Design of a nonlinear torsional vibration absorber
Tahir, Ammaar Bin
Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is
Flexural Free Vibrations of Multistep Nonuniform Beams
Directory of Open Access Journals (Sweden)
Guojin Tan
2016-01-01
Full Text Available This paper presents an exact approach to investigate the flexural free vibrations of multistep nonuniform beams. Firstly, one-step beam with moment of inertia and mass per unit length varying as I(x=α11+βxr+4 and m(x=α21+βxr was studied. By using appropriate transformations, the differential equation for flexural free vibration of one-step beam with variable cross section is reduced to a four-order differential equation with constant coefficients. According to different types of roots for the characteristic equation of four-order differential equation with constant coefficients, two kinds of modal shape functions are obtained, and the general solutions for flexural free vibration of one-step beam with variable cross section are presented. An exact approach to solve the natural frequencies and modal shapes of multistep beam with variable cross section is presented by using transfer matrix method, the exact general solutions of one-step beam, and iterative method. Numerical examples reveal that the calculated frequencies and modal shapes are in good agreement with the finite element method (FEM, which demonstrates the solutions of present method are exact ones.
Experimental investigation of torsional vibration isolation using Magneto Rheological Elastomer
Directory of Open Access Journals (Sweden)
Praveen Shenoy K
2018-01-01
Full Text Available Rotating systems suffer from lateral and torsional vibrations which have detrimental effect on the roto-dynamic performance. Many available technologies such as vibration isolators and vibration absorbers deal with the torsional vibrations to a certain extent, however passive isolators and absorbers find less application when the input conditions are dynamic. The present work discusses use of a smart material called as Magneto Rheological Elastomer (MRE, whose properties can be changed based on magnetic field input, as a potential isolator for torsional vibrations under dynamic loading conditions. Carbonyl Iron Particles (CIP of average size 5 μm were mixed with RTV Silicone rubber to form the MRE. The effect of magnetic field on the system parameters was comprehended under impulse loading conditions using a custom built in-house system. Series arrangement of accelerometers were used to differentiate between the torsional and the bending modes of vibration of the system. Impact hammer tests were carried out on the torsional system to study its response, in the presence and absence of magnetic field. The tests revealed a shift in torsional frequency in the presence of magnetic field which elucidates the ability of MRE to work as a potential vibration isolator for torsional systems.
Torsional Vibration of a Shafting System under Electrical Disturbances
Directory of Open Access Journals (Sweden)
Ling Xiang
2012-01-01
Full Text Available Torsional vibration responses of a nonlinear shafting system are studied by a modified Riccati torsional transfer matrix combining with the Newmark-β method. Firstly, the system is modeled as a chain consisting of an elastic spring with concentrated mass points, from which a multi-segment lumped mass model is established. Secondly, accumulated errors are eliminated from the eigenfrequencies and responses of the system's torsional vibration by this newly developed procedure. The incremental transfer matrix method, combining the modified Riccati torsional transfer matrix with Newmark-β method, is further applied to solve the dynamical equations for the torsional vibration of the nonlinear shafting system. Lastly, the shafting system of a turbine-generator is employed as an illustrating example, and simulation analysis has been performed on the transient responses of the shaft's torsional vibrations during typical power network disturbances, such as three-phase short circuit, two-phase short circuit and asynchronous juxtaposition. The results validate the present method and are instructive for the design of a turbo-generator shaft.
Resolution of torsional vibration issue for large turbine generators
International Nuclear Information System (INIS)
Evans, D.G.; Giesecke, H.D.; Willman, E.C.; Moffitt, S.P.
1995-01-01
The excitation of turbine generator torsional natural frequencies in the region near 120 Hz by electrical transients in the power system has resulted in blade failures for several large 1,800 rpm nuclear turbines. At Cleveland Electric's Perry Nuclear Power plant a combination of advanced measurement techniques and analyses were used to identify and resolve a potential torsional vibration problem without adverse impact on the plant availability. The Perry turbine generator consists of a high pressure turbine, three low pressure turbines with 43 inch last stage blades, and a 1,250 MWe four pole generator operating at 1,800 rpm. Torsional vibration measurements obtained from random vibration during operation were acquired just prior to the 1994 refueling outage. The measurements indicated that the 26th torsional mode of vibration was just under 120 Hz and within the range of frequencies for which the manufacturer recommends modifying the unit to shift the problem torsional natural frequency. Extensive analytical modeling was used to design a modification to shift the torsional natural frequencies away from 120 Hertz and the modification was implemented during the refueling outage without affecting outage critical path. An off-line ramp test and additional on-line monitoring performed at the conclusion of the outage confirmed that the on-line method provided accurate measurements of the torsional natural frequencies and demonstrated that, with the modification, the torsional natural frequencies were sufficiently removed from 120 Hertz to allow turbine generator operation. The modification, which involved brazing of the tie wires on all last stage blades, also significantly reduces the stress on the last stage blades that result from negative sequence currents, further increasing the operating margin of the turbine generator with respect to electrical transients and faults
Direct observation of vibrational energy dispersal via methyl torsions.
Gardner, Adrian M; Tuttle, William D; Whalley, Laura E; Wright, Timothy G
2018-02-28
Explicit evidence for the role of methyl rotor levels in promoting energy dispersal is reported. A set of coupled zero-order vibration/vibration-torsion (vibtor) levels in the S 1 state of para -fluorotoluene ( p FT) are investigated. Two-dimensional laser-induced fluorescence (2D-LIF) and two-dimensional zero-kinetic-energy (2D-ZEKE) spectra are reported, and the assignment of the main features in both sets of spectra reveals that the methyl torsion is instrumental in providing a route for coupling between vibrational levels of different symmetry classes. We find that there is very localized, and selective, dissipation of energy via doorway states, and that, in addition to an increase in the density of states, a critical role of the methyl group is a relaxation of symmetry constraints compared to direct vibrational coupling.
Directory of Open Access Journals (Sweden)
Zihao Liu
2016-01-01
Full Text Available Torsional vibration of shafts is a very important problem in engineering, in particular in ship engines and aeroengines. Due to their high levels of integration and complexity, it is hard to get their accurate structural data or accurate modal data. This lack of data is unhelpful to vibration control in the form of structural modifications. Besides, many parts in shaft systems are not allowed to be modified such as rotary inertia of a pump or an engine, which is designed for achieving certain functions. This paper presents a strategy for torsional vibration control of shaft systems in the form of structural modifications based on receptances, which does not need analytical or modal models of the systems under investigation. It only needs the torsional receptances of the system, which can be obtained by testing simple auxiliary structure attached to relevant locations of the shaft system and using the finite element model (FEM of the simple structure. An optimization problem is constructed to determine the required structural modifications, based on the actual requirements of modal frequencies and mode shapes. A numerical experiment is set up and the influence of several system parameters is analysed. Several scenarios of constraints in practice are considered. The numerical simulation results demonstrate the effectiveness of this method and its feasibility in solving torsional vibration problems in practice.
Torsional vibrations of shafts of mechanical systems
Gulevsky, V. A.; Belyaev, A. N.; Trishina, T. V.
2018-03-01
The aim of the research is to compare the calculated dependencies for determining the equivalent rigidity of a mechanical system and to come to an agreement on the methods of compiling dynamic models for systems with elastic reducer couplings in applied and classical oscillation theories. As a result of the analysis, it was revealed that most of the damage in the mechanisms and their details is due to the appearance of oscillations due to the dynamic impact of various factors: shock and alternating loads, unbalanced parts of machines, etc. Therefore, the designer at the design stage, and the engineer in the process of operation should provide the possibility of regulating the oscillatory processes both in details and machines by means of creating rational designs, as well as the use of special devices such as vibration dampers, various vibrators with optimal characteristics. A method is proposed for deriving a formula for determining the equivalent stiffness of a double-mass oscillating system of a multistage reducer with elastic reducer links without taking into account the internal losses and inertia of its elements, which gives a result completely coinciding with the result obtained by the classical theory of small mechanical oscillations and allows eliminating formulas for reducing the moments of inertia of the flywheel masses and the stiffness of the shafts.
Wang, Y. M.; Xu, W. C.; Wu, S. Q.; Chai, C. W.; Liu, X.; Wang, S. H.
2018-03-01
The torsional oscillation is the dominant vibration form for the impression cylinder of printing machine (printing cylinder for short), directly restricting the printing speed up and reducing the quality of the prints. In order to reduce torsional vibration, the active control method for the printing cylinder is obtained. Taking the excitation force and moment from the cylinder gap and gripper teeth open & closing cam mechanism as variable parameters, authors establish the dynamic mathematical model of torsional vibration for the printing cylinder. The torsional active control method is based on Particle Swarm Optimization(PSO) algorithm to optimize input parameters for the serve motor. Furthermore, the input torque of the printing cylinder is optimized, and then compared with the numerical simulation results. The conclusions are that torsional vibration active control based on PSO is an availability method to the torsional vibration of printing cylinder.
Spontaneous formation of non-uniform double helices for elastic rods under torsion
International Nuclear Information System (INIS)
Li, Hongyuan; Zhao, Shumin; Xia, Minggang; He, Siyu; Yang, Qifan; Yan, Yuming; Zhao, Hanqiao
2017-01-01
The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory. - Highlights: • An ideal model is conceived to investigate the spontaneous formation of double helices for rods under torsion. • Variational method is used to obtain a universal result for the double helix formation process • Self-contact and surface friction is considered to analyze the non-uniform double helix. • A novel method of producing double helix with arbitrary configuration is proposed and demonstrated. • The experiment results agree well with the theory.
Spontaneous formation of non-uniform double helices for elastic rods under torsion
Energy Technology Data Exchange (ETDEWEB)
Li, Hongyuan [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Zhao, Shumin, E-mail: zhaosm@mail.xjtu.edu.cn [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Xia, Minggang [Department of Optical Information Science and Technology, School of Science, Xi' an Jiaotong University, 710049 (China); Laboratory of Nanostructure and Physics Properties, School of Science, Xi' an Jiaotong University, 710049 (China); He, Siyu [Department of Applied Physics, School of Science, Xi' an Jiaotong University, Shaanxi 710049 (China); Yang, Qifan [Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Shaanxi 710049 (China); Yan, Yuming [Department of Electrical Engineering and Automation, School of Electrical Engineering, Xi' an Jiaotong University, Shaanxi 710049 (China); Zhao, Hanqiao [Department of Biomedical Engineering, School of Life Science and Technology, Xi' an Jiaotong University, Shaanxi 710049 (China)
2017-02-19
The spontaneous formation of double helices for filaments under torsion is common and significant. For example, the research on the supercoiling of DNA is helpful for understanding the replication and transcription of DNA. Similar double helices can appear in carbon nanotube yarns, cables, telephone wires and so forth. We noticed that non-uniform double helices can be produced due to the surface friction induced by the self-contact. Therefore an ideal model was presented to investigate the formation of double helices for elastic rods under torque. A general equilibrium condition which is valid for both the smooth surface and the rough surface situations is derived by using the variational method. By adding further constraints, the smooth and rough surface situations are investigated in detail respectively. Additionally, the model showed that the specific process of how to twist and slack the rod can determine the surface friction and hence influence the configuration of the double helix formed by rods with rough surfaces. Based on this principle, a method of manufacturing double helices with designed configurations was proposed and demonstrated. Finally, experiments were performed to verify the model and the results agreed well with the theory. - Highlights: • An ideal model is conceived to investigate the spontaneous formation of double helices for rods under torsion. • Variational method is used to obtain a universal result for the double helix formation process • Self-contact and surface friction is considered to analyze the non-uniform double helix. • A novel method of producing double helix with arbitrary configuration is proposed and demonstrated. • The experiment results agree well with the theory.
Numerical Investigation of Damping of Torsional Beam Vibrations by Viscous Bimoments
DEFF Research Database (Denmark)
Hoffmeyer, David; Høgsberg, Jan Becker
2017-01-01
Damping of torsional beam vibrations of slender beam–structures with thin–walled cross–sections is investigated. Analytical results from solving the differential equation governing torsion with viscous bimoments imposed at the boundary, are compared with a numerical approach with three...
Optimal design of a magneto-rheological brake absorber for torsional vibration control
International Nuclear Information System (INIS)
Nguyen, Q H; Choi, S B
2012-01-01
This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given. (paper)
Optimal design of a magneto-rheological brake absorber for torsional vibration control
Nguyen, Q. H.; Choi, S. B.
2012-02-01
This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given.
Torsional vibration signal analysis as a diagnostic tool for planetary gear fault detection
Xue, Song; Howard, Ian
2018-02-01
This paper aims to investigate the effectiveness of using the torsional vibration signal as a diagnostic tool for planetary gearbox faults detection. The traditional approach for condition monitoring of the planetary gear uses a stationary transducer mounted on the ring gear casing to measure all the vibration data when the planet gears pass by with the rotation of the carrier arm. However, the time variant vibration transfer paths between the stationary transducer and the rotating planet gear modulate the resultant vibration spectra and make it complex. Torsional vibration signals are theoretically free from this modulation effect and therefore, it is expected to be much easier and more effective to diagnose planetary gear faults using the fault diagnostic information extracted from the torsional vibration. In this paper, a 20 degree of freedom planetary gear lumped-parameter model was developed to obtain the gear dynamic response. In the model, the gear mesh stiffness variations are the main internal vibration generation mechanism and the finite element models were developed for calculation of the sun-planet and ring-planet gear mesh stiffnesses. Gear faults on different components were created in the finite element models to calculate the resultant gear mesh stiffnesses, which were incorporated into the planetary gear model later on to obtain the faulted vibration signal. Some advanced signal processing techniques were utilized to analyses the fault diagnostic results from the torsional vibration. It was found that the planetary gear torsional vibration not only successfully detected the gear fault, but also had the potential to indicate the location of the gear fault. As a result, the planetary gear torsional vibration can be considered an effective alternative approach for planetary gear condition monitoring.
Observer-based output-feedback control to eliminate torsional drill-string vibrations
Vromen, T.G.M.; Wouw, van de N.; Doris, A.; Astrid, P.; Nijmeijer, H.
2014-01-01
Torsional stick-slip vibrations decrease the performance and reliability of drilling systems used for the exploration of energy and mineral resources. In this work, we present the design of a nonlinear observer-based output-feedback control strategy to eliminate these vibrations. We apply the
Low frequency torsional vibration gaps in the shaft with locally resonant structures
International Nuclear Information System (INIS)
Yu Dianlong; Liu Yaozong; Wang Gang; Cai Li; Qiu Jing
2006-01-01
The propagation of torsional wave in the shaft with periodically attached local resonators is studied with the transfer matrix theory and the finite element method. The analytical dispersion relation and the complex band structure of such a structure is presented for the first time, which indicates the existence of low frequency gaps. The effect of shaft material on the vibration attenuation in band gap is investigated. The frequency response function of the shaft with finite periodic locally resonant oscillators is simulated with finite element method, which shows large vibration attenuation in the frequency range of the gap as expected. The low frequency torsional gap in shafts provides a new idea for vibration control
Startsev, V. O.; Lebedev, M. P.; Molokov, M. V.
2018-03-01
A method to measure the glass-transition temperature of polymers and polymeric matrices of composite materials with the help of an inverse torsion pendulum over a wide range of temperatures is considered combining the method of free torsional vibrations and a quasi-static torsion of specimens. The glass-transition temperature Tg of a KMKS-1-80. T10 fiberglass, on increasing the frequency of freely damped torsional vibrations from 0.7 to 9.6 Hz, was found to increase from 132 to 140°C. The value of Tg of these specimens, determined by measuring the work of their torsion through a small fixed angle was 128.6°C ± 0.8°C. It is shown that the use of a torsion pendulum allows one to determine the glass-transition temperature of polymeric or polymer matrices of PCMs in dynamic and quasi-static deformation regimes of specimens.
Gardner, Adrian M.; Tuttle, William Duncan; Whalley, Laura E.; Claydon, Andrew; Carter, Joseph H.; Wright, Timothy G.
2017-06-01
The S_{1} electronic state and ground state of the cation of para-fluorotoluene (pFT) have been investigated using resonance-enhanced multiphoton ionization (REMPI) spectroscopy and zero-kinetic-energy (ZEKE) spectroscopy. Here we focus on the low wavenumber region where a number of "pure" torsional, fundamental vibrational and vibration-torsional levels are expected; assignments of observed transitions are discussed, which are compared to results of published work on toluene (methylbenzene) from the Lawrance group. The similarity in the activity observed in the excitation spectrum of the two molecules is striking. A. M. Gardner, W. D. Tuttle, L. Whalley, A. Claydon, J. H. Carter and T. G. Wright, J. Chem. Phys., 145, 124307 (2016). J. R. Gascooke, E. A. Virgo, and W. D. Lawrance J. Chem. Phys., 143, 044313 (2015).
Two methods for damping torsional vibrations in DFIG-based wind generators using power converters
Zhao, Zuyi; Lu, Yupu; Xie, Da; Yu, Songtao; Wu, Wangping
2017-01-01
This paper proposes novel damping control algorithms by using static synchronous compensator (STATCOM) and energy storage system (ESS) to damp torsional vibrations in doubly fed induction generator (DFIG) based wind turbine systems. It first analyses the operating characteristics of STATCOM and ESS for regulating power variations to increase grid voltage stability. Then, new control strategies for STATCOM and ESS are introduced to damp the vibrations. It is followed by illustration of their effectiveness to damp the drive train torsional vibrations of wind turbines, which can be caused by grid disturbances, such as voltage sags and frequency fluctuations. Results suggest that STATCOM is a promising technology to mitigate the torsional vibrations caused by grid voltage sags. By contrast, the ESS connected to the point of common coupling (PCC) of wind turbine systems shows even obvious advantages because of its capability of absorbing/releasing both active and reactive power. It can thus be concluded that STATCOM is useful for stabilizing power system voltage fluctuations, and ESS is more effective both in regulating PCC voltage fluctuations and damping torsional vibrations caused by grid voltage frequency fluctuations.
Torsional vibration of crankshaft in an engine propeller nonlinear dynamical system
Zhang, X.; Yu, S. D.
2009-01-01
Theoretical and experimental studies on torsional vibration of an aircraft engine-propeller system are presented in this paper. Two system models—a rigid body model and a flexible body model, are developed for predicting torsional vibrations of the crankshaft under different engine powers and propeller pitch settings. In the flexible body model, the distributed torsional flexibility and mass moment of inertia of the crankshaft are considered using the finite element method. The nonlinear autonomous equations of motion for the engine-propeller dynamical system are established using the augmented Lagrange equations, and solved using the Runge-Kutta method after a degrees of freedom reduction scheme is applied. Experiments are carried out on a three-cylinder four-stroke engine. Both theoretical and experimental studies reveal that the crankshaft flexibility has significant influence on the system dynamical behavior.
Vibration of nonuniform carbon nanotube with attached mass via nonlocal Timoshenko beam theory
International Nuclear Information System (INIS)
Tang, Hai Li; Shen, Zhi Bin; Li, Dao Kui
2014-01-01
This paper studies the vibrational behavior of nonuniform single-walled carbon nanotube (SWCNT) carrying a nanoparticle. A nonuniform cantilever beam with a concentrated mass at the free end is analyzed according to the nonlocal Timoshenko beam theory. A governing equation of a nonuniform SWCNT with attached mass is established. The transfer function method incorporating with the perturbation method is utilized to obtain the resonant frequencies of a vibrating nonlocal cantilever-mass system. The effects of the nonlocal parameter, taper ratio and attached mass on the natural frequencies and frequency shifts are discussed. Obtained results indicate that the sensitivity of the frequency shifts on the attached mass increases when the length-to-diameter ratio decreases. Tapered SWCNT possesses higher fundamental frequencies if the taper ratio becomes larger.
Torsional Vibration in the National Wind Technology Center’s 2.5-Megawatt Dynamometer
Energy Technology Data Exchange (ETDEWEB)
Sethuraman, Latha [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keller, Jonathan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wallen, Robb [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-08-31
This report documents the torsional drivetrain dynamics of the NWTC's 2.5-megawatt dynamometer as identified experimentally and as calculated using lumped parameter models using known inertia and stiffness parameters. The report is presented in two parts beginning with the identification of the primary torsional modes followed by the investigation of approaches to damp the torsional vibrations. The key mechanical parameters for the lumped parameter models and justification for the element grouping used in the derivation of the torsional modes are presented. The sensitivities of the torsional modes to different test article properties are discussed. The oscillations observed from the low-speed and generator torque measurements were used to identify the extent of damping inherently achieved through active and passive compensation techniques. A simplified Simulink model of the dynamometer test article integrating the electro-mechanical power conversion and control features was established to emulate the torque behavior that was observed during testing. The torque response in the high-speed, low-speed, and generator shafts were tested and validated against experimental measurements involving step changes in load with the dynamometer operating under speed-regulation mode. The Simulink model serves as a ready reference to identify the torque sensitivities to various system parameters and to explore opportunities to improve torsional damping under different conditions.
Results from Investigations of Torsional Vibration in Turbine Set Shaft Systems
Taradai, D. V.; Deomidova, Yu. A.; Zile, A. Z.; Tomashevskii, S. B.
2018-01-01
The article generalizes the results obtained from investigations of torsional vibration in the shaft system of the T-175/210-12.8 turbine set installed at the Omsk CHPP-5 combined heat and power plant. Three different experimental methods were used to determine the lowest natural frequencies of torsional vibration excited in the shaft system when the barring gear is switched into operation, when the generator is synchronized with the grid, and in response to unsteady disturbances caused by the grid and by the turbine control and steam admission system. It is pointed out that the experimental values of the lowest natural frequencies (to the fourth one inclusively) determined using three different methods were found to be almost completely identical with one another, even though the shaft system was stopped in the experiments carried out according to one method and the shaft system rotated at the nominal speed in those carried out according to two other methods. The need to further develop the experimental methods for determining the highest natural frequencies is substantiated. The values of decrements for the first, third, and fourth natural torsional vibration modes are obtained. A conclusion is drawn from a comparison between the calculated and experimental data on the shaft system's static twisting about the need to improve the mathematical models for calculating torsional vibration. The measurement procedure is described, and the specific features pertinent to the way in which torsional vibration manifests itself as a function of time and turbine set operating mode under the conditions of its long-term operation are considered. The fundamental measurement errors are analyzed, and their influence on the validity of measured parameters is evaluated. With an insignificant level of free and forced torsional vibrations set up under the normal conditions of turbine set and grid operation, it becomes possible to exclude this phenomenon from the list of main factors
Torsional vibration of a pipe pile in transversely isotropic saturated soil
Zheng, Changjie; Hua, Jianmin; Ding, Xuanming
2016-09-01
This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.
Coupled bending and torsional vibration of a rotor system with nonlinear friction
International Nuclear Information System (INIS)
Hua, Chunli; Cao, Guohua; Zhu, Zhencai; Rao, Zhushi; Ta, Na
2017-01-01
Unacceptable vibrations induced by the nonlinear friction in a rotor system seriously affect the health and reliability of the rotating ma- chinery. To find out the basic excitation mechanism and characteristics of the vibrations, a coupled bending and torsional nonlinear dynamic model of rotor system with nonlinear friction is presented. The dynamic friction characteristic is described with a Stribeck curve, which generates nonlinear friction related to relative velocity. The motion equations of unbalance rotor system are established by the Lagrangian approach. Through numerical calculation, the coupled vibration characteristics of a rotor system under nonlinear friction are well investigated. The influence of main system parameters on the behaviors of the system is discussed. The bifurcation diagrams, waterfall plots, the times series, orbit trails, phase plane portraits and Poincaré maps are obtained to analyze dynamic characteristics of the rotor system and the results reveal multiform complex nonlinear dynamic responses of rotor system under rubbing. These analysis results of the present paper can effectively provide a theoretical reference for structural design of rotor systems and be used to diagnose self- excited vibration faults in this kind of rotor systems. The present research could contribute to further understanding on the self-excited vibration and the bending and torsional coupling vibration of the rotor systems with Stribeck friction model.
Coupled bending and torsional vibration of a rotor system with nonlinear friction
Energy Technology Data Exchange (ETDEWEB)
Hua, Chunli; Cao, Guohua; Zhu, Zhencai [China University of Mining and Technology, Xuzhou (China); Rao, Zhushi; Ta, Na [Shanghai Jiao Tong University, Shanghai (China)
2017-06-15
Unacceptable vibrations induced by the nonlinear friction in a rotor system seriously affect the health and reliability of the rotating ma- chinery. To find out the basic excitation mechanism and characteristics of the vibrations, a coupled bending and torsional nonlinear dynamic model of rotor system with nonlinear friction is presented. The dynamic friction characteristic is described with a Stribeck curve, which generates nonlinear friction related to relative velocity. The motion equations of unbalance rotor system are established by the Lagrangian approach. Through numerical calculation, the coupled vibration characteristics of a rotor system under nonlinear friction are well investigated. The influence of main system parameters on the behaviors of the system is discussed. The bifurcation diagrams, waterfall plots, the times series, orbit trails, phase plane portraits and Poincaré maps are obtained to analyze dynamic characteristics of the rotor system and the results reveal multiform complex nonlinear dynamic responses of rotor system under rubbing. These analysis results of the present paper can effectively provide a theoretical reference for structural design of rotor systems and be used to diagnose self- excited vibration faults in this kind of rotor systems. The present research could contribute to further understanding on the self-excited vibration and the bending and torsional coupling vibration of the rotor systems with Stribeck friction model.
Gagneza, G. P. S.; Chandramohan, Sujatha
2018-05-01
Designing the suspension system of a tracked combat vehicle (CV) is really challenging as it has to satisfy conflicting requirements of good ride comfort, vehicle handling and stability characteristics. Many studies in this field have been reported in literature and it has been found that torsion bars satisfy the designer's conflicting requirements of good ride and handling and thus have reserved a place for themselves as the most widely used suspension system for military track vehicles. Therefore, it is imperative to evaluate the effectiveness of the torsion bar under dynamic conditions of undulating terrain and validating the same by correlating it with computer simulation results. Thus in the present work, the dynamic simulation of a 2N + 4 degrees of freedom (DOF) mathematical model has been carried out using MATLAB Simulink and the vibration levels were also measured experimentally on a 12 wheel stationed high mobility military tracked infantry combat vehicle (ICV BMP-II) traversing different terrain, that is, Aberdeen proving ground (APG) and Sinusoidal, at a constant vehicle speed. The dynamic force transmitted to the hull CG through the 12 torsion bar suspension systems was computed to be around 26,700 N and found to match the measured values. The vibration isolation of the torsion bar in bounce was found to be effective, with a transmissibility from the road wheel to the hull of about 0.6.
Torsional Vibrations of a Conic Shaft with Opposite Tapers Carrying Arbitrary Concentrated Elements
Directory of Open Access Journals (Sweden)
Jia-Jang Wu
2013-01-01
Full Text Available The purpose of this paper is to present the exact solution for free torsional vibrations of a linearly tapered circular shaft carrying a number of concentrated elements. First of all, the equation of motion for free torsional vibration of a conic shaft is transformed into a Bessel equation, and, based on which, the exact displacement function in terms of Bessel functions is obtained. Next, the equations for compatibility of deformations and equilibrium of torsional moments at each attaching point (including the shaft ends between the concentrated elements and the conic shaft with positive and negative tapers are derived. From the last equations, a characteristic equation of the form is obtained. Then, the natural frequencies of the torsional shaft are determined from the determinant equation , and, corresponding to each natural frequency, the column vector for the integration constants, , is obtained from the equation . Substitution of the last integration constants into the associated displacement functions gives the corresponding mode shape of the entire conic shaft. To confirm the reliability of the presented theory, all numerical results obtained from the exact method are compared with those obtained from the conventional finite element method (FEM and good agreement is achieved.
Stability analysis of coupled torsional vibration and pressure in oilwell drillstring system
Toumi, S.; Beji, L.; Mlayeh, R.; Abichou, A.
2018-01-01
To address security issues in oilwell drillstring system, the drilling operation handling which is in generally not autonomous but ensured by an operator may be drill bit destructive or fatal for the machine. To control of stick-slip phenomenon, the drillstring control at the right speed taking only the drillstring vibration is not sufficient as the mud dynamics and the pressure change around the drill pipes cannot be neglected. A coupled torsional vibration and pressure model is presented, and the well-posedness problem is addressed. As a Partial Differential Equation-Ordinary Differential Equation (PDE-ODE) coupled system, and in order to maintain a non destructive downhole pressure, we investigate the control stability with and without the damping term in the wave PDE. In terms of, the torsional variable, the downhole pressure, and the annulus pressure, the coupled system equilibrium is shown to be exponentially stable.
Vibration Analysis of Cracked Composite Bending-torsion Beams for Damage Diagnosis
Wang, Kaihong
2004-01-01
An analytical model of cracked composite beams vibrating in coupled bending-torsion is developed. The beam is made of fiber-reinforced composite with fiber angles in each ply aligned in the same direction. The crack is assumed open. The local flexibility concept is implemented to model the open crack and the associated compliance matrix is derived. The crack introduces additional boundary conditions at the crack location and these effects in conjunction with those of material properties are i...
Torsional vibration analysis in turbo-generator shaft due to mal-synchronization fault
Bangunde, Abhishek; Kumar, Tarun; Kumar, Rajeev; Jain, S. C.
