetic inversions (REVEL1), seimsicity, geologic and lineament data. Lying between the North American and Eurasian plates, its northwestern corner would appear to be undergoing compression in a scissors motion between the two bounding plates. Extrusion tectonics along multiple, large strike-slip faults within the Okhotsk plate itself have been suggested to allow the escape of material away from the apex of Eurasia-North America. The plate boundary between Okhotsk and North America has been suggested to be diffuse, based on widely scattered minor seismicity. However, the large, left lateral, Ulakhan fault has also been suggested as a candidate plate boundary. We present field geological and geomorphological evidence of the partitioning of deformation between the Ulakhan fault, and several parallel and oblique, linked faults. The Ulakhan fault strand appears to have a maximum displacement of 24 km based on river valley offsets and closing large pull apart basins. Some of the displacement from the Ulakhan fault appears relayed into the plate margin along oblique trending, thrust/oblique slip faults. Estimated shortening over these faults is equivalent to the amount of shortening relayed into the plate margin from the plate boundary. There may be several thrust/oblique slip faults along the Ulakhan fault, which leads to the interesting situation of a segmented, strike-slip plate boundary being actively shortened in a margin parallel direction. This may be the result of postulated extrusion of the Okhotsk plate due to North America/Eurasia convergence. Such a situation would have important consequences for the interpretation of GPS data in a plate tectonic context.

  9. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.

    Science.gov (United States)

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over

  10. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries

    Science.gov (United States)

    Silva, Goncalo; Semiao, Viriato

    2017-07-01

    The first nonequilibrium effect experienced by gaseous flows in contact with solid surfaces is the slip-flow regime. While the classical hydrodynamic description holds valid in bulk, at boundaries the fluid-wall interactions must consider slip. In comparison to the standard no-slip Dirichlet condition, the case of slip formulates as a Robin-type condition for the fluid tangential velocity. This makes its numerical modeling a challenging task, particularly in complex geometries. In this work, this issue is handled with the lattice Boltzmann method (LBM), motivated by the similarities between the closure relations of the reflection-type boundary schemes equipping the LBM equation and the slip velocity condition established by slip-flow theory. Based on this analogy, we derive, as central result, the structure of the LBM boundary closure relation that is consistent with the second-order slip velocity condition, applicable to planar walls. Subsequently, three tasks are performed. First, we clarify the limitations of existing slip velocity LBM schemes, based on discrete analogs of kinetic theory fluid-wall interaction models. Second, we present improved slip velocity LBM boundary schemes, constructed directly at discrete level, by extending the multireflection framework to the slip-flow regime. Here, two classes of slip velocity LBM boundary schemes are considered: (i) linear slip schemes, which are local but retain some calibration requirements and/or operation limitations, (ii) parabolic slip schemes, which use a two-point implementation but guarantee the consistent prescription of the intended slip velocity condition, at arbitrary plane wall discretizations, further dispensing any numerical calibration procedure. Third and final, we verify the improvements of our proposed slip velocity LBM boundary schemes against existing ones. The numerical tests evaluate the ability of the slip schemes to exactly accommodate the steady Poiseuille channel flow solution, over

  11. Influence of plastic slip localization on grain boundary stress fields and microcrack nucleation

    International Nuclear Information System (INIS)

    Sauzay, Maxime; Vor, Kokleang

    2013-01-01

    Slip localization is widely observed in metallic polycrystals after tensile deformation, cyclic deformation (persistent slip bands) or pre-irradiation followed by tensile deformation (channels). Such strong deformation localized in thin slip bands induces local stress concentrations in the quasi-elastic matrix around, at the intersections between slip bands and grain boundaries where microcracks are often observed. Since the work of Stroh, such stress fields have been modeled using the dislocation pile-up theory which leads to stress singularities similar to the LEFM ones. The Griffith criterion has then been widely applied, leading usually to strong underestimations of the macroscopic stress for microcrack nucleation. In fact, slip band thickness is finite: 50-1000 nm depending on material, temperature and loading conditions. Then, many slip planes are plastically activated through the thickness. Stress fields have probably been overestimated using the pile-up theory which assumes that all dislocations are located on the same atomic plane. To evaluate more realistic stress fields, crystalline finite element (FE) computations are carried out using microstructure inputs (slip band aspect ratio and spacing). Slip bands (low critical resolved shear stress) are embedded in an elastic matrix. The following results are obtained concerning grain boundary normal stress fields: - strong influence of slip band thickness close to the slip band corner, which is not accounted for by the pile-up theory. But far away, the thickness has a negligible effect and the predicted stress fields are close to the one predicted by the pile-up theory, - analytical formulae are deduced from the numerous FE computation results which allows the prediction of surface/bulk slips as well as grain boundary stress fields. Slip band plasticity parameters, slip band length and thickness, Schmid factor and remote stress are taken into account. The dependence with respect to the various parameters can

  12. Shape fabric development in rigid clast populations under pure shear: The influence of no-slip versus slip boundary conditions

    Science.gov (United States)

    Mulchrone, Kieran F.; Meere, Patrick A.

    2015-09-01

    Shape fabrics of elliptical objects in rocks are usually assumed to develop by passive behavior of inclusions with respect to the surrounding material leading to shape-based strain analysis methods belonging to the Rf/ϕ family. A probability density function is derived for the orientational characteristics of populations of rigid ellipses deforming in a pure shear 2D deformation with both no-slip and slip boundary conditions. Using maximum likelihood a numerical method is developed for estimating finite strain in natural populations deforming for both mechanisms. Application to a natural example indicates the importance of the slip mechanism in explaining clast shape fabrics in deformed sediments.

  13. Stokes system with solution-dependent threshold slip boundary conditions: Analysis, approximation and implementation

    Czech Academy of Sciences Publication Activity Database

    Haslinger, Jaroslav; Kučera, R.; Šátek, V.

    2017-01-01

    Roč. 22, October 2017 (2017), s. 1-14 ISSN 1081-2865 R&D Projects: GA MŠk LQ1602; GA ČR(CZ) GA17-01747S Institutional support: RVO:68145535 Keywords : Stokes system * threshold slip boundary conditions * solution dependent slip function Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http://journals.sagepub.com/doi/abs/10.1177/1081286517716222

  14. Stokes system with solution-dependent threshold slip boundary conditions: Analysis, approximation and implementation

    Czech Academy of Sciences Publication Activity Database

    Haslinger, Jaroslav; Kučera, R.; Šátek, V.

    2017-01-01

    Roč. 22, October 2017 (2017), s. 1-14 ISSN 1081-2865 R&D Projects: GA MŠk LQ1602; GA ČR(CZ) GA17-01747S Institutional support: RVO:68145535 Keywords : Stokes system * threshold slip boundary conditions * solution dependent slip function Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 2.953, year: 2016 http:// journals .sagepub.com/doi/abs/10.1177/1081286517716222

  15. Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation

    Directory of Open Access Journals (Sweden)

    Swati Mukhopadhyay

    2013-09-01

    Full Text Available The boundary layer flow and heat transfer towards a porous exponential stretching sheet in presence of a magnetic field is presented in this analysis. Velocity slip and thermal slip are considered instead of no-slip conditions at the boundary. Thermal radiation term is incorporated in the temperature equation. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and energy equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity decreases with increasing slip parameter as well as with the increasing magnetic parameter. Temperature increases with the increasing values of magnetic parameter. Temperature is found to decrease with an increase of thermal slip parameter. Thermal radiation enhances the effective thermal diffusivity and the temperature rises.

  16. A multilevel simulation approach to derive the slip boundary condition of the solid phase in two-fluid models

    Science.gov (United States)

    Feng, Zhi-Gang; Michaelides, Efstathios; Mao, Shaolin

    2011-11-01

    The simulation of particulate flows for industrial applications often requires the use of a two-fluid model (TFM), where the solid particles are considered as a separate continuous phase. One of the underlining uncertainties in the use of aTFM in multiphase computations comes from the boundary condition of the solid phase. The no-slip condition at a solid boundary is not a valid assumption for the solid phase. Instead, several researchers advocate a slip condition as a more appropriate boundary condition. However, the question on the selection of an exact slip length or a slip velocity coefficient is still unanswered. In the present work we propose a multilevel simulation approach to compute the slip length that is applicable to a TFM. We investigate the motion of a number of particles near a vertical solid wall, while the particles are in fluidization using a direct numerical simulation (DNS); the positions and velocities of the particles are being tracked and analyzed at each time step. It is found that the time- and vertical-space averaged values of the particle velocities converge, yielding velocity profiles that can be used to deduce the particle slip length close to a solid wall. This work was supported by a grant from the DOE-NETL (DE-NT0008064) and by a grant from NSF (HRD-0932339).

  17. Streamline Patterns and their Bifurcations near a wall with Navier slip Boundary Conditions

    DEFF Research Database (Denmark)

    Tophøj, Laust; Møller, Søren; Brøns, Morten

    2006-01-01

    We consider the two-dimensional topology of streamlines near a surface where the Navier slip boundary condition applies. Using transformations to bring the streamfunction in a simple normal form, we obtain bifurcation diagrams of streamline patterns under variation of one or two external parameters....... Topologically, these are identical with the ones previously found for no-slip surfaces. We use the theory to analyze the Stokes flow inside a circle, and show how it can be used to predict new bifurcation phenomena. ©2006 American Institute of Physics...

  18. Unsteady Casson nanofluid flow over a stretching sheet with thermal radiation, convective and slip boundary conditions

    Directory of Open Access Journals (Sweden)

    Ibukun Sarah Oyelakin

    2016-06-01

    Full Text Available In this paper we report on combined Dufour and Soret effects on the heat and mass transfer in a Casson nanofluid flow over an unsteady stretching sheet with thermal radiation and heat generation. The effects of partial slip on the velocity at the boundary, convective thermal boundary condition, Brownian and thermophoresis diffusion coefficients on the concentration boundary condition are investigated. The model equations are solved using the spectral relaxation method. The results indicate that the fluid flow, temperature and concentration profiles are significantly influenced by the fluid unsteadiness, the Casson parameter, magnetic parameter and the velocity slip. The effect of increasing the Casson parameter is to suppress the velocity and temperature growth. An increase in the Dufour parameter reduces the flow temperature, while an increase in the value of the Soret parameter causes increase in the concentration of the fluid. Again, increasing the velocity slip parameter reduces the velocity profile whereas increasing the heat generation parameter increases the temperature profile. A validation of the work is presented by comparing the current results with existing literature.

  19. Analytic Approximate Solutions to the Boundary Layer Flow Equation over a Stretching Wall with Partial Slip at the Boundary.

    Science.gov (United States)

    Ene, Remus-Daniel; Marinca, Vasile; Marinca, Bogdan

    2016-01-01

    Analytic approximate solutions using Optimal Homotopy Perturbation Method (OHPM) are given for steady boundary layer flow over a nonlinearly stretching wall in presence of partial slip at the boundary. The governing equations are reduced to nonlinear ordinary differential equation by means of similarity transformations. Some examples are considered and the effects of different parameters are shown. OHPM is a very efficient procedure, ensuring a very rapid convergence of the solutions after only two iterations.

  20. Influence of Variable Thermal Conductivity on MHD Boundary Layer Slip Flow of Ethylene-Glycol Based Cu Nanofluids over a Stretching Sheet with Convective Boundary Condition

    Directory of Open Access Journals (Sweden)

    N. Bhaskar Reddy

    2014-01-01

    Full Text Available An analysis is carried out to investigate the influence of variable thermal conductivity and partial velocity slip on hydromagnetic two-dimensional boundary layer flow of a nanofluid with Cu nanoparticles over a stretching sheet with convective boundary condition. Using similarity transformation, the governing boundary layer equations along with the appropriate boundary conditions are transformed to a set of ordinary differential equations. Employing Runge-kutta fourth-order method along with shooting technique, the resultant system of equations is solved. The influence of various pertinent parameters such as nanofluid volume fraction parameter, the magnetic parameter, radiation parameter, thermal conductivity parameter, velocity slip parameter, Biot number, and suction or injection parameter on the velocity of the flow field and heat transfer characteristics is computed numerically and illustrated graphically. The present results are compared with the existing results for the case of regular fluid and found an excellent agreement.

  1. Rheological structure of the lithosphere in plate boundary strike-slip fault zones

    Science.gov (United States)

    Chatzaras, Vasileios; Tikoff, Basil; Kruckenberg, Seth C.; Newman, Julie; Titus, Sarah J.; Withers, Anthony C.; Drury, Martyn R.

    2016-04-01

    How well constrained is the rheological structure of the lithosphere in plate boundary strike-slip fault systems? Further, how do lithospheric layers, with rheologically distinct behaviors, interact within the strike-slip fault zones? To address these questions, we present rheological observations from the mantle sections of two lithospheric-scale, strike-slip fault zones. Xenoliths from ˜40 km depth (970-1100 ° C) beneath the San Andreas fault system (SAF) provide critical constraints on the mechanical stratification of the lithosphere in this continental transform fault. Samples from the Bogota Peninsula shear zone (BPSZ, New Caledonia), which is an exhumed oceanic transform fault, provide insights on lateral variations in mantle strength and viscosity across the fault zone at a depth corresponding to deformation temperatures of ˜900 ° C. Olivine recrystallized grain size piezometry suggests that the shear stress in the SAF upper mantle is 5-9 MPa and in the BPSZ is 4-10 MPa. Thus, the mantle strength in both fault zones is comparable to the crustal strength (˜10 MPa) of seismogenic strike-slip faults in the SAF system. Across the BPSZ, shear stress increases from 4 MPa in the surrounding rocks to 10 MPa in the mylonites, which comprise the core of the shear zone. Further, the BPSZ is characterized by at least one order of magnitude difference in the viscosity between the mylonites (1018 Paṡs) and the surrounding rocks (1019 Paṡs). Mantle viscosity in both the BPSZ mylonites and the SAF (7.0ṡ1018-3.1ṡ1020 Paṡs) is relatively low. To explain our observations from these two strike-slip fault zones, we propose the "lithospheric feedback" model in which the upper crust and lithospheric mantle act together as an integrated system. Mantle flow controls displacement and the upper crust controls the stress magnitude in the system. Our stress data combined with data that are now available for the middle and lower crustal sections of other transcurrent fault

  2. Assessing Uncertainties in Boundary Layer Transition Predictions for HIFiRE-1 at Non-zero Angles of Attack

    Science.gov (United States)

    Marek, Lindsay C.

    2011-01-01

    Boundary layer stability was analyzed for the HIFiRE-1 flight vehicle geometry for ground tests conducted at the CUBRC LENS I hypersonic shock test facility and the Langley Research Center (LaRC) 20- inch Mach 6 Tunnel. Boundary layer stability results were compared to transition onset location obtained from discrete heat transfer measurements from thin film gauges during the CUBRC test and spatially continuous heat transfer measurements from thermal phosphor paint data during the LaRC test. The focus of this analysis was on conditions at non-zero angles of attack as stability analysis has already been performed at zero degrees angle of attack. Also, the transition onset data obtained during flight testing was at nonzero angles of attack, so this analysis could be expanded in the future to include the results of the flight test data. Stability analysis was performed using the 2D parabolized stability software suite STABL (Stability and Transition Analysis for Hypersonic Boundary Layers) developed at the University of Minnesota and the mean flow solutions were computed using the DPLR finite volume Navier-Stokes computational fluid dynamics (CFD) solver. A center line slice of the 3D mean flow solution was used for the stability analysis to incorporate the angle of attack effects while still taking advantage of the 2D STABL software suite. The N-factors at transition onset and the value of Re(sub theta)/M(sub e), commonly used to predict boundary layer transition onset, were compared for all conditions analyzed. Ground test data was analyzed at Mach 7.2 and Mach 6.0 and angles of attack of 1deg, 3deg and 5deg. At these conditions, the flow was found to be second mode dominant for the HIFiRE-1 slender cone geometry. On the leeward side of the vehicle, a strong trend of transition onset location with angle of attack was observed as the boundary layer on the leeward side of the vehicle developed inflection points at streamwise positions on the vehicle that correlated to

  3. Slip transmission in bcc FeCr polycrystal

    Energy Technology Data Exchange (ETDEWEB)

    Patriarca, Luca, E-mail: luca.patriarca@polimi.it [Politecnico di Milano, Department of Mechanical Engineering, Via La Masa 34, I-20156 Milano (Italy); Abuzaid, Wael; Sehitoglu, Huseyin [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206W. Green St., Urbana, IL 61801 (United States); Maier, Hans J. [Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, D-30823 Garbsen (Germany)

    2013-12-20

    Grain boundaries induce heterogeneities in the deformation response of polycrystals. Studying these local variations in response, measured through high resolution strain measurement techniques, is important and can improve our understanding of fatigue damage initiation in the vicinity of grain boundaries and material hardening. In this work, strain fields across grain boundaries were measured using advanced digital image correlation techniques. In conjunction with strain measurements, grain orientations from electron back-scattered diffraction were used to establish the dislocation reactions at each boundary, providing the corresponding residual Burgers vectors due to slip transmission across the interfaces. A close correlation was found between the magnitude of the residual Burgers vector and the local strain change across the boundary. When the residual Burgers vector magnitude (with respect to the lattice spacing) exceeds 1.0, the high strains on one side of the boundary are paired with low strains across the boundary, indicating the difficulties for slip dislocations to penetrate the grain interfaces. When the residual Burgers vector approaches zero, the strain fields vary smoothly across the boundary due to limited resistance to slip transmission. The results suggest that the residual Burgers vector magnitude, which relates to the GB (Grain Boundary) resistance to slip transmission, enables a quantitative analysis of the accumulation of strain at the microstructural level and the development of strain heterogeneities across grain boundaries. The results are presented for FeCr bcc alloy which exhibits single slip per grain making the measurements and dislocation reactions rather straightforward. The work points to the need to incorporate details of slip dislocation–grain boundary interaction (slip transmission) in modeling research.

  4. Identifying Fault Connections of the Southern Pacific-North American Plate Boundary Using Triggered Slip and Crustal Velocities

    Science.gov (United States)

    Donnellan, A.; Grant Ludwig, L.; Rundle, J. B.; Parker, J. W.; Granat, R.; Heflin, M. B.; Pierce, M. E.; Wang, J.; Gunson, M.; Lyzenga, G. A.

    2017-12-01

    The 2010 M7.2 El Mayor - Cucapah earthquake caused extensive triggering of slip on faults proximal to the Salton Trough in southern California. Triggered slip and postseismic motions that have continued for over five years following the earthquake highlight connections between the El Mayor - Cucapah rupture and the network of faults that branch out along the southern Pacific - North American Plate Boundary. Coseismic triggering follows a network of conjugate faults from the northern end of the rupture to the Coachella segment of the southernmost San Andreas fault. Larger aftershocks and postseismic motions favor connections to the San Jacinto and Elsinore faults further west. The 2012 Brawley Swarm can be considered part of the branching on the Imperial Valley or east side of the plate boundary. Cluster analysis of long-term GPS velocities using Lloyds Algorithm, identifies bifurcation of the Pacific - North American plate boundary; The San Jacinto fault joins with the southern San Andreas fault, and the Salton Trough and Coachella segment of the San Andreas fault join with the Eastern California Shear Zone. The clustering analysis does not identify throughgoing deformation connecting the Coachella segment of the San Andreas fault with the rest of the San Andreas fault system through the San Gorgonio Pass. This observation is consistent with triggered slip from both the 1992 Landers and 2010 El Mayor - Cucapah earthquakes that follows the plate boundary bifurcation and with paleoseismic evidence of smaller earthquakes in the San Gorgonio Pass.

  5. Evidence of the no-slip boundary condition of water flow between hydrophilic surfaces using atomic force microscopy.

    Science.gov (United States)

    Maali, Abdelhamid; Wang, Yuliang; Bhushan, Bharat

    2009-10-20

    In this study we present measurements of the hydrodynamic force exerted on a glass sphere glued to an atomic force microscopy (AFM) cantilever approaching a mica surface in water. A large sphere was used to reduce the impact of the cantilever beam on the measurement. An AFM cantilever with large stiffness was used to accurately determine the actual contact position between the sphere and the sample surface. The measured hydrodynamic force with different approach velocities is in good agreement with the Taylor force calculated in the lubrication theory with the no-slip boundary conditions, which verifies that there is no boundary slip on the glass and mica surfaces. Moreover, a detailed procedure of how to subtract the electrostatic double-layer force is presented.

  6. Analytical solutions of couple stress fluid flows with slip boundary conditions

    Directory of Open Access Journals (Sweden)

    Devakar M.

    2014-09-01

    Full Text Available In the present article, the exact solutions for fundamental flows namely Couette, Poiseuille and generalized Couette flows of an incompressible couple stress fluid between parallel plates are obtained using slip boundary conditions. The effect of various parameters on velocity for each problem is discussed. It is found that, for each of the problems, the solution in the limiting case as couple stresses approaches to zero is similar to that of classical viscous Newtonian fluid. The results indicate that, the presence of couple stresses decreases the velocity of the fluid.

  7. Magnetohydrodynamics (MHD flow of a tangent hyperbolic fluid with nanoparticles past a stretching sheet with second order slip and convective boundary condition

    Directory of Open Access Journals (Sweden)

    Wubshet Ibrahim

    Full Text Available This article presents the effect of thermal radiation on magnetohydrodynamic flow of tangent hyperbolic fluid with nanoparticle past an enlarging sheet with second order slip and convective boundary condition. Condition of zero normal flux of nanoparticles at the wall is used for the concentration boundary condition, which is the current topic that have yet to be studied extensively. The solution for the velocity, temperature and nanoparticle concentration is governed by parameters viz. power-law index (n, Weissenberg number We, Biot number Bi, Prandtl number Pr, velocity slip parameters δ and γ, Lewis number Le, Brownian motion parameter Nb and the thermophoresis parameter Nt. Similarity transformation is used to metamorphosed the governing non-linear boundary-value problem into coupled higher order non-linear ordinary differential equation. The succeeding equations were numerically solved using the function bvp4c from the matlab for different values of emerging parameters. Numerical results are deliberated through graphs and tables for velocity, temperature, concentration, the skin friction coefficient and local Nusselt number. The results designate that the skin friction coefficient Cf deplete as the values of Weissenberg number We, slip parameters γ and δ upturn and it rises as the values of power-law index n increase. The local Nusselt number -θ′(0 decreases as slip parameters γ and δ, radiation parameter Nr, Weissenberg number We, thermophoresis parameter Nt and power-law index n increase. However, the local Nusselt number increases as the Biot number Bi increase. Keywords: Tangent hyperbolic fluid, Second order slip flow, MHD, Convective boundary condition, Radiation effect, Passive control of nanoparticles

  8. Effect of inherited structures on strike-slip plate boundaries: insight from analogue modelling of the central Levant Fracture System, Lebanon

    Science.gov (United States)

    Ghalayini, Ramadan; Daniel, Jean-Marc; Homberg, Catherine; Nader, Fadi

    2015-04-01

    Analogue sandbox modeling is a tool to simulate deformation style and structural evolution of sedimentary basins. The initial goal is to test what is the effect of inherited and crustal structures on the propagation, evolution, and final geometry of major strike-slip faults at the boundary between two tectonic plates. For this purpose, we have undertaken a series of analogue models to validate and reproduce the structures of the Levant Fracture System, a major NNE-SSW sinistral strike-slip fault forming the boundary between the Arabian and African plates. Onshore observations and recent high quality 3D seismic data in the Levant Basin offshore Lebanon demonstrated that Mesozoic ENE striking normal faults were reactivated into dextral strike-slip faults during the Late Miocene till present day activity of the plate boundary which shows a major restraining bend in Lebanon with a ~ 30°clockwise rotation in its trend. Experimental parameters consisted of a silicone layer at the base simulating the ductile crust, overlain by intercalated quartz sand and glass sand layers. Pre-existing structures were simulated by creating a graben in the silicone below the sand at an oblique (>60°) angle to the main throughgoing strike-slip fault. The latter contains a small stepover at depth to create transpression during sinistral strike-slip movement and consequently result in mountain building similarly to modern day Lebanon. Strike-slip movement and compression were regulated by steady-speed computer-controlled engines and the model was scanned using a CT-scanner continuously while deforming to have a final 4D model of the system. Results showed that existing normal faults were reactivated into dextral strike-slip faults as the sinistral movement between the two plates accumulated. Notably, the resulting restraining bend is asymmetric and segmented into two different compartments with differing geometries. One compartment shows a box fold anticline, while the second shows an

  9. Relation between boundary slip mechanisms and waterlike fluid behavior

    Science.gov (United States)

    Ternes, Patricia; Salcedo, Evy; Barbosa, Marcia C.

    2018-03-01

    The slip of a fluid layer in contact with a solid confining surface is investigated for different temperatures and densities using molecular dynamic simulations. We show that for an anomalous waterlike fluid the slip goes as follows: for low levels of shear, defect slip appears and is related to the particle exchange between the fluid layers; at high levels of shear, global slip occurs and is related to the homogeneous distribution of the fluid in the confining surfaces. The oscillations in the transition velocity from defect to global slip are shown to be associated with changes in the layering distribution in the anomalous fluid.

  10. Deformation by grain boundary sliding and slip creep versus diffusional creep

    International Nuclear Information System (INIS)

    Ruano, O A; Sherby, O D; Wadsworth, J.

    1998-01-01

    A review is presented of the debates between the present authors and other investigators regarding the possible role of diffusional creep in the plastic flow of polycrystalline metals at low stresses. These debates are recorded in eleven papers over the past seventeen years. ln these papers it has been shown that the creep rates of materials in the so-called diffusional creep region are almost always higher than those predicted by the diffusional creep theory. Additionally, the predictions of grain size effects and stress exponents from diffusional creep theory are often not found in the experimental data. Finally, denuded zones have been universally considered to be direct evidence for diffusional creep; but, those reported in the literature are shown to be found only under conditions where a high stress exponent is observed. Also, the locations of the denuded zones do not match those predicted. Alternative mechanisms are described in which diffusion-controlled dislocation creep and/or grain boundary sliding are the dominant deformation processes in low-stress creep. It is proposed that denuded zones are formed by stress-directed grain boundary migration with the precipitates dissolving in the moving grain boundaries. The above observations have led us to the conclusion that grain boundary sliding and slip creep are in fact the principal mechanisms for observations of plastic flow in the so-called diffusional creep regions

  11. NUMERICAL AND ANALYTICAL SOLUTIONS OF NEUTRINO-DOMINATED ACCRETION FLOWS WITH A NON-ZERO TORQUE BOUNDARY CONDITION AND ITS APPLICATIONS IN GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei; Lei, Wei-Hua; Wang, Ding-Xiong, E-mail: leiwh@hust.edu.cn [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-12-20

    A stellar-mass black hole (BH) surrounded by a neutrino-dominated accretion flow (NDAF) has been discussed in a number of works as the central engine of gamma-ray bursts (GRBs). It is widely believed that NDAF cannot liberate enough energy for bright GRBs. However, these works have been based on the assumption of a “no torque” boundary condition, which is invalid when the disk is magnetized. In this paper, we present both numerical and analytical solutions for NDAFs with non-zero boundary stresses and reexamine their properties. We find that an NDAF with such a boundary torque can be powerful enough to account for those bright short GRBs, energetic long GRBs, and ultra-long GRBs. The disk becomes viscously unstable, which makes it possible to interpret the variability of GRB prompt emission and the steep decay phase in the early X-ray afterglow. Finally, we study the gravitational waves radiated from a processing BH-NDAF. We find that the effects of the boundary torque on the strength of the gravitational waves can be ignored.

  12. Slip rate and tremor genesis in Cascadia

    Science.gov (United States)

    Wech, Aaron G.; Bartlow, Noel M.

    2014-01-01

    At many plate boundaries, conditions in the transition zone between seismogenic and stable slip produce slow earthquakes. In the Cascadia subduction zone, these events are consistently observed as slow, aseismic slip on the plate interface accompanied by persistent tectonic tremor. However, not all slow slip at other plate boundaries coincides spatially and temporally with tremor, leaving the physics of tremor genesis poorly understood. Here we analyze seismic, geodetic, and strainmeter data in Cascadia to observe for the first time a large, tremor-generating slow earthquake change from tremor-genic to silent and back again. The tremor falls silent at reduced slip speeds when the migrating slip front pauses as it loads the stronger adjacent fault segment to failure. The finding suggests that rheology and slip-speed-regulated stressing rate control tremor genesis, and the same section of fault can slip both with and without detectable tremor, limiting tremor's use as a proxy for slip.

  13. Slip-mediated dewetting of polymer microdroplets

    Science.gov (United States)

    McGraw, Joshua D.; Chan, Tak Shing; Maurer, Simon; Salez, Thomas; Benzaquen, Michael; Raphaël, Elie; Brinkmann, Martin; Jacobs, Karin

    2016-01-01

    Classical hydrodynamic models predict that infinite work is required to move a three-phase contact line, defined here as the line where a liquid/vapor interface intersects a solid surface. Assuming a slip boundary condition, in which the liquid slides against the solid, such an unphysical prediction is avoided. In this article, we present the results of experiments in which a contact line moves and where slip is a dominating and controllable factor. Spherical cap-shaped polystyrene microdroplets, with nonequilibrium contact angle, are placed on solid self-assembled monolayer coatings from which they dewet. The relaxation is monitored using in situ atomic force microscopy. We find that slip has a strong influence on the droplet evolutions, both on the transient nonspherical shapes and contact line dynamics. The observations are in agreement with scaling analysis and boundary element numerical integration of the governing Stokes equations, including a Navier slip boundary condition. PMID:26787903

  14. Influence of heat transfer on Poiseuille flow of MHD Jeffrey fluid through porous medium with slip boundary conditions

    Science.gov (United States)

    Ramesh, K.

    2017-07-01

    In the current article, we have discussed the Poiseuille flow of an incompressible magnetohydrodynamic Jeffrey fluid between parallel plates through homogeneous porous medium using slip boundary conditions under the effect of heat transfer. The equations governing the fluid flow are modeled in Cartesian coordinate system. The energy equation is considered under the effects viscous dissipation and heat generation. Analytical solutions for the velocity and temperature profiles are obtained. The effects of the various involved parameters on the velocity and temperature profiles are studied and the results are presented through the graphs. It is observed from our analysis that, with increase of slip parameter and pressure gradient increase the velocity. The temperature is an increasing function of heat generation parameter, Brinkman number, thermal slip parameter and non-Newtonian fluid parameter.

  15. Effects of partial slip boundary condition and radiation on the heat and mass transfer of MHD-nanofluid flow

    Science.gov (United States)

    Abd Elazem, Nader Y.; Ebaid, Abdelhalim

    2017-12-01

    In this paper, the effect of partial slip boundary condition on the heat and mass transfer of the Cu-water and Ag-water nanofluids over a stretching sheet in the presence of magnetic field and radiation. Such partial slip boundary condition has attracted much attention due to its wide applications in industry and chemical engineering. The flow is basically governing by a system of partial differential equations which are reduced to a system of ordinary differential equations. This system has been exactly solved, where exact analytical expression has been obtained for the fluid velocity in terms of exponential function, while the temperature distribution, and the nanoparticles concentration are expressed in terms of the generalized incomplete gamma function. In addition, explicit formulae are also derived from the rates of heat transfer and mass transfer. The effects of the permanent parameters on the skin friction, heat transfer coefficient, rate of mass transfer, velocity, the temperature profile, and concentration profile have been discussed through tables and graphs.

  16. Slipping slender bodies and enhanced flagellar locomotion

    Science.gov (United States)

    Man, Yi; Lauga, Eric

    2017-11-01

    In the biological world, many cells exploit slender appendages to swim, include numerous species of bacteria, algae and spermatozoa. A classical method to describe the flow field around such appendages is slender-body theory (SBT), which is often used to study flagellar motility in Newtonian fluids. However, biology environments are often rheologically complex due to the presence of polymers. These polymers generically phase-separate near rigid boundaries where low-viscosity fluid layers lead to effective slip on the surface. In this talk, we present an analytical derivation of SBT in the case where the no-slip boundary condition on the appendage is replaced by a Navier slip boundary condition. Our results demonstrate in particular a systematic reduction of the resistance coefficient of the slender filaments in their tangential direction, which leads to enhanced flagellar locomotion.

  17. On a strong solution of the non-stationary Navier-Stokes equations under slip or leak boundary conditions of friction type

    Science.gov (United States)

    Kashiwabara, Takahito

    Strong solutions of the non-stationary Navier-Stokes equations under non-linearized slip or leak boundary conditions are investigated. We show that the problems are formulated by a variational inequality of parabolic type, to which uniqueness is established. Using Galerkin's method and deriving a priori estimates, we prove global and local existence for 2D and 3D slip problems respectively. For leak problems, under no-leak assumption at t=0 we prove local existence in 2D and 3D cases. Compatibility conditions for initial states play a significant role in the estimates.

  18. Frictional power dissipation on plate boundary faults: Implications for coseismic slip propagation at near-surface depths

    Science.gov (United States)

    Ikari, M.; Kopf, A.; Saffer, D. M.; Marone, C.; Carpenter, B. M.

    2013-12-01

    The general lack of earthquake slip at shallow (behavior associated with laboratory observations that disaggregated fault gouges commonly strengthen with increasing sliding velocity (i.e. velocity-strengthening friction), which precludes strain energy release via stress drops. However, the 2011 Tohoku earthquake demonstrated that coseismic rupture and slip can sometimes propagate to the surface in subduction zones. Surface rupture is also known to occur on other plate boundary faults, such as the Alpine Fault in New Zealand. It is uncertain how the extent of coseismic slip propagation from depth is controlled by the frictional properties of the near-surface portion of major faults. In these situations, it is common for slip to localize within gouge having a significant component of clay minerals, which laboratory experiments have shown are generally weak and velocity strengthening. However, low overall fault strength should facilitate coseismic slip, while velocity-strengthening behavior would resist it. In order to investigate how frictional properties may control the extent of coseismic slip propagation at shallow depths, we compare frictional strength and velocity-dependence measurements using samples from three subduction zones known for hosting large magnitude earthquakes. We focus on samples recovered during scientific drilling projects from the Nankai Trough, Japan, the Japan Trench in the region of the Tohoku earthquake, and the Middle America Trench, offshore Costa Rica; however we also include comparisons with other major fault zones sampled by drilling. In order to incorporate the combined effects of overall frictional strength and friction velocity-dependence, we estimate shear strength as a function of slip velocity (at constant effective normal stress), and integrate this function to obtain the areal power density, or frictional power dissipation capability of the fault zone. We also explore the role of absolute shear stress level before arrival of a

  19. Seismic slip on clay nano-foliation

    Science.gov (United States)

    Aretusini, S.; Pluemper, O.; Passelègue, F. X.; Spagnuolo, E.; Di Toro, G.

    2017-12-01

    Deformation processes active at seismic slip rates (ca. 1 m/s) on smectite-rich slipping zones are not well understood, although they likely control the mechanical behaviour of: i) subduction zone faults affected by tsunamigenic earthquakes (e.g. Japan Trench affected by Tohoku-Oki 2011 earthquake), ii) plate-boundary faults (e.g. San Andreas Fault), and iii) landslide decollements (e.g. 1963 Vajont landslide). Here we present a set of rotary experiments performed on water-dampened 2 mm thick clay-rich (70% wt. smectite and 30% wt. opal) gouge layers sheared at slip rates V ranging from 0.01 to 1.3 m/s, for 3 m of displacement under 5 MPa normal stress. Microstructural analyses were conducted on pre- and post-sheared gouges using focused ion beam scanning electron and transmission electron microscopy. All sheared gouges were slip weakening in the first 0.1 m of displacement, with friction coefficient decreasing from 0.3-0.45 to 0.5-0.15. Then, with progressive slip, gouges evolved to slip-strengthening (final friction coefficient of 0.35-0.48) at V ≤0.1 m/s and slip-neutral (final friction of 0.05) at V=1.3 m/s. Despite the large difference in the imposed slip rate and frictional behaviour, the slipping zone always consisted of a nano-foliation defined by sub-micrometric smectite crystals wrapping opal grains. The nano-foliated layer thickness decreased from 1.5 mm at V≤0.1 m/s to 0.15 mm at V=1.3 m/s. The presence of a similar nano-foliation in all the smectite-rich wet gouges suggests the activation of similar deformation processes, dominated by frictional slip on grain boundary and basal planes. The variation of deformed thickness with slip rate shows that dynamic weakening, occurring only at seismic slip rates, is controlled by strain localization.

  20. Numerical study of the effect of Navier slip on the driven cavity flow

    KAUST Repository

    He, Qiaolin

    2009-10-01

    We study the driven cavity flow using the Navier slip boundary condition. Our results have shown that the Navier slip boundary condition removes the corner singularity induced by the no-slip boundary condition. In the low Reynolds number case, the behavior of the tangential stress is examined and the results are compared with the analytic results obtained in [14]. For the high Reynolds number, we study the effect of the slip on the critical Reynolds number for Hopf bifurcation. Our results show that the first Hopf bifurcation critical Reynolds number is increasing with slip length. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Structure and composition of the plate-boundary slip zone for the 2011 Tohoku-Oki earthquake.

    Science.gov (United States)

    Chester, Frederick M; Rowe, Christie; Ujiie, Kohtaro; Kirkpatrick, James; Regalla, Christine; Remitti, Francesca; Moore, J Casey; Toy, Virginia; Wolfson-Schwehr, Monica; Bose, Santanu; Kameda, Jun; Mori, James J; Brodsky, Emily E; Eguchi, Nobuhisa; Toczko, Sean

    2013-12-06

    The mechanics of great subduction earthquakes are influenced by the frictional properties, structure, and composition of the plate-boundary fault. We present observations of the structure and composition of the shallow source fault of the 2011 Tohoku-Oki earthquake and tsunami from boreholes drilled by the Integrated Ocean Drilling Program Expedition 343 and 343T. Logging-while-drilling and core-sample observations show a single major plate-boundary fault accommodated the large slip of the Tohoku-Oki earthquake rupture, as well as nearly all the cumulative interplate motion at the drill site. The localization of deformation onto a limited thickness (less than 5 meters) of pelagic clay is the defining characteristic of the shallow earthquake fault, suggesting that the pelagic clay may be a regionally important control on tsunamigenic earthquakes.

  2. Co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake

    Science.gov (United States)

    Yagi, Yuji; Kikuchi, Masayuki; Nishimura, Takuya

    2003-11-01

    We analyzed continuous GPS data to investigate the spatio-temporal distribution of co-seismic slip, post-seismic slip, and largest aftershock associated with the 1994 Sanriku-haruka-oki, Japan, earthquake (Mw = 7.7). To get better resolution for co-seismic and post-seismic slip distribution, we imposed a weak constraint as a priori information of the co-seismic slip determined by seismic wave analyses. We found that the post-seismic slip during 100 days following the main-shock amount to as much moment release as the main-shock, and that the sites of co-seismic slip and post-seismic slip are partitioning on a plate boundary region in complimentary fashion. The major post-seismic slip was triggered by the mainshock in western side of the co-seismic slip, and the extent of the post-seismic slip is almost unchanged with time. It rapidly developed a shear stress concentration ahead of the slip area, and triggered the largest aftershock.

  3. Variable slip-rate and slip-per-event on a plate boundary fault: The Dead Sea fault in northern Israel

    Science.gov (United States)

    Wechsler, Neta; Rockwell, Thomas K.; Klinger, Yann

    2018-01-01

    We resolved displacement on buried stream channels that record the past 3400 years of slip history for the Jordan Gorge (JGF) section of the Dead Sea fault in Israel. Based on three-dimensional (3D) trenching, slip in the past millennium amounts to only 2.7 m, similar to that determined in previous studies, whereas the previous millennium experienced two to three times this amount of displacement with nearly 8 m of cumulative slip, indicating substantial short term variations in slip rate. The slip rate averaged over the past 3400 years, as determined from 3D trenching, is 4.1 mm/yr, which agrees well with geodetic estimates of strain accumulation, as well as with longer-term geologic slip rate estimates. Our results indicate that: 1) the past 1200 years appear to significantly lack slip, which may portend a significant increase in future seismic activity; 2) short-term slip rates for the past two millennia have varied by more than a factor of two and suggest that past behavior is best characterized by clustering of earthquakes. From these observations, the earthquake behavior of the Jordan Gorge fault best fits is a "weak segment model" where the relatively short fault section (20 km), bounded by releasing steps, fails on its own in moderate earthquakes, or ruptures with adjacent segments.

  4. Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry

    KAUST Repository

    Shum, H.; Gaffney, E. A.; Smith, D. J.

    2010-01-01

    We describe a boundary-element method used to model the hydrodynamics of a bacterium propelled by a single helical flagellum. Using this model, we optimize the power efficiency of swimming with respect to cell body and flagellum geometrical parameters, and find that optima for swimming in unbounded fluid and near a no-slip plane boundary are nearly indistinguishable. We also consider the novel optimization objective of torque efficiency and find a very different optimal shape. Excluding effects such as Brownian motion and electrostatic interactions, it is demonstrated that hydrodynamic forces may trap the bacterium in a stable, circular orbit near the boundary, leading to the empirically observable surface accumulation of bacteria. Furthermore, the details and even the existence of this stable orbit depend on geometrical parameters of the bacterium, as described in this article. These results shed some light on the phenomenon of surface accumulation of micro-organisms and offer hydrodynamic explanations as to why some bacteria may accumulate more readily than others based on morphology. © 2010 The Royal Society.

  5. Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry

    KAUST Repository

    Shum, H.

    2010-01-13

    We describe a boundary-element method used to model the hydrodynamics of a bacterium propelled by a single helical flagellum. Using this model, we optimize the power efficiency of swimming with respect to cell body and flagellum geometrical parameters, and find that optima for swimming in unbounded fluid and near a no-slip plane boundary are nearly indistinguishable. We also consider the novel optimization objective of torque efficiency and find a very different optimal shape. Excluding effects such as Brownian motion and electrostatic interactions, it is demonstrated that hydrodynamic forces may trap the bacterium in a stable, circular orbit near the boundary, leading to the empirically observable surface accumulation of bacteria. Furthermore, the details and even the existence of this stable orbit depend on geometrical parameters of the bacterium, as described in this article. These results shed some light on the phenomenon of surface accumulation of micro-organisms and offer hydrodynamic explanations as to why some bacteria may accumulate more readily than others based on morphology. © 2010 The Royal Society.

  6. Homogenization of the stochastic Navier–Stokes equation with a stochastic slip boundary condition

    KAUST Repository

    Bessaih, Hakima

    2015-11-02

    The two-dimensional Navier–Stokes equation in a perforated domain with a dynamical slip boundary condition is considered. We assume that the dynamic is driven by a stochastic perturbation on the interior of the domain and another stochastic perturbation on the boundaries of the holes. We consider a scaling (ᵋ for the viscosity and 1 for the density) that will lead to a time-dependent limit problem. However, the noncritical scaling (ᵋ, β > 1) is considered in front of the nonlinear term. The homogenized system in the limit is obtained as a Darcy’s law with memory with two permeabilities and an extra term that is due to the stochastic perturbation on the boundary of the holes. The nonhomogeneity on the boundary contains a stochastic part that yields in the limit an additional term in the Darcy’s law. We use the two-scale convergence method after extending the solution with 0 inside the holes to pass to the limit. By Itô stochastic calculus, we get uniform estimates on the solution in appropriate spaces. Due to the stochastic integral, the pressure that appears in the variational formulation does not have enough regularity in time. This fact made us rely only on the variational formulation for the passage to the limit on the solution. We obtain a variational formulation for the limit that is solution of a Stokes system with two pressures. This two-scale limit gives rise to three cell problems, two of them give the permeabilities while the third one gives an extra term in the Darcy’s law due to the stochastic perturbation on the boundary of the holes.

  7. Weak solutions to the full Navier-Stokes-Fourier system with slip boundary conditions in time dependent domains

    Czech Academy of Sciences Publication Activity Database

    Kreml, Ondřej; Mácha, Václav; Nečasová, Šárka; Wróblewska-Kamińska, A.

    2018-01-01

    Roč. 109, January (2018), s. 67-92 ISSN 0021-7824 R&D Projects: GA ČR GA13-00522S; GA MŠk(CZ) 7AMB16PL060 Institutional support: RVO:67985840 Keywords : compressible Navier–Stokes–Fourier equations * time-varying domain * slip boundary conditions Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.802, year: 2016 http://www.sciencedirect.com/science/article/pii/S0021782417301381?via%3Dihub

  8. Weak solutions to the full Navier-Stokes-Fourier system with slip boundary conditions in time dependent domains

    Czech Academy of Sciences Publication Activity Database

    Kreml, Ondřej; Mácha, Václav; Nečasová, Šárka; Wróblewska-Kamińska, A.

    2018-01-01

    Roč. 109, January (2018), s. 67-92 ISSN 0021-7824 R&D Projects: GA ČR GA13-00522S; GA MŠk(CZ) 7AMB16PL060 Institutional support: RVO:67985840 Keywords : compressible Navier–Stokes–Fourier equations * time-varying domain * slip boundary conditions Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.802, year: 2016 http://www. science direct.com/ science /article/pii/S0021782417301381?via%3Dihub

  9. Numerical study of magnetohydrodynamics (MHD boundary layer slip flow of a Maxwell nanofluid over an exponentially stretching surface with convective boundary condition

    Directory of Open Access Journals (Sweden)

    P.BalaAnki Reddy

    2017-12-01

    Full Text Available This paper focuses on a theoretical analysis of a steady two-dimensional magnetohydrodynamic boundary layer flow of a Maxwell fluid over an exponentially stretching surface in the presence of velocity slip and convective boundary condition. This model is used for a nanofluid, which incorporates the effects of Brownian motion and thermophoresis. The resulting non-linear partial differential equations of the governing flow field are converted into a system of coupled non-linear ordinary differential equations by using suitable similarity transformations, and the resultant equations are then solved numerically by using Runge-Kutta fourth order method along with shooting technique. A parametric study is conducted to illustrate the behavior of the velocity, temperature and concentration. The influence of significant parameters on velocity, temperature, concentration, skin friction coefficient and Nusselt number has been studied and numerical results are presented graphically and in tabular form. The reported numerical results are compared with previously published works on various special cases and are found to be an in excellent agreement. It is found that momentum boundary layer thickness decreases with the increase of magnetic parameter. It can also be found that the thermal boundary layer thickness increases with Brownian motion and thermophoresis parameters.

  10. Rate-Dependent Slip of Newtonian Liquid at Smooth Surfaces

    International Nuclear Information System (INIS)

    Zhu, Yingxi; Granick, Steve

    2001-01-01

    Newtonian fluids were placed between molecularly smooth surfaces whose spacing was vibrated at spacings where the fluid responded as a continuum. Hydrodynamic forces agreed with predictions from the no-slip boundary condition only provided that flow rate (peak velocity normalized by spacing) was low, but implied partial slip when it exceeded a critical level, different in different systems, correlated with contact angle (surface wettability). With increasing flow rate and partially wetted surfaces, hydrodynamic forces became up to 2--4 orders of magnitude less than expected by assuming the no-slip boundary condition that is commonly stated in textbooks

  11. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    Science.gov (United States)

    Barnhart, William; Briggs, Richard; Reitman, Nadine G.; Gold, Ryan D.; Hayes, Gavin

    2015-01-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip – normal, reverse, or strike-slip – until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200+ km 200+km"> 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  12. A Long-term Slip Model for the San Ramón Fault, Santiago de Chile, from Tectonically Reconcilable Boundary Conditions

    Science.gov (United States)

    Aron, F.; Estay, N.; Cembrano, J. M.; Yanez, G. A.

    2016-12-01

    We constructed a 3D Boundary Elements model simulating subduction of the Nazca plate underneath South America, from 29° to 38° S, to compute long-term surface deformation and slip rates on crustal faults imbedded in the upper-plate wedge of the Andean orogen. We tested our model on the San Ramón Fault (SRF), a major E-dipping, thrust structure limiting the western front of the Main Cordillera with surface expression along the entire, 40 km long, extension of the Santiago de Chile basin. Long-lived thrusting has produced more than 2 km of differential uplift of the mountains. Given its proximity to the country's largest city, this potentially seismogenic fault —dormant during historic times— has drawn increasing public attention. We used earthquake hypocenters captured over a one-year seismic deployment, 2D resistivity profiles, and published geologic cross-sections to determine the geometry of the SRF. The base of the lithosphere and plate interface surfaces were defined based on average Andean values and the Slab1.0 model. The simulation reproduces plate convergence and mechanic decoupling of the lithospheric plates across the subduction seismic cycle using mixed boundary conditions. Relative plate motion is achieved prescribing uniform, far-field horizontal displacement over the depth extension of both the oceanic and continental lithospheric plates. Long-term deformation is carried out in two steps. First, the modeled surfaces are allowed to slip freely emulating continuous slip on the subduction megathrust; subsequently, zero displacement is prescribed on the locking zone of the megathrust down to 40 km depth, while keeping the rest of the surfaces traction free, mimicking interseismic conditions. Long-term slip rate fields obtained for the SRF range between 0.1 and 1% the plate convergence rate, with maximum values near the surface. Interestingly, at an estimated 76-77 mm/yr relative plate motion velocity, those rates agree well with what has been

  13. Evaluation of a new solid boundary implementation in the lattice Boltzmann method for porous media considering permeability and apparent slip.

    Science.gov (United States)

    Moqtaderi, Hamed; Esfahanian, Vahid

    2011-06-13

    The accuracy of solid wall treatment in the lattice Boltzmann method (LBM) simulation of porous structures affects different hydraulic parameters including integral properties, such as permeability, or local phenomena, such as apparent slip. Based on an analysis of the advantages and disadvantages of the current methods, a new technique is introduced for exact boundary extraction from binary representation. Using this technique, the LBM model can simultaneously benefit from the advantages of existing approaches, i.e. the real micro-/nanostructure obtained with X-ray computed tomography, and a reduction in the resolution requirement. To evaluate the technique, permeability and slip length on the solid walls are investigated for a porous gas diffusion layer. The results show acceptable accuracy improvement balanced with computational costs.

  14. Seismic slip recorded in tourmaline fault mirrors from Elba Island (Italy)

    Science.gov (United States)

    Viti, C.; Brogi, A.; Liotta, D.; Mugnaioli, E.; Spiess, R.; Dini, A.; Zucchi, M.; Vannuccini, G.

    2016-05-01

    This paper reports the first example of fault mirrors developed in an unusual protolith, consisting of tourmaline crystals with interstitial goethite. The deformation mechanisms active in the fault zone have been investigated from the outcrop to the nanoscale, aiming to identify possible traces of frictional heating at seismic slip rate, as observed for other fault mirrors in different protoliths. The investigation revealed the superposition of two main deformational stages. The first was dominated by brittle processes and produced a cataclastic/ultracataclastic principal slip zone, a few mm thick; the second was associated with seismic slip and produced a sharp discontinuity (the principal slip surface) within the cataclastic/ultracataclastic zone. The mirror-like coating, a few microns thick, occurs on the principal slip surface, and is characterized by 1) absence of interstitial goethite; 2) occurrence of truncated tourmaline crystals; 3) highly variable grain size, from 200 μm to 200 nm; 4) tourmaline close packing with interlobate grain boundaries, and 5) tourmaline random crystallographic orientation. Micro and nanostructural investigations indicate the occurrence of thermally-activated processes, involving both interstitial goethite and tourmaline. In particular, close to the principal slip surface, goethite is completely decomposed, and produced an amorphous porous material, with local topotactic recrystallization of hematite. Tourmaline clasts are typically characterized by strongly lobate boundaries, indicative of reaction and partial decomposition at grain boundaries. TEM observations revealed the occurrence of tourmaline nanograins, a few tens of nm in size, characterized by rounded shape and fading amorphous boundaries, that cannot be obtained by brittle processes. Lastly, the peculiar interlobate microstructure of the mirror surface is interpreted as the result of grain boundary recrystallization processes taking place by deformation at high

  15. Stagnation point flow and heat transfer over a nonlinear shrinking sheet with slip effects

    Directory of Open Access Journals (Sweden)

    N.F. Fauzi

    2015-12-01

    Full Text Available In this paper, an investigation is performed to analyze the effects of the slip parameters A and B on the steady stagnation-point flow and heat transfer due to a shrinking sheet in a viscous and incompressible fluid. Using similarity transformations, the governing boundary layer equations are transformed into the nonlinear ordinary (similar differential equations. The transformed equations are solved numerically using the shooting method. The dual solutions for velocity and temperature distribution exist for certain values of the positive constant velocity and temperature slip parameters. Likewise, a stability analysis has been performed to find the nature of the dual solutions. The velocity slip will delay the boundary layer separation whereas the temperature slip does not affect the boundary layer separation.

  16. Limits of recovery against slip-induced falls while walking.

    Science.gov (United States)

    Yang, Feng; Bhatt, Tanvi; Pai, Yi-Chung

    2011-10-13

    Slip-induced falls in gait often have devastating consequences. The purposes of this study were 1) to select the determinants that can best discriminate the outcomes (recoveries or falls) of an unannounced slip induced in gait (and to find their corresponding threshold, i.e., the limits of recovery, which can clearly separate these two outcomes), and 2) to verify these results in a subset of repeated-slip trials. Based on the data collected from 69 young subjects during a slip induced in gait, nine different ways of combining the center of mass (COM) stability, the hip height, and its vertical velocity were investigated with the aid of logistic regression. The results revealed that the COM stability (s) and limb support (represented by the quotient of hip vertical velocity to hip height, S(hip)) recorded at the instant immediately prior to the recovery step touchdown were sufficiently sensitive to account for all (100%) variance in falls, and specific enough to account for nearly all (98.3%) variability in recoveries. This boundary (S(hip)=-0.22s-0.25), which quantifies the risk of falls in the stability-limb support quotient (s-S(hip)) domain, was fully verified using second-slip and third-slip trials (n=76) with classification of falls at 100% and recoveries at 98.6%. The severity of an actual fall is likely to be greater further below the boundary, while the likelihood of a fall diminishes above it. Finally, the slope of the boundary also indicates the tradeoff between the stability and limb support, whereby high stability can compensate for the insufficiency in limb support, or vice versa. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Slip flow in graphene nanochannels

    DEFF Research Database (Denmark)

    . Kannam, Sridhar; Billy, Todd; Hansen, Jesper Schmidt

    2011-01-01

    We investigate the hydrodynamic boundary condition for simple nanofluidic systems such as argon and methane flowing in graphene nanochannels using equilibrium molecular dynamics simulations (EMD) in conjunction with our recently proposed method [J. S. Hansen, B. D. Todd, and P. J. Daivis, Phys. Rev....... E 84, 016313 (2011)10.1103/PhysRevE.84.016313]. We first calculate the fluid-graphene interfacial friction coefficient, from which we can predict the slip length and the average velocity of the first fluid layer close to the wall (referred to as the slip velocity). Using direct nonequilibrium...

  18. Investigation of permeability effect on slip velocity and temperature jump boundary conditions for FMWNT/Water nanofluid flow and heat transfer inside a microchannel filled by a porous media

    Science.gov (United States)

    Nojoomizadeh, Mehdi; D'Orazio, Annunziata; Karimipour, Arash; Afrand, Masoud; Goodarzi, Marjan

    2018-03-01

    The fluid flow and heat transfer of a nanofluid is numerically examined in a two dimensional microchannel filled by a porous media. Present nanofluid consists of the functionalized multi-walled carbon nanotubes suspended in water which are enough stable through the base fluid. The homogenous mixture is in the thermal equilibrium which means provide a single phase substance. The porous media is considered as a Darcy- Forchheimer model. Moreover the slip velocity and temperature jump boundary conditions are assumed on the microchannel horizontal sides which mean the influences of permeability and porosity values on theses boundary conditions are presented for the first time at present work. To do this, the wide range of thermo physical parameters are examined as like Da = 0.1 to 0.001, Re = 10,100, dimensionless slip coefficient from 0.001 to 0.1 at different mass fraction of nanoparticles. It is observed that less Darcy number leads to more local Nusselt number and also applying the porous medium corresponds to higher slip velocity.

  19. Application of dynamic slip wall modeling to a turbine nozzle guide vane

    Science.gov (United States)

    Bose, Sanjeeb; Talnikar, Chaitanya; Blonigan, Patrick; Wang, Qiqi

    2015-11-01

    Resolution of near-wall turbulent structures is computational prohibitive necessitating the need for wall-modeled large-eddy simulation approaches. Standard wall models are often based on assumptions of equilibrium boundary layers, which do not necessarily account for the dissimilarity of the momentum and thermal boundary layers. We investigate the use of the dynamic slip wall boundary condition (Bose and Moin, 2014) for the prediction of surface heat transfer on a turbine nozzle guide vane (Arts and de Rouvroit, 1992). The heat transfer coefficient is well predicted by the slip wall model, including capturing the transition to turbulence. The sensitivity of the heat transfer coefficient to the incident turbulence intensity will additionally be discussed. Lastly, the behavior of the thermal and momentum slip lengths will be contrasted between regions where the strong Reynolds analogy is invalid (near transition on the suction side) and an isothermal, zero pressure gradient flat plate boundary layer (Wu and Moin, 2010).

  20. Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes

    Science.gov (United States)

    Wetzler, Nadav; Lay, Thorne; Brodsky, Emily E.; Kanamori, Hiroo

    2018-01-01

    Fault slip during plate boundary earthquakes releases a portion of the shear stress accumulated due to frictional resistance to relative plate motions. Investigation of 101 large [moment magnitude (Mw) ≥ 7] subduction zone plate boundary mainshocks with consistently determined coseismic slip distributions establishes that 15 to 55% of all master event–relocated aftershocks with Mw ≥ 5.2 are located within the slip regions of the mainshock ruptures and few are located in peak slip regions, allowing for uncertainty in the slip models. For the preferred models, cumulative deficiency of aftershocks within the central three-quarters of the scaled slip regions ranges from 15 to 45%, increasing with the total number of observed aftershocks. The spatial gradients of the mainshock coseismic slip concentrate residual shear stress near the slip zone margins and increase stress outside the slip zone, driving both interplate and intraplate aftershock occurrence near the periphery of the mainshock slip. The shear stress reduction in large-slip regions during the mainshock is generally sufficient to preclude further significant rupture during the aftershock sequence, consistent with large-slip areas relocking and not rupturing again for a substantial time. PMID:29487902

  1. Role of discrete intragranular slip on lattice rotations in polycrystalline Ni: Experimental and micromechanical studies

    International Nuclear Information System (INIS)

    Perrin, C.; Berbenni, S.; Vehoff, H.; Berveiller, M.

    2010-01-01

    In this paper, a new micromechanical approach accounting for the discreteness of intragranular slip is used to derive the local misorientations in the case of plastically deformed polycrystalline nickel in uniaxial tension. This intragranular microstructure is characterized in particular single slip grains by atomic force microscopy measurements in the early stage of plastic deformation. The micromechanical modelling accounts for the individual grain size, the spatial distances between active slip bands and the magnitude of slip in bands. The slip bands are modelled using discrete distributions of circular super glide dislocation loops constrained at grain boundaries for a spherical grain boundary embedded in an infinite matrix. In contrast with classic mean field approaches based on Eshelby's plastic inclusion concept, the present model is able to capture different intragranular behaviours between near grain boundary regions and grain interiors. These theoretical results are quantitatively confirmed by local electron backscatter diffraction measurements regarding intragranular misorientation mapping with respect to a reference point in the centre of the grain.

  2. Slip parameters on major thrusts at a convergent plate boundary: regional heterogeneity of potential slip distance at the shallow portion of the subducting plate

    Science.gov (United States)

    Mukoyoshi, Hideki; Kaneki, Shunya; Hirono, Tetsuro

    2018-03-01

    Understanding variations of slip distance along major thrust systems at convergent margins is an important issue for evaluation of near-trench slip and the potential generation of large tsunamis. We derived quantitative estimates of slip along ancient subduction fault systems by using the maturity of carbonaceous material (CM) of discrete slip zones as a proxy for temperature. We first obtained the Raman spectra of CM in ultracataclasite and pseudotachylyte layers in discrete slip zones at depths below the seafloor of 1-4 km and 2.5-5.5 km, respectively. By comparing the area-under-the-peak ratios of graphitic and disordered bands in those Raman spectra with spectra of experimentally heated CM from surrounding rocks, we determined that the ultracataclasite and pseudotachylyte layers had been heated to temperatures of up to 700 and 1300 °C, respectively. Numerical simulation of the thermal history of CM extracted from rocks near the two slip zones, taking into consideration these temperature constraints, indicated that slip distances in the ultracataclasite and pseudotachylyte layers were more than 3 and 7 m, respectively. Thus, potential distance of coseismic slip along the subduction-zone fault system could have regional variations even at shallow depth (≤ 5.5 km). The slip distances we determined probably represent minimum slips for subduction-zone thrusts and thus provide an important contribution to earthquake preparedness plans in coastal areas facing the Nankai and Sagami Troughs.

  3. Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions

    Science.gov (United States)

    Prinari, Barbara; Demontis, Francesco; Li, Sitai; Horikis, Theodoros P.

    2018-04-01

    The inverse scattering transform (IST) with non-zero boundary conditions at infinity is developed for an m × m matrix nonlinear Schrödinger-type equation which, in the case m = 2, has been proposed as a model to describe hyperfine spin F = 1 spinor Bose-Einstein condensates with either repulsive interatomic interactions and anti-ferromagnetic spin-exchange interactions (self-defocusing case), or attractive interatomic interactions and ferromagnetic spin-exchange interactions (self-focusing case). The IST for this system was first presented by Ieda et al. (2007) , using a different approach. In our formulation, both the direct and the inverse problems are posed in terms of a suitable uniformization variable which allows to develop the IST on the standard complex plane, instead of a two-sheeted Riemann surface or the cut plane with discontinuities along the cuts. Analyticity of the scattering eigenfunctions and scattering data, symmetries, properties of the discrete spectrum, and asymptotics are derived. The inverse problem is posed as a Riemann-Hilbert problem for the eigenfunctions, and the reconstruction formula of the potential in terms of eigenfunctions and scattering data is provided. In addition, the general behavior of the soliton solutions is analyzed in detail in the 2 × 2 self-focusing case, including some special solutions not previously discussed in the literature.

  4. Simulation of Micro-Channel and Micro-Orifice Flow Using Lattice Boltzmann Method with Langmuir Slip Model

    Directory of Open Access Journals (Sweden)

    A. R. Rahmati

    2016-12-01

    Full Text Available Because of its kinetic nature and computational advantages, the Lattice Boltzmann method (LBM has been well accepted as a useful tool to simulate micro-scale flows. The slip boundary model plays a crucial role in the accuracy of solutions for micro-channel flow simulations. The most used slip boundary condition is the Maxwell slip model. The results of Maxwell slip model are affected by the accommodation coefficient significantly, but there is not an explicitly relationship between properties at wall and accommodation coefficient. In the present wok, Langmuir slip model is used beside LBM to simulate micro-channel and micro-orifice flows. Slip velocity and nonlinear pressure drop profiles are presented as two major effects in such flows. The results are in good agreement with existing results in the literature.

  5. Effect of slip on heat transfer and entropy generation characteristics of simplified Phan-Thien–Tanner fluids with viscous dissipation under uniform heat flux boundary conditions: Exponential formulation

    International Nuclear Information System (INIS)

    Anand, Vishal

    2016-01-01

    Highlights: • Exponential formulation of s-PTT model used. • Heat transfer and entropy generation characteristics studied. • Effects of three slip laws examined. • Exponential formulation more accurate than linear formulation. - Abstract: This study concerns the heat transfer and entropy generation characteristics of viscoelastic fluid flow modeled by the exponential formulation of simplified Phan-Thien–Tanner (s-PTT) model. This is the first such study in literature of thermal behavior of viscoelastic fluids modeled by the exponential formulation of s-PTT model. The flow between two parallel plates is laminar, hydrodynamically and thermally fully developed, viscous dissipative and subject to uniform heat flux on the walls. The slip velocity boundary condition is imposed on the fluid–solid interface and the slip is captured by three slip laws, namely, Navier's non-linear slip law, Hatzikiriakos slip law, and asymptotic slip law. The governing equations have been solved analytically. Closed form solutions for the velocity distribution have been derived while the temperature distribution is presented in terms of an infinite but convergent series. The results pertaining to the three slip laws have been presented in detail. Finally, a comparison has been made between the results for exponential formulation and those for the linear formulation of the s-PTT model. The comparison shows that results for linear formulation deviate significantly from those for exponential formulation and thus the accuracy of the exponential formulation justifies the extra mathematical complexity which it entails.

  6. Effects of Second-Order Slip and Viscous Dissipation on the Analysis of the Boundary Layer Flow and Heat Transfer Characteristics of a Casson Fluid

    Directory of Open Access Journals (Sweden)

    Mohammad M. Rahman

    2016-11-01

    Full Text Available The aim of the present study is to analyze numerically the steady boundary layer flow and heat transfer characteristics of Casson fluid with variable temperature and viscous dissipation past a permeable shrinking sheet with second order slip velocity. Using appropriate similarity transformations, the basic nonlinear partial differential equations have been transformed into ordinary differential equations. These equations have been solved numerically for different values of the governing parameters namely: shrinking parametersuction parameterCasson parameterfirst order slip parametersecond order slip parameter  Prandtl number  and the Eckert number  using the bvp4c function from MATLAB. A stability analysis has also been performed. Numerical results have been obtained for the reduced skin-friction, heat transfer and the velocity and temperature profiles. The results indicate that dual solutions exist for the shrinking surface for certain values of the parameter space. The stability analysis indicates that the lower solution branch is unstable, while the upper solution branch is stable and physically realizable. In addition, it is shown that for a viscous fluida very good agreement exists between the present numerical results and those reported in the open literature. The present results are original and new for the boundary-layer flow and heat transfer past a shrinking sheet in a Casson fluid. Therefore, this study has importance for researchers working in the area of non-Newtonian fluids, in order for them to become familiar with the flow behavior and properties of such fluids.

  7. Convective boundary layer flow and heat transfer in a nanofluid in the presence of second order slip, constant heat flux and zero nanoparticles flux

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, M.M., E-mail: mansurdu@yahoo.com [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, PO Box 36, PC 123 Al-Khod, Muscat (Oman); Al-Rashdi, Maryam H. [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, PO Box 36, PC 123 Al-Khod, Muscat (Oman); Pop, I. [Department of Mathematics, Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca 400084 (Romania)

    2016-02-15

    Highlights: • Convective boundary layer flow and heat transfer in a nanofluid is investigated. • Second order slip increases the rate of shear stress and decreases the rate of heat transfer in a nanofluid. • In nanofluid flow zero normal flux of the nanoparticles at the surface is realistic to apply. • Multiple solutions are identified for certain values of the parameter space. • The upper branch solution is found to be stable, hence physically realizable. - Abstract: In this work, the effects of the second order slip, constant heat flux, and zero normal flux of the nanoparticles due to thermophoresis on the convective boundary layer flow and heat transfer characteristics in a nanofluid using Buongiorno's model over a permeable shrinking sheet is studied theoretically. The nonlinear coupled similarity equations are solved using the function bvp4c using Matlab. Similarity solutions of the flow, heat transfer and nanoparticles volume fraction are presented graphically for several values of the model parameters. The results show that the application of second order slip at the interface is found to be increased the rate of shear stress and decreased the rate of heat transfer in a nanofluid, so need to be taken into account in nanofluid modeling. The results further indicate that multiple solutions exist for certain values of the parameter space. The stability analysis provides guarantee that the lower branch solution is unstable, while the upper branch solution is stable and physically realizable.

  8. Linear stability analysis of laminar flow near a stagnation point in the slip flow regime

    Science.gov (United States)

    Essaghir, E.; Oubarra, A.; Lahjomri, J.

    2017-12-01

    The aim of the present contribution is to analyze the effect of slip parameter on the stability of a laminar incompressible flow near a stagnation point in the slip flow regime. The analysis is based on the traditional normal mode approach and assumes parallel flow approximation. The Orr-Sommerfeld equation that governs the infinitesimal disturbance of stream function imposed to the steady main flow, which is an exact solution of the Navier-Stokes equation satisfying slip boundary conditions, is obtained by using the powerful spectral Chebyshev collocation method. The results of the effect of slip parameter K on the hydrodynamic characteristics of the base flow, namely the velocity profile, the shear stress profile, the boundary layer, displacement and momentum thicknesses are illustrated and discussed. The numerical data for these characteristics, as well as those of the eigenvalues and the corresponding wave numbers recover the results of the special case of no-slip boundary conditions. They are found to be in good agreement with previous numerical calculations. The effects of slip parameter on the neutral curves of stability, for two-dimensional disturbances in the Reynolds-wave number plane, are then obtained for the first time in the slip flow regime for stagnation point flow. Furthermore, the evolution of the critical Reynolds number against the slip parameter is established. The results show that the critical Reynolds number for instability is significantly increased with the slip parameter and the flow turn out to be more stable when the effect of rarefaction becomes important.

  9. Drag on a slip spherical particle moving in a couple stress fluid

    Directory of Open Access Journals (Sweden)

    E.A. Ashmawy

    2016-06-01

    Full Text Available The creeping motion of a rigid slip sphere in an unbounded couple stress fluid is investigated. The linear slip boundary condition and the vanishing couple stress condition are applied on the surface of the sphere. A simple formula for the drag force acting on a slip sphere translating in an unbounded couple stress fluid is obtained. Special cases of the deduced drag formula are concluded and compared with analogous results in the literature. The normalized drag force experienced by the fluid on the slip sphere is represented graphically and the effects of slip parameter and viscosity coefficients are discussed.

  10. Numerical study of effects of accommodation coefficients on slip phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Jae; Kwon, Oh Joon [KAIST, Daejeon (Korea, Republic of)

    2015-05-15

    An unstructured mesh Navier-Stokes solver employing a Maxwell slip boundary condition was developed. The present flow solver was applied to the simulation of flows around an axisymmetric hollow cylinder in a Mach 10.4 free stream, known as Calspan-UB Research Center (CUBRC) Run 14 case, and the velocity slip and the temperature jump on the cylinder surface were investigated. The effect of tangential momentum and thermal accommodation coefficients used in the Maxwell condition was also investigated by adjusting their values. The results show that the reverse flow region is developed on the body surface due to the interaction between the shock and the boundary layer. Also, the shock impingement makes pressure high. The flow properties on the surface agree well with the experimental data, and the velocity slip and the temperature jump vary consistently with the local Knudsen number change. The accommodation coefficients affect the slip phenomena and the size of the flow region. The slip phenomena become larger when both tangential momentum and thermal accommodation coefficients are decreased. However, the range of the reverse flow region decreases when the momentum accommodation coefficient is decreased. The characteristics of the momentum and thermal accommodation coefficients also are overlapped when they are altered together.

  11. Stress and slip partitioning during oblique rifting: comparison between data from the Main Ethiopian Rift and laboratory experiments

    Science.gov (United States)

    Corti, G.; Philippon, M.; Sani, F.; Keir, D.

    2012-04-01

    Oblique rifting in the central and northern Main Ethiopian Rift (MER) has resulted in a complex structural pattern characterized by two differently oriented fault systems: a set of NE-SW-trending boundary faults and a system of roughly NNE-SSW-oriented fault swarms affecting the rift floor (Wonji faults). Boundary faults formed oblique to the regional extension vector, likely as a result of the oblique reactivation of a pre-existing deep-seated rheological anisotropy, whereas internal Wonji faults developed sub-orthogonal to the stretching direction. Previous works have successfully reconciled this rift architecture and fault distribution with the long-term plate kinematics; however, at a more local scale, fault-slip and earthquake data reveal significant variations in the orientation the minimum principal stress and related fault-slip direction across the rift valley. Whereas fault measurements indicate a roughly N95°E extension on the axial Wonji faults, a N105°E to N110°E directed minimum principal stress is observed along boundary faults. Both fault-slip data and analysis of seismicity indicate a roughly pure dip-slip motion on the boundary faults, despite their orientation (oblique to the regional extension vector) should result in an oblique displacement. To shed light on the process driving the variability of data derived from fault-slip (and seismicity) analysis we present crustal-scale analogue models of oblique rifting, deformed in a large-capacity centrifuge by using materials and boundary conditions described in several previous modeling works. As in these previous works, the experiments show the diachronous activation of two fault systems, boundary and internal, whose pattern strikingly resemble that observed in previous lithospheric-scale modeling, as well as that described in the MER. Internal faults arrange in two different, en-echelon segments connected by a transfer zone where strike-slip displacement dominates. Whereas internal faults develop

  12. Divergence-Free Wavelets on the Hypercube : General Boundary Conditions

    NARCIS (Netherlands)

    Stevenson, R.

    2016-01-01

    On the n-dimensional hypercube, for given k∈N, wavelet Riesz bases are constructed for the subspace of divergence-free vector fields of the Sobolev space Hk((0,1)n)n with general homogeneous Dirichlet boundary conditions, including slip or no-slip boundary conditions. Both primal and suitable dual

  13. Strike-slip tectonics during rift linkage

    Science.gov (United States)

    Pagli, C.; Yun, S. H.; Ebinger, C.; Keir, D.; Wang, H.

    2017-12-01

    The kinematics of triple junction linkage and the initiation of transforms in magmatic rifts remain debated. Strain patterns from the Afar triple junction provide tests of current models of how rifts grow to link in area of incipient oceanic spreading. Here we present a combined analysis of seismicity, InSAR and GPS derived strain rate maps to reveal that the plate boundary deformation in Afar is accommodated primarily by extensional tectonics in the Red Sea and Gulf of Aden rifts, and does not require large rotations about vertical axes (bookshelf faulting). Additionally, models of stress changes and seismicity induced by recent dykes in one sector of the Afar triple junction provide poor fit to the observed strike-slip earthquakes. Instead we explain these patterns as rift-perpendicular shearing at the tips of spreading rifts where extensional strains terminate against less stretched lithosphere. Our results demonstrate that rift-perpendicular strike-slip faulting between rift segments achieves plate boundary linkage during incipient seafloor spreading.

  14. Seismic and geodetic signatures of fault slip at the Slumgullion Landslide Natural Laboratory

    Science.gov (United States)

    Gomberg, J.; Schulz, W.; Bodin, P.; Kean, J.

    2011-01-01

    We tested the hypothesis that the Slumgullion landslide is a useful natural laboratory for observing fault slip, specifically that slip along its basal surface and side-bounding strike-slip faults occurs with comparable richness of aseismic and seismic modes as along crustal- and plate-scale boundaries. Our study provides new constraints on models governing landslide motion. We monitored landslide deformation with temporary deployments of a 29-element prism array surveyed by a robotic theodolite and an 88-station seismic network that complemented permanent extensometers and environmental instrumentation. Aseismic deformation observations show that large blocks of the landslide move steadily at approximately centimeters per day, possibly punctuated by variations of a few millimeters, while localized transient slip episodes of blocks less than a few tens of meters across occur frequently. We recorded a rich variety of seismic signals, nearly all of which originated outside the monitoring network boundaries or from the side-bounding strike-slip faults. The landslide basal surface beneath our seismic network likely slipped almost completely aseismically. Our results provide independent corroboration of previous inferences that dilatant strengthening along sections of the side-bounding strike-slip faults controls the overall landslide motion, acting as seismically radiating brakes that limit acceleration of the aseismically slipping basal surface. Dilatant strengthening has also been invoked in recent models of transient slip and tremor sources along crustal- and plate-scale faults suggesting that the landslide may indeed be a useful natural laboratory for testing predictions of specific mechanisms that control fault slip at all scales.

  15. Experimental investigation of flow and slip transition in nanochannels

    Science.gov (United States)

    Li, Zhigang; Li, Long; Mo, Jingwen

    2014-11-01

    Flow slip in nanochannels is sought in many applications, such as sea water desalination and molecular separation, because it can enhance fluid transport, which is essential in nanofluidic systems. Previous findings about the slip length for simple fluids at the nanoscale appear to be controversial. Some experiments and simulations showed that the slip length is independent of shear rate, which agrees with the prediction of classic slip theories. However, there is increasing work showing that slip length is shear rate dependent. In this work, we experimentally investigate the Poiseuille flows in nanochannels. It is found that the flow rate undergoes a transition between two linear regimes as the shear rate is varied. The transition indicates that the non-slip boundary condition is valid at low shear rate. When the shear rate is larger than a critical value, slip takes place and the slip length increases linearly with increasing shear rate before approaching a constant value. The results reported in this work can help advance the understanding of flow slip in nanochannels. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region under Grant Nos. 615710 and 615312. J. Mo was partially supported by the Postgraduate Scholarship through the Energy Program at HKUST.

  16. The morphology of strike-slip faults - Examples from the San Andreas Fault, California

    Science.gov (United States)

    Bilham, Roger; King, Geoffrey

    1989-01-01

    The dilatational strains associated with vertical faults embedded in a horizontal plate are examined in the framework of fault kinematics and simple displacement boundary conditions. Using boundary element methods, a sequence of examples of dilatational strain fields associated with commonly occurring strike-slip fault zone features (bends, offsets, finite rupture lengths, and nonuniform slip distributions) is derived. The combinations of these strain fields are then used to examine the Parkfield region of the San Andreas fault system in central California.

  17. In-situ analysis of the slip activity during tensile deformation of cast and extruded Mg-10Gd-3Y-0.5Zr (wt.%) at 250 °C

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Boehlert, C.J., E-mail: boehlert@egr.msu.edu [Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824 (United States); Wang, Q.D., E-mail: wangqudong@sjtu.edu.cn [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Yin, D.D. [Key Laboratory of Advanced Materials Technology under Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Ding, W.J. [National Engineering Research Center of Light Alloy Net Forming, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); The State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2016-06-15

    The slip activity and slip interaction in tensile deformation of peak-aged cast and extruded Mg-10Gd-3Y-0.5Zr (wt.%) at 250 °C was investigated using in-situ scanning electron microscopy. Basal slip was the most likely system to be activated during the tensile deformation, while prismatic < a > and pyramidal < c + a > slip also contributed to the deformation. No twinning was observed. The number of non-basal slip systems accounted for ~ 36% of the total active slip systems for the cast alloy, while non-basal slip accounted for 12–17% of the total deformation observations in the extruded alloy. Multiple-slip was observed within grains, and the basal/prismatic pairing type dominated the multiple-slip observations. Slip transfer occurred across grain boundaries and most of the slip transfer observations showed basal-basal type. The involved slip systems of slip transfer pairs were always associated with the same < a > direction. The slip transfer occurred more easily at low angle boundaries (LABs) and boundaries with misorientations greater than 75°. - Highlights: • Slip deformation of a Mg-RE alloy at 250 °C was investigated using in-situ SEM. • The extruded-T5 GW103 alloy did not exhibit a high anisotropic behavior. • Multiple-slip was observed within grains, and basal/prismatic type dominated. • Slip transfer occurred and most of the observations showed basal-basal type. • Slip transfer occurred more easily at LABs and boundaries with misorientations > 75°.

  18. Non-zero total correlation means non-zero quantum correlation

    International Nuclear Information System (INIS)

    Li, Bo; Chen, Lin; Fan, Heng

    2014-01-01

    We investigated the super quantum discord based on weak measurements. The super quantum discord is an extension of the standard quantum discord defined by projective measurements and also describes the quantumness of correlations. We provide some equivalent conditions for zero super quantum discord by using quantum discord, classical correlation and mutual information. In particular, we find that the super quantum discord is zero only for product states, which have zero mutual information. This result suggests that non-zero correlations can always be detected using the quantum correlation with weak measurements. As an example, we present the assisted state-discrimination method.

  19. A numerical study of magnetohydrodynamics flow in Casson nanofluid combined with Joule heating and slip boundary conditions

    Directory of Open Access Journals (Sweden)

    A. Kamran

    Full Text Available A numerical study of Casson nanofluid past horizontal stretching surface with magnetic effect and Joule heating are presented. Slip and thermal convective boundary conditions are considered in the study. A numerical technique of Keller box is applied to the nonlinear ODEs which are obtained by applying the similarity transformation to the nonlinear partial differential equations. The magnetic field and Joule heating effects are observed graphically. Also the strength of convective heat exchange (Nusselt number and the strength of mass exchange (Sherwood number are analyzed. It is noted that Nusselt number declines whereas Sherwood number rises by increasing Eckert number. The impact of increasing Hartman number resulted in the decrease of both Sherwood and Nusselt number. Keywords: Casson nanofluid, Magnetohydrodynamic, Joule heating, Keller box method

  20. Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator

    International Nuclear Information System (INIS)

    Li Qun-Hong; Chen Yu-Ming; Qin Zhi-Ying

    2011-01-01

    The stick-slip behavior in friction oscillators is very complicated due to the non-smoothness of the dry friction, which is the basic form of motion of dynamical systems with friction. In this paper, the stick-slip periodic solution in a single-degree-of-freedom oscillator with dry friction is investigated in detail. Under the assumption of kinetic friction being the Coulomb friction, the existence of the stick-slip periodic solution is considered to give out an analytic criterion in a class of friction systems. A two-parameter unfolding diagram is also described. Moreover, the time and states of motion on the boundary of the stick and slip motions are semi-analytically obtained in a single stick-slip period. (general)

  1. Shallow very-low-frequency earthquakes accompanied with slow slip event along the plate boundary of the Nankai trough

    Science.gov (United States)

    Nakano, M.; Hori, T.; Araki, E.; Kodaira, S.; Ide, S.

    2017-12-01

    Recent improvements of seismic and geodetic observations have revealed the existence of a new family of slow earthquakes occurring along or close to the plate boundary worldwide. In the viewpoint of the characteristic time scales, the slow earthquakes can be classified into several groups as low-frequency tremor or tectonic tremor (LFT) dominated in several hertz, very-low-frequency earthquake (VLFE) dominated in 10 to 100 s, and short- and long-term slow-slip event (SSE) with durations of days to years. In many cases, these slow earthquakes are accompanied with other types of slow events. However, the events occurring offshore, especially beneath the toe of accretionary prism, are poorly understood because of the difficulty to detect signals. Utilizing the data captured from oceanfloor observation networks which many efforts have recently been taken to develop is necessary to improve our understandings for these events. Here, we investigated CMT analysis of shallow VLFEs using data obtained from DONET oceanfloor observation networks along the Nankai trough, southwest of Japan. We found that shallow VLFEs have almost identical history of moment release with that of synchronous SSE which occurred at the same region recently found by Araki et al. (2017). VLFE sources show updip migrations during the activity, coincident with the migration of SSE source. From these findings we conclude that these slow events share the same fault slip, and VLFE represent high-frequency fluctuations of slip during SSE. This result imply that shallow SSE along the plate interface would have occurred in the background during the shallow VLFE activities repeatedly observed along the Nankai trough, but the SSE was not reported because of difficult detections.

  2. Fluid flow and heat transfer of carbon nanotubes along a flat plate with Navier slip boundary

    Science.gov (United States)

    Khan, W. A.; Khan, Z. H.; Rahi, M.

    2014-06-01

    Homogeneous flow model is used to study the flow and heat transfer of carbon nanotubes (CNTs) along a flat plate subjected to Navier slip and uniform heat flux boundary conditions. This is the first paper on the flow and heat transfer of CNTs along a flat plate. Two types of CNTs, namely, single- and multi-wall CNTs are used with water, kerosene or engine oil as base fluids. The empirical correlations are used for the thermophysical properties of CNTs in terms of the solid volume fraction of CNTs. For the effective thermal conductivity of CNTs, Xue (Phys B Condens Matter 368:302-307, 2005) model has been used and the results are compared with the existing theoretical models. The governing partial differential equations and boundary conditions are converted into a set of nonlinear ordinary differential equations using suitable similarity transformations. These equations are solved numerically using a very efficient finite difference method with shooting scheme. The effects of the governing parameters on the dimensionless velocity, temperature, skin friction, and Nusselt numbers are investigated and presented in graphical and tabular forms. The numerical results of skin friction and Nusselt numbers are compared with the available data for special cases and are found in good agreement.

  3. Effect of polymer melt wall slip on the flow balance of profile extrusion dies

    Science.gov (United States)

    Carneiro, Olga S.; Ferrás, Luís L.; Pinho, Fernando T.; Nóbrega, João M.

    2013-04-01

    This work describes the implementation of the wall slip boundary condition in an in-house developed 3D numerical code based on the Finite Volume Method. For this purpose, several phenomenological models relating the velocity and the shear stress at the wall were implemented. This new feature is verified using a simple case study, by comparing the numerical results with those obtained through the corresponding analytical solution. Then, the potentialities of the new code are illustrated performing flow simulations of a polymer melt in a complex flow channel. The results obtained show that the slip at the wall influences the flow distribution at the die flow channel outlet. Therefore, and to assess the relevance of slippage in the optimal die geometry, the automatic optimization of a die flow channel, required for the production of a specific thermoplastic profile, is performed using both the no-slip and slip boundary conditions, together with two alternative optimization strategies. It is shown that slip favors the flow balance of the dies and also other issues of its performance.

  4. Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate

    Science.gov (United States)

    Ramli, Norshafira; Ahmad, Syakila; Pop, Ioan

    2017-08-01

    In this study, the problem of MHD flow and heat transfer of ferrofluids over a moving flat plate with slip effect and uniform heat flux is considered. The governing ordinary differential equations are solved via shooting method. The effect of slip parameter on the dimensionless velocity, temperature, skin friction and Nusselt numbers are numerically studied for the three selected ferroparticles; magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Mn-Zn ferrite (Mn-ZnFe2O4) with water-based fluid. The results indicate that dual solutions exist for a plate moving towards the origin. It is found that the slip process delays the boundary layer separation. Moreover, the velocity and thermal boundary-layer thicknesses decrease in the first solution while increase with the increase of the value of slip parameters in second solution.

  5. Shallow very-low-frequency earthquakes accompany slow slip events in the Nankai subduction zone.

    Science.gov (United States)

    Nakano, Masaru; Hori, Takane; Araki, Eiichiro; Kodaira, Shuichi; Ide, Satoshi

    2018-03-14

    Recent studies of slow earthquakes along plate boundaries have shown that tectonic tremor, low-frequency earthquakes, very-low-frequency events (VLFEs), and slow-slip events (SSEs) often accompany each other and appear to share common source faults. However, the source processes of slow events occurring in the shallow part of plate boundaries are not well known because seismic observations have been limited to land-based stations, which offer poor resolution beneath offshore plate boundaries. Here we use data obtained from seafloor observation networks in the Nankai trough, southwest of Japan, to investigate shallow VLFEs in detail. Coincident with the VLFE activity, signals indicative of shallow SSEs were detected by geodetic observations at seafloor borehole observatories in the same region. We find that the shallow VLFEs and SSEs share common source regions and almost identical time histories of moment release. We conclude that these slow events arise from the same fault slip and that VLFEs represent relatively high-frequency fluctuations of slip during SSEs.

  6. Is the boundary layer of an ionic liquid equally lubricating at higher temperature?

    Science.gov (United States)

    Hjalmarsson, Nicklas; Atkin, Rob; Rutland, Mark W

    2016-04-07

    Atomic force microscopy has been used to study the effect of temperature on normal forces and friction for the room temperature ionic liquid (IL) ethylammonium nitrate (EAN), confined between mica and a silica colloid probe at 25 °C, 50 °C, and 80 °C. Force curves revealed a strong fluid dynamic influence at room temperature, which was greatly reduced at elevated temperatures due to the reduced liquid viscosity. A fluid dynamic analysis reveals that bulk viscosity is manifested at large separation but that EAN displays a nonzero slip, indicating a region of different viscosity near the surface. At high temperatures, the reduction in fluid dynamic force reveals step-like force curves, similar to those found at room temperature using much lower scan rates. The ionic liquid boundary layer remains adsorbed to the solid surface even at high temperature, which provides a mechanism for lubrication when fluid dynamic lubrication is strongly reduced. The friction data reveals a decrease in absolute friction force with increasing temperature, which is associated with increased thermal motion and reduced viscosity of the near surface layers but, consistent with the normal force data, boundary layer lubrication was unaffected. The implications for ILs as lubricants are discussed in terms of the behaviour of this well characterised system.

  7. Contact line motion in confined liquid–gas systems: Slip versus phase transition

    KAUST Repository

    Xu, Xinpeng

    2010-11-30

    In two-phase flows, the interface intervening between the two fluid phases intersects the solid wall at the contact line. A classical problem in continuum fluid mechanics is the incompatibility between the moving contact line and the no-slip boundary condition, as the latter leads to a nonintegrable stress singularity. Recently, various diffuse-interface models have been proposed to explain the contact line motion using mechanisms missing from the sharp-interface treatments in fluid mechanics. In one-component two-phase (liquid–gas) systems, the contact line can move through the mass transport across the interface while in two-component (binary) fluids, the contact line can move through diffusive transport across the interface. While these mechanisms alone suffice to remove the stress singularity, the role of fluid slip at solid surface needs to be taken into account as well. In this paper, we apply the diffuse-interface modeling to the study of contact line motion in one-component liquid–gas systems, with the fluid slip fully taken into account. The dynamic van der Waals theory has been presented for one-component fluids, capable of describing the two-phase hydrodynamics involving the liquid–gas transition [A. Onuki, Phys. Rev. E 75, 036304 (2007)]. This theory assumes the local equilibrium condition at the solid surface for density and also the no-slip boundary condition for velocity. We use its hydrodynamicequations to describe the continuum hydrodynamics in the bulk region and derive the more general boundary conditions by introducing additional dissipative processes at the fluid–solid interface. The positive definiteness of entropy production rate is the guiding principle of our derivation. Numerical simulations based on a finite-difference algorithm have been carried out to investigate the dynamic effects of the newly derived boundary conditions, showing that the contact line can move through both phase transition and slip, with their relative

  8. Heterogeneous distribution of pelagic sediments incoming the Japan Trench possibly controlling slip propagation on shallow plate boundary fault

    Science.gov (United States)

    Yamaguchi, A.; Nakamura, Y.; Fukuchi, R.; Kurano, H.; Ikehara, K.; Kanamatsu, T.; Arai, K.; Usami, K.; Ashi, J.

    2017-12-01

    Catastrophic tsunami of the 2011 Tohoku Earthquake was triggered by large coseismic slip reached to the Japan Trench axis (e.g. Fujiwara et al., 2011, Science; Kodaira et al., 2012, Nature Geoscience). Results of the IODP Expedition 343 (JFAST) suggest that small friction of smectite-rich pelagic clay caused slip propagation on shallow plate boundary fault (Ujiie et al., 2013, Science; Kameda et al., 2015, Geology; Moore et al., 2015, Geosphere). On the other hand, JAMSTEC high-resolution seismic profiles show that incoming sediments have large heterogeneities in thicknesses, and two areas of extremely thin sediments on the Pacific Plate (thickness less than 100 m) were found at around 39°N (Nakamura et al., AGU 2017, this session). To reconcile whether the smectite-rich pelagic clay even exists in these areas, we sampled surface sediments during the R/V Shinsei Maru KS-15-3 cruise. Seven piston cores were retrieved from seaward trench slope, horst, graben, and graben edge. Core lithologies are mainly diatomaceous ooze/clay including tephra layers, not resemble to pelagic clays discovered in JFAST. Ages of tephra layers were estimated by correlating mineral assemblages and refractive indices of volcanic glasses to Japanese widespread tephras. Averaged sedimentation rates of seaward trench slope, horst, graben, and graben edge are estimated to be 25-30, 6.5-20, 45, 0.9 cm/kyr, respectively. These sedimentation rates imply that sediments on seaward trench slope and horst have been deposited in the last 160-500 kyr, suggesting that entire pelagic sediments, including smectite-rich pelagic clay, have been removed by some reasons in the last 0.5 million years. Possible reason for such modification of sediment is near-trench igneous activity known as petit-spot volcanism (Hirano et al., 2006, Science). The lack of smectite-rich pelagic clay near 39°N of the Japan Trench is consistent with results of tsunami inversions proposing shallow large coseismic slip propagated

  9. Flow stress anisotropy caused by geometrically necessary boundaries

    DEFF Research Database (Denmark)

    Hansen, N.; Juul Jensen, D.

    1992-01-01

    of dislocations. A model has been proposed for this microstructural anisotropy based on the assumptions that (i) the average slip plane is at an angle of 45-degrees to the direction of the applied stress and that (ii) a strengthening parameter is the mean distance in the slip plane between the geometrically...... necessary boundaries. For different macroscopic arrangements of such boundaries, the model predictions are in good qualitative and quantitative agreement with experiments....

  10. Effect of texture randomization on the slip and interfacial robustness in turbulent flows over superhydrophobic surfaces

    Science.gov (United States)

    Seo, Jongmin; Mani, Ali

    2018-04-01

    Superhydrophobic surfaces demonstrate promising potential for skin friction reduction in naval and hydrodynamic applications. Recent developments of superhydrophobic surfaces aiming for scalable applications use random distribution of roughness, such as spray coating and etched process. However, most previous analyses of the interaction between flows and superhydrophobic surfaces studied periodic geometries that are economically feasible only in laboratory-scale experiments. In order to assess the drag reduction effectiveness as well as interfacial robustness of superhydrophobic surfaces with randomly distributed textures, we conduct direct numerical simulations of turbulent flows over randomly patterned interfaces considering a range of texture widths w+≈4 -26 , and solid fractions ϕs=11 %-25 % . Slip and no-slip boundary conditions are implemented in a pattern, modeling the presence of gas-liquid interfaces and solid elements. Our results indicate that slip of randomly distributed textures under turbulent flows is about 30 % less than those of surfaces with aligned features of the same size. In the small texture size limit w+≈4 , the slip length of the randomly distributed textures in turbulent flows is well described by a previously introduced Stokes flow solution of randomly distributed shear-free holes. By comparing DNS results for patterned slip and no-slip boundary against the corresponding homogenized slip length boundary conditions, we show that turbulent flows over randomly distributed posts can be represented by an isotropic slip length in streamwise and spanwise direction. The average pressure fluctuation on a gas pocket is similar to that of the aligned features with the same texture size and gas fraction, but the maximum interface deformation at the leading edge of the roughness element is about twice as large when the textures are randomly distributed. The presented analyses provide insights on implications of texture randomness on drag

  11. Boundary induced nonlinearities at small Reynolds numbers

    NARCIS (Netherlands)

    Sbragaglia, M.; Sugiyama, K.

    2007-01-01

    We investigate the importance of boundary slip at finite Reynolds numbers for mixed boundary conditions. Nonlinear effects are induced by the non-homogeneity of the boundary condition and change the symmetry properties of the flow with an overall mean flow reduction. To explain the observed drag

  12. Maximum principles for boundary-degenerate linear parabolic differential operators

    OpenAIRE

    Feehan, Paul M. N.

    2013-01-01

    We develop weak and strong maximum principles for boundary-degenerate, linear, parabolic, second-order partial differential operators, $Lu := -u_t-\\tr(aD^2u)-\\langle b, Du\\rangle + cu$, with \\emph{partial} Dirichlet boundary conditions. The coefficient, $a(t,x)$, is assumed to vanish along a non-empty open subset, $\\mydirac_0!\\sQ$, called the \\emph{degenerate boundary portion}, of the parabolic boundary, $\\mydirac!\\sQ$, of the domain $\\sQ\\subset\\RR^{d+1}$, while $a(t,x)$ may be non-zero at po...

  13. Fluid-solid boundary conditions for multiparticle collision dynamics

    International Nuclear Information System (INIS)

    Whitmer, Jonathan K; Luijten, Erik

    2010-01-01

    The simulation of colloidal particles suspended in solvent requires an accurate representation of the interactions between the colloids and the solvent molecules. Using the multiparticle collision dynamics method, we examine several proposals for stick boundary conditions, studying their properties in both plane Poiseuille flow (where fluid interacts with the boundary of a stationary macroscopic solid) and particle-based colloid simulations (where the boundaries are thermally affected and in motion). In addition, our simulations compare various collision rules designed to remove spurious slip near solid surfaces, and the effects of these rules on the thermal motion of colloidal particles. Furthermore, we demonstrate that stochastic reflection of the fluid at solid boundaries fails to faithfully represent stick boundary conditions, and conclude that bounce-back conditions should be applied at both mobile and stationary surfaces. Finally, we generalize these ideas to create partial slip boundary conditions at both stationary and mobile surfaces.

  14. Role of Transtension in Rifting at the Pacific-North America Plate Boundary

    Science.gov (United States)

    Stock, J. M.

    2011-12-01

    Transtensional plate motion can be accommodated either in a localized zone of transtensional rifting or over a broader region. Broader zones of deformation can be classified either as diffuse deformation or strain partitioning (one or more major strike-slip shear zones geographically offset from a region of a extensional faulting). The Pacific-North America plate boundary in southwestern North America was transtensional during much of its history and has exhibited the full range of these behaviors at different spatial scales and in different locations, as recorded by fault motions and paleomagnetic rotations. Here we focus on the northern Gulf of California part of the plate boundary (Upper and Lower Delfin basin segments), which has been in a zone of transtensional Pacific-North America plate boundary motion ever since the middle Miocene demise of adjacent Farallon-derived microplates. Prior to the middle Miocene, during the time of microplate activity, this sector of North America experienced basin-and-range normal faults (core complexes) in Sonora. However there is no evidence of continued extensional faulting nor of a Gulf-related topographic depression until after ca 12 Ma when a major ignimbrite (Tuff of San Felipe/ Ignimbrite of Hermosillo) was deposited across the entire region of the future Gulf of California rift in this sector. After 12 Ma, faults disrupted this marker bed in eastern Baja California and western Sonora, and some major NNW-striking right-lateral faults are inferred to have developed near the Sonoran coast causing offset of some of the volcanic facies. However, there are major tectonic rotations of the volcanic rocks in NE Baja California between 12 and 6 Ma, suggesting that the plate boundary motion was still occurring over a broad region. By contrast, after about 6 Ma, diminished rotations in latest Miocene and Pliocene volcanic rocks, as well as fault slip histories, show that plate boundary deformation became localized to a narrower

  15. Flow boundary conditions for chain-end adsorbing polymer blends.

    Science.gov (United States)

    Zhou, Xin; Andrienko, Denis; Delle Site, Luigi; Kremer, Kurt

    2005-09-08

    Using the phenol-terminated polycarbonate blend as an example, we demonstrate that the hydrodynamic boundary conditions for a flow of an adsorbing polymer melt are extremely sensitive to the structure of the epitaxial layer. Under shear, the adsorbed parts (chain ends) of the polymer melt move along the equipotential lines of the surface potential whereas the adsorbed additives serve as the surface defects. In response to the increase of the number of the adsorbed additives the surface layer becomes thinner and solidifies. This results in a gradual transition from the slip to the no-slip boundary condition for the melt flow, with a nonmonotonic dependence of the slip length on the surface concentration of the adsorbed ends.

  16. "Virtual shear box" experiments of stress and slip cycling within a subduction interface mélange

    Science.gov (United States)

    Webber, Sam; Ellis, Susan; Fagereng, Åke

    2018-04-01

    What role does the progressive geometric evolution of subduction-related mélange shear zones play in the development of strain transients? We use a "virtual shear box" experiment, based on outcrop-scale observations from an ancient exhumed subduction interface - the Chrystalls Beach Complex (CBC), New Zealand - to constrain numerical models of slip processes within a meters-thick shear zone. The CBC is dominated by large, competent clasts surrounded by interconnected weak matrix. Under constant slip velocity boundary conditions, models of the CBC produce stress cycling behavior, accompanied by mixed brittle-viscous deformation. This occurs as a consequence of the reorganization of competent clasts, and the progressive development and breakdown of stress bridges as clasts mutually obstruct one another. Under constant shear stress boundary conditions, the models show periods of relative inactivity punctuated by aseismic episodic slip at rapid rates (meters per year). Such a process may contribute to the development of strain transients such as slow slip.

  17. Boundary layer friction of solvate ionic liquids as a function of potential.

    Science.gov (United States)

    Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob

    2017-07-01

    Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.

  18. A Study of Interactions Between Thrust and Strike-slip Faults

    Directory of Open Access Journals (Sweden)

    Jeng-Cheng Wang

    2013-01-01

    Full Text Available A 3-D finite difference method is applied in this study to investigate a spontaneous rupture within a fault system which includes a primary thrust fault and two strike-slip sub-faults. With the occurrence of a rupture on a fault, the rupture condition follows Coulomb¡¦s friction law wherein the stress-slip obeys the slip-weakening fracture criteria. To overcome the geometrical complexity of such a system, a finite difference method is encoded in two different coordinate systems; then, the calculated displacements are connected between the two systems using a 2-D interpolation technique. The rupture is initiated at the center of the main fault under the compression of regional tectonic stresses and then propagates to the boundaries whereby the main fault rupture triggers two strike-slip sub-faults. Simulation results suggest that the triggering of two sub-faults is attributed to two primary factors, regional tectonic stresses and the relative distances between the two sub-faults and the main fault.

  19. Influence of competition between intragranular dislocation nucleation and intergranular slip transfer on mechanical properties of ultrafine-grained metals

    International Nuclear Information System (INIS)

    Tsuru, Tomohito; Kaji, Yoshiyuki; Aoyagi, Yoshiteru; Shimokawa, Tomotsugu

    2013-01-01

    Huge-scale atomistic simulations of shear deformation tests to the aluminum polycrystalline thin film containing the Frank-Read source are performed to elucidate the relationship between the inter- and intragranular plastic deformation processes and the mechanical properties of ultrafine-grained metals. Two-types of polycrystalline models, which consist of several grain boundaries reproducing easy and hard slip transfer, respectively, are prepared to investigate the effect of grain boundary on flow stress. While the first plastic deformation occurs by the dislocation bow-out motion within the grain region for both models, the subsequent plastic deformation is strongly influenced by the resistance of the slip transfer by dislocation transmission through grain boundaries. The influence of the competition between the intragranular dislocation nucleation and intergranular slip transfer on the material strength is considered. The nanostructured material's strength depending on local defect structures associated with grain size and dislocation source length is assessed quantitatively. (author)

  20. Block and sub-block boundary strengthening in lath martensite

    NARCIS (Netherlands)

    Du, C.; Hoefnagels, J.P.M.; Vaes, R.; Geers, M.G.D.

    2016-01-01

    Well-defined uniaxial micro-tensile tests were performed on lath martensite single block specimens and multi-block specimens with different number of block boundaries parallel to the loading direction. Detailed slip trace analyses consistently revealed that in the {110}<111> slip system with the

  1. How Long Is Long Enough? Estimation of Slip-Rate and Earthquake Recurrence Interval on a Simple Plate-Boundary Fault Using 3D Paleoseismic Trenching

    Science.gov (United States)

    Wechsler, N.; Rockwell, T. K.; Klinger, Y.; Agnon, A.; Marco, S.

    2012-12-01

    Models used to forecast future seismicity make fundamental assumptions about the behavior of faults and fault systems in the long term, but in many cases this long-term behavior is assumed using short-term and perhaps non-representative observations. The question arises - how long of a record is long enough to represent actual fault behavior, both in terms of recurrence of earthquakes and of moment release (aka slip-rate). We test earthquake recurrence and slip models via high-resolution three-dimensional trenching of the Beteiha (Bet-Zayda) site on the Dead Sea Transform (DST) in northern Israel. We extend the earthquake history of this simple plate boundary fault to establish slip rate for the past 3-4kyr, to determine the amount of slip per event and to study the fundamental behavior, thereby testing competing rupture models (characteristic, slip-patch, slip-loading, and Gutenberg Richter type distribution). To this end we opened more than 900m of trenches, mapped 8 buried channels and dated more than 80 radiocarbon samples. By mapping buried channels, offset by the DST on both sides of the fault, we obtained for each an estimate of displacement. Coupled with fault crossing trenches to determine event history, we construct earthquake and slip history for the fault for the past 2kyr. We observe evidence for a total of 9-10 surface-rupturing earthquakes with varying offset amounts. 6-7 events occurred in the 1st millennium, compared to just 2-3 in the 2nd millennium CE. From our observations it is clear that the fault is not behaving in a periodic fashion. A 4kyr old buried channel yields a slip rate of 3.5-4mm/yr, consistent with GPS rates for this segment. Yet in spite of the apparent agreement between GPS, Pleistocene to present slip rate, and the lifetime rate of the DST, the past 800-1000 year period appears deficit in strain release. Thus, in terms of moment release, most of the fault has remained locked and is accumulating elastic strain. In contrast, the

  2. Analysis of slip flow heat transfer between two unsymmetrically

    Indian Academy of Sciences (India)

    This paper presents an analytical investigation to study the heat transfer and fluid flow characteristics in the slip flow region for hydrodynamically and thermally fully developed flow between parallel plates.Both upper and lower plates are subjected to asymmetric heat flux boundary conditions. The effect of first ordervelocity ...

  3. Slip initiation in alternative and slip-resistant footwear.

    Science.gov (United States)

    Chander, Harish; Wade, Chip; Garner, John C; Knight, Adam C

    2017-12-01

    Slips occur as a result of failure of normal locomotion. The purpose of this study is to analyze the impact of alternative footwear (Crocs™, flip-flops) and an industry standard low-top slip-resistant shoe (SRS) under multiple gait trials (normal dry, unexpected slip, alert slip and expected slip) on lower extremity joint kinematics, kinetics and muscle activity. Eighteen healthy male participants (age: 22.28 ± 2.2 years; height: 177.66 ± 6.9 cm; mass: 79.27 ± 7.6 kg) completed the study. Kinematic, kinetic and muscle activity variables were analyzed using a 3(footwear) × 4(gait trials) repeated-measures analysis of variance at p = 0.05. Greater plantar flexion angles, lower ground reaction forces and greater muscle activity were seen on slip trials with the alternative footwear. During slip events, SRS closely resembled normal dry biomechanics, suggesting it to be a safer footwear choice compared with alternative footwear.

  4. Stick–slip boundary friction mode as a second-order phase transition with an inhomogeneous distribution of elastic stress in the contact area

    Directory of Open Access Journals (Sweden)

    Iakov A. Lyashenko

    2017-09-01

    Full Text Available This article presents an investigation of the dynamical contact between two atomically flat surfaces separated by an ultrathin lubricant film. Using a thermodynamic approach we describe the second-order phase transition between two structural states of the lubricant which leads to the stick–slip mode of boundary friction. An analytical description and numerical simulation with radial distributions of the order parameter, stress and strain were performed to investigate the spatial inhomogeneity. It is shown that in the case when the driving device is connected to the upper part of the friction block through an elastic spring, the frequency of the melting/solidification phase transitions increases with time.

  5. Slip-flow and heat transfer of a non-newtonian nanofluid in a microtube.

    Science.gov (United States)

    Niu, Jun; Fu, Ceji; Tan, Wenchang

    2012-01-01

    The slip-flow and heat transfer of a non-Newtonian nanofluid in a microtube is theoretically studied. The power-law rheology is adopted to describe the non-Newtonian characteristics of the flow, in which the fluid consistency coefficient and the flow behavior index depend on the nanoparticle volume fraction. The velocity profile, volumetric flow rate and local Nusselt number are calculated for different values of nanoparticle volume fraction and slip length. The results show that the influence of nanoparticle volume fraction on the flow of the nanofluid depends on the pressure gradient, which is quite different from that of the Newtonian nanofluid. Increase of the nanoparticle volume fraction has the effect to impede the flow at a small pressure gradient, but it changes to facilitate the flow when the pressure gradient is large enough. This remarkable phenomenon is observed when the tube radius shrinks to micrometer scale. On the other hand, we find that increase of the slip length always results in larger flow rate of the nanofluid. Furthermore, the heat transfer rate of the nanofluid in the microtube can be enhanced due to the non-Newtonian rheology and slip boundary effects. The thermally fully developed heat transfer rate under constant wall temperature and constant heat flux boundary conditions is also compared.

  6. The quenched limit of lattice QCD at non-zero baryon number

    International Nuclear Information System (INIS)

    Engels, J.; Kaczmarek, O.; Karsch, F.; Laermann, E.

    1999-01-01

    We discuss the thermodynamics of gluons in the background of static quark sources. In order to do so we formulate the quenched limit of QCD at non-zero baryon number. A first numerical analysis of this system shows that it undergoes a smooth deconfining transition. We find evidence for a region of coexisting phases that becomes broader with increasing baryon number density. Although the action is in our formulation explicitly Z(3) symmetric the Polyakov loop expectation value becomes non-zero already in the low temperature phase. It indicates that the heavy quark potential stays finite at large distances, i.e. the string between static quarks breaks at non-zero baryon number density already in the hadronic phase

  7. Thermal Simulations, Open Boundary Conditions and Switches

    Science.gov (United States)

    Burnier, Yannis; Florio, Adrien; Kaczmarek, Olaf; Mazur, Lukas

    2018-03-01

    SU(N) gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  8. Thermal Simulations, Open Boundary Conditions and Switches

    Directory of Open Access Journals (Sweden)

    Burnier Yannis

    2018-01-01

    Full Text Available SU(N gauge theories on compact spaces have a non-trivial vacuum structure characterized by a countable set of topological sectors and their topological charge. In lattice simulations, every topological sector needs to be explored a number of times which reflects its weight in the path integral. Current lattice simulations are impeded by the so-called freezing of the topological charge problem. As the continuum is approached, energy barriers between topological sectors become well defined and the simulations get trapped in a given sector. A possible way out was introduced by Lüscher and Schaefer using open boundary condition in the time extent. However, this solution cannot be used for thermal simulations, where the time direction is required to be periodic. In this proceedings, we present results obtained using open boundary conditions in space, at non-zero temperature. With these conditions, the topological charge is not quantized and the topological barriers are lifted. A downside of this method are the strong finite-size effects introduced by the boundary conditions. We also present some exploratory results which show how these conditions could be used on an algorithmic level to reshuffle the system and generate periodic configurations with non-zero topological charge.

  9. Relaxation of the single-slip condition in strain-gradient plasticity.

    Science.gov (United States)

    Anguige, Keith; Dondl, Patrick W

    2014-09-08

    We consider the variational formulation of both geometrically linear and geometrically nonlinear elasto-plasticity subject to a class of hard single-slip conditions. Such side conditions typically render the associated boundary-value problems non-convex. We show that, for a large class of non-smooth plastic distortions, a given single-slip condition (specification of Burgers vectors) can be relaxed by introducing a microstructure through a two-stage process of mollification and lamination. The relaxed model can be thought of as an aid to simulating macroscopic plastic behaviour without the need to resolve arbitrarily fine spatial scales.

  10. Explicitly represented polygon wall boundary model for the explicit MPS method

    Science.gov (United States)

    Mitsume, Naoto; Yoshimura, Shinobu; Murotani, Kohei; Yamada, Tomonori

    2015-05-01

    This study presents an accurate and robust boundary model, the explicitly represented polygon (ERP) wall boundary model, to treat arbitrarily shaped wall boundaries in the explicit moving particle simulation (E-MPS) method, which is a mesh-free particle method for strong form partial differential equations. The ERP model expresses wall boundaries as polygons, which are explicitly represented without using the distance function. These are derived so that for viscous fluids, and with less computational cost, they satisfy the Neumann boundary condition for the pressure and the slip/no-slip condition on the wall surface. The proposed model is verified and validated by comparing computed results with the theoretical solution, results obtained by other models, and experimental results. Two simulations with complex boundary movements are conducted to demonstrate the applicability of the E-MPS method to the ERP model.

  11. Deformation induced dislocation boundaries: Alignment and effect on mechanical properties

    DEFF Research Database (Denmark)

    Winther, G.; Juul Jensen, D.

    1997-01-01

    The dislocation boundaries formed during cold-rolling of FCC metals have been reported to have a preferred macroscopic direction with respect to the sample axes. However, boundaries have also been reported to form on crystallographic slip planes. The directions of the boundaries formed on crystal...

  12. Lattice Boltzmann study of slip flow over structured surface with transverse slots

    Science.gov (United States)

    Chen, Wei; Wang, Kai; Wang, Lei; Hou, Guoxiang; Leng, Wenjun

    2018-04-01

    Slip flow over structured superhydrophobic surface with transverse slots is investigated by the lattice Boltzmann method. The Shan-Chen multiphase model is employed to simulate the flow over gas bubbles in the slots. The Carnahan-Starling equation of state is applied to obtain large density ratio. The interface thickness of the multiphase model is discussed. We find that the Cahn number Cn should be smaller than 0.02 when the temperature T = 0.5T c to restrict the influence of interface thickness on slip length. Influences of slot fraction on slip length is then studied, and the result is compared with single LB simulation of which the interface is treated as free-slip boundary. The slip length obtained by the multiphase model is a little smaller. After that, the shape of the liquid-gas interface is considered, and simulations with different initial protrusion angles and capillary numbers are performed. Effective slip length as a function of initial protrusion angle is obtained. The result is in qualitative agreement with a previous study and main features are reproduced. Furthermore, the influence of Capillary number Ca is studied. Larger Ca causes larger interface deformation and smaller slip length. But when the interface is concaving into the slot, this influence is less obvious.

  13. Effect of wall pattern configurations on Stokes flow through a microchannel with superhydrophobic slip

    Science.gov (United States)

    Mak, H. M.; Ng, C. O.

    2010-11-01

    The present work aims to study low-Reynolds-number flow through a microchannel with superhydrophobic surfaces, which contain a periodic array of parallel ribs on the upper and lower walls. Mimicking impregnation, the liquid is allowed to penetrate the grooves between the ribs which are filled with an inviscid gas. The array of ribs and grooves gives a heterogeneous wall boundary condition to the channel flow, with partial-slip boundary condition on the solid surface and no-shear boundary condition on the liquid-gas interface. Using the method of eigenfunction expansions and domain decomposition, semi-analytical models are developed for four configurations. Two of them are for longitudinal flow and the others are for transverse flow. For each flow orientation, in-phase and out-phase alignments of ribs between the upper and lower walls are analyzed. The effect of the phase alignments of ribs is appreciable when the channel height is sufficiently small. In-phase alignment gives rise to a larger effective slip length in longitudinal flow. On the contrary, out-phase alignment will yield a larger effective slip length in transverse flow. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China, through Project HKU 7156/09E.

  14. S-parameter at Non-Zero Temperature and Chemical Potential

    DEFF Research Database (Denmark)

    Søndergaard, Ulrik Ishøj; Sannino, Francesco; Pica, Claudio

    2011-01-01

    We compute the finite-temperature and matter density corrections to the S-parameter at the one loop level. At non-zero temperature T and matter density Lorentz symmetry breaks and therefore we suggest a suitable generalization of the S-parameter. By computing the plasma correction, we discover...... a reduction of the S-parameter in the physically relevant region of small external momenta for any non-zero chemical potential and T. In particular, the S-parameter vanishes at small m/T, where m is the mass of the fermions, due to the finite extent of the temporal direction. Our results are directly...

  15. Numerical investigation of magnetohydrodynamic slip flow of power-law nanofluid with temperature dependent viscosity and thermal conductivity over a permeable surface

    Directory of Open Access Journals (Sweden)

    Hussain Sajid

    2017-12-01

    Full Text Available In this paper, a numerical investigation is carried out to study the effect of temperature dependent viscosity and thermal conductivity on heat transfer and slip flow of electrically conducting non-Newtonian nanofluids. The power-law model is considered for water based nanofluids and a magnetic field is applied in the transverse direction to the flow. The governing partial differential equations(PDEs along with the slip boundary conditions are transformed into ordinary differential equations(ODEs using a similarity technique. The resulting ODEs are numerically solved by using fourth order Runge-Kutta and shooting methods. Numerical computations for the velocity and temperature profiles, the skin friction coefficient and the Nusselt number are presented in the form of graphs and tables. The velocity gradient at the boundary is highest for pseudoplastic fluids followed by Newtonian and then dilatant fluids. Increasing the viscosity of the nanofluid and the volume of nanoparticles reduces the rate of heat transfer and enhances the thickness of the momentum boundary layer. The increase in strength of the applied transverse magnetic field and suction velocity increases fluid motion and decreases the temperature distribution within the boundary layer. Increase in the slip velocity enhances the rate of heat transfer whereas thermal slip reduces the rate of heat transfer.

  16. Contact line motion in confined liquid–gas systems: Slip versus phase transition

    KAUST Repository

    Xu, Xinpeng; Qian, Tiezheng

    2010-01-01

    -slip boundary condition, as the latter leads to a nonintegrable stress singularity. Recently, various diffuse-interface models have been proposed to explain the contact line motion using mechanisms missing from the sharp-interface treatments in fluid mechanics

  17. MHD boundary layer slip flow and heat transfer of ferrofluid along a stretching cylinder with prescribed heat flux.

    Science.gov (United States)

    Qasim, Muhammad; Khan, Zafar Hayat; Khan, Waqar Ahmad; Ali Shah, Inayat

    2014-01-01

    This study investigates the magnetohydrodynamic (MHD) flow of ferrofluid along a stretching cylinder. The velocity slip and prescribed surface heat flux boundary conditions are employed on the cylinder surface. Water as conventional base fluid containing nanoparticles of magnetite (Fe3O4) is used. Comparison between magnetic (Fe3O4) and non-magnetic (Al2O3) nanoparticles is also made. The governing non-linear partial differential equations are reduced to non-linear ordinary differential equations and then solved numerically using shooting method. Present results are compared with the available data in the limiting cases. The present results are found to be in an excellent agreement. It is observed that with an increase in the magnetic field strength, the percent difference in the heat transfer rate of magnetic nanoparticles with Al2O3 decreases. Surface shear stress and the heat transfer rate at the surface increase as the curvature parameter increases, i.e curvature helps to enhance the heat transfer.

  18. The Implications of Strike-Slip Earthquake Source Properties on the Transform Boundary Development Process

    Science.gov (United States)

    Neely, J. S.; Huang, Y.; Furlong, K.

    2017-12-01

    Subduction-Transform Edge Propagator (STEP) faults, produced by the tearing of a subducting plate, allow us to study the development of a transform plate boundary and improve our understanding of both long-term geologic processes and short-term seismic hazards. The 280 km long San Cristobal Trough (SCT), formed by the tearing of the Australia plate as it subducts under the Pacific plate near the Solomon and Vanuatu subduction zones, shows along-strike variations in earthquake behaviors. The segment of the SCT closest to the tear rarely hosts earthquakes > Mw 6, whereas the SCT sections more than 80 - 100 km from the tear experience Mw7 earthquakes with repeated rupture along the same segments. To understand the effect of cumulative displacement on SCT seismicity, we analyze b-values, centroid-time delays and corner frequencies of the SCT earthquakes. We use the spectral ratio method based on Empirical Green's Functions (eGfs) to isolate source effects from propagation and site effects. We find high b-values along the SCT closest to the tear with values decreasing with distance before finally increasing again towards the far end of the SCT. Centroid time-delays for the Mw 7 strike-slip earthquakes increase with distance from the tear, but corner frequency estimates for a recent sequence of Mw 7 earthquakes are approximately equal, indicating a growing complexity in earthquake behavior with distance from the tear due to a displacement-driven transform boundary development process (see figure). The increasing complexity possibly stems from the earthquakes along the eastern SCT rupturing through multiple asperities resulting in multiple moment pulses. If not for the bounding Vanuatu subduction zone at the far end of the SCT, the eastern SCT section, which has experienced the most displacement, might be capable of hosting larger earthquakes. When assessing the seismic hazard of other STEP faults, cumulative fault displacement should be considered a key input in

  19. Maximum run-up behavior of tsunamis under non-zero initial velocity condition

    Directory of Open Access Journals (Sweden)

    Baran AYDIN

    2018-03-01

    Full Text Available The tsunami run-up problem is solved non-linearly under the most general initial conditions, that is, for realistic initial waveforms such as N-waves, as well as standard initial waveforms such as solitary waves, in the presence of initial velocity. An initial-boundary value problem governed by the non-linear shallow-water wave equations is solved analytically utilizing the classical separation of variables technique, which proved to be not only fast but also accurate analytical approach for this type of problems. The results provide important information on maximum tsunami run-up qualitatively. We observed that, although the calculated maximum run-ups increase significantly, going as high as double that of the zero-velocity case, initial waves having non-zero fluid velocity exhibit the same run-up behavior as waves without initial velocity, for all wave types considered in this study.

  20. Motion of two spheres translating and rotating through a viscous fluid with slip surfaces

    International Nuclear Information System (INIS)

    Saad, E I

    2012-01-01

    The axisymmetrical motion of two spherical particles translating along and rotating about a common line that joins their centers in viscous fluid with slip flow boundary conditions on their surfaces has been studied numerically. The particles may differ in radius and in translational and angular velocities. Under the Stokesian approximation, a general solution is constructed from the superposition of the basic functions in the two spherical coordinate systems based on the centers of the particles. The boundary conditions at their surfaces are satisfied by the collocation technique. Numerical results for the normalized drag force and couple acting on each sphere are obtained for various values of the slip coefficients, size ratio, separation parameter, and velocity ratio of the particles. The normalized force and couple on each particle reach the single particle limit as the distance between the centers grows large enough and each particle may then be translated and rotated independently of each other. The accuracy of the numerical technique has been tested against the known analytical solution for two spheres with no-slip surfaces. (paper)

  1. Revealing the cluster of slow transients behind a large slow slip event.

    Science.gov (United States)

    Frank, William B; Rousset, Baptiste; Lasserre, Cécile; Campillo, Michel

    2018-05-01

    Capable of reaching similar magnitudes to large megathrust earthquakes [ M w (moment magnitude) > 7], slow slip events play a major role in accommodating tectonic motion on plate boundaries through predominantly aseismic rupture. We demonstrate here that large slow slip events are a cluster of short-duration slow transients. Using a dense catalog of low-frequency earthquakes as a guide, we investigate the M w 7.5 slow slip event that occurred in 2006 along the subduction interface 40 km beneath Guerrero, Mexico. We show that while the long-period surface displacement, as recorded by Global Positioning System, suggests a 6-month duration, the motion in the direction of tectonic release only sporadically occurs over 55 days, and its surface signature is attenuated by rapid relocking of the plate interface. Our proposed description of slow slip as a cluster of slow transients forces us to re-evaluate our understanding of the physics and scaling of slow earthquakes.

  2. Simulating spontaneous aseismic and seismic slip events on evolving faults

    Science.gov (United States)

    Herrendörfer, Robert; van Dinther, Ylona; Pranger, Casper; Gerya, Taras

    2017-04-01

    Plate motion along tectonic boundaries is accommodated by different slip modes: steady creep, seismic slip and slow slip transients. Due to mainly indirect observations and difficulties to scale results from laboratory experiments to nature, it remains enigmatic which fault conditions favour certain slip modes. Therefore, we are developing a numerical modelling approach that is capable of simulating different slip modes together with the long-term fault evolution in a large-scale tectonic setting. We extend the 2D, continuum mechanics-based, visco-elasto-plastic thermo-mechanical model that was designed to simulate slip transients in large-scale geodynamic simulations (van Dinther et al., JGR, 2013). We improve the numerical approach to accurately treat the non-linear problem of plasticity (see also EGU 2017 abstract by Pranger et al.). To resolve a wide slip rate spectrum on evolving faults, we develop an invariant reformulation of the conventional rate-and-state dependent friction (RSF) and adapt the time step (Lapusta et al., JGR, 2000). A crucial part of this development is a conceptual ductile fault zone model that relates slip rates along discrete planes to the effective macroscopic plastic strain rates in the continuum. We test our implementation first in a simple 2D setup with a single fault zone that has a predefined initial thickness. Results show that deformation localizes in case of steady creep and for very slow slip transients to a bell-shaped strain rate profile across the fault zone, which suggests that a length scale across the fault zone may exist. This continuum length scale would overcome the common mesh-dependency in plasticity simulations and question the conventional treatment of aseismic slip on infinitely thin fault zones. We test the introduction of a diffusion term (similar to the damage description in Lyakhovsky et al., JMPS, 2011) into the state evolution equation and its effect on (de-)localization during faster slip events. We compare

  3. Parity doubling structure of nucleon at non-zero density in the holographic mean field theory

    Directory of Open Access Journals (Sweden)

    He Bing-Ran

    2014-06-01

    Full Text Available We summarize our recent work in which we develope the holographic mean field approach to study the dense baryonic matter in a bottom-up holographic QCD model including baryons and scalar mesons in addition to vector mesons. We first show that, at zero density, the rate of the chiral invariant mass of nucleon is controlled by the ratio of the infrared boundary values of two baryon fields included in the model. Then, at non-zero density, we find that the chiral condensate decreases with the increasing density indicating the partial restoration of the chiral symmetry. Our result shows that the more amount of the proton mass comes from the chiral symmetry breaking, the faster the effective nucleon mass decrease with density.

  4. Manipulation of near-wall turbulence by surface slip and permeability

    Science.gov (United States)

    Gómez-de-Segura, G.; Fairhall, C. T.; MacDonald, M.; Chung, D.; García-Mayoral, R.

    2018-04-01

    We study the effect on near-wall turbulence of tangential slip and wall-normal transpiration, typically produced by textured surfaces and other surface manipulations. For this, we conduct direct numerical simulations (DNSs) with different virtual origins for the different velocity components. The different origins result in a relative wall-normal displacement of the near-wall, quasi-streamwise vortices with respect to the mean flow, which in turn produces a change in drag. The objective of this work is to extend the existing understanding on how these virtual origins affect the flow. In the literature, the virtual origins for the tangential velocities are typically characterised by slip boundary conditions, while the wall-normal velocity is assumed to be zero at the boundary plane. Here we explore different techniques to define and implement the three virtual origins, with special emphasis on the wall-normal one. We investigate impedance conditions relating the wall-normal velocity to the pressure, and linear relations between the velocity components and their wall-normal gradients, as is typically done to impose slip conditions. These models are first tested to represent a smooth wall below the boundary plane, with all virtual origins equal, and later for different tangential and wall-normal origins. Our results confirm that the change in drag is determined by the offset between the origins perceived by mean flow and the quasi-streamwise vortices or, more generally, the near-wall turbulent cycle. The origin for the latter, however, is not set by the spanwise virtual origin alone, as previously proposed, but by a combination of the spanwise and wall-normal origins, and mainly determined by the shallowest of the two. These observations allow us to extend the existing expression to predict the change in drag, accounting for the wall-normal effect when the transpiration is not negligible.

  5. Trace expansions for mixed boundary problems

    Energy Technology Data Exchange (ETDEWEB)

    Seeley, Robert T

    2002-01-01

    We discuss the heat trace expansion for a mixed boundary problem for the Laplace operator acting on sections of some bundle V over a manifold M of dimension d. The boundary is divided in two parts N{sub D} and N{sub N}, intersecting in a smooth submanifold {sigma}. Dirichlet conditions are imposed on N{sub D} - {sigma}, and Neumann conditions on N{sub N} - {sigma}. It turns out that it is also necessary to impose a condition along {sigma}. We then obtain an expansion of the trace of the heat operator with these boundary conditions, containing integrals of the usual terms over the interior and the two parts of the boundary, together with integrals over {sigma} of terms that are 'global' in certain operators on a semicircle. The first nonzero such term is computed; it involves the zeta function of an operator on the semicircle, and depends on the boundary condition along {sigma}. We find that no logarithmic terms occur in the expansion.

  6. Fluctuation induced critical behavior at nonzero temperature and chemical potential

    International Nuclear Information System (INIS)

    Splittorff, K.; Lenaghan, J.T.; Wirstam, J.

    2003-01-01

    We discuss phase transitions in relativistic systems as a function of both the chemical potential and temperature. The presence of a chemical potential explicitly breaks Lorentz invariance and may additionally break other internal symmetries. This introduces new subtleties in the determination of the critical properties. We discuss separately three characteristic effects of a nonzero chemical potential. First, we consider only the explicit breaking of Lorentz invariance using a scalar field theory with a global U(1) symmetry. Second, we study the explicit breaking of an internal symmetry in addition to Lorentz invariance using two-color QCD at nonzero baryonic chemical potential. Finally, we consider the spontaneous breaking of a symmetry using three-color QCD at nonzero baryonic and isospin chemical potential. For each case, we derive the appropriate three-dimensional effective theory at criticality and study the effect of the chemical potential on the fixed point structure of the β functions. We find that the order of the phase transition is not affected by the explicit breaking of Lorentz invariance but is sensitive to the breaking of additional symmetries by the chemical potential

  7. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    Science.gov (United States)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  8. Squeeze flow of Bingham plastic with stick-slip at the wall

    Science.gov (United States)

    Muravleva, Larisa

    2018-03-01

    We solve numerically the axisymmetric squeeze flow of a viscoplastic Bingham medium with slip yield boundary condition at the wall. Using the original Bingham model we compute the shape of the yield surface, the velocity, and stress fields employing the augmented Lagrangian methods. We confirm numerically the recently obtained asymptotic solution.

  9. Oscillatory Stokes Flow Past a Slip Cylinder

    Science.gov (United States)

    Palaniappan, D.