2018-03-01
A rotor of turbo-generator shafting is many times subjected to torsional vibrations during its lifespan. The reasons behind these vibrations are three-Phase fault, two-phase fault, line to ground fault, faulty-mal synchronization etc. Sometimes these vibrations can cause complete failure of turbo-generator shafting system. To calculate moment variation during these faults on the shafting system vibration analysis is done using Finite Elements Methods to calculate mass and stiffness matrix. The electrical disturbance caused during Mal-synchronization is put on generator section, and corresponding second order equations are solved by using “Duhamel Integral”. From the moment variation plots at four sections critically loaded sections are identified.
Study on residual stresses in ultrasonic torsional vibration assisted micro-milling
Lu, Zesheng; Hu, Haijun; Sun, Yazhou; Sun, Qing
2010-10-01
It is well known that machining induced residual stresses can seriously affect the dimensional accuracy, corrosion and wear resistance, etc., and further influence the longevity and reliability of Micro-Optical Components (MOC). In Ultrasonic Torsional Vibration Assisted Micro-milling (UTVAM), cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank are the main factors which affect residual stresses. A 2D model of UTVAM was established with FE analysis software ABAQUS. Johnson-Cook's flow stress model and shear failure principle are used as the workpiece material model and failure principle, while friction between tool and workpiece uses modified Coulomb's law whose sliding friction area is combined with sticking friction. By means of FEA, the influence rules of cutting parameters, vibration parameters, mill cutter parameters, the status of wear length of tool flank on residual stresses are obtained, which provides a basis for choosing optimal process parameters and improving the longevity and reliability of MOC.
Coupled lateral-torsional-axial vibrations of a helical gear-rotor-bearing system
Li, Chao-Feng; Zhou, Shi-Hua; Liu, Jie; Wen, Bang-Chun
2014-10-01
Considering the axial and radial loads, a mathematical model of angular contact ball bearing is deduced with Hertz contact theory. With the coupling effects of lateral, torsional and axial vibrations taken into account, a lumped-parameter nonlinear dynamic model of helical gearrotor-bearing system (HGRBS) is established to obtain the transmission system dynamic response to the changes of different parameters. The vibration differential equations of the drive system are derived through the Lagrange equation, which considers the kinetic and potential energies, the dissipative function and the internal/external excitation. Based on the Runge-Kutta numerical method, the dynamics of the HGRBS is investigated, which describes vibration properties of HGRBS more comprehensively. The results show that the vibration amplitudes have obvious fluctuation, and the frequency multiplication and random frequency components become increasingly obvious with changing rotational speed and eccentricity at gear and bearing positions. Axial vibration of the HGRBS also has some fluctuations. The bearing has self-variable stiffness frequency, which should be avoided in engineering design. In addition, the bearing clearance needs little attention due to its slightly discernible effect on vibration response. It is suggested that a careful examination should be made in modelling the nonlinear dynamic behavior of a helical gear-rotor-bearing system.
Qian, Feng; Zhou, Wanlu; Kaluvan, Suresh; Zhang, Haifeng; Zuo, Lei
2018-04-01
Vibration energy harvesting has been extensively studied in recent years to explore a continuous power source for sensor networks and low-power electronics. Torsional vibration widely exists in mechanical engineering; however, it has not yet been well exploited for energy harvesting. This paper presents a theoretical model and an experimental validation of a torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer. The piezoelectric transducer position on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. The piezoelectric transducer can work in d 15 mode (pure shear mode), coupled mode of d 31 and d 33, and coupled mode of d 33, d 31 and d 15, respectively, when attached at different angles. Approximate expressions of voltage and power are derived from the theoretical model, which gave predictions in good agreement with analytical solutions. Physical interpretations on the implicit relationship between the power output and the position parameters of the piezoelectric transducer is given based on the derived approximate expression. The optimal position and angle of the piezoelectric transducer is determined, in which case, the transducer works in the coupled mode of d 15, d 31 and d 33.
DETERMINATION OF STRESS AT TORSIONAL VIBRATIONS OF THE DRILL PIPE STRING
International Nuclear Information System (INIS)
Machabeli, G.; Mchedlishvili, N.; Gelashvili, G.
2008-01-01
The stresses at torsional vibrations of the drill pipe string were simulated using the Matlab software. It is demonstrated that, if the moment of inertia of gyrating mass on the pipe increases, relation β between the reduced moment of inertia I_1 and the polar moment of inertia I_0 of the pipe cross-section also increases, which results in a decrease in the stress of the string τ. At the same time, if the moment of inertia I of the drill pipe string increases, i.e. the relation β decreases, the stress τ also increases. (author)
Coupled transverse and torsional vibrations in a mechanical system with two identical beams
Vlase, S.; Marin, M.; Scutaru, M. L.; Munteanu, R.
2017-06-01
The paper aims to study a plane system with bars, with certain symmetries. Such problems can be encountered frequently in industry and civil engineering. Considerations related to the economy of the design process, constructive simplicity, cost and logistics make the use of identical parts a frequent procedure. The paper aims to determine the properties of the eigenvalues and eigenmodes for transverse and torsional vibrations of a mechanical system where two of the three component bars are identical. The determination of these properties allows the calculus effort and the computation time and thus increases the accuracy of the results in such matters.
Natural Frequncies of Coupled Blade-Bending and Shaft-Torsional Vibrations
Directory of Open Access Journals (Sweden)
B.O. Al-Bedoor
2007-01-01
Full Text Available In this study, the coupled shaft-torsional and blade-bending natural frequencies are investigated using a reduced order mathematical model. The system-coupled model is developed using the Lagrangian approach in conjunction with the assumed modes method to discretize the blade bending deflection. The model accounts for the blade stagger (setting angle, the system rotating speed and its induced stiffening effect. The coupled equations of motion are linearized based on the small deformation theory for the blade bending and shaft torsional deformation to enable calculation of the system natural frequencies for various combinations of system parameters. The obtained coupled eignvalue system is ready for use as a reference for comparison for larger size finite element simulations and for the use as a fast check on natural frequencies for the coupled blade bending and shaft torsional vibrations in the design and diagnostics processes. Some results on the predicted natural frequencies are graphically presented and discussed pertinent to the coupling controlling factors and their effects. In addition, the predicted coupled natural frequencies are validated using the Finite Element Commercial Package (Pro-Mechanica where good agreements are found.
Automated misfire diagnosis in engines using torsional vibration and block rotation
International Nuclear Information System (INIS)
Chen, J; Randall, R B; Peeters, B; Auweraer, H Van der; Desmet, W
2012-01-01
Even though a lot of research has gone into diagnosing misfire in IC engines, most approaches use torsional vibration of the crankshaft, and only a few use the rocking motion (roll) of the engine block. Additionally, misfire diagnosis normally requires an expert to interpret the analysis results from measured vibration signals. Artificial Neural Networks (ANNs) are potential tools for the automated misfire diagnosis of IC engines, as they can learn the patterns corresponding to various faults. This paper proposes an ANN-based automated diagnostic system which combines torsional vibration and rotation of the block for more robust misfire diagnosis. A critical issue with ANN applications is the network training, and it is improbable and/or uneconomical to expect to experience a sufficient number of different faults, or generate them in seeded tests, to obtain sufficient experimental results for the network training. Therefore, new simulation models, which can simulate combustion faults in engines, were developed. The simulation models are based on the thermodynamic and mechanical principles of IC engines and therefore the proposed misfire diagnostic system can in principle be adapted for any engine. During the building process of the models, based on a particular engine, some mechanical and physical parameters, for example the inertial properties of the engine parts and parameters of engine mounts, were first measured and calculated. A series of experiments were then carried out to capture the vibration signals for both normal condition and with a range of faults. The simulation models were updated and evaluated by the experimental results. Following the signal processing of the experimental and simulation signals, the best features were selected as the inputs to ANN networks. The automated diagnostic system comprises three stages: misfire detection, misfire localization and severity identification. Multi-layer Perceptron (MLP) and Probabilistic Neural Networks were
Directory of Open Access Journals (Sweden)
Zheng Hu
2015-01-01
Full Text Available High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes.
Directory of Open Access Journals (Sweden)
Libo Zhao
2016-06-01
Full Text Available Methods to calculate fluid density and viscosity using a micro-cantilever and based on the resonance principle were put forward. Their measuring mechanisms were analyzed and the theoretical equations to calculate the density and viscosity were deduced. The fluid-solid coupling simulations were completed for the micro-cantilevers with different shapes. The sensing chips with micro-cantilevers were designed based on the simulation results and fabricated using the micro electromechanical systems (MEMS technology. Finally, the MEMS resonant sensor was packaged with the sensing chip to measure the densities and viscosities of eight different fluids under the flexural and torsional vibrating modes separately. The relative errors of the measured densities from 600 kg/m3 to 900 kg/m3 and viscosities from 200 μPa·s to 1000 μPa·s were calculated and analyzed with different microcantilevers under various vibrating modes. The experimental results showed that the effects of the shape and vibrating mode of micro-cantilever on the measurement accuracies of fluid density and viscosity were analyzed in detail.
International Nuclear Information System (INIS)
Dey, Sudip; Karmakar, Amit
2013-01-01
This paper presents a finite element method to compare the effects of delamination on free vibration of graphite-epoxy bending stiff and torsion stiff composite pretwisted shallow conical shells. The generalized dynamic equilibrium equation is derived from Lagrange's equation of motion neglecting the Coriolis effect for moderate rotational speeds. An eight noded isoparametric plate bending element is employed incorporating rotary inertia and effects of transverse shear deformation based on Mindlin's theory. The multipoint constraint; algorithm is utilized to ensure the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. The standard eigen value problem is solved by applying the QR iteration algorithm. Mode shapes for typical configurations are also depicted. Numerical results obtained are the first known non-dimensional frequencies which could serve as reference solutions for the future investigators.
Lee, Jun Kyu; Seung, Hong Min; Park, Chung Il; Lee, Joo Kyung; Lim, Do Hyeong; Kim, Yoon Young
2018-02-01
Real-time uninterrupted measurement for torsional vibrations of rotating shafts is crucial for permanent health monitoring. So far, strain gauge systems with telemetry units have been used for real-time monitoring. However, they have a critical disadvantage in that shaft operations must be stopped intermittently to replace telemetry unit batteries. To find an alternative method to carry out battery-less real-time measurement for torsional vibrations of rotating shafts, a magnetostrictive patch sensor system was proposed in the present study. Since the proposed sensor does not use any powered telemetry system, no battery is needed and thus there is no need to stop rotating shafts for battery replacement. The proposed sensor consists of magnetostrictive patches and small magnets tightly bonded onto a shaft. A solenoid coil is placed around the shaft to convert magnetostrictive patch deformation by shaft torsional vibration into electric voltage output. For sensor design and characterization, investigations were performed in a laboratory on relatively small-sized stationary solid shaft. A magnetostrictive patch sensor system was then designed and installed on a large rotating propulsion shaft of an LPG carrier ship in operation. Vibration signals were measured using the proposed sensor system and compared to those measured with a telemetry unit-equipped strain gauge system.
Nakamura, K.; Naito, Y.; Onishi, K.; Kawakatsu, H.
2012-12-01
In industrial applications of a micromechanical silicon resonator as a physical sensor, a high-quality factor Q and a low-temperature coefficient of Q (TCQ) are required for high sensitivity in a wide temperature range. Although the newly developed thin film encapsulation technique enables a beam to operate with low viscous damping in a vacuum cavity, the Q of a flexural vibration mode is limited by thermo-elastic damping (TED). We proposed a torsional beam resonator which features both a high Q and a low TCQ because theoretically the torsional vibration mode does not suffer from TED. From experiments, Q of 267 000 and TCQ of 1.4 for the 20 MHz torsional vibration mode were observed which were superior to those of the flexural mode. The pressure of the residual gas in the cavity of only 20 pl volume, which is one of the energy loss factors limiting the Q, was successfully estimated to be 1-14 Pa. Finally, the possibilities of improving the Q and the difference of the measured TCQ from a theoretical value were discussed.
Energy Technology Data Exchange (ETDEWEB)
Sadeghi-Goughari, Moslem [Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Hosseini, Mohammad [Sirjan University of Technology, Sirjan (Iran, Islamic Republic of)
2015-02-15
The vibrational behavior of a viscous nanoflow-conveying single-walled carbon nanotube (SWCNT) was investigated. The nonuniformity of the flow velocity distribution caused by the viscosity of fluid and the small-size effects on the flow field was considered. Euler-Bernoulli beam model was used to investigate flow-induced vibration of the nanotube, while the non-uniformity of the flow velocity and the small-size effects of the flow field were formulated through Knudsen number (Kn), as a discriminant parameter. For laminar flow in a circular nanotube, the momentum correction factor was developed as a function of Kn. For Kn = 0 (continuum flow), the momentum correction factor was found to be 1.33, which decreases by the increase in Kn may even reach near 1 for the transition flow regime. We observed that for passage of viscous flow through a nanotube with the non-uniform flow velocity, the critical continuum flow velocity for divergence decreased considerably as opposed to those for the uniform flow velocity, while by increasing Kn, the difference between the uniform and non-uniform flow models may be reduced. In the solution part, the differential transformation method (DTM) was used to solve the governing differential equations of motion.
International Nuclear Information System (INIS)
Sadeghi-Goughari, Moslem; Hosseini, Mohammad
2015-01-01
The vibrational behavior of a viscous nanoflow-conveying single-walled carbon nanotube (SWCNT) was investigated. The nonuniformity of the flow velocity distribution caused by the viscosity of fluid and the small-size effects on the flow field was considered. Euler-Bernoulli beam model was used to investigate flow-induced vibration of the nanotube, while the non-uniformity of the flow velocity and the small-size effects of the flow field were formulated through Knudsen number (Kn), as a discriminant parameter. For laminar flow in a circular nanotube, the momentum correction factor was developed as a function of Kn. For Kn = 0 (continuum flow), the momentum correction factor was found to be 1.33, which decreases by the increase in Kn may even reach near 1 for the transition flow regime. We observed that for passage of viscous flow through a nanotube with the non-uniform flow velocity, the critical continuum flow velocity for divergence decreased considerably as opposed to those for the uniform flow velocity, while by increasing Kn, the difference between the uniform and non-uniform flow models may be reduced. In the solution part, the differential transformation method (DTM) was used to solve the governing differential equations of motion.
Directory of Open Access Journals (Sweden)
Jagiełowicz-Ryznar C.
2016-12-01
Full Text Available The numerical calculations results of torsional vibration of the multi-cylinder crankshaft in the serial combustion engine (MC, including a viscous damper (VD, at complex forcing, were shown. In fact, in the MC case the crankshaft rotation forcings spectrum is the sum of harmonic forcing whose amplitude can be compared with the amplitude of the 1st harmonic. A significant impact, in the engine operational velocity, on the vibration damping process of MC, may be the amplitude of the 2nd harmonic of a forcing moment. The calculations results of MC vibration, depending on the amplitude of the 2nd harmonic of the forcing moment, for the first form of the torsional vibration, were shown. Higher forms of torsional vibrations have no practical significance. The calculations assume the optimum damping coefficient VD, when the simple harmonic forcing is equal to the base critical velocity of the MC crankshaft.
International Nuclear Information System (INIS)
Fadaee, M.; Yu, S.D.
2013-01-01
In this paper, a finite element based dynamic model is presented for bending, axial, and torsional vibrations of an outer CANDU fuel element subjected to multiple unilateral frictional contact (MUFC) constraints. The Bozzak-Newmark relaxation-integration scheme is used to discretize the equations of motion in the time domain. At a time step, equations of state of the fuel element with MUFC constraints reduce to a linear complementarity problem (LCP). Results are compared with those available in the literature. Good agreement is achieved. The 2D sliding and stiction motion of a fuel element at points of contact is obtained for harmonic excitations. (author)
Koroleva, L. A.; Tyulin, V. I.; Matveev, V. K.; Pentin, Yu. A.
2013-05-01
B3LYP, MP2, CCSD(T), and MP4/MP2 in the 6-311G( d, p), 6-311++G( d, p), cc-pVTZ, aug-cc-pVTZ bases used to calculate the transition frequencies of torsional vibration of trans- and cis-isomers of acrolein in the ground electronic state ( S 0) are analyzed. It is found that for trans-isomers, all methods of calculation except for B3LYP in the cc-pVTZ basis yield good agreement between the calculated and experimental values. It is noted that for the cis-isomer of acrolein, no method of calculation confirms the experimental value of the frequency of torsional vibration (138 cm-1). It is shown that the calculated and experimental values for obertones at 273.0 cm-1 and other transitions of torsional vibration are different for this isomer in particular. However, it is established that in some calculation methods (B3LYP, MP2), the frequency of the torsional vibration of the cis-isomer coincides with another experimental value of this frequency (166.5 cm-1). It is concluded that in analyzing the vibrational structure of the UV spectrum, the calculated and experimental values of its obertone (331.3 cm-1) coincide, along with its frequency. It is also noted that the frequency of torsional vibration for the cis-isomer (166.5 cm-1) can also be found in other experimental works if we change the allocation of torsional transition 18{1/1}.
Coral, W.; Rossi, C.; Curet, O. M.
2015-12-01
This paper presents a Differential Quadrature Element Method for free transverse vibration of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses (fish ribs). The proposed method is based on the theory of a Timoshenko cantilever beam. The effects of the masses (number, magnitude and position) on the value of natural frequencies are investigated. Governing equations, compatibility and boundary conditions are formulated according to the Differential Quadrature rules. The convergence, efficiency and accuracy are compared to other analytical solution proposed in the literature. Moreover, the proposed method has been validate against the physical prototype of a flexible fish backbone. The main advantages of this method, compared to the exact solutions available in the literature are twofold: first, smaller computational cost and second, it allows analysing the free vibration in beams whose section is an arbitrary function, which is normally difficult or even impossible with other analytical methods.
Jagiełowicz-Ryznar C.
2016-01-01
The numerical calculations results of torsional vibration of the multi-cylinder crankshaft in the serial combustion engine (MC), including a viscous damper (VD), at complex forcing, were shown. In fact, in the MC case the crankshaft rotation forcings spectrum is the sum of harmonic forcing whose amplitude can be compared with the amplitude of the 1st harmonic. A significant impact, in the engine operational velocity, on the vibration damping process of MC, may be the amplitude of the 2nd harm...
Energy Technology Data Exchange (ETDEWEB)
Hoshino, M. [Nihon University, Tokyo (Japan). College of Science and Technology
1996-07-21
This paper describes the creep analysis and torsional vibration analysis of cable-stayed bridges with two edge composite girders. The girder is composed of the concrete slab and the steel girder. I-girders are placed at both edges of the profile. Such a type of bridge was investigated. As the stress migrates by the creep of concrete slab, it is necessary to evaluate the influence of this creep precisely in designing. In the analysis, the composite girder was expressed not by the single member, but by the binary member consisting of concrete member and steel member. Two methods were employed, i.e., method A in which both members are connected by the rigid body beam and method B in which the profile of concrete is converted into the profile of steel. The method A provided better accuracy, but the method B was often sufficient. Torsional rigidity of the open profile structure was much smaller than that of the box profile. As the torsional natural frequency was low, proper torsional vibration analysis was indispensable especially from the viewpoint of wind resistance. Two methods were employed, which utilize the vibration analysis method for general space frame structures. Results of both methods were agreed mutually, but the second method provided better calculation efficiency. 10 refs., 9 figs., 6 tabs.
Energy Technology Data Exchange (ETDEWEB)
Hohenberg, Guenter [IVD Prof. Hohenberg GmbH, Graz (Austria); Beidl, Christian [Technische Univ. Darmstadt (Germany). VKM; Hoefler, Dieter [tectos gmbh, Graz (Austria)
2013-08-01
Plug-in hybrid drives will be, in the foreseeable future, the dominant variant for the electrification of vehicles, with the trend clearly pointing to combustion engines with a low number of cylinders and low engine operating speeds. However, the considerable torsional vibration and its impact on the drive train as well as the engine mount pose a problem. The conventional mechanical solutions with dual mass flywheels and pendulum support etc. have clearly reached their limit when it comes to improving the noise vibration harshness (NVH) behavior. Operating the drive engine with low speed values which are relevant for the fuel consumption is therefore only possible to a limited extent. This paper introduces a technique as a solution to the problem, where the excitation frequency can be doubled with the existing E-motor by generating additional torque pulses. This will achieve the excitation of the drive train and the engine mount as would be the case with a combustion engine with twice the number of cylinders. This technique, referred to as directE strategy, is particularly interesting for 2 und 3-cylinder engines. By combining the individual components into a highly integrated directE hybrid module a simple combination of existing combustion engines and gearboxes can be implemented. This paper describes the technique in more detail, which is followed by a discussion of its advantages, disadvantages and the first practical results. (orig.)
Dawadi, Mahesh B; Bhatta, Ram S; Perry, David S
2013-12-19
Two torsion-inversion tunneling models (models I and II) are reported for the CH-stretch vibrationally excited states in the G12 family of molecules. The torsion and inversion tunneling parameters, h(2v) and h(3v), respectively, are combined with low-order coupling terms involving the CH-stretch vibrations. Model I is a group theoretical treatment starting from the symmetric rotor methyl CH-stretch vibrations; model II is an internal coordinate model including the local-local CH-stretch coupling. Each model yields predicted torsion-inversion tunneling patterns of the four symmetry species, A, B, E1, and E2, in the CH-stretch excited states. Although the predicted tunneling patterns for the symmetric CH-stretch excited state are the same as for the ground state, inverted tunneling patterns are predicted for the asymmetric CH-stretches. The qualitative tunneling patterns predicted are independent of the model type and of the particular coupling terms considered. In model I, the magnitudes of the tunneling splittings in the two asymmetric CH-stretch excited states are equal to half of that in the ground state, but in model II, they differ when the tunneling rate is fast. The model predictions are compared across the series of molecules methanol, methylamine, 2-methylmalonaldehyde, and 5-methyltropolone and to the available experimental data.
Flexural-torsional vibration of a tapered C-section beam
Dennis, Scott T.; Jones, Keith W.
2017-04-01
Previous studies have shown that numerical models of tapered thin-walled C-section beams based on a stepped or piecewise prismatic beam approximation are inaccurate regardless of the number of elements assumed in the discretization. Andrade recently addressed this problem by extending Vlasov beam theory to a tapered geometry resulting in new terms that vanish for the uniform beam. (See One-Dimensional Models for the Spatial Behaviour of Tapered Thin-Walled Bars with Open Cross-Sections: Static, Dynamic and Buckling Analyses, PhD Thesis, University of Coimbra, Portugal, 2012, https://estudogeral.sib.uc.pt) In this paper, we model the coupled bending-twisting vibration of a cantilevered tapered thin-walled C-section using a Galerkin approximation of Andrade's beam equations resulting in an 8-degree-of-freedom beam element. Experimental natural frequencies and mode shapes for 3 prismatic and 2 tapered channel beams are compared to model predictions. In addition, comparisons are made to detailed shell finite element models and exact solutions for the uniform beams to confirm the validity of the approach. Comparisons to the incorrect stepped model are also presented.
Directory of Open Access Journals (Sweden)
Shui-Ting Zhou
2017-01-01
Full Text Available This study is about the impact of the performance and the sensitivity analysis for parameters of the torsion bar suspension in the electric sight-seeing car, which the authors’ laboratory designed and which is used in the authors’ university. The suspension stiffness was calculated by using the virtual work principle, the vector algebra, and tensor of finite rotation methods and was verified by the ADAMS software. Based on the random vibration analysis method, the paper analyzed the dynamic tire load (DTL, suspension working space (SWS, and comfort performance parameters. For the purpose of decreasing the displacement of the suspension and limiting the frequency of impacting the stop block, the paper examined the three parameters and optimized the basic parameters of the torsion bar. The results show that the method achieves a great effect and contributes an accurate value for the general layout design.
Malaeke, Hasan; Moeenfard, Hamid
2016-03-01
The objective of this paper is to study large amplitude flexural-extensional free vibration of non-uniform cantilever beams carrying a both transversely and axially eccentric tip mass. The effects of variable axial force is also taken into account. Hamilton's principle is utilized to obtain the partial differential equations governing the nonlinear vibration of the system as well as the corresponding boundary conditions. A numerical finite difference scheme is proposed to find the natural frequencies and mode shapes of the system which is validated specifically for a beam with linearly varying cross section. Using a single mode approximation in conjunction with the Lagrange method, the governing equations are reduced to a set of two nonlinear ordinary differential equations in terms of end displacement components of the beam which are coupled due to the presence of the transverse eccentricity. These temporal coupled equations are then solved analytically using the multiple time scales perturbation technique. The obtained analytical results are compared with the numerical ones and excellent agreement is observed. The qualitative and quantitative knowledge resulting from this research is expected to enable the study of the effects of eccentric tip mass and non-uniformity on the large amplitude flexural-extensional vibration of beams for improved dynamic performance.
Directory of Open Access Journals (Sweden)
Jong-Yun Yoon
2015-09-01
Full Text Available Dynamic behaviors in practical driveline systems for wind turbines or vehicles are inherently affected by multiple nonlinearities such as piecewise-type torsional springs. However, various excitation conditions with different levels of magnitudes also show strong relationships to the dynamic behaviors when system responses are examined in both frequency and time domains. This study investigated the nonlinear responses of torsional systems under various excitations by using the harmonic balance method and numerical analysis. In order to understand the effect of piecewise-type nonlinearities on vibrational energy with different excitations, the nonlinear responses were investigated with various comparisons. First, two different jumping phenomena with frequency up- and down-sweeping conditions were determined under severe excitation levels. Second, practical system analysis using the phase plane and Poincaré map was conducted in various ways. When the system responses were composed of quasi-periodic components, Poincaré map analysis clearly revealed the nonlinear dynamic characteristics and thus it is suggested to investigate complicated nonlinear dynamic responses in practical driveline systems.
Directory of Open Access Journals (Sweden)
Siddharth Pramod Dubhashi
2016-01-01
Full Text Available Torsion of the vermiform appendix is a rare condition detectable only at operation. It can be primary or secondary. This is a case report of 52-year-old female with 180° anti-clockwise rotation of the appendix. Torsion can further leads to strangulation and infarction of the organ. Appendicular torsion could be included in the differential diagnosis of pain in right iliac fossa.
African Journals Online (AJOL)
A‑2/103, Shivranjan Towers, Someshwarwadi, Pashan, Pune ‑ 411 008,. Maharashtra, India. E‑mail: spdubhashi@gmail.com. INTRODUCTION. Acute appendicitis presents with pain in right iliac fossa. Torsion of the vermiform appendix, though rare, also presents in a similar fashion, and it is detectable only at operation.[1].
The spectrum of axisymmetric torsional Alfven waves
International Nuclear Information System (INIS)
Sy, W.N.
1977-03-01
The spectrum of axisymmetric torsional Alfven waves propagating in a cylindrical, non-uniform, resistive plasma waveguide has been analysed by a method of singular perturbations. A simple condition has been derived which predicts whether the spectrum is continuous or discrete under given physical conditions. Application of this result to resolve an apparent discrepancy in experimental observations is briefly discussed. (Author)
Torsional Optomechanics of a Levitated Nonspherical Nanoparticle
Hoang, Thai M.; Ma, Yue; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, F.; Yin, Zhang-Qi; Li, Tongcang
2016-09-01
An optically levitated nanoparticle in vacuum is a paradigm optomechanical system for sensing and studying macroscopic quantum mechanics. While its center-of-mass motion has been investigated intensively, its torsional vibration has only been studied theoretically in limited cases. Here we report the first experimental observation of the torsional vibration of an optically levitated nonspherical nanoparticle in vacuum. We achieve this by utilizing the coupling between the spin angular momentum of photons and the torsional vibration of a nonspherical nanoparticle whose polarizability is a tensor. The torsional vibration frequency can be 1 order of magnitude higher than its center-of-mass motion frequency, which is promising for ground state cooling. We propose a simple yet novel scheme to achieve ground state cooling of its torsional vibration with a linearly polarized Gaussian cavity mode. A levitated nonspherical nanoparticle in vacuum will also be an ultrasensitive nanoscale torsion balance with a torque detection sensitivity on the order of 10-29 N m /√{Hz } under realistic conditions.
DEFF Research Database (Denmark)
Brasso, K; Andersen, L; Kay, L
1993-01-01
Thirty-five patients were examined 6-11 years after operation for torsion of the testis. Loss of testicular tissue was significantly associated with long preoperative duration of symptoms and with low postoperative sperm counts. The sex hormones were normal in the majority of patients...... to the sperm count and concentration. Measurement of carnitine levels in seminal plasma, as a sign of vas deferens obstruction or dysfunction of epididymis, and of autoantibodies against spermatozoa revealed no significant findings....
Groner, Peter; Gardner, Adrian M.; Tuttle, William Duncan; Wright, Timothy G.