    2013-11-01

    Two-dimensional transient slow viscous flow past a circular cylinder with Navier slip boundary conditions is considered in the limit of low-Reynolds number. The oscillatory Stokes flow problem around a cylinder is solved using the stream function method leading to an analytic solution in terms of modified Bessel functions of the second kind. The corresponding steady-state behavior yields the familiar paradoxical result first detected by Stokes. It is noted that the two key parameters, viz., the frequency λ, and the slip coefficient ξ have a significant impact on the flow field in the vicinity of the cylinder contour. In the limit of very low frequency, the flow is dominated by a term containing a well-known biharmonic function found by Stokes that has a singular behavior at infinity. Local streamlines for small times show interesting flow patterns. Attached eddies due to flow separation - observed in the no-slip case - either get detached or pushed away from the cylinder surface as ξ is varied. Computed asymptotic results predict that the flow exhibits inviscid behavior far away from the cylinder in the frequency range 0 < λ << 1 . Although the frequency of oscillations is finite, our exact solutions reveal fairly rapid transitions in the flow domain. Research Enhancement grant, TAMUCC.

  10. Shear-stress-induced structural arrangement of water molecules in nanoscale Couette flow with slipping at wall boundary

    International Nuclear Information System (INIS)

    Lin, Jau-Wen

    2014-01-01

    This study investigated the structuring of water molecules in a nanoscale Couette flow with the upper plate subjected to lateral forces with various magnitudes and water slipping against a metal wall. It was found that when the upper plate is subjected to a force, the water body deforms into a parallelepiped. Water molecules in the channel are then gradually arranged into lattice positions, creating a layered structure. The structural arrangement of water molecules is caused by the water molecules accommodating themselves to the increase in energy under the application of a lateral force on the moving plate. The ordering arrangement of water molecules increases the rotational degree of freedom, allowing the molecules to increase their Coulomb potential energy through polar rotation that accounts for the energy input through the upper plate. With a force continuously applied to the upper plate, the water molecules in contact with the upper plate move forward until slip between the water and upper plate occurs. The relation between the structural arrangement of water molecules, slip at the wall, and the shear force is studied. The relation between the slip and the locking/unlocking of water molecules to metal atoms is also studied

  11. Selective role of bainitic lath boundary in influencing slip systems and consequent deformation mechanisms and delamination in high-strength low-alloy steel

    Science.gov (United States)

    Liu, S.; Li, X.; Guo, H.; Yang, S.; Wang, X.; Shang, C.; Misra, R. D. K.

    2018-04-01

    We elucidate here the deformation behaviour and delamination phenomenon in a high-strength low-alloy bainitic steel, in terms of microstructure, texture and stress evolution during deformation via in situ electron back-scattered diffraction and electron microscopy. Furthermore, the selective role of bainitic lath boundary on slip systems was studied in terms of dislocation pile-up and grain boundary energy models. During tensile deformation, the texture evolution was concentrated at {1 1 0} and the laths were turn parallel to loading direction. The determining role of lath on the deformation behaviour is governed by length/thickness (l/t) ratio. When l/t > 28, the strain accommodates along the bainite lath rather than along the normal direction. The delamination crack initiated normal to (0 1 1) plane, and become inclined to (0 1 1) plane with continued strain along (0 1 1) plane and lath plane. This indicated that the delamination is not brittle process but plastic process. The lack of dimples at the delaminated surface is because of lack of strain normal to the direction of lath. The delaminated (0 1 1) planes were associated with cleavage along the (1 0 0) plane.

  12. Three dimensional grain boundary modeling in polycrystalline plasticity

    Science.gov (United States)

    Yalçinkaya, Tuncay; Özdemir, Izzet; Fırat, Ali Osman

    2018-05-01

    At grain scale, polycrystalline materials develop heterogeneous plastic deformation fields, localizations and stress concentrations due to variation of grain orientations, geometries and defects. Development of inter-granular stresses due to misorientation are crucial for a range of grain boundary (GB) related failure mechanisms, such as stress corrosion cracking (SCC) and fatigue cracking. Local crystal plasticity finite element modelling of polycrystalline metals at micron scale results in stress jumps at the grain boundaries. Moreover, the concepts such as the transmission of dislocations between grains and strength of the grain boundaries are not included in the modelling. The higher order strain gradient crystal plasticity modelling approaches offer the possibility of defining grain boundary conditions. However, these conditions are mostly not dependent on misorientation of grains and can define only extreme cases. For a proper definition of grain boundary behavior in plasticity, a model for grain boundary behavior should be incorporated into the plasticity framework. In this context, a particular grain boundary model ([l]) is incorporated into a strain gradient crystal plasticity framework ([2]). In a 3-D setting, both bulk and grain boundary models are implemented as user-defined elements in Abaqus. The strain gradient crystal plasticity model works in the bulk elements and considers displacements and plastic slips as degree of freedoms. Interface elements model the plastic slip behavior, yet they do not possess any kind of mechanical cohesive behavior. The physical aspects of grain boundaries and the performance of the model are addressed through numerical examples.

  13. Lr-Lp Stability of the Incompressible Flows with Nonzero Far-Field Velocity

    Directory of Open Access Journals (Sweden)

    Jaiok Roh

    2011-01-01

    Full Text Available We consider the stability of stationary solutions w for the exterior Navier-Stokes flows with a nonzero constant velocity u∞ at infinity. For u∞=0 with nonzero stationary solution w, Chen (1993, Kozono and Ogawa (1994, and Borchers and Miyakawa (1995 have studied the temporal stability in Lp spaces for 11 and obtain Lr-Lp stability as Kozono and Ogawa and Borchers and Miyakawa obtained for u∞=0.

  14. Complex evolution of transient slip derived from precise tremor locations in western Shikoku, Japan

    Science.gov (United States)

    Shelly, David R.; Beroza, Gregory C.; Ide, Satoshi

    2007-10-01

    Transient slip events, which occur more slowly than traditional earthquakes, are increasingly being recognized as important components of strain release on faults and may substantially impact the earthquake cycle. Surface-based geodetic instruments provide estimates of the overall slip distribution in larger transients but are unable to capture the detailed evolution of such slip, either in time or in space. Accompanying some of these slip transients is a relatively weak, extended duration seismic signal, known as nonvolcanic tremor, which has recently been shown to be generated by a sequence of shear failures occurring as part of the slip event. By precisely locating the tremor, we can track some features of slip evolution with unprecedented resolution. Here, we analyze two weeklong episodes of tremor and slow slip in western Shikoku, Japan. We find that these slip transients do not evolve in a smooth and steady fashion but contain numerous subevents of smaller size and shorter duration. In addition to along-strike migration rates of ˜10 km/d observed previously, much faster migration also occurs, usually in the slab dip direction, at rates of 25-150 km/h over distances of up to ˜20 km. We observe such migration episodes in both the updip and downdip directions. These episodes may be most common on certain portions of the plate boundary that generate strong tremor in intermittent bursts. The surrounding regions of the fault may slip more continuously, driving these stronger patches to repeated failures. Tremor activity has a strong tidal periodicity, possibly reflecting the modulation of slow slip velocity by tidal stresses.

  15. Carpathian Shear Corridor – A strike-slip boundary of an extruded crustal segment

    Czech Academy of Sciences Publication Activity Database

    Marko, F.; Andriessen, P.A.M.; Tomek, Č.; Bezák, V.; Fojtíková, Lucia; Bošanský, M.; Piovarči, M.; Reichenwalder, P.

    703-704, APR 22 (2017), s. 119-134 ISSN 0040-1951 Grant - others:Slovak Foundation Grant(SK) VEGA 2/0188/15 Institutional support: RVO:67985891 Keywords : extrusion * Neo-alpine evolution * strike-slip faulting * uplift history * Western Carpathians Subject RIV: DC - Siesmology, Volcanology, Earth Structure OBOR OECD: Geology Impact factor: 2.693, year: 2016

  16. Heat Transfer to Pulsatile Slip Flow in a Porous Channel Filled With ...

    African Journals Online (AJOL)

    This paper investigate the effect of slip on the hydromagnetic pulsatile flow through a porous channel filled with saturated porous medium with time dependent boundary condition on the heated wall. Based on the pulsatile flow nature, the dimensionless flow governing equations are resolved to harmonic and non-harmonic ...

  17. Bioconvection nanofluid slip flow past a wavy surface with applications in nano-biofuel cells

    OpenAIRE

    Beg, OA; Uddin, MJ; Khan, WA; Qureshi, SR

    2017-01-01

    A theoretical study is presented to examine free convective boundary layer flow of water-based bio-nanofluid containing gyrotactic microorganisms past a wavy surface. Buongiorno’s nanofluid model with passively controlled boundary condition is applied to investigate the effects of the emerging parameters on the physical quantities namely, skin friction, Nusselt numbers and density number of motile microorganisms. The effects of the both hydrodynamic and thermal slips are also incorporated. Lo...

  18. Back analysis of fault-slip in burst prone environment

    Science.gov (United States)

    Sainoki, Atsushi; Mitri, Hani S.

    2016-11-01

    In deep underground mines, stress re-distribution induced by mining activities could cause fault-slip. Seismic waves arising from fault-slip occasionally induce rock ejection when hitting the boundary of mine openings, and as a result, severe damage could be inflicted. In general, it is difficult to estimate fault-slip-induced ground motion in the vicinity of mine openings because of the complexity of the dynamic response of faults and the presence of geological structures. In this paper, a case study is conducted for a Canadian underground mine, herein called "Mine-A", which is known for its seismic activities. Using a microseismic database collected from the mine, a back analysis of fault-slip is carried out with mine-wide 3-dimensional numerical modeling. A back analysis is conducted to estimate the physical and mechanical properties of the causative fracture or shear zones. One large seismic event has been selected for the back analysis to detect a fault-slip related seismic event. In the back analysis, the shear zone properties are estimated with respect to moment magnitude of the seismic event and peak particle velocity (PPV) recorded by a strong ground motion sensor. The estimated properties are then validated through comparison with peak ground acceleration recorded by accelerometers. Lastly, ground motion in active mining areas is estimated by conducting dynamic analysis with the estimated values. The present study implies that it would be possible to estimate the magnitude of seismic events that might occur in the near future by applying the estimated properties to the numerical model. Although the case study is conducted for a specific mine, the developed methodology can be equally applied to other mines suffering from fault-slip related seismic events.

  19. Prediction of dislocation boundary characteristics

    DEFF Research Database (Denmark)

    Winther, Grethe

    Plastic deformation of both fcc and bcc metals of medium to high stacking fault energy is known to result in dislocation patterning in the form of cells and extended planar dislocation boundaries. The latter align with specific crystallographic planes, which depend on the crystallographic......) and it is found that to a large extent the dislocations screen each other’s elastic stress fields [3]. The present contribution aims at advancing the previous theoretical analysis of a boundary on a known crystallographic plane to actual prediction of this plane as well as other boundary characteristics....... Crystal plasticity calculations combined with the hypothesis that these boundaries separate domains with local differences in the slip system activity are introduced to address precise prediction of the experimentally observed boundaries. The presentation will focus on two cases from fcc metals...

  20. Generalized Couette flow of a third-grade fluid with slip. The exact solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ellahi, Rahmat [IIUI, Islamabad (Pakistan). Dept. of Mathematics; Hayat, Tasawar [Quaid-i-Azam Univ., Islamabad (Pakistan). Dept. of Mathematics; King Saud Univ., Riyadh (Saudi Arabia). Dept. of Mathematics; Mahomed, Fazal Mahmood [Univ. of the Witwatersrand, Wits (South Africa). Centre for Differential Equations, Continuum, Mechanics and Applications

    2010-12-15

    The present note investigates the influence of slip on the generalized Couette flows of a third-grade fluid. Two flow problems are considered. The resulting equations and the boundary conditions are nonlinear. Analytical solutions of the governing nonlinear problems are found in closed form. (orig.)

  1. Effective slip lengths for flows over surfaces with nanobubbles: the effects of finite slip

    International Nuclear Information System (INIS)

    Hendy, S C; Lund, N J

    2009-01-01

    We consider effective slip lengths for flows of simple liquids over surfaces contaminated by gaseous nanobubbles. In particular, we examine whether the effects of finite slip over the liquid-bubble interface are important in limiting effective slip lengths over such surfaces. Using an expression that interpolates between the perfect slip and finite slip regimes for flow over bubbles, we conclude that for the bubble dimensions and coverages typically reported in the literature the effects of finite slip are secondary, reducing effective slip lengths by only 10%. Further, we find that nanobubbles do not significantly increase slip lengths beyond those reported for bare hydrophobic surfaces.

  2. Investigation of Floor Surface Finishes for Optimal Slip Resistance Performance

    Directory of Open Access Journals (Sweden)

    In-Ju Kim

    2018-03-01

    Full Text Available Background: Increasing the slip resistance of floor surfaces would be desirable, but there is a lack of evidence on whether traction properties are linearly correlated with the topographic features of the floor surfaces or what scales of surface roughness are required to effectively control the slipperiness of floors. Objective: This study expands on earlier findings on the effects of floor surface finishes against slip resistance performance and determines the operative ranges of floor surface roughness for optimal slip resistance controls under different risk levels of walking environments. Methods: Dynamic friction tests were conducted among three shoes and nine floor specimens under wet and oily environments and compared with a soapy environment. Results: The test results showed the significant effects of floor surface roughness on slip resistance performance against all the lubricated environments. Compared with the floor-type effect, the shoe-type effect on slip resistance performance was insignificant against the highly polluted environments. The study outcomes also indicated that the oily environment required rougher surface finishes than the wet and soapy ones in their lower boundary ranges of floor surface roughness. Conclusion: The results of this study with previous findings confirm that floor surface finishes require different levels of surface coarseness for different types of environmental conditions to effectively manage slippery walking environments. Collected data on operative ranges of floor surface roughness seem to be a valuable tool to develop practical design information and standards for floor surface finishes to efficiently prevent pedestrian fall incidents. Keywords: floor surface finishes, operational levels of floor surface roughness, slip resistance, wet, soapy and oily environments

  3. Boundary entropy of one-dimensional quantum systems at low temperature

    International Nuclear Information System (INIS)

    Friedan, Daniel; Konechny, Anatoly

    2004-01-01

    The boundary β function generates the renormalization group acting on the universality classes of one-dimensional quantum systems with boundary which are critical in the bulk but not critical at the boundary. We prove a gradient formula for the boundary β function, expressing it as the gradient of the boundary entropy s at fixed nonzero temperature. The gradient formula implies that s decreases under renormalization, except at critical points (where it stays constant). At a critical point, the number exp(s) is the 'ground-state degeneracy', g, of Affleck and Ludwig, so we have proved their long-standing conjecture that g decreases under renormalization, from critical point to critical point. The gradient formula also implies that s decreases with temperature, except at critical points, where it is independent of temperature. It remains open whether the boundary entropy is always bounded below

  4. Phase diagram of the Dirac spectrum at nonzero chemical potential

    International Nuclear Information System (INIS)

    Osborn, J. C.; Splittorff, K.; Verbaarschot, J. J. M.

    2008-01-01

    The Dirac spectrum of QCD with dynamical fermions at nonzero chemical potential is characterized by three regions: a region with a constant eigenvalue density, a region where the eigenvalue density shows oscillations that grow exponentially with the volume and the remainder of the complex plane where the eigenvalue density is zero. In this paper we derive the phase diagram of the Dirac spectrum from a chiral Lagrangian. We show that the constant eigenvalue density corresponds to a pion condensed phase while the strongly oscillating region is given by a kaon condensed phase. The normal phase with nonzero chiral condensate but vanishing Bose condensates coincides with the region of the complex plane where there are no eigenvalues.

  5. States of stress and slip partitioning in a continental scale strike-slip duplex: Tectonic and magmatic implications by means of finite element modeling

    Science.gov (United States)

    Iturrieta, Pablo Cristián; Hurtado, Daniel E.; Cembrano, José; Stanton-Yonge, Ashley

    2017-09-01

    subsidiary faults serve as magma pathways, particularly where they are close to the intersection with a master fault. Also, the slip of a fault segment is enhanced when an adjacent fault kinematics is superimposed on the regional tectonic loading. Hence, finite element models help to understand coupled tectonics and volcanic processes, demonstrating that geological and geophysical observations can be accounted for by a small number of key first order boundary conditions.

  6. Boundary Layers for the Navier-Stokes Equations Linearized Around a Stationary Euler Flow

    Science.gov (United States)

    Gie, Gung-Min; Kelliher, James P.; Mazzucato, Anna L.

    2018-03-01

    We study the viscous boundary layer that forms at small viscosity near a rigid wall for the solution to the Navier-Stokes equations linearized around a smooth and stationary Euler flow (LNSE for short) in a smooth bounded domain Ω \\subset R^3 under no-slip boundary conditions. LNSE is supplemented with smooth initial data and smooth external forcing, assumed ill-prepared, that is, not compatible with the no-slip boundary condition. We construct an approximate solution to LNSE on the time interval [0, T], 0Math J 45(3):863-916, 1996), Xin and Yanagisawa (Commun Pure Appl Math 52(4):479-541, 1999), and Gie (Commun Math Sci 12(2):383-400, 2014).

  7. Heat and mass transfer on a MHD third grade fluid with partial slip flow past an infinite vertical insulated porous plate in a porous medium

    International Nuclear Information System (INIS)

    Baoku, I.G.; Olajuwon, B.I.; Mustapha, A.O.

    2013-01-01

    Highlights: ► We model the flow of a MHD third grade fluid, heat and mass transfer in a porous medium with partial slip flow regime. ► We examine the effects of pertinent parameters on the velocity, temperature and species concentration distributions. ► The values momentum and thermal boundary layers increase with increasing third grade parameter β. ► The consequences of increasing the permeability parameter m and partial slip parameter λ give rise to fluid velocity. ► The magnetic field parameter H decreases the momentum boundary layer and increases the concentration boundary layer. -- Abstract: The influence of third grade, partial slip and other thermophysical parameters on the steady flow, heat and mass transfer of viscoelastic third grade fluid past an infinite vertical insulated plate subject to suction across the boundary layer has been investigated. The space occupying the fluid is porous. The momentum equation is characterized by a highly nonlinear boundary value problem in which the order of the differential equation exceeds the number of available boundary conditions. An efficient numerical scheme of midpoint technique with Richardson’s extrapolation is employed to solve the governing system of coupled nonlinear equations of momentum, energy and concentration. Numerical calculations were carried out for different values of various interesting non-dimensional quantities in the slip flow regime with heat and mass transfer and were shown with the aid of figures. The values of the wall shear stress, the local rate of heat and mass transfers were obtained and tabulated. The analysis shows that as the fluid becomes more shear thickening, the momentum boundary layer decreases but the thermal boundary layer increases; the magnetic field strength is found to decrease with an increasing temperature distribution when the porous plate is insulated. The consequences of increasing the permeability parameter and Schmidt number decrease both the momentum

  8. The respective roles of bulk friction and slip velocity during a granular mass flow

    Science.gov (United States)

    Staron, Lydie

    2016-04-01

    Catastrophic granular mass flows form an important natural hazard. Mitigation has motivated numerous studies on the properties of natural granular flows, and in particular, their ability to travel long distances away from the release point. The mobility of granular flows is commonly characterised through the definition of rheological properties and effective friction. Yet, it is widely accepted that the description in term of effective friction may include various lubrication effects, softening at the base of the flow and large slip velocities being a most likely one. In this case, flow bulk properties may obliterate the flow boundary conditions. In this contribution, we investigate how disentangling bulk properties from boundary conditions may improve our understanding of the flow. Using discrete simulations, we induce increasing slip velocities in different flow configurations. We show that increased mobility may be achieved without changing bulk properties. The results are interpreted in terms of a Robin-Navier slip condition and implemented in a continuum Navier-Stokes solver. We quantify the respective role of rheological bulk properties and boundary conditions in the general behaviour of a transient mass flow. We show that omitting the description of boundary conditions leads to misinterpretation of the flow properties. The outcome is discussed in terms of models reliability. References P.-Y. Lagrée et al, The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with the mu(I) rheology, J. Fluid Mech. 686, 378-408 (2011) L. Staron and E. Lajeunesse, Understanding how the volume affects the mobility of dry debris flows, Geophys. Res. Lett. 36, L12402 (2009) L. Staron, Mobility of long-runout rock flows: a discrete numerical investigation, Geophys. J. Int. 172, 455-463 (2008)

  9. Migration of a solid and arbitrarily-shaped particle near a plane slipping wall

    International Nuclear Information System (INIS)

    Ghalya, Néjiba; Sellier, Antoine; Feuillebois, François

    2012-01-01

    This work is concerned with the rigid-body migration of a solid and arbitrary-shaped particle immersed in a Newtonian liquid in vicinity of a plane, motionless and impermeable wall where a Navier slip condition holds. The net hydrodynamic force and torque exerted on the moving particle are obtained by appealing to a new boundary elements approach which makes use of a specific Green tensor recently determined elsewhere. The advocated technique results in the treatment of a Fredholm boundary-integral equation of the first kind on the particle surface and, by contrast to earlier works in this field, makes it possible to cope with non-spherical particles. The proposed numerical implementation is benchmarked against results obtained for a sphere by using the bipolar coordinates. Preliminary new results for the friction coefficients of an non-spheroidal ellipsoid are also reported and compared with those for a volume-equivalent sphere. The variations of the friction coefficients with the slip length are analogous for both particles.

  10. The complex evolution of transient slip revealed by precise tremor locations in western Shikoku, Japan

    Science.gov (United States)

    Shelly, D. R.; Beroza, G. C.; Ide, S.

    2007-12-01

    Transient slow slip events are increasingly being recognized as important components of strain release on faults and may substantially impact the earthquake cycle. Surface-based geodetic instruments provide estimates of the overall slip distribution in larger transients but are unable to capture the detailed evolution of such slip, either in time or space. Accompanying some of these slip transients is a relatively weak, extended duration seismic signal, known as non-volcanic tremor, which has recently been shown to be generated by a sequence of shear failures occurring as part of the slip event. By precisely locating the tremor, we can track some features of slip evolution with unprecedented resolution. Here, we analyze two weeklong episodes of tremor and slow slip in western Shikoku, Japan. We find that these slip transients do not evolve in a smooth and steady fashion but contain numerous sub-events of smaller size and shorter duration. In addition to along-strike migration rates of about 10 km/day observed previously, much faster migration also occurs, usually in the slab dip direction, at rates of 25-150 km/hour over distances of up to 20 km. We observe such migration episodes in both the up-dip and down-dip directions. These episodes may be most common on certain portions of the plate boundary that generate strong tremor in intermittent bursts. The surrounding regions of the fault may slip more continuously, driving these stronger patches to repeated failures. Tremor activity has a strong tidal periodicity, possibly reflecting the modulation of slow slip velocity by tidal stresses.

  11. Immersed boundary methods for high-resolution simulation of atmospheric boundary-layer flow over complex terrain

    Science.gov (United States)

    Lundquist, Katherine Ann

    Mesoscale models, such as the Weather Research and Forecasting (WRF) model, are increasingly used for high resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. Use of an alternative Cartesian gridding technique, known as an immersed boundary method (IBM), alleviates coordinate transformation errors and eliminates restrictions on terrain slope which currently limit mesoscale models to slowly varying terrain. In this dissertation, an immersed boundary method is developed for use in numerical weather prediction. Use of the method facilitates explicit resolution of complex terrain, even urban terrain, in the WRF mesoscale model. First, the errors that arise in the WRF model when complex terrain is present are presented. This is accomplished using a scalar advection test case, and comparing the numerical solution to the analytical solution. Results are presented for different orders of advection schemes, grid resolutions and aspect ratios, as well as various degrees of terrain slope. For comparison, results from the same simulation are presented using the IBM. Both two-dimensional and three-dimensional immersed boundary methods are then described, along with details that are specific to the implementation of IBM in the WRF code. Our IBM is capable of imposing both Dirichlet and Neumann boundary conditions. Additionally, a method for coupling atmospheric physics parameterizations at the immersed boundary is presented, making IB methods much more functional in the context of numerical weather prediction models. The two-dimensional IB method is verified through comparisons of solutions for gentle terrain slopes when using IBM and terrain-following grids. The canonical case of flow over a Witch of Agnesi hill provides validation of the basic no-slip and zero gradient boundary conditions. Specified diurnal heating in a valley, producing anabatic winds, is used to validate the

  12. Immersed Boundary Methods for High-Resolution Simulation of Atmospheric Boundary-Layer Flow Over Complex Terrain

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, K A [Univ. of California, Berkeley, CA (United States)

    2010-05-12

    Mesoscale models, such as the Weather Research and Forecasting (WRF) model, are increasingly used for high resolution simulations, particularly in complex terrain, but errors associated with terrain-following coordinates degrade the accuracy of the solution. Use of an alternative Cartesian gridding technique, known as an immersed boundary method (IBM), alleviates coordinate transformation errors and eliminates restrictions on terrain slope which currently limit mesoscale models to slowly varying terrain. In this dissertation, an immersed boundary method is developed for use in numerical weather prediction. Use of the method facilitates explicit resolution of complex terrain, even urban terrain, in the WRF mesoscale model. First, the errors that arise in the WRF model when complex terrain is present are presented. This is accomplished using a scalar advection test case, and comparing the numerical solution to the analytical solution. Results are presented for different orders of advection schemes, grid resolutions and aspect ratios, as well as various degrees of terrain slope. For comparison, results from the same simulation are presented using the IBM. Both two-dimensional and three-dimensional immersed boundary methods are then described, along with details that are specific to the implementation of IBM in the WRF code. Our IBM is capable of imposing both Dirichlet and Neumann boundary conditions. Additionally, a method for coupling atmospheric physics parameterizations at the immersed boundary is presented, making IB methods much more functional in the context of numerical weather prediction models. The two-dimensional IB method is verified through comparisons of solutions for gentle terrain slopes when using IBM and terrain-following grids. The canonical case of flow over a Witch of Agnesi hill provides validation of the basic no-slip and zero gradient boundary conditions. Specified diurnal heating in a valley, producing anabatic winds, is used to validate the

  13. On the proposed second law paradox in a nonzero floating potential

    International Nuclear Information System (INIS)

    Cruden, Brett A.

    2001-01-01

    A second law paradox was previously proposed for a plasma contained within an infinite blackbody. The proposed second law paradox was dependent on the plasma having a nonzero floating potential [D. P. Sheehan and J. D. Means, Phys. Plasmas 5, 2469 (1998)]. This work demonstrates that a nonzero floating potential is indicative of some energy contained within the plasma that can be withdrawn from the plasma without violation of the second law. Furthermore, it is shown from the probe theory that the plasma in this hypothetical configuration must have a floating potential of zero at steady state

  14. Revisiting Johnson and Jackson boundary conditions for granular flows

    Energy Technology Data Exchange (ETDEWEB)

    Li, Tingwen; Benyahia, Sofiane

    2012-07-01

    In this article, we revisit Johnson and Jackson boundary conditions for granular flows. The oblique collision between a particle and a flat wall is analyzed by adopting the classic rigid-body theory and a more realistic semianalytical model. Based on the kinetic granular theory, the input parameter for the partial-slip boundary conditions, specularity coefficient, which is not measurable in experiments, is then interpreted as a function of the particle-wall restitution coefficient, the frictional coefficient, and the normalized slip velocity at the wall. An analytical expression for the specularity coefficient is suggested for a flat, frictional surface with a low frictional coefficient. The procedure for determining the specularity coefficient for a more general problem is outlined, and a working approximation is provided.

  15. NUMERICAL ALGORITHMS AT NON-ZERO CHEMICAL POTENTIAL. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 19

    International Nuclear Information System (INIS)

    Blum, T.; Creutz, M.

    1999-01-01

    The RIKEN BNL Research Center hosted its 19th workshop April 27th through May 1, 1999. The topic was Numerical Algorithms at Non-Zero Chemical Potential. QCD at a non-zero chemical potential (non-zero density) poses a long-standing unsolved challenge for lattice gauge theory. Indeed, it is the primary unresolved issue in the fundamental formulation of lattice gauge theory. The chemical potential renders conventional lattice actions complex, practically excluding the usual Monte Carlo techniques which rely on a positive definite measure for the partition function. This ''sign'' problem appears in a wide range of physical systems, ranging from strongly coupled electronic systems to QCD. The lack of a viable numerical technique at non-zero density is particularly acute since new exotic ''color superconducting'' phases of quark matter have recently been predicted in model calculations. A first principles confirmation of the phase diagram is desirable since experimental verification is not expected soon. At the workshop several proposals for new algorithms were made: cluster algorithms, direct simulation of Grassman variables, and a bosonization of the fermion determinant. All generated considerable discussion and seem worthy of continued investigation. Several interesting results using conventional algorithms were also presented: condensates in four fermion models, SU(2) gauge theory in fundamental and adjoint representations, and lessons learned from strong; coupling, non-zero temperature and heavy quarks applied to non-zero density simulations

  16. Different slip systems controlling crystallographic preferred orientation and intracrystalline deformation of amphibole in mylonites from the Neyriz mantle diapir, Iran

    Science.gov (United States)

    Elyaszadeh, Ramin; Prior, David J.; Sarkarinejad, Khalil; Mansouri, Hadiseh

    2018-02-01

    A deformed layered gabbro and a mylonitic gabbro sample from the marginal shear zone of the Neyriz mantle diapir in Iran were analyzed using electron backscatter diffraction (EBSD). Both samples have the common amphibole crystallographic preferred orientation (CPO) in which (100) lies perpendicular to foliation and parallel to lineation. Amphibole grains in the layered gabbro sample have little internal deformation, whereas in the mylonitic gabbro sample the amphibole grains are strongly distorted and contain low angle grain boundaries. There is a subtle change in CPO as a function of grain size in the mylonitic gabbro. Coarse grains (porphyroclasts) have a (100) CPO oriented with the main foliation reference frame whilst fine grains have a (100) CPO oriented with the C‧ shear bands. Detailed analysis of porphyroclast distortions and subgrain boundary trace analysis suggests that hard slip systems, most particularly (110) control intracrystalline deformation. Schmid factor analysis suggest that these slip systems are not involved in foliation formation but are linked kinematically to C‧ shear bands. It is unlikely that the slip systems that control intracrystalline deformation are important in CPO formation. We interpret that subgrain rotation recrystallization lead to grain size reduction and the elongate recrystallized grains were rotated towards the C‧ shear bands by grain boundary sliding. This rigid body rotation, possibly in combination with easy slip on (100) are considered the main cause of CPO formation. Amphibole zonation patterns in the layered gabbro sample suggest that oriented growth of amphibole may have contributed to CPO.

  17. Hydromagnetic transport phenomena from a stretching or shrinking nonlinear nanomaterial sheet with Navier slip and convective heating: A model for bio-nano-materials processing

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, M.J., E-mail: jashim_74@yahoo.com [Department of Mathematics, American International University-Bangladesh, Banani Dhaka 1213 (Bangladesh); Bég, O. Anwar [Gort Engovation Research (Propulsion/Biomechanics), Gabriel' s Wing House, 15 Southmere Ave., Bradford, BD7 3NU England (United Kingdom); Amin, N. [Department of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor (Malaysia)

    2014-11-15

    Steady two-dimensional magnetohydrodynamic laminar free convective boundary layer slip flow of an electrically conducting Newtonian nanofluid from a translating stretching/shrinking sheet in a quiescent fluid is studied. A convective heating boundary condition is incorporated. The transport equations along with the boundary conditions are first converted into dimensionless form and following the implementation of a linear group of transformations, the similarity governing equations are developed. The transformed equations are solved numerically using the Runge–Kutta–Fehlberg fourth fifth order method from Maple. Validation of the Maple solutions is achieved with previous non-magnetic published results. The effects of the emerging thermophysical parameters; namely, stretching/shrinking, velocity slip, magnetic field, convective heat transfer and buoyancy ratio parameters, on the dimensionless velocity, temperature and concentration (nanoparticle fraction) are depicted graphically and interpreted at length. It is found that velocity increases whilst temperature and concentration reduce with the velocity slip. Magnetic field causes to reduce velocity and enhances temperature and concentration. Velocity, temperature as well as concentration rises with convective heating parameter. The study is relevant to the synthesis of bio-magnetic nanofluids of potential interest in wound treatments, skin repair and smart coatings for biological devices. - Highlights: • This paper analyses MHD slip flow of nofluid with convective boundary conditions. • Group method is used to transform governing equations into similarity equations. • The Runge–Kutta–Fehlberg method is used for numerical computations. • The study is relevant to synthesis of bio-magnetic nanofluids.

  18. On Reggeon field theories and nonzero vacuum expectation values

    International Nuclear Information System (INIS)

    Venturi, G.

    1976-01-01

    In this note it is obtained a satisfactory ''nonrelativistic'' reggeon theory by starting from a ''relativistic'' one, examining its ''nonrelativistic'' limit and allowing a nonzero vacuum expectation value for the pomeron field. In such a context the introduction of secondary trajectories is also studied

  19. A Kinematic Model of Slow Slip Constrained by Tremor-Derived Slip Histories in Cascadia

    Science.gov (United States)

    Schmidt, D. A.; Houston, H.

    2016-12-01

    We explore new ways to constrain the kinematic slip distributions for large slow slip events using constraints from tremor. Our goal is to prescribe one or more slip pulses that propagate across the fault and scale appropriately to satisfy the observations. Recent work (Houston, 2015) inferred a crude representative stress time history at an average point using the tidal stress history, the static stress drop, and the timing of the evolution of tidal sensitivity of tremor over several days of slip. To convert a stress time history into a slip time history, we use simulations to explore the stressing history of a small locked patch due to an approaching rupture front. We assume that the locked patch releases strain through a series of tremor bursts whose activity rate is related to the stressing history. To test whether the functional form of a slip pulse is reasonable, we assume a hypothetical slip time history (Ohnaka pulse) timed with the occurrence of tremor to create a rupture front that propagates along the fault. The duration of the rupture front for a fault patch is constrained by the observed tremor catalog for the 2010 ETS event. The slip amplitude is scaled appropriately to match the observed surface displacements from GPS. Through a forward simulation, we evaluate the ability of the tremor-derived slip history to accurately predict the pattern of surface displacements observed by GPS. We find that the temporal progression of surface displacements are well modeled by a 2-4 day slip pulse, suggesting that some of the longer duration of slip typically found in time-dependent GPS inversions is biased by the temporal smoothing. However, at some locations on the fault, the tremor lingers beyond the passage of the slip pulse. A small percentage (5-10%) of the tremor appears to be activated ahead of the approaching slip pulse, and tremor asperities experience a driving stress on the order of 10 kPa/day. Tremor amplitude, rather than just tremor counts, is needed

  20. Episodic Tremor and Slip Explained by Fluid-Enhanced Microfracturing and Sealing

    Science.gov (United States)

    Bernaudin, M.; Gueydan, F.

    2018-04-01

    Episodic tremor and slow-slip events at the deep extension of plate boundary faults illuminate seismic to aseismic processes around the brittle-ductile transition. These events occur in volumes characterized by overpressurized fluids and by near failure shear stress conditions. We present a new modeling approach based on a ductile grain size-sensitive rheology with microfracturing and sealing, which provides a mechanical and field-based explanation of such phenomena. We also model pore fluid pressure variation as a function of changes in porosity/permeability and strain rate-dependent fluid pumping. The fluid-enhanced dynamic evolution of microstructures defines cycles of ductile strain localization and implies increase in pore fluid pressure. We propose that slow-slip events are ductile processes related to transient strain localization, while nonvolcanic tremor corresponds to fracturing of the whole rock at the peak of pore fluid pressure. Our model shows that the availability of fluids and the efficiency of fluid pumping control the occurrence and the P-T conditions of episodic tremor and slip.

  1. Dynamics of fault slip near the stability transition combining laboratory and numerical experiments

    Science.gov (United States)

    Mele Veedu, D.; Giorgetti, C.; Scuderi, M. M.; Barbot, S.; Marone, C.; Collettini, C.

    2017-12-01

    Frictional stability controls the seismogenic potential of faults. Laboratory (1) and theoretical (2) studies document and predict the conditions under which fault slip is seismic or aseismic. However, the full gamut of fault slip behavior near the stable/unstable boundary is still poorly known. Here, we combine insight from laboratory and numerical experiments to identify the wide spectrum of frictional instabilities around that transition, including slow-slip events, period-multiplying events, and chaos. We present a synoptic picture of the dynamics of fault slip in a bifurcation diagram obtained from a series of laboratory and numerical experiments. We compare the laboratory observations with spring-slider and finite-fault numerical models. In the laboratory, we vary the stiffness of the system by modulating the stress field around the experimental fault. In the numerical experiments, we vary the characteristic weakening distance to explore a range of critical nucleation sizes. Contrarily to previously found (3), complex fault dynamics can be obtained with a rate-and-state constitutive law with a single state variable. While the dynamics of fault slip is complicated on large faults by the presence of morphological and rheological heterogeneities, the range of instabilities identified in the laboratory is reminiscent of the variety of slow and fast earthquakes found along subduction zones (4). The accord between laboratory data and theoretical models affords more realistic predictions of fault behavior at slow slip speeds. (1) Scuderi et al., (2016), (2) Ruina (1983), (3) Gu & Wong (1994), (4) Obara & Kato (2016)

  2. Current Percolation in Medium with Boundaries under Quantum Hall Effect Conditions

    Directory of Open Access Journals (Sweden)

    M. U. Malakeeva

    2012-01-01

    Full Text Available The current percolation has been considered in the medium with boundaries under quantum Hall effect conditions. It has been shown that in that case the effective Hall conductivity has a nonzero value due to percolation of the Hall current through the finite number of singular points (in our model these are corners at the phase joints.

  3. Quasicontinuum analysis of dislocation-coherent twin boundary interaction to provide local rules to discrete dislocation dynamics

    Science.gov (United States)

    Tran, H.-S.; Tummala, H.; Duchene, L.; Pardoen, T.; Fivel, M.; Habraken, A. M.

    2017-10-01

    The interaction of a pure screw dislocation with a Coherent Twin Boundary Σ3 in copper was studied using the Quasicontinuum method. Coherent Twin Boundary behaves as a strong barrier to dislocation glide and prohibits slip transmission across the boundary. Dislocation pileup modifies the stress field at its intersection with the Grain Boundary (GB). A methodology to estimate the strength of the barrier for a dislocation to slip across CTB is proposed. A screw dislocation approaching the boundary from one side either propagates into the adjacent twin grain by cutting through the twin boundary or is stopped and increases the dislocation pileup amplitude at the GB. Quantitative estimation of the critical stress for transmission was performed using the virial stress computed by Quasicontinuum method. The transmission mechanism and critical stress are in line with the literature. Such information can be used as input for dislocation dynamic simulations for a better modeling of grain boundaries.

  4. Slow slip phenomena in Cascadia from 2007 and beyond: a review

    Science.gov (United States)

    Gomberg, Joan; ,

    2010-01-01

    Recent technological advances combined with more detailed analyses of seismologic and geodetic observations have fundamentally changed our understanding of the ways in which tectonic stresses arising from plate motions are accommodated by slip on faults. The traditional view that relative plate motions are accommodated by a simple cycle of stress accumulation and release on “locked” plate-boundary faults has been revolutionized by the serendipitous discovery and recognition of the significance of slow-slip phenomena, mostly in the deeper reaches of subduction zones. The Cascadia subduction zone, located in the Pacific Northwest of the conterminous United States and adjacent Canada, is an archetype of exploration and learning about slow-slip phenomena. These phenomena are manifest as geodetically observed aseismic transient deformations accompanied by a previously unrecognized class of seismic signals. Although secondary failure processes may be involved in generating the seismic signals, the primary origins of both aseismic and seismic phenomena appear to be episodic fault slip, probably facilitated by fluids, on a plate interface that is critically stressed or weakened. In Cascadia, this transient slip evolves more slowly and over more prolonged durations relative to the slip in earthquakes, and it occurs between the 30- and 40-km-depth contours of the plate interface where information was previously elusive. Although there is some underlying organization that relaxes nearly all the accrued plate-motion stresses along the entirety of Cascadia, we now infer that slow slip evolves in complex patterns indicative of propagating stress fronts. Our new understanding provides key constraints not only on the region where the slow slip originates, but also on the probable characteristics of future megathrust earthquakes in Cascadia. Herein, we review the most significant scientific issues and progress related to understanding slow-slip phenomena in Cascadia and

  5. Neutrino Mass Models: impact of non-zero reactor angle

    International Nuclear Information System (INIS)

    King, Stephen F.

    2011-01-01

    In this talk neutrino mass models are reviewed and the impact of a non-zero reactor angle and other deviations from tri-bi maximal mixing are discussed. We propose some benchmark models, where the only way to discriminate between them is by high precision neutrino oscillation experiments.

  6. Numerical analysis for the stick-slip vibration of a transversely moving beam in contact with a frictional wall

    Science.gov (United States)

    Won, Hong-In; Chung, Jintai

    2018-04-01

    This paper presents a numerical analysis for the stick-slip vibration of a transversely moving beam, considering both stick-slip transition and friction force discontinuity. The dynamic state of the beam was separated into the stick state and the slip state, and boundary conditions were defined for both. By applying the finite element method, two matrix-vector equations were derived: one for stick state and the other for slip state. However, the equations have different degrees of freedom depending on whether the end of a beam sticks or slips, so we encountered difficulties in time integration. To overcome the difficulties, we proposed a new numerical technique to alternatively use the matrix-vector equations with different matrix sizes. In addition, to eliminate spurious high-frequency responses, we applied the generalized-α time integration method with appropriate value of high-frequency numerical dissipation. Finally, the dynamic responses of stick-slip vibration were analyzed in time and frequency domains: the dynamic behavior of the beam was explained to facilitate understanding of the stick-slip motion, and frequency characteristics of the stick-slip vibration were investigated in relation to the natural frequencies of the beam. The effects of the axial load and the moving speed upon the dynamic response were also examined.

  7. Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition

    Science.gov (United States)

    Asghar, Z.; Ali, N.; Anwar Bég, O.; Javed, T.

    2018-06-01

    Gliding bacteria are virtually everywhere. These organisms are phylogenetically diverse with their hundreds of types, different shapes and several modes of motility. One possible mode of gliding motility in the rod shaped bacteria is that they propel themselves by producing undulating waves in their body. Few bacteria glides near the solid surface over the slime without any aid of flagella so the classical Navier-Stokes equations are incapable of explaining the slime rheology at the microscopic level. Micropolar fluid dynamics however provides a solid framework for mimicking bacterial physical phenomena at both micro and nano-scales, and therefore we use the micropolar fluid to characterize the rheology of a thin layer of slime and its dominant microrotation effects. It is also assumed that there is a certain degree of slip between slime and bacterial undulating surface and also between slime and solid substrate. The flow equations are formulated under long wavelength and low Reynolds number assumptions. Exact expressions for stream function and pressure gradient are obtained. The speed of the gliding bacteria is numerically calculated by using a modified Newton-Raphson method. Slip effects and effects of non-Newtonian slime parameters on bacterial speed and power are also quantified. In addition, when the glider is fixed, the effects of slip and rheological properties of micropolar slime parameters on the velocity, micro-rotation (angular velocity) of spherical slime particles, pressure rise per wavelength, pumping and trapping phenomena are also shown graphically and discussed in detail. The study is relevant to emerging biofuel cell technologies and also bacterial biophysics.

  8. Slipping on pedestrian surfaces: methods for measuring and evaluating the slip resistance.

    Science.gov (United States)

    Wetzel, Christoph; Windhövel, Ulrich; Mewes, Detlef; Ceylan, Orhan

    2015-01-01

    Tripping, slipping and falling accidents are among the types of accident with a high incidence. This article describes the requirements concerning slip resistance, as well as the state of the art of slip resistance measurement standards in the European Community and the USA. The article also describes how risk assessment can be performed in the field.

  9. Quantifying Compressibility and Slip in Multiparticle Collision (MPC Flow Through a Local Constriction

    Directory of Open Access Journals (Sweden)

    Tahmina Akhter

    2014-01-01

    Full Text Available The flow of a compressible fluid with slip through a cylinder with an asymmetric local constriction has been considered both numerically, as well as analytically. For the numerical work, a particle-based method whose dynamics is governed by the multiparticle collision (MPC rule has been used together with a generalized boundary condition that allows for slip at the wall. Since it is well known that an MPC system corresponds to an ideal gas and behaves like a compressible, viscous flow on average, an approximate analytical solution has been derived from the compressible Navier–Stokes equations of motion coupled to an ideal gas equation of state using the Karman–Pohlhausen method. The constriction is assumed to have a polynomial form, and the location of maximum constriction is varied throughout the constricted portion of the cylinder. Results for centerline densities and centerline velocities have been compared for various Reynolds numbers, Mach numbers, wall slip values and flow geometries.

  10. Aseismic Transform Fault Slip at the Mendocino Triple Junction From Characteristically Repeating Earthquakes

    Science.gov (United States)

    Materna, Kathryn; Taira, Taka'aki; Bürgmann, Roland

    2018-01-01

    The Mendocino Triple Junction (MTJ), at the northern terminus of the San Andreas Fault system, is an actively deforming plate boundary region with poorly constrained estimates of seismic coupling on most offshore fault surfaces. Characteristically repeating earthquakes provide spatial and temporal descriptions of aseismic creep at the MTJ, including on the oceanic transform Mendocino Fault Zone (MFZ) as it subducts beneath North America. Using a dataset of earthquakes from 2008 to 2017, we find that the easternmost segment of the MFZ displays creep during this period at about 65% of the long-term slip rate. We also find creep at slower rates on the shallower strike-slip interface between the Pacific plate and the North American accretionary wedge, as well as on a fault that accommodates Gorda subplate internal deformation. After a nearby M5.7 earthquake in 2015, we observe a possible decrease in aseismic slip on the near-shore MFZ that lasts from 2015 to at least early 2017.

  11. Introduction to special section on phenomenology, underlying processes, and hazard implications of aseismic slip and nonvolcanic tremor

    Science.gov (United States)

    Gomberg, Joan

    2010-01-01

    This paper introduces the special section on the "phenomenology, underlying processes, and hazard implications of aseismic slip and nonvolcanic tremor" by highlighting key results of the studies published in it. Many of the results indicate that seismic and aseismic manifestations of slow slip reflect transient shear displacements on the plate interface, with the outstanding exception of northern Cascadia where tremor sources have been located on and above the plate interface (differing models of the plate interface there also need to be reconciled). Slow slip phenomena appear to result from propagating deformation that may develop with persistent gaps and segment boundaries. Results add to evidence that when tectonic deformation is relaxed via slow slip, most relaxation occurs aseismically but with seismic signals providing higher-resolution proxies for the aseismic slip. Instead of two distinct slip modes as suggested previously, lines between "fast" and "slow" slip more appropriately may be described as blurry zones. Results reported also show that slow slip sources do not coincide with a specific temperature or metamorphic reaction. Their associations with zones of high conductivity and low shear to compressional wave velocity ratios corroborate source models involving pore fluid pressure buildup and release. These models and spatial anticorrelations between earthquake and tremor activity also corroborate a linkage between slow slip and frictional properties transitional between steady state and stick-slip. Finally, this special section highlights the benefits of global and multidisciplinary studies, which demonstrate that slow phenomena are not confined to beneath the locked zone but exist in many settings.

  12. Viscous slip coefficients for binary gas mixtures measured from mass flow rates through a single microtube

    Science.gov (United States)

    Yamaguchi, H.; Takamori, K.; Perrier, P.; Graur, I.; Matsuda, Y.; Niimi, T.

    2016-09-01

    The viscous slip coefficient for helium-argon binary gas mixture is extracted from the experimental values of the mass flow rate through a microtube. The mass flow rate is measured by the constant-volume method. The viscous slip coefficient was obtained by identifying the measured mass flow rate through a microtube with the corresponding analytical expression, which is a function of the Knudsen number. The measurements were carried out in the slip flow regime where the first-order slip boundary condition can be applied. The measured viscous slip coefficients of binary gas mixtures exhibit a concave function of the molar ratio of the mixture, showing a similar profile with numerical results. However, from the detailed comparison between the measured and numerical values with the complete and incomplete accommodation at a surface, it is inappropriate to estimate the viscous slip coefficient for the mixture numerically by employing separately measured tangential momentum accommodation coefficient for each component. The time variation of the molar ratio in the downstream chamber was measured by sampling the gas from the chamber using the quadrupole mass spectrometer. In our measurements, it is indicated that the volume flow rate of argon is larger than that of helium because of the difference in the tangential momentum accommodation coefficient.

  13. Canonical ensembles and nonzero density quantum chromodynamics

    International Nuclear Information System (INIS)

    Hasenfratz, A.; Toussaint, D.

    1992-01-01

    We study QCD with nonzero chemical potential on 4 4 lattices by averaging over the canonical partition functions, or sectors with fixed quark number. We derive a condensed matrix of size 2x3xL 3 whose eigenvalues can be used to find the canonical partition functions. We also experiment with a weight for configuration generation which respects the Z(3) symmetry which forces the canonical partition function to be zero for quark numbers that are not multiples of three. (orig.)

  14. In-situ transmission electron microscopy observation of slip propagation in ä3 bicrystals

    Czech Academy of Sciences Publication Activity Database

    Gemperlová, Juliana; Jacques, A.; Gemperle, Antonín; Vystavěl, Tomáš; Zárubová, Niva; Janecek, M.

    2002-01-01

    Roč. 324, - (2002), s. 183-189 ISSN 0921-5093 R&D Projects: GA ČR GA202/98/1281 Institutional research plan: CEZ:AV0Z1010914 Keywords : in- situ TEM deformation * propagation of slip * plastic deformation * grain boundary * symmetrical ä3 bicrystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.107, year: 2002

  15. Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate

    OpenAIRE

    Guo, Yan; Nguyen, Toan T.

    2014-01-01

    This paper concerns the validity of the Prandtl boundary layer theory in the inviscid limit for steady incompressible Navier-Stokes flows. The stationary flows, with small viscosity, are considered on $[0,L]\\times \\mathbb{R}_{+}$, assuming a no-slip boundary condition over a moving plate at $y=0$. We establish the validity of the Prandtl boundary layer expansion and its error estimates.

  16. Slip Morphology of Elastic Strips on Frictional Rigid Substrates.

    Science.gov (United States)

    Sano, Tomohiko G; Yamaguchi, Tetsuo; Wada, Hirofumi

    2017-04-28

    The morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is investigated by a combination of theory and experiment. We find a rich variety of morphologies, which-when the bending elasticity dominates over the effect of gravity-are classified into three distinct types of states: pinned, partially slipped, and completely slipped, depending on the magnitude of the vertical strain and the coefficient of static friction. We develop a theory of elastica under mixed clamped-hinged boundary conditions combined with the Coulomb-Amontons friction law and find excellent quantitative agreement with simulations and controlled physical experiments. We also discuss the effect of gravity in order to bridge the difference in the qualitative behaviors of stiff strips and flexible strings or ropes. Our study thus complements recent work on elastic rope coiling and takes a significant step towards establishing a unified understanding of how a thin elastic object interacts vertically with a solid surface.

  17. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng; Hainzl, Sebastian; Mai, Paul Martin

    2015-01-01

    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  18. Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling

    KAUST Repository

    Wang, Lifeng

    2015-11-11

    The long-term slip on faults has to follow, on average, the plate motion, while slip deficit is accumulated over shorter time scales (e.g., between the large earthquakes). Accumulated slip deficits eventually have to be released by earthquakes and aseismic processes. In this study, we propose a new inversion approach for coseismic slip, taking interseismic slip deficit as prior information. We assume a linear correlation between coseismic slip and interseismic slip deficit, and invert for the coefficients that link the coseismic displacements to the required strain accumulation time and seismic release level of the earthquake. We apply our approach to the 2011 M9 Tohoku-Oki earthquake and the 2004 M6 Parkfield earthquake. Under the assumption that the largest slip almost fully releases the local strain (as indicated by borehole measurements, Lin et al., 2013), our results suggest that the strain accumulated along the Tohoku-Oki earthquake segment has been almost fully released during the 2011 M9 rupture. The remaining slip deficit can be attributed to the postseismic processes. Similar conclusions can be drawn for the 2004 M6 Parkfield earthquake. We also estimate the required time of strain accumulation for the 2004 M6 Parkfield earthquake to be ~25 years (confidence interval of [17, 43] years), consistent with the observed average recurrence time of ~22 years for M6 earthquakes in Parkfield. For the Tohoku-Oki earthquake, we estimate the recurrence time of~500-700 years. This new inversion approach for evaluating slip balance can be generally applied to any earthquake for which dense geodetic measurements are available.

  19. Slip transfer across grain boundaries in Fe-Si bicrystals

    Czech Academy of Sciences Publication Activity Database

    Gemperlová, Juliana; Polcarová, Milena; Gemperle, Antonín; Zárubová, Niva

    2004-01-01

    Roč. 378, - (2004), s. 97-101 ISSN 0925-8388 R&D Projects: GA ČR GA202/01/0670 Institutional research plan: CEZ:AV0Z1010914 Keywords : metals * dislocations and disclinations * bicrystals * grain boundaries * transmission electron microscopy * X-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.562, year: 2004

  20. Imbricated slip rate processes during slow slip transients imaged by low-frequency earthquakes

    Science.gov (United States)

    Lengliné, O.; Frank, W.; Marsan, D.; Ampuero, J. P.

    2017-12-01

    Low Frequency Earthquakes (LFEs) often occur in conjunction with transient strain episodes, or Slow Slip Events (SSEs), in subduction zones. Their focal mechanism and location consistent with shear failure on the plate interface argue for a model where LFEs are discrete dynamic ruptures in an otherwise slowly slipping interface. SSEs are mostly observed by surface geodetic instruments with limited resolution and it is likely that only the largest ones are detected. The time synchronization of LFEs and SSEs suggests that we could use the recorded LFEs to constrain the evolution of SSEs, and notably of the geodetically-undetected small ones. However, inferring slow slip rate from the temporal evolution of LFE activity is complicated by the strong temporal clustering of LFEs. Here we apply dedicated statistical tools to retrieve the temporal evolution of SSE slip rates from the time history of LFE occurrences in two subduction zones, Mexico and Cascadia, and in the deep portion of the San Andreas fault at Parkfield. We find temporal characteristics of LFEs that are similar across these three different regions. The longer term episodic slip transients present in these datasets show a slip rate decay with time after the passage of the SSE front possibly as t-1/4. They are composed of multiple short term transients with steeper slip rate decay as t-α with α between 1.4 and 2. We also find that the maximum slip rate of SSEs has a continuous distribution. Our results indicate that creeping faults host intermittent deformation at various scales resulting from the imbricated occurrence of numerous slow slip events of various amplitudes.

  1. The Earth isn't flat: The (large) influence of topography on geodetic fault slip imaging.

    Science.gov (United States)

    Thompson, T. B.; Meade, B. J.

    2017-12-01

    While earthquakes both occur near and generate steep topography, most geodetic slip inversions assume that the Earth's surface is flat. We have developed a new boundary element tool, Tectosaur, with the capability to study fault and earthquake problems including complex fault system geometries, topography, material property contrasts, and millions of elements. Using Tectosaur, we study the model error induced by neglecting topography in both idealized synthetic fault models and for the cases of the MW=7.3 Landers and MW=8.0 Wenchuan earthquakes. Near the steepest topography, we find the use of flat Earth dislocation models may induce errors of more than 100% in the inferred slip magnitude and rake. In particular, neglecting topographic effects leads to an inferred shallow slip deficit. Thus, we propose that the shallow slip deficit observed in several earthquakes may be an artefact resulting from the systematic use of elastic dislocation models assuming a flat Earth. Finally, using this study as an example, we emphasize the dangerous potential for forward model errors to be amplified by an order of magnitude in inverse problems.

  2. Generalized quantization scheme for two-person non-zero sum games

    International Nuclear Information System (INIS)

    Nawaz, Ahmad; Toor, A H

    2004-01-01

    We proposed a generalized quantization scheme for non-zero sum games which can be reduced to the two existing quantization schemes under an appropriate set of parameters. Some other important situations are identified which are not apparent in the two existing quantization schemes

  3. Investigations of Slip Effect on the Performance of Micro Gas Bearings and Stability of Micro Rotor-Bearing Systems

    Directory of Open Access Journals (Sweden)

    Jieyu Chen

    2007-08-01

    Full Text Available Incorporating the velocity slip effect of the gas flow at the solid boundary, theperformance and dynamic response of a micro gas-bearing-rotor system are investigated inthis paper. For the characteristic length scale of the micro gas bearing, the gas flow in thebearing resides in the slip regime rather than in the continuum regime. The modifiedReynolds equations of different slip models are presented. Gas pressure distribution and loadcarrying capacity are obtained by solving the Reynolds equations with finite differentmethod (FDM. Comparing results from different models, it is found that the second orderslip model agrees reasonably well with the benchmarked solutions obtained from thelinearized Boltzmann equation. Therefore, dynamic coefficients derived from the secondorder slip model are employed to evaluate the linear dynamic stability and vibrationcharacteristics of the system. Compared with the continuum flow model, the slip effectreduces dynamic coefficients of the micro gas bearing, and the threshold speed for stableoperation is consequently raised. Also, dynamic analysis shows that the system responseschange with variation of the operating parameters including the eccentricity ratio, therotational speed, and the unbalance ratio.

  4. Decreasing Slip Rates From 12.8 Ma to Present on the Solitario Canyon Fault at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    D. Buesch

    2006-01-01

    The Solitario Canyon fault, which bounds the west side of Yucca Mountain, Nevada, is the closest fault with Quaternary offset adjacent to the proposed spent nuclear fuel and high-level radioactive waste repository. Dip-slip offset between 12.8 and 10.7 Ma is determined from lithostratigraphic displacement in boreholes USW H-3 and USW WT-7, drilled in the footwall and hanging wall, respectively. The base of the 12.8-Ma Topopah Spring Tuff is interpreted to have 463.3 m of separation across the fault, an average dip slip rate of 0.036 mm/yr. Previous researchers identified a geothermal system active from 11.5 to 10.0 Ma with peak activity at 10.7 Ma that resulted in pervasive alteration of vitric rock to zeolitic minerals where the rocks were in the ground-water saturated zone. The contact between vitric (V) and pervasively zeolitic (Z) rocks cuts across the lithostratigraphic section and offset of this V-Z boundary can be used to measure slip rates between 12.8 and 10.7 Ma. In H-3, the V-Z boundary is 138.4 m below the base of the vitric, densely welded subzone of the Topopah Spring Tuff (Tptpv3). In WT-7, although the V-Z boundary is identified at the base of the Tptpv3, borehole video, cuttings, and geophysical log data indicate the Tptpv3 has well-developed zeolitic alteration along fractures, and this implies 19.5 m of the total thickness of Tptpv3 (and probably additional overlying crystallized rocks) also were in the saturated zone by 10.7 Ma. The V-Z relations across the Solitario Canyon fault in H-3 and WT-7 indicate a minimum of 157.9 m of separation before 10.7 Ma, which is 34.1 percent of the total slip of the Topopah Spring Tuff, and a minimum dip slip rate of 0.075 mm/yr from 12.8 to 10.7 Ma. These data are consistent with the broader structural history of the area near Yucca Mountain. Previous workers used angular unconformities, tilting of structural blocks, and paleomagnetic data to constrain the main period of extensional faulting between 12.7 and 8

  5. Quantum communication through a spin ring with twisted boundary conditions

    International Nuclear Information System (INIS)

    Bose, S.; Jin, B.-Q.; Korepin, V.E.

    2005-01-01

    We investigate quantum communication between the sites of a spin ring with twisted boundary conditions. Such boundary conditions can be achieved by a magnetic flux through the ring. We find that a nonzero twist can improve communication through finite odd-numbered rings and enable high-fidelity multiparty quantum communication through spin rings (working near perfectly for rings of five and seven spins). We show that in certain cases, the twist results in the complete blockage of quantum-information flow to a certain site of the ring. This effect can be exploited to interface and entangle a flux qubit and a spin qubit without embedding the latter in a magnetic field

  6. Evaluation of deformation behavior of in grains and grain boundaries of L-grade austenitic stainless steel 316L

    International Nuclear Information System (INIS)

    Nagashima, Nobuo; Hayakawa, Masao; Tsukada, Takashi; Kaji, Yoshiyuki; Miwa, Yukio; Ando, Masami; Nakata, Kiyotomo

    2009-01-01

    In this study, micro-hardness tests and AFM observations were performed on SUS 316L low-carbon austenitic stainless steel pre-strained by cold rolling to investigate its deformation behavior. The following results were obtained. Despite the fact that the same plastic strain was applied, post-tensile test AFM showed narrower slip-band spacing in a reduction in area of 30% cold-rolled specimen than the unrolled specimen. Concentrated slip bands were observed near grain boundaries. These were presumably due to slip blocking at grain boundaries. SCC sensitivity increased at a hardness of 300 or higher, the frequency occurrence of a hardness of 300 or higher in the micro-hardness measurements was compared. The micro-hardness did not exceed 300 both within grains and at grain boundaries in the unrolled and up to a reduction in area of 20% cold-rolled specimens of before and after the tensile tests. Micro-hardness exceeding 300 was found to occur frequently in after tensile test specimens with a reduction in area of 30% or more, particularly at grain boundaries. It is suggested that the nonuniformity of deformation at grain boundaries plays an important role of IGSCC crack propagation mechanism of low-carbon austenitic stainless steel. (author)

  7. Effect of slip on existence, uniqueness, and behavior of similarity solutions for steady incompressible laminar flow in porous tubes and channels

    Science.gov (United States)

    Chellam, Shankararaman; Liu, Mei

    2006-08-01

    The existence and multiplicity of similarity solutions for steady, fully developed, incompressible laminar flow in uniformly porous tubes and channels with one or two permeable walls is investigated from first principles. A fourth-order ordinary differential equation obtained by simplifying the Navier-Stokes equations by introducing Berman's stream function [A. S. Berman, J. Appl. Phys. 24, 1232 (1953)] and Terrill's transformation [R. M. Terrill, Aeronaut. Q. 15, 299 (1964)] is probed analytically. In this work that considers only symmetric flows for symmetric ducts; the no-slip boundary condition at porous walls is relaxed to account for momentum transfer within the porous walls. By employing the Saffman [P. G. Saffman, Stud. Appl. Math. 50, 93 (1971)] form of the slip boundary condition, the uniqueness of similarity solutions is investigated theoretically in terms of the signs of the guesses for the missing initial conditions. Solutions were obtained for all wall Reynolds numbers for channel flows whereas no solutions existed for intermediate values for tube flows. Introducing slip did not fundamentally change the number or the character of solutions corresponding to different sections. However, the range of wall Reynolds numbers for which similarity solutions are theoretically impossible in tube flows was found to be a weak function of the slip coefficient. Slip also weakly influenced the transition wall Reynolds number corresponding to flow in the direction of a favorable axial pressure gradient to one in the direction of an adverse pressure gradient. Momentum transfer from the longitudinal axis to the walls appears to occur more efficiently in porous channels compared to porous tubes even in the presence of slip.

  8. Pleistocene slip rates on the Boconó fault along the North Andean Block plate boundary, Venezuela

    Science.gov (United States)

    Pousse-Beltran, Lea; Vassallo, Riccardo; Audemard, Franck; Jouanne, François; Carcaillet, Julien; Pathier, Erwan; Volat, Matthieu

    2017-07-01

    The Boconó fault is a strike-slip fault lying between the North Andean Block and the South American plate which has triggered at least five Mw > 7 historical earthquakes in Venezuela. The North Andean Block is currently moving toward NNE with respect to a stable South American plate. This relative displacement at 12 mm yr-1 in Venezuela (within the Maracaibo Block) was measured by geodesy, but until now the distribution and rates of Quaternary deformation have remained partially unclear. We used two alluvial fans offset by the Boconó fault (Yaracuy Valley) to quantify slip rates, by combining 10Be cosmogenic dating with measurements of tectonic displacements on high-resolution satellite images (Pleiades). Based upon a fan dated at >79 ka and offset by 1350-1580 m and a second fan dated at 120-273 ka and offset by 1236-1500 m, we obtained two Pleistocene rates of 5.0-11.2 and <20.0 mm yr-1, consistent with the regional geodesy. This indicates that the Boconó fault in the Yaracuy Valley accommodates 40 to 100% of the deformation between the South American plate and the Maracaibo Block. As no aseismic deformation was shown by interferometric synthetic aperture radar analysis, we assume that the fault is locked since the 1812 event. This implies that there is a slip deficit in the Yaracuy Valley since the last earthquake ranging from 1 to 4 m, corresponding to a Mw 7-7.6 earthquake. This magnitude is comparable to the 1812 earthquake and to other historical events along the Boconó fault.