2017-06-01
The electronic transition S_{1} ← S_{0} of p-xylene (pXyl) has been observed by REMPI spectroscopy. Its analysis required a detailed investigation of the molecular symmetry of pXyl whose methyl groups are almost free internal rotors. The molecular symmetry group of pXyl has 72 operators. This group, called [33]D_{2h}, is isomorphic to G_{36}(EM), the double group for ethane and dimethyl acetylene even though it is NOT a double group for pXyl. Loosely speaking, the group symbol, [33]D_{2h}, indicates that is for a molecule with two threefold rotors on a molecular frame with D_{2h} point group symmetry. The transformation properties of the (i) free internal rotor basis functions for the torsional coordinates, (ii) the asymmetric rotor (Wang) basis functions for the Eulerian angles, (iii) nuclear spin functions, (iv) potential function, and (v) transitions dipole moment functions were determined. The forms of the torsional potential in the S_{0} and S_{1} states and the dependence of the first order torsional splittings on the potential coefficients have been obtained. AM Gardner, WD Tuttle, P. Groner, TG Wright, J. Chem. Phys., submitted Dec 2016 P Groner, JR Durig, J. Chem. Phys., 66 (1977) 1856 PR Bunker, P Jensen, Molecular Symmetry and Spectroscopy (1998, NRC Research Press, Ottawa, 2nd ed.)
Stone, Stephen C.; Miller, C. Cameron; Philips, Laura A.; Andrews, A. M.; Fraser, G. T.; Pate, B. H.; Xu, Li-Hong
1995-12-01
The 3-MHz-resolution infrared spectra of the 10-μm bands of thegaucheconformer of 1,2-difluoroethane (HFC152) and theC1-symmetry conformer of 1,1,2-trifluoroethane (HFC143) have been measured using a molecular-beam electric-resonance optothermal spectrometer with a tunable microwave-sideband CO2laser source. For 1,2-difluoroethane, two bands have been studied, the ν17B-symmetry C-F stretch at 1077.3 cm-1and the ν13B-symmetry CH2rock at 896.6 cm-1. Both bands are well fit to a asymmetric-rotor Hamiltonian to better than 0.5 MHz. The ν13band is effectively unperturbed, while the ν17band is weakly perturbed, as shown by the large change in centrifugal distortion constants from the ground state values. Two bands have also been studied for 1,1,2-trifluoroethane, the ν11symmetric CF2stretch at 1077.2 cm-1and the ν13C-C stretch at 905.1 cm-1. One of the two bands, ν11, is unperturbed and fit to near the experimental precision. The ν13vibration, on the other hand, is weakly perturbed by an interaction with a nearby state. This perturbation leads to a doubling or splitting of the lines, due to a perturbation-induced lifting of the degeneracy of the symmetric and antisymmetric tunneling states associated with tunneling between the two equivalentC1forms. For theJ,Kastates studied, the splittings are as large as 37 MHz. Combining this observation with published low-resolution far-infrared measurements of torsional sequence-band and hot-band frequencies and calculations from an empirical torsional potential allows us to identify the perturbing state as ν17+ 6ν18. Here, ν17is the CF2twist and ν18is the torsion. The matrix element responsible for this interaction exchanges eight vibrational quanta!
Online Identification and Verification of the Elastic Coupling Torsional Stiffness
Directory of Open Access Journals (Sweden)
Wanyou Li
2016-01-01
Full Text Available To analyze the torsional vibration of a diesel engine shaft, the torsional stiffness of the flexible coupling is a key kinetic parameter. Since the material properties of the elastic element of the coupling might change after a long-time operation due to the severe working environment or improper use and the variation of such properties will change dynamic feature of the coupling, it will cause a relative large calculation error of torsional vibration to the shaft system. Moreover, the torsional stiffness of the elastic coupling is difficult to be determined, and it is inappropriate to measure this parameter by disassembling the power unit while it is under normal operation. To solve these problems, this paper comes up with a method which combines the torsional vibration test with the calculation of the diesel shafting and uses the inherent characteristics of shaft torsional vibration to identify the dynamic stiffness of the elastic coupling without disassembling the unit. Analysis results show that it is reasonable and feasible to identify the elastic coupling dynamic torsional stiffness with this method and the identified stiffness is accurate. Besides, this method provides a convenient and practical approach to examine the dynamic behavior of the long running elastic coupling.
Directory of Open Access Journals (Sweden)
Bulent Yardimoglu
2004-01-01
Full Text Available The purpose of this paper is to extend a previously published beam model of a turbine blade including the centrifugal force field and root flexibility effects on a finite element model and to demonstrate the performance, accuracy and efficiency of the extended model for computing the natural frequencies. Therefore, only the modifications due to rotation and elastic root are presented in great detail. Considering the shear center effect on the transverse displacements, the geometric stiffness matrix due to the centrifugal force is developed from the geometric strain energy expression based on the large deflections and the increase of torsional stiffness because of the axial stress. In this work, the root flexibility of the blade is idealized by a continuum model unlike the discrete model approach of a combination of translational and rotational elastic springs, as used by other researchers. The cross-section properties of the fir-tree root of the blade considered as an example are expressed by assigning proper order polynomial functions similar to cross-sectional properties of a tapered blade. The correctness of the present extended finite element model is confirmed by the experimental and calculated results available in the literature. Comparisons of the present model results with those in the literature indicate excellent agreement.
Nonuniform nuclear structures and QPOs in giant flares
International Nuclear Information System (INIS)
Sotani, Hajime
2012-01-01
We show that the shear modes in the neutron star crust are quite sensitive to the existence of nonuniform nuclear structures, the so-called “pasta”. Due to the existence of pasta phase, the frequencies of shear modes are reduced. Since the torsional shear frequencies depend strongly on the structure of pasta phase, through the observations of stellar oscillations, one can probe the pasta structure in the crust. Additionally, considering the effect of pasta phase, we show the possibility to explain all the observed frequencies in the SGR 1806-20 with using only crust torsional oscillations.
Nonuniform nuclear structures and QPOs in giant flares
Energy Technology Data Exchange (ETDEWEB)
Sotani, Hajime [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)
2012-11-12
We show that the shear modes in the neutron star crust are quite sensitive to the existence of nonuniform nuclear structures, the so-called 'pasta'. Due to the existence of pasta phase, the frequencies of shear modes are reduced. Since the torsional shear frequencies depend strongly on the structure of pasta phase, through the observations of stellar oscillations, one can probe the pasta structure in the crust. Additionally, considering the effect of pasta phase, we show the possibility to explain all the observed frequencies in the SGR 1806-20 with using only crust torsional oscillations.
Intermittent Testicular Torsion
African Journals Online (AJOL)
2017-06-02
Jun 2, 2017 ... had prior episodes of testicular pain, suggesting that they may have had intermittent torsion before .... None of the patients had antecedent history of sexual exposure, fever, or urinary tract infection .... torsion of the spermatic cord portends an increased risk of acute testicular infarction. J Urol 2008;180 4 ...
Putting a damper on drilling's bad vibrations
Energy Technology Data Exchange (ETDEWEB)
Jardine, S [Sedco forex, Montrouge (France); Malone, D [Anadrill, Sugar Land, TX (United States); Sheppard, M [Schlumberger Cambridge Research, Cambridge (United Kingdom)
1994-01-01
Harmful drilling vibrations are costing the industry dearly. Three main vibration types (axial, torsional and transverse) are explained and its causes discussed. Technology exists to eliminate most vibrations, but requires more systematic deployment than is usual. Hardware that eliminates vibrations is reviewed, including downhole shock measurement, torque feedback shock guards and antiwhirl bits. 9 figs., 11 refs.
Energy Technology Data Exchange (ETDEWEB)
Grundberg, J; Lindstrom, U
1986-10-01
Using the notion of torsion potentials, the duality between antisymmetric tensor fields and scalar fields is discussed. First-order actions with these fields, the connection and the metric as independent variables are presented.
Testicular Torsion (For Parents)
... Parents Kids Teens Hernias Ultrasound: Scrotum Undescended Testicles Male Reproductive System PQ: I have a lump on one of ... to Do a Testicular Self-Exam (Slideshow) Varicocele Male Reproductive System Testicular Torsion View more About Us Contact Us ...
International Nuclear Information System (INIS)
Denardo, G.; Spallucci, E.
1985-07-01
We study pregeometry in the framework of a Poincare gauge field theory. The Riemann-Cartan space-time is shown to be an ''effective geometry'' for this model in the low energy limit. By using Heat Kernel techniques we find the induced action for curvature and torsion. We obtain in this way the usual Einstein-Hilbert action plus an axial Maxwell term describing the propagation of a massless, axial vector torsion field. (author)
Theory of pure rotational transitions in doubly degenerate torsional states of ethane
Rosenberg, A.; Susskind, J.
1979-01-01
It is shown that pure rotational transitions in doubly degenerate torsional states of C2H6 (with selection rules Delta K = 0, plus or minus 1) are made allowed by Coriolis interaction between torsion and dipole-allowed vibrations. Expressions are presented for integrated intensities from which strengths of lines in the millimeter region can be calculated.
Torsional actuation with extension-torsion composite coupling and a magnetostrictive actuator
Bothwell, Christopher M.; Chandra, Ramesh; Chopra, Inderjit
1995-04-01
An analytical-experimental study of using magnetostrictive actuators in conjunction with an extension-torsion coupled composite tube to actuate a rotor blade trailing-edge flap to actively control helicopter vibration is presented. Thin walled beam analysis based on Vlasov theory was used to predict the induced twist and extension in a composite tube with magnetostrictive actuation. The study achieved good correlation between theory and experiment. The Kevlar-epoxy systems showed good correlation between measured and predicted twist values.
Higher Franz-Reidemeister torsion
Igusa, Kiyoshi
2002-01-01
The book is devoted to the theory of topological higher Franz-Reidemeister torsion in K-theory. The author defines the higher Franz-Reidemeister torsion based on Volodin's K-theory and Borel's regulator map. He describes its properties and generalizations and studies the relation between the higher Franz-Reidemeister torsion and other torsions used in K-theory: Whitehead torsion and Ray-Singer torsion. He also presents methods of computing higher Franz-Reidemeister torsion, illustrates them with numerous examples, and describes various applications of higher Franz-Reidemeister torsion, particularly for the study of homology of mapping class groups. Packed with up-to-date information, the book provides a unique research and reference tool for specialists working in algebraic topology and K-theory.
Gallbladder torsion. Case report
DEFF Research Database (Denmark)
Brasso, K; Rasmussen, O V
1991-01-01
Gallbladder torsion is a rare surgical emergency occurring primarily in elderly women. The anatomical background is a variation in the attachment of the gallbladder to the inferior margin of the liver. Increasing life span will probably lead to an increasing number of cases, and gallbladder torsion...... must be kept in mind in patients with sudden onset of pain in the upper right quadrant, nausea, vomiting, and a palpable mass. None of the laboratory routines or non-invasive examinations enables one to make the right preoperative diagnosis. Treatment is cholecystectomy. Promptly treated, the prognosis...
Torsional heterotic geometries
International Nuclear Information System (INIS)
Becker, Katrin; Sethi, Savdeep
2009-01-01
We construct new examples of torsional heterotic backgrounds using duality with orientifold flux compactifications. We explain how duality provides a perturbative solution to the type I/heterotic string Bianchi identity. The choice of connection used in the Bianchi identity plays an important role in the construction. We propose the existence of a much larger landscape of compact torsional geometries using string duality. Finally, we present some quantum exact metrics that correspond to NS5-branes placed on an elliptic space. These metrics describe how torus isometries are broken by NS flux.
International Nuclear Information System (INIS)
Bars, I.; Nemeschansky, D.; Yankielowicz, S.
1986-01-01
In this paper the authors discuss string theories on a background manifold with torsion. In the first part, candidate vacuum configurations for ten-dimensional superstrings are discussed. The authors compactify these on M/sub 4/xK, where M/sub 4/ is four-dimensional and K some compact six-dimensional manifold. In particular they are interested in investigating the existence of solutions with non-zero torsion on K. The compactification problem is approached both from the effective field theory point of view and directly using string considerations. The second part of the talk is devoted to the construction of string theories in curved space with torsion. The authors discuss both the Neveu-Schwarz-Ramond type string and the Green-Schwarz type string. Particular emphasis is put on the resulting constraints on space-time supersymmetry in the Green-Schwarz approach. This study uses two-dimensional non-linear sigma models to describe the propagation of strings in background geometries with torsion. The background field can be understood as arising from condensation of infinite number of strings
International Nuclear Information System (INIS)
Aros, Rodrigo; Contreras, Mauricio
2006-01-01
In this work the Poincare-Chern-Simons and anti-de Sitter-Chern-Simons gravities are studied. For both, a solution that can be cast as a black hole with manifest torsion is found. Those solutions resemble Schwarzschild and Schwarzschild-AdS solutions, respectively
... the Procedure is Performed Testicular torsion is an emergency. In most cases, surgery is needed right away to relieve pain ... RM, Hockberger RS, Gausche-Hill M, eds. Rosen's Emergency Medicine: Concepts and Clinical Practice . 9th ed. Philadelphia, PA: Elsevier; 2018:chap ...
Tibiotalar torsion: bioengineering paradigm.
Michele, A A; Nielsen, P M
1976-10-01
1. Medial tibiotalar torsion is the most common disorder peculiar to mankind. 2. The pathogonomic findings are (a) an axial medially rotated and adducted distal third of the shaft of the tibia, (b) the plafond of the tibia with its mortise containing the "track-bound" talus, which is deflected strongly toward the tibial side, (c) an exaggerated midtarsal equinus, (d) ostensible restriction of dorsiflexion of the hindfoot against the tibia, (e) mild separation of the distal tibiofibular articulation, and (f) forward displacement of the gravitational axis to the naviculocunei-form joint. 3. Faulty leg crossing in utero resulting in an abnormal pelvofemoral-tibial design is discussed and its important consequences in the vulnerable 40 per cent of the population are emphasized. 4. The kinesiomechanics of the leg, ankle and foot is reviewed. 5. The radiographic parameters of medial tibiotalar torsion are presented, as well as the multiple facets of the clinical examination. 6. Methods of treatment depending on age and severity of the disorder are recommended. Surgery, detortional casts, and corrective footwear are discussed. Shoes presently available are inadequate for tibiotalar torsion and therefore engineering principles must be applied in the design and construction of all footwear, including sneakers and sportswear. This can be done only if the pathological biomechanics of this group of disorders is recognized. Biplane proximal tibial osteotomy is recommended in refractory cases, especially when tibiotalar torsion is demonstrated. 7. After 30 years of experience, the author finds that results with these patients have been uniformly good to excellent, depending on age and mode of treatment. 8. In medial tibiotalar torsion, the consequent adaptive changes are readily observed, but rarely are they recognized as the inevitable sequelae of medial tibiotalar torsion. 9. Adaptive compensating disorders are identified and their mechanism described. 10. The management of
Experimental study on pure titanium during the positive-torsion and positive-negative-torsion
Energy Technology Data Exchange (ETDEWEB)
Chen, Han; Li, Fuguo, E-mail: fuguolx@nwpu.edu.cn; Li, Jinghui; Zhao, Zhen; Zhou, Shunshun; Wan, Qiong
2016-09-30
The results of the mechanical properties, microstructure and fracture analysis of the pure titanium deformed by positive-torsion (PT) and positive-negative-torsion (PNT) are investigated by uniaxial tensile (UT) test, micro-indentation (MI) test, optical microscope (OM), transmission electron microscope (TEM) and scanning electron microscope (SEM). The UT test indicates that the strength increases obviously with the increase of torsion radian during PT. However, the strength firstly increases quickly, and then tends to steady with the increase of deformation during PNT. The similar phenomena are also shown through MI hardness analysis. The results from geometrically necessary dislocations (GNDs) and statistically stored dislocations (SSDs) indicate that the dislocation density varies differently with the increase of deformation during PT and PNT. OM observation shows the grains are elongated and large numbers of deformation twins are observed during PT while the equiaxial grains are always presented during PNT. The variations of dislocation density during PT and PNT are verified by TEM. Besides, quantities of subgrains (SGs) are observed owing to the accumulated larger plastic strain during PNT while large numbers of deformation twins intersect with each other during PT. The fracture analysis indicates that large numbers of micro-voids distribute non-uniformly on fracture surface of sample twisted by PNT. However, the characteristics of ductile and brittle fracture are observed on fracture surface of sample twisted by PT.
A new hybrid longitudinal–torsional magnetostrictive ultrasonic transducer
International Nuclear Information System (INIS)
Karafi, Mohammad Reza; Hojjat, Yousef; Sassani, Farrokh
2013-01-01
In this paper, a novel hybrid longitudinal–torsional magnetostrictive ultrasonic transducer (HL–TMUT) is introduced. The transducer is composed of a magnetostrictive exponential horn and a stainless steel tail mass. In this transducer a spiral magnetic field made up of longitudinal and circumferential magnetic fields is applied to the magnetostrictive horn. As a result, the magnetostrictive horn oscillates simultaneously both longitudinally and torsionally in accordance with the Joule and Wiedemann effects. The magnetostrictive exponential horn is designed in such a manner that it has the same longitudinal and torsional resonant frequency. It is made up of ‘2V Permendur’, which has isotropic magnetic properties. The differential equations of the torsional and longitudinal vibration of the horn are derived, and a HL–TMUT is designed with a resonant frequency of 20 573 Hz. The natural frequency and mode shapes of the transducer are considered theoretically and numerically. The experimental results show that this transducer resonates torsionally and longitudinally with frequencies of 20 610 Hz and 20 830 Hz respectively. The maximum torsional displacement is 1.5 mrad m −1 and the maximum longitudinal displacement is 0.6 μm. These are promising features for industrial applications. (paper)
Putting a damper on drilling's bad vibrations
Energy Technology Data Exchange (ETDEWEB)
Jardine, S. (Sedco forex, Montrouge (France)); Malone, D. (Anadrill, Sugar Land, TX (United States)); Sheppard, M. (Schlumberger Cambridge Research, Cambridge (United Kingdom))
1994-01-01
Harmful drilling vibrations are costing the industry dearly. Three main vibration types (axial, torsional and transverse) are explained and its causes discussed. Technology exists to eliminate most vibrations, but requires more systematic deployment than is usual. Hardware that eliminates vibrations is reviewed, including downhole shock measurement, torque feedback shock guards and antiwhirl bits. 9 figs., 11 refs.
Torsion of cracked nanorods using a nonlocal elasticity model
International Nuclear Information System (INIS)
Loya, J A; Aranda-Ruiz, J; Fernández-Sáez, J
2014-01-01
This paper presents a nonlocal cracked-rod model from which we have analysed the torsional vibrations of a carbon nanotube with a circumferential crack. Several types of boundary conditions, including the consideration of a buckyball at the end of the nanotube, have been studied. The nonlocal Eringen elasticity theory is used to formulate the problem. The cracked rod is modelled by dividing the cracked element into two segments connected by a torsional linear spring whose stiffness is related to the crack severity. The effect of the nonlocal small-scale parameter, crack severity, cracked section position, different boundary conditions and attached mass are examined in this work. (paper)
Directory of Open Access Journals (Sweden)
Kang Jae-Yoon
2015-01-01
Full Text Available The dynamic flexural behaviour of the railway bridge is influenced by its torsional behaviour. Especially, in the case of girder railway bridges, the dynamic response tends to amplify when the natural frequency in flexure (1st vibration mode is close to that in torsion (2nd vibration mode. In order to prevent such situation, it is necessary to adopt a flexural-to-torsional natural frequency ratio larger than 120%. This study proposes a solution shifting the natural frequency in torsion to high frequency range and restraining torsion by installing concrete panels on the bottom flange of the girder so as to prevent the superposition of the responses in the girder bridge. The applicability of this solution is examined by finite element analysis of the shift of the torsional natural frequency and change in the dynamic response according to the installation of the concrete panels. The analytical results for a 30 m-span girder railway bridge indicate that installing the concrete panels increases the natural frequency in torsion by restraining the torsional behaviour and reduces also the overall dynamic response. It is seen that the installation of 100 mm-thick concrete panels along a section of 4 m at both extremities of the girder can reduce the dynamic response by more than 30%.
Model-based analysis and control of axial and torsional stick-slip oscillations in drilling systems
Besselink, B.; Wouw, van de N.; Nijmeijer, H.
2011-01-01
The mechanisms leading to torsional vibrations in drilling systems are considered in this paper. Thereto, a drill string model of the axial and torsional dynamics is proposed, where coupling is provided by a rate-independent bit-rock interaction law. Analysis of this model shows that the fast axial
Stability in quadratic torsion theories
Energy Technology Data Exchange (ETDEWEB)
Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado [Universidad Complutense de Madrid, Departamento de Fisica Teorica I, Madrid (Spain)
2017-11-15
We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)
Stability in quadratic torsion theories
International Nuclear Information System (INIS)
Vasilev, Teodor Borislavov; Cembranos, Jose A.R.; Gigante Valcarcel, Jorge; Martin-Moruno, Prado
2017-01-01
We revisit the definition and some of the characteristics of quadratic theories of gravity with torsion. We start from a Lagrangian density quadratic in the curvature and torsion tensors. By assuming that General Relativity should be recovered when the torsion vanishes and investigating the behaviour of the vector and pseudo-vector torsion fields in the weak-gravity regime, we present a set of necessary conditions for the stability of these theories. Moreover, we explicitly obtain the gravitational field equations using the Palatini variational principle with the metricity condition implemented via a Lagrange multiplier. (orig.)
Torsion of abdominal appendages presenting with acute abdominal pain
International Nuclear Information System (INIS)
Al-Jaberi, Tareq M.; Gharabeih, Kamal I.; Yaghan, Rami J.
2000-01-01
Diseases of abnormal appendages are rare causes of abdominal pain in all age groups. Nine patients with torsion and infraction of abdominal appendages were retrospectively reviewed. Four patients had torsion and infarction of the appendices epiploicae, four patients had torsion and infarction of the falciform ligament. The patient with falciform ligament disease represents the first reported case of primary torsion and infarction of the falciform ligament, and the patient with the transverse colon epiplocia represents the first reported case of vibration-induced appendix epiplocia torsion and infarction. The patient with the falciform ligament disease presented with a tender upper abdominal mass and the remaining patients were operated upon with the preoperative diagnosis of acute appendicitis. The presence of normal appendix with free serosanguinous fluid in the peritoneal cavity should raise the possibility of a disease and calls for further evaluation of the intra-abdominal organs. If the diagnosis is suspected preoperatively, CT scan and ultrasound may lead to a correct diagnosis and possibly conservative management. Laparoscopy is playing an increasing diagnostic and therapeutic role in such situations. (author)
Torsional Rigidity of Minimal Submanifolds
DEFF Research Database (Denmark)
Markvorsen, Steen; Palmer, Vicente
2006-01-01
We prove explicit upper bounds for the torsional rigidity of extrinsic domains of minimal submanifolds $P^m$ in ambient Riemannian manifolds $N^n$ with a pole $p$. The upper bounds are given in terms of the torsional rigidities of corresponding Schwarz symmetrizations of the domains in warped...
Oophoropexy for Recurrent Ovarian Torsion
Directory of Open Access Journals (Sweden)
Jennifer Hartley
2018-01-01
Full Text Available A 31-year-old nulliparous patient presents with a three-day history of right sided colicky abdominal pain and associated nausea. This patient has previously presented twice with right sided ovarian torsion with the background of polycystic ovaries in the last two consecutive years. Blood tests were normal. Due to previous history, there was a high index of clinical suspicion that this may be a further torsion. Therefore, the patient was taken to theatre for a diagnostic laparoscopy and a further right sided ovarian torsion was noted. At this time, oophoropexy was performed to the uterosacral ligament to prevent further torsion in order to preserve the patients’ fertility. In this article, we detail this case and also provide a discussion of ovarian torsion including risk factors, presentation, and current thoughts on management.
DEFF Research Database (Denmark)
Hansen, Klavs Feilberg; Pedersen, Carsten Mørk
2008-01-01
This paper describes a simple test method for determining the torsion strength of a single bed joint between two bricks and presents results from testing using this test method. The setup for the torsion test is well defined, require minimal preparation of the test specimen and the test can...... be carried out directly in a normal testing machine. The torsion strength is believed to be the most important parameter in out-of-plane resistance of masonry walls subjected to bending about an axis perpendicular to the bed joints. The paper also contains a few test results from bending of small walls about...... an axis perpendicular to the bed joints, which indicate the close connection between these results and results from torsion tests. These characteristics make the torsion strength well suited to act as substitute parameter for the bending strength of masonry about an axis perpendicular to the bed joints....
Dynamic Bending and Torsion Stiffness Derivation from Modal Curvatures and Torsion Rates
MAECK, J.; DE ROECK, G.
1999-08-01
In order to maintain the reliability of civil engineering structures, considerable effort is currently spent on developing a non-destructive vibration testing method for monitoring the structural integrity of constructions. The technique must be able to observe damage, secondly to localize the damage; and finally to give an idea of the severity of the damage. Within the framework of relating changes of measured modal parameters to changes in the integrity of the structure, it is important to be able to determine the dynamic stiffness in each section of the structure from measured modal characteristics.A damaged structure results in a dynamic stiffness reduction of the cracked sections. The dynamic stiffnesses provide directly an indication of the extension of the cracked zones in the structure. The dynamic stiffness reduction can also be associated with a degree of cracking in a particular zone.In an experimental programme, a concrete beam of 6 m length is subjected to an increasing static load to produce cracks. After each static perload, the beam is tested dynamically in a free-free set-up. The change in modal parameters is then related to damage in the beam.The technique that will be presented in the paper to predict the damage location and intensity is a direct stiffness derivation from measured modal displacement derivatives. Using the bending modes, the dynamic bending stiffness can be derived from modal curvatures. Using the torsional modes, the dynamic torsion stiffness can be derived from modal torsion rates.
Vibration and flutter of mistuned bladed-disk assemblies
Kaza, K. R. V.; Kielb, R. E.
1984-01-01
An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbofans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.
Ko, William L.; Fleischer, Van Tran
2009-01-01
The Ko displacement theory previously formulated for deformed shape predictions of nonuniform beam structures is further developed mathematically. The further-developed displacement equations are expressed explicitly in terms of geometrical parameters of the beam and bending strains at equally spaced strain-sensing stations along the multiplexed fiber-optic sensor line installed on the bottom surface of the beam. The bending strain data can then be input into the displacement equations for calculations of local slopes, deflections, and cross-sectional twist angles for generating the overall deformed shapes of the nonuniform beam. The further-developed displacement theory can also be applied to the deformed shape predictions of nonuniform two-point supported beams, nonuniform panels, nonuniform aircraft wings and fuselages, and so forth. The high degree of accuracy of the further-developed displacement theory for nonuniform beams is validated by finite-element analysis of various nonuniform beam structures. Such structures include tapered tubular beams, depth-tapered unswept and swept wing boxes, width-tapered wing boxes, and double-tapered wing boxes, all under combined bending and torsional loads. The Ko displacement theory, combined with the fiber-optic strain-sensing system, provide a powerful tool for in-flight deformed shape monitoring of unmanned aerospace vehicles by ground-based pilots to maintain safe flights.
Linear q-nonuniform difference equations
International Nuclear Information System (INIS)
Bangerezako, Gaspard
2010-01-01
We introduce basic concepts of q-nonuniform differentiation and integration and study linear q-nonuniform difference equations and systems, as well as their application in q-nonuniform difference linear control systems. (author)
International Nuclear Information System (INIS)
Wali, Kameshwar C
2010-01-01
We consider a variant of the 5 dimensional Kaluza-Klein theory within the framework of Einstein-Cartan formalism. By imposing a set of constraints on torsion and Ricci rotation coefficients, we show that the torsion components are completely expressed in terms of the metric. and the Ricci tensor in 5D corresponds exactly to what one would obtain from torsion-free general relativity on a 4D hypersurface. The contributions of the scalar and vector fields of the standard K-K theory to the Ricci tensor and the affine connections are completely nullified by the contributions from the torsion. As a consequence, geodesic motions do not distinguish the torsion free 4D space-time from a hypersurface of 5D space-time with torsion satisfying the constraints. Since torsion is not an independent dynamical variable in this formalism, the modified Einstein equations are different from those in the general Einstein-Cartan theory. This leads to important cosmological consequences such as the emergence of cosmic acceleration.
Ovarian torsion: Echographic discoveries
International Nuclear Information System (INIS)
Triana R, Gustavo; Navas O, Claudia
1994-01-01
Patient of 31 years who consulted to the even service of urgencies to present of two hours of evolution intense pain in flank and region lumbar left, associated to vomit, present square similar 5 previous days to the entrance in the right side. Go Po, plans with DIU FUR, 8 previous days to the square. It is practiced Tran abdominal pelvic echography that shows left ovary of 6 x 5 x 3 cms, with multiple follicular images, of thick walls, with I liquidate free abdominal, highly suggestive of ovarian torsion although the patient didn't present square of sharp abdomen. It decides to suspend analgesic and to value it, presented sharp abdominal pain, reason why laparotomy was practiced, finding mass of 6 x 6 cms. of necrotic aspect, corresponding to the left ovary, which presented three turns on their axis. It is taken finish left salpingooferectomy
DEFF Research Database (Denmark)
Hyttel, Trine E W; Bak, Geske S; Larsen, Solveig B
2015-01-01
The increasing use of de-torsion of the ovaries may result in re-torsion. This review addresses risk of re-torsion and describes preventive strategies to avoid re-torsion in pre-menarcheal girls, and fertile and pregnant women. We clinically reviewed PubMed, Embase, Trip and Cochrane databases. T...
Hematosalpinx torsion in an adolescent
Directory of Open Access Journals (Sweden)
Inês Vaz
2016-02-01
Full Text Available Introduction: Isolated fallopian tube torsion is an uncommon cause of acute lower abdominal pain. Ectopic pregnancy, hydro or hematosalpinx, endometriosis, adnexal masses and other causes of adnexal disease are predisposing factors. The diagnosis is difficult and often delayed due to the lack of pathognomonic symptoms, characteristic physical signs, and specific imaging and laboratory studies. Defi nitive diagnosis requires a surgical approach. Case report: The authors present a case of hematosalpinx and its tubal torsion in a virgin teenager with no prior predisposing factors. Discussion: This rare case may highlight a new insight into pathophysiology of tubal torsion and recalls hematosalpinx as a differential diagnosis.
Isolated penile torsion in newborns.
Eroglu, Egemen; Gundogdu, Gokhan
2015-01-01
We reported on the incidence of isolated penile torsion among our healthy children and our approach to this anomaly. Between 2011 and 2014, newborn babies with penile torsion were classified according to the angle of torsion. Surgical correction (penile degloving and reattachment for moderate cases and dorsal dartos flap technique in case of resistance) after 6 months was advised to the babies with rotations more than 45°. Among 1000 newborn babies, 200 isolated penile torsions were found, and among these, 43 had torsions more than 45°, and 4 of these had angles greater than 90°. The mean angle of the rotations was found 30.45° (median: 20°). In total, 8 children with 60° torsions were previously circumcised. Surgery was performed on 19 patients, with a mean patient age of 12 ± 2 months. Of these 19, 13 babies were corrected with degloving and reattachment. This technique was not enough on the remaining 6 patients; therefore, derotational dorsal dartos flap was added to correct the torsion. After a mean of 15.6 ± 9.8 months, residual penile rotation, less than 15°, was found only in 2 children. The incidence of isolated penile torsion is 20% in newborns. However, rotation more than 45° angles are seen in 4.3% of male babies. Correction is not necessary in mild degrees, and penile degloving with reattachment is enough in most cases. If the initial correction is insufficient, dorsal dartos flap rotation is easy and effective. Prior circumcision neither disturbs the operative procedure nor affects the outcomes.
Analysis and simulation of centrifugal pendulum vibration absorbers
Smith, Emma
2015-01-01
When environmental laws are constricted and downsizing of engines has become the reality of the vehicle industry, there needs to be a solution for the rise in torsion vibrations in the drivetrain. These increased levels of torsion vibrations are mostly due to excitations from the firing pulses, which in turn have become increased due to higher cylinder pressures. One of the solutions for further dampening the system is to add a centrifugal pendulum absorber to the flywheel, and predicting the...
Nonuniform sampling by quantiles
Craft, D. Levi; Sonstrom, Reilly E.; Rovnyak, Virginia G.; Rovnyak, David
2018-03-01
A flexible strategy for choosing samples nonuniformly from a Nyquist grid using the concept of statistical quantiles is presented for broad classes of NMR experimentation. Quantile-directed scheduling is intuitive and flexible for any weighting function, promotes reproducibility and seed independence, and is generalizable to multiple dimensions. In brief, weighting functions are divided into regions of equal probability, which define the samples to be acquired. Quantile scheduling therefore achieves close adherence to a probability distribution function, thereby minimizing gaps for any given degree of subsampling of the Nyquist grid. A characteristic of quantile scheduling is that one-dimensional, weighted NUS schedules are deterministic, however higher dimensional schedules are similar within a user-specified jittering parameter. To develop unweighted sampling, we investigated the minimum jitter needed to disrupt subharmonic tracts, and show that this criterion can be met in many cases by jittering within 25-50% of the subharmonic gap. For nD-NUS, three supplemental components to choosing samples by quantiles are proposed in this work: (i) forcing the corner samples to ensure sampling to specified maximum values in indirect evolution times, (ii) providing an option to triangular backfill sampling schedules to promote dense/uniform tracts at the beginning of signal evolution periods, and (iii) providing an option to force the edges of nD-NUS schedules to be identical to the 1D quantiles. Quantile-directed scheduling meets the diverse needs of current NUS experimentation, but can also be used for future NUS implementations such as off-grid NUS and more. A computer program implementing these principles (a.k.a. QSched) in 1D- and 2D-NUS is available under the general public license.
International Nuclear Information System (INIS)
Scheepers, R.; Heyns, P. S.
2016-01-01
The prevention of torsional vibration-induced fatigue damage to turbo-generators requires determining natural frequencies by either field testing or mathematical modelling. Torsional excitation methods, measurement techniques and mathematical modelling are active fields of research. However, these aspects are mostly considered in isolation and often without experimental verification. The objective of this work is to compare one dimensional (1D), full three dimensional (3D) and 3D cyclic symmetric (3DCS) Finite element (FE) methodologies for torsional vibration response. Results are compared to experimental results for a small-scale test rotor. It is concluded that 3D approaches are feasible given the current computing technology and require less simplification with potentially increased accuracy. Accuracy of 1D models may be reduced due to simplifications but faster solution times are obtained. For high levels of accuracy model updating using field test results is recommended
Torsional carbon nanotube artificial muscles.
Foroughi, Javad; Spinks, Geoffrey M; Wallace, Gordon G; Oh, Jiyoung; Kozlov, Mikhail E; Fang, Shaoli; Mirfakhrai, Tissaphern; Madden, John D W; Shin, Min Kyoon; Kim, Seon Jeong; Baughman, Ray H
2011-10-28
Rotary motors of conventional design can be rather complex and are therefore difficult to miniaturize; previous carbon nanotube artificial muscles provide contraction and bending, but not rotation. We show that an electrolyte-filled twist-spun carbon nanotube yarn, much thinner than a human hair, functions as a torsional artificial muscle in a simple three-electrode electrochemical system, providing a reversible 15,000° rotation and 590 revolutions per minute. A hydrostatic actuation mechanism, as seen in muscular hydrostats in nature, explains the simultaneous occurrence of lengthwise contraction and torsional rotation during the yarn volume increase caused by electrochemical double-layer charge injection. The use of a torsional yarn muscle as a mixer for a fluidic chip is demonstrated.
Torsional rigidity, isospectrality and quantum graphs
International Nuclear Information System (INIS)
Colladay, Don; McDonald, Patrick; Kaganovskiy, Leon
2017-01-01
We study torsional rigidity for graph and quantum graph analogs of well-known pairs of isospectral non-isometric planar domains. We prove that such isospectral pairs are distinguished by torsional rigidity. (paper)
Dirac operators and Killing spinors with torsion
International Nuclear Information System (INIS)
Becker-Bender, Julia
2012-01-01
On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.
The odd side of torsion geometry
DEFF Research Database (Denmark)
Conti, Diego; Madsen, Thomas Bruun
2014-01-01
We introduce and study a notion of `Sasaki with torsion structure' (ST) as an odd-dimensional analogue of Kähler with torsion geometry (KT). These are normal almost contact metric manifolds that admit a unique compatible connection with 3-form torsion. Any odd-dimensional compact Lie group is sho...
Pediatric ovarian torsion: an uncommon clinical entity
Rajwani, Kapil M; Mahomed, Anies
2014-01-01
Key Clinical Message Pediatric ovarian torsion is an infrequent diagnosis and it often mimics acute appendicitis. Most cases are due to underlying ovarian pathology and if left untreated, ovarian torsion may eventually cause peritonitis. Emergency exploratory laparoscopy represents a valuable diagnostic and therapeutic tool in suspected ovarian torsion.
Saccular impact on ocular torsion
Graaf, B. de; Bos, J.E.; Groen, E.L.
1996-01-01
When someone is tilted laterally the sheer force on the maculae of the utriculus and the sacculus is described by the sine and the cosine of the angle of tilt, respectively. So both the sacculus and the utriculus are stimulated, but in the litera-ture ocular torsion is normally attributed to
Torsion (volvulus) of the lung
International Nuclear Information System (INIS)
Felson, B.
1986-01-01
Torsion or volvulus of the lung is a relatively rare but serious condition that can often be recognized or at least suspected radiographically. It occurs under three different sets of circumstances: spontaneously, usually in association with some other pulmonary abnormality; with traumatic pneumothorax; and as a complication of thoracic surgery. The author studied nine cases of torsion of the lung, including examples from each of these categories. The radiographic signs of torsion are as follows: a collapsed or consolidated lobe that occupies an unusual position, hilar displacement in a direction inappropriate for an apparently collapsed lobe, alteration of the normal position and sweep of the pulmonary vasculature, raid opacification of an ipsilateral lobe after trauma or lobectomy, marked change in position of an opacified lobe on sequential films, bronchial cutoff with no evidence of a mass, abnormal position of an affected lobe (shown on CT, angiography, or bronchography), and lobar air trapping. Mortality is high if the torsion goes unrecognized and operation is delayed
Modeling Friction Performance of Drill String Torsional Oscillation Using Dynamic Friction Model
Directory of Open Access Journals (Sweden)
Xingming Wang
2017-01-01
Full Text Available Drill string torsional and longitudinal oscillation can significantly reduce axial drag in horizontal drilling. An improved theoretical model for the analysis of the frictional force was proposed based on microscopic contact deformation theory and a bristle model. The established model, an improved dynamic friction model established for drill strings in a wellbore, was used to determine the relationship of friction force changes and the drill string torsional vibration. The model results were in good agreement with the experimental data, verifying the accuracy of the established model. The analysis of the influence of drilling mud properties indicated that there is an approximately linear relationship between the axial friction force and dynamic shear and viscosity. The influence of drill string torsional oscillation on the axial friction force is discussed. The results indicated that the drill string transverse velocity is a prerequisite for reducing axial friction. In addition, low amplitude of torsional vibration speed can significantly reduce axial friction. Then, increasing the amplitude of transverse vibration speed, the effect of axial reduction is not significant. In addition, by involving general field drilling parameters, this model can accurately describe the friction behavior and quantitatively predict the frictional resistance in horizontal drilling.
Reduction of gas flow nonuniformity in gas turbine engines by means of gas-dynamic methods
Matveev, V.; Baturin, O.; Kolmakova, D.; Popov, G.
2017-08-01
Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and as a consequence to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity as the source of dynamic stresses in the rotor blades. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. On the basis of existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.
TORSION OF THE VERMIFORM APPENDIX: A CASE REPORT
Directory of Open Access Journals (Sweden)
Dr. Imtiaz Wani
2009-07-01
Full Text Available Torsion of the vermiform appendix is a rare condition with few cases reported in the literature. Various factors predispose to torsion. Various factors predispose to torsion. We report a case of primary torsion of the vermiform appendix. The clinical presentation was indistinguishable from acute appendicitis and the diagnosis was made at operation. Appendix was preileal in position and the direction of torsion was anticlockwise. There was intrinsic torsion with no obvious factor for torsion identified. Appendectomy was performed.
Vibration modes of a single plate with general boundary conditions
Directory of Open Access Journals (Sweden)
Phamová L.
2016-06-01
Full Text Available This paper deals with free flexural vibration modes and natural frequencies of a thin plate with general boundary conditions — a simply supported plate connected to its surroundings with torsional springs. Vibration modes were derived on the basis of the Rajalingham, Bhat and Xistris approach. This approach was originally used for a clamped thin plate, so its adaptation was needed. The plate vibration function was usually expressed as a single partial differential equation. This partial differential equation was transformed into two ordinary differential equations that can be solved in the simpler way. Theoretical background of the computations is briefly described. Vibration modes of the supported plate with torsional springs are presented graphically and numerically for three different values of stiffness of torsional springs.
Torsional oscillations of the sun
International Nuclear Information System (INIS)
Snodgrass, H.B.; Howard, R.; National Solar Observatory, Tucson, AZ)
1985-01-01
The sun's differential rotation has a cyclic pattern of change that is tightly correlated with the sunspot, or magnetic activity, cycle. This pattern can be described as a torsional oscillation, in which the solar rotation is periodically sped up or slowed down in certain zones of latitude while elsewhere the rotation remains essentially steady. The zones of anomalous rotation move on the sun in wavelike fashion, keeping pace with and flanking the zones of magnetic activity. It is uncertain whether this torsional oscillation is a globally coherent ringing of the sun or whether it is a local pattern caused by and causing local changes in the magnetic fields. In either case, it may be an important link in the connection between the rotation and the cycle that is widely believed to exist but is not yet understood. 46 references
Torsions of 3-dimensional manifolds
Wurzbacher, T
2002-01-01
From the reviews: "This is an excellent exposition about abelian Reidemeister torsions for three-manifolds." ―Zentralblatt Math "This monograph contains a wealth of information many topologists will find very handy. …Many of the new points of view pioneered by Turaev are gradually becoming mainstream and are spreading beyond the pure topology world. This monograph is a timely and very useful addition to the scientific literature." ―Mathematical Reviews
Moduli space of torsional manifolds
International Nuclear Information System (INIS)
Becker, Melanie; Tseng, L.-S.; Yau, S.-T.
2007-01-01
We characterize the geometric moduli of non-Kaehler manifolds with torsion. Heterotic supersymmetric flux compactifications require that the six-dimensional internal manifold be balanced, the gauge bundle be Hermitian Yang-Mills, and also the anomaly cancellation be satisfied. We perform the linearized variation of these constraints to derive the defining equations for the local moduli. We explicitly determine the metric deformations of the smooth flux solution corresponding to a torus bundle over K3
International Nuclear Information System (INIS)
Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang
2014-01-01
The torsional energy levels of CH 3 OH + , CH 3 OD + , and CD 3 OD + have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH 3 OH, CH 3 OD, and CD 3 OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm −1 , which is about half of that of the neutral (340 cm −1 ). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C–O stretch vibrational energy level for CD 3 OD + has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C–O stretch vibration indicate a strong torsion-vibration coupling
Dai, Zuyang; Gao, Shuming; Wang, Jia; Mo, Yuxiang
2014-10-14
The torsional energy levels of CH3OH(+), CH3OD(+), and CD3OD(+) have been determined for the first time using one-photon zero kinetic energy photoelectron spectroscopy. The adiabatic ionization energies for CH3OH, CH3OD, and CD3OD are determined as 10.8396, 10.8455, and 10.8732 eV with uncertainties of 0.0005 eV, respectively. Theoretical calculations have also been performed to obtain the torsional energy levels for the three isotopologues using a one-dimensional model with approximate zero-point energy corrections of the torsional potential energy curves. The calculated values are in good agreement with the experimental data. The barrier height of the torsional potential energy without zero-point energy correction was calculated as 157 cm(-1), which is about half of that of the neutral (340 cm(-1)). The calculations showed that the cation has eclipsed conformation at the energy minimum and staggered one at the saddle point, which is the opposite of what is observed in the neutral molecule. The fundamental C-O stretch vibrational energy level for CD3OD(+) has also been determined. The energy levels for the combinational excitation of the torsional vibration and the fundamental C-O stretch vibration indicate a strong torsion-vibration coupling.
Using torsion to manipulate spin currents
Fumeron, Sébastien; Berche, Bertrand; Medina, Ernesto; Santos, Fernando A. N.; Moraes, Fernando
2017-02-01
We address the problem of quantum particles moving on a manifold characterised by the presence of torsion along a preferential axis. In fact, such a torsion may be taylored by the presence of a single screw dislocation, whose Burgers vector measures the torsion amplitude. The problem, first treated in the relativistic limit describing fermions that couple minimally to torsion, is then analysed in the Pauli limit. We show that torsion induces a geometric potential and also that it couples generically to the phase of the wave function, giving rise to the possibility of using torsion to manipulate spin currents in the case of spinor wave functions. These results emerge as an alternative strategy for using screw dislocations in the design of spintronic-based devices.
Newton-Cartan gravity and torsion
Bergshoeff, Eric; Chatzistavrakidis, Athanasios; Romano, Luca; Rosseel, Jan
2017-10-01
We compare the gauging of the Bargmann algebra, for the case of arbitrary torsion, with the result that one obtains from a null-reduction of General Relativity. Whereas the two procedures lead to the same result for Newton-Cartan geometry with arbitrary torsion, the null-reduction of the Einstein equations necessarily leads to Newton-Cartan gravity with zero torsion. We show, for three space-time dimensions, how Newton-Cartan gravity with arbitrary torsion can be obtained by starting from a Schrödinger field theory with dynamical exponent z = 2 for a complex compensating scalar and next coupling this field theory to a z = 2 Schrödinger geometry with arbitrary torsion. The latter theory can be obtained from either a gauging of the Schrödinger algebra, for arbitrary torsion, or from a null-reduction of conformal gravity.
Experiments with a cryogenic torsion balance
International Nuclear Information System (INIS)
Newman, R.D.
1983-01-01
The torsion balance is a remarkably capable instrument for the measurement of slowly varying exceedingly small forces; indeed its potential abilities are still largely untapped. The author outlines some of the virtues (and limitations) of the torsion balance, and presents a menu of gravitation-related experiments to which it may be applied. He discusses plans for developing torsion balances operating at cryogenic temperatures, and describes an experiment to search for anomalous long-range interactions associated with intrinsic spin. (Auth.)
Dirac operators and Killing spinors with torsion; Dirac-Operatoren und Killing-Spinoren mit Torsion
Energy Technology Data Exchange (ETDEWEB)
Becker-Bender, Julia
2012-12-17
On a Riemannian spin manifold with parallel skew torsion, we use the twistor operator to obtain an eigenvalue estimate for the Dirac operator with torsion. We consider the equality case in dimensions four and six. In odd dimensions we describe Sasaki manifolds on which equality in the estimate is realized by Killing spinors with torsion. In dimension five we characterize all Killing spinors with torsion and obtain certain naturally reductive spaces as exceptional cases.
Primary splenic torsion in a Boston terrier.
OHTA, Hiroshi; TAKAGI, Satoshi; MURAKAMI, Masahiro; SASAKI, Noboru; YOSHIKAWA, Muneyoshi; NAKAMURA, Kensuke; HWANG, Shiang-Jyi; YAMASAKI, Masahiro; TAKIGUCHI, Mitsuyoshi
2009-11-01
A 7-year-old female Boston terrier was referred to Hokkaido University Veterinary Teaching Hospital with a history of hemoglobinuria and anemia for several days. Abdominal radiographs showed splenomegaly, and ultrasonography revealed a hypoechoic splenic parenchyma with interspersed linear echoes consistent with the ultrasonographic appearance of splenic torsion. Ultrasonography and computed tomography (CT) indicated a C-shaped spleen. Exploratory laparotomy confirmed the diagnosis of splenic torsion. A splenectomy was performed, and the dog recovered well without complications. This is the first report of splenic torsion in Boston terriers, and the usefulness of ultrasonographic and CT findings of the splenic torsion was also confirmed.
Primary splenic torsion in a Boston terrier
International Nuclear Information System (INIS)
Ohta, H.; Takagi, S.; Murakami, M.; Sasaki, N.; Yoshikawa, M.; Nakamura, K.; Hwang, S.J.; Yamasaki, M.; Takiguchi, M.
2009-01-01
A 7-year-old female Boston terrier was referred to Hokkaido University Veterinary Teaching Hospital with a history of hemoglobinuria and anemia for several days. Abdominal radiographs showed splenomegaly, and ultrasonography revealed a hypoechoic splenic parenchyma with interspersed linear echoes consistent with the ultrasonographic appearance of splenic torsion. Ultrasonography and computed tomography (CT) indicated a C-shaped spleen. Exploratory laparotomy confirmed the diagnosis of splenic torsion. A splenectomy was performed, and the dog recovered well without complications. This is the first report of splenic torsion in Boston terriers, and the usefulness of ultrasonographic and CT findings of the splenic torsion was also confirmed
On natural frequencies of non-uniform beams modulated by finite periodic cells
International Nuclear Information System (INIS)
Xu, Yanlong; Zhou, Xiaoling; Wang, Wei; Wang, Longqi; Peng, Fujun; Li, Bin
2016-01-01
It is well known that an infinite periodic beam can support flexural wave band gaps. However, in real applications, the number of the periodic cells is always limited. If a uniform beam is replaced by a non-uniform beam with finite periodicity, the vibration changes are vital by mysterious. This paper employs the transfer matrix method (TMM) to study the natural frequencies of the non-uniform beams with modulation by finite periodic cells. The effects of the amounts, cross section ratios, and arrangement forms of the periodic cells on the natural frequencies are explored. The relationship between the natural frequencies of the non-uniform beams with finite periodicity and the band gap boundaries of the corresponding infinite periodic beam is also investigated. Numerical results and conclusions obtained here are favorable for designing beams with good vibration control ability. - Highlights: • The transfer matrix method to study the natural frequencies of the finite periodic non-uniform beams is derived. • The transfer matrix method to study the band gaps of the infinite periodic non-uniform beams is derived. • The effects of the periodic cells on the natural frequencies are explored. • The relationships of the natural frequencies and band gap boundaries are investigated.
On natural frequencies of non-uniform beams modulated by finite periodic cells
Energy Technology Data Exchange (ETDEWEB)
Xu, Yanlong, E-mail: xuyanlong@nwpu.edu.cn [School of Aeronautics, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Zhou, Xiaoling [Shanghai Institute of Aerospace System Engineering, Shanghai 201109 (China); Wang, Wei [School of Aeronautics, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China); Wang, Longqi [School of Civil & Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Peng, Fujun [Shanghai Institute of Aerospace System Engineering, Shanghai 201109 (China); Li, Bin [School of Aeronautics, Northwestern Polytechnical University, Xi' an 710072, Shaanxi (China)
2016-09-23
It is well known that an infinite periodic beam can support flexural wave band gaps. However, in real applications, the number of the periodic cells is always limited. If a uniform beam is replaced by a non-uniform beam with finite periodicity, the vibration changes are vital by mysterious. This paper employs the transfer matrix method (TMM) to study the natural frequencies of the non-uniform beams with modulation by finite periodic cells. The effects of the amounts, cross section ratios, and arrangement forms of the periodic cells on the natural frequencies are explored. The relationship between the natural frequencies of the non-uniform beams with finite periodicity and the band gap boundaries of the corresponding infinite periodic beam is also investigated. Numerical results and conclusions obtained here are favorable for designing beams with good vibration control ability. - Highlights: • The transfer matrix method to study the natural frequencies of the finite periodic non-uniform beams is derived. • The transfer matrix method to study the band gaps of the infinite periodic non-uniform beams is derived. • The effects of the periodic cells on the natural frequencies are explored. • The relationships of the natural frequencies and band gap boundaries are investigated.
Torsional vibrations of infinite composite poroelastic cylinders | Shah ...
African Journals Online (AJOL)
... radius of composite poroelastic solid cylinder to the radius of the inner solid cylinder. Results of previous works are shown as special case of the present analysis. By ignoring liquid effects, the results of purely elastic solid are obtained. International Journal of Engineering, Science and Technology, Vol. 2, No. 6, 2010, pp.
Investigation of torsional vibrations in thick walled hollow poroelastic ...
Indian Academy of Sciences (India)
tic cylinders are investigated by Malla Reddy & Tajuddin (2000). The said paper describes ... tic cylinder in the presence of dissipation is investigated (Tajuddin & Ahmed Shah 2006). The investigation of ...... J. Appl. Math. 78: 59–79. Tajuddin ...
Analysis of pump's shaft torsional vibrations in transient conditions
International Nuclear Information System (INIS)
Pasqualini, G.R.; Cauquelin, C.
1989-01-01
When the voltage is applied to an induction motor, the currents in the stator's phases are subject to a transient period. It is consequently also the case for the torques. A method to calculate the torque in the case of an induction motor with deep bars is presented. A model is proposed to represent the squirrel cage. It allows to take into account the fact the currents are not sinusoidal and that, in this case, the rotor's winding cannot be represented by only one resistance and once reactance. The electrical model is completed by a mechanical model for the shaftline. The calculation is realized for the start up of an reactor coolant pump. A comparison is made between the results given by the new model, by the classical model and by tests
Directory of Open Access Journals (Sweden)
Alexander V. Manzhirov
2017-12-01
Full Text Available The torsion of a shaft by rigid disks is considered. The shaft has the form of circular cylinder. Two rigid disks are attached to its end faces. The process of continuous growth of such shaft under the influence of twisting torques applied to the disks is studied. Dual series equations which reflect the mathematical content of the problem at the different stages of the growing process are derived and solved. Results of the numerical analysis and singularities of the qualitative mechanical behaviour of the fundamental characteristics are discussed.
Coupled-Mode Flutter of Wind Turbines and its Suppression Using Torsional Viscous Damper
DEFF Research Database (Denmark)
Zhang, Zili; Chen, Bei; Nielsen, Søren R. K.
2017-01-01
The trend towards lighter and more flexible blades may lead to aeroelastic instability of wind turbines under certain circumstances, resulting in rapid destructive failure or limit-cycle oscillations of the structural components. For pitch-regulated wind turbines, classical flutter is believed...... between blade vibrations with tower and drivetrain motions are also considered, making this model capable for coupled-mode flutter analysis of a complete wind turbine system. The parameters of the model have been calibrated to the DTU 10MW wind turbine, and the critical flutter speed of the rotor is shown...... to be about 1.6 times its nominal rotational speed. A novel torsional viscous damper is then proposed to suppress torsional blade vibration and to enhance flutter stability of wind turbines....
Teenage testicular torsion. | Onuigbo | International Journal of ...
African Journals Online (AJOL)
Aim: To study testicular torsion in teenagers in the Igbo community. Method: A retrospective study was carried out as regards requests for pathological examination of specimens received at a Regional Reference Laboratory based in Enugu. Results: Over a period of 30 years, 28 surgical specimens of testicular torsion in ...
Right paratesticular abscess mimicking neonatal testicular torsion ...
African Journals Online (AJOL)
U.O. Ezomike
Abstract. The clinical presentation of neonatal paratesticular abscess may closely resemble that of, neonatal testicular torsion and the use of scrotal ultrasonography to differentiate the two has low, sensitivity. We propose early operative treatment of suspected neonatal testicular torsion to salvage, the testicle in cases of ...
Simultaneous acute appendicitis with right testicular torsion
Directory of Open Access Journals (Sweden)
Tanveer Akhtar
2012-01-01
Full Text Available We present a child with both acute appendicitis and torsion of the right testis presenting at the same time. Testicular torsion possibly occurring due to vomiting in acute appendicitis so far has not been reported in the literature.
Appendicular Torsion | Dubhashi | Nigerian Journal of Surgery
African Journals Online (AJOL)
. It can be primary or secondary. This is a case report of 52-year-old female with 180° anti-clockwise rotation of the appendix. Torsion can further leads to strangulation and infarction of the organ. Appendicular torsion could be included in the ...
Optically probing torsional superelasticity in spider silks
Energy Technology Data Exchange (ETDEWEB)
Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P. [Department of Physical Sciences, IISER Mohali, Sector 81, Manauli, Mohali 140306 (India)
2013-11-11
We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10{sup 2−3} rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices.
Optically probing torsional superelasticity in spider silks
International Nuclear Information System (INIS)
Kumar, Bhupesh; Thakur, Ashish; Panda, Biswajit; Singh, Kamal P.
2013-01-01
We investigate torsion mechanics of various spider silks using a sensitive optical technique. We find that spider silks are torsionally superelastic in that they can reversibly withstand great torsion strains of over 10 2−3 rotations per cm before failure. Among various silks from a spider, we find the failure twist-strain is greatest in the sticky capture silk followed by dragline and egg-case silk. Our in situ laser-diffraction measurements reveal that torsional strains on the silks induce a nano-scale transverse compression in its diameter that is linear and reversible. These unique torsional properties of the silks could find applications in silk-based materials and devices
Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s
Energy Technology Data Exchange (ETDEWEB)
Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L., E-mail: aburin@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)
2016-07-21
We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.
Electronic torsional sound in linear atomic chains: Chemical energy transport at 1000 km/s
Kurnosov, Arkady A.; Rubtsov, Igor V.; Maksymov, Andrii O.; Burin, Alexander L.
2016-07-01
We investigate entirely electronic torsional vibrational modes in linear cumulene chains. The carbon nuclei of a cumulene are positioned along the primary axis so that they can participate only in the transverse and longitudinal motions. However, the interatomic electronic clouds behave as a torsion spring with remarkable torsional stiffness. The collective dynamics of these clouds can be described in terms of electronic vibrational quanta, which we name torsitons. It is shown that the group velocity of the wavepacket of torsitons is much higher than the typical speed of sound, because of the small mass of participating electrons compared to the atomic mass. For the same reason, the maximum energy of the torsitons in cumulenes is as high as a few electronvolts, while the minimum possible energy is evaluated as a few hundred wavenumbers and this minimum is associated with asymmetry of zero point atomic vibrations. Theory predictions are consistent with the time-dependent density functional theory calculations. Molecular systems for experimental evaluation of the predictions are proposed.
Paimushin, V. N.; Shishkin, V. M.