  9. Measurement and characterization of slippage and slip-law using a rigorous analysis in dynamics of oscillating rheometer: Newtonian fluid

    Science.gov (United States)

    Azese, Martin Ndi

    2018-02-01

    This article presents a rigorous calculation involving velocity slip of Newtonian fluid where we analyze and solve the unsteady Navier-Stokes equation with emphasis on its rheological implication. The goal of which is to model a simple yet effective non-invasive way of quantifying and characterizing slippage. Indeed this contrasts with previous techniques that exhibit inherent limitations whereby injecting foreign objects usually alter the flow. This problem is built on the Couette rheological flow system such that μ-Newton force and μ-stress are captured and processed to obtain wall slip. Our model leads to a linear partial differential equation and upon enforcing linear-Navier slip boundary conditions (BC) yields inhomogeneous and unsteady "Robin-type" BC. A dimensional analysis reveals salient dimensionless parameters: Roshko, Strouhal, and Reynolds while highlighting slip-numbers from BC. We also solve the slip-free case to corroborate and validate our results. Several graphs are generated showing slip effects, particularly, studying how slip-numbers, a key input, differentiate themselves to the outputs. We also confirm this in a graphical fashion by presenting the flow profile across channel width, velocity, and stress at both walls. A perturbation scheme is introduced to calculate long-time behavior when the system seats for long. More importantly, in the end, we justify the existence of a reverse mechanism, where an inverse transformation like Fourier transform uses the output data to retrieve slip-numbers and slip law, thus quantifying and characterizing slip. Therefore, we not only substantiate our analysis, but we also justify our claim, measurement and characterization, and theorize realizability of our proposition.

  10. Effects of Strike-Slip Fault Segmentation on Earthquake Energy and Seismic Hazard

    Science.gov (United States)

    Madden, E. H.; Cooke, M. L.; Savage, H. M.; McBeck, J.

    2014-12-01

    Many major strike-slip faults are segmented along strike, including those along plate boundaries in California and Turkey. Failure of distinct fault segments at depth may be the source of multiple pulses of seismic radiation observed for single earthquakes. However, how and when segmentation affects fault behavior and energy release is the basis of many outstanding questions related to the physics of faulting and seismic hazard. These include the probability for a single earthquake to rupture multiple fault segments and the effects of segmentation on earthquake magnitude, radiated seismic energy, and ground motions. Using numerical models, we quantify components of the earthquake energy budget, including the tectonic work acting externally on the system, the energy of internal rock strain, the energy required to overcome fault strength and initiate slip, the energy required to overcome frictional resistance during slip, and the radiated seismic energy. We compare the energy budgets of systems of two en echelon fault segments with various spacing that include both releasing and restraining steps. First, we allow the fault segments to fail simultaneously and capture the effects of segmentation geometry on the earthquake energy budget and on the efficiency with which applied displacement is accommodated. Assuming that higher efficiency correlates with higher probability for a single, larger earthquake, this approach has utility for assessing the seismic hazard of segmented faults. Second, we nucleate slip along a weak portion of one fault segment and let the quasi-static rupture propagate across the system. Allowing fractures to form near faults in these models shows that damage develops within releasing steps and promotes slip along the second fault, while damage develops outside of restraining steps and can prohibit slip along the second fault. Work is consumed in both the propagation of and frictional slip along these new fractures, impacting the energy available

  11. New geologic slip rates for the Agua Blanca Fault, northern Baja California, Mexico

    Science.gov (United States)

    Gold, P. O.; Behr, W. M.; Fletcher, J. M.; Hinojosa-Corona, A.; Rockwell, T. K.

    2015-12-01

    Within the southern San Andreas transform plate boundary system, relatively little is known regarding active faulting in northern Baja California, Mexico, or offshore along the Inner Continental Borderland. The inner offshore system appears to be fed from the south by the Agua Blanca Fault (ABF), which strikes northwest across the Peninsular Ranges of northern Baja California. Therefore, the geologic slip rate for the ABF also provides a minimum slip rate estimate for the offshore system, which is connected to the north to faults in the Los Angeles region. Previous studies along the ABF determined slip rates of ~4-6 mm/yr (~10% of relative plate motion). However, these rates relied on imprecise age estimates and offset geomorphic features of a type that require these rates to be interpreted as minima, allowing for the possibility that the slip rate for the ABF may be greater. Although seismically quiescent, the surface trace of the ABF clearly reflects Holocene activity, and given its connectivity with the offshore fault system, more quantitative slip rates for the ABF are needed to better understand earthquake hazard for both US and Mexican coastal populations. Using newly acquired airborne LiDAR, we have mapped primary and secondary fault strands along the segmented western 70 km of the ABF. Minimal development has left the geomorphic record of surface slip remarkably well preserved, and we have identified abundant evidence meter to km scale right-lateral displacement, including new Late Quaternary slip rate sites. We verified potential reconstructions at each site during summer 2015 fieldwork, and selected an initial group of three high potential slip rate sites for detailed mapping and geochronologic analyses. Offset landforms, including fluvial terrace risers, alluvial fans, and incised channel fill deposits, record displacements of ~5-80 m, and based on minimal soil development, none appear older than early Holocene. To quantitatively constrain landform ages

  12. A device adaptive inflow boundary condition for Wigner equations of quantum transport

    International Nuclear Information System (INIS)

    Jiang, Haiyan; Lu, Tiao; Cai, Wei

    2014-01-01

    In this paper, an improved inflow boundary condition is proposed for Wigner equations in simulating a resonant tunneling diode (RTD), which takes into consideration the band structure of the device. The original Frensley inflow boundary condition prescribes the Wigner distribution function at the device boundary to be the semi-classical Fermi–Dirac distribution for free electrons in the device contacts without considering the effect of the quantum interaction inside the quantum device. The proposed device adaptive inflow boundary condition includes this effect by assigning the Wigner distribution to the value obtained from the Wigner transform of wave functions inside the device at zero external bias voltage, thus including the dominant effect on the electron distribution in the contacts due to the device internal band energy profile. Numerical results on computing the electron density inside the RTD under various incident waves and non-zero bias conditions show much improvement by the new boundary condition over the traditional Frensley inflow boundary condition

  13. Fluid Pressures at the Shoe-Floor-Contaminant Interface During Slips: Effects of Tread & Implications on Slip Severity

    Science.gov (United States)

    Beschorner, Kurt E.; Albert, Devon L.; Chambers, April J.; Redfern, Mark S.

    2018-01-01

    Previous research on slip and fall accidents has suggested that pressurized fluid between the shoe and floor is responsible for initiating slips yet this effect has not been verified experimentally. This study aimed to 1) measure hydrodynamic pressures during slipping for treaded and untreaded conditions; 2) determine the effects of fluid pressure on slip severity; and 3) quantify how fluid pressures vary with instantaneous resultant slipping speed, position on the shoe surface, and throughout the progression of the slip. Eighteen subjects walked on known dry and unexpected slippery floors, while wearing treaded and untreaded shoes. Fluid pressure sensors, embedded in the floor, recorded hydrodynamic pressures during slipping. The maximum fluid pressures (mean+/−standard deviation) were significantly higher for the untreaded conditions (124 +/−75 kPa) than the treaded conditions (1.1 +/−0.29 kPa). Maximum fluid pressures were positively correlated with peak slipping speed (r = 0.87), suggesting that higher fluid pressures, which are associated with untreaded conditions, resulted in more severe slips. Instantaneous resultant slipping speed and position of sensor relative to the shoe sole and walking direction explained 41% of the fluid pressure variability. Fluid pressures were primarily observed for untreaded conditions. This study confirms that fluid pressures are relevant to slipping events, consistent with fluid dynamics theory (i.e. the Reynolds equation), and can be modified with shoe tread design. The results suggest that the occurrence and severity of unexpected slips can be reduced by designing shoes/floors that reduce underfoot fluid pressures. PMID:24267270

  14. Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection.

    Science.gov (United States)

    van der Poel, Erwin P; Ostilla-Mónico, Rodolfo; Verzicco, Roberto; Lohse, Detlef

    2014-07-01

    The effect of various velocity boundary condition is studied in two-dimensional Rayleigh-Bénard convection. Combinations of no-slip, stress-free, and periodic boundary conditions are used on both the sidewalls and the horizontal plates. For the studied Rayleigh numbers Ra between 10(8) and 10(11) the heat transport is lower for Γ=0.33 than for Γ=1 in case of no-slip sidewalls. This is, surprisingly, the opposite for stress-free sidewalls, where the heat transport increases for a lower aspect ratio. In wider cells the aspect-ratio dependence is observed to disappear for Ra ≥ 10(10). Two distinct flow types with very different dynamics can be seen, mostly dependent on the plate velocity boundary condition, namely roll-like flow and zonal flow, which have a substantial effect on the dynamics and heat transport in the system. The predominantly horizontal zonal flow suppresses heat flux and is observed for stress-free and asymmetric plates. Low aspect-ratio periodic sidewall simulations with a no-slip boundary condition on the plates also exhibit zonal flow. In all the other cases, the flow is roll like. In two-dimensional Rayleigh-Bénard convection, the velocity boundary conditions thus have large implications on both roll-like and zonal flow that have to be taken into consideration before the boundary conditions are imposed.

  15. Influence of slip velocity in Herschel-Bulkley fluid flow between parallel plates - A mathematical study

    International Nuclear Information System (INIS)

    Sankar, D. S.; Lee, U Sik

    2016-01-01

    This theoretical study investigates three types of basic flows of viscous incompressible Herschel-Bulkley fluid such as (i) plane Couette flow, (ii) Poiseuille flow and (iii) generalized Couette flow with slip velocity at the boundary. The analytic solutions to the nonlinear boundary value problems have been obtained. The effects of various physical parameters on the velocity, flow rate, wall shear stress and frictional resistance to flow are analyzed through appropriate graphs. It is observed that in plane Poiseuille flow and generalized Couette flow, the velocity and flow rate of the fluid increase considerably with the increase of the slip parameter, power law index, pressure gradient. The fluid velocity is significantly higher in plane Poiseuille flow than in plane Couette flow. The wall shear stress and frictional resistance to flow decrease considerably with the increase of the power law index and increase significantly with the increase of the yield stress of the fluid. The wall shear stress and frictional resistance to flow are considerably higher in plane Poiseuille flow than in generalized Couette flow.

  16. Steady Boundary Layer Slip Flow along with Heat and Mass Transfer over a Flat Porous Plate Embedded in a Porous Medium

    Science.gov (United States)

    Aziz, Asim; Siddique, J. I.; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile. PMID:25531301

  17. Steady boundary layer slip flow along with heat and mass transfer over a flat porous plate embedded in a porous medium.

    Science.gov (United States)

    Aziz, Asim; Siddique, J I; Aziz, Taha

    2014-01-01

    In this paper, a simplified model of an incompressible fluid flow along with heat and mass transfer past a porous flat plate embedded in a Darcy type porous medium is investigated. The velocity, thermal and mass slip conditions are utilized that has not been discussed in the literature before. The similarity transformations are used to transform the governing partial differential equations (PDEs) into a nonlinear ordinary differential equations (ODEs). The resulting system of ODEs is then reduced to a system of first order differential equations which was solved numerically by using Matlab bvp4c code. The effects of permeability, suction/injection parameter, velocity parameter and slip parameter on the structure of velocity, temperature and mass transfer rates are examined with the aid of several graphs. Moreover, observations based on Schmidt number and Soret number are also presented. The result shows, the increase in permeability of the porous medium increase the velocity and decrease the temperature profile. This happens due to a decrease in drag of the fluid flow. In the case of heat transfer, the increase in permeability and slip parameter causes an increase in heat transfer. However for the case of increase in thermal slip parameter there is a decrease in heat transfer. An increase in the mass slip parameter causes a decrease in the concentration field. The suction and injection parameter has similar effect on concentration profile as for the case of velocity profile.

  18. Oscillatory slip flow past a spherical inclusion embedded in a Brinkman medium

    Science.gov (United States)

    Palaniappan, D.

    2016-11-01

    Non-steady flow past an impermeable sphere embedded in a porous medium is investigated based on Brinkman model with Navier slip conditions. Exact analytic solution for the stream-function - involving modified Bessel function of the second kind - describing the slow oscillatory flow around a rigid spherical inclusion is obtained in the limit of low-Reynolds-number. The key parameters such as the frequency of oscillation λ, the permeability constant δ, and the slip coefficient ξ control the flow fields and physical quantities in the entire flow domain. Local streamlines for fixed times demonstrate the variations in flow patterns. Closed form expressions for the tangential velocity profile, wall shear stress, and the force acting on the sphere are computed and compared with the existing results. It is noted that the slip parameter in the range 0 <= ξ <= 0 . 5 has a significant effect in reducing the stress and force. The steady-state velocity overshoot behavior in the vicinity of the sphere is re-iterated. In the limit of large permeability, Darcy (potential) flow is recovered outside a boundary layer. The results are of some interest in predicting maximum wall stress and pressure drop associated with biological models in fibrous media.

  19. Numerical modeling of time-dependent bio-convective stagnation flow of a nanofluid in slip regime

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar

    Full Text Available A numerical investigation of unsteady stagnation point flow of bioconvective nanofluid due to an exponential deforming surface is made in this research. The effects of Brownian diffusion, thermophoresis, slip velocity and thermal jump are incorporated in the nanofluid model. By utilizing similarity transformations, the highly nonlinear partial differential equations governing present nano-bioconvective boundary layer phenomenon are reduced into ordinary differential system. The resultant expressions are solved for numerical solution by employing a well-known implicit finite difference approach termed as Keller-box method (KBM. The influence of involved parameters (unsteadiness, bioconvection Schmidt number, velocity slip, thermal jump, thermophoresis, Schmidt number, Brownian motion, bioconvection Peclet number on the distributions of velocity, temperature, nanoparticle and motile microorganisms concentrations, the coefficient of local skin-friction, rate of heat transport, Sherwood number and local density motile microorganisms are exhibited through graphs and tables. Keywords: Unsteadiness, Bio-convection, Slip regime, Stagnation point flow, Numerical modeling

  20. Simulation of engine auxiliary drive V-belt slip motion. Part 1. Development of belt slip model; Engine hoki V belt slip kyodo no simulation. 1. Belt slip model no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kurisu, T [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    V-belts are widely used for driving auxiliary components of an engine. Inadequet design of such belt system sometimes results in troubles such as belt squeak, side rubber separation and/or bottom rubber crack. However, there has been no design tools which can predict belt slip quantitatively. The author developed a motion simulation program of Auxiliary Drive V-Belt System considering belt slip. The program showed good prediction accuracy for belt slip motion. This paper describes the simulation model. 1 ref., 12 figs.

  1. The effect of surfactants on path instability of a rising bubble

    Science.gov (United States)

    Tagawa, Yoshiyuki; Takagi, Shu; Matsumoto, Yoichiro

    2013-11-01

    We experimentally investigate the surfactant effect on path instability of an air bubble rising in quiescent water. An addition of surfactant varies the gas-water boundary condition from zero shear stress to non-zero shear stress. We report three main findings: firstly, while the drag force acting on the bubble increases with the surfactant concentration as expected, the lift force shows a non-monotonic behavior; secondly, the transient trajectory starting from helical to zigzag is observed, which has never been reported in the case of purified water; lastly, a bubble with the intermediate slip conditions between free-slip and no-slip show a helical motion for a broad range of the Reynolds number. Aforementioned results are rationalized by considering the adsorption-desorption kinetics of the surfactants on gas-water interface and the wake dynamics. Y.T. thanks for financial support from Grant-in-Aid for JSPS Fellows (20-10701). We also thank for Grant-in-Aid for Scientific Research (B) (21360079).

  2. Slow slip events in Guerrero, Mexico, and consequences on strain accumulation over the past 15 years.

    Science.gov (United States)

    Radiguet, M.; Cotton, F.; Cavalié, O.; Pathier, E.; Kostoglodov, V.; Vergnolle, M.; Campillo, M.; Walpersdorf, A.; Cotte, N.; Santiago, J.; Franco, S.

    2012-12-01

    Continuous Global Positioning System (cGPS) time series in Guerrero, Mexico, reveal the widespread existence of large Slow Slip Events (SSEs) at the boundary between the Cocos and North American plates. The existence of these SSEs asks the question of how seismic and aseismic slips complement each other in subduction zones. We examined the last three SSEs that occurred in 2001/2002, 2006 and 2009/2010, and their impact on the strain accumulation along the Guerrero subduction margin. We use continuous cGPS time series and InSAR images to evaluate the surface displacement during SSEs and inter-SSE periods. The slip distributions on the plate interface associated with each SSE, as well as the inter-SSE (short-term) coupling rates are evaluated by inverting these surface displacements. Our results reveal that the three analyzed SSEs have equivalent moment magnitudes of around 7.5 and their lateral extension is variable.The slip distributions for the three SSEs show that in the Guerrero gap area, the slow slip occurs at shallower depth (updip limit around 15-20 km) than in surrounding regions. The InSAR data provide additional information for the 2006 SSE. The joint inversion of InSAR and cGPS data confirms the lateral variation of the slip distribution along the trench, with shallower slip in the Guerrero seismic gap, west of Acapulco, and deeper slip further east. Inversion of inter-SSE displacement rates reveal that during the inter-SSE time intervals, the interplate coupling is high in the area where the slow slip subsequently occurs. Over a 12 year period, corresponding to three cycles of SSEs, our results reveal that the accumulated slip deficit in the Guerrero gap area is only ¼ of the slip deficit accumulated on both sides of the gap. Moreover, the regions of large slip deficit coincide with the rupture areas of recent large earthquakes. We conclude that the SSEs account for a major portion of the overall moment release budget in the Guerrero gap. If large

  3. Electro-optical hybrid slip ring

    Science.gov (United States)

    Hong, En

    2005-11-01

    The slip ring is a rotary electrical interface, collector, swivel or rotary joint. It is a physical system that can perform continuous data transfer and data exchange between a stationary and a rotating structure. A slip ring is generally used to transfer data or power from an unrestrained, continuously rotating electro-mechanical system in real-time, thereby simplifying operations and eliminating damage-prone wires dangling from moving joints. Slip rings are widely used for testing, evaluating, developing and improving various technical equipment and facilities with rotating parts. They are widely used in industry, especially in manufacturing industries employing turbo machinery, as in aviation, shipbuilding, aerospace, defense, and in precise facilities having rotating parts such as medical Computerized Tomography (CT) and MRI scanners and so forth. Therefore, any improvement in slip ring technology can impact large markets. Research and development in this field will have broad prospects long into the future. The goal in developing the current slip ring technology is to improve and increase the reliability, stability, anti-interference, and high data fidelity between rotating and stationary structures. Up to now, there have been numerous approaches used for signal and data transfer utilizing a slip ring such as metal contacts, wires, radio transmission, and even liquid media. However, all suffer from drawbacks such as data transfer speed limitations, reliability, stability, electro-magnetic interference and durability. The purpose of the current research is to break through these basic limitations using an optical solution, thereby improving performance in current slip ring applications. This dissertation introduces a novel Electro-Optical Hybrid Slip Ring technology, which makes "through the air" digital-optical communication between stationary and rotating systems a reality with high data transfer speed, better reliability and low interference susceptibility

  4. Motion of particles of non-zero rest masses exterior to ...

    African Journals Online (AJOL)

    In this article, we extend the metric tensor exterior to astrophysically real or imaginary spherical distributions of mass whose tensor field varies with polar angle only; to derive equations of motion for test particles in this field. The time, radial, polar and azimuthal equations of motion for particles of non-zero rest masses moving ...

  5. Major earthquakes occur regularly on an isolated plate boundary fault.

    Science.gov (United States)

    Berryman, Kelvin R; Cochran, Ursula A; Clark, Kate J; Biasi, Glenn P; Langridge, Robert M; Villamor, Pilar

    2012-06-29

    The scarcity of long geological records of major earthquakes, on different types of faults, makes testing hypotheses of regular versus random or clustered earthquake recurrence behavior difficult. We provide a fault-proximal major earthquake record spanning 8000 years on the strike-slip Alpine Fault in New Zealand. Cyclic stratigraphy at Hokuri Creek suggests that the fault ruptured to the surface 24 times, and event ages yield a 0.33 coefficient of variation in recurrence interval. We associate this near-regular earthquake recurrence with a geometrically simple strike-slip fault, with high slip rate, accommodating a high proportion of plate boundary motion that works in isolation from other faults. We propose that it is valid to apply time-dependent earthquake recurrence models for seismic hazard estimation to similar faults worldwide.

  6. Effects of Interfaces on Dynamics in Micro-Fluidic Devices: Slip-Boundaries’ Impact on Rotation Characteristics of Polar Liquid Film Motors

    Science.gov (United States)

    Jiang, Su-Rong; Liu, Zhong-Qiang; Amos Yinnon, Tamar; Kong, Xiang-Mu

    2017-05-01

    A new approach for exploring effects of interfaces on polar liquids is presented. Their impact on the polar liquid film motor (PLFM) - a novel micro-fluidic device - is studied. We account for the interface’s impact by modeling slip boundary effects on the PLFM’s electro-hydro-dynamical rotations. Our analytical results show as k={l}s/R increases (with {l}s denoting the slip length resulting from the interface’s impact on the film’s properties, k > -1 and R denoting the film’s radius): (a) PLFMs subsequently exhibit rotation characteristics under “negative-”, “no-”, “partial-” and “perfect-” slip boundary conditions; (b) The maximum value of the linear velocity of the steady rotating film increases linearly and its location approaches the film’s border; (c) The decay of the angular velocities’ dependency on the distance from the center of the film slows down, resulting in a macroscopic flow near the boundary. With our calculated rotation speed distributions consistent with the existing experimental ones, research aiming at fitting computed to measured distributions promises identifying the factors affecting {l}s, e.g., solid-fluid potential interactions and surface roughness. The consistency also is advantageous for optimizing PLFM’s applications as micro-washers, centrifuges, mixers in the lab-on-a-chip. Supported by National Natural Science Foundation of China under Grant Nos. 11302118, 11275112, and Natural Science Foundation of Shandong Province under Grant No. ZR2013AQ015

  7. Slip flow through a converging microchannel: experiments and 3D simulations

    International Nuclear Information System (INIS)

    Varade, Vijay; Agrawal, Amit; Pradeep, A M

    2015-01-01

    An experimental and 3D numerical study of gaseous slip flow through a converging microchannel is presented in this paper. The measurements reported are with nitrogen gas flowing through the microchannel with convergence angles (4°, 8° and 12°), hydraulic diameters (118, 147 and 177 µm) and lengths (10, 20 and 30 mm). The measurements cover the entire slip flow regime and a part of the continuum and transition regimes (the Knudsen number is between 0.0004 and 0.14); the flow is laminar (the Reynolds number is between 0.5 and 1015). The static pressure drop is measured for various mass flow rates. The overall pressure drop increases with a decrease in the convergence angle and has a relatively large contribution of the viscous component. The numerical solutions of the Navier–Stokes equations with Maxwell’s slip boundary condition explore two different flow behaviors: uniform centerline velocity with linear pressure variation in the initial and the middle part of the microchannel and flow acceleration with nonlinear pressure variation in the last part of the microchannel. The centerline velocity and the wall shear stress increase with a decrease in the convergence angle. The concept of a characteristic length scale for a converging microchannel is also explored. The location of the characteristic length is a function of the Knudsen number and approaches the microchannel outlet with rarefaction. These results on gaseous slip flow through converging microchannels are observed to be considerably different than continuum flow. (paper)

  8. Helicity-dependent generalized parton distributions for nonzero skewness

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2017-09-15

    We investigate the helicity-dependent generalized parton distributions (GPDs) in momentum as well as transverse position (impact) spaces for the u and d quarks in a proton when the momentum transfer in both the transverse and the longitudinal directions are nonzero. The GPDs are evaluated using the light-front wave functions of a quark-diquark model for nucleon where the wave functions are constructed by the soft-wall AdS/QCD correspondence. We also express the GPDs in the boost-invariant longitudinal position space. (orig.)

  9. Design objectives with non-zero prescribed support displacements

    DEFF Research Database (Denmark)

    Pedersen, Pauli; Pedersen, Niels Leergaard

    2011-01-01

    When non-zero prescribed support displacements are involved in addition to design independent loads for a continuum/structure, then the objectives of minimum compliance (total elastic energy) and of maximum strength lead to different designs. This is verified by the presented sensitivities. Designs...... minimization as well as that of direct strength maximization; we choose the objective of obtaining uniform energy density and show by examples that the obtained solutions are close to fulfilling also strength maximization, with the price of increased compliance. Optimal design examples are presented...

  10. Homogenization via the strong-permittivity-fluctuation theory with nonzero depolarization volume

    Science.gov (United States)

    Mackay, Tom G.

    2004-08-01

    The depolarization dyadic provides the scattering response of a single inclusion particle embedded within a homogenous background medium. These dyadics play a central role in formalisms used to estimate the effective constitutive parameters of homogenized composite mediums (HCMs). Conventionally, the inclusion particle is taken to be vanishingly small; this allows the pointwise singularity of the dyadic Green function associated with the background medium to be employed as the depolarization dyadic. A more accurate approach is pursued in this communication by taking into account the nonzero spatial extent of inclusion particles. Depolarization dyadics corresponding to inclusion particles of nonzero volume are incorporated within the strong-permittivity-fluctuation theory (SPFT). The linear dimensions of inclusion particles are assumed to be small relative to the electromagnetic wavelength(s) and the SPFT correlation length. The influence of the size of inclusion particles upon SPFT estimates of the HCM constitutive parameters is investigated for anisotropic dielectric HCMs.In particular, the interplay between correlation length and inclusion size is explored.

  11. Boundary layer flow of MHD generalized Maxwell fluid over an exponentially accelerated infinite vertical surface with slip and Newtonian heating at the boundary

    Directory of Open Access Journals (Sweden)

    M.A. Imran

    2018-03-01

    Full Text Available The aim of this article is to investigate the unsteady natural convection flow of Maxwell fluid with fractional derivative over an exponentially accelerated infinite vertical plate. Moreover, slip condition, radiation, MHD and Newtonian heating effects are also considered. A modern definition of fractional derivative operator recently introduced by Caputo and Fabrizio has been used to formulate the fractional model. Semi analytical solutions of the dimensionless problem are obtained by employing Stehfest’s and Tzou’s algorithms in order to find the inverse Laplace transforms for temperature and velocity fields. Temperature and rate of heat transfer for non-integer and integer order derivatives are computed and reduced to some known solutions from the literature. Finally, in order to get insight of the physical significance of the considered problem regarding velocity and Nusselt number, some graphical illustrations are made using Mathcad software. As a result, in comparison between Maxwell and viscous fluid (fractional and ordinary we found that viscous (fractional and ordinary fluids are swiftest than Maxwell (fractional and ordinary fluids. Keywords: Free convection, Slip, Maxwell fluid, Newtonian heating, Exponentially accelerated plate, Caputo-Fabrizio fractional derivatives, Stehfest’s and Tzou’s algorithms

  12. Unravelling the Mysteries of Slip Histories, Validating Cosmogenic 36Cl Derived Slip Rates on Normal Faults

    Science.gov (United States)

    Goodall, H.; Gregory, L. C.; Wedmore, L.; Roberts, G.; Shanks, R. P.; McCaffrey, K. J. W.; Amey, R.; Hooper, A. J.

    2017-12-01

    The cosmogenic isotope chlorine-36 (36Cl) is increasingly used as a tool to investigate normal fault slip rates over the last 10-20 thousand years. These slip histories are being used to address complex questions, including investigating slip clustering and understanding local and large scale fault interaction. Measurements are time consuming and expensive, and as a result there has been little work done validating these 36Cl derived slip histories. This study aims to investigate if the results are repeatable and therefore reliable estimates of how normal faults have been moving in the past. Our approach is to test if slip histories derived from 36Cl are the same when measured at different points along the same fault. As normal fault planes are progressively exhumed from the surface they accumulate 36Cl. Modelling these 36Cl concentrations allows estimation of a slip history. In a previous study, samples were collected from four sites on the Magnola fault in the Italian Apennines. Remodelling of the 36Cl data using a Bayesian approach shows that the sites produced disparate slip histories, which we interpret as being due to variable site geomorphology. In this study, multiple sites have been sampled along the Campo Felice fault in the central Italian Apennines. Initial results show strong agreement between the sites we have processed so far and a previous study. This indicates that if sample sites are selected taking the geomorphology into account, then 36Cl derived slip histories will be highly similar when sampled at any point along the fault. Therefore our study suggests that 36Cl derived slip histories are a consistent record of fault activity in the past.

  13. Fixed recurrence and slip models better predict earthquake behavior than the time- and slip-predictable models 1: repeating earthquakes

    Science.gov (United States)

    Rubinstein, Justin L.; Ellsworth, William L.; Chen, Kate Huihsuan; Uchida, Naoki

    2012-01-01

    The behavior of individual events in repeating earthquake sequences in California, Taiwan and Japan is better predicted by a model with fixed inter-event time or fixed slip than it is by the time- and slip-predictable models for earthquake occurrence. Given that repeating earthquakes are highly regular in both inter-event time and seismic moment, the time- and slip-predictable models seem ideally suited to explain their behavior. Taken together with evidence from the companion manuscript that shows similar results for laboratory experiments we conclude that the short-term predictions of the time- and slip-predictable models should be rejected in favor of earthquake models that assume either fixed slip or fixed recurrence interval. This implies that the elastic rebound model underlying the time- and slip-predictable models offers no additional value in describing earthquake behavior in an event-to-event sense, but its value in a long-term sense cannot be determined. These models likely fail because they rely on assumptions that oversimplify the earthquake cycle. We note that the time and slip of these events is predicted quite well by fixed slip and fixed recurrence models, so in some sense they are time- and slip-predictable. While fixed recurrence and slip models better predict repeating earthquake behavior than the time- and slip-predictable models, we observe a correlation between slip and the preceding recurrence time for many repeating earthquake sequences in Parkfield, California. This correlation is not found in other regions, and the sequences with the correlative slip-predictable behavior are not distinguishable from nearby earthquake sequences that do not exhibit this behavior.

  14. Spatiotemporal evolution of premonitory fault slip prior to stick-slip instability: New insight into the earthquake preparation

    Science.gov (United States)

    Zhuo, Y. Q.; Liu, P.; Guo, Y.; Ji, Y.; Ma, J.

    2017-12-01

    Premonitory fault slip, which begins with quasistatic propagation followed by quasidynamic propagation, may be a key clue bridging the "stick" state and "slip" state of a fault. More attentions have been paid for a long time to the temporal resolution of measurement than the spatial resolution, leading to the incomplete interpretation for the spatial evolution of premonitory slip, particularly during the quasistatic phase. In the present study, measurement of the quasistatic propagation of premonitory slip is achieved at an ultrahigh spatial resolution via a digital image correlation method. Multiple premonitory slip zones are observed and found to be controlled spatially by the fault contact heterogeneity, particularly the strong contact patches that prevent the propagation of premonitory slip and accumulate strain. As a result, premonitory slip is accelerated within constrained week contact spaces and consequently triggers the breakout of quasidynamic propagation. The results provide new insights into the quasistatic propagation of premonitory slip and may offer new interpretations for the earthquake nucleation process. This work is fund by the National Natural Science Foundation of China (Grant No. 41572181), the Basic Scientific Funding of Chinese National Nonprofit Institutes (Grant No. IGCEA1415, IGCEA1525), and the Early-Stage Work of Key Breakthrough Plan in Seismology from China Earthquake Administration.

  15. Scattering phases for particles with nonzero orbital momenta and resonance regimes in the Pais approximation

    International Nuclear Information System (INIS)

    Bruk, Yulii M; Voloshchuk, Aleksandr N

    2012-01-01

    The functional Pais equation for scattering phases with nonzero orbital momenta is solved in the case of low-energy particles. For short-range screened potentials, in particular, Yukawa or Thomas-Fermi potentials, the Pais equation is shown to reduce to transcendental equations. For the potentials varying ∼r - n , n > 0, simple algebraic equations are obtained for determining the phases δ l , l≠0. Possible applications of the Pais approximation to the problem of finding resonance regimes in the scattering of low-energy particles with nonzero orbital momenta are discussed. (methodological notes)

  16. Stabilizing Stick-Slip Friction

    International Nuclear Information System (INIS)

    Capozza, Rosario; Barel, Itay; Urbakh, Michael; Rubinstein, Shmuel M.; Fineberg, Jay

    2011-01-01

    Even the most regular stick-slip frictional sliding is always stochastic, with irregularity in both the intervals between slip events and the sizes of the associated stress drops. Applying small-amplitude oscillations to the shear force, we show, experimentally and theoretically, that the stick-slip periods synchronize. We further show that this phase locking is related to the inhibition of slow rupture modes which forces a transition to fast rupture, providing a possible mechanism for observed remote triggering of earthquakes. Such manipulation of collective modes may be generally relevant to extended nonlinear systems driven near to criticality.

  17. Atomic-scale processes revealing dynamic twin boundary strengthening mechanisms in face-centered cubic materials

    International Nuclear Information System (INIS)

    Yang, Z.Q.; Chisholm, M.F.; He, L.L.; Pennycook, S.J.; Ye, H.Q.

    2012-01-01

    We report experimental investigations on interactions/reactions between dislocations and twin boundaries in Al. The absorption of screw dislocations via cross-slip and the production of stair-rods via reactions with non-screw dislocations were verified by atomic resolution imaging. Importantly, the resulting partial dislocations moving along twin boundaries can produce secondary sessile defects. These immobile defects act as obstacles to other dislocations and also serve to pin the twin boundaries. These findings show the atomic-level dynamics of the dislocation–twin boundary processes and the unique strengthening mechanism of twin boundaries in face-centered cubic metals.

  18. Analytic two-loop results for self-energy- and vertex-type diagrams with one non-zero mass

    International Nuclear Information System (INIS)

    Fleischer, J.; Kotikov, A.V.; Veretin, O.L.

    1999-01-01

    For a large class of two-loop self-energy- and vertex-type diagrams with only one non-zero mass (m) and the vertices also with only one non-zero external momentum squared (q 2 ) the first few expansion coefficients are calculated by the large mass expansion. This allows us to 'guess' the general structure of these coefficients and to verify them in terms of certain classes of 'basis elements', which are essentially harmonic sums. Since for this case with only one non-zero mass the large mass expansion and the Taylor series in terms of q 2 are identical, this approach yields analytic expressions of the Taylor coefficients, from which the diagram can be easily evaluated numerically in a large domain of the complex q 2 -plane by well known methods. It is also possible to sum the Taylor series and present the results in terms of polylogarithms

  19. Analytical approximations for stick-slip vibration amplitudes

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel; Fidlin, A.

    2003-01-01

    , the amplitudes, and the base frequencies of friction-induced stick¿slip and pure-slip oscillations. For stick¿slip oscillations, this is accomplished by using perturbation analysis for the finite time interval of the stick phase, which is linked to the subsequent slip phase through conditions of continuity...

  20. The prevention of slipping accidents: a review and discussion of work related to the methodology of measuring slip resistance

    OpenAIRE

    Leclercq , Sylvie

    1999-01-01

    International audience; The recommendations made after the analysis of accidents following an incident of slipping often include the use of anti-slip footwear and/or the installation of an anti-slip floor covering. Such recommendations make it necessary to study biomechanical and tribologic phenomena that occur during slipping, in particular in order to develop criteria for the evaluation of the slip resistance of footwear and floor surfaces. Consequently, research which deals with the preven...

  1. Surface capillary currents: Rediscovery of fluid-structure interaction by forced evolving boundary theory

    Science.gov (United States)

    Wang, Chunbai; Mitra, Ambar K.

    2016-01-01

    Any boundary surface evolving in viscous fluid is driven with surface capillary currents. By step function defined for the fluid-structure interface, surface currents are found near a flat wall in a logarithmic form. The general flat-plate boundary layer is demonstrated through the interface kinematics. The dynamics analysis elucidates the relationship of the surface currents with the adhering region as well as the no-slip boundary condition. The wall skin friction coefficient, displacement thickness, and the logarithmic velocity-defect law of the smooth flat-plate boundary-layer flow are derived with the advent of the forced evolving boundary method. This fundamental theory has wide applications in applied science and engineering.

  2. Geologic Inheritance and Earthquake Rupture Processes: The 1905 M ≥ 8 Tsetserleg-Bulnay Strike-Slip Earthquake Sequence, Mongolia

    Science.gov (United States)

    Choi, Jin-Hyuck; Klinger, Yann; Ferry, Matthieu; Ritz, Jean-François; Kurtz, Robin; Rizza, Magali; Bollinger, Laurent; Davaasambuu, Battogtokh; Tsend-Ayush, Nyambayar; Demberel, Sodnomsambuu

    2018-02-01

    In 1905, 14 days apart, two M 8 continental strike-slip earthquakes, the Tsetserleg and Bulnay earthquakes, occurred on the Bulnay fault system, in Mongolia. Together, they ruptured four individual faults, with a total length of 676 km. Using submetric optical satellite images "Pleiades" with ground resolution of 0.5 m, complemented by field observation, we mapped in detail the entire surface rupture associated with this earthquake sequence. Surface rupture along the main Bulnay fault is 388 km in length, striking nearly E-W. The rupture is formed by a series of fault segments that are 29 km long on average, separated by geometric discontinuities. Although there is a difference of about 2 m in the average slip between the western and eastern parts of the Bulnay rupture, along-fault slip variations are overall limited, resulting in a smooth slip distribution, except for local slip deficit at segment boundaries. We show that damage, including short branches and secondary faulting, associated with the rupture propagation, occurred significantly more often along the western part of the Bulnay rupture, while the eastern part of the rupture appears more localized and thus possibly structurally simpler. Eventually, the difference of slip between the western and eastern parts of the rupture is attributed to this difference of rupture localization, associated at first order with a lateral change in the local geology. Damage associated to rupture branching appears to be located asymmetrically along the extensional side of the strike-slip rupture and shows a strong dependence on structural geologic inheritance.

  3. Magnetic resonance imaging at primary diagnosis cannot predict subsequent contralateral slip in slipped capital femoral epiphysis

    Energy Technology Data Exchange (ETDEWEB)

    Wensaas, Anders [Akershus University Hospital, Department of Orthopaedic Surgery, Loerenskog (Norway); Wiig, Ola; Terjesen, Terje [Oslo University Hospital, Department of Orthopaedic Surgery, Rikshospitalet (Norway); Castberg Hellund, Johan; Khoshnewiszadeh, Behzad [Oslo University Hospital, Department of Radiology and Nuclear Medicine, Ullevaal (Norway)

    2017-12-15

    Prophylactic fixation of the contralateral hip in slipped capital femoral epiphysis (SCFE) is controversial, and no reliable method has been established to predict subsequent contralateral slip. The main purpose of this study was to evaluate if magnetic resonance imaging (MRI) performed at primary diagnosis could predict future contralateral slip. Twenty-two patients with unilateral SCFE were included, all had MRI of both hips taken before operative fixation. Six different parameters were measured on the MRI: the MRI slip angle, the greatest focal widening of the physis, the global widening of the physis measured at three locations (the midpoint of the physis and 1 cm lateral and medial to the midpoint), periphyseal (epiphyseal and metaphyseal) bone marrow edema, the presence of pathological joint effusion, and the amount of joint effusion measured from the lateral edge of the greater trochanter. Mean follow-up was 33 months (range, 16-63 months). Six patients were treated for contralateral slip during the follow-up time and a comparison of the MRI parameters of the contralateral hip in these six patients and in the 16 patients that remained unilateral was done to see if subsequent contralateral slip was possible to predict at primary diagnosis. All MRI parameters were significantly altered in hips with established SCFE compared with the contralateral hips. However, none of the MRI parameters showed any significant difference between patients who had a subsequent contralateral slip and those that remained unilateral. MRI taken at primary diagnosis could not predict future contralateral slip. (orig.)

  4. Stress accumulation and release at complex transform plate boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Verdonck, D.; Furlong, K.P. (Pennsylvania State Univ., University Park (United States))

    1992-10-01

    Finite element methods are used to model the dynamics of deformation along complex transform plate boundaries, specifically the San Andreas fault system, California. Effects of mantle rheology and fault geometry on the stress buildup and release are investigated. No prior knowledge of the earthquake cycle time or amount of fault slip is assumed that the results suggest that the San Andreas fault slips at low shear stress (about 15 MPa). Although the maximum stress on the fault is 15 MPa, models with an upper mantle shear zone deforming entirely by dislocation creep accumulate stresses that exceed 100 MPa, a stress level high enough to drive localized dynamic recrystallization and a shift in dominant deformation mechanism to diffusion creep. Models in which the mantle shear zone deform locally by diffusion creep reach a dynamic steady state where lithospheric shear stresses never exceed the specified fault stress anywhere in the model and indicate that the strength of the upper mantle is an important parameter in the dynamics of plate boundary deformation. 17 refs.

  5. Modeling and Analyzing the Slipping of the Ball Screw

    Directory of Open Access Journals (Sweden)

    Nannan Xu

    Full Text Available AbstractThis paper aims to set up the ball systematic slipping model and analyze the slipping characteristics caused by different factors for a ball screw operating at high speeds. To investigate the ball screw slipping mechanism, transformed coordinate system should be established firstly. Then it is used to set up mathematical modeling for the ball slipping caused by the three main reasons and the speed of slipping can be calculated. Later, the influence of the contact angle, helix angle and screw diameter for ball screw slipping will be analyzed according to the ball slipping model and slipping speeds equation and the slipping analysis will be obtained. Finally, curve of slipping analysis and that of mechanical efficiency of the ball screw analysis by Lin are compared, which will indirectly verify the correctness of the slipping model. The slipping model and the curve of slipping analysis established in this paper will provide theory basis for reducing slipping and improving the mechanical efficiency of a ball screw operating at high speeds.

  6. Slip of Spreading Viscoplastic Droplets.

    Science.gov (United States)

    Jalaal, Maziyar; Balmforth, Neil J; Stoeber, Boris

    2015-11-10

    The spreading of axisymmetric viscoplastic droplets extruded slowly on glass surfaces is studied experimentally using shadowgraphy and swept-field confocal microscopy. The microscopy furnishes vertical profiles of the radial velocity using particle image velocimetry (PIV) with neutrally buoyant tracers seeded in the fluid. Experiments were conducted for two complex fluids: aqueous solutions of Carbopol and xanthan gum. On untreated glass surfaces, PIV demonstrates that both fluids experience a significant amount of effective slip. The experiments were repeated on glass that had been treated to feature positive surface charges, thereby promoting adhesion between the negatively charged polymeric constituents of the fluids and the glass surface. The Carbopol and xanthan gum droplets spread more slowly on the treated surface and to a smaller radial distance. PIV demonstrated that this reduced spreading was associated with a substantial reduction in slip. For Carbopol, the effective slip could be eliminated entirely to within the precision of the PIV measurements; the reduction in slip was less effective for xanthan gum, with a weak slip velocity remaining noticeable.

  7. SLIP CASTING METHOD

    Science.gov (United States)

    Allison, A.G.

    1959-09-01

    S>A process is described for preparing a magnesium oxide slip casting slurry which when used in conjunction with standard casting techniques results in a very strong "green" slip casting and a fired piece of very close dimensional tolerance. The process involves aging an aqueous magnestum oxide slurry, having a basic pH value, until it attains a specified critical viscosity at which time a deflocculating agent is added without upsetting the basic pH value.

  8. A Model for Low-Frequency Earthquake Slip

    Science.gov (United States)

    Chestler, S. R.; Creager, K. C.

    2017-12-01

    Using high-resolution relative low-frequency earthquake (LFE) locations, we calculate the patch areas (Ap) of LFE families. During episodic tremor and slip (ETS) events, we define AT as the area that slips during LFEs and ST as the total amount of summed LFE slip. Using observed and calculated values for AP, AT, and ST, we evaluate two end-member models for LFE slip within an LFE family patch. In the ductile matrix model, LFEs produce 100% of the observed ETS slip (SETS) in distinct subpatches (i.e., AT ≪ AP). In the connected patch model, AT = AP, but ST ≪ SETS. LFEs cluster into 45 LFE families. Spatial gaps (˜10 to 20 km) between LFE family clusters and smaller gaps within LFE family clusters serve as evidence that LFE slip is heterogeneous on multiple spatial scales. We find that LFE slip only accounts for ˜0.2% of the slip within the slow slip zone. There are depth-dependent trends in the characteristic (mean) moment and in the number of LFEs during both ETS events (only) and the entire ETS cycle (Mcets and NTets and Mcall and NTall, respectively). During ETS, Mc decreases with downdip distance but NT does not change. Over the entire ETS cycle, Mc decreases with downdip distance, but NT increases. These observations indicate that deeper LFE slip occurs through a larger number (800-1,200) of small LFEs, while updip LFE slip occurs primarily during ETS events through a smaller number (200-600) of larger LFEs. This could indicate that the plate interface is stronger and has a higher stress threshold updip.

  9. Direct numerical simulation of turbulent flows over superhydrophobic surfaces with gas pockets using linearized boundary conditions

    Science.gov (United States)

    Seo, Jongmin; Bose, Sanjeeb; Garcia-Mayoral, Ricardo; Mani, Ali

    2012-11-01

    Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  10. Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows

    Science.gov (United States)

    Jesinghausen, Steffen; Weiffen, Rene; Schmid, Hans-Joachim

    2016-09-01

    Wall slip is a long-known phenomenon in the field of rheology. Nevertheless, the origin and the evolution are not completely clear yet. Regarding suspensions, the effect becomes even more complicated, because different mechanisms like pure slip or slip due to particle migration have to be taken into account. Furthermore, suspensions themselves show many flow anomalies and the isolation of slip is complicated. In order to develop working physical models, further insight is necessary. In this work, we measured experimentally the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size. The slip velocities were obtained using a particle image velocimetry (PIV) system. The suspensions consisting of a castor oil-cinnamon oil blend and PMMA particles were matched in terms of refractive indexes to appear transparent. Hereby, possible optical path lengths larger than 15 mm were achieved. The slip velocities were found to be in a quadratic relation to the wall shear stress. Furthermore, the overall flow rate as well as the particle concentration has a direct influence on the slip. Concerning the shear stress, there seem to be two regions of slip with different physical characteristics. Furthermore, we estimated the slip layer thickness directly from the velocity profiles and propose a new interpretation. The PIV technique is used to investigate the viscosity and implicit the concentration profile in the slit die. It is shown that the particle migration process is quite fast.

  11. The cenozoic strike-slip faults and TTHE regional crust stability of Beishan area

    International Nuclear Information System (INIS)

    Guo Zhaojie; Zhang Zhicheng; Zhang Chen; Liu Chang; Zhang Yu; Wang Ju; Chen Weiming

    2008-01-01

    The remote sensing images and geological features of Beishan area indicate that the Altyn Tagh fault, Sanweishan-Shuangta fault, Daquan fault and Hongliuhe fault are distributed in Beishan area from south to north. The faults are all left-lateral strike-slip faults with trending of NE40-50°, displaying similar distribution pattern. The secondary branch faults are developed at the end of each main strike-slip fault with nearly east to west trending form dendritic oblique crossings at the angle of 30-50°. Because of the left-lateral slip of the branch faults, the granites or the blocks exposed within the branch faults rotate clockwisely, forming 'Domino' structures. So the structural style of Beishan area consists of the Altyn Tagh fault, Sanweishan-Shuangta fault, Daquan fault, Hongliuhe fault and their branch faults and rotational structures between different faults. Sedimentary analysis on the fault valleys in the study area and ESR chronological test of fault clay exhibit that the Sanweishan-Shuangta fault form in the late Pliocene (N2), while the Daquan fault displays formation age of l.5-1.2 Ma, and the activity age of the relevant branch faults is Late Pleistocene (400 ka). The ages become younger from the Altyn Tagh fault to the Daquan fault and strike-slip faults display NW trending extension, further revealing the lateral growth process of the strike-slip boundary at the northern margin during the Cenozoic uplift of Tibetan Plateau. The displacement amounts on several secondary faults caused by the activities of the faults are slight due to the above-mentioned structural distribution characteristics of Beishan area, which means that this area is the most stable active area with few seismic activities. We propose the main granitic bodies in Beishan area could be favorable preselected locations for China's high level radioactive waste repository. (authors)

  12. Involving the Navier-Stokes equations in the derivation of boundary conditions for the lattice Boltzmann method.

    Science.gov (United States)

    Verschaeve, Joris C G

    2011-06-13

    By means of the continuity equation of the incompressible Navier-Stokes equations, additional physical arguments for the derivation of a formulation of the no-slip boundary condition for the lattice Boltzmann method for straight walls at rest are obtained. This leads to a boundary condition that is second-order accurate with respect to the grid spacing and conserves mass. In addition, the boundary condition is stable for relaxation frequencies close to two.

  13. Reactions of slip dislocations with twin boundary in Fe-Si bicrystals

    Czech Academy of Sciences Publication Activity Database

    Gemperle, Antonín; Zárubová, Niva; Gemperlová, Juliana

    2005-01-01

    Roč. 40, - (2005), 3247-3254 ISSN 0022-2461 R&D Projects: GA ČR GA202/01/0670 Institutional research plan: CEZ:AV0Z10100520 Keywords : in situ TEM * grain boundary * plastic deformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.901, year: 2005

  14. PROCESSING OF CONCENTRATED AQUEOUS ZIRCONIA-BIOGLASS SLIPS BY SLIP CASTING

    Directory of Open Access Journals (Sweden)

    Beltina Leon

    2017-03-01

    Full Text Available 3 mol% yttria-partially stabilized zirconia (Y-TZP powder and a sol-gel derived CaO- P₂O₅- SiO₂ (64S bioglass, were used to produce Y-TZP- bioglass slip cast compacts. The rheological properties of concentrated aqueous Y-TZP- 64S suspensions prepared with two different glass contents: 10.5 vol% and 19.9 vol%, and ammonium polyacrylate (NH₄PA as dispersant, were investigated and compared with those of Y-TZP. The density of green cast samples was related to the degree of slip dispersion. The substitution of Y-TZP by 64S glass in the mixtures resulted in greater adsorption of NH₄PA; however, the viscosity and yield stress values of Y-TZP-64S slips were higher than those of Y-TZP ones for the solid loadings studied. The increase in the glass content from 10.5 to 19.9 vol% increased the viscosity and yield stress values. The presence of 64S glass in the mixtures resulted in a less dense packing of cast samples.

  15. Ergodic Capacity Analysis of Free-Space Optical Links with Nonzero Boresight Pointing Errors

    KAUST Repository

    Ansari, Imran Shafique; Alouini, Mohamed-Slim; Cheng, Julian

    2015-01-01

    A unified capacity analysis of a free-space optical (FSO) link that accounts for nonzero boresight pointing errors and both types of detection techniques (i.e. intensity modulation/ direct detection as well as heterodyne detection) is addressed

  16. Inorganic glass ceramic slip rings

    Science.gov (United States)

    Glossbrenner, E. W.; Cole, S. R.

    1972-01-01

    Prototypes of slip rings have been fabricated from ceramic glass, a material which is highly resistant to deterioration due to high temperature. Slip ring assemblies were not structurally damaged by mechanical tests and performed statisfactorily for 200 hours.

  17. Bristled shark skin: a microgeometry for boundary layer control?

    International Nuclear Information System (INIS)

    Lang, A W; Hidalgo, P; Westcott, M; Motta, P

    2008-01-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry

  18. Nonlinear dynamical triggering of slow slip

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Paul A [Los Alamos National Laboratory; Knuth, Matthew W [WISCONSIN; Kaproth, Bryan M [PENN STATE; Carpenter, Brett [PENN STATE; Guyer, Robert A [Los Alamos National Laboratory; Le Bas, Pierre - Yves [Los Alamos National Laboratory; Daub, Eric G [Los Alamos National Laboratory; Marone, Chris [PENN STATE

    2010-12-10

    Among the most fascinating, recent discoveries in seismology have been the phenomena of triggered slip, including triggered earthquakes and triggered-tremor, as well as triggered slow, silent-slip during which no seismic energy is radiated. Because fault nucleation depths cannot be probed directly, the physical regimes in which these phenomena occur are poorly understood. Thus determining physical properties that control diverse types of triggered fault sliding and what frictional constitutive laws govern triggered faulting variability is challenging. We are characterizing the physical controls of triggered faulting with the goal of developing constitutive relations by conducting laboratory and numerical modeling experiments in sheared granular media at varying load conditions. In order to simulate granular fault zone gouge in the laboratory, glass beads are sheared in a double-direct configuration under constant normal stress, while subject to transient perturbation by acoustic waves. We find that triggered, slow, silent-slip occurs at very small confining loads ({approx}1-3 MPa) that are smaller than those where dynamic earthquake triggering takes place (4-7 MPa), and that triggered slow-slip is associated with bursts of LFE-like acoustic emission. Experimental evidence suggests that the nonlinear dynamical response of the gouge material induced by dynamic waves may be responsible for the triggered slip behavior: the slip-duration, stress-drop and along-strike slip displacement are proportional to the triggering wave amplitude. Further, we observe a shear-modulus decrease corresponding to dynamic-wave triggering relative to the shear modulus of stick-slips. Modulus decrease in response to dynamical wave amplitudes of roughly a microstrain and above is a hallmark of elastic nonlinear behavior. We believe that the dynamical waves increase the material non-affine elastic deformation during shearing, simultaneously leading to instability and slow-slip. The inferred

  19. Interplanetary sector boundaries 1971--1973

    International Nuclear Information System (INIS)

    Klein, L.; Burlaga, L.F.

    1980-01-01

    Eighteen interplanetary sector boundary crossings observed at 1 AU during the period January 1971 to January 1974 by the magnetometer on the Imp 6 spacecraft was discussed. The events were examined on many different time scales ranging from days on either side of the boundary to high-resolution measurements of 12.5 vectors per second. Two categories of boundaries were found, one group being relatively thin (averaging approx. =10 4 km) and the other being thick (averaging approx. =10 6 km). In many cases the field vector rotated in a plane from polarity to the other. Only two of the transitions were null sheets. Using the minimum variance analysis to determine the normals to the plane of rotationa and assuming that this is the same as the normal to the sector boundary surface, it was found that the normals were close to ( 0 ) the ecliptic plane. The high inclination of the sector boundary surfaces during 1971--1973 verifies a published prediction and may be related to the presence of large equatorial coronal holes at this time. An analysis of tangential discontinuities contained in 4-day periods about our events showed that their orientations were generally not related to the orientations of the sector boundary surface, but rather their characteristics were about the same as those for discontinuities outside the sector boundaries. Magnetic holes were found in thick sector boundaries, at a rate about 3 times that elsewhere. The holes were especially prevalent near stream interfaces, suggesting that they might be related to the convergence and/or slip of adjacent solar wind streams

  20. Navier slip model of drag reduction by Leidenfrost vapor layers

    KAUST Repository

    Berry, Joseph D.

    2017-10-17

    Recent experiments found that a hot solid sphere that is able to sustain a stable Leidenfrost vapor layer in a liquid exhibits significant drag reduction during free fall. The variation of the drag coefficient with Reynolds number deviates substantially from the characteristic drag crisis behavior at high Reynolds numbers. Measurements based on liquids of different viscosities show that the onset of the drag crisis depends on the viscosity ratio of the vapor to the liquid. Here we attempt to characterize the complexity of the Leidenfrost vapor layer with respect to its variable thickness and possible vapor circulation within, in terms of the Navier slip model that is defined by a slip length. Such a model can facilitate tangential flow and thereby alter the behavior of the boundary layer. Direct numerical and large eddy simulations of flow past a sphere at moderate to high Reynolds numbers (102≤Re≤4×104) are employed to quantify comparisons with experimental results, including the drag coefficient and the form of the downstream wake on the sphere. This provides a simple one parameter characterization of the drag reduction phenomenon due to a stable vapor layer that envelops a solid body.

  1. Navier slip model of drag reduction by Leidenfrost vapor layers

    KAUST Repository

    Berry, Joseph D.; Vakarelski, Ivan Uriev; Chan, Derek Y. C.; Thoroddsen, Sigurdur T

    2017-01-01

    Recent experiments found that a hot solid sphere that is able to sustain a stable Leidenfrost vapor layer in a liquid exhibits significant drag reduction during free fall. The variation of the drag coefficient with Reynolds number deviates substantially from the characteristic drag crisis behavior at high Reynolds numbers. Measurements based on liquids of different viscosities show that the onset of the drag crisis depends on the viscosity ratio of the vapor to the liquid. Here we attempt to characterize the complexity of the Leidenfrost vapor layer with respect to its variable thickness and possible vapor circulation within, in terms of the Navier slip model that is defined by a slip length. Such a model can facilitate tangential flow and thereby alter the behavior of the boundary layer. Direct numerical and large eddy simulations of flow past a sphere at moderate to high Reynolds numbers (102≤Re≤4×104) are employed to quantify comparisons with experimental results, including the drag coefficient and the form of the downstream wake on the sphere. This provides a simple one parameter characterization of the drag reduction phenomenon due to a stable vapor layer that envelops a solid body.

  2. Recurrent slow slip event likely hastened by the 2011 Tohoku earthquake

    Science.gov (United States)

    Hirose, Hitoshi; Kimura, Hisanori; Enescu, Bogdan; Aoi, Shin

    2012-01-01

    Slow slip events (SSEs) are another mode of fault deformation than the fast faulting of regular earthquakes. Such transient episodes have been observed at plate boundaries in a number of subduction zones around the globe. The SSEs near the Boso Peninsula, central Japan, are among the most documented SSEs, with the longest repeating history, of almost 30 y, and have a recurrence interval of 5 to 7 y. A remarkable characteristic of the slow slip episodes is the accompanying earthquake swarm activity. Our stable, long-term seismic observations enable us to detect SSEs using the recorded earthquake catalog, by considering an earthquake swarm as a proxy for a slow slip episode. Six recurrent episodes are identified in this way since 1982. The average duration of the SSE interoccurrence interval is 68 mo; however, there are significant fluctuations from this mean. While a regular cycle can be explained using a simple physical model, the mechanisms that are responsible for the observed fluctuations are poorly known. Here we show that the latest SSE in the Boso Peninsula was likely hastened by the stress transfer from the March 11, 2011 great Tohoku earthquake. Moreover, a similar mechanism accounts for the delay of an SSE in 1990 by a nearby earthquake. The low stress buildups and drops during the SSE cycle can explain the strong sensitivity of these SSEs to stress transfer from external sources. PMID:22949688

  3. Boundary Layer Fluid Flow in a Channel with Heat Source, Soret ...

    African Journals Online (AJOL)

    The boundary layer fluid flow in a channel with heat source, soret effects and slip condition was studied. The governing equations were solved using perturbation technique. The effects of different parameters such Prandtl number Pr , Hartmann number M, Schmidt number Sc, suction parameter ƒÜ , soret number Sr and the ...

  4. Two-color QCD with non-zero chiral chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, V.V. [Institute for High Energy Physics NRC “Kurchatov Institute' ,142281 Protvino (Russian Federation); Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Goy, V.A. [Far Eastern Federal University, School of Natural Sciences,690950 Vladivostok (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Research,BLTP, 141980 Dubna (Russian Federation); Kotov, A.Yu. [Institute of Theoretical and Experimental Physics,117259 Moscow (Russian Federation); Molochkov, A.V. [Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Müller-Preussker, M.; Petersson, B. [Humboldt-Universität zu Berlin, Institut für Physik,12489 Berlin (Germany)

    2015-06-16

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  5. Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows

    Science.gov (United States)

    Chen, Z.; Shu, C.; Tan, D.

    2018-05-01

    An immersed boundary-simplified lattice Boltzmann method is developed in this paper for simulations of two-dimensional incompressible viscous flows with immersed objects. Assisted by the fractional step technique, the problem is resolved in a predictor-corrector scheme. The predictor step solves the flow field without considering immersed objects, and the corrector step imposes the effect of immersed boundaries on the velocity field. Different from the previous immersed boundary-lattice Boltzmann method which adopts the standard lattice Boltzmann method (LBM) as the flow solver in the predictor step, a recently developed simplified lattice Boltzmann method (SLBM) is applied in the present method to evaluate intermediate flow variables. Compared to the standard LBM, SLBM requires lower virtual memories, facilitates the implementation of physical boundary conditions, and shows better numerical stability. The boundary condition-enforced immersed boundary method, which accurately ensures no-slip boundary conditions, is implemented as the boundary solver in the corrector step. Four typical numerical examples are presented to demonstrate the stability, the flexibility, and the accuracy of the present method.

  6. Influence of Roughness-Induced Slip on Colloid Transport: Experimental and Modelling Insights

    Science.gov (United States)

    Rasmuson, J. A.; Johnson, W. P.

    2017-12-01

    A limitation of classic colloid filtration theory is that it applies only to smooth surfaces, yet most natural surfaces present some degree of nano- to micro-scale roughness. A large volume of research has been dedicated to understanding the effects of roughness on particle attachment at the nano-scale since these interactions dictate field scale transport behavior. It has been previously demonstrated that roughness imposes a finite slip vector at the surface that causes particles to experience higher near-surface velocities than would be expected over a smooth surface. Slip near a rough surface can affect two primary mechanisms of particle attenuation: 1) interception of the surface (finding a landing spot) and 2) arrest on the surface (sticking the landing). However, a clear designation on how slip affects particle transport near rough surfaces is missing. The goal of this study was to provide a guide for the height of the slip layer and contact surface in reference to the mean-plane for rough surfaces. Direct observation was used to measure near-surface velocities of particles translating near surfaces of varying roughness spanning three orders of magnitude. The influence of roughness on particle transport was investigated using computational fluid dynamics (CFD) modeling with rough surfaces measured with atomic force microscopy (AFM). The CFD and experimental results were used to calibrate a Lagrangian particle transport model that utilizes simple modifications to the flow field for a smooth surface using statistically based roughness parameters. Advantages of the Lagrangian model are significantly decreased computation times and applicability to a wide range of natural surfaces without explicitly simulating individual asperities. The results suggest that the no-slip boundary should be placed at the bottom of the maximum asperity valleys, and that the contact surface should be placed at the root mean square (RMS) roughness above the mean plane. Collector

  7. The role of water in slip casting

    Science.gov (United States)

    Mccauley, R. A.; Phelps, G. W.

    1984-01-01

    Slips and casting are considered in terms of physical and colloidal chemistry. Casting slips are polydisperse suspensions of lyophobic particles in water, whose degree of coagulation is controlled by interaction of flocculating and deflocculating agents. Slip casting rate and viscosity are functions of temperature. Slip rheology and response to deflocculating agents varies significantly as the kinds and amounts of colloid modifiers change. Water is considered as a raw material. Various concepts of water/clay interactions and structures are discussed. Casting is a de-watering operation in which water moves from slip to cast to mold in response to a potential energy termed moisture stress. Drying is an evaporative process from a free water surface.

  8. Lattice Boltzmann Simulations in the Slip and Transition Flow Regime with the Peano Framework

    KAUST Repository

    Neumann, Philipp

    2012-01-01

    We present simulation results of flows in the finite Knudsen range, which is in the slip and transition flow regime. Our implementations are based on the Lattice Boltzmann method and are accomplished within the Peano framework. We validate our code by solving two- and three-dimensional channel flow problems and compare our results with respective experiments from other research groups. We further apply our Lattice Boltzmann solver to the geometrical setup of a microreactor consisting of differently sized channels and a reactor chamber. Here, we apply static adaptive grids to fur-ther reduce computational costs. We further investigate the influence of using a simple BGK collision kernel in coarse grid regions which are further away from the slip boundaries. Our results are in good agreement with theory and non-adaptive simulations, demonstrating the validity and the capabilities of our adaptive simulation software for flow problems at finite Knudsen numbers.

  9. Spatial Variation of Slip Behavior Beneath the Alaska Peninsula Along Alaska-Aleutian Subduction Zone

    Science.gov (United States)

    Li, Shanshan; Freymueller, Jeffrey T.

    2018-04-01

    We resurveyed preexisting campaign Global Positioning System (GPS) sites and estimated a highly precise GPS velocity field for the Alaska Peninsula. We use the TDEFNODE software to model the slip deficit distribution using the new GPS velocities. We find systematic misfits to the vertical velocities from the optimal model that fits the horizontal velocities well, which cannot be explained by altering the slip distribution, so we use only the horizontal velocities in the study. Locations of three boundaries that mark significant along-strike change in the locking distribution are identified. The Kodiak segment is strongly locked, the Semidi segment is intermediate, the Shumagin segment is weakly locked, and the Sanak segment is dominantly creeping. We suggest that a change in preexisting plate fabric orientation on the downgoing plate has an important control on the along-strike variation in the megathrust locking distribution and subduction seismicity.