2016-01-01
A rod-shape finite element with twelve degrees of freedom is proposed for modeling the elastic and damping properties of rotor blades with regard to their geometric stiffness caused by rotation of the rotor. A model of coupling of the torsion bar with blades is developed based on the hypothesis of linear deplanation of the connecting section of the torsion bar and a special transition element to ensure the compatibility of displacements of the torsion bar and blades upon their vibrations in the flapping and rotation planes. Numerical experiments were carried out to test and assess the validity of the model developed. Suggestions are made for ensuring unconditional stability of the iteration method in a subspace in determining the specified number of modes and frequencies of free vibrations of the torsion bar-blade structure.
Ma, Yue; Hoang, Thai M.; Gong, Ming; Li, Tongcang; Yin, Zhang-qi
2017-08-01
Hybrid spin-mechanical systems have great potential in sensing, macroscopic quantum mechanics, and quantum information science. In order to induce strong coupling between an electron spin and the center-of-mass motion of a mechanical oscillator, a large magnetic gradient usually is required, which is difficult to achieve. Here we show that strong coupling between the electron spin of a nitrogen-vacancy (NV) center and the torsional vibration of an optically levitated nanodiamond can be achieved in a uniform magnetic field. Thanks to the uniform magnetic field, multiple spins can strongly couple to the torsional vibration at the same time. We propose utilizing this coupling mechanism to realize the Lipkin-Meshkov-Glick (LMG) model by an ensemble of NV centers in a levitated nanodiamond. The quantum phase transition in the LMG model and finite number effects can be observed with this system. We also propose generating torsional superposition states and realizing torsional matter-wave interferometry with spin-torsional coupling.
Torsion of the vermiform appendix: A case report | Wani | Internet ...
African Journals Online (AJOL)
Torsion of the vermiform appendix is a rare condition with few cases reported in the literature. Various factors predispose to torsion. Various factors predispose to torsion. We report a case of primary torsion of the vermiform appendix. The clinical presentation was indistinguishable from acute appendicitis and the diagnosis ...
Measurement of tibial torsion by computer tomography
Energy Technology Data Exchange (ETDEWEB)
Jend, H.H.; Heller, M.; Dallek, M.; Schoettle, H. (Hamburg Univ. (Germany, F.R.))
1981-01-01
A CT procedure for objective measurements of tibial torsion independent of axial rotation in the nearby joints is described. Transverse sections in defined planes of the tibia permit easy calculation of normal and abnormal congenital or posttraumatic angles of torsion. In 69 limbs normal tibial torsion was 40/sup 0/+-9/sup 0/. In a series of 42 limbs with complicated healing of a fracture of both bones of the leg it is shown that tibial maltorsion is a deformity which in most cases leads to arthrosis of the ankle joint.
Torsion of wandering spleen and distal pancreas
International Nuclear Information System (INIS)
Sheflin, J.R.; Lee, C.M.; Kretchmar, K.A.
1984-01-01
Wandering spleen is the term applied to the condition in which a long pedicle allows the spleen to lie in an abnormal location. Torsion of a wandering spleen is an unusual cause of an acute abdomen and is rarely diagnosed preoperatively. Associated torsion of the distal pancreas is even more uncommon. The authors describe a patient with torsion of a wandering spleen and distal pancreas, who was correctly diagnosed, and define the merits of the imaging methods used. The initial examination should be 99 /sup m/Tc-sulfur colloid liner-spleen scanning
Measurement of tibial torsion by computer tomography
International Nuclear Information System (INIS)
Jend, H.-H.; Heller, M.; Dallek, M.; Schoettle, H.
1981-01-01
A CT procedure for objective measurements of tibial torsion independent of axial rotation in the nearby joints is described. Transverse sections in defined planes of the tibia permit easy calculation of normal and abnormal congenital or posttraumatic angles of torsion. In 69 limbs normal tibial torsion was 40 0 +-9 0 . In a series of 42 limbs with complicated healing of a fracture of both bones of the leg it is shown that tibial maltorsion is a deformity which in most cases leads to arthrosis of the ankle joint. (Auth.)
Dynamic response of a clamped/free hollow circular cylinder under travelling torsional impact loads
International Nuclear Information System (INIS)
Jonker, J.B.
1982-01-01
Impact-induced vibrations in the casing of a gas centriguge due to a sudden failure of the spinning rotor (crash) can cause structural disintegrity of the casing. In order to study the influence of the rotor failure bahaviour and the impact load histories on the dynamic response of the casing, a simple crash model is proposed in this paper to analyse the transient torsional response due to tangential components of the impact loads. The casing is modeled as a linear-elastic hollow circular cylinder, clamped at the lower end and free at the upper end. The rotor is thought to breakup in identical sections in a sequence determined by its fracture behaviour. Each section is assumed to cause an axi-symmetric load distribution at the inner surface of the casing. Therefore the problem is essentially reduced to the analysis of a clamped/free cylinder under travelling torsional impact loads. The problem is solved by representing the impact loads as local pulses acting over the length of the sections. A perturbation method is used to show that the general two-dimensional theory of axi-symmetric torsional wave propagation in circular cylinders, for the problem under consideration, may be approximated by the elementary one-dimensional theory. Solutions are obtained according to the usual modal expansion approach. Measurements of transient torsional responses are shown to be in good agreement with the calculated responses by choosing a suitable shape of the pulses. The effects of travelling velocity and pulse shape are investigated. Finally the transfer of kinetic energy in the rotor to vibrational energy of torsion in the casing is studied. (orig.)
Paimushin, V. N.; Shishkin, V. M.
2015-11-01
A prismatic semiquadratic element with a nonclassical approximation of its displacements is suggested for modeling the composite and soft layers of a torsion bar and multilayered plate-rod structures. The stiffness, weight, damping, and geometric stiffness matrices of the above-mentioned element are obtained. Expressions for computing stresses in the finite element under the action of static loads and vibrations in the resonance zone are presented. Test examples confirming the validity of the element suggested are given. An example of finite element determination of the dynamic response of a multilayered torsion bar in the resonant mode is considered.
Gas-Dynamic Methods to Reduce Gas Flow Nonuniformity from the Annular Frames of Gas Turbine Engines
Kolmakova, D.; Popov, G.
2018-01-01
Gas flow nonuniformity is one of the main sources of rotor blade vibrations in the gas turbine engines. Usually, the flow circumferential nonuniformity occurs near the annular frames, located in the flow channel of the engine. This leads to the increased dynamic stresses in blades and consequently to the blade damage. The goal of the research was to find an acceptable method of reducing the level of gas flow nonuniformity. Two different methods were investigated during this research. Thus, this study gives the ideas about methods of improving the flow structure in gas turbine engine. Based on existing conditions (under development or existing engine) it allows the selection of the most suitable method for reducing gas flow nonuniformity.
Effects of temperature and torsion speed on torsional properties of single-walled carbon nanotubes
International Nuclear Information System (INIS)
Khoei, A.R.; Ban, E.; Banihashemi, P.; Abdolhosseini Qomi, M.J.
2011-01-01
Carbon nanotubes (CNTs) are excellent candidates for torsional elements used in nanoelectro-mechanical systems (NEMS). Simulations show that after being twisted to a certain angle, they buckle and lose their mechanical strength. In this paper, classical molecular dynamics simulations are performed on single-walled carbon nanotubes (CNTs) to investigate the effects of torsion speed and temperature on CNT torsional properties. The AIREBO potential is employed to describe the bonded interactions between carbon atoms. The MD simulations clearly show that the buckling of CNTs in torsion is a reversible process, in which by unloading the buckled CNT in opposite direction, it returns to its original configuration. In addition, the numerical results reveal that the torsional shear modulus of CNTs increases by increasing the temperature and decreasing the torsion speed. Furthermore, the buckling torsion angle of CNTs increases by increasing the torsion speed and decreasing the temperature. Finally, it is observed that torsional properties of CNTs are highly affected by speed of twist and temperature of the nanotubes.
Nonuniform quantum turbulence in superfluids
Nemirovskii, Sergey K.
2018-04-01
The problem of quantum turbulence in a channel with an inhomogeneous counterflow of superfluid turbulent helium is studied. The counterflow velocity Vns x(y ) along the channel is supposed to have a parabolic profile in the transverse direction y . Such statement corresponds to the recent numerical simulation by Khomenko et al. [Phys. Rev. B 91, 180504 (2015), 10.1103/PhysRevB.91.180504]. The authors reported about a sophisticated behavior of the vortex-line density (VLD) L (r ,t ) , different from L ∝Vns x(y) 2 , which follows from the straightforward application of the conventional Vinen theory. It is clear that Vinen theory should be refined by taking into account transverse effects, and the way it ought to be done is the subject of active discussion in the literature. In this work, we discuss several possible mechanisms of the transverse flux of VLD L (r ,t ) which should be incorporated in the standard Vinen equation to describe adequately the inhomogeneous quantum turbulence. It is shown that the most effective among these mechanisms is the one that is related to the phase-slippage phenomenon. The use of this flux in the modernized Vinen equation corrects the situation with an unusual distribution of the vortex-line density, and satisfactorily describes the behavior L (r ,t ) both in stationary and nonstationary situations. The general problem of the phenomenological Vinen theory in the case of nonuniform and nonstationary quantum turbulence is thoroughly discussed.
Haldane model under nonuniform strain
Ho, Yen-Hung; Castro, Eduardo V.; Cazalilla, Miguel A.
2017-10-01
We study the Haldane model under strain using a tight-binding approach, and compare the obtained results with the continuum-limit approximation. As in graphene, nonuniform strain leads to a time-reversal preserving pseudomagnetic field that induces (pseudo-)Landau levels. Unlike a real magnetic field, strain lifts the degeneracy of the zeroth pseudo-Landau levels at different valleys. Moreover, for the zigzag edge under uniaxial strain, strain removes the degeneracy within the pseudo-Landau levels by inducing a tilt in their energy dispersion. The latter arises from next-to-leading order corrections to the continuum-limit Hamiltonian, which are absent for a real magnetic field. We show that, for the lowest pseudo-Landau levels in the Haldane model, the dominant contribution to the tilt is different from graphene. In addition, although strain does not strongly modify the dispersion of the edge states, their interplay with the pseudo-Landau levels is different for the armchair and zigzag ribbons. Finally, we study the effect of strain in the band structure of the Haldane model at the critical point of the topological transition, thus shedding light on the interplay between nontrivial topology and strain in quantum anomalous Hall systems.
Torsion sensing based on patterned piezoelectric beams
Cha, Youngsu; You, Hangil
2018-03-01
In this study, we investigated the sensing characteristics of piezoelectric beams under torsional loads. We used partially patterned piezoelectric beams to sense torsion. In particular, the piezoelectric patches are located symmetrically with respect to the line of the shear center of the beam. The patterned piezoelectric beam is modeled as a slender beam, and its electrical responses are obtained by piezoelectric electromechanical equations. To validate the modeling framework, experiments are performed using a setup that forces pure torsional deformation. Three different geometric configurations of the patterned piezoelectric layer are used for the experiments. The frequency and amplitude of the forced torsional load are systematically varied in order to study the behavior of the piezoelectric sensor. Experimental results demonstrate that two voltage outputs of the piezoelectric beam are approximately out of phase with identical amplitude. Moreover, the length of the piezoelectric layers has a significant influence on the sensing properties. Our theoretical predictions using the model support the experimental findings.
Torsion, supersymmetry, and the heterotic string
International Nuclear Information System (INIS)
Curtright, T.
1985-01-01
The dynamical effects of torsion are summarized for bosonic and supersymmetric sigma models in two spacetime dimensions. Analogous structure for the heterotic superstring is discussed, including the presence of nonlinear realizations of supersymmetry on the world-sheet. 27 refs
Isolated torsion of fallopian tube. Radiological findings
International Nuclear Information System (INIS)
Tomas Fanjul, L.; Aldea Martinez, J.; Fernandez Matia, G.; Rodrigo Verguizas, J.; Fernandez Alvarez, G.; Galindo Vicente, M.C.
1993-01-01
Isolated tubal torsion is a very uncommon disorder that is rarely diagnosed preoperatively. We present a case and review the literature, which only provides ultrasonographic findings in 5 cases reported to date. 11 refs
Doubly graded sigma model with torsion
International Nuclear Information System (INIS)
Kowalski-Glikman, J.
1986-08-01
Using the Hull-Witten construction we show how to introduce torsion to the doubly graded sigma model. This construction enables us to find a link between this model and the ten-dimensional supergravity theory in superspace. (Auth.)
Electrostatically actuated torsional resonant sensors and switches
Younis, Mohammad I.
2016-01-01
Embodiments in accordance of a torsional resonant sensor disclosure is configured to actuate a beam structure using electrostatic actuation with an AC harmonic load (e.g., AC and DC voltage sources) that is activated upon detecting a particular
Torsion and geometrostasis in covariant superstrings
International Nuclear Information System (INIS)
Zachos, C.
1985-01-01
The covariant action for freely propagating heterotic superstrings consists of a metric and a torsion term with a special relative strength. It is shown that the strength for which torsion flattens the underlying 10-dimensional superspace geometry is precisely that which yields free oscillators on the light cone. This is in complete analogy with the geometrostasis of two-dimensional sigma-models with Wess-Zumino interactions. 13 refs
Torsion and geometrostasis in covariant superstrings
Energy Technology Data Exchange (ETDEWEB)
Zachos, C.
1985-01-01
The covariant action for freely propagating heterotic superstrings consists of a metric and a torsion term with a special relative strength. It is shown that the strength for which torsion flattens the underlying 10-dimensional superspace geometry is precisely that which yields free oscillators on the light cone. This is in complete analogy with the geometrostasis of two-dimensional sigma-models with Wess-Zumino interactions. 13 refs.
Current Density Distribution on the Perimeter of Waveguide Exciter Cylindrical Vibrator Conductor
Zakharia, Yosyp
2010-01-01
On ground of electrodynamic analysis the surface current distribution nonuniformity on the perimeter of waveguide-exciter cylindrical conductor is found. Considerable influence of current distribution nonuniformity on exciter input reactance is established. It is also showed, that the current distribution on the vibrator perimeter, for conductor radius no greater then 0,07 of waveguide cross section breadth, approximately uniform is.
Attentional Modulation of Eye Torsion Responses
Stevenson, Scott B.; Mahadevan, Madhumitha S.; Mulligan, Jeffrey B.
2016-01-01
Eye movements generally have both reflexive and voluntary aspects, but torsional eye movements are usually thought of as a reflexive response to image rotation around the line of sight (torsional OKN) or to head roll (torsional VOR). In this study we asked whether torsional responses could be modulated by attention in a case where two stimuli rotated independently, and whether attention would influence the latency of responses. The display consisted of rear-projected radial "pinwheel" gratings, with an inner annulus segment extending from the center to 22 degrees eccentricity, and an outer annulus segment extending from 22 degrees out to 45 degrees eccentricity. The two segments rotated around the center in independent random walks, stepping randomly 4 degrees clockwise or counterclockwise at 60 Hz. Subjects were asked to attend to one or the other while keeping fixation steady at the center of the display. To encourage attention on one or the other segment of the display, subjects were asked to move a joystick in synchrony with the back and forth rotations of one part of the image while ignoring the other. Eye torsion was recorded with the scleral search coil technique, sampled at 500 Hz. All four subjects showed roughly 50% stronger torsion responses to the attended compared to unattended segments. Latency varied from 100 to 150 msec across subjects and was unchanged by attention. These findings suggest that attention can influence eye movement responses that are not typically under voluntary control.
Observer based output-feedback control to eliminate rorsional drill-string vibrations
Vromen, T.G.M.; van de Wouw, N.; Doris, A.; Astrid, P.; Nijmeijer, H.
2014-01-01
Torsional stick-slip vibrations decrease the performance and reliability of drilling systems used for the exploration of energy and mineral resources. In this work, we present the design of a nonlinear observer-based outputfeedback control strategy to eliminate these vibrations. We apply the
Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling
Gupta, Sunit K.; Wahi, Pankaj
2018-01-01
We present an exact stability analysis of a dynamical system idealizing rotary drilling. This system comprises lumped parameter axial-torsional modes of the drill-string coupled via the cutting forces and torques. The kinematics of cutting is modeled through a functional description of the cut surface which evolves as per a partial differential equation (PDE). Linearization of this model is straightforward as opposed to the traditional state-dependent delay (SDDE) model and both the approaches result in the same characteristic equation. A systematic study on the key system parameters influencing the stability characteristics reveals that torsional damping is very critical and stable drilling is, in general, not possible in its absence. The stable regime increases as the natural frequency of the axial mode approaches that of the torsional mode and a 1:1 internal resonance leads to a significant improvement in the system stability. Hence, from a practical point of view, a drill-string with 1:1 internal resonance is desirable to avoid vibrations during rotary drilling. For the non-resonant case, axial damping reduces the stable range of operating parameters while for the resonant case, an optimum value of axial damping (equal to the torsional damping) results in the largest stable regime. Interestingly, the resonant (tuned) system has a significant parameter regime corresponding to stable operation even in the absence of damping.
Quasiparticles in non-uniformly magnetized plasma
International Nuclear Information System (INIS)
Sosenko, P.P.
1994-01-01
A quasiparticle concept is generalized for the case of non-uniformly magnetized plasma. Exact and reduced continuity equations for the microscopic density in the quasiparticle phase space are derived, and the nature of quasiparticles is analyzed. The theory is developed for the general case of relativistic particles in electromagnetic fields, besides non-uniform but stationary magnetic fields. Effects of non-stationary magnetic fields are briefly investigated also. 26 refs
Torsional oscillations of strange stars
Directory of Open Access Journals (Sweden)
Mannarelli Massimo
2014-01-01
Full Text Available Strange stars are one of the hypothetical compact stellar objects that can be formed after a supernova explosion. The existence of these objects relies on the absolute stability of strange collapsed quark matter with respect to standard nuclear matter. We discuss simple models of strange stars with a bare quark matter surface, thus standard nuclear matter is completely absent. In these models an electric dipole layer a few hundreds Fermi thick should exist close to the star surface. Studying the torsional oscillations of the electrically charged layer we estimate the emitted power, finding that it is of the order of 1045 erg/s, meaning that these objects would be among the brightest compact sources in the heavens. The associated relaxation times are very uncertain, with values ranging between microseconds and minutes, depending on the crust thickness. Although part of the radiated power should be absorbed by the electrosphere surrounding the strange star, a sizable fraction of photons should escape and be detectable.
Hydroxyl free radical production during torsional phacoemulsification.
Aust, Steven D; Hebdon, Thomas; Humbert, Jordan; Dimalanta, Ramon
2010-12-01
To quantitate free radical generation during phacoemulsification using an ultrasonic phacoemulsification device that includes a torsional mode and evaluate tip designs specific to the torsional mode. Chemistry and Biochemistry Department, Utah State University, Logan, Utah, USA. Experimental study. Experiments were performed using the Infiniti Vision System and OZil handpiece. Hydroxyl radical concentrations in the aspirated irrigation solution during torsional phacoemulsification were quantitated as nanomolar malondialdehyde (nM MDA) and determined spectrophotometrically using the deoxyribose assay. The mean free radical production during phacoemulsification with torsional modality at 100% amplitude was 30.1 nM MDA ± 5.1 (SD) using a 0.9 mm 45-degree Kelman tapered ABS tip. With other tip designs intended for use with the torsional modality, free radical production was further reduced when fitted with the 0.9 mm 45-degree Kelman mini-flared ABS tip (13.2 ± 5.6 nM MDA) or the 0.9 mm 45-degree OZil-12 mini-flared ABS tip (14.3 ± 6.7 nM MDA). Although the measurements resulting from the use of the latter 2 tips were not statistically significantly different (P ≈ .25), they were different from those of the tapered tip (P<.0001). The MDA concentration in the aspirated irrigation solution using the torsional modality was approximately one half that reported for the handpiece's longitudinal modality in a previous study using the same bent-tip design (Kelman tapered, P<.0001). The level of MDA was further reduced approximately one half with torsional-specific tips. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Alekhin, S.A.; Chernov, V.S.; Denisenko, V.V.; Gorodnyanskiy, I.F.; Prokopov, L.I.; Tikhonov, Yu.P.
1983-01-01
The vibration mixer is proposed which contains a housing, vibration drive with rod installed in the upper part of the mixing mechanism made in the form of a hollow shaft with blades. In order to improve intensity of mixing and dispersion of the mud, the shaft with the blades is arranged on the rod of the vibrator and is equipped with a cam coupling whose drive disc is attached to the vibration rod. The rod is made helical, while the drive disc of the cam coupling is attached to the helical surface of the rod. In addition, the vibration mixer is equipped with perforated discs installed on the ends of the rods.
Ultimate Strength of Ship Hulls under Torsion
DEFF Research Database (Denmark)
Paik, Jeom Kee; Thayamballi, Anil K.; Pedersen, Preben Terndrup
2001-01-01
For a ship hull with large deck openings such as container vessels and some large bulk carriers, the analysis of warping stresses and hatch opening deformations is an essential part of ship structural analyses. It is thus of importance to better understand the ultimate torsional strength characte......For a ship hull with large deck openings such as container vessels and some large bulk carriers, the analysis of warping stresses and hatch opening deformations is an essential part of ship structural analyses. It is thus of importance to better understand the ultimate torsional strength...... characteristics of ships with large hatch openings. The primary aim of the present study is to investigate the ultimate strength characteristics of ship hulls with large hatch openings under torsion. Axial (warping) as well as shear stresses are normally developed for thin-walled beams with open cross sections...... subjected to torsion. A procedure for calculating these stresses is briefly described. As an illustrative example, the distribution and magnitude of warping and shear stresses for a typical container vessel hull cross section under unit torsion is calculated by the procedure. By theoretical and numerical...
Heat production: Longitudinal versus torsional phacoemulsification.
Han, Young Keun; Miller, Kevin M
2009-10-01
To compare the heat production of longitudinal versus torsional phacoemulsification under strict laboratory test conditions. Department of Ophthalmology, David Geffen School of Medicine at UCLA, and Jules Stein Eye Institute, Los Angeles, California, USA. Two Infiniti phacoemulsification handpieces were inserted into silicone test chambers filled with a balanced salt solution and imaged serially using a thermal camera. Incision compression was simulated by suspending 25.3 g weights from the silicone chambers. To simulate occlusion of the phacoemulsification tip, the aspiration line was clamped. Peak temperatures were measured 0, 10, 30, 60, and 120 seconds after the commencement of continuous ultrasound power. The 2 handpieces, operating exclusively in longitudinal or torsional modes, were compared 3 ways: (1) using the same power displayed on the instrument console, (2) using identical stroke lengths, and (3) using the same applied energy, a product of stroke length and frequency. For all 3 comparisons, torsional phacoemulsification resulted in lower temperatures at each time point. At the same displayed power setting, the scenario most familiar to cataract surgeons, longitudinal phacoemulsification elevated temperatures up to 41.5 degrees C more than torsional phacoemulsification. Torsional phacoemulsification generated less heat than longitudinal phacoemulsification in all 3 comparison tests. Lower operating temperatures indicate lower heat generation within the same volume of fluid, and this may provide additional thermal protection during cataract surgery.
Electron spin control and torsional optomechanics of an optically levitated nanodiamond in vacuum
Li, Tongcang; Hoang, Thai; Ahn, Jonghoon; Bang, Jaehoon
Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centers, indicating potential applications of NV centers in oxygen gas sensing. For spin-optomechanics, it is important to control the orientation of the nanodiamond and NV centers in a magnetic field. Recently, we have observed the angular trapping and torsional vibration of a levitated nanodiamond, which paves the way towards levitated torsional optomechanics in the quantum regime. NSF 1555035-PHY.
Ultrasonographic diagnosis of torsion of testicular appendages
International Nuclear Information System (INIS)
Esparza, J.; Gonzalez, A.; Cordero, J. L.
2000-01-01
To determine the efficacy of ultrasound in boys presenting torsion of a testicular appendage. A series of 30 boys with acute scrotal pain due to torsion of a testicular appendage was studied. Nine patients underwent surgery. The clinical findings and course in the remaining 21 suggested the presence of this abnormality. All of them underwent conventional and color Doppler ultrasound using a 7.5 MHz transducer. In 15 boys, ultrasound images depicted the affected appendage as a mass between the epididymal head and the testicle. In 13 cases, only signs of a inflammatory reaction, with enlargement of the epididymal head and tunicas presenting hyperflow and hydrocele, mimicking acute epididymities. In two cases, the images were normal. There is no definitive, distinguishing ultrasound image corresponding to testicular appendage torsion. Therefore, this diagnostic technique should be accompanied by clinical assessment. (Author) 14 refs
experimental and analytical comparison of torsion, bending moment
African Journals Online (AJOL)
HOD
In structural analysis and design, the effects of torsion are usually neglected ... bending and torsion, using these codes and experimental work; and validates the ..... [7] Kharagpur, I. Structural Analysis: Civil Engineering. Course Material (Vol.
Ozil IP torsional mode versus combined torsional/longitudinal microcoaxial phacoemulsification.
Helvacioglu, Firat; Tunc, Zeki; Yeter, Celal; Oguzhan, Hasan; Sencan, Sadik
2012-01-01
To compare the safety and efficacy of microcoaxial phacoemulsification surgeries performed with the Ozil Intelligent Phaco (IP) torsional mode and combined torsional/longitudinal ultrasound (US) mode using the Infiniti Vision System (Alcon Laboratories). In this prospective randomized comparative study, 60 eyes were assigned to 2.2-mm microcoaxial phacoemulsification using the Ozil IP torsional mode (group 1) or combined torsional/longitudinal US mode (group 2). The primary outcome measures were US time (UST), cumulative dissipated energy (CDE), longitudinal and torsional ultrasound amplitudes, mean operation time, mean volume of balanced salt solution (BSS) used, and surgical complications. Both groups included 30 eyes. Mean UST, CDE, and longitudinal and torsional ultrasound amplitudes in group 1 were 1 minute 15±34.33 seconds, 8.74±5.64, 0.43±0.74, and 25.56±8.56, respectively, and these parameters in group 2 were 1 minute 40±51.44 seconds, 9.28±5.99, 3.64±1.55, and 3.71±1.34, respectively. UST and longitudinal amplitudes were found to be significantly low in group 1 (p<0.001, p<0.001), whereas torsional amplitude was found to be significantly high in this group (p=0.001). Mean volumes of BSS used in groups 1 and 2 were 63.30±18.00 cc and 84.50±28.65 cc, respectively (p=0.001). The Ozil IP torsional mode may provide more effective lens removal than the combined torsional/longitudinal US mode with a lower UST and volume of BSS used.
On the geometrization of electromagnetism by torsion
International Nuclear Information System (INIS)
Fonseca Neto, J.B. da.
1984-01-01
The possibility of electromagnetism geometrization using an four dimension Cartan geometry is investigated. The Lagrangian density which presents dual invariance for dyons electrodynamics formulated in term of two potentials is constructed. This theory by association of two potentials with track and with torsion pseudo-track and of the field with torsion covariant divergent is described. The minimum coupling of particle gravitational field of scalar and spinorial fields with dyon geometry theory by the minimum coupling of these fields with Cartan geometry was obtained. (author)
Properties of multilayer nonuniform holographic structures
International Nuclear Information System (INIS)
Pen, E F; Rodionov, Mikhail Yu
2010-01-01
Experimental results and analysis of properties of multilayer nonuniform holographic structures formed in photopolymer materials are presented. The theoretical hypotheses is proved that the characteristics of angular selectivity for the considered structures have a set of local maxima, whose number and width are determined by the thicknesses of intermediate layers and deep holograms and that the envelope of the maxima coincides with the selectivity contour of a single holographic array. It is also experimentally shown that hologram nonuniformities substantially distort shapes of selectivity characteristics: they become asymmetric, the local maxima differ in size and the depths of local minima reduce. The modelling results are made similar to experimental data by appropriately choosing the nonuniformity parameters. (imaging and image processing. holography)
IP Controller Design for Uncertain Two-Mass Torsional System Using Time-Frequency Analysis
Directory of Open Access Journals (Sweden)
Jing Cui
2018-01-01
Full Text Available With the development of industrial production, drive systems are demanded for larger inertias of motors and load machines, whereas shafts should be lightweight. In this situation, it will excite mechanical vibrations in load side, which is harmful for industrial production when the motor works. Because of the complexity of the flexible shaft, it is often difficult to calculate stiffness coefficient of the flexible shaft. Furthermore, only the velocity of driving side could be measured, whereas the driving torque, the load torque, and the velocity of load side are immeasurable. Therefore, it is inconvenient to design the controller for the uncertain system. In this paper, a low-order IP controller is designed for an uncertain two-mass torsional system based on polynomial method and time-frequency analysis (TFA. IP controller parameters are calculated by inertias of driving side and load side as well as the resonant frequency based on polynomial method. Therein, the resonant frequency is identified using the time-frequency analysis (TFA of the velocity step response of the driving side under the open-loop system state, which can not only avoid harmful persistent start-stop excitation signal of the traditional method, but also obtain high recognition accuracy under the condition of weak vibration signal submerged in noise. The effectiveness of the designed IP controller is verified by groups of experiments. Experimental results show that good performance for vibration suppression is obtained for uncertain two-mass torsional system in a medium-low shaft stiffness condition.
Nonuniformities in organic liquid ionization calorimeters
International Nuclear Information System (INIS)
Wenzel, W.A.
1989-06-01
Hermeticity and uniformity in SSC calorimeter designs are compromised by structure and modularity. Some of the consequences of the cryogenic needs of liquid argon calorimetry are relatively well known. If the active medium is an organic liquid (TMP, TMS, etc.), a large number of independent liquid volumes is needed for safety and for rapid liquid exchange to eliminate local contamination. Modular construction ordinarily simplifies fabrication, assembly, handling and preliminary testing at the price of additional walls, other dead regions and many nonuniformities. Here we examine ways of minimizing the impact of some generic nonuniformities on the quality of calorimeter performance. 6 refs., 7 figs
Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei
2018-03-01
The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.
Torsional Oscillations of the Earths's Core
Hide, Raymond; Boggs, Dale H.; Dickey, Jean O.
1997-01-01
Torsional oscillations of the Earth's liquid metallic outer core are investigated by diving the core into twenty imaginary e1qui-volume annuli coaxial with the axis of ratation of the Earth and determining temproal fluctuations in the axial component of angular memonetum of each annulus under the assumption of iso-rotation on cylindrical surfaces.
Torsion of the gallbladder: a case report
Directory of Open Access Journals (Sweden)
Ijaz Samia
2008-07-01
Full Text Available Abstract Introduction Torsion of the gallbladder is a rare condition that most commonly affects the elderly. Pre-operative diagnosis is the exception rather than the rule. Any delay in treatment can be fatal as the gallbladder may rupture, leading to biliary peritonitis. Case presentation We present the case of an 80-year-old woman who was admitted with right upper quadrant pain initially thought to be secondary to acute cholecystitis. Subsequent ultrasound and computed tomography scans of the abdomen revealed signs suggestive of acute cholecystitis but neither modality detected any gallstones. As the patient's symptoms failed to resolve on conservative management, she was taken to theatre for an open cholecystectomy. Intra-operatively, the gallbladder had undergone complete torsion and appeared gangrenous. A routine cholecystectomy followed and she recovered from the operation without incident. Conclusion It is rare to diagnose torsion of the gallbladder pre-operatively despite advances in diagnostic imaging. However, this differential diagnosis should be borne in mind particularly in the elderly patient, without proven gallstones, who fails to improve on conservative management. An emergency cholecystectomy is indicated in the event of diagnosing torsion of the gallbladder to avert the potentially lethal sequelae of biliary peritonitis.
Conformal deformation of Riemann space and torsion
International Nuclear Information System (INIS)
Pyzh, V.M.
1981-01-01
Method for investigating conformal deformations of Riemann spaces using torsion tensor, which permits to reduce the second ' order equations for Killing vectors to the system of the first order equations, is presented. The method is illustrated using conformal deformations of dimer sphere as an example. A possibility of its use when studying more complex deformations is discussed [ru
Adnexal torsion in 6 years old girl
International Nuclear Information System (INIS)
Plachkov, I.; Tzvetankov, K.; Dimova, M.; Dobreva, Tz.; Hadjidekov, G.
2012-01-01
MRI and US findings in Ovarian torsion in a premenarcheal girl are described. Adnexal torsion is an uncommon cause of severe lower abdominal pain in young women (mean age is 10-11), and in 50% of cases such symptoms are observed in pre-menarchal females. However, adnexal torsion should be considered in all premenarcheal girls admitted with acute abdominal pain and evidence of an ovarian mass. Accurate imaging is crucial after onset of early clinical symptoms to confirm the diagnosis and to preserve the viability of the affected ovary. A pelvic ovoid mass was visualised on ultrasound, suggesting several hypothesis -cystic mass, ovarian torsion, dermoid. Magnetic resonance imaging visualized edematous ovary enlargement and the presence of multiple follicules at the periphery due to congestion from the twisted vascular pedicule. Smooth wail thickening of the partially necrotic. Twisted ovary was seen in the subacute phase, which has been confirmed during laparoscopy. CT was not considered in this 6 years old girl due to ionizing radiation. (authors)
Torsional Performance of Wind Turbine Blades
DEFF Research Database (Denmark)
Branner, Kim; Berring, Peter; Berggreen, Christian
2007-01-01
The present work investigates how well different finite element modeling techniques can predict bending and torsion behavior of a wind turbine blade. Two shell models are investigated. One model has element offsets and the other has the elements at the mid-thickness surfaces of the model. The las...
Plant-based torsional actuator with memory
Nayomi Plaza; Samuel L. Zelinka; Don S. Stone; Joseph E. Jakes
2013-01-01
A bundle of a few loblolly pine (Pinus taeda) cells are moisture-activated torsional actuators that twist multiple revolutions per cm length in direct proportion to moisture content. The bundles generate 10 N m kg1 specific torque during both twisting and untwisting, which is higher than an electric motor. Additionally, the bundles exhibit a moisture-...
Pseudotopological quasilocal energy of torsion gravity
Ko, Sheng-Lan; Lin, Feng-Li; Ning, Bo
2017-08-01
Torsion gravity is a natural extension to Einstein gravity in the presence of fermion matter sources. In this paper we adopt Wald's covariant method of calculating the Noether charge to construct the quasilocal energy of the Einstein-Cartan-fermion system, and find that its explicit expression is formally independent of the coupling constant between the torsion and axial current. This seemingly topological nature is unexpected and is reminiscent of the quantum Hall effect and topological insulators. However, a coupling dependence does arise when evaluating it on shell, and thus the situation is pseudotopological. Based on the expression for the quasilocal energy, we evaluate it for a particular solution on the entanglement wedge and find agreement with the holographic relative entropy obtained before. This shows the equivalence of these two quantities in the Einstein-Cartan-fermion system. Moreover, the quasilocal energy in this case is not always positive definite, and thus it provides an example of a swampland in torsion gravity. Based on the covariant Noether charge, we also derive the nonzero fermion effect on the Komar angular momentum. The implications of our results for future tests of torsion gravity in gravitational-wave astronomy are also discussed.
Fakhry, Mohamed A; El Shazly, Malak I
2011-01-01
To compare torsional versus combined torsional and conventional ultrasound modes in hard cataract surgery regarding ultrasound energy and time and effect on corneal endothelium. Kasr El Aini hospital, Cairo University, and International Eye Hospital, Cairo, Egypt. Ninety-eight eyes of 63 patients were enrolled in this prospective comparative randomized masked clinical study. All eyes had nuclear cataracts of grades III and IV using the Lens Opacities Classification System III (LOCS III). Two groups were included, each having an equal number of eyes (49). The treatment for group A was combined torsional and conventional US mode phacoemulsification, and for group B torsional US mode phacoemulsification only. Pre- and post-operative assessments included best corrected visual acuity (BCVA), intraocular pressure (IOP), slit-lamp evaluation, and fundoscopic evaluation. Endothelial cell density (ECD) and central corneal thickness (CCT) were measured preoperatively, 1 day, 7 days, and 1 month postoperatively. All eyes were operated on using the Alcon Infiniti System (Alcon, Fort Worth, TX) with the quick chop technique. All eyes were implanted with AcrySof SA60AT (Alcon) intraocular lens (IOL). The main phaco outcome parameters included the mean ultrasound time (UST), the mean cumulative dissipated energy (CDE), and the percent of average torsional amplitude in position 3 (%TUSiP3). Improvement in BCVA was statistically significant in both groups (P < 0.001). Comparing UST and CDE for both groups revealed results favoring the pure torsional group (P = 0.002 and P < 0.001 for UST; P = 0.058 and P = 0.009 for CDE). As for %TUSiP3, readings were higher for the pure torsional group (P = 0.03 and P = 0.01). All changes of CCT, and ECD over time were found statistically significant using one-way ANOVA testing (P < 0.001). Both modes are safe in hard cataract surgery, however the pure torsional mode showed less US energy used.
Capacitated Vehicle Routing with Nonuniform Speeds
DEFF Research Database (Denmark)
Gørtz, Inge Li; Molinaro, Marco; Nagarajan, Viswanath
2016-01-01
is the distance traveled divided by its speed.Our algorithm relies on a new approximate minimum spanning tree construction called Level-Prim, which is related to but different from Light Approximate Shortest-path Trees. We also extend the widely used tour-splitting technique to nonuniform speeds, using ideas from...
Casimir energy of a nonuniform string
Hadasz, L.; Lambiase, G.; Nesterenko, V. V.
2000-07-01
The Casimir energy of a nonuniform string built up from two pieces with different speeds of sound is calculated. A standard procedure of subtracting the energy of an infinite uniform string is applied, the subtraction being interpreted as the renormalization of the string tension. It is shown that in the case of a homogeneous string this method is completely equivalent to zeta renormalization.
Stone Stability in Non-uniform Flow
Hoan, N.T.; Stive, M.J.F.; Booij, R.; Hofland, B.; Verhagen, H.J.
2011-01-01
This paper presents the results of an experimental study on stone stability under nonuniform turbulent flow, in particular expanding flow. Detailed measurements of both flow and turbulence and the bed stability are described. Than various manners of quantifying the hydraulic loads exerted on the
Stone Stability under Stationary Nonuniform Flows
Steenstra, Remco; Hofland, B.; Paarlberg, Andries; Smale, Alfons; Huthoff, Fredrik; Uijttewaal, W.S.J.
2016-01-01
A stability parameter for rock in bed protections under nonuniform stationary flow is derived. The influence of the mean flow velocity, turbulence, and mean acceleration of the flow are included explicitly in the parameter. The relatively new notion of explicitly incorporating the mean acceleration
Radar Doppler Processing with Nonuniform Sampling.
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-07-01
Conventional signal processing to estimate radar Doppler frequency often assumes uniform pulse/sample spacing. This is for the convenience of t he processing. More recent performance enhancements in processor capability allow optimally processing nonuniform pulse/sample spacing, thereby overcoming some of the baggage that attends uniform sampling, such as Doppler ambiguity and SNR losses due to sidelobe control measures.
DEFF Research Database (Denmark)
Sørensen, Herman
1997-01-01
Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board......Methods for calculating natural frequencies for ship hulls and for plates and panels.Evaluation of the risk for inconvenient vibrations on board...
Torsion limits from t t macr production at the LHC
de Almeida, F. M. L.; de Andrade, F. R.; do Vale, M. A. B.; Nepomuceno, A. A.
2018-04-01
Torsion models constitute a well-known class of extended quantum gravity models. In this work, one investigates the phenomenological consequences of a torsion field interacting with top quarks at the LHC. A torsion field could appear as a new heavy state characterized by its mass and couplings to fermions. This new state would form a resonance decaying into a top antitop pair. The latest ATLAS t t ¯ production results from LHC 13 TeV data are used to set limits on torsion parameters. The integrated luminosity needed to observe torsion resonance at the next LHC upgrades are also evaluated, considering different values for the torsion mass and its couplings to Standard Model fermions. Finally, prospects for torsion exclusion at the future LHC phases II and III are obtained using fast detector simulations.
Chains of benzenes with lithium-atom adsorption: Vibrations and spontaneous symmetry breaking
Ortiz, Yenni P.; Stegmann, Thomas; Klein, Douglas J.; Seligman, Thomas H.
2017-09-01
We study effects of different configurations of adsorbates on the vibrational modes as well as symmetries of polyacenes and poly-p-phenylenes focusing on lithium atom adsorption. We found that the spectra of the vibrational modes distinguish the different configurations. For more regular adsorption schemes the lowest states are bending and torsion modes of the skeleton, which are essentially followed by the adsorbate. On poly-p-phenylenes we found that lithium adsorption reduces and often eliminates the torsion between rings thus increasing symmetry. There is spontaneous symmetry breaking in poly-p-phenylenes due to double adsorption of lithium atoms on alternating rings.
Instruction sequence based non-uniform complexity classes
Bergstra, J.A.; Middelburg, C.A.
2013-01-01
We present an approach to non-uniform complexity in which single-pass instruction sequences play a key part, and answer various questions that arise from this approach. We introduce several kinds of non-uniform complexity classes. One kind includes a counterpart of the well-known non-uniform
Dynamic stiffness of suction caissons - torsion, sliding and rocking
Energy Technology Data Exchange (ETDEWEB)
Ibsen, Lars Bo; Liingaard, M.; Andersen, Lars
2006-12-15
This report concerns the dynamic soil-structure interaction of steel suction caissons applied as foundations for offshore wind turbines. An emphasis is put on torsional vibrations and coupled sliding/rocking motion, and the influence of the foundation geometry and the properties of the surrounding soil is examined. The soil is simplified as a homogenous linear viscoelastic material and the dynamic stiffness of the suction caisson is expressed in terms of dimensionless frequency-dependent coefficients corresponding to the different degrees of freedom. The dynamic stiffness coefficients for the skirted foundation are evaluated by means of a three-dimensional coupled boundary element/finite element model. Comparisons with known analytical and numerical solutions indicate that the static and dynamic behaviour of the foundation are predicted accurately with the applied model. The analysis has been carried out for different combinations of the skirt length and the Poisson's ratio of the subsoil. Finally, the high-frequency impedance has been determined for future use in lumped-parameter models of wind turbine foundations in aero-elastic codes. (au)
Directory of Open Access Journals (Sweden)
Fakhry MA
2011-07-01
Full Text Available Mohamed A Fakhry1,2, Malak I El Shazly11Department of Ophthalmology, Kasr El Aini Hospital, Cairo University, Cairo, Egypt; 2Cataract and Refractive Consultant, International Eye Hospital, Cairo, EgyptPurpose: To compare torsional versus combined torsional and conventional ultrasound modes in hard cataract surgery regarding ultrasound energy and time and effect on corneal endothelium.Settings: Kasr El Aini hospital, Cairo University, and International Eye Hospital, Cairo, Egypt.Methodology: Ninety-eight eyes of 63 patients were enrolled in this prospective comparative randomized masked clinical study. All eyes had nuclear cataracts of grades III and IV using the Lens Opacities Classification System III (LOCS III. Two groups were included, each having an equal number of eyes (49. The treatment for group A was combined torsional and conventional US mode phacoemulsification, and for group B torsional US mode phacoemulsification only. Pre- and post-operative assessments included best corrected visual acuity (BCVA, intraocular pressure (IOP, slit-lamp evaluation, and fundoscopic evaluation. Endothelial cell density (ECD and central corneal thickness (CCT were measured preoperatively, 1 day, 7 days, and 1 month postoperatively. All eyes were operated on using the Alcon Infiniti System (Alcon, Fort Worth, TX with the quick chop technique. All eyes were implanted with AcrySof SA60AT (Alcon intraocular lens (IOL. The main phaco outcome parameters included the mean ultrasound time (UST, the mean cumulative dissipated energy (CDE, and the percent of average torsional amplitude in position 3 (%TUSiP3.Results: Improvement in BCVA was statistically significant in both groups (P < 0.001. Comparing UST and CDE for both groups revealed results favoring the pure torsional group (P = 0.002 and P < 0.001 for UST; P = 0.058 and P = 0.009 for CDE. As for %TUSiP3, readings were higher for the pure torsional group (P = 0.03 and P = 0.01. All changes of CCT, and ECD
Study of low vibration 4 K pulse tube cryocoolers
Xu, Mingyao; Nakano, Kyosuke; Saito, Motokazu; Takayama, Hirokazu; Tsuchiya, Akihiro; Maruyama, Hiroki
2012-06-01
Sumitomo Heavy Industries, Ltd. (SHI) has been continuously improving the efficiency and reducing the vibration of a 4 K pulse tube cryocooler. One advantage of a pulse tube cryocooler over a GM cryocooler is low vibration. In order to reduce vibration, both the displacement and the acceleration have to be reduced. The vibration acceleration can be reduced by splitting the valve unit from the cold head. One simple way to reduce vibration displacement is to increase the wall thickness of the tubes on the cylinder. However, heat conduction loss increases while the wall thickness increases. To overcome this dilemma, a novel concept, a tube with non-uniform wall thickness, is proposed. Theoretical analysis of this concept, and the measured vibration results of an SHI lowvibration pulse tube cryocooler, will be introduced in this paper.
Vortices in nonuniform upper-hybrid field
International Nuclear Information System (INIS)
Davydova, T.A.; Vranjes, J.
1992-01-01
The equations describing the interaction of an upper-hybrid pump wave with small low-frequency density perturbations are discussed under assumption that the pump is spatially nonuniform. The conditions for the modulational instability are investigated. Instead of a dispersion relation, describing the growth of perturbations in the case of an uniform pump, in our case of nonuniform pump a differential equation is obtained and from its eigenvalues are found the instability criteria. Taking into account the slow-frequency self-interaction terms some localized solutions similar to dipole vortices are found, but described by analytic functions in all space. It is shown that their characteristic size and speed are determined by the pump intensity and its spatial structure. (au)
Non-uniform tube representation of proteins
DEFF Research Database (Denmark)
Hansen, Mikael Sonne
Treating the full protein structure is often neither computationally nor physically possible. Instead one is forced to consider various reduced models capturing the properties of interest. Previous work have used tubular neighborhoods of the C-alpha backbone. However, assigning a unique radius...... might not correctly capture volume exclusion - of crucial importance when trying to understand a proteins $3$d-structure. We propose a new reduced model treating the protein as a non-uniform tube with a radius reflecting the positions of atoms. The tube representation is well suited considering X......-ray crystallographic resolution ~ 3Å while a varying radius accounts for the different sizes of side chains. Such a non-uniform tube better capture the protein geometry and has numerous applications in structural/computational biology from the classification of protein structures to sequence-structure prediction....
Allowance for influence of gravity field nonuniformity
Tsysar, A. P.
1987-03-01
The constants of a quartz-metal pendulum used in higher-order gravimetric networks have been determined and a formula has been derived for the total correction for gravity field nonuniformity measurements made with the pendulum. Nomograms were constructed on the basis of these formulas and are used in introducing corrections into pendulum measurements. A table was prepared giving the components of the correction for some values of the derivatives of gravity potential from surrounding masses. Errors can be caused by building walls, the pedestal on which the instrument sits and other factors, and these must be taken into account since they increase the normal gravity gradient. After introducing these correction components for the nonuniform gravity field, the gravity field at the measurement point is related to the instrument point coinciding with the middle of the pendulum knife blade.
Biothermal sensing of a torsional artificial muscle.
Lee, Sung-Ho; Kim, Tae Hyeob; Lima, Márcio D; Baughman, Ray H; Kim, Seon Jeong
2016-02-14
Biomolecule responsive materials have been studied intensively for use in biomedical applications as smart systems because of their unique property of responding to specific biomolecules under mild conditions. However, these materials have some challenging drawbacks that limit further practical application, including their speed of response and mechanical properties, because most are based on hydrogels. Here, we present a fast, mechanically robust biscrolled twist-spun carbon nanotube yarn as a torsional artificial muscle through entrapping an enzyme linked to a thermally sensitive hydrogel, poly(N-isopropylacrylamide), utilizing the exothermic catalytic reaction of the enzyme. The induced rotation reached an equilibrated angle in less than 2 min under mild temperature conditions (25-37 °C) while maintaining the mechanical properties originating from the carbon nanotubes. This biothermal sensing of a torsional artificial muscle offers a versatile platform for the recognition of various types of biomolecules by replacing the enzyme, because an exothermic reaction is a general property accompanying a biochemical transformation.
Electronic transport in torsional strained Weyl semimetals
Soto-Garrido, Rodrigo; Muñoz, Enrique
2018-05-01
In a recent paper (Muñoz and Soto-Garrido 2017 J. Phys.: Condens. Matter 29 445302) we have studied the effects of mechanical strain and magnetic field on the electronic transport properties in graphene. In this article we extended our work to Weyl semimetals (WSM). We show that although the WSM are 3D materials, most of the analysis done for graphene (2D material) can be carried out. In particular, we studied the electronic transport through a cylindrical region submitted to torsional strain and external magnetic field. We provide exact analytical expressions for the scattering cross section and the transmitted electronic current. In addition, we show the node-polarization effect on the current and propose a recipe to measure the torsion angle from transmission experiments.
High-pressure torsion of hafnium
International Nuclear Information System (INIS)
Edalati, Kaveh; Horita, Zenji; Mine, Yoji
2010-01-01
Pure Hf (99.99%) is processed by high-pressure torsion (HPT) under pressures of 4 and 30 GPa to form an ultrafine-grained structure with a gain size of ∼180 nm. X-ray diffraction analysis shows that, unlike Ti and Zr, no ω phase formation is detected after HPT processing even under a pressure of 30 GPa. A hydride formation is detected after straining at the pressure of 4 GPa. The hydride phase decomposes either by application of a higher pressure as 30 GPa or by unloading for prolong time after HPT processing. Microhardness, tensile and bending tests show that a high hardness (360 Hv) and an appreciable ductility (8%) as well as high tensile and bending strength (1.15 and 2.75 GPa, respectively) are achieved following the high-pressure torsion.
Wang, Shibo; Niu, Chengchao
2016-01-01
In this work, the plane-on-plane torsional fretting tribological behavior of polytetrafluoroethylene (PTFE) was studied. A model of a rigid, flat-ended punch acting on an elastic half-space was built according to the experimental conditions. The results indicate that the shape of T–θ curves was influenced by both the torsional angle and the normal load. The torsion friction torque and wear rate of PTFE exponentially decreased when the torsion angle rose. The torsional torque increased from 0.025 N·m under a normal load of 43 N to 0.082 N·m under a normal load of 123 N. With sequentially increasing normal load, the value of torque was maintained. With rising normal load, the wear mass loss of PTFE disks was increased and the wear rate was decreased. Good agreement was found with the calculated torque according to the model and the experimental torque except for that under a normal load of 163 N. The difference under a normal load of 163 N was caused by the coefficient of friction. Usually the coefficient of friction of a polymer decreases with increasing normal load, whereas a constant coefficient of friction was applied in the model. PMID:26799324
Surface magnetic canting in a nonuniform film
International Nuclear Information System (INIS)
Pini, M.G.; Rettori, A.; Pappas, D.P.; Anisimov, A.V.; Popov, A.P.
2004-01-01
The zero temperature equilibrium configuration of a nonuniform system made of a ferromagnetic (FM) monolayer on top of a semi-infinite FM film is calculated using a nonlinear mapping formulation of mean-field theory, where the surface is taken into account via an appropriate boundary condition. The analytical criterion for the existence of surface magnetic canting, previously obtained by Popov and Pappas, is also recovered
Torsion method for measuring piezooptic coefficients
Energy Technology Data Exchange (ETDEWEB)
Skab, I.; Smaga, I.; Savaryn, V.; Vasylkiv, Yu.; Vlokh, R. [Institute of Physical Optics, Lviv (Ukraine)
2011-01-15
We develop and describe analytically a torsion method for measuring piezooptic coefficients associated with shear stresses. It is shown that the method enables to increase significantly the accuracy of determination of piezooptic coefficients. The method and the appropriate apparatus are verified experimentally on the example of LiNbO{sub 3} crystals. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Torsional asymmetry in suspension bridge systems
Czech Academy of Sciences Publication Activity Database
Malík, Josef
2015-01-01
Roč. 60, č. 6 (2015), s. 677-701 ISSN 0862-7940 R&D Projects: GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : suspension bridge * Hamilton principle * vertical and torsional oscillation * uniqueness * existence Subject RIV: BA - General Mathematics Impact factor: 0.507, year: 2015 http://link.springer.com/article/10.1007%2Fs10492-015-0117-3
Electrostatically actuated torsional resonant sensors and switches
Younis, Mohammad I.
2016-12-29
Embodiments in accordance of a torsional resonant sensor disclosure is configured to actuate a beam structure using electrostatic actuation with an AC harmonic load (e.g., AC and DC voltage sources) that is activated upon detecting a particular agent having a mass above a predefined level. In various embodiments, the beam structure may be different types of resonant structures that is at least partially coated or layered with a selective material.
Statistical evaluation of unobserved nonuniform corrosion in A216 steel
International Nuclear Information System (INIS)
Pulsipher, B.A.
1988-07-01
Tests designed to promote nonuniform corrosion have been conducted at PNL on A216 steel. In all of the tests performed to date, there have been no manifestations of significant nonuniform corrosion. Although this may suggest that nonuniform corrosion in A216 steel may not be a significant problem in the nuclear waste repository, a question arises as to whether enough tests have been conducted for a sufficient length of time to rule out nonuniform corrosion of A216 steel. In this report, a method for determining the required number of tests is examined for two of the mechanisms of nonuniform corrosion: pitting and crevice corrosion
Subrandom methods for multidimensional nonuniform sampling.
Worley, Bradley
2016-08-01
Methods of nonuniform sampling that utilize pseudorandom number sequences to select points from a weighted Nyquist grid are commonplace in biomolecular NMR studies, due to the beneficial incoherence introduced by pseudorandom sampling. However, these methods require the specification of a non-arbitrary seed number in order to initialize a pseudorandom number generator. Because the performance of pseudorandom sampling schedules can substantially vary based on seed number, this can complicate the task of routine data collection. Approaches such as jittered sampling and stochastic gap sampling are effective at reducing random seed dependence of nonuniform sampling schedules, but still require the specification of a seed number. This work formalizes the use of subrandom number sequences in nonuniform sampling as a means of seed-independent sampling, and compares the performance of three subrandom methods to their pseudorandom counterparts using commonly applied schedule performance metrics. Reconstruction results using experimental datasets are also provided to validate claims made using these performance metrics. Copyright © 2016 Elsevier Inc. All rights reserved.
Spacetime thermodynamics in the presence of torsion
Dey, Ramit; Liberati, Stefano; Pranzetti, Daniele
2017-12-01
It was shown by Jacobson in 1995 that the Einstein equation can be derived as a local constitutive equation for an equilibrium spacetime thermodynamics. With the aim to understand if such thermodynamical description is an intrinsic property of gravitation, many attempts have been made so far to generalize this treatment to a broader class of gravitational theories. Here we consider the case of the Einstein-Cartan theory as a prototype of theories with nonpropagating torsion. In doing so, we study the properties of Killing horizons in the presence of torsion, establish the notion of local causal horizon in Riemann-Cartan spacetimes, and derive the generalized Raychaudhuri equation for these kinds of geometries. Then, starting with the entropy that can be associated to these local causal horizons, we derive the Einstein-Cartan equation by implementing the Clausius equation. We outline two ways of proceeding with the derivation depending on whether we take torsion as a geometric field or as a matter field. In both cases we need to add internal entropy production terms to the Clausius equation as the shear and twist cannot be taken to be 0 a priori for our setup. This fact implies the necessity of a nonequilibrium thermodynamics treatment for the local causal horizon. Furthermore, it implies that a nonzero twist at the horizon in general contributes to the Hartle-Hawking tidal heating for black holes with possible implications for future observations.
Isolated Fallopian Tube Torsion in Adolescents
Directory of Open Access Journals (Sweden)
S. Rajaram
2013-01-01
Full Text Available Background. Fallopian tube torsion is a rare cause of acute abdomen, occurring commonly in females of reproductive age. It lacks pathognomonic symptoms, signs, or imaging features, thus causing delay in surgical intervention. Case. We report two cases of isolated fallopian tube torsion in adolescent girls. In the first case a 19-year-old patient presented with acute pain in the left iliac region associated with episodes of vomiting for one day and mild tenderness on examination. Laparoscopy revealed left sided twisted fallopian tube associated with hemorrhagic cyst of ovary. The tube was untwisted and salvaged. In another case an 18-year-old virgin girl presented with similar complaints since one week, associated with mild tenderness in the lower abdomen and tender cystic mass on per rectal examination. On laparoscopy right twisted fallopian tube associated with a paratubal cyst was found. Salpingectomy was done as the tube was gangrenous. Conclusion. Fallopian tube torsion, though rare, should be considered in women of reproductive age with unilateral pelvic pain. Early diagnostic laparoscopy is important for an accurate diagnosis and could salvage the tube.
Gauge fields in a torsion field
International Nuclear Information System (INIS)
Rosu, Ion
2004-01-01
In this paper we analyse the motion and the field equations in a non-null curvature and torsion space. In this 4-n dimensional space, the connection coefficients are γ bc a = 1/2S bc a + 1/2T bc a, where S bc a is the symmetrical part and T bc a are the components of the torsion tensor. We will consider that all the fields depend on x = x α , α = 1,2,3,4 and do not depend on y = y k , k=1,2,...,n. The factor S bc a depends on the components of the metric tensor g αβ (x) and on the gauge fields A ν s 0 (x) and the components of the torsion depend only on the gauge fields A ν s 0 (x). We take into consideration the particular case for which the geodesic equations coincide with the motion equations in the presence of the gravitational and the gauge fields. In this case the field equations are Einstein equations in a 4-n dimensional space. We show that both the geodesic equations and the field equations can be obtained from a variational principle. (author)
DEFF Research Database (Denmark)
Morrison, Ann; Knudsen, L.; Andersen, Hans Jørgen
2012-01-01
In this paper we describe a field study conducted with a wearable vibration belt where we test to determine the vibration intensity sensitivity ranges on a large diverse group of participants with evenly distributed ages and...