  10. Evidence for Truncated Exponential Probability Distribution of Earthquake Slip

    KAUST Repository

    Thingbaijam, Kiran Kumar; Mai, Paul Martin

    2016-01-01

    Earthquake ruptures comprise spatially varying slip on the fault surface, where slip represents the displacement discontinuity between the two sides of the rupture plane. In this study, we analyze the probability distribution of coseismic slip, which provides important information to better understand earthquake source physics. Although the probability distribution of slip is crucial for generating realistic rupture scenarios for simulation-based seismic and tsunami-hazard analysis, the statistical properties of earthquake slip have received limited attention so far. Here, we use the online database of earthquake source models (SRCMOD) to show that the probability distribution of slip follows the truncated exponential law. This law agrees with rupture-specific physical constraints limiting the maximum possible slip on the fault, similar to physical constraints on maximum earthquake magnitudes.We show the parameters of the best-fitting truncated exponential distribution scale with average coseismic slip. This scaling property reflects the control of the underlying stress distribution and fault strength on the rupture dimensions, which determines the average slip. Thus, the scale-dependent behavior of slip heterogeneity is captured by the probability distribution of slip. We conclude that the truncated exponential law accurately quantifies coseismic slip distribution and therefore allows for more realistic modeling of rupture scenarios. © 2016, Seismological Society of America. All rights reserverd.

  11. Evidence for Truncated Exponential Probability Distribution of Earthquake Slip

    KAUST Repository

    Thingbaijam, Kiran K. S.

    2016-07-13

    Earthquake ruptures comprise spatially varying slip on the fault surface, where slip represents the displacement discontinuity between the two sides of the rupture plane. In this study, we analyze the probability distribution of coseismic slip, which provides important information to better understand earthquake source physics. Although the probability distribution of slip is crucial for generating realistic rupture scenarios for simulation-based seismic and tsunami-hazard analysis, the statistical properties of earthquake slip have received limited attention so far. Here, we use the online database of earthquake source models (SRCMOD) to show that the probability distribution of slip follows the truncated exponential law. This law agrees with rupture-specific physical constraints limiting the maximum possible slip on the fault, similar to physical constraints on maximum earthquake magnitudes.We show the parameters of the best-fitting truncated exponential distribution scale with average coseismic slip. This scaling property reflects the control of the underlying stress distribution and fault strength on the rupture dimensions, which determines the average slip. Thus, the scale-dependent behavior of slip heterogeneity is captured by the probability distribution of slip. We conclude that the truncated exponential law accurately quantifies coseismic slip distribution and therefore allows for more realistic modeling of rupture scenarios. © 2016, Seismological Society of America. All rights reserverd.

  12. Repeating Deep Very Low Frequency Earthquakes: An Evidence of Transition Zone between Brittle and Ductile Zone along Plate Boundary

    Science.gov (United States)

    Ishihara, Y.; Yamamoto, Y.; Arai, R.

    2017-12-01

    Recently slow or low frequency seismic and geodetic events are focused under recognition of important role in tectonic process. The most western region of Ryukyu trench, Yaeyama Islands, is very active area of these type events. It has semiannual-like slow slip (Heki et.al., 2008; Nishimura et.al.,2014) and very frequent shallow very low frequency earthquakes near trench zone (Ando et.al.,2012; Nakamura et.al.,2014). Arai et.al.(2016) identified clear reverse phase discontinuity along plate boundary by air-gun survey, suggesting existence of low velocity layer including fluid. The subducting fluid layer is considered to control slip characteristics. On the other hand, deep low frequency earthquake and tremor observed at south-western Honshu and Shikoku of Japan are not identified well due to lack of high-quality seismic network. A broadband seismic station(ISG/PS) of Pacific21 network is operating in last 20 years that locates on occurrence potential area of low frequency earthquake. We tried to review continuous broadband record, searching low frequency earthquakes. In pilot survey, we found three very low frequency seismic events which are dominant in less than 0.1Hz component and are not listed in earthquake catalogue. Source locates about 50km depth and at transition area between slow slip event and active area of general earthquake along plate boundary. To detect small and/or hidden very low frequency earthquake, we applied matched filter analysis to continuous three components waveform data using pre-reviewed seismogram as template signal. 12 events with high correlation are picked up in last 10 years. Most events have very similar waveform, which means characteristics of repeating deep very low frequency earthquake. The event history of very low frequency earthquake is not related with one of slow slip event in this region. In Yaeyama region, low frequency earthquake, general earthquake and slow slip event occur dividing in space and have apparent

  13. EMG and Kinematic Responses to Unexpected Slips After Slip Training in Virtual Reality

    Science.gov (United States)

    Parijat, Prakriti; Lockhart, Thurmon E.

    2015-01-01

    The objective of the study was to design a virtual reality (VR) training to induce perturbation in older adults similar to a slip and examine the effect of the training on kinematic and muscular responses in older adults. Twenty-four older adults were involved in a laboratory study and randomly assigned to two groups (virtual reality training and control). Both groups went through three sessions including baseline slip, training, and transfer of training on slippery surface. The training group experienced twelve simulated slips using a visual perturbation induced by tilting a virtual reality scene while walking on the treadmill and the control group completed normal walking during the training session. Kinematic, kinetic, and EMG data were collected during all the sessions. Results demonstrated the proactive adjustments such as increased trunk flexion at heel contact after training. Reactive adjustments included reduced time to peak activations of knee flexors, reduced knee coactivation, reduced time to trunk flexion, and reduced trunk angular velocity after training. In conclusion, the study findings indicate that the VR training was able to generate a perturbation in older adults that evoked recovery reactions and such motor skill can be transferred to the actual slip trials. PMID:25296401

  14. Implications of nonzero θ13 for the neutrino mass hierarchy

    International Nuclear Information System (INIS)

    Ernst, D J; Cogswell, B K; Burroughs, H R; Escamilla-Roa, J; Latimer, D C

    2012-01-01

    The Daya Bay, RENO, and Double Chooz experiments have discovered a large non-zero value for θ 13 . We present a global analysis that includes these three experiments, Chooz, the Super-K atmospheric data, and the ν μ → ν e T2K and MINOS experiments that are sensitive to the hierarchy and the sign of θ 13 . We report preliminary results in which we fix the mixing parameters other than θ 13 to those from a recent global analysis. Given there is no evidence for a non-zero CP violation, we assume δ = 0. T2K and MINOS lie in a region of L/E where there is a hierarchy degeneracy in the limit of θ 13 → 0 and no matter interaction. For nonzero θ 13 , the symmetry is partially broken, but a degeneracy under the simultaneous exchange of both hierarchy and the sign of θ 13 remains. Matter effects break this symmetry such that the positions of the peaks in the oscillation probabilities maintain the two-fold symmetry, while the magnitude of the oscillations is sensitive to the hierarchy. This renders T2K and NOvA, with different baselines and different matter effects, better able in combination to distinguish the hierarchy and the sign of θ 13 . The present T2K and MINOS data do not distinguish between hierarchies or the sign of θ 13 , but the large value of θ 13 yields effects from atmospheric data that do. We find for normal hierarchy, positive θ 13 , sin 2 2θ 13 = 0.090 ± 0.020 and is 0.2% probable it is the correct combination; for normal hierarchy, negative θ 13 , sin 2 2θ 13 = 0.108 ± 0.023 and is 2.2% probable; for inverse hierarchy, positive θ 13 , sin 2 2θ 13 = 0.110±0.022 and is 7.1% probable; for inverse hierarchy, negative θ 13 , sin 2 2θ 13 = 0.113 ± 0.022 and is 90.5% probable, results that are inconsistent with two similar analyses.

  15. A Model for Low-Frequency Earthquake Slip in Cascadia

    Science.gov (United States)

    Chestler, S.; Creager, K.

    2017-12-01

    Low-Frequency Earthquakes (LFEs) are commonly used to identify when and where slow slip occurred, especially for slow slip events that are too small to be observed geodetically. Yet, an understanding of how slip occurs within an LFE family patch, or patch on the plate interface where LFEs repeat, is limited. How much slip occurs per LFE and over what area? Do all LFEs within an LFE family rupture the exact same spot? To answer these questions, we implement a catalog of 39,966 LFEs, sorted into 45 LFE families, beneath the Olympic Peninsula, WA. LFEs were detected and located using data from approximately 100 3-component stations from the Array of Arrays experiment. We compare the LFE family patch area to the area within the LFE family patch that slips through LFEs during Cascadia Episodic Tremor and Slip (ETS) events. Patch area is calculated from relative LFE locations, solved for using the double difference method. Slip area is calculated from the characteristic moment (mean of the exponential moment-frequency distribution) and number LFEs for each family and geodetically measured ETS slip. We find that 0.5-5% of the area within an LFE family patch slips through LFEs. The rest must deform in some other manner (e.g., ductile deformation). We also explore LFE slip patterns throughout the entire slow slip zone. Is LFE slip uniform? Does LFE slip account for all geodetically observed slow slip? Double difference relocations reveal that LFE families are 2 km patches where LFE are clustered close together. Additionally, there are clusters of LFE families with diameters of 4-15 km. There are gaps with no observable, repeating LFEs between LFE families in clusters and between clusters of LFE families. Based on this observation, we present a model where LFE slip is heterogeneous on multiple spatial scales. Clusters of LFE families may represent patches with higher strength than the surrounding areas. Finally, we find that LFE slip only accounts for a small fraction ( 0

  16. Pedestrians in wintertime-effects of using anti-slip devices.

    Science.gov (United States)

    Berggård, Glenn; Johansson, Charlotta

    2010-07-01

    Pedestrians slipping and falling is a major safety problem around the world, not least in countries with long winters such as Sweden. About 25000-30000 people need medical care every year for treatment of fall injuries in Sweden. Use of appropriate shoes and anti-slip devices are examples of individual measures that have been suggested to prevent slipping and falling. An intervention study was performed during the period February to April 2008. The study, which focused on healthy adults in northern Sweden, examined the effect of using anti-slip devices on daily walking journeys and prevention of slip and falls. The respondents were divided into three groups: an Intervention Group, a Control Group, with similar distribution of gender and age, and a Comparison Group. Four questionnaires were distributed: (1) background, (2) daily diary of distance walked and occurrence of incidents or accidents reported weekly, (3) detailed incident or fall report and (4) experiences of using anti-slip devices for those who used these devices during the trial period. Half of the respondents stated that they had previous experience of using anti-slip devices. In this study, 52% of the respondents used anti-slip devices. Anti-slip devices improve the walking capability during wintertime. Among those using appropriate anti-slip devices, the average daily walking distance was found to be statistically significantly longer compared to people not using anti-slip devices. This study indicates that an increase in daily walking distance can be made without increasing the risk of slips/falls when using anti-slip devices. The study also indicates that by using appropriate anti-slip devices and having information about when and where to use them, based on their design, people avoid having slips and falls. The respondents experienced in using anti-slip devices in this study will continue to use them and will also recommend others to use anti-slip devises. Copyright 2010 Elsevier Ltd. All rights

  17. Duration of slip-resistant shoe usage and the rate of slipping in limited-service restaurants: results from a prospective and crossover study.

    Science.gov (United States)

    Verma, Santosh K; Zhao, Zhe; Courtney, Theodore K; Chang, Wen-Ruey; Lombardi, David A; Huang, Yueng-Hsiang; Brennan, Melanye J; Perry, Melissa J

    2014-01-01

    Several studies have indicated that slip-resistant shoes may have a positive effect on reducing the risk of slips and falls, a leading cause of injury at work. Few studies, however, have examined how duration of shoe usage affects their slip-resistance properties. This study examined the association between the duration of slip-resistant shoes usage and the self-reported rate of slipping in limited-service restaurant workers. A total of 475 workers from 36 limited-service restaurants in the USA were recruited to participate in a 12-week prospective study of workplace slipping. Of the 475 participants, 83 reported changing to a new pair of shoes at least once during the 12-week follow-up. The results show that slip-resistant shoes worn for less than six months were moderately more effective than those worn for more than six months. Changing to a new pair of shoes among those wearing slip-resistant shoes at baseline was associated with a 55% reduction in the rate of slipping (RR = 0.45, 95% CI = 0.23-0.89). Further research is needed to develop criteria for the replacement of slip-resistant shoes.

  18. Dry Deposition, Surface Production and Dynamics of Aerosols in the Marine Boundary Layer

    DEFF Research Database (Denmark)

    Fairall, C.W.; Larsen, Søren Ejling

    1984-01-01

    A model of downward aerosol panicle flux characterized by dry deposition velocity, Vd, due to Slinn and Slinn (1980) is generalized to the case of nonzero surface concentration (absorbing surface with a surface source). A more general expression for the flux at some reference height is developed ...... produced as droplets at the surface and ‘continental’ background aerosols brought into the boundary layer at the top by entrainment and gravitational settling. Estimates of Si are provided....

  19. Closed central slip injuries--a missed diagnosis?

    LENUS (Irish Health Repository)

    Nugent, N

    2011-09-01

    The extensor apparatus of the finger is a complex structure and injury can lead to significant digital dysfunction. Closed central slip injuries may be missed or diagnosis delayed because of lack of an open wound and often no radiographic abnormality, and can result in boutonniere deformities if untreated. This study aimed to quantify the number of patients attending with closed central slip injuries and to ascertain if the initial diagnosis was correct. The number of patients presenting to us over a 6 month period was recorded. The original diagnosis, time to diagnosis of central slip injury and the presence\\/absence of a boutonniere deformity were recorded. Ten patients were included in the study. Seven (70%) injuries were due to sport. Eight (80%) had a delayed diagnosis of central slip injury. Six (60%) had previously presented to general practitioners or emergency departments. Seven (70%) had boutonniere deformities. Closed central slip injuries can be missed. Simple clinical tests can diagnose central slip disruption.

  20. Flavor origin of dark matter and its relation with leptonic nonzero θ{sub 13} and Dirac CP phase δ

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Subhaditya; Karmakar, Biswajit [Department of Physics, Indian Institute of Technology Guwahati,781039 Assam (India); Sahu, Narendra [Department of Physics, Indian Institute of Technology,Hyderabad, Kandi, Sangareddy 502285, Medak, Telengana (India); Sil, Arunansu [Department of Physics, Indian Institute of Technology Guwahati,781039 Assam (India)

    2017-05-12

    We propose a minimal extension of the standard model by including a U(1) flavor symmetry to establish a correlation between the relic abundance of dark matter, measured by WMAP and PLANCK satellite experiments and non-zero value of sin θ{sub 13} observed at DOUBLE CHOOZ, Daya Bay, RENO and T2K. The flavour symmetry is allowed to be broken at a high scale to a remnant Z{sub 2} symmetry, which not only ensures the stability to the dark matter, but also gives rise to a modification to the existing A{sub 4}-based tri-bimaximal neutrino mixing. This deviation in turn suggests the required non-zero value of sin θ{sub 13}. We assume the dark matter to be neutral under the existing A{sub 4} symmetry while charged under the U(1) flavor symmetry. Hence in this set-up, the non-zero value of sin θ{sub 13} predicts the dark matter charge under U(1), which can be tested at various ongoing and future direct and collider dark matter search experiments. We also point out the involvement of nonzero leptonic CP phase δ, which plays an important role in the analysis.

  1. Slipped capital femoral epiphysis: A modern treatment protocol

    Directory of Open Access Journals (Sweden)

    Slavković Nemanja

    2009-01-01

    Full Text Available The treatment of a patient with slipped capital femoral epiphysis begins with an early diagnosis and accurate classification. On the basis of symptom duration, clinical findings and radiographs, slipped capital femoral epiphysis is classified as pre-slip, acute, acute-on-chronic and chronic. The long-term outcome of slipped capital femoral epiphysis is directly related to severity and the presence or absence of avascular necrosis and/or chondrolysis. Therefore, the first priority in the treatment of slipped capital femoral epiphysis is to avoid complications while securing the epiphysis from further slippage. Medical treatment of patients with acute and acute-on-chronic slipped capital femoral epiphysis, as well as those presented in pre-slip stage, is the safest, although time-consuming. Manipulations, especially forced and repeated, are not recommended due to higher avascular necrosis risk. The use of intraoperative fluoroscopy to assist in the placement of internal fixation devices has markedly increased the success of surgical treatment. Controversy remains as to whether the proximal femoral epiphysis in severe, chronic slipped capital femoral epiphysis should be realigned by extracapsular osteotomies or just fixed in situ. The management protocol for slipped capital femoral epiphysis depends on the experience of the surgeon, motivation of the patient and technical facilities.

  2. Bristled shark skin: a microgeometry for boundary layer control?

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A W; Hidalgo, P; Westcott, M [Aerospace Engineering and Mechanics Department, University of Alabama, Box 870280, Tuscaloosa, AL 35487 (United States); Motta, P [Biology Department, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States)], E-mail: alang@eng.ua.edu

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  3. Gravitational radiation in relativistic theory of gravity with a nonzero graviton mass

    International Nuclear Information System (INIS)

    Vlasov, A.A.; Chugreev, Yu.V.

    1987-01-01

    Radiation of gravitation waves have been analysed in the linear approximation of the relative theory of gravity, with the mass of graviton being nonzero. It is shown that the main contribution to the energy loss due to gravitational radiation has been described by the well-known quadrupole formula. Linear approximation applicability conditions have been analysed

  4. Hydrodynamic boundary conditions for one-component liquid-gas flows on non-isothermal solid substrates

    KAUST Repository

    Xu, Xinpeng

    2012-01-01

    Recently, liquid-gas flows related to droplets, bubbles, and thin films on solid surfaces with thermal and wettability gradients have attracted widespread attention because of the many physical processes involved and their promising potential applications in biology, chemistry, and industry. Various new physical effects have been discovered at fluid-solid interfaces by experiments and molecular dynamics simulations, e.g., fluid velocity slip, temperature slip (Kapitza resistance), mechanical-thermal cross coupling, etc. There have been various models and theories proposed to explain these experimental and numerical observations. However, to the best of our knowledge,a continuum hydrodynamic model capable of predicting the temperature and velocity profiles of liquid-gas flows on non-isothermal, heterogeneous solid substrates is still absent. The purpose of this work is to construct a continuum model for simulating the liquid-gas flows on solid surfaces that are flat and rigid, and may involve wettability gradients and thermal gradients. This model is able to describe fluid velocity slip, temperature slip, and mechanical-thermal coupling that may occur at fluid-solid interfaces. For this purpose, we first employ the diffuse interface modeling to formulate the hydrodynamic equations for one-component liquid-gas flows in the bulk region. This reproduces the dynamic van der Waals theory of Onuki [Phys. Rev. Lett., 94: 054501, 2005]. We then extendWaldmann\\'s method [Z. Naturforsch. A, 22: 1269-1280, 1967] to formulate the boundary conditions at the fluid-solid interface that match the hydrodynamic equations in the bulk. The effects of the solid surface curvature are also briefly discussed in the appendix. The guiding principles of our model derivation are the conservation laws and the positive definiteness of entropy production together with the Onsager reciprocal relation. The derived model is self-consistent in the sense that the boundary conditions are

  5. Nonzero-Sum Stochastic Differential Portfolio Games under a Markovian Regime Switching Model

    Directory of Open Access Journals (Sweden)

    Chaoqun Ma

    2015-01-01

    Full Text Available We consider a nonzero-sum stochastic differential portfolio game problem in a continuous-time Markov regime switching environment when the price dynamics of the risky assets are governed by a Markov-modulated geometric Brownian motion (GBM. The market parameters, including the bank interest rate and the appreciation and volatility rates of the risky assets, switch over time according to a continuous-time Markov chain. We formulate the nonzero-sum stochastic differential portfolio game problem as two utility maximization problems of the sum process between two investors’ terminal wealth. We derive a pair of regime switching Hamilton-Jacobi-Bellman (HJB equations and two systems of coupled HJB equations at different regimes. We obtain explicit optimal portfolio strategies and Feynman-Kac representations of the two value functions. Furthermore, we solve the system of coupled HJB equations explicitly in a special case where there are only two states in the Markov chain. Finally we provide comparative statics and numerical simulation analysis of optimal portfolio strategies and investigate the impact of regime switching on optimal portfolio strategies.

  6. Neumann Casimir effect: A singular boundary-interaction approach

    International Nuclear Information System (INIS)

    Fosco, C.D.; Lombardo, F.C.; Mazzitelli, F.D.

    2010-01-01

    Dirichlet boundary conditions on a surface can be imposed on a scalar field, by coupling it quadratically to a δ-like potential, the strength of which tends to infinity. Neumann conditions, on the other hand, require the introduction of an even more singular term, which renders the reflection and transmission coefficients ill-defined because of UV divergences. We present a possible procedure to tame those divergences, by introducing a minimum length scale, related to the nonzero 'width' of a nonlocal term. We then use this setup to reach (either exact or imperfect) Neumann conditions, by taking the appropriate limits. After defining meaningful reflection coefficients, we calculate the Casimir energies for flat parallel mirrors, presenting also the extension of the procedure to the case of arbitrary surfaces. Finally, we discuss briefly how to generalize the worldline approach to the nonlocal case, what is potentially useful in order to compute Casimir energies in theories containing nonlocal potentials; in particular, those which we use to reproduce Neumann boundary conditions.

  7. Discrete element modeling of triggered slip in faults with granular gouge: application to dynamic earthquake triggering

    International Nuclear Information System (INIS)

    Ferdowsi, B.

    2014-01-01

    Recent seismological observations based on new, more sensitive instrumentation show that seismic waves radiated from large earthquakes can trigger other earthquakes globally. This phenomenon is called dynamic earthquake triggering and is well-documented for over 30 of the largest earthquakes worldwide. Granular materials are at the core of mature earthquake faults and play a key role in fault triggering by exhibiting a rich nonlinear response to external perturbations. The stick-slip dynamics in sheared granular layers is analogous to the seismic cycle for earthquake fault systems. In this research effort, we characterize the macroscopic scale statistics and the grain-scale mechanisms of triggered slip in sheared granular layers. We model the granular fault gouge using three dimensional discrete element method simulations. The modeled granular system is put into stick-slip dynamics by applying a conning pressure and a shear load. The dynamic triggering is simulated by perturbing the spontaneous stick-slip dynamics using an external vibration applied to the boundary of the layer. The influences of the triggering consist in a frictional weakening during the vibration interval, a clock advance of the next expected large slip event and long term effects in the form of suppression and recovery of the energy released from the granular layer. Our study suggests that above a critical amplitude, vibration causes a significant clock advance of large slip events. We link this clock advance to a major decline in the slipping contact ratio as well as a decrease in shear modulus and weakening of the granular gouge layer. We also observe that shear vibration is less effective in perturbing the stick-slip dynamics of the granular layer. Our study suggests that in order to have an effective triggering, the input vibration must also explore the granular layer at length scales about or less than the average grain size. The energy suppression and the subsequent recovery and increased

  8. Earthquake scaling laws for rupture geometry and slip heterogeneity

    Science.gov (United States)

    Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro

    2016-04-01

    We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip

  9. Stick-slip substructure in rapid tape peeling

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2010-10-15

    The peeling of adhesive tape is known to proceed with a stick-slip mechanism and produces a characteristic ripping sound. The peeling also produces light and when peeled in a vacuum, even X-rays have been observed, whose emissions are correlated with the slip events. Here we present direct imaging of the detachment zone when Scotch tape is peeled off at high speed from a solid surface, revealing a highly regular substructure, during the slip phase. The typical 4-mm-long slip region has a regular substructure of transverse 220 μm wide slip bands, which fracture sideways at speeds over 300 m/s. The fracture tip emits waves into the detached section of the tape at ∼100 m/s, which promotes the sound, so characteristic of this phenomenon.

  10. Stick-slip substructure in rapid tape peeling

    KAUST Repository

    Thoroddsen, Sigurdur T; Nguyen, H. D.; Takehara, K.; Etoh, T. G.

    2010-01-01

    The peeling of adhesive tape is known to proceed with a stick-slip mechanism and produces a characteristic ripping sound. The peeling also produces light and when peeled in a vacuum, even X-rays have been observed, whose emissions are correlated with the slip events. Here we present direct imaging of the detachment zone when Scotch tape is peeled off at high speed from a solid surface, revealing a highly regular substructure, during the slip phase. The typical 4-mm-long slip region has a regular substructure of transverse 220 μm wide slip bands, which fracture sideways at speeds over 300 m/s. The fracture tip emits waves into the detached section of the tape at ∼100 m/s, which promotes the sound, so characteristic of this phenomenon.

  11. Calculation of nonzero-temperature Casimir forces in the time domain

    International Nuclear Information System (INIS)

    Pan, Kai; Reid, M. T. Homer; McCauley, Alexander P.; Rodriguez, Alejandro W.; White, Jacob K.; Johnson, Steven G.

    2011-01-01

    We show how to compute Casimir forces at nonzero temperatures with time-domain electromagnetic simulations, for example, using a finite-difference time-domain (FDTD) method. Compared to our previous zero-temperature time-domain method, only a small modification is required, but we explain that some care is required to properly capture the zero-frequency contribution. We validate the method against analytical and numerical frequency-domain calculations, and show a surprising high-temperature disappearance of a nonmonotonic behavior previously demonstrated in a pistonlike geometry.

  12. Modeling of rock friction 2. Simulation of preseismic slip

    International Nuclear Information System (INIS)

    Dieterich, J.H.

    1979-01-01

    The constitutive relations developed in the companion paper are used to model detailed observations of preseismic slip and the onset of unstable slip in biaxial laboratory experiments. The simulations employ a deterministic plane strain finite element model to represent the interactions both within the sliding blocks and between the blocks and the loading apparatus. Both experiments and simulations show that preseismic slip controlled by initial inhomogeneity of shear stress along the sliding surface relative to the frictional strength. As a consequence of the inhomogeneity, stable slip begins at a point on the surface and the area of slip slowly expands as the external loading increases. A previously proposed correlation between accelerating rates of stable slip and growth of the area of slip is supported by the simulations. In the simulations and in the experiments, unstable slip occurs, shortly after a propagating slip event traverses the sliding surface and breaks out at the ends of the sample. In the model the breakout of stable slip causes a sudden acceleration of slip rates. Because of velocity dependency of the constitutive relationship for friction, the rapid acceleration of slip causes a decrease in frictional strength. Instability occurs when the frictional strength decreases with displacement at a rate that exceeds the intrinsic unloading characteristics of the sample and test machine. A simple slider-spring model that does not consider preseismic slip appears to approximate the transition adequately from stable sliding to unstable slip as a function of normal stress machine stiffness, and surface roughness for small samples. However, for large samples and for natural faults the simulations suggest that the simple model may be inaccurate because it does not take into account potentially large preseismic displacements that will alter the friction parameters prior to instability

  13. Diffuse-interface polycrystal plasticity: expressing grain boundaries as geometrically necessary dislocations

    Science.gov (United States)

    Admal, Nikhil Chandra; Po, Giacomo; Marian, Jaime

    2017-12-01

    The standard way of modeling plasticity in polycrystals is by using the crystal plasticity model for single crystals in each grain, and imposing suitable traction and slip boundary conditions across grain boundaries. In this fashion, the system is modeled as a collection of boundary-value problems with matching boundary conditions. In this paper, we develop a diffuse-interface crystal plasticity model for polycrystalline materials that results in a single boundary-value problem with a single crystal as the reference configuration. Using a multiplicative decomposition of the deformation gradient into lattice and plastic parts, i.e. F( X,t)= F L( X,t) F P( X,t), an initial stress-free polycrystal is constructed by imposing F L to be a piecewise constant rotation field R 0( X), and F P= R 0( X)T, thereby having F( X,0)= I, and zero elastic strain. This model serves as a precursor to higher order crystal plasticity models with grain boundary energy and evolution.

  14. Effects of spatially varying slip length on friction drag reduction in wall turbulence

    International Nuclear Information System (INIS)

    Hasegawa, Yosuke; Frohnapfel, Bettina; Kasagi, Nobuhide

    2011-01-01

    A series of direct numerical simulation has been made of turbulent flow over hydrophobic surfaces, which are characterized by streamwise periodic micro-grooves. By assuming that the size of micro-grooves is much smaller than the typical length-scale of near-wall turbulent structures, the dynamical boundary condition is expressed by a mobility tensor, which relates the slip velocity and the surface shear stress. Based on the derived mathematical relationship between the friction drag and different dynamical contributions, it is shown how the turbulence contribution can be extracted and analyzed.

  15. Improved ceramic slip casting technique. [application to aircraft model fabrication

    Science.gov (United States)

    Buck, Gregory M. (Inventor); Vasquez, Peter (Inventor)

    1993-01-01

    A primary concern in modern fluid dynamics research is the experimental verification of computational aerothermodynamic codes. This research requires high precision and detail in the test model employed. Ceramic materials are used for these models because of their low heat conductivity and their survivability at high temperatures. To fabricate such models, slip casting techniques were developed to provide net-form, precision casting capability for high-purity ceramic materials in aqueous solutions. In previous slip casting techniques, block, or flask molds made of plaster-of-paris were used to draw liquid from the slip material. Upon setting, parts were removed from the flask mold and cured in a kiln at high temperatures. Casting detail was usually limited with this technique -- detailed parts were frequently damaged upon separation from the flask mold, as the molded parts are extremely delicate in the uncured state, and the flask mold is inflexible. Ceramic surfaces were also marred by 'parting lines' caused by mold separation. This adversely affected the aerodynamic surface quality of the model as well. (Parting lines are invariably necessary on or near the leading edges of wings, nosetips, and fins for mold separation. These areas are also critical for flow boundary layer control.) Parting agents used in the casting process also affected surface quality. These agents eventually soaked into the mold, the model, or flaked off when releasing the case model. Different materials were tried, such as oils, paraffin, and even an algae. The algae released best, but some of it remained on the model and imparted an uneven texture and discoloration on the model surface when cured. According to the present invention, a wax pattern for a shell mold is provided, and an aqueous mixture of a calcium sulfate-bonded investment material is applied as a coating to the wax pattern. The coated wax pattern is then dried, followed by curing to vaporize the wax pattern and leave a shell

  16. Slip activity of persistent slip bands in polycrystalline nickel

    International Nuclear Information System (INIS)

    Weidner, A.; Beyer, R.; Blochwitz, C.; Holste, C.; Schwab, A.; Tirschler, W.

    2006-01-01

    The appearance of glide localizations after cyclic deformation in the saturation stage was investigated for polycrystalline nickel. It was shown that persistent slip bands (PSBs) are formed in a wide range of grain orientations. Concerning the grain size it was found, that the probability for the appearance of PSBs is higher for larger grains. The local slip activity of the formed PSBs was studied after half-cycle deformation using atomic force microscopy (AFM) and scanning electron microscopy (SEM). The fraction of grains with glide-active PSBs and the glide-active PSB volume itself is very small after the half-cycle loading. The obtained local shear strain amplitudes are quite high and vary in the range of 0.2-5%. They are comparable with those found in nickel single crystals at the same loading procedure

  17. New constraints on slip rates and locking depths of the San Andreas Fault System from Sentinel-1A InSAR and GAGE GPS observations

    Science.gov (United States)

    Ward, L. A.; Smith-Konter, B. R.; Higa, J. T.; Xu, X.; Tong, X.; Sandwell, D. T.

    2017-12-01

    After over a decade of operation, the EarthScope (GAGE) Facility has now accumulated a wealth of GPS and InSAR data, that when successfully integrated, make it possible to image the entire San Andreas Fault System (SAFS) with unprecedented spatial coverage and resolution. Resulting surface velocity and deformation time series products provide critical boundary conditions needed for improving our understanding of how faults are loaded across a broad range of temporal and spatial scales. Moreover, our understanding of how earthquake cycle deformation is influenced by fault zone strength and crust/mantle rheology is still developing. To further study these processes, we construct a new 4D earthquake cycle model of the SAFS representing the time-dependent 3D velocity field associated with interseismic strain accumulation, co-seismic slip, and postseismic viscoelastic relaxation. This high-resolution California statewide model, spanning the Cerro Prieto fault to the south to the Maacama fault to the north, is constructed on a 500 m spaced grid and comprises variable slip and locking depths along 42 major fault segments. Secular deep slip is prescribed from the base of the locked zone to the base of the elastic plate while episodic shallow slip is prescribed from the historical earthquake record and geologic recurrence intervals. Locking depths and slip rates for all 42 fault segments are constrained by the newest GAGE Facility geodetic observations; 3169 horizontal GPS velocity measurements, combined with over 53,000 line-of-sight (LOS) InSAR velocity observations from Sentinel-1A, are used in a weighted least-squares inversion. To assess slip rate and locking depth sensitivity of a heterogeneous rheology model, we also implement variations in crustal rigidity throughout the plate boundary, assuming a coarse representation of shear modulus variability ranging from 20-40 GPa throughout the (low rigidity) Salton Trough and Basin and Range and the (high rigidity) Central

  18. Development of compact slip detection sensor using dielectric elastomer

    Science.gov (United States)

    Choi, Jae-young; Hwang, Do-Yeon; Kim, Baek-chul; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, Ja Choon

    2015-04-01

    In this paper, we developed a resistance tactile sensor that can detect a slip on the surface of sensor structure. The presented sensor device has fingerprint-like structures that are similar with the role of the humans finger print. The resistance slip sensor that the novel developed uses acrylo-nitrile butadiene rubber (NBR) as a dielectric substrate and graphene as an electrode material. We can measure the slip as the structure of sensor makes a deformation and it changes the resistance through forming a new conductive route. To manufacture our sensor, we developed a new imprint process. By using this process, we can produce sensor with micro unit structure. To verify effectiveness of the proposed slip detection, experiment using prototype of resistance slip sensor is conducted with an algorithm to detect slip and slip is successfully detected. We will discuss the slip detection properties.

  19. Stick-Slip Motion of Moving Contact Line on Chemically Patterned Surfaces

    KAUST Repository

    Wu, Congmin; Lei, Siulong; Qian, Tiezheng; Wang, Xiaoping

    2009-01-01

    Based on our continuum hydrodynamic model for immiscible two-phase flows at solid surfaces, the stick-slip motion has been predicted for moving contact line at chemically patterned surfaces [Wang et al., J. Fluid Mech., 605 (2008), pp. 59-78]. In this paper we show that the continuum predictions can be quantitatively verified by molecular dynamics (MD) simulations. Our MD simulations are carried out for two immiscible Lennard-Jones fluids confined by two planar solid walls in Poiseuille flow geometry. In particular, one solid surface is chemically patterned with alternating stripes. For comparison, the continuum model is numerically solved using material parameters directly measured in MD simulations. From oscillatory fluid-fluid interface to intermittent stick-slip motion of moving contact line, we have quantitative agreement between the continuum and MD results. This agreement is attributed to the accurate description down to molecular scale by the generalized Navier boundary condition in our continuum model. Numerical results are also presented for the relaxational dynamics of fluid-fluid interface, in agreement with a theoretical analysis based on the Onsager principle of minimum energy dissipation. © 2010 Global-Science Press.

  20. What causes an icy fault to slip? Investigating strike-slip failure conditions on Ganymede at Dardanus and Tiamat Sulcus.

    Science.gov (United States)

    Cameron, M. E.; Smith-Konter, B. R.; Burkhard, L. M.; Collins, G. C.; Seifert, F.; Pappalardo, R. T.

    2015-12-01

    Ganymede exhibits two geologically distinct terrains known as dark and light (grooved) terrain. The mechanism for a transition from dark to light terrain remains unclear; however, inferences of strike-slip faulting and distributed shear zones suggest that strike-slip tectonism may be important to the structural development of Ganymede's surface and in this transition. Here we investigate the role of tidal stresses on Ganymede in the formation and evolution of strike-slip structures in both dark and grooved terrains. Using numerical code SatStress, we calculate both diurnal and non-synchronous rotation (NSR) tidal stresses at Ganymede's surface. Specifically, we investigate the role of fault friction and orbital eccentricity in the development of ~45 km of right-lateral offset at Dardanus Sulcus and a possible case of study with a detailed morphological mapping of strike-slip morphologies (en echelon structures, strike-slip duplexes, laterally offset pre-existing features, and possible strained craters) at Nun Sulcus and several other locations. These structures serve as example regions to provide improved constraints for global stress mechanisms responsible for strike-slip fault evolution on Ganymede.

  1. The influence of slip velocity and temperature on permeability during and after high-velocity fault slip

    Science.gov (United States)

    Tanikawa, W.; Mukoyoshi, H.; Tadai, O.; Hirose, T.; Lin, W.

    2011-12-01

    Fluid transport properties in fault zones play an important role in dynamic processes during large earthquakes. If the permeability in a fault zone is low, high pore-fluid pressures caused by thermal pressurization (Sibson, 1973) or shear-induced compaction (Blanpied et al., 1992) can lead to an apparent reduction of fault strength. Changes in porosity and permeability of fault rocks within a fault zone during earthquakes and the subsequent progressive recovery of these properties may have a large influence on earthquake recurrence (Sleep and Blanpied, 1992). A rotary shear apparatus was used to investigate changes of fluid transport properties in a fault zone by real-time measurement of gas flow rates during and after shearing of hollow sandstone and granite cylinders at various slip rates. Our apparatus measures permeability parallel to the slip plane in both the slip zone and wall rocks. In all cases, permeability decreased rapidly with an increase of friction, but recovered soon after slip, reaching a steady state within several tens of minutes. The rate of reduction of permeability increased with increasing slip velocity. Permeability did not recover to pre-slip levels after low-velocity tests but recovered to exceed them after high-velocity tests. Frictional heating of gases at the slip surface increased gas viscosity, which increased gas flow rate to produce an apparent permeability increase. The irreversible permeability changes of the low-velocity tests were caused by gouge formation due to wearing and smoothing of the slip surface. The increase of permeability after high-velocity tests was caused by mesoscale fracturing in response to rapid temperature rise. Changes of pore fluid viscosity contributed more to changes of flow rate than did permeability changes caused by shear deformation, although test results from different rocks and pore fluids might be different. References Blanpied, M.L., Lockner, D.A., Byerlee, J.D., 1992. An earthquake mechanism

  2. Time-dependent inversions of slow slip at the Hikurangi subduction zone, New Zealand, using numerical Green's functions

    Science.gov (United States)

    Williams, C. A.; Wallace, L. M.; Bartlow, N. M.

    2017-12-01

    Slow slip events (SSEs) have been observed throughout the world, and the existence of these events has fundamentally altered our understanding of the possible ranges of slip behavior at subduction plate boundaries. In New Zealand, SSEs occur along the Hikurangi Margin, with shallower events in the north and deeper events to the south. In a recent study, Williams and Wallace (2015) found that static SSE inversions that consider elastic property variations provided significantly different results than those based on an elastic half-space. For deeper events, the heterogeneous models predicted smaller amounts of slip, while for shallower events the heterogeneous model predicted larger amounts of slip. In this study, we extend our initial work to examine the temporal variations in slip. We generate Green's functions using the PyLith finite element code (Aagaard et al., 2013) to allow consideration of elastic property variations provided by the New Zealand-wide seismic velocity model (Eberhart-Phillips et al., 2010). These Green's functions are then integrated to provide Green's functions compatible with the Network Inversion Filter (NIF, Segall and Matthews,1997; McGuire and Segall, 2003; Miyazaki et al.,2006). We examine 12 SSEs occurring along the Hikurangi Margin during 2010 and 2011, and compare the results using heterogeneous Green's functions with those of Bartlow et al. (2014), who examined the same set of SSEs with the NIF using a uniform elastic half-space model. The use of heterogeneous Green's functions should provide a more accurate picture of the slip distribution and evolution of the SSEs. This will aid in understanding the correlations between SSEs and seismicity and/or tremor and the role of SSEs in the accommodation of plate motion budgets in New Zealand.

  3. Dynamical stability of slip-stacking particles

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey; Zwaska, Robert

    2014-09-01

    We study the stability of particles in slip-stacking configuration, used to nearly double proton beam intensity at Fermilab. We introduce universal area factors to calculate the available phase space area for any set of beam parameters without individual simulation. We find perturbative solutions for stable particle trajectories. We establish Booster beam quality requirements to achieve 97% slip-stacking efficiency. We show that slip-stacking dynamics directly correspond to the driven pendulum and to the system of two standing-wave traps moving with respect to each other.

  4. Hydromagnetic slip flow of water based nano-fluids past a wedge with convective surface in the presence of heat generation (or) absorption

    International Nuclear Information System (INIS)

    Rahman, M.M.; Al-Lawatia, M.A.; Eltayeb, I.A.; Al-Salti, N.

    2012-01-01

    Heat transfer characteristics of a two-dimensional steady hydromagnetic slip flow of water based nano-fluids (TiO 2 -water, Al 2 O 3 -water, and Cu-water) over a wedge with convective surface taking into account the effects of heat generation (or absorption) has been investigated numerically. The local similarity solutions are obtained by using very robust computer algebra software MATLAB and presented graphically as well as in a tabular form. The results show that nano-fluid velocity is lower than the velocity of the base fluid and the existence of the nano-fluid leads to the thinning of the hydrodynamic boundary layer. The rate of shear stress is significantly influenced by the surface convection parameter and the slip parameter. It is higher for nano-fluids than the base fluid. The results also show that within the boundary layer the temperature of the nano-fluid is higher than the temperature of the base fluid. The rate of heat transfer is found to increase with the increase of the surface convection and the slip parameters. Addition of nano-particles to the base fluid induces the rate of heat transfer. The rate of heat transfer in the Cu-water nano-fluid is found to be higher than the rate of heat transfer in the TiO 2 -water and Al 2 O 3 -water nano-fluids. (authors)

  5. Stochastic Wheel-Slip Compensation Based Robot Localization and Mapping

    Directory of Open Access Journals (Sweden)

    SIDHARTHAN, R. K.

    2016-05-01

    Full Text Available Wheel slip compensation is vital for building accurate and reliable dead reckoning based robot localization and mapping algorithms. This investigation presents stochastic slip compensation scheme for robot localization and mapping. Main idea of the slip compensation technique is to use wheel-slip data obtained from experiments to model the variations in slip velocity as Gaussian distributions. This leads to a family of models that are switched depending on the input command. To obtain the wheel-slip measurements, experiments are conducted on a wheeled mobile robot and the measurements thus obtained are used to build the Gaussian models. Then the localization and mapping algorithm is tested on an experimental terrain and a new metric called the map spread factor is used to evaluate the ability of the slip compensation technique. Our results clearly indicate that the proposed methodology improves the accuracy by 72.55% for rotation and 66.67% for translation motion as against an uncompensated mapping system. The proposed compensation technique eliminates the need for extro receptive sensors for slip compensation, complex feature extraction and association algorithms. As a result, we obtain a simple slip compensation scheme for localization and mapping.

  6. How informative are slip models for aftershock forecasting?

    Science.gov (United States)

    Bach, Christoph; Hainzl, Sebastian

    2013-04-01

    Coulomb stress changes (ΔCFS) have been recognized as a major trigger mechanism for earthquakes, in particular aftershock distributions and the spatial patterns of ΔCFS are often found to be correlated. However, the Coulomb stress calculations are based on slip inversions and the receiver fault mechanisms which both contain large uncertainties. In particular, slip inversions are usually non-unique and often differ strongly for the same earthquakes. Here we want to address the information content of those inversions with respect to aftershock forecasting. Therefore we compare the slip models to randomized fractal slip models which are only constrained by fault information and moment magnitude. The uncertainty of the aftershock mechanisms is considered by using many receiver fault orientations, and by calculating ΔCFS at several depth layers. The stress change is then converted into an aftershock probability map utilizing a clock advance model. To estimate the information content of the slip models, we use an Epidemic Type Aftershock Sequence (ETAS) model approach introduced by Bach and Hainzl (2012), where the spatial probability density of direct aftershocks is related to the ΔCFS calculations. Besides the directly triggered aftershocks, this approach also takes secondary aftershock triggering into account. We quantify our results by calculating the information gain of the randomized slip models relative to the corresponding published slip model. As case studies, we investigate the aftershock sequences of several well-known main shocks such as 1992 Landers, 1999 Hector Mine, 2004 Parkfield, 2002 Denali. First results show a huge difference in the information content of slip models. For some of the cases up to 90% of the random slip models are found to perform better than the originally published model, for some other cases only few random models are found performing better than the published slip model.

  7. Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique earthquake.

    Science.gov (United States)

    Schurr, Bernd; Asch, Günter; Hainzl, Sebastian; Bedford, Jonathan; Hoechner, Andreas; Palo, Mauro; Wang, Rongjiang; Moreno, Marcos; Bartsch, Mitja; Zhang, Yong; Oncken, Onno; Tilmann, Frederik; Dahm, Torsten; Victor, Pia; Barrientos, Sergio; Vilotte, Jean-Pierre

    2014-08-21

    On 1 April 2014, Northern Chile was struck by a magnitude 8.1 earthquake following a protracted series of foreshocks. The Integrated Plate Boundary Observatory Chile monitored the entire sequence of events, providing unprecedented resolution of the build-up to the main event and its rupture evolution. Here we show that the Iquique earthquake broke a central fraction of the so-called northern Chile seismic gap, the last major segment of the South American plate boundary that had not ruptured in the past century. Since July 2013 three seismic clusters, each lasting a few weeks, hit this part of the plate boundary with earthquakes of increasing peak magnitudes. Starting with the second cluster, geodetic observations show surface displacements that can be associated with slip on the plate interface. These seismic clusters and their slip transients occupied a part of the plate interface that was transitional between a fully locked and a creeping portion. Leading up to this earthquake, the b value of the foreshocks gradually decreased during the years before the earthquake, reversing its trend a few days before the Iquique earthquake. The mainshock finally nucleated at the northern end of the foreshock area, which skirted a locked patch, and ruptured mainly downdip towards higher locking. Peak slip was attained immediately downdip of the foreshock region and at the margin of the locked patch. We conclude that gradual weakening of the central part of the seismic gap accentuated by the foreshock activity in a zone of intermediate seismic coupling was instrumental in causing final failure, distinguishing the Iquique earthquake from most great earthquakes. Finally, only one-third of the gap was broken and the remaining locked segments now pose a significant, increased seismic hazard with the potential to host an earthquake with a magnitude of >8.5.

  8. Stick-slip friction and wear of articular joints

    Science.gov (United States)

    Lee, Dong Woog; Banquy, Xavier; Israelachvili, Jacob N.

    2013-01-01

    Stick-slip friction was observed in articular cartilage under certain loading and sliding conditions and systematically studied. Using the Surface Forces Apparatus, we show that stick-slip friction can induce permanent morphological changes (a change in the roughness indicative of wear/damage) in cartilage surfaces, even under mild loading and sliding conditions. The different load and speed regimes can be represented by friction maps—separating regimes of smooth and stick-slip sliding; damage generally occurs within the stick-slip regimes. Prolonged exposure of cartilage surfaces to stick-slip sliding resulted in a significant increase of surface roughness, indicative of severe morphological changes of the cartilage superficial zone. To further investigate the factors that are conducive to stick-slip and wear, we selectively digested essential components of cartilage: type II collagen, hyaluronic acid (HA), and glycosaminoglycans (GAGs). Compared with the normal cartilage, HA and GAG digestions modified the stick-slip behavior and increased surface roughness (wear) during sliding, whereas collagen digestion decreased the surface roughness. Importantly, friction forces increased up to 2, 10, and 5 times after HA, GAGs, and collagen digestion, respectively. Also, each digestion altered the friction map in different ways. Our results show that (i) wear is not directly related to the friction coefficient but (ii) more directly related to stick-slip sliding, even when present at small amplitudes, and that (iii) the different molecular components of joints work synergistically to prevent wear. Our results also suggest potential noninvasive diagnostic tools for sensing stick-slip in joints. PMID:23359687

  9. Dynamic slip of polydisperse linear polymers using partitioned plate

    Science.gov (United States)

    Ebrahimi, Marzieh; Konaganti, Vinod Kumar; Hatzikiriakos, Savvas G.

    2018-03-01

    The slip velocity of an industrial grade high molecular weight high-density polyethylene (HDPE) is studied in steady and dynamic shear experiments using a stress/strain controlled rotational rheometer equipped with a parallel partitioned plate geometry. Moreover, fluoroalkyl silane-based coating is used to understand the effect of surface energy on slip in steady and dynamic conditions. The multimode integral Kaye-Bernstein-Kearsley-Zapas constitutive model is applied to predict the transient shear response of the HDPE melt obtained from rotational rheometer. It is found that a dynamic slip model with a slip relaxation time is needed to adequately predict the experimental data at large shear deformations. Comparison of the results before and after coating shows that the slip velocity is largely affected by surface energy. Decreasing surface energy by coating increases slip velocity and decreases the slip relaxation time.

  10. Earthquake source properties from instrumented laboratory stick-slip

    Science.gov (United States)

    Kilgore, Brian D.; McGarr, Arthur F.; Beeler, Nicholas M.; Lockner, David A.; Thomas, Marion Y.; Mitchell, Thomas M.; Bhat, Harsha S.

    2017-01-01

    Stick-slip experiments were performed to determine the influence of the testing apparatus on source properties, develop methods to relate stick-slip to natural earthquakes and examine the hypothesis of McGarr [2012] that the product of stiffness, k, and slip duration, Δt, is scale-independent and the same order as for earthquakes. The experiments use the double-direct shear geometry, Sierra White granite at 2 MPa normal stress and a remote slip rate of 0.2 µm/sec. To determine apparatus effects, disc springs were added to the loading column to vary k. Duration, slip, slip rate, and stress drop decrease with increasing k, consistent with a spring-block slider model. However, neither for the data nor model is kΔt constant; this results from varying stiffness at fixed scale.In contrast, additional analysis of laboratory stick-slip studies from a range of standard testing apparatuses is consistent with McGarr's hypothesis. kΔt is scale-independent, similar to that of earthquakes, equivalent to the ratio of static stress drop to average slip velocity, and similar to the ratio of shear modulus to wavespeed of rock. These properties result from conducting experiments over a range of sample sizes, using rock samples with the same elastic properties as the Earth, and scale-independent design practices.

  11. An efficient implicit direct forcing immersed boundary method for incompressible flows

    International Nuclear Information System (INIS)

    Cai, S-G; Ouahsine, A; Smaoui, H; Favier, J; Hoarau, Y

    2015-01-01

    A novel efficient implicit direct forcing immersed boundary method for incompressible flows with complex boundaries is presented. In the previous work [1], the calculation is performed on the Cartesian grid regardless of the immersed object, with a fictitious force evaluated on the Lagrangian points to mimic the presence of the physical boundaries. However the explicit direct forcing method [1] fails to accurately impose the non-slip boundary condition on the immersed interface. In the present work, the calculation is based on the implicit treatment of the artificial force while in an effective way of system iteration. The accuracy is also improved by solving the Navier-Stokes equation with the rotational incremental pressure- correction projection method of Guermond and Shen [2]. Numerical simulations performed with the proposed method are in good agreement with those in the literature

  12. A Quadtree-gridding LBM with Immersed Boundary for Two-dimension Viscous Flows

    Science.gov (United States)

    Yao, Jieke; Feng, Wenliang; Chen, Bin; Zhou, Wei; Cao, Shikun

    2017-07-01

    An un-uniform quadtree grids lattice Boltzmann method (LBM) with immersed boundary is presented in this paper. In overlapping for different level grids, temporal and spatial interpolation are necessary to ensure the continuity of physical quantity. In order to take advantage of the equation for temporal and spatial step in the same level grids, equal interval interpolation, which is simple to apply to any refined boundary grids in the LBM, is adopted in temporal and spatial aspects to obtain second-order accuracy. The velocity correction, which can guarantee more preferably no-slip boundary condition than the direct forcing method and the momentum exchange method in the traditional immersed-boundary LBM, is used for solid boundary to make the best of Cartesian grid. In present quadtree-gridding immersed-boundary LBM, large eddy simulation (LES) is adopted to simulate the flows over obstacle in higher Reynolds number (Re). The incompressible viscous flows over circular cylinder are carried out, and a great agreement is obtained.

  13. Surface displacements and energy release rates for constant stress drop slip zones in joined elastic quarter spaces

    Science.gov (United States)

    Rodgers, Michael J.; Wen, Shengmin; Keer, Leon M.

    2000-08-01

    A three-dimensional quasi-static model of faulting in an elastic half-space with a horizontal change of material properties (i.e., joined elastic quarter spaces) is considered. A boundary element method is used with a stress drop slip zone approach so that the fault surface relative displacements as well as the free surface displacements are approximated in elements over their respective domains. Stress intensity factors and free surface displacements are calculated for a variety of cases to show the phenomenological behavior of faulting in such a medium. These calculations showed that the behavior could be distinguished from a uniform half-space. Slip in a stiffer material increases, while slip in a softer material decreases the energy release rate and the free surface displacements. Also, the 1989 Kalapana earthquake was located on the basis of a series of forward searches using this method and leveling data. The located depth is 8 km, which is the closer to the seismically inferred depth than that determined from other models. Finally, the energy release rate, which can be used as a fracture criterion for fracture at this depth, is calculated to be 11.1×106 J m-2.

  14. On simulation of no-slip condition in the method of discrete vortices

    Science.gov (United States)

    Shmagunov, O. A.

    2017-10-01

    When modeling flows of an incompressible fluid, it is convenient sometimes to use the method of discrete vortices (MDV), where the continuous vorticity field is approximated by a set of discrete vortex elements moving in the velocity field. The vortex elements have a clear physical interpretation, they do not require the construction of grids and are automatically adaptive, since they concentrate in the regions of greatest interest and successfully describe the flows of a non-viscous fluid. The possibility of using MDV in simulating flows of a viscous fluid was considered in the previous papers using the examples of flows past bodies with sharp edges with the no-penetration condition at solid boundaries. However, the appearance of vorticity on smooth boundaries requires the no-slip condition to be met when MDV is realized, which substantially complicates the initially simple method. In this connection, an approach is considered that allows solving the problem by simple means.

  15. Dislocation nucleation from symmetric tilt grain boundaries in body-centered cubic vanadium

    Science.gov (United States)

    Xu, Shuozhi; Su, Yanqing

    2018-05-01

    We perform molecular dynamics (MD) simulations with two interatomic potentials to study dislocation nucleation from six symmetric tilt grain boundaries (GB) using bicrystal models in body-centered cubic vanadium. The influences of the misorientation angle are explored in the context of activated slip systems, critical resolved shear stress (CRSS), and GB energy. It is found that for four GBs, the activated slip systems are not those with the highest Schmid factor, i.e., the Schmid law breaks down. For all misorientation angles, the bicrystal is associated with a lower CRSS than their single crystalline counterparts. Moreover, the GB energy decreases in compressive loading at the yield point with respect to the undeformed configuration, in contrast to tensile loading.

  16. RETRAN dynamic slip model

    International Nuclear Information System (INIS)

    McFadden, J.H.; Paulsen, M.P.; Gose, G.C.

    1981-01-01

    A time dependent equation for the slip velocity in a two-phase flow condition has been incorporated into a developmental version of the RETRAN computer code. This model addition has been undertaken to remove a limitation in RETRAN-01 associated with the homogeneous equilibrium mixture model. In this paper, the development of the slip model is summarized and the corresponding constitutive equations are discussed. Comparisons of RETRAN analyses with steady-state void fraction data and data from the Semiscale S-02-6 small break test are also presented

  17. RETRAN dynamic slip model

    International Nuclear Information System (INIS)

    McFadden, J.H.; Paulsen, M.P.; Gose, G.C.

    1981-01-01

    Thermal-hydraulic codes in general use for system calculations are based on extensive analyses of loss-of-coolant accidents following the postulated rupture of a large coolant pipe. In this study, time-dependent equation for the slip velocity in a two-phase flow condition has been incorporated into the RETRAN-02 computer code. This model addition was undertaken to remove a limitation in RETRAN-01 associated with the homogeneous equilibrium mixture model. The dynamic slip equation was derived from a set of two-fluid conservation equations. 18 refs

  18. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    Science.gov (United States)

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-04

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  19. Quantum Quench Dynamics in the Transverse Field Ising Model at Non-zero Temperatures

    Science.gov (United States)

    Abeling, Nils; Kehrein, Stefan

    The recently discovered Dynamical Phase Transition denotes non-analytic behavior in the real time evolution of quantum systems in the thermodynamic limit and has been shown to occur in different systems at zero temperature [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. In this talk we present the extension of the analysis to non-zero temperature by studying a generalized form of the Loschmidt echo, the work distribution function, of a quantum quench in the transverse field Ising model. Although the quantitative behavior at non-zero temperatures still displays features derived from the zero temperature non-analyticities, it is shown that in this model dynamical phase transitions do not exist if T > 0 . This is a consequence of the system being initialized in a thermal state. Moreover, we elucidate how the Tasaki-Crooks-Jarzynski relation can be exploited as a symmetry relation for a global quench or to obtain the change of the equilibrium free energy density. This work was supported through CRC SFB 1073 (Project B03) of the Deutsche Forschungsgemeinschaft (DFG).

  20. Multiparameter Monitoring and Prevention of Fault-Slip Rock Burst

    Directory of Open Access Journals (Sweden)

    Shan-chao Hu

    2017-01-01

    Full Text Available Fault-slip rock burst is one type of the tectonic rock burst during mining. A detailed understanding of the precursory information of fault-slip rock burst and implementation of monitoring and early warning systems, as well as pressure relief measures, are essential to safety production in deep mines. This paper first establishes a mechanical model of stick-slip instability in fault-slip rock bursts and then reveals the failure characteristics of the instability. Then, change rule of mining-induced stress and microseismic signals before the occurrence of fault-slip rock burst are proposed, and multiparameter integrated early warning methods including mining-induced stress and energy are established. Finally, pressure relief methods targeting large-diameter boreholes and coal seam infusion are presented in accordance with the occurrence mechanism of fault-slip rock burst. The research results have been successfully applied in working faces 2310 of the Suncun Coal Mine, and the safety of the mine has been enhanced. These research results improve the theory of fault-slip rock burst mechanisms and provide the basis for prediction and forecasting, as well as pressure relief, of fault-slip rock bursts.

  1. Effects of the bottom boundary condition in numerical investigations of dense water cascading on a slope

    Science.gov (United States)

    Berntsen, Jarle; Alendal, Guttorm; Avlesen, Helge; Thiem, Øyvind

    2018-05-01

    The flow of dense water along continental slopes is considered. There is a large literature on the topic based on observations and laboratory experiments. In addition, there are many analytical and numerical studies of dense water flows. In particular, there is a sequence of numerical investigations using the dynamics of overflow mixing and entrainment (DOME) setup. In these papers, the sensitivity of the solutions to numerical parameters such as grid size and numerical viscosity coefficients and to the choices of methods and models is investigated. In earlier DOME studies, three different bottom boundary conditions and a range of vertical grid sizes are applied. In other parts of the literature on numerical studies of oceanic gravity currents, there are statements that appear to contradict choices made on bottom boundary conditions in some of the DOME papers. In the present study, we therefore address the effects of the bottom boundary condition and vertical resolution in numerical investigations of dense water cascading on a slope. The main finding of the present paper is that it is feasible to capture the bottom Ekman layer dynamics adequately and cost efficiently by using a terrain-following model system using a quadratic drag law with a drag coefficient computed to give near-bottom velocity profiles in agreement with the logarithmic law of the wall. Many studies of dense water flows are performed with a quadratic bottom drag law and a constant drag coefficient. It is shown that when using this bottom boundary condition, Ekman drainage will not be adequately represented. In other studies of gravity flow, a no-slip bottom boundary condition is applied. With no-slip and a very fine resolution near the seabed, the solutions are essentially equal to the solutions obtained with a quadratic drag law and a drag coefficient computed to produce velocity profiles matching the logarithmic law of the wall. However, with coarser resolution near the seabed, there may be a

  2. The long-term stability of self-esteem: its time-dependent decay and nonzero asymptote.

    Science.gov (United States)

    Kuster, Farah; Orth, Ulrich

    2013-05-01

    How stable are individual differences in self-esteem? We examined the time-dependent decay of rank-order stability of self-esteem and tested whether stability asymptotically approaches zero or a nonzero value across long test-retest intervals. Analyses were based on 6 assessments across a 29-year period of a sample of 3,180 individuals aged 14 to 102 years. The results indicated that, as test-retest intervals increased, stability exponentially decayed and asymptotically approached a nonzero value (estimated as .43). The exponential decay function explained a large proportion of variance in observed stability coefficients, provided a better fit than alternative functions, and held across gender and for all age groups from adolescence to old age. Moreover, structural equation modeling of the individual-level data suggested that a perfectly stable trait component underlies stability of self-esteem. The findings suggest that the stability of self-esteem is relatively large, even across very long periods, and that self-esteem is a trait-like characteristic.

  3. Frictional melting and stick-slip behavior in volcanic conduits

    Science.gov (United States)

    Kendrick, Jackie Evan; Lavallee, Yan; Hirose, Takehiro; di Toro, Giulio; Hornby, Adrian Jakob; Hess, Kai-Uwe; Dingwell, Donald Bruce

    2013-04-01

    Dome-building eruptions have catastrophic potential, with dome collapse leading to devastating pyroclastic flows with almost no precursory warning. During dome growth, the driving forces of the buoyant magma may be superseded by controls along conduit margins; where brittle fracture and sliding can lead to formation of lubricating cataclasite and gouge. Under extreme friction, pseudotachylyte may form at the conduit margin. Understanding the conduit margin processes is vital to understanding the continuation of an eruption and we postulate that pseudotachylyte generation could be the underlying cause of stick-slip motion and associated seismic "drumbeats", which are so commonly observed at dome-building volcanoes. This view is supported by field evidence in the form of pseudotachylytes identified in lava dome products at Soufrière Hills (Montserrat) and Mount St. Helens (USA). Both eruptions were characterised by repetitive, periodic seismicity and lava spine extrusion of highly viscous magma. High velocity rotary shear (HVR) experiments demonstrate the propensity for melting of the andesitic and dacitic material (from Soufrière Hills and Mount St. Helens respectively) at upper conduit stress conditions (HVR experiments which mimic rapid velocity fluctuations in stick-slip behavior demonstrate velocity-weakening behavior of melt, with a tendency for unstable slip. During ascent, magma may slip and undergo melting along the conduit margin. In the process the shear resistance of the slip zone is increased, acting as a viscous brake halting slip (the "stick" of stick-slip motion). Sufficient buoyancy-driven pressures from ascending magma below eventually overcome resistance to produce a rapid slip event (the "slip") along the melt-bearing slip zone, which is temporarily lubricated due to velocity-weakening. New magma below experiences the same slip event more slowly (as the magma decompresses) to produce a viscous brake and the process is repeated. This allows a

  4. No slip gravity

    Science.gov (United States)

    Linder, Eric V.

    2018-03-01

    A subclass of the Horndeski modified gravity theory we call No Slip Gravity has particularly interesting properties: 1) a speed of gravitational wave propagation equal to the speed of light, 2) equality between the effective gravitational coupling strengths to matter and light, Gmatter and Glight, hence no slip between the metric potentials, yet difference from Newton's constant, and 3) suppressed growth to give better agreement with galaxy clustering observations. We explore the characteristics and implications of this theory, and project observational constraints. We also give a simple expression for the ratio of the gravitational wave standard siren distance to the photon standard candle distance, in this theory and others, and enable a direct comparison of modified gravity in structure growth and in gravitational waves, an important crosscheck.

  5. Competing boundary interactions in a Josephson junction network with an impurity

    International Nuclear Information System (INIS)

    Giuliano, Domenico; Sodano, Pasquale

    2010-01-01

    We analyze a perturbation of the boundary Sine-Gordon model where two boundary terms of different periodicities and scaling dimensions are coupled to a Kondo-like spin degree of freedom. We show that, by pertinently engineering the coupling with the spin degree of freedom, a competition between the two boundary interactions may be induced, and that this gives rise to nonperturbative phenomena, such as the emergence of novel quantum phases: indeed, we demonstrate that the strongly coupled fixed point may become unstable as a result of the 'deconfinement' of a new set of phase-slip operators - the short instantons - associated with the less relevant boundary operator. We point out that a Josephson junction network with a pertinent impurity located at its center provides a physical realization of this boundary double Sine-Gordon model. For this Josephson junction network, we prove that the competition between the two boundary interactions stabilizes a robust finite coupling fixed point and, at a pertinent scale, allows for the onset of 4e superconductivity.

  6. Transpressional Tectonics across the N. American-Caribbean Plate Boundary: Preliminary Results of a Multichannel Seismic Survey of Lake Azuei, Haiti.

    Science.gov (United States)

    Hearn, C. K.; Cormier, M. H.; Sloan, H.; Wattrus, N. J.; Boisson, D.; Brown, B.; Guerrier, K.; King, J. W.; Knotts, P.; Momplaisir, R.; Sorlien, C. C.; Stempel, R.; Symithe, S. J.; Ulysse, S. M. J.

    2017-12-01

    On January 12, 2010, a Mw 7.0 earthquake struck Haiti, killing over 200,000 people and devastating the Capital city of Port-au-Prince and the surrounding regions. It ruptured a previously unknown blind-thrust fault that abuts the Enriquillo Plantain Garden Fault (EPGF), one of two transform faults that define the North American-Caribbean plate boundary. That earthquake highlighted how transpression across this complex boundary is accommodated by slip partitioning into strike-slip and compressional structures. Because the seismic hazard is higher for a rupture on a reverse or oblique-slip fault than on a vertical strike-slip fault, the need to characterize the geometry of that fault system is clear. Lake Azuei overlies this plate boundary 60 km east of the 2010 epicenter. The lake's 23 km long axis trends NW-SE, parallel to the Haitian fold-and-thrust belt and oblique to the EPGF. This tectonic context makes it an ideal target for investigating the partitioning of plate motion between strike-slip and compressional structures. In January 2017, we acquired 222 km of multichannel seismic (MCS) profiles in the lake, largely concurrent with subbottom seismic (CHIRP) profiles. The MCS data were acquired using a high-frequency BubbleGun source and a 75 m-long, 24-channel streamer, achieving a 24 seismic fold with a penetration of 200 m below lakebed. With the goal of resolving tectonic structures in 3-D, survey lines were laid out in a grid with profiles spaced 1.2 km apart. Additional profiles were acquired at the SE end of the lake where most of the tectonic activity is presumably occurring. The co-located CHIRP and MCS profiles document the continuity of tectonic deformation between the surficial sediments and the deeper strata. Preliminary processing suggests that a SW-dipping blind thrust fault, expressed updip as a large monocline fold, may control the western edge of the lake. Gentle, young folds that protrude from the flat lakebed are also imaged with the CHIRP

  7. Nonequilibrium Chromosome Looping via Molecular Slip Links

    Science.gov (United States)

    Brackley, C. A.; Johnson, J.; Michieletto, D.; Morozov, A. N.; Nicodemi, M.; Cook, P. R.; Marenduzzo, D.

    2017-09-01

    We propose a model for the formation of chromatin loops based on the diffusive sliding of molecular slip links. These mimic the behavior of molecules like cohesin, which, along with the CTCF protein, stabilize loops which contribute to organizing the genome. By combining 3D Brownian dynamics simulations and 1D exactly solvable nonequilibrium models, we show that diffusive sliding is sufficient to account for the strong bias in favor of convergent CTCF-mediated chromosome loops observed experimentally. We also find that the diffusive motion of multiple slip links along chromatin is rectified by an intriguing ratchet effect that arises if slip links bind to the chromatin at a preferred "loading site." This emergent collective behavior favors the extrusion of loops which are much larger than the ones formed by single slip links.

  8. Modeling of liquid–gas meniscus for textured surfaces: effects of curvature and local slip length

    International Nuclear Information System (INIS)

    Gaddam, Anvesh; Garg, Mayank; Agrawal, Amit; Joshi, Suhas S

    2015-01-01

    Surface texturing at the micro/nanolevel allows air to be trapped in sufficiently small cavities, thereby reducing the flow resistance over the surface in the laminar regime. The nature of the liquid–gas meniscus plays an important role in defining the boundary condition and it depends on the flow conditions and geometrical properties of textures. In the present work, we employ the unsteady volume of fluid model to investigate the behavior of the liquid–gas meniscus for ridges arranged normal to the flow direction to substantiate the frictional resistance of flow in a microchannel. It is found that the assumption of ‘zero shear stress’ at the liquid–gas interface grossly overpredicts the effective slip length with meniscus curvature and local partial slip length playing the dominant role. Numerical simulations performed in the laminar regime (20  <  Re  <  120) over single layered ridges normal to the flow direction revealed the effect of texture geometry on the reduction in pressure drop. In single layered structures, lotus-like geometries exhibited a greater reduction in drag (more than 30%) when compared to all other texture geometries. It is recognized that the flow experiences expansion and contraction cycles as it flows over the transverse ridges increasing the frictional resistance. Our findings will help to modify the boundary condition at the liquid–gas meniscus for accurate modeling in the laminar regime and to optimize the texture geometry to improve drag reduction. (paper)

  9. Preliminary soil-slip susceptibility maps, southwestern California

    Science.gov (United States)

    Morton, Douglas M.; Alvarez, Rachel M.; Campbell, Russell H.; Digital preparation by Bovard, Kelly R.; Brown, D.T.; Corriea, K.M.; Lesser, J.N.

    2003-01-01

    This group of maps shows relative susceptibility of hill slopes to the initiation sites of rainfall-triggered soil slip-debris flows in southwestern California. As such, the maps offer a partial answer to one part of the three parts necessary to predict the soil-slip/debris-flow process. A complete prediction of the process would include assessments of “where”, “when”, and “how big”. These maps empirically show part of the “where” of prediction (i.e., relative susceptibility to sites of initiation of the soil slips) but do not attempt to show the extent of run out of the resultant debris flows. Some information pertinent to “when” the process might begin is developed. “When” is determined mostly by dynamic factors such as rainfall rate and duration, for which local variations are not amenable to long-term prediction. “When” information is not provided on the maps but is described later in this narrative. The prediction of “how big” is addressed indirectly by restricting the maps to a single type of landslide process—soil slip-debris flows. The susceptibility maps were created through an iterative process from two kinds of information. First, locations of sites of past soil slips were obtained from inventory maps of past events. Aerial photographs, taken during six rainy seasons that produced abundant soil slips, were used as the basis for soil slip-debris flow inventory. Second, digital elevation models (DEM) of the areas that were inventoried were used to analyze the spatial characteristics of soil slip locations. These data were supplemented by observations made on the ground. Certain physical attributes of the locations of the soil-slip debris flows were found to be important and others were not. The most important attribute was the mapped bedrock formation at the site of initiation of the soil slip. However, because the soil slips occur in surficial materials overlying the bedrocks units, the bedrock formation can only serve as

  10. Testing Pixel Translation Digital Elevation Models to Reconstruct Slip Histories: An Example from the Agua Blanca Fault, Baja California, Mexico

    Science.gov (United States)

    Wilson, J.; Wetmore, P. H.; Malservisi, R.; Ferwerda, B. P.; Teran, O.

    2012-12-01

    We use recently collected slip vector and total offset data from the Agua Blanca fault (ABF) to constrain a pixel translation digital elevation model (DEM) to reconstruct the slip history of this fault. This model was constructed using a Perl script that reads a DEM file (Easting, Northing, Elevation) and a configuration file with coordinates that define the boundary of each fault segment. A pixel translation vector is defined as a magnitude of lateral offset in an azimuthal direction. The program translates pixels north of the fault and prints their pre-faulting position to a new DEM file that can be gridded and displayed. This analysis, where multiple DEMs are created with different translation vectors, allows us to identify areas of transtension or transpression while seeing the topographic expression in these areas. The benefit of this technique, in contrast to a simple block model, is that the DEM gives us a valuable graphic which can be used to pose new research questions. We have found that many topographic features correlate across the fault, i.e. valleys and ridges, which likely have implications for the age of the ABF, long term landscape evolution rates, and potentially provide conformation for total slip assessments The ABF of northern Baja California, Mexico is an active, dextral strike slip fault that transfers Pacific-North American plate boundary strain out of the Gulf of California and around the "Big Bend" of the San Andreas Fault. Total displacement on the ABF in the central and eastern parts of the fault is 10 +/- 2 km based on offset Early-Cretaceous features such as terrane boundaries and intrusive bodies (plutons and dike swarms). Where the fault bifurcates to the west, the northern strand (northern Agua Blanca fault or NABF) is constrained to 7 +/- 1 km. We have not yet identified piercing points on the southern strand, the Santo Tomas fault (STF), but displacement is inferred to be ~4 km assuming that the sum of slip on the NABF and STF is

  11. Slip-stacking Dynamics for High-Power Proton Beams at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey Scott [Indiana Univ., Bloomington, IN (United States)

    2015-12-01

    Slip-stacking is a particle accelerator configuration used to store two particle beams with different momenta in the same ring. The two beams are longitudinally focused by two radiofrequency (RF) cavities with a small frequency difference between them. Each beam is synchronized to one RF cavity and perturbed by the other RF cavity. Fermilab uses slip-stacking in the Recycler so as to double the power of the 120 GeV proton beam in the Main Injector. This dissertation investigates the dynamics of slip-stacking beams analytically, numerically and experimentally. In the analytic analysis, I find the general trajectory of stable slip-stacking particles and identify the slip-stacking parametric resonances. In the numerical analysis, I characterize the stable phase-space area and model the particle losses. In particular, I evaluate the impact of upgrading the Fermilab Booster cycle-rate from 15 Hz to 20 Hz as part of the Proton Improvement Plan II (PIP-II). The experimental analysis is used to verify my approach to simulating slip-stacking loss. I design a study for measuring losses from the longitudinal single-particle dynamics of slip-stacking as a function of RF cavity voltage and RF frequency separation. I further propose the installation of a harmonic RF cavity and study the dynamics of this novel slip-stacking configuration. I show the harmonic RF cavity cancels out parametric resonances in slip-stacking, reduces emittance growth during slip-stacking, and dramatically enhances the stable phase-space area. The harmonic cavity is expected to reduce slip-stacking losses to far exceed PIP-II requirements. These results raise the possibility of extending slip-stacking beyond the PIP-II era.

  12. Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

    Science.gov (United States)

    Sehitoglu, H.; Alkan, S.

    2018-03-01

    This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non- Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

  13. Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

    Science.gov (United States)

    Sehitoglu, H.; Alkan, S.

    2018-03-01

    This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non-Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

  14. Seismic gaps and plate tectonics: seismic potential for major boundaries

    Energy Technology Data Exchange (ETDEWEB)

    McCann, W R; Nishenko, S P; Sykes, L R; Krause, J

    1979-01-01

    The theory of plate tectonics provides a basic framework for evaluating the potential for future great earthquakes to occur along major plate boundaries. Along most of the transform and convergent plate boundaries considered in this paper, the majority of seismic slip occurs during large earthquakes, i.e., those of magnitude 7 or greater. The concepts that rupture zones, as delineated by aftershocks, tend to abut rather than overlap, and large events occur in regions with histories of both long-and short-term seismic quiescence are used in this paper to delineate major seismic gaps. The term seismic gap is taken to refer to any region along an active plate boundary that has not experienced a large thrust or strike-slip earthquake for more than 30 years. A region of high seismic potential is a seismic gap that, for historic or tectonic reasons, is considered likely to produce a large shock during the next few decades. The seismic gap technique provides estimates of the location, size of future events and origin time to within a few tens of years at best. The accompanying map summarizes six categories of seismic potential for major plate boundaries in and around the margins of the Pacific Ocean and the Caribbean, South Sandwich and Sunda (Indonesia) regions for the next few decades. These six categories are meant to be interpreted as forecasts of the location and size of future large shocks and should not be considered to be predictions in which a precise estimate of the time of occurrence is specified. The categories of potential assigned here provide a rationale for assigning priorities for instrumentation, for future studies aimed at predicting large earthquakes and for making estimates of tsunami potential.

  15. Generalization of Penrose's helicity theorem for space-times with nonzero dual mass

    International Nuclear Information System (INIS)

    Magnon, A.

    1986-01-01

    An algebraic definition of the helicity operator H is proposed for vacuum stationary and asymptotically flat wormholes (i.e., space-times where the manifold of orbits of the stationary Killing field has S 2 x R topology). The definition avoids the use of momentum space or Fourier decomposition of the gravitational degrees of freedom into positive and negative frequency parts, and is essentially geared to emphasize the role of nontrivial topology. It is obtained via the introduction of a total spin vector S/sup α/ derived from the dual Bondi four-momentum *P/sup α/, both vectors originating in the presence of nontrivial homotopy groups. (Space-times with nonzero dual mass can be characterized by a conformal null boundary I having the topology of an S 1 fiber bundle over S 2 with possible identifications along the fiber: lens space: or equivalently vanishing Bondi--News.) It is shown that S/sup α/ is a constant multiple of P/sup α/, the total Bondi four-momentum, and if in addition the space-time admits a point at spacelike infinity, there is strong support for the past limit of S/sup α/ to be a null vector. This can be viewed as a generalization of Penrose's result on the Pauli--Lubanski vector for classical zero rest-mass particles. The helicity operator at null infinity is rooted in the topology and turns out to be essentially the Hodge duality operator(*). The notion of duality appears as a global concept. Under such conditions, self- and anti-self-dual modes of the Weyl curvature could be viewed as states originating in the nontrivial topology

  16. Foreshocks during the nucleation of stick-slip instability

    Science.gov (United States)

    McLaskey, Gregory C.; Kilgore, Brian D.

    2013-01-01

    We report on laboratory experiments which investigate interactions between aseismic slip, stress changes, and seismicity on a critically stressed fault during the nucleation of stick-slip instability. We monitor quasi-static and dynamic changes in local shear stress and fault slip with arrays of gages deployed along a simulated strike-slip fault (2 m long and 0.4 m deep) in a saw cut sample of Sierra White granite. With 14 piezoelectric sensors, we simultaneously monitor seismic signals produced during the nucleation phase and subsequent dynamic rupture. We observe localized aseismic fault slip in an approximately meter-sized zone in the center of the fault, while the ends of the fault remain locked. Clusters of high-frequency foreshocks (Mw ~ −6.5 to −5.0) can occur in this slowly slipping zone 5–50 ms prior to the initiation of dynamic rupture; their occurrence appears to be dependent on the rate at which local shear stress is applied to the fault. The meter-sized nucleation zone is generally consistent with theoretical estimates, but source radii of the foreshocks (2 to 70 mm) are 1 to 2 orders of magnitude smaller than the theoretical minimum length scale over which earthquake nucleation can occur. We propose that frictional stability and the transition between seismic and aseismic slip are modulated by local stressing rate and that fault sections, which would typically slip aseismically, may radiate seismic waves if they are rapidly stressed. Fault behavior of this type may provide physical insight into the mechanics of foreshocks, tremor, repeating earthquake sequences, and a minimum earthquake source dimension.

  17. Spatial and Temporal Variations in Slip Partitioning During Oblique Convergence Experiments

    Science.gov (United States)

    Beyer, J. L.; Cooke, M. L.; Toeneboehn, K.

    2017-12-01

    Physical experiments of oblique convergence in wet kaolin demonstrate the development of slip partitioning, where two faults accommodate strain via different slip vectors. In these experiments, the second fault forms after the development of the first fault. As one strain component is relieved by one fault, the local stress field then favors the development of a second fault with different slip sense. A suite of physical experiments reveals three styles of slip partitioning development controlled by the convergence angle and presence of a pre-existing fault. In experiments with low convergence angles, strike-slip faults grow prior to reverse faults (Type 1) regardless of whether the fault is precut or not. In experiments with moderate convergence angles, slip partitioning is dominantly controlled by the presence of a pre-existing fault. In all experiments, the primarily reverse fault forms first. Slip partitioning then develops with the initiation of strike-slip along the precut fault (Type 2) or growth of a secondary reverse fault where the first fault is steepest. Subsequently, the slip on the first fault transitions to primarily strike-slip (Type 3). Slip rates and rakes along the slip partitioned faults for both precut and uncut experiments vary temporally, suggesting that faults in these slip-partitioned systems are constantly adapting to the conditions produced by slip along nearby faults in the system. While physical experiments show the evolution of slip partitioning, numerical simulations of the experiments provide information about both the stress and strain fields, which can be used to compute the full work budget, providing insight into the mechanisms that drive slip partitioning. Preliminary simulations of precut experiments show that strain energy density (internal work) can be used to predict fault growth, highlighting where fault growth can reduce off-fault deformation in the physical experiments. In numerical simulations of uncut experiments with a

  18. A flexible slip sensor using triboelectric nanogenerator approach

    Science.gov (United States)

    Wang, Xudong; Liang, Jiaming; Xiao, Yuxiang; Wu, Yichuan; Deng, Yang; Wang, Xiaohao; Zhang, Min

    2018-03-01

    With the rapid development of robotic technology, tactile sensors for robots have gained great attention from academic and industry researchers. Tactile sensors for slip detection are essential for human-like steady control in dexterous robot hand. In this paper, we propose and demonstrate a flexible slip sensor based on triboelectric nanogenerator with a seesaw structure. The sensor is composed of two porous PDMS layers separated by an inverted trapezoid structure with a height of 500 μm. In order to customize the sensitivity of the sensor, porous PDMS was fabricated by mixing PDMS with deionized water thoroughly and then removing water with heat. Laser-induced porous graphene and aluminium are served as the pair of contact materials. To detect slip from different directions, two sets of the electrode pair were used. Experimental results show a distinct difference between static state and the moment when a slip happens was detected. In addition, the output voltage of the sensors increased as the increase of slip velocity from 0.25 mm/s to 2.5 mm/s. The flexible slip sensor proposed here shows the potential applications in smart robotics and prosthesis.

  19. Multiparameter Monitoring and Prevention of Fault-Slip Rock Burst

    OpenAIRE

    Hu, Shan-chao; Tan, Yun-liang; Ning, Jian-guo; Guo, Wei-Yao; Liu, Xue-sheng

    2017-01-01

    Fault-slip rock burst is one type of the tectonic rock burst during mining. A detailed understanding of the precursory information of fault-slip rock burst and implementation of monitoring and early warning systems, as well as pressure relief measures, are essential to safety production in deep mines. This paper first establishes a mechanical model of stick-slip instability in fault-slip rock bursts and then reveals the failure characteristics of the instability. Then, change rule of mining-i...

  20. Discrete-Time Nonzero-Sum Games for Multiplayer Using Policy-Iteration-Based Adaptive Dynamic Programming Algorithms.

    Science.gov (United States)

    Zhang, Huaguang; Jiang, He; Luo, Chaomin; Xiao, Geyang

    2017-10-01

    In this paper, we investigate the nonzero-sum games for a class of discrete-time (DT) nonlinear systems by using a novel policy iteration (PI) adaptive dynamic programming (ADP) method. The main idea of our proposed PI scheme is to utilize the iterative ADP algorithm to obtain the iterative control policies, which not only ensure the system to achieve stability but also minimize the performance index function for each player. This paper integrates game theory, optimal control theory, and reinforcement learning technique to formulate and handle the DT nonzero-sum games for multiplayer. First, we design three actor-critic algorithms, an offline one and two online ones, for the PI scheme. Subsequently, neural networks are employed to implement these algorithms and the corresponding stability analysis is also provided via the Lyapunov theory. Finally, a numerical simulation example is presented to demonstrate the effectiveness of our proposed approach.

  1. Differential equations governing slip-induced pore-pressure fluctuations in a water-saturated granular medium

    Science.gov (United States)

    Iverson, R.M.

    1993-01-01

    Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameter B, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data. ?? 1993 International Association for Mathematical Geology.

  2. Asymmetrical slip propensity: required coefficient of friction.

    Science.gov (United States)

    Seo, Jung-suk; Kim, Sukwon

    2013-07-31

    Most studies in performing slips and falls research reported their results after the ipsilateral leg of subjects (either right foot or left foot) was guided to contact the contaminated floor surface although many studies indicated concerns for asymmetries of legs in kinematic or kinetic variables. Thus, the present study evaluated if dominant leg's slip tendency would be different from non-dominant leg's slip tendency by comparing the Required Coefficient of Friction (RCOF) of the two lower limbs. Forty seven health adults participated in the present study. RCOF was measured when left or right foot of subjects contacted the force platforms respectively. Paired t-test was performed to test if RCOF and heel velocity (HCV) of dominant legs was different from that of non-dominant legs. It was suggested that the asymmetry in RCOFs and HCV between the two lower limbs existed. The RCOFs of non-dominant legs were higher than that of dominant legs. The results indicated that asymmetry in slip propensity, RCOF, was existed in lower extremity. The results from the study suggested that it would be benefit to include a variable, such as asymmetry, in slips and falls research.

  3. The Slip Behavior and Source Parameters for Spontaneous Slip Events on Rough Faults Subjected to Slow Tectonic Loading

    Science.gov (United States)

    Tal, Yuval; Hager, Bradford H.

    2018-02-01

    We study the response to slow tectonic loading of rough faults governed by velocity weakening rate and state friction, using a 2-D plane strain model. Our numerical approach accounts for all stages in the seismic cycle, and in each simulation we model a sequence of two earthquakes or more. We focus on the global behavior of the faults and find that as the roughness amplitude, br, increases and the minimum wavelength of roughness decreases, there is a transition from seismic slip to aseismic slip, in which the load on the fault is released by more slip events but with lower slip rate, lower seismic moment per unit length, M0,1d, and lower average static stress drop on the fault, Δτt. Even larger decreases with roughness are observed when these source parameters are estimated only for the dynamic stage of the rupture. For br ≤ 0.002, the source parameters M0,1d and Δτt decrease mutually and the relationship between Δτt and the average fault strain is similar to that of a smooth fault. For faults with larger values of br that are completely ruptured during the slip events, the average fault strain generally decreases more rapidly with roughness than Δτt.

  4. Non-slipping domains of a pulled spool

    International Nuclear Information System (INIS)

    Wagner, Clemens; Vaterlaus, Andreas

    2014-01-01

    We have investigated the pulled spool by considering pulling angles up to 360 ∘ . Our focus was on downward pulling forces with pulling angles in the range of 180 ∘ to 360 ∘ . In this range we have found a domain of pulling angles where the spool never starts to slip independent of the strength of the pulling force. The size of the domain depends on the static friction coefficient and on the moment of inertia of the spool. The non-slipping domain is mainly formed around the critical angle where the static friction force becomes zero. For low static friction the non-slipping domain decays into two different domains. We have determined the limiting angles of the non-slipping domains and explored the transitions from a single domain to two separated domains in parameter space. (paper)

  5. Golay Complementary Waveforms in Reed–Müller Sequences for Radar Detection of Nonzero Doppler Targets

    Science.gov (United States)

    Wang, Xuezhi; Huang, Xiaotao; Suvorova, Sofia; Moran, Bill

    2018-01-01

    Golay complementary waveforms can, in theory, yield radar returns of high range resolution with essentially zero sidelobes. In practice, when deployed conventionally, while high signal-to-noise ratios can be achieved for static target detection, significant range sidelobes are generated by target returns of nonzero Doppler causing unreliable detection. We consider signal processing techniques using Golay complementary waveforms to improve radar detection performance in scenarios involving multiple nonzero Doppler targets. A signal processing procedure based on an existing, so called, Binomial Design algorithm that alters the transmission order of Golay complementary waveforms and weights the returns is proposed in an attempt to achieve an enhanced illumination performance. The procedure applies one of three proposed waveform transmission ordering algorithms, followed by a pointwise nonlinear processor combining the outputs of the Binomial Design algorithm and one of the ordering algorithms. The computational complexity of the Binomial Design algorithm and the three ordering algorithms are compared, and a statistical analysis of the performance of the pointwise nonlinear processing is given. Estimation of the areas in the Delay–Doppler map occupied by significant range sidelobes for given targets are also discussed. Numerical simulations for the comparison of the performances of the Binomial Design algorithm and the three ordering algorithms are presented for both fixed and randomized target locations. The simulation results demonstrate that the proposed signal processing procedure has a better detection performance in terms of lower sidelobes and higher Doppler resolution in the presence of multiple nonzero Doppler targets compared to existing methods. PMID:29324708

  6. Observing and modeling the spectrum of a slow slip event: Constraints on the scaling of slow slip and tremor

    Science.gov (United States)

    Hawthorne, J. C.; Bartlow, N. M.; Ghosh, A.

    2017-12-01

    We estimate the normalized moment rate spectrum of a slow slip event in Cascadia and then attempt to reproduce it. Our goal is to further assess whether a single physical mechanism could govern slow slip and tremor events, with durations that span 6 orders of magnitude, so we construct the spectrum by parameterizing a large slow slip event as the sum of a number of subevents with various durations. The spectrum estimate uses data from three sources: the GPS-based slip inversion of Bartlow et al (2011), PBO borehole strain measurements, and beamforming-based tremor moment estimates of Ghosh et al (2009). We find that at periods shorter than 1 day, the moment rate power spectrum decays as frequencyn, where n is between 0.7 and 1.4 when measured from strain and between 1.2 and 1.4 when inferred from tremor. The spectrum appears roughly flat at periods of 1 to 10 days, as both the 1-day-period strain and tremor data and the 6-day-period slip inversion data imply a moment rate power of 0.02 times the the total moment squared. We demonstrate one way to reproduce this spectrum: by constructing the large-scale slow slip event as the sum of a series of subevents. The shortest of these subevents could be interpreted as VLFEs or even LFEs, while longer subevents might represent the aseismic slip that drives rapid tremor reverals, streaks, or rapid tremor migrations. We pick the subevent magnitudes from a Gutenberg-Richter distribution and place the events randomly throughout a 30-day interval. Then we assign each subevent a duration that scales with its moment to a specified power. Finally, we create a moment rate function for each subevent and sum all of the moment rates. We compute the summed slow slip moment rate spectra with two approaches: a time-domain numerical computation and a frequency-domain analytical summation. Several sets of subevent parameters can allow the constructed slow slip event to match the observed spectrum. One allowable set of parameters is of

  7. Transition from strike-slip faulting to oblique subduction: active tectonics at the Puysegur Margin, South New Zealand

    Science.gov (United States)

    Lamarche, Geoffroy; Lebrun, Jean-Frédéric

    2000-01-01

    South of New Zealand the Pacific-Australia (PAC-AUS) plate boundary runs along the intracontinental Alpine Fault, the Puysegur subduction front and the intraoceanic Puysegur Fault. The Puysegur Fault is located along Puysegur Ridge, which terminates at ca. 47°S against the continental Puysegur Bank in a complex zone of deformation called the Snares Zone. At Puysegur Trench, the Australian Plate subducts beneath Puysegur Bank and the Fiordland Massif. East of Fiordland and Puysegur Bank, the Moonlight Fault System (MFS) represents the Eocene strike-slip plate boundary. Interpretation of seafloor morphology and seismic reflection profiles acquired over Puysegur Bank and the Snares Zone allows study of the transition from intraoceanic strike-slip faulting along the Puysegur Ridge to oblique subduction at the Puysegur Trench and to better understand the genetic link between the Puysegur Fault and the MFS. Seafloor morphology is interpreted from a bathymetric dataset compiled from swath bathymetry data acquired during the 1993 Geodynz survey, and single beam echo soundings acquired by the NZ Royal Navy. The Snares Zone is the key transition zone from strike-slip faulting to subduction. It divides into three sectors, namely East, NW and SW sectors. A conspicuous 3600 m-deep trough (the Snares Trough) separates the NW and East sectors. The East sector is characterised by the NE termination of Puysegur Ridge into right-stepping en echelon ridges that accommodate a change of strike from the Puysegur Fault to the MFS. Between 48°S and 47°S, in the NW sector and the Snares Trough, a series of transpressional faults splay northwards from the Puysegur Fault. Between 49°50'S and 48°S, thrusts develop progressively at Puysegur Trench into a decollement. North of 48°S the Snares Trough develops between two splays of the Puysegur Fault, indicating superficial extension associated with the subsidence of Puysegur Ridge. Seismic reflection profiles and bathymetric maps show a

  8. Learning and Prediction of Slip from Visual Information

    Science.gov (United States)

    Angelova, Anelia; Matthies, Larry; Helmick, Daniel; Perona, Pietro

    2007-01-01

    This paper presents an approach for slip prediction from a distance for wheeled ground robots using visual information as input. Large amounts of slippage which can occur on certain surfaces, such as sandy slopes, will negatively affect rover mobility. Therefore, obtaining information about slip before entering such terrain can be very useful for better planning and avoiding these areas. To address this problem, terrain appearance and geometry information about map cells are correlated to the slip measured by the rover while traversing each cell. This relationship is learned from previous experience, so slip can be predicted remotely from visual information only. The proposed method consists of terrain type recognition and nonlinear regression modeling. The method has been implemented and tested offline on several off-road terrains including: soil, sand, gravel, and woodchips. The final slip prediction error is about 20%. The system is intended for improved navigation on steep slopes and rough terrain for Mars rovers.

  9. Seismic and Aseismic Slip on the Cascadia Megathrust

    Science.gov (United States)

    Michel, S. G. R. M.; Gualandi, A.; Avouac, J. P.

    2017-12-01

    Our understanding of the dynamics governing aseismic and seismic slip hinges on our ability to image the time evolution of fault slip during and in between earthquakes and transients. Such kinematic descriptions are also pivotal to assess seismic hazard as, on the long term, elastic strain accumulating around a fault should be balanced by elastic strain released by seismic slip and aseismic transients. In this presentation, we will discuss how such kinematic descriptions can be obtained from the analysis and modelling of geodetic time series. We will use inversion methods based on Independent Component Analysis (ICA) decomposition of the time series to extract and model the aseismic slip (afterslip and slow slip events). We will show that this approach is very effective to identify, and filter out, non-tectonic sources of geodetic strain such as the strain due to surface loads, which can be estimated using gravimetric measurements from GRACE, and thermal strain. We will discuss in particular the application to the Cascadia subduction zone.

  10. Corrigan-Ramond Extension of QCD at Nonzero Baryon Density

    DEFF Research Database (Denmark)

    T. Frandsen, M.; Kouvaris, Christoforos; Sannino, F.

    2006-01-01

    We investigate the Corrigan-Ramond extension of one massless flavor Quantum Chromo Dynamics at nonzero quark chemical potential. Since the extension requires the fermions to transform in the two index antisymmetric representation of the gauge group, one finds that the number of possible channels ......-Grigoriev-Rubakov chiral waves. We discover, differently from the 't Hooft limit, the possibility of a colored chiral wave breaking the color symmetry as well as translation invariance....... is richer than in the 't Hooft limit. We first discuss the diquark channels and show that for a number of colors larger than three a new diquark channel appears. We then study the infinite number of color limit and show that the Fermi surface is unstable to the formation of the Deryagin...

  11. Transformation of fault slip modes in laboratory experiments

    Science.gov (United States)

    Martynov, Vasilii; Alexey, Ostapchuk; Markov, Vadim

    2017-04-01

    Slip mode of crust fault can vary because of many reasons. It's well known that fault structure, material of fault gouge, pore fluid et al. in many ways determines slip modes from creep and slow slip events to mega-earthquakes [1-3]. Therefore, the possibility of fault slip transformation due to external action is urgent question. There is popular and developing approach of fluid injection into central part of fault. The phenomenon of earthquakes induced due to pumping of water was investigated on small and large scales [4, 5]. In this work the laboratory experiments were conducted to study the evolution of the experimental fault slip when changing the properties of the interstitial fluid. The scheme of experiments is the classical slider-model set-up, in which the block under the shear force slips along the interface. In our experiments the plexiglas block 8x8x3 cm3 in size was put on the plexiglas base. The contact of the blocks was filled with a thin layer (about 3 mm thick) of a granular material. The normal load varied from 31 to 156 kPa. The shear load was applied through a spring with stiffness 60 kN/m, and the rate of spring deformation was 20 or 5 mcm/s. Two parameters were recorded during experiments: the shear force acting on the upper block (with an accuracy of 1 N) and its displacement relatively the base (with an accuracy of 0.1 μm). The gouge was composed of quartz sand (97.5%) and clay (2.5%). As a moisturizer were used different fluids with viscosity varying from 1 to 103 mPa x s. Different slip modes were simulated during slider-experiments. In our experiments slip mode is the act of instability manifested in an increase of slip velocity and a drop of shear stress acting on a movable block. The amplitude of a shear stress drop and the peak velocity of the upper block were chosen as the characteristics of the slip mode. In the laboratory experiments, slip events of one type can be achieved either as regularly recurring (regular mode) or as random

  12. Development of microsized slip sensors using dielectric elastomer for incipient slippage

    Science.gov (United States)

    Hwang, Do-Yeon; Kim, Baek-chul; Cho, Han-Jeong; Li, Zhengyuan; Lee, Youngkwan; Nam, Jae-Do; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, J. C.

    2014-04-01

    A humanoid robot hand has received significant attention in various fields of study. In terms of dexterous robot hand, slip detecting tactile sensor is essential to grasping objects safely. Moreover, slip sensor is useful in robotics and prosthetics to improve precise control during manipulation tasks. In this paper, sensor based-human biomimetic structure is fabricated. We reported a resistance tactile sensor that enables to detect a slip on the surface of sensor structure. The resistance slip sensor that the novel developed uses acrylonitrile-butadiene rubber (NBR) as a dielectric substrate and carbon particle as an electrode material. The presented sensor device in this paper has fingerprint-like structures that are similar with the role of the human's finger print. It is possible to measure the slip as the structure of sensor makes a deformation and it changes the resistance through forming a new conductive route. To verify effectiveness of the proposed slip detection, experiment using prototype of resistance slip sensor is conducted with an algorithm to detect slip and slip was successfully detected. In this paper, we will discuss the slip detection properties so four sensor and detection principle.

  13. Factors associated with worker slipping in limited-service restaurants.

    Science.gov (United States)

    Courtney, Theodore K; Verma, Santosh K; Huang, Yueng-Hsiang; Chang, Wen-Ruey; Li, Kai Way; Filiaggi, Alfred J

    2010-02-01

    Slips, trips and falls (STF) are responsible for a substantial injury burden in the global workplace. Restaurant environments are challenged by STF. This study assessed individual and work environment factors related to slipping in US limited-service restaurant workers. Workers in 10 limited-service restaurants in Massachusetts were recruited to participate. Workers' occupational slip and/or fall history within the past 4 weeks was collected by multilingual written questionnaires. Age, gender, job tenure, work hours per week and work shift were also collected. Shoe type, condition and gross shoe contamination were visually assessed. Floor friction was measured and each restaurant's overall mean coefficient of friction (COF) was calculated. The logistic generalised estimating equations model was used to compute adjusted odds ratios (OR). Of 125 workers, 42 reported one or more slips in the past 4 weeks with two reporting a resultant fall. Results from multivariable regression showed that higher restaurant mean COF was significantly associated with a decreased risk of self-reported slipping (OR 0.59, 95% CI 0.42 to 0.82). From the highest to the lowest COF restaurant, the odds of a positive slip history increased by a factor of more than seven. Younger age, male gender, lower weekly work hours and the presence of gross contamination on worker's shoe sole were also associated with increased odds of slip history. Published findings of an association between friction and slipping and falling in actual work environments are rare. The findings suggest that effective intervention strategies to reduce the risk of slips and falls in restaurant workers could include increasing COF and improving housekeeping practices.

  14. THE ILICA BRANCH OF THE SOUTHEASTERN ESKIŞEHIR FAULT ZONE: AN ACTIVE RIGHT LATERAL STRIKE-SLIP STRUCTURE IN CENTRAL ANATOLIA, TURKEY

    Directory of Open Access Journals (Sweden)

    Korhan ESAT

    2016-12-01

    Full Text Available The Eskişehir Fault Zone is one of the prominent neotectonic structures of Turkey. It separates the west  Anatolian extensional province and the strike-slip induced northwest central Anatolian contractional area in the Anatolian Block. Its southeastern part is generally divided into three branches, namely the Ilıca, Yeniceoba, and Cihanbeyli from north to south, respectively. The right lateral strike-slip Ilıca branch (IB is an approximately 100-km-long fault and it is composed of several segments in a northwest-southeast direction. The slickensides, subsidiary fractures, cataclastic zone, fracture-controlled drainage pattern, right lateral stream deflections, deformation in the Quaternary unit observing in the seismic reflection sections, and seismicity of the region all indicate that the IB is an active right lateral strike-slip fault. The IB has also a regional tectonic importance as a boundary fault between the contractional and the extensional regions in central Anatolia considering that it is the southern limit of the contraction-related structures in the west-southwest of Ankara.

  15. Boundary layer for non-newtonian fluids on curved surfaces

    International Nuclear Information System (INIS)

    Stenger, N.

    1981-04-01

    By using the basic equation of fluid motion (conservation of mass and momentum) the boundary layer parameters for a Non-Newtonian, incompressible and laminar fluid flow, has been evaluated. As a test, the flat plate boundary layer is first analized and afterwards, a case with pressure gradient, allowing separation, is studied. In the case of curved surfaces, the problem is first developed in general and afterwards particularized to a circular cylinder. Finally suction and slip in the flow interface are examined. The power law model is used to represent the stress strain relationship in Non-Newtonian flow. By varying the fluid exponent one can then, have an idea of how the Non-Newtonian behavior of the flow influences the parameters of the boundary layer. Two equations, in an appropriate coordinate system have been obtained after an order of magnitude analysis of the terms in the equations of motion is performed. (Author) [pt

  16. Performance analysis of a microcontroller based slip power recovery ...

    African Journals Online (AJOL)

    Slip power recovery wound rotor induction motor drives are used in high power, limited speed range applications where control of slip power provides the variable speed drive system. In this paper, the steady state performance analysis of conventional slip power recovery scheme using static line commutated inverter in the ...

  17. Vaporization of fault water during seismic slip

    Science.gov (United States)

    Chen, Jianye; Niemeijer, André R.; Fokker, Peter A.

    2017-06-01

    Laboratory and numerical studies, as well as field observations, indicate that phase transitions of pore water might be an important process in large earthquakes. We present a model of the thermo-hydro-chemo-mechanical processes, including a two-phase mixture model to incorporate the phase transitions of pore water, occurring during fast slip (i.e., a natural earthquake) in order to investigate the effects of vaporization on the coseismic slip. Using parameters from typical natural faults, our modeling shows that vaporization can indeed occur at the shallow depths of an earthquake, irrespective of the wide variability of the parameters involved (sliding velocity, friction coefficient, gouge permeability and porosity, and shear-induced dilatancy). Due to the fast kinetics, water vaporization can cause a rapid slip weakening even when the hydrological conditions of the fault zone are not favorable for thermal pressurization, e.g., when permeability is high. At the same time, the latent heat associated with the phase transition causes the temperature rise in the slip zone to be buffered. Our parametric analyses reveal that the amount of frictional work is the principal factor controlling the onset and activity of vaporization and that it can easily be achieved in earthquakes. Our study shows that coseismic pore fluid vaporization might have played important roles at shallow depths of large earthquakes by enhancing slip weakening and buffering the temperature rise. The combined effects may provide an alternative explanation for the fact that low-temperature anomalies were measured in the slip zones at shallow depths of large earthquakes.

  18. Is lithostatic loading important for the slip behavior and evolution of normal faults in the Earth's crust?

    International Nuclear Information System (INIS)

    Kattenhorn, Simon A.; Pollard, David D.

    1999-01-01

    Normal faults growing in the Earth's crust are subject to the effects of an increasing frictional resistance to slip caused by the increasing lithostatic load with depth. We use three-dimensional (3-D) boundary element method numerical models to evaluate these effects on planar normal faults with variable elliptical tip line shapes in an elastic solid. As a result of increasing friction with depth, normal fault slip maxima for a single slip event are skewed away from the fault center toward the upper fault tip. There is a correspondingly greater propagation tendency at the upper tip. However, the tall faults that would result from such a propagation tendency are generally not observed in nature. We show how mechanical interaction between laterally stepping fault segments significantly competes with the lithostatic loading effect in the evolution of a normal fault system, promoting lateral propagation and possibly segment linkage. Resultant composite faults are wider than they are tall, resembling both 3-D seismic data interpretations and previously documented characteristics of normal fault systems. However, this effect may be greatly complemented by the influence of a heterogeneous stratigraphy, which can control fault nucleation depth and inhibit fault propagation across the mechanical layering. Our models demonstrate that although lithostatic loading may be an important control on fault evolution in relatively homogeneous rocks, the contribution of lithologic influences and mechanical interaction between closely spaced, laterally stepping faults may predominate in determining the slip behavior and propagation tendency of normal faults in the Earth's crust. (c) 1999 American Geophysical Union

  19. Half-cycle slip activity of persistent slip bands at different stages of fatigue life of polycrystalline nickel

    Czech Academy of Sciences Publication Activity Database

    Weidner, A.; Man, Jiří; Tirschler, W.; Klapetek, P.; Blochwitz, C.; Polák, Jaroslav; Skrotzki, W.

    2008-01-01

    Roč. 492, č. 1-2 (2008), s. 118-127 ISSN 0921-5093 R&D Projects: GA ČR GA106/06/1096 Institutional research plan: CEZ:AV0Z20410507 Keywords : persistent slip band * slip activity * half-cycle deformation * atomic force microscopy * scanning electron microscopy * nickel Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.806, year: 2008

  20. Constraining the roughness degree of slip heterogeneity

    KAUST Repository

    Causse, Mathieu

    2010-05-07

    This article investigates different approaches for assessing the degree of roughness of the slip distribution of future earthquakes. First, we analyze a database of slip images extracted from a suite of 152 finite-source rupture models from 80 events (Mw = 4.1–8.9). This results in an empirical model defining the distribution of the slip spectrum corner wave numbers (kc) as a function of moment magnitude. To reduce the “epistemic” uncertainty, we select a single slip model per event and screen out poorly resolved models. The number of remaining models (30) is thus rather small. In addition, the robustness of the empirical model rests on a reliable estimation of kc by kinematic inversion methods. We address this issue by performing tests on synthetic data with a frequency domain inversion method. These tests reveal that due to smoothing constraints used to stabilize the inversion process, kc tends to be underestimated. We then develop an alternative approach: (1) we establish a proportionality relationship between kc and the peak ground acceleration (PGA), using a k−2 kinematic source model, and (2) we analyze the PGA distribution, which is believed to be better constrained than slip images. These two methods reveal that kc follows a lognormal distribution, with similar standard deviations for both methods.

  1. Stratigraphy and sedimentology of the K/T boundary deposit in Haiti

    Science.gov (United States)

    Carey, S.; Sigurdsson, H.; Dhondt, S.; Espindola, J. M.

    1993-01-01

    The K/T boundary sequence is exposed in uplifted carbonate sediments of the southwest peninsula of Haiti. It is found at 15 localities within the Beloc formation, a sequence of limestone and marls interpreted as a monoclinal nappe structure thrust to the north. This tectonic deformation has affected the K/T boundary deposit to varying degrees. In some cases the less competent K/T deposit has acted as a slip plane leading to extensive shearing of the boundary layer, as well as duplication of the section. The presence of glassy tektites, shocked quartz, and an Ir anomaly directly link the deposit to a bolide impact. Stratigraphic and sedimentological features of the tripartite sequence indicate that it was formed by deposition from ballistic fallout of coarse tektites, emplacement of particle gravity flows and fine grained fallout of widely dispersed impact ejecta.

  2. Tremor-genic slow slip regions may be deeper and warmer and may slip slower than non-tremor-genic regions

    Science.gov (United States)

    Montgomery-Brown, Emily; Syracuse, Ellen M.

    2015-01-01

    Slow slip events (SSEs) are observed worldwide and often coincide with tectonic tremor. Notable examples of SSEs lacking observed tectonic tremor, however, occur beneath Kīlauea Volcano, Hawaii, the Boso Peninsula, Japan, near San Juan Bautista on the San Andreas Fault, California, and recently in Central Ecuador. These SSEs are similar to other worldwide SSEs in many ways (e.g., size or duration), but lack the concurrent tectonic tremor observed elsewhere; instead, they trigger swarms of regular earthquakes. We investigate the physical conditions that may distinguish these non-tremor-genic SSEs from those associated with tectonic tremor, including slip velocity, pressure, temperature, fluids, and fault asperities, although we cannot eliminate the possibility that tectonic tremor may be obscured in highly attenuating regions. Slip velocities of SSEs at Kīlauea Volcano (∼10−6 m/s) and Boso Peninsula (∼10−7 m/s) are among the fastest SSEs worldwide. Kīlauea Volcano, the Boso Peninsula, and Central Ecuador are also among the shallowest SSEs worldwide, and thus have lower confining pressures and cooler temperatures in their respective slow slip zones. Fluids also likely contribute to tremor generation, and no corresponding zone of high vp/vs has been noted at Kīlauea or Boso. We suggest that the relatively faster slip velocities at Kīlauea Volcano and the Boso Peninsula result from specific physical conditions that may also be responsible for triggering swarms of regular earthquakes adjacent to the slow slip, while different conditions produce slower SSE velocities elsewhere and trigger tectonic tremor.

  3. Great earthquakes and slow slip events along the Sagami trough and outline of the Kanto Asperity Project

    Science.gov (United States)

    Kobayashi, R.; Yamamoto, Y.; Sato, T.; Shishikura, M.; Ito, H.; Shinohara, M.; Kawamura, K.; Shibazaki, B.

    2010-12-01

    -100%. Proposals of the Kanto Asperity Project (KAP) have been submitted to the Integrated Ocean Drilling Program (IODP) to investigate the three patches. The scientific objectives are Objective 1: To understand why the three different types of events occur side by side at almost same depth (in same P-T conditions), and Objective 2: To establish realistic earthquake-generation models using data on each step of the process of natural earthquakes. The KAP consists of three research programs for these objectives. In Program A (not submitted yet), we will propose shallow drilling, coring, and logging at several sites to get input materials on the Philippine sea plate and to measure stress in wide area. In Program B, we propose long-term monitoring with wide area network to observe 2-3 cycles of slow slip events and to verify a model of earthquake generation cycle through model of slow slip event cycle. In Program C, we propose coring and logging plate boundaries in asperity to measure physical properties (particularly frictional parameters) and pore pressures to establish a realistic earthquake cycle model.

  4. Space geodetic observations of repeating slow slip events beneath the Bonin Islands

    Science.gov (United States)

    Arisa, Deasy; Heki, Kosuke

    2017-09-01

    The Pacific Plate subducts beneath the Philippine Sea Plate along the Izu-Bonin Trench. We investigated crustal movements at the Bonin Islands, using Global Navigation Satellite System and geodetic Very Long Baseline Interferometry data to reveal how the two plates converge in this subduction zone. These islands are located ∼100 km from the trench, just at the middle between the volcanic arc and the trench, making these islands suitable for detecting signatures of episodic deformation such as slow slip events (SSEs). During 2007-2016, we found five SSEs repeating quasi-periodically with similar displacement patterns. In estimating their fault parameters, we assumed that the fault lies on the prescribed plate boundary, and optimized the size, shape and position of the fault and dislocation vectors. Average fault slip was ∼5 cm, and the average moment magnitude was ∼6.9. We also found one SSE occurred in 2008 updip of the repeating SSE in response to an M6 class interplate earthquake. In spite of the frequent occurrence of SSEs, there is no evidence for long-term strain accumulation in the Bonin Islands that may lead to future megathrust earthquakes. Plate convergence in Mariana-type subduction zones may occur, to a large extent, episodically as repeating SSEs.

  5. Vortex statistics for turbulence in a container with rigid boundaries

    DEFF Research Database (Denmark)

    Clercx, H.J.H.; Nielsen, A.H.

    2000-01-01

    The evolution of vortex statistics for decaying two-dimensional turbulence in a square container with rigid no-slip walls is compared with a few available experimental results and with the scaling theory of two-dimensional turbulent decay as proposed by Carnevale et al. Power-law exponents......, computed from an ensemble average of several numerical runs, coincide with some experimentally obtained values, but not with data obtained from numerical simulations of decaying two-dimensional turbulence with periodic boundary conditions....

  6. Particle motion in atmospheric boundary layers of Mars and Earth

    Science.gov (United States)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

    1975-01-01

    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  7. Dynamic growth of slip surfaces in catastrophic landslides.

    Science.gov (United States)

    Germanovich, Leonid N; Kim, Sihyun; Puzrin, Alexander M

    2016-01-01

    This work considers a landslide caused by the shear band that emerges along the potential slip (rupture) surface. The material above the band slides downwards, causing the band to grow along the slope. This growth may first be stable (progressive), but eventually becomes dynamic (catastrophic). The landslide body acquires a finite velocity before it separates from the substrata. The corresponding initial-boundary value problem for a dynamic shear band is formulated within the framework of Palmer & Rice's ( Proc. R. Soc. Lond. A 332 , 527-548. (doi:10.1098/rspa.1973.0040)) approach, which is generalized to the dynamic case. We obtain the exact, closed-form solution for the band velocity and slip rate. This solution assesses when the slope fails owing to a limiting condition near the propagating tip of the shear band. Our results are applicable to both submarine and subaerial landslides of this type. It appears that neglecting dynamic (inertia) effects can lead to a significant underestimation of the slide size, and that the volumes of catastrophic slides can exceed the volumes of progressive slides by nearly a factor of 2. As examples, we consider the Gaviota and Humboldt slides offshore of California, and discuss landslides in normally consolidated sediments and sensitive clays. In particular, it is conceivable that Humboldt slide is unfinished and may still displace a large volume of sediments, which could generate a considerable tsunami. We show that in the case of submarine slides, the effect of water resistance on the shear band dynamics may frequently be limited during the slope failure stage. For a varying slope angle, we formulate a condition of slide cessation.

  8. Three-dimensional flow of a nanofluid over a permeable stretching/shrinking surface with velocity slip: A revised model

    Science.gov (United States)

    Jusoh, R.; Nazar, R.; Pop, I.

    2018-03-01

    A reformulation of the three-dimensional flow of a nanofluid by employing Buongiorno's model is presented. A new boundary condition is implemented in this study with the assumption of nanoparticle mass flux at the surface is zero. This condition is practically more realistic since the nanoparticle fraction at the boundary is latently controlled. This study is devoted to investigate the impact of the velocity slip and suction to the flow and heat transfer characteristics of nanofluid. The governing partial differential equations corresponding to the momentum, energy, and concentration are reduced to the ordinary differential equations by utilizing the appropriate transformation. Numerical solutions of the ordinary differential equations are obtained by using the built-in bvp4c function in Matlab. Graphical illustrations displaying the physical influence of the several nanofluid parameters on the flow velocity, temperature, and nanoparticle volume fraction profiles, as well as the skin friction coefficient and the local Nusselt number are provided. The present study discovers the existence of dual solutions at a certain range of parameters. Surprisingly, both of the solutions merge at the stretching sheet indicating that the presence of the velocity slip affects the skin friction coefficients. Stability analysis is carried out to determine the stability and reliability of the solutions. It is found that the first solution is stable while the second solution is not stable.

  9. Plate boundary deformation at the latitude of the Salton Trough - northern Gulf of California (Invited)

    Science.gov (United States)

    Stock, J. M.

    2013-12-01

    Along the Pacific-North America plate boundary zone, the segment including the southern San Andreas fault to Salton Trough and northern Gulf of California basins has been transtensional throughout its evolution, based on Pacific-North America displacement vectors calculated from the global plate circuit (900 × 20 km at N54°W since 20 Ma; 460 × 20 km at N48°W since 11 Ma). Nevertheless, active seismicity and focal mechanisms show a broad zone of plate boundary deformation within which the inferred stress regime varies locally (Yang & Hauksson 2013 GJI), and fault patterns in some regions suggest ongoing tectonic rotation. Similar behavior is inferred to have occurred in this zone over most of its history. Crustal structure in this region is constrained by surface geology, geophysical experiments (e.g., the 2011 Salton Seismic Imaging Project (SSIP), USGS Imperial Valley 1979, PACE), and interdisciplinary marine and onland studies in Mexico (e.g., NARS-Baja, Cortes, and surveys by PEMEX). Magnetic data (e.g., EMAG-2) aids in the recognition of large-scale crustal provinces and fault boundaries in regions lacking detailed geophysical surveys. Consideration of existing constraints on crustal thickness and architecture, and fault and basin evolution suggests that to reconcile geological deformation with plate motion history, the following additional factors need to be taken into account. 1) Plate boundary displacement via interacting systems of rotating blocks, coeval with slip on steep strike slip faults, and possibly related to slip on low angle extensional faults (e.g, Axen & Fletcher 1998 IGR) may be typical prior to the onset of seafloor spreading. This fault style may have accommodated up to 150 km of plate motion in the Mexican Continental Borderland and north of the Vizcaino Peninsula, likely between 12 and 15 Ma, as well as explaining younger rotations adjacent to the Gulf of California and current deformation southwest of the Salton Sea. 2) Geophysical

  10. Molecular Dynamics Simulations of Slip on Curved Surfaces

    Directory of Open Access Journals (Sweden)

    Ross D.A.

    2016-07-01

    Full Text Available We present Molecular Dynamics (MD simulations of liquid water confined within nanoscale geometries, including slit-like and cylindrical graphitic pores. These equilibrium results are used for calculating friction coefficients, which in turn can be used to calculate slip lengths. The slip length is a material property independent of the fluid flow rate. It is therefore a better quantity for study than the fluid velocity at the wall, also known as the slip velocity. Once the slip length has been found as a function of surface curvature, it can be used to parameterise Lattice Boltzmann (LB simulations. These larger scale simulations are able to tell us about how fluid transport is affected by slip in complex geometries; not just limited to single pores. Applications include flow and transport in nano-porous engine valve deposits and gas shales. The friction coefficient is found to be a function of curvature and is higher for fluid on convex surfaces and lower for concave surfaces. Both concave and convex surfaces approach the same value of the friction coefficient, which is constant above some critical radius of curvature, here found to be 7.4 ± 2.9 nm. The constant value of the friction coefficient is 10,000 ± 600 kg m−2 s−1, which is equivalent to a slip length of approximately 67 ± 4 nm.

  11. Electrical Potentials Observed During Frictional Stick-Slip - A Semiconductor Mechanism

    Science.gov (United States)

    Leeman, J.; Scuderi, M.; Marone, C.; Saffer, D. M.

    2013-12-01

    coincide with stick-slip failure. This behavior is consistent at both 1 and 30 μm/s loading velocity. At a load point velocity of 100μm/s, the anomalies exhibit sharp potential spikes on the order of 20 volts coincident with stick slip failure events with gradual charging between events. Experiments conducted under 100% humidity and submerged conditions showed no associated electrical anomalies. We interpret that the observed signal is a convolution of two effects: charging of the forcing blocks and anomalies associated with the stress state of the material. Charging of the blocks is accomplished by grain movement along the boundaries during initial arrangement of force chain networks. Anomalies associated with the material originate from electron holes produced when peroxy links are broken. The defects then propagate away from stressed regions during loading, separating charge. A return current results in a potential drop as a semi-homogeneous stress state is attained after failure of the force chain network. Electrical anomalies during material failure could potentially be used to remotely monitor stress states and cracking during the inter-seismic stage of the seismic cycle. Potential changes could result in detectable low-frequency signals that may signal the early stages of failure, providing a modest warning of the event.

  12. D" anisotropy and slip systems in post-perovskite

    Science.gov (United States)

    Nowacki, Andy; Wookey, James; Kendall, J.-Michael

    2010-05-01

    The lowermost few hundred kilometres of the Earth's mantle-known as D″-form the boundary between it and the core below, control the Earth's convective system, and are the site of probable large thermochemical heterogeneity. Seismic observations of D″ show a large (~2%) increase in S-wave velocity and significant seismic anisotropy (the variation of wave speed with direction) are present in many parts of the region. On the basis of continuous regions of fast shear velocity (V S) anomalies in global models, it is also proposed as the resting place of subducted slabs, notably the Farallon beneath North America. The MgSiO3-post-perovskite mineral phase is the most compelling explanation for observations of anisotropy, though an outstanding question is how post-perovskite and other mineral phases may deform to produce this: different mechanisms are possible. With knowledge either of mantle flow or which slip system is responsible for causing deformation, we can determine the other with the seismic anisotropy which is created. We investigate the dynamics at the CMB beneath North America using differential shear wave splitting in S and ScS phases from earthquakes of magnitude MW > 5.5 in South and Central America, Hawaii the Mid-Atlantic Ridge and East Pacific Rise. They are detected on ~500 stations in North America, giving ~700 measurements of anisotropy in D″. We achieve this by correcting for anisotropy in the upper mantle (UM) beneath both the source and receiver. The measurements cover three regions beneath western USA, the Yucatan peninsula and Florida. In each case, two different, crossing ray paths are used, so that the style of anisotropy can be constrained-only one azimuth cannot distinguish differing cases. Our results showing ~1% anisotropy dependent on azimuth are not consistent with transverse isotropy with a vertical symmetry axis (VTI) anywhere. The same but with a tilted axis is possible (TTI) and would be consistent with inclusions of seismically

  13. Mathematical model for thermal solar collectors by using magnetohydrodynamic Maxwell nanofluid with slip conditions, thermal radiation and variable thermal conductivity

    Directory of Open Access Journals (Sweden)

    Asif Mahmood

    Full Text Available Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2-water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary. Keywords: Solar energy, Thermal collectors, Maxwell-nanofluid, Thermal radiation, Partial slip, Variable thermal conductivity

  14. Two observable features of the staggered-flux phase at nonzero doping

    International Nuclear Information System (INIS)

    Hsu, T.C.; Marston, J.B.; Affleck, I.

    1991-01-01

    We investigate whether the staggered-flux phase (SFP) is realized in slightly doped phases of the Cu-O high-T c superconductors. Using a mean-field solution of the t-J model, we calculate the size of circulating currents in the CuO 2 planes. For realistic parameters we find nonzero currents when the doping δ 2-x Sr x CuO 4 samples but additional structure along the (Q x ,0) and (0,Q y ) directions has not been seen. The absence of magnetic fields when δ>0.12 is consistent with the limits set by the muon experiments on superconducting samples

  15. A Transformational Approach to Slip-Slide Factoring

    Science.gov (United States)

    Steckroth, Jeffrey

    2015-01-01

    In this "Delving Deeper" article, the author introduces the slip-slide method for solving Algebra 1 mathematics problems. This article compares the traditional method approach of trial and error to the slip-slide method of factoring. Tools that used to be taken for granted now make it possible to investigate relationships visually,…

  16. Slip in the 2010-2011 Canterbury Earthquakes, New Zealand and implications for future seismic hazard in Christchurch

    Science.gov (United States)

    Elliott, J. R.; Nissen, E.; England, P. C.; Jackson, J. A.; Lamb, S.; Li, Z.; Oehlers, M.; Parsons, B. E.

    2011-12-01

    crustal block with strain accommodated elsewhere around its boundaries. The fault parameters derived from the satellite observations of both the Darfield and Christchurch events reveal a 15-km-long gap in fault slip south-west of Christchurch which presents a continuing seismic hazard if a further unknown fault structure should exist there. The identification of such possible structures in the vicinity of the city is now a priority as the current gap has a similar length to the rupture in the 2011 Christchurch earthquake. Wallace, L. M., J. Beavan, R. McCaffrey, K. Berryman, and P. Denys, Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological datas, Geophysics Journal International, 168, 332-352, doi:10.1111/j.1365-246X.2006.03183.x, 2007.

  17. Next generation GNSS single receiver cycle slip reliability

    NARCIS (Netherlands)

    Teunissen, P.J.G.; De Bakker, P.F.

    2009-01-01

    In this contribution we study the multi-frequency, carrier-phase slip detection capabilities of a single receiver. Our analysis is based on an analytical expression that we present for themulti-frequencyminimal detectable carrier phase cycle slip.

  18. Element free Galerkin formulation of composite beam with longitudinal slip

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Dzulkarnain; Mokhtaram, Mokhtazul Haizad [Department of Civil Engineering, Universiti Selangor, Bestari Jaya, Selangor (Malaysia); Badli, Mohd Iqbal; Yassin, Airil Y. Mohd [Faculty of Civil Engineering, Universiti Teknologi Malaysia, Skudai, Johor (Malaysia)

    2015-05-15

    Behaviour between two materials in composite beam is assumed partially interact when longitudinal slip at its interfacial surfaces is considered. Commonly analysed by the mesh-based formulation, this study used meshless formulation known as Element Free Galerkin (EFG) method in the beam partial interaction analysis, numerically. As meshless formulation implies that the problem domain is discretised only by nodes, the EFG method is based on Moving Least Square (MLS) approach for shape functions formulation with its weak form is developed using variational method. The essential boundary conditions are enforced by Langrange multipliers. The proposed EFG formulation gives comparable results, after been verified by analytical solution, thus signify its application in partial interaction problems. Based on numerical test results, the Cubic Spline and Quartic Spline weight functions yield better accuracy for the EFG formulation, compares to other proposed weight functions.

  19. Ultra-thin clay layers facilitate seismic slip in carbonate faults.

    Science.gov (United States)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Di Toro, Giulio; Spagnuolo, Elena; Zorzi, Federico

    2017-04-06

    Many earthquakes propagate up to the Earth's surface producing surface ruptures. Seismic slip propagation is facilitated by along-fault low dynamic frictional resistance, which is controlled by a number of physico-chemical lubrication mechanisms. In particular, rotary shear experiments conducted at seismic slip rates (1 ms -1 ) show that phyllosilicates can facilitate co-seismic slip along faults during earthquakes. This evidence is crucial for hazard assessment along oceanic subduction zones, where pelagic clays participate in seismic slip propagation. Conversely, the reason why, in continental domains, co-seismic slip along faults can propagate up to the Earth's surface is still poorly understood. We document the occurrence of micrometer-thick phyllosilicate-bearing layers along a carbonate-hosted seismogenic extensional fault in the central Apennines, Italy. Using friction experiments, we demonstrate that, at seismic slip rates (1 ms -1 ), similar calcite gouges with pre-existing phyllosilicate-bearing (clay content ≤3 wt.%) micro-layers weaken faster than calcite gouges or mixed calcite-phyllosilicate gouges. We thus propose that, within calcite gouge, ultra-low clay content (≤3 wt.%) localized along micrometer-thick layers can facilitate seismic slip propagation during earthquakes in continental domains, possibly enhancing surface displacement.

  20. Global distribution of GPS losses of phase lock and total electron content slips during the 2005 May 15 and the 2003 November 20 magnetic storms

    Science.gov (United States)

    Yasyukevich, Yuriy; Astafeva, Elvira; Givetev, Ilya; Maksikov, Aleksey

    2015-12-01

    Using data of worldwide network of GPS receivers we investigated losses of GPS phase lock (LoL) during two strong magnetic storms. At fundamental L1 frequency, LoL density is found to increase up to 0.25 % and at L2 frequency the increase is up to 3 %. This is several times as much compared with the background level. During the 2003 November 20 magnetic storm, the number of total electron content (TEC) slips exceeded the background level ~50 times. During superstorms, the most number of GPS LoL is observed at low and high latitudes. At the same time, the area of numerous TEC slips correspond to auroral oval boundaries.