Energy Technology Data Exchange (ETDEWEB)
Boussessi, R., E-mail: rahma.boussesi@iem.cfmac.csic.es [Departamento de Química y Física Teóricas, I. Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006 (Spain); Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA LR01ES09, Faculté des sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia); Senent, M. L., E-mail: ml.senent@csic.es [Departamento de Química y Física Teóricas, I. Estructura de la Materia, IEM-CSIC, Serrano 121, Madrid 28006 (Spain); Jaïdane, N. [Laboratoire de Spectroscopie Atomique, Moléculaire et Applications-LSAMA LR01ES09, Faculté des sciences de Tunis, Université de Tunis El Manar, 2092 Tunis (Tunisia)
2016-04-28
An elaborate variational procedure of reduced dimensionality based on explicitly correlated coupled clusters calculations is applied to understand the far infrared spectrum of ethylene-glycol, an astrophysical species. This molecule can be classified in the double molecular symmetry group G{sub 8} and displays nine stable conformers, gauche and trans. In the gauche region, the effect of the potential energy surface anisotropy due to the formation of intramolecular hydrogen bonds is relevant. For the primary conformer, stabilized by a hydrogen bond, the ground vibrational state rotational constants are computed to be A{sub 0} = 15 369.57 MHz, B{sub 0} = 5579.87 MHz, and C{sub 0} = 4610.02 MHz corresponding to differences of 6.3 MHz, 7.2 MHz, and 3.5 MHz from the experimental parameters. Ethylene glycol displays very low torsional energy levels whose classification is not straightforward and requires a detailed analysis of the torsional wavefunctions. Tunneling splittings are significant and unpredictable due to the anisotropy of the potential energy surface PES. The ground vibrational state splits into 16 sublevels separated ∼142 cm{sup −1}. The splitting of the “G1 sublevels” was calculated to be ∼0.26 cm{sup −1} in very good agreement with the experimental data (0.2 cm{sup −1} = 6.95 MHz). Transitions corresponding to the three internal rotation modes allow assignment of previously observed Q branches. Band patterns, calculated between 362.3 cm{sup −1} and 375.2 cm{sup −1}, 504 cm{sup −1} and 517 cm{sup −1}, and 223.3 cm{sup −1} and 224.1 cm{sup −1}, that correspond to the tunnelling components of the v{sub 21} fundamental (v{sub 21} = OH-torsional mode), are assigned to the prominent experimental Q branches.
Fast Torsional Artificial Muscles from NiTi Twisted Yarns.
Mirvakili, Seyed M; Hunter, Ian W
2017-05-17
Torsional artificial muscles made of multiwalled carbon nanotube/niobium nanowire yarns have shown remarkable torsional speed and gravimetric torque. The muscle structure consists of a twisted yarn with half of its length infiltrated with a stimuli-responsive guest material such as paraffin wax. The volumetric expansion of the guest material creates the torsional actuation in the yarn. In the present work, we show that this type of actuation is not unique to wax-infiltrated carbon multiwalled nanotube (MWCNT) or niobium nanowire yarns and that twisted yarn of NiTi alloy fibers also produces fast torsional actuation. By gold-plating half the length of a NiTi twisted yarn and Joule heating it, we achieved a fully reversible torsional actuation of up to 16°/mm with peak torsional speed of 10 500 rpm and gravimetric torque of 8 N·m/kg. These results favorably compare to those of MWCNTs and niobium nanowire yarns.
Isolated Penile Torsion in Brothers: A Case Report
Directory of Open Access Journals (Sweden)
Metin Gunduz
2012-04-01
Full Text Available Penile torsion can be congenital and associated with hypospadias and chordee, or can be acquired after circumcision. The incidence of isolated neonatal penile torsion was 1.7 to 27% in the literature. The majority were between 10 and deg; and 20 and deg;. Generally, torsion was to the left in cases. The techniques for correction of penile torsion described in the literature are penile de-gloving and reattaching of skin, resection of Buck's fascia incising the base of the penis and removing angular ellipses of corporeal tissue with subsequent plication of tunica, and dorsal dartos flap rotation in severe cases. In conclusion, penile torsion may be familial. Therefore, brothers should be examined carefully. The degloving and realignment technique is successful in isolated penile torsion. [Arch Clin Exp Surg 2012; 1(2.000: 122-124
Development of a simple computerized torsion test to quantify subjective ocular torsion.
Kim, Y D; Yang, H K; Hwang, J-M
2017-11-01
PurposeThe double Maddox-rod test (DMRT) and Lancaster red-green test (LRGT) are the most widely used tests worldwide to assess subjective ocular torsion. However, these tests require equipment and the quantified results of ocular torsion are only provided in rough values. Here we developed a novel computerized torsion test (CTT) for individual assessment of subjective ocular torsion and validated the reliability and accuracy of the test compared with those of the DMRT and LRGT.MethodsA total of 30 patients with cyclovertical strabismus and 30 controls were recruited. The CTT was designed using Microsoft Office PowerPoint. Subjects wore red-green filter spectacles and viewed gradually tilted red and cyan lines on an LCD monitor and pressed the keyboard to go through the slides, until both lines seemed parallel. All subjects underwent the CTT, DMRT, and LRGT. Intraclass correlation coefficients and Bland-Altman plots were analyzed to assess the acceptability of the CTT compared with that of the DMRT.ResultsBoth the DMRT and CTT showed no significant test-retest differences in the strabismus and control groups. The DMRT and CTT results demonstrated an acceptable agreement. The reliability of the CTT was better than that of the DMRT. The LRGT showed low sensitivity for the detection of ocular torsion compared with the DMRT (40.0%) and CTT (39.1%).ConclusionOur results suggest that the assessment of subjective ocular torsion using the CTT based on PowerPoint software is simple, reproducible, and accurate and can be applied in clinical practice.
Painless inter epididymal testicular torsion of the spermatic cord
Directory of Open Access Journals (Sweden)
Salomon V. Romano
2007-02-01
Full Text Available Inter epididymal testicular torsion of the spermatic cord is extremely rare and usually diagnosed at surgery. We present an unusual case of spermatic cord torsion in a 14-year-old male patient. It is important to highlight that the torsion occurred only on the distal half of the epididymis leaving the head untwisted and edematous. In addition, the fact that this condition was painless made this case extremely rare and motivated our presentation.
Painless inter epididymal testicular torsion of the spermatic cord
Salomon V. Romano; Haime S. Hernan; Norberto Fredotovich
2007-01-01
Inter epididymal testicular torsion of the spermatic cord is extremely rare and usually diagnosed at surgery. We present an unusual case of spermatic cord torsion in a 14-year-old male patient. It is important to highlight that the torsion occurred only on the distal half of the epididymis leaving the head untwisted and edematous. In addition, the fact that this condition was painless made this case extremely rare and motivated our presentation.
Ultrasonographic features of prenatal testicular torsion: Case report
Directory of Open Access Journals (Sweden)
Elif Ağaçayak
2013-01-01
Full Text Available Although prenatal testicular torsion (PNTT is rarely observed,it is an important condition that can cause bilateralvanishing testis. Generally, PNTT cases observed asextravaginal torsion and treatment is emergency surgicalop-eration. In this article, 39 week presented a case diagnosedin the prenatal testicular torsion. PNTT diagnosiswas confirmed by Doppler ultrasonography and emergencysurgery was performed. Extravaginal left testiculartorsion gangrene and necrosis of the testis was observedin the operation. Left orchiectomy was performed andintrauter-ine ultrasonographic diagnosis was found to becorrect.Key words: Testicular torsion, prenatal diagnosis, features,ultrasonography
Association of Torsion With Testicular Cancer: A Retrospective Study.
Uguz, Sami; Yilmaz, Sercan; Guragac, Ali; Topuz, Bahadır; Aydur, Emin
2016-02-01
Testicular torsion is a medical emergency that usually requires surgical exploration. However, testicular malignancy has been anecdotally reported with the association of torsion in surgical specimens, and the published data remain scant on the association of torsion with testicular tumors. By retrospective medical record review, we identified 32 patients who had been diagnosed with testicular torsion, 20 of whom had undergone orchiectomy. Of these 20 patients, 2 were diagnosed with a malignancy. Our study, the largest case series to date, has shown an association between testicular torsion and testicular cancer of 6.4%. Testicular torsion is a medical emergency that usually requires surgical exploration. However, testicular malignancy has been anecdotally reported in association with torsion in surgical specimens. However, the published data remain scant on the association between torsion and the presence of testicular tumors. The present retrospective study explored the association between torsion and testicular cancer in patients with testicular torsion undergoing orchiectomy during scrotal exploration. A medical record review was performed of patients who had had a diagnosis of testicular torsion from January 2003 to February 2015. The clinicopathologic characteristics of the patients were recorded. A total of 32 patients were identified. Their mean age was 21.1 years (range, 7-39 years). All the patients had unilateral testicular torsion, which affected the left side in 17 and the right side in 15. Manual detorsion was successful in 6 patients, and 26 patients underwent emergency surgery with testicular detorsion (6 fixation surgery and 20 orchiectomy). The type of incision was scrotal in 6, inguinal in 10, and unspecified in 4. Pathologic examination of the orchiectomy specimens showed malignancy in 2 cases (seminoma and malign mixed germ cell tumor). To the best of our knowledge, the present single-center case series is the largest case series to date of
Secondary Torsion of Vermiform Appendix with Mucinous Cystadenoma
Directory of Open Access Journals (Sweden)
Maki Kitagawa
2007-06-01
Full Text Available Torsion of the vermiform appendix is a rare disorder, which causes abdominal symptoms indistinguishable from acute appendicitis. We report a case (a 34-year-old male of secondary torsion of the vermiform appendix with mucinous cystadenoma. This case was characterized by mild inflammatory responses, pentazocine-resistant abdominal pain, and appendiceal tumor, which was not enhanced by the contrast medium on computed tomography presumably because of reduced blood flow by the torsion. These findings may be helpful for the preoperative diagnosis of secondary appendiceal torsion.
Scribano, Yohann; Lauvergnat, David M; Benoit, David M
2010-09-07
In this paper, we couple a numerical kinetic-energy operator approach to the direct-vibrational self-consistent field (VSCF)/vibrational configuration interaction (VCI) method for the calculation of vibrational anharmonic frequencies. By combining this with fast-VSCF, an efficient direct evaluation of the ab initio potential-energy surface (PES), we introduce a general formalism for the computation of vibrational bound states of molecular systems exhibiting large-amplitude motion such as methyl-group torsion. We validate our approach on an analytical two-dimensional model and apply it to the methanol molecule. We show that curvilinear coordinates lead to a significant improvement in the VSCF/VCI description of the torsional frequency in methanol, even for a simple two-mode coupling expansion of the PES. Moreover, we demonstrate that a curvilinear formulation of the fast-VSCF/VCI scheme improves its speed by a factor of two and its accuracy by a factor of 3.
Lees, R. M.; Xu, Li-Hong; Guislain, B. G.; Reid, E. M.; Twagirayezu, S.; Perry, D. S.; Dawadi, M. B.; Thapaliya, B. P.; Billinghurst, B. E.
2018-01-01
High-resolution Fourier transform spectra of the asymmetric methyl-bending and methyl-stretching bands of CH3SH have been recorded employing synchrotron radiation at the FIR beamline of the Canadian Light Source. Analysis of the torsion-rotation structure and relative intensities has revealed the novel feature that for both bend and stretch the in-plane and out-of-plane modes behave much like a Coriolis-coupled l-doublet pair originating from degenerate E modes of a symmetric top. As the axial angular momentum K increases, the energies of the coupled "l = ±1" modes diverge linearly, with effective Coriolis ζ constants typical for symmetric tops. For the methyl-stretching states, separated at K = 0 by only about 1 cm-1, the assigned sub-bands follow a symmetric top Δ(K - l) = 0 selection rule, with only ΔK = -1 transitions observed to the upper l = -1 in-plane A‧ component and only ΔK = +1 transitions to the lower l = +1 out-of-plane A″ component. The K = 0 separation of the CH3-bending states is larger at 9.1 cm-1 with the l-ordering reversed. Here, both ΔK = +1 and ΔK = -1 transitions are seen for each l-component but with a large difference in relative intensity. Term values for the excited state levels have been fitted to J(J + 1) power-series expansions to obtain substate origins. These have then been fitted to a Fourier model to characterize the torsion-K-rotation energy patterns. For both pairs of vibrational states, the torsional energies display the customary oscillatory behaviour as a function of K and have inverted torsional splittings relative to the ground state. The spectra show numerous perturbations, indicating local resonances with the underlying bath of high torsional levels and vibrational combination and overtone states. The overall structure of the two pairs of bands represents a new regime in which the vibrational energy separations, torsional splittings and shifts due to molecular asymmetry are all of the same order, creating a
Chains of benzenes with lithium-atom adsorption: Vibrations and spontaneous symmetry breaking
Ortiz, Yenni P.; Stegmann, Thomas; Klein, Douglas J.; Seligman, Thomas H.
2016-01-01
We study effects of different configurations of adsorbates on the vibrational modes as well as symmetries of polyacenes and poly-p-phenylenes focusing on lithium atom adsorption. We found that the spectra of the vibrational modes distinguish the different configurations. For more regular adsorption schemes the lowest states are bending and torsion modes of the skeleton, which are essentially followed by the adsorbate. On poly-p-phenylenes we found that lithium adsorption reduces and often eli...
Study on Vibration of Marine Diesel-Electric Hybrid Propulsion System
Nengqi Xiao; Ruiping Zhou; Xiang Xu; Xichen Lin
2016-01-01
This study analyzes the characteristics of hybrid propulsion shafting and builds mathematical models and vibration equations of shafting using the lumped parameter method. Main focus is on the asymmetric double diesel propulsion shafting operation process and the impact of the phase angle and motor excitation on torsional vibration of shafting. Model result is validated by testing results conducted on double diesel propulsion shafting bench. Mathematical model and model-building methods of sh...
Toward laboratory torsional spine magnetic reconnection
Chesny, David L.; Orange, N. Brice; Oluseyi, Hakeem M.; Valletta, David R.
2017-12-01
Magnetic reconnection is a fundamental energy conversion mechanism in nature. Major attempts to study this process in controlled settings on Earth have largely been limited to reproducing approximately two-dimensional (2-D) reconnection dynamics. Other experiments describing reconnection near three-dimensional null points are non-driven, and do not induce any of the 3-D modes of spine fan, torsional fan or torsional spine reconnection. In order to study these important 3-D modes observed in astrophysical plasmas (e.g. the solar atmosphere), laboratory set-ups must be designed to induce driven reconnection about an isolated magnetic null point. As such, we consider the limited range of fundamental resistive magnetohydrodynamic (MHD) and kinetic parameters of dynamic laboratory plasmas that are necessary to induce the torsional spine reconnection (TSR) mode characterized by a driven rotational slippage of field lines - a feature that has yet to be achieved in operational laboratory magnetic reconnection experiments. Leveraging existing reconnection models, we show that within a 3$ apparatus, TSR can be achieved in dense plasma regimes ( 24~\\text{m}-3$ ) in magnetic fields of -1~\\text{T}$ . We find that MHD and kinetic parameters predict reconnection in thin current sheets on time scales of . While these plasma regimes may not explicitly replicate the plasma parameters of observed astrophysical phenomena, studying the dynamics of the TSR mode within achievable set-ups signifies an important step in understanding the fundamentals of driven 3-D magnetic reconnection and the self-organization of current sheets. Explicit control of this reconnection mode may have implications for understanding particle acceleration in astrophysical environments, and may even have practical applications to fields such as spacecraft propulsion.
Transverse posterior element fractures associated with torsion
International Nuclear Information System (INIS)
Abel, M.S.
1989-01-01
Six examples of a previously undescribed class of transverse vertebral element fractures are presented. These fractures differ from Chance and Smith fractures and their variants in the following respects: (1) the etiology is torsion and not flexion; (2) there is neither distraction of posterior ring fragments nor posterior ligament tears; (3) in contrast to Chance and Smith fractures, extension of the fracture into the vertebral body is absent or minimal; (4) the transverse process of the lumbar vertebra is avulsed at its base with a vertical fracture, not split horizontally. These fractures occur in cervical, lumbar, and sacral vertebrae in normal or compromised areas of the spine. (orig.)
Possible role of torsion in gravitational theories
International Nuclear Information System (INIS)
Nieh, H.T.
1983-01-01
Torsion is of interest in an indirect way, in that it has the potential of being an important ingredient in a future successful quantum theory of gravitation. Einstein's theory of gravitation, despite its simplicity and elegance, and its successes in large-scale gravitational phenomena, can only be regarded as a macroscopic classical theory. It is a non-renormalizable quantum field theory, and, therefore, lacks the status of a good microscopic theory. It is the search for a successful quantum field theory of gravitation that poses as one of the great challenges to theoretical physics today. (Auth.)
Torsion of the normal fallopian tube.
Provost, M W
1972-01-01
From 1961 to 1970 a number of cases of torsion of the Fallopian tube were seen at the Kaiser Foundation Hospital in San Francisco of which 3 cases are reported. Of the many theories of causation, pelvic congestion seemed the most likely. The only universal symptom is pain, located in the quadrant of the affected tube and sometimes radiating to the thigh or flank. Nausea and vomiting are frequent; temperature and white cell count are only slightly elevated or normal. A mass is often felt, depending on the amount of hemorrhage. Correct diagnosis is almost never made preoperatively. The only treatment is laparotomy and surgical correction.
Nonquasineutral electron vortices in nonuniform plasmas
Energy Technology Data Exchange (ETDEWEB)
Angus, J. R.; Richardson, A. S.; Swanekamp, S. B.; Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Ottinger, P. F. [Engility Corporation, Chantilly, Virginia 20151 (United States)
2014-11-15
Electron vortices are observed in the numerical simulation of current carrying plasmas on fast time scales where the ion motion can be ignored. In plasmas with nonuniform density n, vortices drift in the B × ∇n direction with a speed that is on the order of the Hall speed. This provides a mechanism for magnetic field penetration into a plasma. Here, we consider strong vortices with rotation speeds V{sub ϕ} close to the speed of light c where the vortex size δ is on the order of the magnetic Debye length λ{sub B}=|B|/4πen and the vortex is thus nonquasineutral. Drifting vortices are typically studied using the electron magnetohydrodynamic model (EMHD), which ignores the displacement current and assumes quasineutrality. However, these assumptions are not strictly valid for drifting vortices when δ ≈ λ{sub B}. In this paper, 2D electron vortices in nonuniform plasmas are studied for the first time using a fully electromagnetic, collisionless fluid code. Relatively large amplitude oscillations with periods that correspond to high frequency extraordinary modes are observed in the average drift speed. The drift speed W is calculated by averaging the electron velocity field over the vorticity. Interestingly, the time-averaged W from these simulations matches very well with W from the much simpler EMHD simulations even for strong vortices with order unity charge density separation.
High-order nonuniformly correlated beams
Wu, Dan; Wang, Fei; Cai, Yangjian
2018-02-01
We have introduced a class of partially coherent beams with spatially varying correlations named high-order nonuniformly correlated (HNUC) beams, as an extension of conventional nonuniformly correlated (NUC) beams. Such beams bring a new parameter (mode order) which is used to tailor the spatial coherence properties. The behavior of the spectral density of the HNUC beams on propagation has been investigated through numerical examples with the help of discrete model decomposition and fast Fourier transform (FFT) algorithm. Our results reveal that by selecting the mode order appropriately, the more sharpened intensity maxima can be achieved at a certain propagation distance compared to that of the NUC beams, and the lateral shift of the intensity maxima on propagation is closed related to the mode order. Furthermore, analytical expressions for the r.m.s width and the propagation factor of the HNUC beams on free-space propagation are derived by means of Wigner distribution function. The influence of initial beam parameters on the evolution of the r.m.s width and the propagation factor, and the relation between the r.m.s width and the occurring of the sharpened intensity maxima on propagation have been studied and discussed in detail.
Downsampling Non-Uniformly Sampled Data
Directory of Open Access Journals (Sweden)
Fredrik Gustafsson
2007-10-01
Full Text Available Decimating a uniformly sampled signal a factor D involves low-pass antialias filtering with normalized cutoff frequency 1/D followed by picking out every Dth sample. Alternatively, decimation can be done in the frequency domain using the fast Fourier transform (FFT algorithm, after zero-padding the signal and truncating the FFT. We outline three approaches to decimate non-uniformly sampled signals, which are all based on interpolation. The interpolation is done in different domains, and the inter-sample behavior does not need to be known. The first one interpolates the signal to a uniformly sampling, after which standard decimation can be applied. The second one interpolates a continuous-time convolution integral, that implements the antialias filter, after which every Dth sample can be picked out. The third frequency domain approach computes an approximate Fourier transform, after which truncation and IFFT give the desired result. Simulations indicate that the second approach is particularly useful. A thorough analysis is therefore performed for this case, using the assumption that the non-uniformly distributed sampling instants are generated by a stochastic process.
2009-01-01
Ed Witten is one of the leading scientists in the field of string theory, the theory that describes elementary particles as vibrating strings. This week he leaves CERN after having spent a few months here on sabbatical. His wish is that the LHC will unveil supersymmetry.
Umesh P. Agarwal; Rajai Atalla
2010-01-01
Vibrational spectroscopy is an important tool in modern chemistry. In the past two decades, thanks to significant improvements in instrumentation and the development of new interpretive tools, it has become increasingly important for studies of lignin. This chapter presents the three important instrumental methods-Raman spectroscopy, infrared (IR) spectroscopy, and...
Dismal salvage of testicular torsion: A call to action! | Maranya ...
African Journals Online (AJOL)
... were not subjected to orchidopexy. There was no occurrence of torsion after orchidopexy. Conclusion: Testicular torsions were associated with low salvage rates. Increased public awareness coupled with clinician, parental, teacher, teenage and adult male education with respect to the consequences of acute scrotal pain ...
Quantum gravity effect in torsion driven inflation and CP violation
Energy Technology Data Exchange (ETDEWEB)
Choudhury, Sayantan [Department of Theoretical Physics, Tata Institute of Fundamental Research,Colaba, 1, Homi Bhabha Road, Mumbai 400005 (India); Pal, Barun Kumar [Inter-University Centre for Astronomy and Astrophysics,Ganeshkhind, Pune 411007 (India); Netaji Nagar College for Women,Regent Estate, Kolkata 700092 (India); Basu, Banasri; Bandyopadhyay, Pratul [Physics and Applied Mathematics Unit, Indian Statistical Institute,203 B.T. Road, Kolkata 700 108 (India)
2015-10-28
We have derived an effective potential for inflationary scenario from torsion and quantum gravity correction in terms of the scalar field hidden in torsion. A strict bound on the CP violating θ parameter, O(10{sup −10})<θ
Torsion of the Spermatic Cord: Is Bilateral Orchidopexy Really ...
African Journals Online (AJOL)
Aim: To evaluate the rationale for bilateral orchidopexy as treatment for unilateral torsion of the testis, by determining how frequently the contralateral testis shows an abnormal pathology in unilateral testicular torsion. Patients and Methods:This is a retrospective study using adult urology patients treated for both acute and ...
Comparison of torsional and longitudinal modes using phacoemulsification parameters.
Rekas, Marek; Montés-Micó, Robert; Krix-Jachym, Karolina; Kluś, Adam; Stankiewicz, Andrzej; Ferrer-Blasco, Teresa
2009-10-01
To compare phacoemulsification parameters of torsional and longitudinal ultrasound modes. Ophthalmology Department, Military Health Service Institute, Warsaw, Poland. This prospective study evaluated eyes 1, 7, and 30 days after phacoemulsification with an Infiniti Vision System using the torsional or longitudinal ultrasound (US) mode. Cataract classification was according to the Lens Opacities Classification System II. Nucleus fragmentation was by the phaco-chop and quick-chop methods. Primary outcome measures were phaco time, mean phaco power, mean torsional amplitude, and aspiration time. Total energy, defined as cumulative dissipated energy (CDE) x aspiration time, and the effective coefficient, defined as aspiration time/phaco time, were also calculated. Four hundred eyes were evaluated. The CDE was statistically significantly lower in the torsional mode for nucleus grades I, II, and III (P.05). Aspiration time was statistically significantly shorter in the torsional mode than in the longitudinal mode for nucleus grades III and IV (P<.05). Total energy was significantly lower in the torsional mode for all nucleus densities (P<.05). The effective coefficient was significantly lower in the longitudinal mode except for nucleus grade I (P<.05). Torsional phacoemulsification was more effective than longitudinal phacoemulsification in the amount of applied fluid and the quantity of US energy expended. With the torsional method, it was possible to maintain a constant ratio of amount of fluid flow to quantity of US energy used, regardless of nucleus density.
Additivity for parametrized topological Euler characteristic and Reidemeister torsion
Badzioch, Bernard; Dorabiala, Wojciech
2005-01-01
Dwyer, Weiss, and Williams have recently defined the notions of parametrized topological Euler characteristic and parametrized topological Reidemeister torsion which are invariants of bundles of compact topological manifolds. We show that these invariants satisfy additivity formulas paralleling the additive properties of the classical Euler characteristic and Reidemeister torsion of finite CW-complexes.
Perinatal testicular torsion: literature review and local experience ...
African Journals Online (AJOL)
The prognosis in TUDT is guarded and contralateral fixation was not practiced, except in a 5-week-old infant. Early orchiopexy at 3–6 months is recommended. Cooperation between surgeons, neonatologists, and parents is mandatory to avoid time delay. Keywords: intrauterine testicular torsion, postnatal testicular torsion, ...
Mechanical origins of rightward torsion in early chick brain development
Chen, Zi; Guo, Qiaohang; Dai, Eric; Taber, Larry
2015-03-01
During early development, the neural tube of the chick embryo undergoes a combination of progressive ventral bending and rightward torsion. This torsional deformation is one of the major organ-level left-right asymmetry events in development. Previous studies suggested that bending is mainly due to differential growth, however, the mechanism for torsion remains poorly understood. Since the heart almost always loops rightwards that the brain twists, researchers have speculated that heart looping affects the direction of brain torsion. However, direct evidence is lacking, nor is the mechanical origin of such torsion understood. In our study, experimental perturbations show that the bending and torsional deformations in the brain are coupled and that the vitelline membrane applies an external load necessary for torsion to occur. Moreover, the asymmetry of the looping heart gives rise to the chirality of the twisted brain. A computational model and a 3D printed physical model are employed to help interpret these findings. Our work clarifies the mechanical origins of brain torsion and the associated left-right asymmetry, and further reveals that the asymmetric development in one organ can induce the asymmetry of another developing organ through mechanics, reminiscent of D'Arcy Thompson's view of biological form as ``diagram of forces''. Z.C. is supported by the Society in Science - Branco Weiss fellowship, administered by ETH Zurich. L.A.T acknowledges the support from NIH Grants R01 GM075200 and R01 NS070918.
Torsional structural response from free-field ground motion
International Nuclear Information System (INIS)
Lam, P.C.; Scavuzzo, R.J.
1979-01-01
Torsional response of structures subjected to the action of both the free-field torsional inputs and external torque is investigated. By expanding the work of Scanlan, both lateral and torsional foundation inputs due to a travelling shear wave are derived from the free-field point motion. These free-field torsional motions are used as the basis of numerical studies. Response for different soil stiffness and structural characteristics are studied, as well as different dynamic models. In one dynamic model the structure is coupled to the soil using a compliance spring matrix and in the second model the structure coupled to an elastic half-space. Results of these two basic models are compared and found to be in good agreement. Finally, torsional structural response caused by torsional inputs is compared with lateral response caused by modified lateral inputs to determine the significance of torsional excitation on the seismic response of building structures. Numerical results show that these torsional seismic loads are as large or larger than those from modified lateral inputs. (orig.)
Quantum gravity effect in torsion driven inflation and CP violation
International Nuclear Information System (INIS)
Choudhury, Sayantan; Pal, Barun Kumar; Basu, Banasri; Bandyopadhyay, Pratul
2015-01-01
We have derived an effective potential for inflationary scenario from torsion and quantum gravity correction in terms of the scalar field hidden in torsion. A strict bound on the CP violating θ parameter, O(10"−"1"0)<θ< O(10"−"9) has been obtained, using Planck+WMAP9 best fit cosmological parameters.
Torsional stresses in the transverse fillet weld tubular joints
Gunay, D.; Aydemir, A.; Özer, H.
1996-01-01
Torsional stresses, 'tre and tel , in tbe transverse fillet tubular weld joint subjected to torsional load have been analyzed by the finite element method using triangular and quadrilateral izoparametric axisymmetric fourier type torus finite elements. There is an axisymmetry with respect to
Severe congenital penile torsion with anterior urethral diverticulum ...
African Journals Online (AJOL)
On examination, he was found to be a case of severe congenital penile torsion with diversion and rotation of median raphae in a counterclockwise fashion upto the midline dorsally confirming 180◦ torsion. During voiding, there was appearance of a swelling in distal penile region with passage of urinary drops while ...
A Patient Presenting with Concurrent Testis Torsion and Epididymal Leiomyoma
Directory of Open Access Journals (Sweden)
E. Arpali
2013-01-01
Full Text Available Leiomyomas are the second most common tumors of epididymis. Patients with leiomyomas are sometimes misdiagnosed with testicular tumors. A Case of a patient with a scrotal mass presenting with testicular torsion is reported. Concurrent occurrence of testicular torsion and epididymal leiomyoma is an extremely rare condition.