  1. Generalization of the Child-Langmuir law for nonzero injection velocities in a planar diode

    International Nuclear Information System (INIS)

    Puri, R.R.; Biswas, Debabrata; Kumar, Raghwendra

    2004-01-01

    The Child-Langmuir law relates the voltage applied across a planar diode to the saturation value J CL of current density that can be transmitted through it in case the injection velocity of electrons is zero. The Child-Langmuir current density J CL is, at the same time: (i) the maximum current density that can be transmitted through a planar diode, (ii) the current density below which the flow is steady and unidirectional in the long time limit, and (iii) the average transmitted current density for any value of injected current density above J CL . Existing generalizations of Child-Langmuir law to nonzero velocities of injection are based on the characteristics (i) and (ii) of J CL . This paper generalizes the law to nonzero velocities of injection based on the characteristic (iii) by deriving an analytical expression for the saturation value of current density. The analytical expression for the saturation current density is found to be well supported by numerical computations. A reason behind preferring the saturation property of the Child-Langmuir current density as the basis for its generalization is the importance of that property in numerical simulations of high current diode devices

  2. Survey and research of the latest works of LES about models near wall boundary and applications to complex flow path

    International Nuclear Information System (INIS)

    Sakai, Norio; Shimizu, Takeshi

    2005-02-01

    Since treatments for wall boundaries and flows around complex paths are issues in LES modeling, a literature research on the LES methods for wall boundaries and applications to flows at complex paths was conducted to investigate the latest trend. Publications of domestic or international societies, workshops, symposiums, and journals about for past 3 years (2001-2004) were searched and collected, from which 23 research papers were selected and investigated. For the investigation, the treatments for wall boundaries used in the literature were classified roughly into five methods, i.e. (1) no-slip condition, (2) algebraic wall model (wall function), (3) wall model based on boundary-layer approximations (differential equation wall model), (4) hybrid method, (5) immersed boundary method. No-slip conditions were widely applied in recent works. For algebraic wall models, new wall functions that considered the effect of the velocity component vertical to a wall or circulation regions were examined. There were also some researches that devised the process of calculating the wall-shear stress with a conventional wall function. The researches using differential equation wall models presented the dynamic modification of model coefficients, or the application of high-order turbulence model such as the k-e model to the solution of Navier-Stokes equation in the boundary layer. The researches of hybrid methods focused on the discontinuity of velocity and eddy viscosity at the LES/RANS interface. Several researches that adopted immersed boundary methods for Cartesian girds with curved wall boundaries introduced the investigation of the Poisson solvers and the numerical modification of pressure boundary conditions. Many of investigated researches used hybrid methods. Thus, it is expected that they will be mainly applied to large-scale and complex simulations if the standard treatment for the discontinuity at the interface is developed. (author)

  3. Nonzero-Sum Relationships in Mitigating Urban Carbon Emissions: A Dynamic Network Simulation.

    Science.gov (United States)

    Chen, Shaoqing; Chen, Bin; Su, Meirong

    2015-10-06

    The "stove-pipe" way of thinking has been mostly used in mitigating carbon emissions and managing socioeconomics because of its convenience of implementation. However, systems-oriented approaches become imperative in pursuit of an efficient regulation of carbon emissions from systems as complicated as urban systems. The aim of this paper is to establish a dynamic network approach that is capable of assessing the effectiveness of carbon emissions mitigation in a more holistic way. A carbon metabolic network is constructed by modeling the carbon flows between economic sectors and environment. With the network shocked by interventions to the sectoral carbon flows, indirect emissions from the city are accounted for under certain carbon mitigation strategies. The nonzero-sum relationships between sectors and environmental components are identified based on utility analysis, which synthesize the nature of direct and indirect network interactions. The results of the case study of Beijing suggest that the stove-pipe mitigation strategies targeted the economic sectors might be not as efficient as they were expected. A direct cutting in material or energy import to the sectors may result in a rebound in indirect emissions and thus fails to achieve the carbon mitigation goal of the city as a whole. A promising way of foreseeing the dynamic mechanism of emissions is to analyze the nonzero-sum relationships between important urban components. Thinking cities as systems of interactions, the network approach is potentially a strong tool for appraising and filtering mitigation strategies of carbon emissions.

  4. Nonzero θ13 and neutrino masses from the modified tri-bi-maximal neutrino mixing matrix

    International Nuclear Information System (INIS)

    Damanik, A.

    2014-01-01

    There are 3 types of neutrino mixing matrices: tri-bi-maximal, bi-maximal and democratic. These 3 types of neutrino mixing matrices predict that the mixing angle θ 13 should be null. Motivated by the recent experimental evidence of nonzero and relatively large θ 13 , we modified the tribimaximal mixing matrix by introducing a simple perturbation matrix into tribimaximal neutrino mixing matrix. In this scenario, we obtained nonzero mixing angle θ 13 =7.9 degrees which is in agreement with the present experimental results. By imposing 2 zeros texture into the obtained neutrino mass matrix from modified tribimaximal mixing matrix, we then have the neutrino mass spectrum in normal hierarchy. Some phenomenological implications are also discussed. It appears that if we use the solar neutrino squared-mass difference to determine the values of neutrino masses, then we cannot have the correct value for the atmospheric squared-mass difference. Conversely, if we use the experimental value of the squared-mass difference to determine the neutrino masses, then we cannot have the correct value for the solar neutrino squared-mass difference

  5. Predicting the probability of slip in gait: methodology and distribution study.

    Science.gov (United States)

    Gragg, Jared; Yang, James

    2016-01-01

    The likelihood of a slip is related to the available and required friction for a certain activity, here gait. Classical slip and fall analysis presumed that a walking surface was safe if the difference between the mean available and required friction coefficients exceeded a certain threshold. Previous research was dedicated to reformulating the classical slip and fall theory to include the stochastic variation of the available and required friction when predicting the probability of slip in gait. However, when predicting the probability of a slip, previous researchers have either ignored the variation in the required friction or assumed the available and required friction to be normally distributed. Also, there are no published results that actually give the probability of slip for various combinations of required and available frictions. This study proposes a modification to the equation for predicting the probability of slip, reducing the previous equation from a double-integral to a more convenient single-integral form. Also, a simple numerical integration technique is provided to predict the probability of slip in gait: the trapezoidal method. The effect of the random variable distributions on the probability of slip is also studied. It is shown that both the required and available friction distributions cannot automatically be assumed as being normally distributed. The proposed methods allow for any combination of distributions for the available and required friction, and numerical results are compared to analytical solutions for an error analysis. The trapezoidal method is shown to be highly accurate and efficient. The probability of slip is also shown to be sensitive to the input distributions of the required and available friction. Lastly, a critical value for the probability of slip is proposed based on the number of steps taken by an average person in a single day.

  6. Neutrino mass models and the implications of a non-zero reactor angle

    International Nuclear Information System (INIS)

    King, S.F.

    2009-01-01

    In this talk we survey some of the recent promising developments in the search for the theory behind neutrino mass and mixing, and indeed all fermion masses and mixing. The talk is organized in terms of a neutrino mass models decision tree according to which the answers to experimental questions provide sign posts to guide through the maze of theoretical models eventually towards a complete theory of flavour and unification. It is also discussed the theoretical implications of the measurement of non-zero reactor angle, as hinted at by recent experimental measurements.

  7. Variable-viscosity thermal hemodynamic slip flow conveying nanoparticles through a permeable-walled composite stenosed artery

    Science.gov (United States)

    Akbar, Noreen Sher; Tripathi, Dharmendra; Bég, O. Anwar

    2017-07-01

    This paper presents a mathematical model for simulating viscous, incompressible, steady-state blood flow containing copper nanoparticles and coupled heat transfer through a composite stenosed artery with permeable walls. Wall slip hydrodynamic and also thermal buoyancy effects are included. The artery is simulated as an isotropic elastic tube, following Joshi et al. (2009), and a variable viscosity formulation is employed for the flowing blood. The equations governing the transport phenomena are non-dimensionalized and the resulting boundary value problem is solved analytically in the steady state subject to physically appropriate boundary conditions. Numerical computations are conducted to quantify the effects of relevant hemodynamic, thermophysical and nanoscale parameters emerging in the model on velocity and temperature profiles, wall shear stress, impedance resistance and also streamline distributions. The model may be applicable to drug fate transport modeling with nanoparticle agents and also to the optimized design of nanoscale medical devices for diagnosing stenotic diseases in circulatory systems.

  8. Floating potential in electronegative plasmas for non-zero ion temperatures

    Science.gov (United States)

    Regodón, Guillermo Fernando; Fernández Palop, José Ignacio; Tejero-del-Caz, Antonio; Díaz-Cabrera, Juan Manuel; Carmona-Cabezas, Rafael; Ballesteros, Jerónimo

    2018-02-01

    The floating potential of a Langmuir probe immersed in an electronegative plasma is studied theoretically under the assumption of radial positive ion fluid movement for non-zero positive ion temperature: both cylindrical and spherical geometries are studied. The model is solvable exactly. The special characteristics of the electronegative pre-sheath are found and the influence of the stratified electronegative pre-sheath is shown to be very small in practical applications. It is suggested that the use of the floating potential in the measurement of negative ions population density is convenient, in view of the numerical results obtained. The differences between the two radial geometries, which become very important for small probe radii of the order of magnitude of the Debye length, are studied.

  9. Slow Slip and Earthquake Nucleation in Meter-Scale Laboratory Experiments

    Science.gov (United States)

    Mclaskey, G.

    2017-12-01

    The initiation of dynamic rupture is thought to be preceded by a quasistatic nucleation phase. Observations of recent earthquakes sometimes support this by illuminating slow slip and foreshocks in the vicinity of the eventual hypocenter. I describe laboratory earthquake experiments conducted on two large-scale loading machines at Cornell University that provide insight into the way earthquake nucleation varies with normal stress, healing time, and loading rate. The larger of the two machines accommodates a 3 m long granite sample, and when loaded to 7 MPa stress levels, we observe dynamic rupture events that are preceded by a measureable nucleation zone with dimensions on the order of 1 m. The smaller machine accommodates a 0.76 m sample that is roughly the same size as the nucleation zone. On this machine, small variations in nucleation properties result in measurable differences in slip events, and we generate both dynamic rupture events (> 0.1 m/s slip rates) and slow slip events ( 0.001 to 30 mm/s slip rates). Slow events occur when instability cannot fully nucleate before reaching the sample ends. Dynamic events occur after long healing times or abrupt increases in loading rate which suggests that these factors shrink the spatial and temporal extents of the nucleation zone. Arrays of slip, strain, and ground motion sensors installed on the sample allow us to quantify seismic coupling and study details of premonitory slip and afterslip. The slow slip events we observe are primarily aseismic (less than 1% of the seismic coupling of faster events) and produce swarms of very small M -6 to M -8 events. These mechanical and seismic interactions suggest that faults with transitional behavior—where creep, small earthquakes, and tremor are often observed—could become seismically coupled if loaded rapidly, either by a slow slip front or dynamic rupture of an earthquake that nucleated elsewhere.

  10. Perception of slipperiness and prospective risk of slipping at work

    Science.gov (United States)

    Courtney, Theodore K; Verma, Santosh K; Chang, Wen-Ruey; Huang, Yueng-Hsiang; Lombardi, David A; Brennan, Melanye J; Perry, Melissa J

    2013-01-01

    Objectives Falls are a leading cause of injury at work, and slipping is the predominant cause of falling. Prior research has suggested a modest correlation between objective measures (such as coefficient of friction, COF) and subjective measures of slipperiness (such as worker perceptions) in the workplace. However, the degree of association between subjective measures and the actual risk of slipping at the workplace is unknown. This study examined the association between perception of slipperiness and the risk of slipping. Methods 475 workers from 36 limited-service restaurants participated in a 12-week prospective cohort study. At baseline, demographic information was collected, participants rated floor slipperiness in eight areas of the restaurant, and work environment factors, such as COF, were measured. Restaurant-level and area-level mean perceptions of slipperiness were calculated. Participants then reported their slip experience at work on a weekly basis for the next 12 weeks. The associations between perception of slipperiness and the rate of slipping were assessed. Results Adjusting for age, gender, body mass index, education, primary language, mean COF, use of slip-resistant shoes, and restaurant chain, each 1-point increase in mean restaurant-level perception of slipperiness (4-point scale) was associated with a 2.71 times increase in the rate of slipping (95% CI 1.25 to 5.87). Results were similar for area-level perception within the restaurant (rate ratios (RR) 2.92, 95% CI 2.41 to 3.54). Conclusions Perceptions of slipperiness and the subsequent rate of slipping were strongly associated. These findings suggest that safety professionals, risk managers and employers could use aggregated worker perceptions of slipperiness to identify slipping hazards and, potentially, to assess intervention effectiveness. PMID:22935953

  11. Variations in strength and slip rate along the san andreas fault system.

    Science.gov (United States)

    Jones, C H; Wesnousky, S G

    1992-04-03

    Convergence across the San Andreas fault (SAF) system is partitioned between strike-slip motion on the vertical SAF and oblique-slip motion on parallel dip-slip faults, as illustrated by the recent magnitude M(s) = 6.0 Palm Springs, M(s) = 6.7 Coalinga, and M(s) = 7.1 Loma Prieta earthquakes. If the partitioning of slip minimizes the work done against friction, the direction of slip during these recent earthquakes depends primarily on fault dip and indicates that the normal stress coefficient and frictional coefficient (micro) vary among the faults. Additionally, accounting for the active dip-slip faults reduces estimates of fault slip rates along the vertical trace of the SAF by about 50 percent in the Loma Prieta and 100 percent in the North Palm Springs segments.

  12. Soil slips and debris flows on terraced slopes

    Science.gov (United States)

    Crosta, G. B.; Dal Negro, P.; Frattini, P.

    Terraces cover large areas along the flanks of many alpine and prealpine valleys. Soil slips and soil slips-debris flows are recurrent phenomena along terraced slopes. These landslides cause damages to people, settlements and cultivations. This study investigates the processes related to the triggering of soil slip-debris flows in these settings, analysing those occurred in Valtellina (Central Alps, Italy) on November 2000 after heavy prolonged rainfalls. 260 landslides have been recognised, mostly along the northern valley flank. About 200 soil slips and slumps occurred in terraced areas and a third of them evolved into debris flows. Field work allowed to recognise the settings at soil slip-debris flow source areas. Landslides affected up to 2.5 m of glacial, fluvioglacial and anthropically reworked deposits overlying metamorphic basement. Laboratory and in situ tests allowed to characterise the geotechnical and hydraulic properties of the terrains involved in the initial failure. Several stratigraphic and hydrogeologic factors have been individuated as significant in determining instabilities on terraced slopes. They are the vertical changes of physical soil properties, the presence of buried hollows where groundwater convergence occurs, the rising up of perched groundwater tables, the overflow and lateral infiltration from superficial drainage network, the runoff concentration by means of pathways and the insufficient drainage of retaining walls.

  13. Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data

    KAUST Repository

    Zielke, Olaf

    2015-01-01

    Understanding earthquake (EQ) recurrence relies on information about the timing and size of past EQ ruptures along a given fault. Knowledge of a fault\\'s rupture history provides valuable information on its potential future behavior, enabling seismic hazard estimates and loss mitigation. Stratigraphic and geomorphic evidence of faulting is used to constrain the recurrence of surface rupturing EQs. Analysis of the latter data sets culminated during the mid-1980s in the formulation of now classical EQ recurrence models, now routinely used to assess seismic hazard. Within the last decade, Light Detection and Ranging (lidar) surveying technology and other high-resolution data sets became increasingly available to tectono-geomorphic studies, promising to contribute to better-informed models of EQ recurrence and slip-accumulation patterns. After reviewing motivation and background, we outline requirements to successfully reconstruct a fault\\'s offset accumulation pattern from geomorphic evidence. We address sources of uncertainty affecting offset measurement and advocate approaches to minimize them. A number of recent studies focus on single-EQ slip distributions and along-fault slip accumulation patterns. We put them in context with paleoseismic studies along the respective faults by comparing coefficients of variation CV for EQ inter-event time and slip-per-event and find that a) single-event offsets vary over a wide range of length-scales and the sources for offset variability differ with length-scale, b) at fault-segment length-scales, single-event offsets are essentially constant, c) along-fault offset accumulation as resolved in the geomorphic record is dominated by essentially same-size, large offset increments, and d) there is generally no one-to-one correlation between the offset accumulation pattern constrained in the geomorphic record and EQ occurrence as identified in the stratigraphic record, revealing the higher resolution and preservation potential of

  14. Experiments on vibration-driven stick-slip locomotion: A sliding bifurcation perspective

    Science.gov (United States)

    Du, Zhouwei; Fang, Hongbin; Zhan, Xiong; Xu, Jian

    2018-05-01

    Dry friction appears at the contact interface between two surfaces and is the source of stick-slip vibrations. Instead of being a negative factor, dry friction is essential for vibration-driven locomotion system to take effect. However, the dry-friction-induced stick-slip locomotion has not been fully understood in previous research, especially in terms of experiments. In this paper, we experimentally study the stick-slip dynamics of a vibration-driven locomotion system from a sliding bifurcation perspective. To this end, we first design and build a vibration-driven locomotion prototype based on an internal piezoelectric cantilever. By utilizing the mechanical resonance, the small piezoelectric deformation is significantly amplified to drive the prototype to achieve effective locomotion. Through identifying the stick-slip characteristics in velocity histories, we could categorize the system's locomotion into four types and obtain a stick-slip categorization diagram. In each zone of the diagram the locomotion exhibits qualitatively different stick-slip dynamics. Such categorization diagram is actually a sliding bifurcation diagram; crossing from one stick-slip zone to another corresponds to the triggering of a sliding bifurcation. In addition, a simplified single degree-of-freedom model is established, with the rationality of simplification been explained theoretically and numerically. Based on the equivalent model, a numerical stick-slip categorization is also obtained, which shows good agreement with the experiments both qualitatively and quantitatively. To the best of our knowledge, this is the first work that experimentally generates a sliding bifurcation diagram. The obtained stick-slip categorizations deepen our understanding of stick-slip dynamics in vibration-driven systems and could serve as a base for system design and optimization.

  15. An Improved Optimal Slip Ratio Prediction considering Tyre Inflation Pressure Changes

    Directory of Open Access Journals (Sweden)

    Guoxing Li

    2015-01-01

    Full Text Available The prediction of optimal slip ratio is crucial to vehicle control systems. Many studies have verified there is a definitive impact of tyre pressure change on the optimal slip ratio. However, the existing method of optimal slip ratio prediction has not taken into account the influence of tyre pressure changes. By introducing a second-order factor, an improved optimal slip ratio prediction considering tyre inflation pressure is proposed in this paper. In order to verify and evaluate the performance of the improved prediction, a cosimulation platform is developed by using MATLAB/Simulink and CarSim software packages, achieving a comprehensive simulation study of vehicle braking performance cooperated with an ABS controller. The simulation results show that the braking distances and braking time under different tyre pressures and initial braking speeds are effectively shortened with the improved prediction of optimal slip ratio. When the tyre pressure is slightly lower than the nominal pressure, the difference of braking performances between original optimal slip ratio and improved optimal slip ratio is the most obvious.

  16. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  17. Bayesian evidence for non-zero θ 13 and CP-violation in neutrino oscillations

    Science.gov (United States)

    Bergström, Johannes

    2012-08-01

    We present the Bayesian method for evaluating the evidence for a non-zero value of the leptonic mixing angle θ 13 and CP-violation in neutrino oscillation experiments. This is an application of the well-established method of Bayesian model selection, of which we give a concise and pedagogical overview. When comparing the hypothesis θ 13 = 0 with hypotheses where θ 13 > 0 using global data but excluding the recent reactor measurements, we obtain only a weak preference for a non-zero θ 13, even though the significance is over 3 σ. We then add the reactor measurements one by one and show how the evidence for θ 13 > 0 quickly increases. When including the D ouble C hooz, D aya B ay, and RENO data, the evidence becomes overwhelming with a posterior probability of the hypothesis θ 13 = 0 below 10-11. Owing to the small amount of information on the CP-phase δ, very similar evidences are obtained for the CP-conserving and CP-violating hypotheses. Hence, there is, not unexpectedly, neither evidence for nor against leptonic CP-violation. However, when future experiments aiming to search for CP-violation have started taking data, this question will be of great importance and the method described here can be used as an important complement to standard analyses.

  18. A fast immersed boundary method for external incompressible viscous flows using lattice Green's functions

    Science.gov (United States)

    Liska, Sebastian; Colonius, Tim

    2017-02-01

    A new parallel, computationally efficient immersed boundary method for solving three-dimensional, viscous, incompressible flows on unbounded domains is presented. Immersed surfaces with prescribed motions are generated using the interpolation and regularization operators obtained from the discrete delta function approach of the original (Peskin's) immersed boundary method. Unlike Peskin's method, boundary forces are regarded as Lagrange multipliers that are used to satisfy the no-slip condition. The incompressible Navier-Stokes equations are discretized on an unbounded staggered Cartesian grid and are solved in a finite number of operations using lattice Green's function techniques. These techniques are used to automatically enforce the natural free-space boundary conditions and to implement a novel block-wise adaptive grid that significantly reduces the run-time cost of solutions by limiting operations to grid cells in the immediate vicinity and near-wake region of the immersed surface. These techniques also enable the construction of practical discrete viscous integrating factors that are used in combination with specialized half-explicit Runge-Kutta schemes to accurately and efficiently solve the differential algebraic equations describing the discrete momentum equation, incompressibility constraint, and no-slip constraint. Linear systems of equations resulting from the time integration scheme are efficiently solved using an approximation-free nested projection technique. The algebraic properties of the discrete operators are used to reduce projection steps to simple discrete elliptic problems, e.g. discrete Poisson problems, that are compatible with recent parallel fast multipole methods for difference equations. Numerical experiments on low-aspect-ratio flat plates and spheres at Reynolds numbers up to 3700 are used to verify the accuracy and physical fidelity of the formulation.

  19. Perceived risks for slipping and falling at work during wintertime and criteria for a slip-resistant winter shoe among Swedish outdoor workers

    OpenAIRE

    Norlander, Anna; Miller, Michael; Gard, Gunvor

    2015-01-01

    The leading cause of work related accidents in Sweden is falls. Many slips and falls occur on icy and snowy surfaces, but there is limited knowledge about how to prevent accidents during outdoor work in winter conditions. The purpose of this study was to describe risk factors of slips and falls and criteria for slip-resistant winter shoes from a user perspective. The result is based on focus group interviews with 20 men and women working in mail delivery, construction and home care in Sweden....

  20. Prediction of fluid velocity slip at solid surfaces

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; Todd, Billy; Daivis, Peter

    2011-01-01

    methods, it allows us to directly compute the intrinsic wall-fluid friction coefficient rather than an empirical friction coefficient that includes all sources of friction for planar shear flow. The slip length predicted by our method is in excellent agreement with the slip length obtained from direct...

  1. Direct numerical simulation of hypersonic boundary-layer flow on a flared cone

    Energy Technology Data Exchange (ETDEWEB)

    Pruett, C.D. [James Madison Univ., Harrisonburg, VA (United States). Dept. of Math. and Comput. Sci.; Chang Chau-Lyan [High Technology Corporation, Hampton, VA 23666 (United States)

    1998-03-01

    The forced transition of the boundary layer on an axisymmetric flared cone in Mach 6 flow is simulated by the method of spatial direct numerical simulation (DNS). The full effects of the flared afterbody are incorporated into the governing equations and boundary conditions; these effects include nonzero streamwise surface curvature, adverse streamwise pressure gradient, and decreasing boundary-layer edge Mach number. Transition is precipitated by periodic forcing at the computational inflow boundary with perturbations derived from parabolized stability equation (PSE) methodology and based, in part, on frequency spectra available from physical experiments. Significant qualitative differences are shown to exist between the present results and those obtained previously for a cone without afterbody flare. In both cases, the primary instability is of second-mode type; however, frequencies are much higher for the flared cone because of the decrease in boundary-layer thickness in the flared region. Moreover, Goertler modes, which are linearly stable for the straight cone, are unstable in regions of concave body flare. Reynolds stresses, which peak near the critical layer for the straight cone, exhibit peaks close to the wall for the flared cone. The cumulative effect appears to be that transition onset is shifted upstream for the flared cone. However, the length of the transition zone may possibly be greater because of the seemingly more gradual nature of the transition process on the flared cone. (orig.) With 20 figs., 28 refs.

  2. Wheel slip dump valve for railway braking system

    Science.gov (United States)

    Zhang, Xuan; Zhang, LiHao; Li, QingXuan; Shi, YanTao

    2017-09-01

    As we all know, pneumatic braking system plays an important role in the safety of the whole vehicle. In the anti slip braking system, the pressure of braking cylinder can be adjusted by the quick power response of wheel slip dump valve, so that the lock situation won’t occur during vehicle service. During the braking of railway vehicles, the braking force provided by braking disc reduces vehicle’s speed. But the locking slip will happen due to the oversize of braking force or the reduction of sticking coefficient between wheel and rail. It will cause not only the decline of braking performance but also the increase of braking distance. In the meanwhile, it will scratch the wheel and influence the stable running of vehicles. Now, the speed of passenger vehicle has been increased. In order to shorten the braking distance as far as possible, sticking stickiness must be fully applied. So the occurrence probability of wheel slip is increased.

  3. Velocity-dependent quantum phase slips in 1D atomic superfluids.

    Science.gov (United States)

    Tanzi, Luca; Scaffidi Abbate, Simona; Cataldini, Federica; Gori, Lorenzo; Lucioni, Eleonora; Inguscio, Massimo; Modugno, Giovanni; D'Errico, Chiara

    2016-05-18

    Quantum phase slips are the primary excitations in one-dimensional superfluids and superconductors at low temperatures but their existence in ultracold quantum gases has not been demonstrated yet. We now study experimentally the nucleation rate of phase slips in one-dimensional superfluids realized with ultracold quantum gases, flowing along a periodic potential. We observe a crossover between a regime of temperature-dependent dissipation at small velocity and interaction and a second regime of velocity-dependent dissipation at larger velocity and interaction. This behavior is consistent with the predicted crossover from thermally-assisted quantum phase slips to purely quantum phase slips.

  4. Relating stick-slip friction experiments to earthquake source parameters

    Science.gov (United States)

    McGarr, Arthur F.

    2012-01-01

    Analytical results for parameters, such as static stress drop, for stick-slip friction experiments, with arbitrary input parameters, can be determined by solving an energy-balance equation. These results can then be related to a given earthquake based on its seismic moment and the maximum slip within its rupture zone, assuming that the rupture process entails the same physics as stick-slip friction. This analysis yields overshoots and ratios of apparent stress to static stress drop of about 0.25. The inferred earthquake source parameters static stress drop, apparent stress, slip rate, and radiated energy are robust inasmuch as they are largely independent of the experimental parameters used in their estimation. Instead, these earthquake parameters depend on C, the ratio of maximum slip to the cube root of the seismic moment. C is controlled by the normal stress applied to the rupture plane and the difference between the static and dynamic coefficients of friction. Estimating yield stress and seismic efficiency using the same procedure is only possible when the actual static and dynamic coefficients of friction are known within the earthquake rupture zone.

  5. Factors associated with use of slip-resistant shoes in US limited-service restaurant workers.

    Science.gov (United States)

    Verma, Santosh K; Courtney, Theodore K; Corns, Helen L; Huang, Yueng-Hsiang; Lombardi, David A; Chang, Wen-Ruey; Brennan, Melanye J; Perry, Melissa J

    2012-06-01

    Slips and falls are a leading cause of injury at work. Several studies have indicated that slip-resistant shoes can reduce the risk of occupational slips and falls. Few studies, however, have examined the determinants of slip-resistant shoe use. This study examined the individual and workplace factors associated with slip-resistant shoe use. 475 workers from 36 limited-service restaurants in the USA participated in a study of workplace slipping. Demographic and job characteristic information about each participant was collected. Restaurant managers provided information on whether slip-resistant shoes were provided and paid for by the employer and whether any guidance was given regarding slip-resistant shoe use when they were not provided. Kitchen floor coefficient of friction was measured. Slip-resistant status of the shoes was determined by noting the presence of a 'slip-resistant' marking on the sole. Poisson regression with robust SE was used to calculate prevalence ratios. 320 participants wore slip-resistant shoes (67%). In the multivariate analysis, the prevalence of slip-resistant shoe use was lowest in 15-19-year age group. Women were more likely to wear slip-resistant shoes (prevalence ratio 1.18, 95% CI 1.07 to 1.31). The prevalence of slip-resistant shoe use was lower when no guidance regarding slip-resistant shoes was given as compared to when they were provided by the employer (prevalence ratio 0.66, 95% CI 0.55 to 0.79). Education level, job tenure and the mean coefficient of friction had no significant effects on the use of slip-resistant shoes. Provision of slip-resistant shoes was the strongest predictor of their use. Given their effectiveness and low cost, employers should consider providing slip-resistant shoes at work.

  6. Origin and structure of major orogen-scale exhumed strike-slip

    Science.gov (United States)

    Cao, Shuyun; Neubauer, Franz

    2016-04-01

    The formation of major exhumed strike-slip faults represents one of the most important dynamic processes affecting the evolution of the Earth's lithosphere and surface. Detailed models of the potential initiation and properties and architecture of orogen-scale exhumed strike-slip faults and how these relate to exhumation are rare. In this study, we deal with key properties controlling the development of major exhumed strike-slip fault systems, which are equivalent to the deep crustal sections of active across fault zones. We also propose two dominant processes for the initiation of orogen-scale exhumed strike-slip faults: (1) pluton-controlled and (2) metamorphic core complex-controlled strike-slip faults. In these tectonic settings, the initiation of faults occurs by rheological weakening along hot-to-cool contacts and guides the overall displacement and ultimate exhumation. These processes result in a specific thermal and structural architecture of such faults. These types of strike-slip dominated fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust during various stages of faulting. The high variety of distinctive fault rocks is a potential evidence for recognition of these types of strike-slip faults. Exhumation of mylonitic rocks is, therefore, a common feature of such reverse oblique-slip strike-slip faults, implying major transtensive and/or transpressive processes accompanying pure strike-slip motion during exhumation. Some orogen-scale strike-slip faults nucleate and initiate along rheologically weak zones, e.g. at granite intrusions, zones of low-strength minerals, thermally weakened crust due to ascending fluids, and lateral borders of hot metamorphic core complexes. A further mechanism is the juxtaposition of mechanically strong mantle lithosphere to hot asthenosphere in continental transform faults (e.g., San

  7. Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh-Bénard convection

    Directory of Open Access Journals (Sweden)

    I. C. Ramos

    2015-10-01

    Full Text Available We present the adaptation to non-free boundary conditions of a pseudospectral method based on the (complex Fourier transform. The method is applied to the numerical integration of the Oberbeck-Boussinesq equations in a Rayleigh-Bénard cell with no-slip boundary conditions for velocity and Dirichlet boundary conditions for temperature. We show the first results of a 2D numerical simulation of dry air convection at high Rayleigh number (. These results are the basis for the later study, by the same method, of wet convection in a solar still. Received: 20 Novembre 2014, Accepted: 15 September 2015; Edited by: C. A. Condat, G. J. Sibona; DOI:http://dx.doi.org/10.4279/PIP.070015 Cite as: I C Ramos, C B Briozzo, Papers in Physics 7, 070015 (2015

  8. Reynolds-Stress Budgets in an Impinging Shock Wave/Boundary-Layer Interaction

    Science.gov (United States)

    Vyas, Manan A.; Yoder, Dennis A.; Gaitonde, Datta V.

    2018-01-01

    Implicit large-eddy simulation (ILES) of a shock wave/boundary-layer interaction (SBLI) was performed. Comparisons with experimental data showed a sensitivity of the current prediction to the modeling of the sidewalls. This was found to be common among various computational studies in the literature where periodic boundary conditions were used in the spanwise direction, as was the case in the present work. Thus, although the experiment was quasi-two-dimensional, the present simulation was determined to be two-dimensional. Quantities present in the exact equation of the Reynolds-stress transport, i.e., production, molecular diffusion, turbulent transport, pressure diffusion, pressure strain, dissipation, and turbulent mass flux were calculated. Reynolds-stress budgets were compared with past large-eddy simulation and direct numerical simulation datasets in the undisturbed portion of the turbulent boundary layer to validate the current approach. The budgets in SBLI showed the growth in the production term for the primary normal stress and energy transfer mechanism was led by the pressure strain term in the secondary normal stresses. The pressure diffusion term, commonly assumed as negligible by turbulence model developers, was shown to be small but non-zero in the normal stress budgets, however it played a key role in the primary shear stress budget.

  9. First non-zero terms for the Taylor expansion at 1 of the Conway potential function

    NARCIS (Netherlands)

    Buryak, A.Y.

    2011-01-01

    The Conway potential function ∇ L (t 1,...,t l ) of an ordered oriented link L = L 1 ∪ L 2 ∪ ... ∪ L l ⊂ S 3 is considered. In general, this function is not determined by the linking numbers and the Conway potential functions of the components. However, the first two nonzero terms of the Taylor

  10. Assessment of slip factor models at off-design condition

    International Nuclear Information System (INIS)

    Yoon, Sung Ho; Baek, Je Hyun

    2000-01-01

    Slip factor is defined as an empirical factor being multiplied to theoretical energy transfer for the estimation of real work input of a centrifugal compressor. Researchers have tried to develop a simple empirical model, for a century, to predict a slip factor. However most these models were developed on the condition of design point assuming inviscid flow. So these models often fail to predict a correct slip factor at off-design condition. In this study, we summarized various slip factor models and compared these models with experimental and numerical data at off-design condition. As a result of this study, Wiesner's and Paeng and Chung's models are applicable for radial impeller, but all the models are not suitable for backswept impeller. Finally, the essential avenues for future study is discussed

  11. Modeling of Hydrophobic Surfaces by the Stokes Problem With the Stick–Slip Boundary Conditions

    Czech Academy of Sciences Publication Activity Database

    Kučera, R.; Šátek, V.; Haslinger, Jaroslav; Fialová, S.; Pochylý, F.

    2017-01-01

    Roč. 139, č. 1 (2017), č. článku 011202. ISSN 0098-2202 Institutional support: RVO:68145535 Keywords : algebra * boundary conditions * hydrophobicity * Lagrange multipliers * Navier Stokes equations Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.437, year: 2016 http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=2536532

  12. Listening in on Friction: Stick-Slip Acoustical Signatures in Velcro

    Science.gov (United States)

    Hurtado Parra, Sebastian; Morrow, Leslie; Radziwanowski, Miles; Angiolillo, Paul

    2013-03-01

    The onset of kinetic friction and the possible resulting stick-slip motion remain mysterious phenomena. Moreover, stick-slip dynamics are typically accompanied by acoustic bursts that occur temporally with the slip event. The dry sliding dynamics of the hook-and-loop system, as exemplified by Velcro, manifest stick-slip behavior along with audible bursts that are easily micrphonically collected. Synchronized measurements of the friction force and acoustic emissions were collected as hooked Velcro was driven at constant velocity over a bed of looped Velcro in an anechoic chamber. Not surprising, the envelope of the acoustic bursts maps well onto the slip events of the friction force time series and the intensity of the bursts trends with the magnitude of the difference of the friction force during a stick-slip event. However, the analysis of the acoustic emission can serve as a sensitive tool for revealing some of the hidden details of the evolution of the transition from static to kinetic friction. For instance, small acoustic bursts are seen prior to the Amontons-Coulomb threshold, signaling precursor events prior to the onset of macroscopically observed motion. Preliminary spectral analysis of the acoustic emissions including intensity-frequency data will be presented.

  13. Dislocation cross-slip in fcc solid solution alloys

    International Nuclear Information System (INIS)

    Nöhring, Wolfram Georg; Curtin, W.A.

    2017-01-01

    Cross-slip is a fundamental process of screw dislocation motion and plays an important role in the evolution of work hardening and dislocation structuring in metals. Cross-slip has been widely studied in pure FCC metals but rarely in FCC solid solutions. Here, the cross-slip transition path in solid solutions is calculated using atomistic methods for three representative systems of Ni-Al, Cu-Ni and Al-Mg over a range of solute concentrations. Studies using both true random alloys and their corresponding average-alloy counterparts allow for the independent assessment of the roles of (i) fluctuations in the spatial solute distribution in the true random alloy randomness and (ii) average alloy properties such as stacking fault energy. The results show that the solute fluctuations dominate the activation energy barrier, i.e. there are large sample-to-sample variations around the average activation barrier. The variations in activation barrier correlate linearly with the energy difference between the initial and final states. The distribution of this energy difference can be computed analytically in terms of the solute/dislocation interaction energies. Thus, the distribution of cross-slip activation energies can be accurately determined from a parameter-free analytic model. The implications of the statistical distribution of activation energies on the rate of cross-slip in real alloys are then identified.

  14. The effects of different nano particles of Al2O3 and Ag on the MHD nano fluid flow and heat transfer in a microchannel including slip velocity and temperature jump

    Science.gov (United States)

    Karimipour, Arash; D'Orazio, Annunziata; Shadloo, Mostafa Safdari

    2017-02-01

    The forced convection of nanofluid flow in a long microchannel is studied numerically according to the finite volume approach and by using a developed computer code. Microchannel domain is under the influence of a magnetic field with uniform strength. The hot inlet nanofluid is cooled by the heat exchange with the cold microchannel walls. Different types of nanoparticles such as Al2O3 and Ag are examined while the base fluid is considered as water. Reynolds number are chosen as Re=10 and Re=100. Slip velocity and temperature jump boundary conditions are simulated along the microchannel walls at different values of slip coefficient for different amounts of Hartmann number. The investigation of magnetic field effect on slip velocity and temperature jump of nanofluid is presented for the first time. The results are shown as streamlines and isotherms; moreover the profiles of slip velocity and temperature jump are drawn. It is observed that more slip coefficient corresponds to less Nusselt number and more slip velocity especially at larger Hartmann number. It is recommended to use Al2O3-water nanofluid instead of Ag-water to increase the heat transfer rate from the microchannel walls at low values of Re. However at larger amounts of Re, the nanofluid composed of nanoparticles with higher thermal conductivity works better.

  15. Large Nc QCD at nonzero chemical potential

    International Nuclear Information System (INIS)

    Cohen, Thomas D.

    2004-01-01

    The general issue of large N c QCD at nonzero chemical potential is considered with a focus on understanding the difference between large N c QCD with an isospin chemical potential and large N c QCD with a baryon chemical potential. A simple diagrammatic analysis analogous to 't Hooft's analysis at μ=0 implies that the free energy with a given baryon chemical potential is equal to the free energy with an isospin chemical potential of the same value plus 1/N c corrections. Phenomenologically, these two systems behave quite differently. A scenario to explain this difference in light of the diagrammatic analysis is explored. This scenario is based on a phase transition associated with pion condensation when the isospin chemical potential exceeds m π /2; associated with this transition there is breakdown of the 1/N c expansion--in the pion condensed phase there is a distinct 1/N c expansion including a larger set of diagrams. While this scenario is natural, there are a number of theoretical issues which at least superficially challenge it. Most of these can be accommodated. However, the behavior of quenched QCD which raises a number of apparently analogous issues cannot be easily understood completely in terms of an analogous scenario. Thus, the overall issue remains open

  16. Lattice Boltzmann simulations of pressure-driven flows in microchannels using Navier–Maxwell slip boundary conditions

    KAUST Repository

    Reis, Tim; Dellar, Paul J.

    2012-01-01

    lattice Boltzmann formulations cannot capture Knudsen boundary layers, we replace the usual discrete analogs of the specular diffuse reflection conditions from continuous kinetic theory with a moment-based implementation of the first-order Navier

  17. Magnetohydrodynamic and thermal radiation effects on the boundary-layer flow due to a moving extensible surface with the velocity slip model: A comparative study of four nanofluids

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Emad H., E-mail: efarag@uj.edu.sa [Department of Mathematics, Faculty of Science, University of Jeddah, Jeddah 21589 (Saudi Arabia); Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757 (Egypt); Sayed, Hamed M. [Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757 (Egypt); Department of Mathematics, Faculty of Sciences, Taibah University, Yanbu (Saudi Arabia)

    2017-01-15

    In the current work, we investigated effects of the velocity slip for the flow and heat transfer of four nanofluids over a non-linear stretching sheet taking into account the thermal radiation and magnetic field in presence of the effective electrical conductivity. The governing partial differential equations were transformed into a set of nonlinear ordinary differential equation using similarity transformations before being solved numerically by the Chebyshev pseudospectral differentiation matrix (ChPDM). It was found that the investigated parameters affect remarkably on the nanofluid stream function for the whole investigated nanoparticles. In addition, velocity and skin friction profiles of the four investigated nanofluids decreases and increases, respectively, with the increase of the magnetic parameter, first-order and second-order velocity slips. Further, the flow velocity, surface shear stress and temperature are strongly influenced on applying the velocity slip model, where lower values of the second-order imply higher surface heat flux and thereby making the fluid warmer. - Highlights: • A comparative study for four nanoparticles with MHD and thermal radiation effects was studied. • The effective electrical conductivity is mandatory; otherwise a spurious physical sight will be gained. • The investigated parameters affect remarkably on the nanofluids' flow. • The flow velocity, surface shear stress and temperature are strongly influenced by the slip model. • Lower values of the second-order imply higher surface heat flux and thereby making the fluid warmer.

  18. Slip length measurement of confined air flow on three smooth surfaces.

    Science.gov (United States)

    Pan, Yunlu; Bhushan, Bharat; Maali, Abdelhamid

    2013-04-02

    An experimental measurement of the slip length of air flow close to three different solid surfaces is presented. The substrate was driven by a nanopositioner moving toward an oscillating glass sphere glued to an atomic force microscopy (AFM) cantilever. A large separation distance was used to get more effective data. The slip length value was obtained by analyzing the amplitude and phase data of the cantilever. The measurements show that the slip length does not depend on the oscillation amplitude of the cantilever. Because of the small difference among the slip lengths of the three surfaces, a simplified analysis method was used. The results show that on glass, graphite, and mica surfaces the slip lengths are 98, 234, and 110 nm, respectively.

  19. Dynamic Behavior of Fault Slip Induced by Stress Waves

    Directory of Open Access Journals (Sweden)

    Guang-an Zhu

    2016-01-01

    Full Text Available Fault slip burst is a serious dynamic hazard in coal mining. A static and dynamic analysis for fault slip was performed to assess the risk of rock burst. A numerical model FLAC3D was established to understand the stress state and mechanical responses of fault rock system. The results obtained from the analysis show that the dynamic behavior of fault slip induced by stress waves is significantly affected by mining depth, as well as dynamic disturbance intensity and the distance between the stope and the fault. The isolation effect of the fault is also discussed based on the numerical results with the fault angle appearing to have the strongest influence on peak vertical stress and velocity induced by dynamic disturbance. By taking these risks into account, a stress-relief technology using break-tip blast was used for fault slip burst control. This technique is able to reduce the stress concentration and increase the attenuation of dynamic load by fracturing the structure of coal and rock. The adoption of this stress-relief method leads to an effective reduction of fault slip induced rock burst (FSIRB occurrence.

  20. Slip cast coating of alumina crucibles

    International Nuclear Information System (INIS)

    Haroun, N.A.; El-Masry, M.A.A.

    1980-01-01

    The development of a process for coating alumina crucibles with MgO protective coat in a two-step slip casting operation is described. The best milling conditions for the alumina used were wet ball milling for 24 hr. MgO had to be calcined at 1200 0 C to minimize hydration. Optimum slip casting conditions for alumina and magnesia were found to be L/S I and pH 3-6 or 9-II for the former, and L/S 3 (alcohol) and pH 8.5-10 for the latter. Sintering of Al 2 O 3 and MgO in the temperature range 1150-500 0 C was investigated. Additions of NiO and MgO lowered the sintered densities at lower temperatures but improved the densification at 1500 0 C. Near theoretical density Al 2 O 3 and MgO crucibles were obtained. A two-step slip casting technique was developed to coat Al 2 O 3 with MgO. Certain slow firing schedules could eliminate the otherwise observed coat-crucible separation and cracks. (author)

  1. Second order bounce back boundary condition for the lattice Boltzmann fluid simulation

    International Nuclear Information System (INIS)

    Kim, In Chan

    2000-01-01

    A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method

  2. Boundary layer flow of MHD generalized Maxwell fluid over an exponentially accelerated infinite vertical surface with slip and Newtonian heating at the boundary

    Science.gov (United States)

    Imran, M. A.; Riaz, M. B.; Shah, N. A.; Zafar, A. A.

    2018-03-01

    The aim of this article is to investigate the unsteady natural convection flow of Maxwell fluid with fractional derivative over an exponentially accelerated infinite vertical plate. Moreover, slip condition, radiation, MHD and Newtonian heating effects are also considered. A modern definition of fractional derivative operator recently introduced by Caputo and Fabrizio has been used to formulate the fractional model. Semi analytical solutions of the dimensionless problem are obtained by employing Stehfest's and Tzou's algorithms in order to find the inverse Laplace transforms for temperature and velocity fields. Temperature and rate of heat transfer for non-integer and integer order derivatives are computed and reduced to some known solutions from the literature. Finally, in order to get insight of the physical significance of the considered problem regarding velocity and Nusselt number, some graphical illustrations are made using Mathcad software. As a result, in comparison between Maxwell and viscous fluid (fractional and ordinary) we found that viscous (fractional and ordinary) fluids are swiftest than Maxwell (fractional and ordinary) fluids.

  3. Simulation of hypersonic rarefied flows with the immersed-boundary method

    Science.gov (United States)

    Bruno, D.; De Palma, P.; de Tullio, M. D.

    2011-05-01

    This paper provides a validation of an immersed boundary method for computing hypersonic rarefied gas flows. The method is based on the solution of the Navier-Stokes equation and is validated versus numerical results obtained by the DSMC approach. The Navier-Stokes solver employs a flexible local grid refinement technique and is implemented on parallel machines using a domain-decomposition approach. Thanks to the efficient grid generation process, based on the ray-tracing technique, and the use of the METIS software, it is possible to obtain the partitioned grids to be assigned to each processor with a minimal effort by the user. This allows one to by-pass the expensive (in terms of time and human resources) classical generation process of a body fitted grid. First-order slip-velocity boundary conditions are employed and tested for taking into account rarefied gas effects.

  4. The phase slip factor of the electrostatic cryogenic storage ring CSR

    Science.gov (United States)

    Grieser, Manfred; von Hahn, Robert; Vogel, Stephen; Wolf, Andreas

    2017-07-01

    To determine the momentum spread of an ion beam from the measured revolution frequency distribution, the knowledge of the phase slip factor of the storage ring is necessary. The slip factor was measured for various working points of the cryogenic storage ring CSR at MPI for Nuclear Physics, Heidelberg and was compared with simulations. The predicted functional relationship of the slip factor and the horizontal tune depends on the different islands of stability, which has been experimentally verified. This behavior of the slip factor is in clear contrast to that of magnetic storage rings.

  5. Leakage flow-induced vibration of an eccentric tube-in-tube slip joint

    International Nuclear Information System (INIS)

    Mulcahy, T.M.

    1985-08-01

    Eccentricity of a specific slip-joint design separating two cantilevered, telescoping tubes did not create any self-excited lateral vibrations that had not been observed previously for a concentric slip joint. In fact, the eccentricity made instabilities less likely to occur, but only marginally. Most important, design rules previously established to avoid instabilities for the concentric slip joint remain valid for the eccentric slip joint. 6 refs., 9 figs., 2 tabs

  6. Automated identification and modeling aseismic slip events on Kilauea Volcano, Hawaii

    Science.gov (United States)

    Desmarais, E. K.; Segall, P.; Miklius, A.

    2006-12-01

    Several aseismic slip events have been observed on the south flank of Kilauea volcano, Hawaii (Cervelli et al., Nature, 2002; Brooks et al., EPSL, 2006; Segall et al., Nature, 2006). These events are identified as spatially coherent offsets in GPS time series. We have interpreted the events as slip on a sub-horizontal surface at depths consistent with a decollement under Kilauea's south flank. In order to determine whether smaller slow slip events are present in the time series, we developed an algorithm that searches for coherent displacement patterns similar to the known slow slip events. We compute candidate displacements by taking a running difference of the mean position 6 days before and after a window of 6 days centered on the candidate time step. The candidate displacements are placed in a 3N dimensional data vector, where N is the number of stations. We then compute the angle, in the 3N dimensional data space, between the candidate displacement and a reference vector at each time step. The reference vector is a stack of displacements due to the four largest known slow slip events. Small angles indicate similar displacement patterns, regardless of amplitude. The algorithm strongly identifies four events (September 20, 1998, November 9, 2000, December 16, 2002, and January 26, 2005), each separated by approximately 2.11 years. The algorithm also identified one smaller event (March 3, 1998) that preceeded the September 1998 event by ~ 200 days, and another event (July 4, 2003) that followed the December 2002 event by ~ 200 days. These smaller, 'paired' events appear to alternate rupturing of the eastern and western parts of the south flank. Each of the slow slip events is correlated with an increase, sometimes slight, in microseismicity on the south flank of Kilauea. The temporal evolution of the microseismicity for the 2005 event is well explained by increased stress due to the slow slip (Segall et al., Nature, 2006). The microearthquakes, at depths of 6

  7. Mechanism and energetics of dislocation cross-slip in hcp metals

    Science.gov (United States)

    Wu, Zhaoxuan; Curtin, W. A.

    2016-10-01

    Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant complications in the mechanisms of plastic deformation, strengthening, and ductility, and these complications pose significant challenges in advancing the science and engineering of these metals. In hcp metals, generalized plasticity requires the activation of slip on pyramidal planes, but the structure, motion, and cross-slip of the associated dislocations are not well established even though they determine ductility and influence strengthening. Here, atomistic simulations in Mg reveal the unusual mechanism of dislocation cross-slip between pyramidal I and II planes, which occurs by cross-slip of the individual partial dislocations. The energy barrier is controlled by a fundamental step/jog energy and the near-core energy difference between pyramidal dislocations. The near-core energy difference can be changed by nonglide stresses, leading to tension-compression asymmetry and even a switch in absolute stability from one glide plane to the other, both features observed experimentally in Mg, Ti, and their alloys. The unique cross-slip mechanism is governed by common features of the generalized stacking fault energy surfaces of hcp pyramidal planes and is thus expected to be generic to all hcp metals. An analytical model is developed to predict the cross-slip barrier as a function of the near-core energy difference and applied stresses and quantifies the controlling features of cross-slip and pyramidal I/II stability across the family of hcp metals.

  8. Stick-slip and Torsional Friction Factors in Inclined Wellbores

    Directory of Open Access Journals (Sweden)

    Aarsnes Ulf Jakob F.

    2018-01-01

    The model is shown to have a good match with the surface and downhole behavior of two deviated wellbores for depths ranging from 1500 to 3000 meters. In particular, the model replicates the amplitude and period of the oscillations, in both the topside torque and the downhole RPM, as caused by the along-string stick slip. It is further shown that by using the surface behavior of the drill-string during rotational startup, an estimate of the static and dynamic friction factors along the wellbore can be obtained, even during stick-slip oscillations, if axial tension in the drillstring is considered. This presents a possible method to estimate friction factors in the field when off-bottom stick slip is encountered, and points in the direction of avoiding stick slip through the design of an appropriate torsional start-up procedure without the need of an explicit friction test.

  9. Shoe-Floor Interactions in Human Walking With Slips: Modeling and Experiments.

    Science.gov (United States)

    Trkov, Mitja; Yi, Jingang; Liu, Tao; Li, Kang

    2018-03-01

    Shoe-floor interactions play a crucial role in determining the possibility of potential slip and fall during human walking. Biomechanical and tribological parameters influence the friction characteristics between the shoe sole and the floor and the existing work mainly focus on experimental studies. In this paper, we present modeling, analysis, and experiments to understand slip and force distributions between the shoe sole and floor surface during human walking. We present results for both soft and hard sole material. The computational approaches for slip and friction force distributions are presented using a spring-beam networks model. The model predictions match the experimentally observed sole deformations with large soft sole deformation at the beginning and the end stages of the stance, which indicates the increased risk for slip. The experiments confirm that both the previously reported required coefficient of friction (RCOF) and the deformation measurements in this study can be used to predict slip occurrence. Moreover, the deformation and force distribution results reported in this study provide further understanding and knowledge of slip initiation and termination under various biomechanical conditions.

  10. Active strike-slip faulting in El Salvador, Central America

    Science.gov (United States)

    Corti, Giacomo; Carminati, Eugenio; Mazzarini, Francesco; Oziel Garcia, Marvyn

    2005-12-01

    Several major earthquakes have affected El Salvador, Central America, during the Past 100 yr as a consequence of oblique subduction of the Cocos plate under the Caribbean plate, which is partitioned between trench-orthogonal compression and strike-slip deformation parallel to the volcanic arc. Focal mechanisms and the distribution of the most destructive earthquakes, together with geomorphologic evidence, suggest that this transcurrent component of motion may be accommodated by a major strike-slip fault (El Salvador fault zone). We present field geological, structural, and geomorphological data collected in central El Salvador that allow the constraint of the kinematics and the Quaternary activity of this major seismogenic strike-slip fault system. Data suggest that the El Salvador fault zone consists of at least two main ˜E-W fault segments (San Vicente and Berlin segments), with associated secondary synthetic (WNW-ESE) and antithetic (NNW-SSE) Riedel shears and NW-SE tensional structures. The two main fault segments overlap in a dextral en echelon style with the formation of an intervening pull-apart basin. Our original geological and geomorphologic data suggest a late Pleistocene Holocene slip rate of ˜11 mm/yr along the Berlin segment, in contrast with low historical seismicity. The kinematics and rates of deformation suggested by our new data are consistent with models involving slip partitioning during oblique subduction, and support the notion that a trench-parallel component of motion between the Caribbean and Cocos plates is concentrated along E-W dextral strike-slip faults parallel to the volcanic arc.

  11. Holocene paleoearthquakes on the strike-slip Porters Pass Fault, Canterbury, New Zealand

    International Nuclear Information System (INIS)

    Howard, M.; Nicol, A.; Campbell, J.; Pettinga, J.R.

    2005-01-01

    The Porters Pass Fault comprises a series of discontinuous Holocene active traces which extend for c. 40 km between the Rakaia and Waimakariri Rivers in the foothills of the Southern Alps. There have been no historical earthquakes on the Porters Pass Fault (i.e., within the last 150 yr), and the purpose of this paper is to establish the timing and magnitudes of displacements on the fault at the ground surface during Holocene paleoearthquakes. Displaced geomorphic features (e.g., relict streams, stream channels, and ridge crests), measured using either tape measure (n = 20) or surveying equipment (n = 5), range from 5.5 to 33 m right lateral strike slip and are consistent with six earthquakes characterised by slip per event of c. 5-7 m. The timing of these earthquakes is constrained by radiocarbon dates from four trenches excavated across the fault and two auger sites from within swamps produced by ponding of drainage along the fault scarp. These data indicate markedly different Holocene earthquake histories along the fault length separated by a behavioural segment boundary near Lake Coleridge. On the eastern segment at least six Holocene earthquakes were identified at 8400-9000, 5700-6700, 4500-6000, 2300-2500, 800-1100, and 500-600 yr BP, producing an average recurrence interval of c. 1500 yr. On the western segment of the fault in the Rakaia River valley, a single surface-rupturing earthquake displaced Acheron Advance glacial deposits (c.10,000-14,000 yr in age) and may represent the southward continuation of the 2300-2500 yr event identified on the eastern segment. These data suggest Holocene slip rates of 3.2-4.1 mm/yr and 0.3-0.9 mm/yr on the eastern and western sections of the fault, respectively. Displacement and timing data suggest that earthquakes ruptured the western segment of the fault in no more than one-sixth of cases and that for a sample period of 10,000 yr the recurrence intervals were not characteristic. (auth). 45 refs., 10 figs., 3 tabs

  12. Hopping magnetotransport via nonzero orbital momentum states and organic magnetoresistance.

    Science.gov (United States)

    Alexandrov, Alexandre S; Dediu, Valentin A; Kabanov, Victor V

    2012-05-04

    In hopping magnetoresistance of doped insulators, an applied magnetic field shrinks the electron (hole) s-wave function of a donor or an acceptor and this reduces the overlap between hopping sites resulting in the positive magnetoresistance quadratic in a weak magnetic field, B. We extend the theory of hopping magnetoresistance to states with nonzero orbital momenta. Different from s states, a weak magnetic field expands the electron (hole) wave functions with positive magnetic quantum numbers, m>0, and shrinks the states with negative m in a wide region outside the point defect. This together with a magnetic-field dependence of injection/ionization rates results in a negative weak-field magnetoresistance, which is linear in B when the orbital degeneracy is lifted. The theory provides a possible explanation of a large low-field magnetoresistance in disordered π-conjugated organic materials.

  13. Seismic Evidence for Conjugate Slip and Block Rotation Within the San Andreas Fault System, Southern California

    Science.gov (United States)

    Nicholson, Craig; Seeber, Leonardo; Williams, Patrick; Sykes, Lynn R.

    1986-08-01

    The pattern of seismicity in southern California indicates that much of the activity is presently occurring on secondary structures, several of which are oriented nearly orthogonal to the strikes of the major through-going faults. Slip along these secondary transverse features is predominantly left-lateral and is consistent with the reactivation of conjugate faults by the current regional stress field. Near the intersection of the San Jacinto and San Andreas faults, however, these active left-lateral faults appear to define a set of small crustal blocks, which in conjunction with both normal and reverse faulting earthquakes, suggests contemporary clockwise rotation as a result of regional right-lateral shear. Other left-lateral faults representing additional rotating block systems are identified in adjacent areas from geologic and seismologic data. Many of these structures predate the modern San Andreas system and may control the pattern of strain accumulation in southern California. Geodetic and paleomagnetic evidence confirm that block rotation by strike-slip faulting is nearly ubiquitous, particularly in areas where shear is distributed, and that it accommodates both short-term elastic and long-term nonelastic strain. A rotating block model accounts for a number of structural styles characteristic of strike-slip deformation in California, including: variable slip rates and alternating transtensional and transpressional features observed along strike of major wrench faults; domains of evenly-spaced antithetic faults that terminate against major fault boundaries; continued development of bends in faults with large lateral displacements; anomalous focal mechanisms; and differential uplift in areas otherwise expected to experience extension and subsidence. Since block rotation requires a detachment surface at depth to permit rotational movement, low-angle structures like detachments, of either local or regional extent, may be involved in the contemporary strike-slip

  14. Paleomagnetic and structural evidence for oblique slip in a fault-related fold, Grayback monocline, Colorado

    Science.gov (United States)

    Tetreault, J.; Jones, C.H.; Erslev, E.; Larson, S.; Hudson, M.; Holdaway, S.

    2008-01-01

    Significant fold-axis-parallel slip is accommodated in the folded strata of the Grayback monocline, northeastern Front Range, Colorado, without visible large strike-slip displacement on the fold surface. In many cases, oblique-slip deformation is partitioned; fold-axis-normal slip is accommodated within folds, and fold-axis-parallel slip is resolved onto adjacent strike-slip faults. Unlike partitioning strike-parallel slip onto adjacent strike-slip faults, fold-axis-parallel slip has deformed the forelimb of the Grayback monocline. Mean compressive paleostress orientations in the forelimb are deflected 15??-37?? clockwise from the regional paleostress orientation of the northeastern Front Range. Paleomagnetic directions from the Permian Ingleside Formation in the forelimb are rotated 16??-42?? clockwise about a bedding-normal axis relative to the North American Permian reference direction. The paleostress and paleomagnetic rotations increase with the bedding dip angle and decrease along strike toward the fold tip. These measurements allow for 50-120 m of fold-axis-parallel slip within the forelimb, depending on the kinematics of strike-slip shear. This resolved horizontal slip is nearly equal in magnitude to the ???180 m vertical throw across the fold. For 200 m of oblique-slip displacement (120 m of strike slip and 180 m of reverse slip), the true shortening direction across the fold is N90??E, indistinguishable from the regionally inferred direction of N90??E and quite different from the S53??E fold-normal direction. Recognition of this deformational style means that significant amounts of strike slip can be accommodated within folds without axis-parallel surficial faulting. ?? 2008 Geological Society of America.

  15. Technological control of slip casting by the method of PMR

    International Nuclear Information System (INIS)

    Rozental', O.M.; Toropov, Yu.S.; Sobolev, A.S.; Pliner, S.Yu.; Demina, T.E.; Permikina, I.M.

    1980-01-01

    The method of proton magnetic resonance (PMR) is suggested for operational chemico-technological control of slip casting made of oxides of metals in the technology of technical ceramics. PMR spectra of finely dispersed slip casting made of aluminium and zirconium oxides (0.9 mol. of the ZrO 2 shake + 0.1 V 2 O 3 ) are analysed. It is shown that the quality of slip casting out of aqueous suspensions of aluminium and zirconium oxides is abruptly reduced if dP/dW (P - parameter of the PMR line shape, W - humidity) decrease. It is established that slip casting made of zirconium oxide should not be kept in the air more than 5 days, and that of aluminium oxide, more than 3 days at room temperature and should not be exposed to high (> 105 deg C) temperatures. The quality of slip casting is reduced in the regime of too energetic electrosedimentation the optimum regime of electrosedimentation is approximately 5/3 under the conditions of the above experiment

  16. Slip resistance of casual footwear: implications for falls in older adults.

    Science.gov (United States)

    Menz, H B; Lord, S T; McIntosh, A S

    2001-01-01

    A large proportion of falls in older people are caused by slipping. Previous occupational safety research suggests that inadequate footwear may contribute to slipping accidents; however, no studies have assessed the slip resistance of casual footwear. To evaluate the slip resistance of different types of casual footwear over a range of common household surfaces. The slip resistance of men's Oxford shoes and women's fashion shoes with different heel configurations was determined by measuring the dynamic coefficient of friction (DCoF) at heel contact (in both dry and wet conditions) on a bathroom tile, concrete, vinyl flooring and a terra cotta tile using a specially-designed piezoelectric force plate apparatus. Analysis of variance revealed significant shoe, surface, and shoe-surface interaction effects. Men's Oxford shoes exhibited higher average DCoF values than the women's fashion shoes, however, none of the shoes could be considered safe on wet surfaces. Application of a textured sole material did not improve slip resistance of any of the shoes on wet surfaces. Heel geometry influences the slip resistance of casual footwear on common household surfaces. The suboptimal performance of all of the test shoes on wet surfaces suggests that a safety standard for casual footwear is required to assist in the development of safe footwear for older people. Copyright 2001 S. Karger AG, Basel

  17. Entropy generation due to double diffusive convective flow of Casson fluids over nonlinearity stretching sheets with slip conditions

    Directory of Open Access Journals (Sweden)

    Sameh E. Ahmed

    2017-12-01

    Full Text Available The present paper deals with the effects of slip boundary conditions and chemical reaction on the heat and mass transfer by mixed convective boundary layer flow of a non-Newtonian fluid over a nonlinear stretching sheet. The Casson fluid model is used to characterize the non-Newtonian fluid behavior. First order chemical reactions are considered. Similar solutions are used to convert the partial differential equations governing the problem to ordinary differential equations. The velocity, temperature and concentration profiles are obtained, numerically, using the MATLAB function bvp4c and those are used to compute the entropy generation number. The effect of increasing values of the Casson parameter is found to suppress the velocity field and temperature distribution. But the concentration is enhanced with the increasing of Casson parameter. The viscous dissipation, temperature and concentration irreversibility are determined and discussed in details.

  18. Turbulent flows over superhydrophobic surfaces with shear-dependent slip length

    Science.gov (United States)

    Khosh Aghdam, Sohrab; Seddighi, Mehdi; Ricco, Pierre

    2015-11-01

    Motivated by recent experimental evidence, shear-dependent slip length superhydrophobic surfaces are studied. Lyapunov stability analysis is applied in a 3D turbulent channel flow and extended to the shear-dependent slip-length case. The feedback law extracted is recognized for the first time to coincide with the constant-slip-length model widely used in simulations of hydrophobic surfaces. The condition for the slip parameters is found to be consistent with the experimental data and with values from DNS. The theoretical approach by Fukagata (PoF 18.5: 051703) is employed to model the drag-reduction effect engendered by the shear-dependent slip-length surfaces. The estimated drag-reduction values are in very good agreement with our DNS data. For slip parameters and flow conditions which are potentially realizable in the lab, the maximum computed drag reduction reaches 50%. The power spent by the turbulent flow on the walls is computed, thereby recognizing the hydrophobic surfaces as a passive-absorbing drag-reduction method, as opposed to geometrically-modifying techniques that do not consume energy, e.g. riblets, hence named passive-neutral. The flow is investigated by visualizations, statistical analysis of vorticity and strain rates, and quadrants of the Reynolds stresses. Part of this work was funded by Airbus Group. Simulations were performed on the ARCHER Supercomputer (UKTC Grant).

  19. Shear Stress-Relative Slip Relationship at Concrete Interfaces

    Directory of Open Access Journals (Sweden)

    Keun-Hyeok Yang

    2016-01-01

    Full Text Available This study develops a simple and rational shear stress-relative slip model of concrete interfaces with monolithic castings or smooth construction joints. In developing the model, the initial shear cracking stress and relative slip amount at peak stress were formulated from a nonlinear regression analysis using test data for push-off specimens. The shear friction strength was determined from the generalized equations on the basis of the upper-bound theorem of concrete plasticity. Then, a parametric fitting analysis was performed to derive equations for the key parameters determining the shapes of the ascending and descending branches of the shear stress-relative slip curve. The comparisons of predictions and measurements obtained from push-off tests confirmed that the proposed model provides superior accuracy in predicting the shear stress-relative slip relationship of interfacial shear planes. This was evidenced by the lower normalized root mean square error than those in Xu et al.’s model and the CEB-FIB model, which have many limitations in terms of the roughness of the substrate surface along an interface and the magnitude of equivalent normal stress.

  20. Slip-flow in complex porous media as determined by a multi-relaxation-time lattice Boltzmann model

    Science.gov (United States)

    Landry, C. J.; Prodanovic, M.; Eichhubl, P.

    2014-12-01

    The pores and throats of shales and mudrocks are predominantly found within a range of 1-100 nm, within this size range the flow of gas at reservoir conditions will fall within the slip-flow and low transition-flow regime (0.001 clays). Molecular dynamics (MD) simulations can be used to predict slip-flow in complex geometries, but due to prohibitive computational demand are generally limited to small volumes (one to several pores). Here we present a multi-relaxation-time lattice Boltzmann model (LBM) parameterized for slip-flow (Guo et al. 2008) and adapted here to complex geometries. LBMs are inherently parallelizable, such that flow in complex geometries of significant (near REV-scale) volumes can be readily simulated at a fraction of the computational cost of MD simulations. At the macroscopic-scale the LBM is parameterized with local effective viscosities at each node to capture the variance of the mean-free-path of gas molecules in a bounded system. The corrected mean-free-path for each lattice node is determined using the mean distance of the node to the pore-wall and Stop's correction for mean-free-paths in an infinite parallel-plate geometry. At the microscopic-scale, a combined bounce-back specular-reflection boundary condition is applied to the pore-wall nodes to capture Maxwellian-slip. The LBM simulation results are first validated in simple tube and channel geometries, where good agreement is found for Knudsen numbers below 0.1, and fair agreement is found for Knudsen numbers between 0.1 and 0.5. More complex geometries are then examined including triangular-ducts and ellipsoid-ducts, both with constant and tapering/expanding cross-sections, as well as a clay pore-network imaged from a hydrocarbon producing shale by sequential focused ion-beam scanning electron microscopy. These results are analyzed to determine grid-independent resolutions, and used to explore the relationship between effective permeability and Knudsen number in complex geometries.

  1. Extending Resolution of Fault Slip With Geodetic Networks Through Optimal Network Design

    Science.gov (United States)

    Sathiakumar, Sharadha; Barbot, Sylvain Denis; Agram, Piyush

    2017-12-01

    Geodetic networks consisting of high precision and high rate Global Navigation Satellite Systems (GNSS) stations continuously monitor seismically active regions of the world. These networks measure surface displacements and the amount of geodetic strain accumulated in the region and give insight into the seismic potential. SuGar (Sumatra GPS Array) in Sumatra, GEONET (GNSS Earth Observation Network System) in Japan, and PBO (Plate Boundary Observatory) in California are some examples of established networks around the world that are constantly expanding with the addition of new stations to improve the quality of measurements. However, installing new stations to existing networks is tedious and expensive. Therefore, it is important to choose suitable locations for new stations to increase the precision obtained in measuring the geophysical parameters of interest. Here we describe a methodology to design optimal geodetic networks that augment the existing system and use it to investigate seismo-tectonics at convergent and transform boundaries considering land-based and seafloor geodesy. The proposed network design optimization would be pivotal to better understand seismic and tsunami hazards around the world. Land-based and seafloor networks can monitor fault slip around subduction zones with significant resolution, but transform faults are more challenging to monitor due to their near-vertical geometry.

  2. Re-evaluating fault zone evolution, geometry, and slip rate along the restraining bend of the southern San Andreas Fault Zone

    Science.gov (United States)

    Blisniuk, K.; Fosdick, J. C.; Balco, G.; Stone, J. O.

    2017-12-01

    This study presents new multi-proxy data to provide an alternative interpretation of the late -to-mid Quaternary evolution, geometry, and slip rate of the southern San Andreas fault zone, comprising of the Garnet Hill, Banning, and Mission Creek fault strands, along its restraining bend near the San Bernardino Mountains and San Gorgonio Pass. Present geologic and geomorphic studies in the region indicate that as the Mission Creek and Banning faults diverge from one another in the southern Indio Hills, the Banning Fault Strand accommodates the majority of lateral displacement across the San Andreas Fault Zone. In this currently favored kinematic model of the southern San Andreas Fault Zone, slip along the Mission Creek Fault Strand decreases significantly northwestward toward the San Gorgonio Pass. Along this restraining bend, the Mission Creek Fault Strand is considered to be inactive since the late -to-mid Quaternary ( 500-150 kya) due to the transfer of plate boundary strain westward to the Banning and Garnet Hills Fault Strands, the Jacinto Fault Zone, and northeastward, to the Eastern California Shear Zone. Here, we present a revised geomorphic interpretation of fault displacement, initial 36Cl/10Be burial ages, sediment provenance data, and detrital geochronology from modern catchments and displaced Quaternary deposits that improve across-fault correlations. We hypothesize that continuous large-scale translation of this structure has occurred throughout its history into the present. Accordingly, the Mission Creek Fault Strand is active and likely a primary plate boundary fault at this latitude.

  3. Slip and fall risk on ice and snow:identification, evaluation and prevention

    OpenAIRE

    Gao, Chuansi

    2004-01-01

    Slip and fall accidents and associated injuries on ice and snow are prevalent among outdoor workers and the general public in winter in many regions of the world. To understand and tackle this multi-factorial problem, a multidisciplinary approach was used to identify and evaluate slip and fall risks, and to propose recommendations for prevention of slips and falls on icy and snowy surfaces. Objectives were to present a systems perspective of slip and fall accidents and related risk factors; t...

  4. Triggered surface slips in the Salton Trough associated with the 1999 Hector Mine, California, earthquake

    Science.gov (United States)

    Rymer, M.J.; Boatwright, J.; Seekins, L.C.; Yule, J.D.; Liu, J.

    2002-01-01

    Surface fracturing occurred along the southern San Andreas, Superstition Hills, and Imperial faults in association with the 16 October 1999 (Mw 7.1) Hector Mine earthquake, making this at least the eighth time in the past 31 years that a regional earthquake has triggered slip along faults in the Salton Trough. Fractures associated with the event formed discontinuous breaks over a 39-km-long stretch of the San Andreas fault, from the Mecca Hills southeastward to Salt Creek and Durmid Hill, a distance from the epicenter of 107 to 139 km. Sense of slip was right lateral; only locally was there a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 13 mm. Maximum slip values in 1999 and earlier triggered slips are most common in the central Mecca Hills. Field evidence indicates a transient opening as the Hector Mine seismic waves passed the southern San Andreas fault. Comparison of nearby strong-motion records indicates several periods of relative opening with passage of the Hector Mine seismic wave-a similar process may have contributed to the field evidence of a transient opening. Slip on the Superstition Hills fault extended at least 9 km, at a distance from the Hector Mine epicenter of about 188 to 196 km. This length of slip is a minimum value, because we saw fresh surface breakage extending farther northwest than our measurement sites. Sense of slip was right lateral; locally there was a minor (~1 mm) vertical component of slip. Dextral slip ranged from 1 to 18 mm, with the largest amounts found distributed (or skewed) away from the Hector Mine earthquake source. Slip triggered on the Superstition Hills fault commonly is skewed away from the earthquake source, most notably in 1968, 1979, and 1999. Surface slip on the Imperial fault and within the Imperial Valley extended about 22 km, representing a distance from the Hector Mine epicenter of about 204 to 226 km. Sense of slip dominantly was right lateral; the right-lateral component of slip

  5. Shell Tectonics: A Mechanical Model for Strike-slip Displacement on Europa

    Science.gov (United States)

    Rhoden, Alyssa Rose; Wurman, Gilead; Huff, Eric M.; Manga, Michael; Hurford, Terry A.

    2012-01-01

    We introduce a new mechanical model for producing tidally-driven strike-slip displacement along preexisting faults on Europa, which we call shell tectonics. This model differs from previous models of strike-slip on icy satellites by incorporating a Coulomb failure criterion, approximating a viscoelastic rheology, determining the slip direction based on the gradient of the tidal shear stress rather than its sign, and quantitatively determining the net offset over many orbits. This model allows us to predict the direction of net displacement along faults and determine relative accumulation rate of displacement. To test the shell tectonics model, we generate global predictions of slip direction and compare them with the observed global pattern of strike-slip displacement on Europa in which left-lateral faults dominate far north of the equator, right-lateral faults dominate in the far south, and near-equatorial regions display a mixture of both types of faults. The shell tectonics model reproduces this global pattern. Incorporating a small obliquity into calculations of tidal stresses, which are used as inputs to the shell tectonics model, can also explain regional differences in strike-slip fault populations. We also discuss implications for fault azimuths, fault depth, and Europa's tectonic history.

  6. 6d Dirac fermion on a rectangle; scrutinizing boundary conditions, mode functions and spectrum

    Directory of Open Access Journals (Sweden)

    Yukihiro Fujimoto

    2017-09-01

    Full Text Available We classify possible boundary conditions of a 6d Dirac fermion Ψ on a rectangle under the requirement that the 4d Lorentz structure is maintained, and derive the profiles and spectrum of the zero modes and nonzero KK modes under the two specific boundary conditions, (i 4d-chirality positive components being zero at the boundaries and (ii internal chirality positive components being zero at the boundaries. In the case of (i, twofold degenerated chiral zero modes appear which are localized towards specific directions of the rectangle pointed by an angle parameter θ. This leads to an implication for a new direction of pursuing the origin of three generations in the matter fields of the standard model, even though triple-degenerated zero modes are not realized in the six dimensions. When such 6d fermions couple with a 6d scalar with a vacuum expectation value, θ contributes to a mass matrix of zero-mode fermions consisting of Yukawa interactions. The emergence of the angle parameter θ originates from a rotational symmetry in the degenerated chiral zero modes on the rectangle extra dimensions since they do not feel the boundaries. In the case of (ii, this rotational symmetry is promoted to the two-dimensional conformal symmetry though no chiral massless zero mode appears. We also discuss the correspondence between our model on a rectangle and orbifold models in some details.

  7. Asymmetric Barrier Lyapunov Function-Based Wheel Slip Control for Antilock Braking System

    Directory of Open Access Journals (Sweden)

    Xiaolei Chen

    2015-01-01

    Full Text Available As an important device of the aircraft landing system, the antilock braking system (ABS has a function to avoid aircraft wheels self-locking. To deal with the strong nonlinear characteristics, complex nonlinear control schemes are applied in ABS. However, none of existing control schemes focus on the braking operating status, which directly reflects wheels self-locking degree. In this paper, the braking operating status region is divided into three regions: the healthy region, the light slip region, and the deep slip region. An ABLF-based wheel slip controller is proposed for ABS to constrain the braking system operating status in the healthy region and the light slip region. Therefore the ABS will be prevented from operating in the deep slip region. Under the proposed control scheme, self-locking is avoided completely and zero steady state error tracking of the wheel optimal slip ratio is implemented. The Hardware-In-Loop (HIL experiments have validated the effectiveness of the proposed controller.

  8. Localization in the brittle field: the role of frictional properties and implications for earthquake slip

    Science.gov (United States)

    Tullis, T.

    2003-04-01

    Rotary shear friction experiments on layers of simulated gouge and on bare surfaces of rock that generate gouge, with displacements up to several meters, show that in some situations slip becomes localized. The two constitutive parameters that control whether slip localizes are the displacement and the velocity dependence of the shear strength. When slip-weakening and velocity-weakening both occur, slip localizes, since the overall resistance is reduced and less energy is dissipated. Similarly, when slip- and velocity-strengthening both occur, slip delocalizes, again because less energy is dissipated. If the variation of shear resistance with slip and velocity are of opposite sign, then the magnitude of the slip and rate dependencies and the amount and rate of slip determine whether localization or delocalization occur. In most laboratory experiments, the displacement dependence of the strength is minimal and the velocity dependence controls the tendency for localization. However, some experiments illustrate the situation in which the displacement dependence dominates. Regardless of their underlying causes, slip- and velocity-weakening result in unstable slip in compliant systems. Consequently unstable slip and localization are linked through these constitutive properties. This connection between unstable slip, displacement/velocity-weakening, and localization suggests that slip on faults that occurs primarily via earthquakes will be localized. However, localization is more complicated on natural faults because laboratory faults are geometrically simpler than natural ones. Laboratory faults are smooth at long wavelengths, whereas natural faults have approximately a self-similar surface roughness, the amplitude of irregularities being proportional to their wavelength. Thus, slip on a localized surface in a laboratory fault can continue indefinitely, whereas slip on natural faults is likely to require fracture of new wall rock as sufficient slip brings higher

  9. Stability Analysis of Static Slip-Energy Recovery Drive via ...

    African Journals Online (AJOL)

    The stability of the sub synchronous static slip energy recovery scheme for the speed control of slip-ring induction motor is presented. A set of nonlinear differential equations which describe the system dynamics are derived and linearized about an operating point using perturbation technique. The Eigenvalue analysis of the ...

  10. Analysis of Probability of Non-zero Secrecy Capacity for Multi-hop Networks in Presence of Hardware Impairments over Nakagami-m Fading Channels

    Directory of Open Access Journals (Sweden)

    T.-T. Phu

    2016-12-01

    Full Text Available In this paper, we evaluate probability of non-zero secrecy capacity of multi-hop relay networks over Nakagami-m fading channels in presence of hardware impairments. In the considered protocol, a source attempts to transmit its data to a destination by using multi-hop randomize-and-forward (RF strategy. The data transmitted by the source and relays are overheard by an eavesdropper. For performance evaluation, we derive exact expressions of probability of non-zero secrecy capacity (PoNSC, which are expressed by sums of infinite series of exponential functions and exponential integral functions. We then perform Monte Carlo simulations to verify the theoretical analysis.

  11. Surgical results of the slipped medial rectus muscle after hang back recession surgery

    Directory of Open Access Journals (Sweden)

    Yasar Duranoglu

    2014-12-01

    Full Text Available AIM:To analyze the surgical results of a slipped medial rectus muscle (MRM after hang back recession surgery for esotropia.METHODS:Twenty-one patients who underwent re-exploration for diagnosed slipped muscle after hang back recession surgery were included in this retrospective study. Dynamic magnetic resonance imaging was performed to identify the location of the slipped muscle. Ocular motility was evaluated with assessment with prism and cover test in gaze at cardinal positions. The operations were performed by the same consultant. Intraoperative forced duction test was performed under general anesthesia. The empty sheath of the slipped MRM was resected and the muscle was advanced to the original insertion site in all patients.RESULTS:The average age of 21 patients who hadconsecutive exotropia with a slipped MRM at the time of presentation was 17.4±5.4y (5-50y. The average duration between the first operation and the diagnosis of the slipped muscle was 25mo (12 to 36mo. The mean follow up after the corrective surgery was 28mo. The mean preoperative adduction limitation in the field of action of the slipped muscle was -2.26 (ranging from -1 to -4. All patients had full adduction postoperatively.CONCLUSION:The diagnosis of the slipped muscle should be confirmed during the strabismus surgery. The slipped muscle may be caused due to insufficient suture and excessive rubbing of the eye. When divergent strabismus is observed after the recession of the MRM, a slipped muscle should be considered in the differential diagnosis.

  12. Comparative investigation of five nanoparticles in flow of viscous fluid with Joule heating and slip due to rotating disk

    Science.gov (United States)

    Qayyum, Sumaira; Khan, Muhammad Ijaz; Hayat, Tasawar; Alsaedi, Ahmed

    2018-04-01

    Present article addresses the comparative study for flow of five water based nanofluids. Flow in presence of Joule heating is generated by rotating disk with variable thickness. Nanofluids are suspension of Silver (Ag), Copper (Cu), Copper oxide (CuO), Aluminum oxide or Alumina (Al2O3), Titanium oxide or titania (TiO2) and water. Boundary layer approximation is applied to partial differential equations. Using Von Karman transformations the partial differential equations are converted to ordinary differential equations. Convergent series solutions are obtained. Graphical results are presented to examine the behaviors of axial, radial and tangential velocities, temperature, skin friction and Nusselt number. It is observed that radial, axial and tangential velocities decay for slip parameters. Axial velocity decays for larger nanoparticle volume fraction. Effect of nanofluids on velocities dominant than base material. Temperature rises for larger Eckert number and temperature of silver water nanofluid is more because of its higher thermal conductivity. Surface drag force reduces for higher slip parameters. Transfer of heat is more for larger disk thickness index.

  13. SLOW SLIP EVENTS: PARAMETERS, CONDITIONS OF OCCURRENCE, AND FUTURE RESEARCH PROSPECTS

    Directory of Open Access Journals (Sweden)

    G. G. Kocharyan

    2014-01-01

    Full Text Available Slow slip events along faults and fractures are reviewed. Such inter-block displacements can be recorded at various scale levels and considered as transitional from quasi-stable (creep to dynamic slip (earthquake. Such events include seismogenic slip along faults at velocities by one to three orders lower than those in case of 'normal' earthquakes, as well as aseismic slip cases. Discovering such events facilitates better understanding of how energy accumulated during deformation of the crust is released.Studying conditions and the evolution of transitional regimes can provide new important information on the structure and regularities of deformation in fault zones.Data from latest publications by different authors are consolidated, and the data analysis results are presented. Over 170 slow slip events are reviewed. Based on the consolidated data and modelling results obtained by the authors, relationships between parameters of the reviewed process are established, scale relations between the events are considered, and a first-approximation analysis is conducted for impacts of geomaterial characteristics on various deformation regimes.Low-frequency earthquake foci and slow slip sites are most typically located in zones of transition from stable creep areas to seismogenic segments of the discontinuity (Fig. 3 It can be logically supposed that in such transitional zones, the interface has specific frictional properties providing for a regime that can be termed as 'conditionally stable slip'.The duration of slow deformation events is roughly proportional to the released seismic moment, while such a ratio is close to self-similarity in case of 'normal' earthquakes (Fig. 4. In case of slow slip, an area of the displaced section is larger by many factors than the corresponding value for an earthquake with the same seismic moment, while an average displacement amplitude along the fault is significantly smaller (Figures 5 and 6. Velocities of slip

  14. Interferometry with particles of non-zero rest mass: topological experiments

    International Nuclear Information System (INIS)

    Opat, G.I.

    1994-01-01

    Interferometry as a space-time process is described, together with its topology. Starting from this viewpoint, a convenient unified formalism for the phase shifts which arise in particle interferometry is developed. This formalism is based on a covariant form of Hamilton's action principle and Lagrange's equations of motion. It will be shown that this Lorentz invariant formalism yields a simple perturbation theoretic expression for the general phase shift that arises in matter-wave interferometry. The Lagrangian formalism is compared with the more usual formalism based on the wave propagation vector and frequency. The resulting formalism will be used to analyse the Sagnac effect, gravitational field measurements, and several Aharonov-Bohm-like topological phase shifts. Several topological interferometric experiments using particles of non-zero rest mass are discussed. These experiments involve the use of electrons, neutrons and neutral atoms. Neutron experiments will be emphasised. 45 refs., 15 figs

  15. Plate rotations, fault slip rates, fault locking, and distributed deformation in northern Central America from 1999-2017 GPS observations

    Science.gov (United States)

    Ellis, A. P.; DeMets, C.; Briole, P.; Cosenza, B.; Flores, O.; Guzman-Speziale, M.; Hernandez, D.; Kostoglodov, V.; La Femina, P. C.; Lord, N. E.; Lasserre, C.; Lyon-Caen, H.; McCaffrey, R.; Molina, E.; Rodriguez, M.; Staller, A.; Rogers, R.

    2017-12-01

    We describe plate rotations, fault slip rates, and fault locking estimated from a new 100-station GPS velocity field at the western end of the Caribbean plate, where the Motagua-Polochic fault zone, Middle America trench, and Central America volcanic arc faults converge. In northern Central America, fifty-one upper-plate earthquakes caused approximately 40,000 fatalities since 1900. The proximity of main population centers to these destructive earthquakes and the resulting loss of human life provide strong motivation for studying the present-day tectonics of Central America. Plate rotations, fault slip rates, and deformation are quantified via a two-stage inversion of daily GPS position time series using TDEFNODE modeling software. In the first stage, transient deformation associated with three M>7 earthquakes in 2009 and 2012 is estimated and removed from the GPS position time series. In Stage 2, linear velocities determined from the corrected GPS time series are inverted to estimate deformation within the western Caribbean plate, slip rates along the Motagua-Polochic faults and faults in the Central America volcanic arc, and the gradient of extension in the Honduras-Guatemala wedge. Major outcomes of the second inversion include the following: (1) Confirmation that slip rates on the Motagua fault decrease from 17-18 mm/yr at its eastern end to 0-5 mm/yr at its western end, in accord with previous results. (2) A transition from moderate subduction zone locking offshore from southern Mexico and parts of southern Guatemala to weak or zero coupling offshore from El Salvador and parts of Nicaragua along the Middle America trench. (3) Evidence for significant east-west extension in southern Guatemala between the Motagua fault and volcanic arc. Our study also shows evidence for creep on the eastern Motagua fault that diminishes westward along the North America-Caribbean plate boundary.

  16. Slip Zone versus Damage Zone Micromechanics, Arima-Takasuki Tectonic Line, Japan

    Science.gov (United States)

    White, J. C.; Lin, A.

    2017-12-01

    The Arima-Takasuki Tectonic Line (ATTL) of southern Honshu, Japan is defined by historically active faults and multiple splays producing M7 earthquakes. The damage zone of the ATTL comprises a broad zone of crushed, comminuted and pulverized granite/rhyolite1,2containing cm-scale slip zones and highly comminuted injection veins. In this presentation, prior work on the ATTL fault rocks is extending to include microstructural characterization by transmission electron microscopy (TEM) from recent trenching of the primary slip zone, as well as secondary slip zones. This is necessary to adequately characterize the extremely fine-grained material (typically less than 1mm) in both damage and core zones. Damage zone material exhibits generally random textures3 whereas slip zones are macroscopically foliated, and compositionally layered, notwithstanding a fairly homogeneous protolith. The latter reflects fluid-rock interaction during both coseismic and interseismic periods. The slip zones are microstructurally heterogeneous at all scales, comprising not only cataclasites and phyllosilicate (clay)-rich gouge zones, but Fe/Mn pellets or clasts that are contained within gouge. These structures appear to have rolled and would suggest rapid recrystallization and/or growth. A central question related to earthquake recurrence along existing faults is the nature of the gouge. In both near-surface exposures and ongoing drilling at depth, "plastic" or "viscous" gouge zones comprise ultra-fine-grained clay-siliciclastic particles that would not necessarily respond in a simple frictional manner. Depending on whether the plastic nature of these slip zones develops during or after slip, subsequent focusing of slip within them could be complicated. 1 Mitchell, T.A., Ben-Zion, Y., Shimamoto, T., 2011. Ear. Planet. Sci. Lett. 308, 284-297. 2 Lin, A., Yamashita, K, Tanaka, M. J., 2013. Struc. Geol. 48, 3-13. 3 White, J.C., Lin, A. 2016. Proc. AGU Fall Mtg., T42-02 San Francisco.

  17. Numerical simulations of conjugate convection combined with surface thermal radiation using an Immersed-Boundary Method

    International Nuclear Information System (INIS)

    Favre, F.; Colomer, G.; Lehmkuhl, O.; Oliva, A.

    2016-01-01

    Dynamic and thermal interaction problems involving fluids and solids were studied through a finite volume-based Navier-Stokes solver, combined with immersed-boundary techniques and the net radiation method. Source terms were included in the momentum and energy equations to enforce the non-slip condition and the conjugate boundary condition including the radiative heat exchange. Code validation was performed through the simulation of two cases from the literature: conjugate natural convection in a square cavity with a conducting side wall; and a cubical cavity with conducting walls and a heat source. The accuracy of the methodology and the validation of the inclusion of moving bodies into the simulation was performed via a theoretical case (paper)

  18. Numerical Simulation of Methane Slip in Dual Fuel Marine Engines

    OpenAIRE

    Han, Jaehyun; Jensen, Michael Vincent; Pang, Kar Mun; Walther, Jens Honore; Schramm, Jesper; Bae, Choongsik

    2017-01-01

    The methane slip is the problematic issue for the engines using natural gas(NG). Because methane is more powerful greenhouse gas (GHG) than CO2, understanding of the methane slip during gas exchange process of the engines is essential. In this study, the influence of the gas pipe geometry and the valve timings on the methane slip was investigated. MAN L28/32DF engine was modeled to simulate the gas exchange process of the four stroke NG-diesel dual fuel engines. The mesh size of the model was...

  19. Detection of slip from multiple sites in an artificial finger

    Energy Technology Data Exchange (ETDEWEB)

    Muridan, N; Chappell, P H; Cranny, A; White, N M [Electronic Systems and Devices Group, School of Electronics and Computer Science, University of Southampton, SO17 1BJ (United Kingdom); Cotton, D P J, E-mail: nm07r@ecs.soton.ac.u [Nanoscience Centre, University of Cambridge, Cambridge (United Kingdom)

    2009-07-01

    A Piezoelectric thick-film sensor is a good candidate for the extraction of information from object slip in hand prosthesis. Five slip sensors were fabricated on different linkages of an artificial hand. The signals from each sensor were compared to the output from the sensor mounted on the fingertip. An analysis of the output signals from all the sensors indicates that the linkage sensors also produce similar output signals to the fingertip sensor. In the next phase of the research, velocity and acceleration of the slipped object will be considered in the analysis.

  20. Mathematical model for thermal and entropy analysis of thermal solar collectors by using Maxwell nanofluids with slip conditions, thermal radiation and variable thermal conductivity

    Science.gov (United States)

    Aziz, Asim; Jamshed, Wasim; Aziz, Taha

    2018-04-01

    In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The non-Newtonian Maxwell nanofluid model is utilized for the working fluid along with slip and convective boundary conditions and comprehensive analysis of entropy generation in the system is also observed. The effect of thermal radiation and variable thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for Cu-water and TiO2-water nanofluids. Results are presented for the velocity, temperature and entropy generation profiles, skin friction coefficient and Nusselt number. The discussion is concluded on the effect of various governing parameters on the motion, temperature variation, entropy generation, velocity gradient and the rate of heat transfer at the boundary.

  1. Episodic tremor and slip explained by fluid-enhanced microfracturing and sealing

    Science.gov (United States)

    Bernaudin, M.; Gueydan, F.

    2017-12-01

    A combination of non-volcanic tremor and transient slow slip events behaviors is commonly observed at plate interface, between locked/seismogenic zone at low depths and stable/ductile creep zone at larger depths. This association defines Episodic Tremor and Slip, systematically highlighted by over-pressurized fluids and near failure shear stress conditions. Here we propose a new mechanical approach that provides for the first time a mechanical and field-based explanation of the observed association between non-volcanic tremor and slow slip events. In contrast with more classical rate-and-state models, this physical model uses a ductile rheology with grain size sensitivity, fluid-driven microfracturing and sealing (e.g. grain size reduction and grain growth) and related pore fluid pressure fluctuations. We reproduce slow slip events by transient ductile strain localization as a result of fluid-enhanced microfracturing and sealing. Moreover, occurrence of macrofracturing during transient strain localization and local increase in pore fluid pressure well simulate non-volcanic tremor. Our model provides therefore a field-based explanation of episodic tremor and slip and moreover predicts the depth and temperature ranges of their occurrence in subduction zones. It implies furthermore that non-volcanic tremor and slow slip events are physically related.

  2. Chiral condensate at nonzero chemical potential in the microscopic limit of QCD

    International Nuclear Information System (INIS)

    Osborn, J. C.; Splittorff, K.; Verbaarschot, J. J. M.

    2008-01-01

    The chiral condensate in QCD at zero temperature does not depend on the quark chemical potential (up to one-third the nucleon mass), whereas the spectral density of the Dirac operator shows a strong dependence on the chemical potential. The cancellations which make this possible also occur on the microscopic scale, where they can be investigated by means of a random matrix model. We show that they can be understood in terms of orthogonality properties of orthogonal polynomials. In the strong non-Hermiticity limit they are related to integrability properties of the spectral density. As a by-product we find exact analytical expressions for the partially quenched chiral condensate in the microscopic domain at nonzero chemical potential.

  3. Locomotion of bacteria in liquid flow and the boundary layer effect on bacterial attachment.

    Science.gov (United States)

    Zhang, Chao; Liao, Qiang; Chen, Rong; Zhu, Xun

    2015-06-12

    The formation of biofilm greatly affects the performance of biological reactors, which highly depends on bacterial swimming and attachment that usually takes place in liquid flow. Therefore, bacterial swimming and attachment on flat and circular surfaces with the consideration of flow was studied experimentally. Besides, a mathematical model comprehensively combining bacterial swimming and motion with flow is proposed for the simulation of bacterial locomotion and attachment in flow. Both experimental and theoretical results revealed that attached bacteria density increases with decreasing boundary layer thickness on both flat and circular surfaces, the consequence of which is inherently related to the competition between bacterial swimming and the non-slip motion with flow evaluated by the Péclet number. In the boundary layer, where the Péclet number is relatively higher, bacterial locomotion mainly depends on bacterial swimming. Thinner boundary layer promotes bacterial swimming towards the surface, leading to higher attachment density. To enhance the performance of biofilm reactors, it is effective to reduce the boundary layer thickness on desired surfaces. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. SLIP VELOCITY IN PULSED DISC AND DOUGHNUT EXTRACTION COLUMN

    Directory of Open Access Journals (Sweden)

    Mohammad Outokesh

    2011-09-01

    Full Text Available In the present work, slip velocity has been measured in a 76 mm diameter pulsed disc and doughnut extraction column for four different liquid-liquid systems. The effects of operating variables including pulsation intensity and dispersed and continuous phase flow rates on slip velocity have been investigated. The existence of three different operational regimes, namely mixersettler, transition, and emulsion regimes, was observed when the energy input was changed. Empirical correlations are derived for prediction of the slip velocity in terms of operating variables, physical properties of the liquid systems, and column geometry for different regimes. Good agreement between prediction and experiments was found for all operating conditions that were investigated.

  5. Influence of the boundary conditions on a temperature field in the turbulent flow near the heated wall

    International Nuclear Information System (INIS)

    Bergant, R.; Tiselj, I.

    2002-01-01

    Direct Numerical Simulation (DNS) of the fully developed velocity and temperature fields in the two-dimensional turbulent channel flow was performed for friction Reynolds number Reτ = 150 and Prandtl number Pr 0.71. Two thermal boundary conditions (BCs), isothermal and isoflux, were carried out. The main difference between two ideal types of boundary conditions is in temperature fluctuations, which retain a nonzero value on the wall for isoflux BC, and zero for isothermal BC. Very interesting effect is seen in streamwise temperature auto-correlation functions. While the auto-correlation function for isothermal BC decreases close to zero in the observed computational domain, the decrease of the auto-correlation function for the isoflux BC is slower and remains well above zero. Therefore, another DNS at two times longer computational domain was performed, but results did not show any differences larger than the statistical uncertainty.(author)

  6. Fracture energy of stick-slip events in a large scale biaxial experiment

    International Nuclear Information System (INIS)

    Okubo, P.G.; Dieterich, J.H.

    1981-01-01

    The concept of apparent fracture energy for the shear failure process is employed by many authors in modeling earthquake sources as dynamically extending shear cracks. Using records of shear strain and relative displacement from stick-slip events generated along a simulated, prepared fault surface in a large (1.5m x 1.5m x 0.4m) granite block and a slip-weakening model for the fault, direct estimates of the apparent shear fracture energy of the stick-slip events have been obtained. For events generated on a finely ground fault surface, apparent fracture energy ranges from 0.06 J/m 2 at a normal stress of 1.1 MPa to 0.8 J/m 2 at a normal stress of 4.6 MPa. In contrast to estimates for tensile crack formation, we find that the apparent fracture energy of stick-slip events increases linearly with normal stress. The results for the slip-weakening model for the stick-slip events are generally consistent with constitutive fault models suggested by observations of stable sliding in smaller scale experiments

  7. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique.

    Science.gov (United States)

    Ghiyas Ud Din; Imran Rafiq Chughtai; Hameed Inayat, Mansoor; Hussain Khan, Iqbal

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and (99m)Tc in the form of sodium pertechnetate eluted from a (99)Mo/(99m)Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer (99m)Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  8. Study of axial mixing, holdup and slip velocity of dispersed phase in a pulsed sieve plate extraction column using radiotracer technique

    International Nuclear Information System (INIS)

    Ghiyas Ud Din; Imran Rafiq Chughtai; Mansoor Hameed Inayat; Iqbal Hussain Khan

    2009-01-01

    Axial mixing, holdup and slip velocity of dispersed phase which are parameters of fundamental importance in the design and operation of liquid-liquid extraction pulsed sieve plate columns have been investigated. Experiments for residence time distribution (RTD) analysis have been carried out for a range of pulsation frequency and amplitude in a liquid-liquid extraction pulsed sieve plate column with water as dispersed and kerosene as continuous phase using radiotracer technique. The column was operated in emulsion region and 99m Tc in the form of sodium pertechnetate eluted from a 99 Mo/ 99m Tc generator was used to trace the dispersed phase. Axial dispersed plug flow model with open-open boundary condition and two points measurement method was used to simulate the hydrodynamics of dispersed phase. It has been observed that the axial mixing and holdup of dispersed phase increases with increase in pulsation frequency and amplitude until a maximum value is achieved while slip velocity decreases with increase in pulsation frequency and amplitude until it approaches a minimum value. Short lived and low energy radiotracer 99m Tc in the form of sodium pertechnetate was found to be a good water tracer to study the hydrodynamics of a liquid-liquid extraction pulsed sieve plate column operating with two immiscible liquids, water and kerosene. Axial dispersed plug flow model with open-open boundary condition was found to be a suitable model to describe the hydrodynamics of dispersed phase in the pulsed sieve plate extraction column.

  9. Hydromagnetic Rarefied Fluid Flow over a Wedge in the Presence of Surface Slip and Thermal Radiation

    Directory of Open Access Journals (Sweden)

    Das K.

    2017-12-01

    Full Text Available An analysis is presented to investigate the effects of thermal radiation on a convective slip flow of an electrically conducting slightly rarefied fluid, having temperature dependent fluid properties, over a wedge with a thermal jump at the surface of the boundary in the presence of a transverse magnetic field. The reduced equations are solved numerically using the finite difference code that implements the 3-stage Lobatto IIIa formula for the partitioned Runge-Kutta method. Numerical results for the dimensionless velocity and temperature as well as for the skin friction coefficient and the Nusselt number are presented through graphs and tables for pertinent parameters to show interesting aspects of the solution.

  10. Coherent Vortex Simulation (CVS) of vortex-dipoles impinging on a no-slip wall

    Science.gov (United States)

    Schneider, Kai; Farge, Marie

    2004-11-01

    Recently, we have introduced a new wavelet-based method, called Coherent Vortex Simulation (CVS), to compute turbulent flows (Flow, Turbulence and Combustion 66(4), 2001). The main idea is to split the flow into two orthogonal parts, a coherent flow and an incoherent background flow, using a nonlinear wavelet filtering of vorticity (Phys. Fluids, 11(8), 1999). As the coherent flow is responsible for the nonlinear dynamics, its evolution is deterministically computed in an adaptive wavelet basis, while the incoherent background flow being noise-like, structureless and decorrelated, its influence on the coherent flow is statistically modelled. Since the coherent part is described by only few wavelets, it is possible to reduce the computational cost, both in terms of memory requirement and cpu time. In order to take into account no-slip boundary conditions, we coupled the adaptive wavelet solver with a volume penalization technique (ACHA, 12, 2002). Here, we present applications of the CVS method to compute vortex dipoles impinging on a no-slip wall in a square container at different Reynolds numbers, which is a challenging test case for numerical methods. We observe the creation of strong vorticity gradients and the production of enstrophy when the dipole hits the wall. We show that the computational grid is dynamically adapted to the dipole evolution, since the wavelet nonlinear filter automatically refines the grid in regions of strong gradients. Note that during the computation only 5% out of 1024^2 wavelet coefficients are thus used.

  11. The steady Navier–Stokes problem with the inhomogeneous Navier-type boundary conditions in a 2D multiply-connected bounded domain

    Czech Academy of Sciences Publication Activity Database

    Neustupa, Jiří

    2015-01-01

    Roč. 35, č. 3 (2015), s. 201-212 ISSN 0174-4747 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : steady Navier-Stokes problem * slip boundary conditions Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/anly.2015.35.issue-3/anly-2014-1304/anly-2014-1304. xml

  12. Slip length crossover on a graphene surface

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Zhi, E-mail: liangz3@rpi.edu [Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Keblinski, Pawel, E-mail: keplip@rpi.edu [Rensselaer Nanotechnology Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-04-07

    Using equilibrium and non-equilibrium molecular dynamics simulations, we study the flow of argon fluid above the critical temperature in a planar nanochannel delimited by graphene walls. We observe that, as a function of pressure, the slip length first decreases due to the decreasing mean free path of gas molecules, reaches the minimum value when the pressure is close to the critical pressure, and then increases with further increase in pressure. We demonstrate that the slip length increase at high pressures is due to the fact that the viscosity of fluid increases much faster with pressure than the friction coefficient between the fluid and the graphene. This behavior is clearly exhibited in the case of graphene due to a very smooth potential landscape originating from a very high atomic density of graphene planes. By contrast, on surfaces with lower atomic density, such as an (100) Au surface, the slip length for high fluid pressures is essentially zero, regardless of the nature of interaction between fluid and the solid wall.

  13. Siegert pseudostate formulation of scattering theory: Nonzero angular momenta in the one-channel case

    International Nuclear Information System (INIS)

    Batishchev, Pavel A.; Tolstikhin, Oleg I.

    2007-01-01

    The Siegert pseudostate (SPS) formulation of scattering theory, originally developed by Tolstikhin, Ostrovsky, and Nakamura [Phys. Rev. A, 58, 2077 (1998)] for s-wave scattering in a spherically symmetric finite-range potential, is generalized to nonzero angular momenta. The orthogonality and completeness properties of SPSs are established and SPS expansions for the outgoing-wave Green's function, physical states, and scattering matrix are obtained. The present formulation completes the theory of SPSs in the one-channel case, making its application to three-dimensional problems possible. The results are illustrated by calculations for several model potentials

  14. Gait adaptations to awareness and experience of a slip when walking on a cross-slope.

    Science.gov (United States)

    Lawrence, Daniel; Domone, Sarah; Heller, Ben; Hendra, Timothy; Mawson, Susan; Wheat, Jon

    2015-10-01

    Falls that occur as a result of a slip are one of the leading causes of injuries, particularly in the elderly population. Previous studies have focused on slips that occur on a flat surface. Slips on a laterally sloping surface are important and may be related to different mechanisms of balance recovery. This type of slip might result in different gait adaptations to those previously described on a flat surface, but these adaptations have not been investigated. The aim of this study was to assess whether, when walking on a cross-slope, young adults adapted their gait when made aware of a potential slip, and having experienced a slip. Gait parameters were compared for three conditions--(1) Normal walking; (2) Walking after being made aware of a potential slip (participants were told that a slip may occur); (3) Walking after experiencing a slip (Participants had already experienced at least one slip induced using a soapy contaminant). Gait parameters were only analysed for trials in which there was no slippery contaminant present on the walkway. Stride length and walking velocity were significantly reduced, and stance duration was significantly greater in the awareness and experience conditions compared to normal walking, with no significant differences in any gait parameters between the awareness and experience conditions. In addition, 46.7% of the slip trials resulted in a fall. This is higher than reported for slips induced on a flat surface, suggesting slips on a cross-slope are more hazardous. This would help explain the more cautious gait patterns observed in both the awareness and experience conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A novel wireless piezoelectric tire sensor for the estimation of slip angle

    International Nuclear Information System (INIS)

    Erdogan, G; Alexander, L; Rajamani, R

    2010-01-01

    This paper introduces a simple approach for the analysis of tire deformation and proposes a new piezoelectric tire sensor for physically meaningful measurements of tire deformations. Tire deformation measurements in the contact patch can be used for the estimation of slip angle, tire forces, slip ratio and tire–road friction coefficient. The specific case of a wireless tire deformation sensor for the estimation of slip angle is taken up in this paper. A sensor in which lateral sidewall deformation can be decoupled from radial deformation is designed. The slope of the lateral deflection curve in the contact patch is used to calculate slip angle. A specially constructed tire test rig is used to experimentally evaluate the performance of the developed sensor. Results show that the developed sensor can accurately estimate slip angles up to values of 5°

  16. Large modulation of carrier transport by grain-boundary molecular packing and microstructure in organic thin films

    KAUST Repository

    Rivnay, Jonathan

    2009-11-08

    Solution-processable organic semiconductors are central to developing viable printed electronics, and performance comparable to that of amorphous silicon has been reported for films grown from soluble semiconductors. However, the seemingly desirable formation of large crystalline domains introduces grain boundaries, resulting in substantial device-to-device performance variations. Indeed, for films where the grain-boundary structure is random, a few unfavourable grain boundaries may dominate device performance. Here we isolate the effects of molecular-level structure at grain boundaries by engineering the microstructure of the high-performance n-type perylenediimide semiconductor PDI8-CN 2 and analyse their consequences for charge transport. A combination of advanced X-ray scattering, first-principles computation and transistor characterization applied to PDI8-CN 2 films reveals that grain-boundary orientation modulates carrier mobility by approximately two orders of magnitude. For PDI8-CN 2 we show that the molecular packing motif (that is, herringbone versus slip-stacked) plays a decisive part in grain-boundary-induced transport anisotropy. The results of this study provide important guidelines for designing device-optimized molecular semiconductors. © 2009 Macmillan Publishers Limited. All rights reserved.

  17. Dependence of dislocation structure on orientation and slip systems in highly oriented nanotwinned Cu

    DEFF Research Database (Denmark)

    Lu, Qiuhong; You, Zesheng; Huang, Xiaoxu

    2017-01-01

    slip Mode I and II are active with dominance of Mode II. In structures deformed at 45° dislocations from slip Modes I, II and III are identified, where Mode III dislocations consist of partial dislocations moving along the TBs and full dislocations inside the twin lamellae gliding on the slip planes...... parallel to the twin plane. The analysis of the dislocation structures illustrate the strong correlation between active slip systems and the dislocation structure and the strong effect of slip mode anisotropy on both the flow stress and strain hardening rate of nanotwinned Cu....

  18. Local void and slip model used in BODYFIT-2PE

    International Nuclear Information System (INIS)

    Chen, B.C.J.; Chien, T.H.; Kim, J.H.; Lellouche, G.S.

    1983-01-01

    A local void and slip model has been proposed for a two-phase flow without the need of fitting any empirical parameters. This model is based on the assumption that all bubbles have reached their terminal rise velocities in the two-phase region. This simple model seems to provide reasonable calculational results when compared with the experimental data and other void and slip models. It provides a means to account for the void and slip of a two-phase flow on a local basis. This is particularly suitable for a fine mesh thermal-hydraulic computer program such as BODYFIT-2PE

  19. Solute softening and defect generation during prismatic slip in magnesium alloys

    Science.gov (United States)

    Yi, Peng; Cammarata, Robert C.; Falk, Michael L.

    2017-12-01

    Temperature and solute effects on prismatic slip of 〈a〉 dislocations in Mg are studied using molecular dynamics simulation. Prismatic slip is controlled by the low mobility screw dislocation. The screw dislocation glides on the prismatic plane through alternating cross-slip between the basal plane and the prismatic plane. In doing so, it exhibits a locking-unlocking mechanism at low temperatures and a more continuous wavy propagation at high temperatures. The dislocation dissociates into partials on the basal plane and the constriction formation of the partials is identified to be the rate-limiting process for unlocking. In addition, the diffusion of partials on the basal plane enables the formation of jogs and superjogs for prismatic slip, which lead to the generation of vacancies and dislocation loops. Solute softening in Mg alloys was observed in the presence of both Al and Y solute. The softening in prismatic slip is found to be due to solute pinning on the basal plane, instead of the relative energy change of the screw dislocation on the basal and prismatic planes, as has been hypothesized.

  20. Fault slip and earthquake recurrence along strike-slip faults — Contributions of high-resolution geomorphic data

    KAUST Repository

    Zielke, Olaf; Klinger, Yann; Arrowsmith, J. Ramon

    2015-01-01

    to contribute to better-informed models of EQ recurrence and slip-accumulation patterns. After reviewing motivation and background, we outline requirements to successfully reconstruct a fault's offset accumulation pattern from geomorphic evidence. We address

  1. Ductility improvement by twinning and twin–slip interaction in a Mg-Y alloy

    International Nuclear Information System (INIS)

    Zhou, Na; Zhang, Zhenyan; Jin, Li; Dong, Jie; Chen, Bin; Ding, Wenjiang

    2014-01-01

    Highlights: • A high elongation of ∼33% was achieved for magnesium alloy through common extrusion. • Basal slip and extension twinning are the dominant deformation modes for the high ductility. • Non-basal slip, contraction twinning and twin-slip interaction also contribute to the ductility. - Abstract: An extruded Mg-3.0Y alloy with non-basal texture of 〈42 ¯ 2 ¯ 3〉 component was fabricated by common extrusion and exhibited a high elongation of ∼33%. The deformation modes and microstructure evolution of the extruded Mg-3.0Y alloy during the tensile test at room temperature were investigated to explore the reasons for the high ductility by transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD). The results suggested that texture changed from 〈42 ¯ 2 ¯ 3〉 to 〈101 ¯ 0〉 component during the tensile deformation, which is attributed the slip and twinning activity. Basal slip and extension twinning are the dominant deformation modes for the high ductility. Meanwhile, the activation of non-basal slip, contraction twinning and twin–slip interaction also contributes to the good ductility of Mg-3.0Y alloy

  2. Friction, slip and structural inhomogeneity of the buried interface

    International Nuclear Information System (INIS)

    Dong, Y; Wu, J; Martini, A; Li, Q

    2011-01-01

    An atomistic model of metallic contacts using realistic interatomic potentials is used to study the connection between friction, slip and the structure of the buried interface. Incommensurability induced by misalignment and lattice mismatch is modeled with contact sizes that are large enough to observe superstructures formed by the relative orientations of the surfaces. The periodicity of the superstructures is quantitatively related to inhomogeneous shear stress distributions in the contact area, and a reduced order model is used to clarify the connection between friction and structural inhomogeneity. Finally, the movement of atoms is evaluated before, during and after slip in both aligned and misaligned contacts to understand how the interfacial structure affects the mechanisms of slip and the corresponding frictional behavior

  3. Unscented Kalman Filter-Trained Neural Networks for Slip Model Prediction

    Science.gov (United States)

    Li, Zhencai; Wang, Yang; Liu, Zhen

    2016-01-01

    The purpose of this work is to investigate the accurate trajectory tracking control of a wheeled mobile robot (WMR) based on the slip model prediction. Generally, a nonholonomic WMR may increase the slippage risk, when traveling on outdoor unstructured terrain (such as longitudinal and lateral slippage of wheels). In order to control a WMR stably and accurately under the effect of slippage, an unscented Kalman filter and neural networks (NNs) are applied to estimate the slip model in real time. This method exploits the model approximating capabilities of nonlinear state–space NN, and the unscented Kalman filter is used to train NN’s weights online. The slip parameters can be estimated and used to predict the time series of deviation velocity, which can be used to compensate control inputs of a WMR. The results of numerical simulation show that the desired trajectory tracking control can be performed by predicting the nonlinear slip model. PMID:27467703

  4. SlipStream: automated provisioning and continuous deployment in the cloud

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Cloud technology is now everywhere. Beyond the hype, it provides a real opportunity to improve the engineering of software systems. Lately the DevOps movement has also gain momentum, which take an agile approach at bringing developers and system administrators closer together to better engineer software systems. In this context, this presentation focuses on new tools for exploiting cloud services (private and public) in order to create a continuous flow between software commits and fully deployed and configured software systems, automatically and on-demand. To illustrate this, we present SlipStream and StratusLab. SlipStream is a new product developed by SixSq, able to create virtual machines and orchestrate multi-machine deployments.  SlipStream started from an idea developed in the context of the ETICS project, led by CERN. StratusLab is an open-source IaaS distribution, able to create public and private clouds. This presentation will also describe a case study where SlipStream dep...

  5. The Effects of Obesity and Age on Balance Recovery After Slipping

    OpenAIRE

    Allin, Leigh Jouett

    2014-01-01

    Falls due to slipping are a serious occupational concern. Slipping is estimated to cause 40-50% of all fall-related injuries. In 2011, falls resulted in 22% of injuries requiring days away from work. Epidemiological data indicates that older and obese adults experience more falls than young, non-obese individuals. An increasingly heavier and older workforce may be exacerbating the problem of slip-induced falls in the workplace. The purpose of this study was to examine the effects of obesity a...

  6. On the micromechanics of slip events in sheared, fluid-saturated fault gouge

    Science.gov (United States)

    Dorostkar, Omid; Guyer, Robert A.; Johnson, Paul A.; Marone, Chris; Carmeliet, Jan

    2017-06-01

    We used a three-dimensional discrete element method coupled with computational fluid dynamics to study the poromechanical properties of dry and fluid-saturated granular fault gouge. The granular layer was sheared under dry conditions to establish a steady state condition of stick-slip dynamic failure, and then fluid was introduced to study its effect on subsequent failure events. The fluid-saturated case showed increased stick-slip recurrence time and larger slip events compared to the dry case. Particle motion induces fluid flow with local pressure variation, which in turn leads to high particle kinetic energy during slip due to increased drag forces from fluid on particles. The presence of fluid during the stick phase of loading promotes a more stable configuration evidenced by higher particle coordination number. Our coupled fluid-particle simulations provide grain-scale information that improves understanding of slip instabilities and illuminates details of phenomenological, macroscale observations.

  7. Monte Carlo simulations of the NJL model near the nonzero temperature phase transition

    International Nuclear Information System (INIS)

    Strouthos, Costas; Christofi, Stavros

    2005-01-01

    We present results from numerical simulations of the Nambu-Jona-Lasinio model with an SU(2)xSU(2) chiral symmetry and N c = 4,8, and 16 quark colors at nonzero temperature. We performed the simulations by utilizing the hybrid Monte Carlo and hybrid Molecular Dynamics algorithms. We show that the model undergoes a second order phase transition. The critical exponents measured are consistent with the classical 3d O(4) universality class and hence in accordance with the dimensional reduction scenario. We also show that the Ginzburg region is suppressed by a factor of 1/N c in accordance with previous analytical predictions. (author)

  8. Ergodic Capacity Analysis of Free-Space Optical Links with Nonzero Boresight Pointing Errors

    KAUST Repository

    Ansari, Imran Shafique

    2015-04-01

    A unified capacity analysis of a free-space optical (FSO) link that accounts for nonzero boresight pointing errors and both types of detection techniques (i.e. intensity modulation/ direct detection as well as heterodyne detection) is addressed in this work. More specifically, an exact closed-form expression for the moments of the end-to-end signal-to-noise ratio (SNR) of a single link FSO transmission system is presented in terms of well-known elementary functions. Capitalizing on these new moments expressions, we present approximate and simple closedform results for the ergodic capacity at high and low SNR regimes. All the presented results are verified via computer-based Monte-Carlo simulations.

  9. Constraining slip rates and spacings for active normal faults

    Science.gov (United States)

    Cowie, Patience A.; Roberts, Gerald P.

    2001-12-01

    Numerous observations of extensional provinces indicate that neighbouring faults commonly slip at different rates and, moreover, may be active over different time intervals. These published observations include variations in slip rate measured along-strike of a fault array or fault zone, as well as significant across-strike differences in the timing and rates of movement on faults that have a similar orientation with respect to the regional stress field. Here we review published examples from the western USA, the North Sea, and central Greece, and present new data from the Italian Apennines that support the idea that such variations are systematic and thus to some extent predictable. The basis for the prediction is that: (1) the way in which a fault grows is fundamentally controlled by the ratio of maximum displacement to length, and (2) the regional strain rate must remain approximately constant through time. We show how data on fault lengths and displacements can be used to model the observed patterns of long-term slip rate where measured values are sparse. Specifically, we estimate the magnitude of spatial variation in slip rate along-strike and relate it to the across-strike spacing between active faults.

  10. Slip experiment on a flat bottom cylindrical shell tank model; Hirazoko ento choso mokei no katsudo jikken

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, T.; Mentani, Y.; Komori, H.; Yoshihara, T. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1998-12-20

    Although large tank slip, as observed in Alaska in 1964, was not reported in the Hyogo Nanbu Earthquake, tank slip becomes a major concern in seismic engineering. In the case of a non-uplifting tank, ifs slip behavior can be accurately described by the simple analytical model which consists of a single degree of freedom on a potential sliding mass (SDOF slip model). Employing friction force during slip, the governing equations of the SDOF slip model are formulated as a discontinuous linear vibration system. From the analogies between the SDOF slip model and the tank, the physical quantities which correspond to the SDOF slip model are determined in accordance with the values which are specified by the seismic design code for the tank. Comparison of the experimental results of the model tank slip with the analytical results based on the SDOF slip model corroborates ifs applicability to the tank slip with sufficient accuracy. (author)

  11. Areas prone to slow slip events impede earthquake rupture propagation and promote afterslip

    Science.gov (United States)

    Rolandone, Frederique; Nocquet, Jean-Mathieu; Mothes, Patricia A.; Jarrin, Paul; Vallée, Martin; Cubas, Nadaya; Hernandez, Stephen; Plain, Morgan; Vaca, Sandro; Font, Yvonne

    2018-01-01

    At subduction zones, transient aseismic slip occurs either as afterslip following a large earthquake or as episodic slow slip events during the interseismic period. Afterslip and slow slip events are usually considered as distinct processes occurring on separate fault areas governed by different frictional properties. Continuous GPS (Global Positioning System) measurements following the 2016 Mw (moment magnitude) 7.8 Ecuador earthquake reveal that large and rapid afterslip developed at discrete areas of the megathrust that had previously hosted slow slip events. Regardless of whether they were locked or not before the earthquake, these areas appear to persistently release stress by aseismic slip throughout the earthquake cycle and outline the seismic rupture, an observation potentially leading to a better anticipation of future large earthquakes. PMID:29404404

  12. SWMF simulation of field-aligned currents for a varying northward and duskward IMF with nonzero dipole tilt

    Directory of Open Access Journals (Sweden)

    H. Wang

    2008-06-01

    Full Text Available This study concentrates on the FACs distribution for the varying northward and duskward interplanetary magnetic field (IMF conditions when the dipole tilt is nonzero. A global MHD simulation (the Space Weather Modeling Framework, SWMF has been used to perform this study. Hemispheric asymmetry of the time evolution of northward IMF Bz (NBZ FACs is found. As the IMF changes from strictly northward to duskward, NBZ FACs shift counterclockwise in both summer and winter hemispheres. However, in the winter hemisphere, the counterclockwise rotation prohibits the duskward NBZ FACs from evolving into the midday R1 FACs. The midday R1 FACs seem to be an intrusion of dawnside R1 FACs. In the summer hemisphere, the NBZ FACs can evolve into the DPY FACs, consisting of the midday R0 and R1 FACs, after the counterclockwise rotation. The hemispheric asymmetry is due to the fact that the dipole tilt favors more reconnection between the IMF and the summer magnetosphere. When mapping the NBZ and DPY FACs into the magnetosphere it is found that the NBZ currents are located on both open and closed field lines, irrespective of the IMF direction. For the DPY FACs the hemispheric asymmetry emerges: the midday R1 FACs and a small part of R0 FACs are on closed field lines in the winter hemisphere, while a small part of the midday R1 FACs and all the R0 FACs are on open field lines in the summer hemisphere. Both IMF By and dipole tilt cause the polar cap hemispheric and local time asymmetric. When the IMF is northward, the summer polar cap is closed on the nightside while the winter polar cap is open. The polar cap boundary tends to move equatorward as the IMF rotates from northward to duskward, except in the summer hemisphere, the polar cap on the dawnside shifts poleward when the clock angle is less than 10°. The further poleward displacement of the polar cap boundary on one oval side is caused by the twist of the tail plasma sheet, which is in accordance with the

  13. Documentation of programs that compute 1) static tilts for a spatially variable slip distribution, and 2) quasi-static tilts produced by an expanding dislocation loop with a spatially variable slip distribution

    Science.gov (United States)

    McHugh, Stuart

    1976-01-01

    The material in this report is concerned with the effects of a vertically oriented rectangular dislocation loop on the tilts observed at the free surface of an elastic half-space. Part I examines the effect of a spatially variable static strike-slip distribution across the slip surface. The tilt components as a function of distance parallel, or perpendicular, to the strike of the slip surface are displayed for different slip-versus-distance profiles. Part II examines the effect of spatially and temporally variable slip distributions across the dislocation loop on the quasi-static tilts at the free surface of an elastic half space. The model discussed in part II may be used to generate theoretical tilt versus time curves produced by creep events.

  14. Progressive slip after removal of screw fixation in slipped capital femoral epiphysis: two case reports

    NARCIS (Netherlands)

    Engelsma, Y.; Morgenstern, P.; van der Sluijs, J.A.; Witbreuk, M.M.

    2012-01-01

    Introduction. In slipped capital femoral epiphysis the femoral neck displaces relative to the head due to weakening of the epiphysis. Early recognition and adequate surgical fixation is essential for a good functional outcome. The fixation should be secured until the closure of the epiphysis to

  15. Slip Control of Electric Vehicle Based on Tire-Road Friction Coefficient Estimation

    Directory of Open Access Journals (Sweden)

    Gaojian Cui

    2017-01-01

    Full Text Available The real-time change of tire-road friction coefficient is one of the important factors that influence vehicle safety performance. Besides, the vehicle wheels’ locking up has become an important issue. In order to solve these problems, this paper comes up with a novel slip control of electric vehicle (EV based on tire-road friction coefficient estimation. First and foremost, a novel method is proposed to estimate the tire-road friction coefficient, and then the reference slip ratio is determined based on the estimation results. Finally, with the reference slip ratio, a slip control based on model predictive control (MPC is designed to prevent the vehicle wheels from locking up. In this regard, the proposed controller guarantees the optimal braking torque on each wheel by individually controlling the slip ratio of each tire within the stable zone. Theoretical analyses and simulation show that the proposed controller is effective for better braking performance.

  16. Near-trench slip potential of megaquakes evaluated from fault properties and conditions

    Science.gov (United States)

    Hirono, Tetsuro; Tsuda, Kenichi; Tanikawa, Wataru; Ampuero, Jean-Paul; Shibazaki, Bunichiro; Kinoshita, Masataka; Mori, James J.

    2016-01-01

    Near-trench slip during large megathrust earthquakes (megaquakes) is an important factor in the generation of destructive tsunamis. We proposed a new approach to assessing the near-trench slip potential quantitatively by integrating laboratory-derived properties of fault materials and simulations of fault weakening and rupture propagation. Although the permeability of the sandy Nankai Trough materials are higher than that of the clayey materials from the Japan Trench, dynamic weakening by thermally pressurized fluid is greater at the Nankai Trough owing to higher friction, although initially overpressured fluid at the Nankai Trough restrains the fault weakening. Dynamic rupture simulations reproduced the large slip near the trench observed in the 2011 Tohoku-oki earthquake and predicted the possibility of a large slip of over 30 m for the impending megaquake at the Nankai Trough. Our integrative approach is applicable globally to subduction zones as a novel tool for the prediction of extreme tsunami-producing near-trench slip. PMID:27321861

  17. Large-magnitude Dextral Slip on the Wairarapa Fault, New Zealand

    Science.gov (United States)

    Rodgers, D. W.; Little, T.

    2004-12-01

    Dextral slip associated with an 1855 Ms 8.0+ event on the Wairarapa fault near Wellington, New Zealand was reported to be 12+/-1 m along a rupture length of at least 148km (Grapes, 1999), one of the largest single-event strike-slip offsets documented worldwide. Initial results from a new study involving detailed neotectonic mapping and microtopographic surveys of offset landforms (including many beheaded, inactive streams) strongly suggest that dextral slip was as much as 50% greater than previously measured. 1855 surface ruptures were mapped with certainty where a linear scarp characterized by steep slopes (30-90°) and exposed alluvium cuts across active or inactive stream channels. The fifteen individual strands comprising the Wairarapa fault zone that we have mapped to date are 1200+/-700 m long and typically left-stepping. Slip in the stepover zones between these strands is distributed amongst two or more ruptures and intervening anticlines, a situation that causes along-strike variations in slip and which locally complicates the interpretation of 1855 displacement. We focused on seven of the best-preserved sites where low-discharge streams are disrupted by the fault zone, including five that had been previously attributed by Grapes (1999) to coseismic slip during the 1855 earthquake. One of these (Pigeon Bush) includes two sequentially displaced, now beheaded linear stream channels, oriented perpendicular to the fault scarp, that preserve distinct offsets with respect to a single deeply incised, originally contiguous gorge on the opposite side of the fault. To quantify the minimum fault displacements at each site, we made 1:500 scale topographic maps employing n = 2,000-10,000 points collected with GPS and laser instrumentation. Measured dextral slip values, here attributed to the 1855 earthquake, include 16.4+/-1.0m (Hinaburn), 12.9+/-2.0m (Cross Creek), 17.2+/-2.5m (Lake Meadows), 18.7+/-1.0m (Pigeon Bush), 13.0+/-1.5m (Pigeon Bush 2), 15.1+/-1.0m (Pigeon

  18. On robustness of a strong solution to the Navier–Stokes equations with Navier's boundary conditions in the L3-norm

    Czech Academy of Sciences Publication Activity Database

    Kučera, P.; Neustupa, Jiří

    2017-01-01

    Roč. 30, č. 4 (2017), s. 1564-1583 ISSN 0951-7715 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : Navier-Stokes equations * slip boundary conditions * regularity Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.767, year: 2016 http://iopscience.iop.org/article/10.1088/1361-6544/aa6166/meta

  19. Inefficient postural responses to unexpected slips during walking in older adults.

    Science.gov (United States)

    Tang, P F; Woollacott, M H

    1998-11-01

    Slips account for a high percentage of falls and subsequent injuries in community-dwelling older adults but not in young adults. This phenomenon suggests that although active and healthy older adults preserve a mobility level comparable to that of young adults, these older adults may have difficulty generating efficient reactive postural responses when they slip. This study tested the hypothesis that active and healthy older adults use a less effective reactive balance strategy than young adults when experiencing an unexpected forward slip occurring at heel strike during walking. This less effective balance strategy would be manifested by slower and smaller postural responses, altered temporal and spatial organization of the postural responses, and greater upper trunk instability after the slip. Thirty-three young adults (age range=19-34 yrs, mean=25+/-4 yrs) and 32 community-dwelling older adults (age range=70-87 yrs, mean=74+/-14 yrs) participated. Subjects walked across a movable forceplate which simulated a forward slip at heel strike. Surface electromyography was recorded from bilateral leg, thigh, hip, and trunk muscles. Kinematic data were collected from the right (perturbed) side of the body. Although the predominant postural muscles and the activation sequence of these muscles were similar between the two age groups, the postural responses of older adults were of longer onset latencies, smaller magnitudes, and longer burst durations compared to young adults. Older adults also showed a longer coactivation duration for the ankle, knee, and trunk agonist/antagonist pairs on the perturbed side and for the knee agonist/antagonist pair on the nonperturbed side. Behaviorally, older adults became less stable after the slips. This was manifested by a higher incidence of being tripped (21 trials in older vs 5 trials in young adults) and a greater trunk hyperextension with respect to young adults. Large arm elevation was frequently used by older adults to assist in

  20. The role of bed-parallel slip in the development of complex normal fault zones

    Science.gov (United States)

    Delogkos, Efstratios; Childs, Conrad; Manzocchi, Tom; Walsh, John J.; Pavlides, Spyros

    2017-04-01

    Normal faults exposed in Kardia lignite mine, Ptolemais Basin, NW Greece formed at the same time as bed-parallel slip-surfaces, so that while the normal faults grew they were intermittently offset by bed-parallel slip. Following offset by a bed-parallel slip-surface, further fault growth is accommodated by reactivation on one or both of the offset fault segments. Where one fault is reactivated the site of bed-parallel slip is a bypassed asperity. Where both faults are reactivated, they propagate past each other to form a volume between overlapping fault segments that displays many of the characteristics of relay zones, including elevated strains and transfer of displacement between segments. Unlike conventional relay zones, however, these structures contain either a repeated or a missing section of stratigraphy which has a thickness equal to the throw of the fault at the time of the bed-parallel slip event, and the displacement profiles along the relay-bounding fault segments have discrete steps at their intersections with bed-parallel slip-surfaces. With further increase in displacement, the overlapping fault segments connect to form a fault-bound lens. Conventional relay zones form during initial fault propagation, but with coeval bed-parallel slip, relay-like structures can form later in the growth of a fault. Geometrical restoration of cross-sections through selected faults shows that repeated bed-parallel slip events during fault growth can lead to complex internal fault zone structure that masks its origin. Bed-parallel slip, in this case, is attributed to flexural-slip arising from hanging-wall rollover associated with a basin-bounding fault outside the study area.