A stability criterion for HNFDE with non-uniform delays
International Nuclear Information System (INIS)
Liu Xingwen; Zhong Shouming; Zhang Fengli
2005-01-01
Stability of functional differential equations (FDE) is an increasingly important problem in both science and engineering. Delays, whether uniform or non-uniform, play an important role in the dynamics of a system. Since non-uniform delay is more general and less focused than uniform delay, this paper concentrates on the stability of high-order neutral functional differential equations (HNFDE) with non-uniform delay, and proposes a sufficient condition for it. This result may be widely helpful, thanks to the frequent emergence of a HNFDE with non-uniform delay in various fields. Its effectiveness is illustrated by some examples
The Reidemeister torsion of 3-manifolds
Nicolaescu, Liviu I
2003-01-01
This is a state-of-the-art introduction to the work of Franz Reidemeister, Meng Taubes, Turaev, and the author on the concept of torsion and its generalizations. Torsion is the oldest topological (but not with respect to homotopy) invariant that in its almost eight decades of existence has been at the center of many important and surprising discoveries. During the past decade, in the work of Vladimir Turaev, new points of view have emerged, which turned out to be the "right ones" as far as gauge theory is concerned. The book features mostly the new aspects of this venerable concept. The theoretical foundations of this subject are presented in a style accessible to those, who wish to learn and understand the main ideas of the theory. Particular emphasis is upon the many and rather diverse concrete examples and techniques which capture the subleties of the theory better than any abstract general result. Many of these examples and techniques never appeared in print before, and their choice is often justified by ...
Curvature and torsion in growing actin networks
International Nuclear Information System (INIS)
Shaevitz, Joshua W; Fletcher, Daniel A
2008-01-01
Intracellular pathogens such as Listeria monocytogenes and Rickettsia rickettsii move within a host cell by polymerizing a comet-tail of actin fibers that ultimately pushes the cell forward. This dense network of cross-linked actin polymers typically exhibits a striking curvature that causes bacteria to move in gently looping paths. Theoretically, tail curvature has been linked to details of motility by considering force and torque balances from a finite number of polymerizing filaments. Here we track beads coated with a prokaryotic activator of actin polymerization in three dimensions to directly quantify the curvature and torsion of bead motility paths. We find that bead paths are more likely to have low rather than high curvature at any given time. Furthermore, path curvature changes very slowly in time, with an autocorrelation decay time of 200 s. Paths with a small radius of curvature, therefore, remain so for an extended period resulting in loops when confined to two dimensions. When allowed to explore a three-dimensional (3D) space, path loops are less evident. Finally, we quantify the torsion in the bead paths and show that beads do not exhibit a significant left- or right-handed bias to their motion in 3D. These results suggest that paths of actin-propelled objects may be attributed to slow changes in curvature, possibly associated with filament debranching, rather than a fixed torque
Physics of detecting torsion and placing limits on its effects
International Nuclear Information System (INIS)
Stoeger, W.R.
1985-01-01
The essential principles of torsion-detection physics are presented, and an evaluation is conducted of several conceivable types of experiments and observations for actually detecting torsion fields, reemphasizing also the evident impossibility of successfully searching for its manifestations among cosmological relics. In particular, a polarized body, with net intrinsic (fundamental-particle) spin, is essential for detecting a torsion field. One which possesses only orbital angular momentum - rotation - or an unpolarized intrinsic spin density will not feel torsion. The fundamental problem in searching for such fields is the extremely small basic unit of the coupling or interaction energy between the torsion field and spin. The best way of maximizing the total interaction energy is to increase the spin density of the source sigma-s and at the same time the spin number SD of the detector. 15 references
Krukenberg Tumor: A Rare Cause of Ovarian Torsion
Directory of Open Access Journals (Sweden)
Sameer Sandhu
2012-01-01
Full Text Available Ovarian torsion is the fifth most common gynecological surgical emergency. Ovarian torsion is usually associated with a cyst or a tumor, which is typically benign. The most common is mature cystic teratoma. We report the case of a 43-year-old woman who came to the Emergency Department with rare acute presentation of bilateral Krukenberg tumors, due to unilateral ovarian torsion. In this case report, we highlight the specific computed tomography (CT features of ovarian torsion and demonstrate the unique radiological findings on CT imaging. Metastasis to the ovary is not rare and 5 to 10% of all ovarian malignancies are metastatic. The stomach is the common primary site in most Krukenberg tumors (70%; an acute presentation of metastatic Krukenberg tumors with ovarian torsion is rare and not previously reported in radiology literature.
Peculiar torsion dynamical response of spider dragline silk
Liu, Dabiao; Yu, Longteng; He, Yuming; Peng, Kai; Liu, Jie; Guan, Juan; Dunstan, D. J.
2017-07-01
The torsional properties of spider dragline silks from Nephila edulis and Nephila pilipes spiders are investigated by using a torsion pendulum technique. A permanent torsional deformation is observed after even small torsional strain. This behaviour is quite different from that of the other materials tested here, i.e., carbon fiber, thin metallic wires, Kevlar fiber, and human hair. The spider dragline thus displays a strong energy dissipation upon the initial excitation (around 75% for small strains and more for a larger strain), which correspondingly reduces the amplitude of subsequent oscillations around the new equilibrium position. The variation of torsional stiffness in relaxation dynamics of spider draglines for different excitations is also determined. The experimental result is interpreted in the light of the hierarchical structure of dragline silk.
International Nuclear Information System (INIS)
Mizuno, N.; Iida, T.; Tsushima, Y.; Araki, T.; Nojima, O.
1977-01-01
In this paper, the seismic response analysis is described in detail for estimating the soil-structure interaction effects with the torsional behavior. The analytical method is firstly shown for estimating the stiffness of reactor building by the bending-shear and torsion theory of the thin wall sections in regard to the behavior of structure. The three-dimensional behavior of structure can be obtained more briefly and simply by the proposed method. Secondly, the dynamical soil-foundation coefficient for estimating the dissipation of vibrational energy on the ground is derived by H. Tajimi's theory which is based on a solution of the propagation of seismic waves caused by point excitation on the surface of the elastic half-space medium. The above results give the vibrational impedances of the soil-foundation corresponding to the static soil coefficient, which is defined to the excitation force in the frequency domain. In order to analyze to the equivalues of reactor building, the authors thirdly attempt to approximate the dynamic soil-foundation coefficient as the frequency transfer function of displacement. The complex damping is used for more suitably estimating the elastic structural damping effects of structure. The regression analysis of many degrees of freedom is fourthly attempted for estimating the natural periods annd equivalent viscous damping ratios directly from the experimental results by the forced vibrational test performed in 1974. The analytical results are finally shown for simulating and comparing with the above-mentioned experimental results
Energy Technology Data Exchange (ETDEWEB)
Mokhtari-Nezhad, F. [Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Saidi, A.R., E-mail: saidi@mail.uk.ac.ir [Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Ziaei-Rad, S. [Department of Mechanical Engineering, Isfahan University of Technology (IUT), Isfahan 84156-83111 (Iran, Islamic Republic of)
2009-08-15
The effects of the geometrical asymmetric related to tip position as a concentrated mass, on the sensitivity of all three vibration modes, lateral excitation (LE), torsional resonance (TR) and vertical excitation (VE), of an atomic force microscopy (AFM) microcantilever have been analyzed. The effects of the tip mass and its position are studied to report the novel results to estimating the vibration behavior of AFM such as resonance frequency and amplitude of the microcantilever. In this way, to achieve more accurate results, the coupled motion in all three modes is considered. In particular, it is investigated that performing the coupled motion in analysis of AFM microcantilever is almost necessary. It is shown that the tip mass and its position have significant effects on vibrational responses. The results show that considering the tip mass decreases the resonance frequencies particularly on high-order modes. However, dislocating of tip position has an inverse effect that causes an increase in the resonance frequencies. In addition, it has been shown that the amplitude of the AFM microcantilever is affected by the influences of tip and its position. These effects are caused by the interaction between flexural and torsional motion due to the moment of inertia of the tip mass.
International Nuclear Information System (INIS)
Mokhtari-Nezhad, F.; Saidi, A.R.; Ziaei-Rad, S.
2009-01-01
The effects of the geometrical asymmetric related to tip position as a concentrated mass, on the sensitivity of all three vibration modes, lateral excitation (LE), torsional resonance (TR) and vertical excitation (VE), of an atomic force microscopy (AFM) microcantilever have been analyzed. The effects of the tip mass and its position are studied to report the novel results to estimating the vibration behavior of AFM such as resonance frequency and amplitude of the microcantilever. In this way, to achieve more accurate results, the coupled motion in all three modes is considered. In particular, it is investigated that performing the coupled motion in analysis of AFM microcantilever is almost necessary. It is shown that the tip mass and its position have significant effects on vibrational responses. The results show that considering the tip mass decreases the resonance frequencies particularly on high-order modes. However, dislocating of tip position has an inverse effect that causes an increase in the resonance frequencies. In addition, it has been shown that the amplitude of the AFM microcantilever is affected by the influences of tip and its position. These effects are caused by the interaction between flexural and torsional motion due to the moment of inertia of the tip mass.
Granular metamaterials for vibration mitigation
Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.
2013-09-01
Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.
Nonuniform radiation damage in permanent magnet quadrupoles.
Danly, C R; Merrill, F E; Barlow, D; Mariam, F G
2014-08-01
We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.
Nonuniform radiation damage in permanent magnet quadrupoles
International Nuclear Information System (INIS)
Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.
2014-01-01
We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components
Nonuniform radiation damage in permanent magnet quadrupoles
Energy Technology Data Exchange (ETDEWEB)
Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)
2014-08-15
We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.
Flexible RF filter using a nonuniform SCISSOR.
Zhuang, Leimeng
2016-03-15
This work presents a flexible radiofrequency (RF) filter using an integrated microwave photonic circuit that comprises a nonuniform side-coupled integrated spaced sequence of resonators (N-SCISSOR). The filter passband can be reconfigured by varying the N-SCISSOR parameters. When employing a dual-parallel Mach-Zechnder modulator, the filter is also able to perform frequency down-conversion. In the experiment, various filter response shapes are shown, ranging from a flat-top band-pass filter to a total opposite high-rejection (>40 dB) notch filter, with a frequency coverage of greater than two octaves. The frequency down-conversion function is also demonstrated.
Experimental study on titanium wire drawing with ultrasonic vibration.
Liu, Shen; Shan, Xiaobiao; Guo, Kai; Yang, Yuancai; Xie, Tao
2018-02-01
Titanium and its alloys have been widely used in aerospace and biomedical industries, however, they are classified as difficult-to-machine materials. In this paper, ultrasonic vibration is imposed on the die to overcome the difficulties during conventional titanium wire drawing processes at the room temperature. Numerical simulations were performed to investigate the variation of axial stress within the contacting region and study the change of the drawing stress with several factors in terms of the longitudinal amplitude and frequency of the applied ultrasonic vibration, the diameter reduction ratio, and the drawing force. An experimental testing equipment was established to measure the drawing torque and rotational velocity of the coiler drum during the wire drawing process. The result indicates the drawing force increases with the growth of the drawing velocity and the reduction ratio, whether with or without vibrations. Application of either form of ultrasonic vibrations contributes to the further decrease of the drawing force, especially the longitudinal vibration with larger amplitude. SEM was employed to detect the surface morphology of the processed wires drawn under the three circumstances. The surface quality of the drawn wires with ultrasonic vibrations was apparently improved compared with those using conventional method. In addition, the longitudinal and torsional composite vibration was more effective for surface quality improvement than pure longitudinal vibration, however, at the cost of weakened drawing force reduction effect. Copyright © 2017 Elsevier B.V. All rights reserved.
Nonuniformity mitigation of beam illumination in heavy ion inertial fusion
International Nuclear Information System (INIS)
Kawata, S; Noguchi, K; Suzuki, T; Kurosaki, T; Barada, D; Ogoyski, A I; Zhang, W; Xie, J; Zhang, H; Dai, D
2014-01-01
In inertial fusion, a target DT fuel should be compressed to typically 1000 times the solid density. The target implosion nonuniformity is introduced by a driver beam’s illumination nonuniformity, for example. The target implosion should be robust against the implosion nonuniformities. In this paper, the requirement for implosion uniformity is first discussed. The implosion non-uniformity should be less than a few percent. The implosion dynamics is also briefly reviewed in heavy ion inertial fusion (HIF). Heavy ions deposit their energy inside the target energy absorber, and the energy deposition layer is rather thick, depending on the ion particle energy. Then nonuniformity mitigation mechanisms of the heavy ion beam (HIB) illumination in HIF are discussed. A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF, wobbling heavy ion beam illumination was also introduced to realize a uniform implosion. The wobbling HIB axis oscillation is precisely controlled. In the wobbling HIBs’ illumination, the illumination nonuniformity oscillates in time and space on an HIF target. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs’ illumination nonuniformity by its smoothing effect on the HIB illumination nonuniformity and also by a growth mitigation effect on the Rayleigh–Taylor instability. (invited comment)
Torsion based universal MEMS logic device
Ilyas, Saad; Carreno, Armando Arpys Arevalo; Bayes, Ernesto; Foulds, Ian G.; Younis, Mohammad I.
2015-01-01
In this work we demonstrate torsion based complementary MEMS logic device, which is capable, of performing INVERTER, AND, NAND, NOR, and OR gates using one physical structure within an operating range of 0-10 volts. It can also perform XOR and XNOR with one access inverter using the same structure with different electrical interconnects. The paper presents modeling, fabrication and experimental calculations of various performance features of the device including lifetime, power consumption and resonance frequency. The fabricated device is 535 μm by 150 μm with a gap of 1.92 μm and a resonant frequency of 6.51 kHz. The device is capable of performing the switching operation with a frequency of 1 kHz.
ZNxZM orbifolds and discrete torsion
International Nuclear Information System (INIS)
Font, A.; Quevedo, F.
1989-01-01
We extend previous work on Z N -orbifolds to the general Z N xZ M abelian case for both (2, 2) and (0, 2) models. We classify the corresponding (2, 2) compactifications and show that a number of models obtained by tensoring minimal N = 2 superconformal theories can be constructed as Z N xZ M -orbifolds. Furthermore, Z N xZ M -orbifolds allow the addition of discrete torsion which leads to new (2, 2) compactifications not considered previously. Some of the latter have negative Euler characteristics and Betti numbers equal to those of some complete intersection Calabi-Yau (CICY) manifolds. This suggests the existence of a previously overlooked connection between CICY models and orbifolds. (orig.)
Torsion based universal MEMS logic device
Ilyas, Saad
2015-10-28
In this work we demonstrate torsion based complementary MEMS logic device, which is capable, of performing INVERTER, AND, NAND, NOR, and OR gates using one physical structure within an operating range of 0-10 volts. It can also perform XOR and XNOR with one access inverter using the same structure with different electrical interconnects. The paper presents modeling, fabrication and experimental calculations of various performance features of the device including lifetime, power consumption and resonance frequency. The fabricated device is 535 μm by 150 μm with a gap of 1.92 μm and a resonant frequency of 6.51 kHz. The device is capable of performing the switching operation with a frequency of 1 kHz.
Covariant formulation of scalar-torsion gravity
Hohmann, Manuel; Järv, Laur; Ualikhanova, Ulbossyn
2018-05-01
We consider a generalized teleparallel theory of gravitation, where the action contains an arbitrary function of the torsion scalar and a scalar field, f (T ,ϕ ) , thus encompassing the cases of f (T ) gravity and a nonminimally coupled scalar field as subclasses. The action is manifestly Lorentz invariant when besides the tetrad one allows for a flat but nontrivial spin connection. We derive the field equations and demonstrate how the antisymmetric part of the tetrad equations is automatically satisfied when the spin connection equation holds. The spin connection equation is a vital part of the covariant formulation, since it determines the spin connection associated with a given tetrad. We discuss how the spin connection equation can be solved in general and provide the cosmological and spherically symmetric examples. Finally, we generalize the theory to an arbitrary number of scalar fields.
Torsional malalignment, how much significant in the trochanteric fractures?
Kim, Tae Young; Lee, Yong Beom; Chang, Jun Dong; Lee, Sang Soo; Yoo, Jae Hyun; Chung, Kook Jin; Hwang, Ji Hyo
2015-11-01
The rotational alignment is definitely important in the long bones such as tibias and femurs. We also predict the importance of rotational alignment in the trochanteric fractures. So we measured torsional malalignment in trochanteric fracture and anlaysed their risk factors and their clinical significance. A total of 109 inpatients who had undergone internal fixation following trochanteric fracture and a postoperative pelvic CT scan between 2008 and 2013, with at least one year follow-up, were selected. Factors that affect torsional malalignment, such as age, gender, fracture stability, injured area, operative time, time of surgery after admission, and ASA status, were investigated. Factors that affect the patients' clinical results in malrotation, including ambulation time after surgery, postoperative complication rates, pain assessment of VAS one year postoperatively and Koval score, were also investigated. Of the 109 subjects, torsional malalignment was observed in 28 (25.7%) subjects with a mean torsional malalignment angle of 20.7° (range: -31.2° to 27.1°). Torsional malalignment risk factors were fracture stability (p=0.021) and operative time (p=0.043). In terms of the time to ambulation after surgery, the postoperative complication rates, and the VAS and Koval scores at one year postoperatively, no statistically significant difference was observed between the torsional malalignment patients and the non-deformity patients. In this study, 25.7% of the patients who had undergone internal fixation following trochanteric fracture experienced torsional malalignment. Major factors of the torsional malalignment were an unstable fracture and the consequent delay in the operative time. But the torsional malalignment was deemed to have no effect on clinical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Torsion as a dynamic degree of freedom of quantum gravity
International Nuclear Information System (INIS)
Kim, Sang-Woo; Pak, D G
2008-01-01
The gauge approach to gravity based on the local Lorentz group with a general independent affine connection A μcd is developed. We consider SO(1, 3) gauge theory with a Lagrangian quadratic in curvature as a simple model of quantum gravity. The torsion is proposed to represent a dynamic degree of freedom of quantum gravity at scales above the Planckian energy. The Einstein-Hilbert theory is induced as an effective theory due to quantum corrections of torsion via generating a stable gravito-magnetic condensate. We conjecture that torsion possesses an intrinsic quantum nature and can be confined
Dynamics of continuous medium in space with torsion
International Nuclear Information System (INIS)
Krechet, V.G.
1985-01-01
In frames of Einstein-Cartan gravitation theory general properties of continuous media dynamics using description formalism of continuous medium steam-line congruence geometry are investigated. Raichaudhuri type equations in space with torsion applied to study the problem of singularities in gravitation theory are derived. It is shown that space-time torsion tensor trace may immediately affect volumetric autoparallel divergence and torsion pseudo trace - rotation of continuous medium steam-line congruences. Using formalism considered metrics of homogeneous rotation nonstationary cosmological model is determined and investigated
Generalised discrete torsion and mirror symmetry for G2 manifolds
International Nuclear Information System (INIS)
Gaberdiel, Matthias R.; Kaste, Peter
2004-01-01
A generalisation of discrete torsion is introduced in which different discrete torsion phases are considered for the different fixed points or twist fields of a twisted sector. The constraints that arise from modular invariance are analysed carefully. As an application we show how all the different resolutions of the T 7 /Z 2 3 orbifold of Joyce have an interpretation in terms of such generalised discrete torsion orbifolds. Furthermore, we show that these manifolds are pairwise identified under G 2 mirror symmetry. From a conformal field theory point of view, this mirror symmetry arises from an automorphism of the extended chiral algebra of the G 2 compactification. (author)
Ultrafine grained Cu processed by compression with oscillatory torsion
K. Rodak
2007-01-01
Purpose: The aim of this work is a study of Cu microstructure after severe plastic deformation process by usingcompression with oscillatory torsion test.Design/methodology/approach: Cu samples were deformed at torsion frequency (f) changed from 0 Hz(compression) to 1.8 Hz under a constant torsion angle (α) ≈8° and compression speed (v)=0.1mm/s. Structuralinvestigations were conducted by using light microscopy (LM) and transmission electron microscopy (TEM).Findings: The structural analysis ma...
Gastric dilatation-volvulus after splenic torsion in two dogs.
Millis, D L; Nemzek, J; Riggs, C; Walshaw, R
1995-08-01
Two dogs developed gastric dilatation-volvulus 2 and 17 months, respectively, after splenectomy for treatment of splenic torsion. Splenic displacement and torsion may stretch the gastric ligaments, allowing increased mobility of the stomach. After splenectomy, an anatomic void may be created in the cranioventral part of the abdomen, contributing to the mobility of the stomach. Veterinarians treating dogs with isolated splenic torsion may wish to consider prophylactic gastropexy at splenectomy, to reduce the chance of future gastric dilatation-volvulus. Prophylactic gastropexy should be done only if the dog's hemodynamic status is stable enough to allow for performance of the additional surgery.
5D Lovelock gravity: New exact solutions with torsion
Cvetković, B.; Simić, D.
2016-10-01
Five-dimensional Lovelock gravity is investigated in the first order formalism. A new class of exact solutions is constructed: the Bañados, Teitelboim, Zanelli black rings with and without torsion. We show that our solution with torsion exists in a different sector of the Lovelock gravity, as compared to the Lovelock Chern-Simons sector or the one investigated by Canfora et al. The conserved charges of the solutions are found using Nester's formula, and the results are confirmed by the canonical method. We show that the theory linearized around the background with torsion possesses two additional degrees of freedom with respect to general relativity.
Modal analysis of blade bending and torsional shaft coupling by component mode synthesis
International Nuclear Information System (INIS)
Vare, C.
1995-10-01
The Acoustics and Vibration Mechanics Branch of EDF's Research and Development Division is in charge of performing finite element calculations, for the study of the vibratory behaviour of nuclear components. Due to the size and the geometrical complexity of some of these components, EDF has developed sub-structure synthesis methods for modal analysis of large structures. Both Craig-Bampton's and Mac Neal's methods have been implemented in the general mechanics code of EDF: the Aster Code. Craig-Bampton sub-structure synthesis approach was used to study the coupling between blade bending and torsional shaft of a turbine generator set. Four sub-structures were defined to make the calculation: a generator, a low pressure rotor, a high pressure rotor and a blade. The results of the modal calculation, show good agreement with the experimental measurements (error < 1 %). It shows the accuracy of component mode synthesis methods. (author). 6 refs., 7 figs
A Study of the Preload Force in Metal-Elastomer Torsion Springs
Directory of Open Access Journals (Sweden)
Sikora Wojciech
2016-12-01
Full Text Available Neidhart type suspension units composed of metal-elastomer torsion springs can be a good alternative to steel helical springs in applications such as vibration absorbers or vehicle suspension systems. Assembling this type of spring requires initial preload of the elastomeric working elements, which determines their operating properties. The results of experimental tests and numerical simulations concerning the preload of elastomeric working elements in Neidhart type suspension units are presented in the paper. The performed research made it possible to propose a new calculation model for determining the preload force value acting on the elastomeric cylindrical elements applied in this type of suspension unit. The results obtained using the proposed model exhibit good convergence with FEM simulation results within the range of the tested geometrical and material properties.
Transitional Failure of Carbon Nanotube Systems under a Combination of Tension and Torsion
Jeong, Byeong-Woo
2012-01-01
Transitional failure envelopes of single- and double-walled carbon nanotubes under combined tension-torsion are predicted using classical molecular dynamics simulations. The observations reveal that while the tensile failure load decreases with combined torsion, the torsional buckling moment increases with combined tension. As a result, the failure envelopes under combined tension-torsion are definitely different from those under pure tension or torsion. In such combined loading, there is a m...
Flow induced vibrations of piping
International Nuclear Information System (INIS)
Gibert, R.J.; Axisa, F.
1977-01-01
In order to design the supports of piping systems, estimations of the vibrations induced by the fluid conveyed through the pipes are generally needed. For that purpose it is necessary to calculate the model parameters of liquid containing pipes. In most computer codes, fluid effects are accounted for just by adding the fuid mass to the structure. This may lead to serious errors.- Inertial effects from the fluid are not correctly evaluated especially in the case of bended or of non-uniform section pipes. Fluid boundary conditions are simply ignored. - In many practical problems fluid compressibility cannot be negelcted, even in the low frequencies domain which corresponds to efficient excitation by turbulent sources of the flow. This paper presents a method to take into account these efects, by solving a coupled mechanical acoustical problem: the computer code TEDEL of the C.E.A./D.E.M.T. System, based on the finite-elements method, has been extended to calculate simultaneously the pressure fluctuations in the fluid and the vibrations of the pipe. (Auth.)
Wet-Spun Biofiber for Torsional Artificial Muscles.
Mirabedini, Azadeh; Aziz, Shazed; Spinks, Geoffrey M; Foroughi, Javad
2017-12-01
The demands for new types of artificial muscles continue to grow and novel approaches are being enabled by the advent of new materials and novel fabrication strategies. Self-powered actuators have attracted significant attention due to their ability to be driven by elements in the ambient environment such as moisture. In this study, we demonstrate the use of twisted and coiled wet-spun hygroscopic chitosan fibers to achieve a novel torsional artificial muscle. The coiled fibers exhibited significant torsional actuation where the free end of the coiled fiber rotated up to 1155 degrees per mm of coil length when hydrated. This value is 96%, 362%, and 2210% higher than twisted graphene fiber, carbon nanotube torsional actuators, and coiled nylon muscles, respectively. A model based on a single helix was used to evaluate the torsional actuation behavior of these coiled chitosan fibers.
Isolated adnexal torsion in a 20-week spontaneous twin pregnancy
Directory of Open Access Journals (Sweden)
Ilker Kahramanoglu
2016-01-01
Discussion: Adnexal torsion as a cause of acute abdomen may be kept in mind in pregnants, even if there is no predisposing factor. Laparoscopy may be performed safely in 2nd trimester for acute abdomen.
Incidence and predictive factors of isolated neonatal penile glanular torsion.
Sarkis, Pierrot E; Sadasivam, Muthurajan
2007-12-01
To determine the incidence of isolated neonatal penile glanular torsion, describe the basic characteristics, and explore the relationship between foreskin and glans torsion. A prospective survey was conducted of all male newborns admitted to nursery after delivery, or neonates less than 3 months presenting for circumcision. Cases with associated genital malformations were excluded. The incidence of isolated neonatal penile torsion was 27% (95% CI: 22.2%-31.84%), to the left in 99% of cases. In 3.5% of cases, the penis had an angle 20 degrees. Using Spearman's correlational coefficient, deviation of penile raphe from the midline at the foreskin tip had a better correlation with glans torsion than deviation of raphe at the coronal sulcus (0.727 vs 0.570; both significant at pscope of the study.
Torsional Newton–Cartan geometry from Galilean gauge theory
International Nuclear Information System (INIS)
Banerjee, Rabin; Mukherjee, Pradip
2016-01-01
Using the recently advanced Galilean gauge theory (GGT) we give a comprehensive construction of torsional Newton–Cartan (NC) geometry. The coupling of a Galilean symmetric model with background NC geometry following GGT is illustrated by a free nonrelativistic scalar field theory. The issue of spatial diffeomorphism (Son and Wingate 2006 Ann. Phys. 321 197–224; Banerjee et al 2015 Phys. Rev. D 91 084021) is focussed from a new angle. The expression of the torsionful connection is worked out, which is in complete parallel with the relativistic theory. Also, smooth transition of the connection to its well known torsionless expression is demonstrated. A complete (implicit) expression of the torsion tensor for the NC spacetime is provided where the first-order variables occur in a suggestive way. The well known result for the temporal part of torsion is reproduced from our expression. (paper)
Timoshenko-Wagner-Kappus Torsion Bending Theory and Wind ...
Indian Academy of Sciences (India)
Theory and Wind Tunnel Balance Design. S P Govinda ... The study of torsion and bending has always been a favourite ... Since it was difficult to work quietlyin Petersburg, .... should be stiff and strong to endure shocks and ensure long life.
Spin-torsion effects in the hyperfine structure of methanol
International Nuclear Information System (INIS)
Coudert, L. H.; Gutlé, C.; Huet, T. R.; Grabow, J.-U.; Levshakov, S. A.
2015-01-01
The magnetic hyperfine structure of the non-rigid methanol molecule is investigated experimentally and theoretically. 12 hyperfine patterns are recorded using molecular beam microwave spectrometers. These patterns, along with previously recorded ones, are analyzed in an attempt to evidence the effects of the magnetic spin-torsion coupling due to the large amplitude internal rotation of the methyl group [J. E. M. Heuvel and A. Dymanus, J. Mol. Spectrosc. 47, 363 (1973)]. The theoretical approach setup to analyze the observed data accounts for this spin-torsion in addition to the familiar magnetic spin-rotation and spin-spin interactions. The theoretical approach relies on symmetry considerations to build a hyperfine coupling Hamiltonian and spin-rotation-torsion wavefunctions compatible with the Pauli exclusion principle. Although all experimental hyperfine patterns are not fully resolved, the line position analysis yields values for several parameters including one describing the spin-torsion coupling
Outcomes of Surgery for Posterior Polar Cataract Using Torsional Ultrasound
Directory of Open Access Journals (Sweden)
Selçuk Sızmaz
2013-10-01
Full Text Available Purpose: The aim of this study is to report outcomes of surgery for posterior polar cataract using torsional ultrasound. Material and Method: Medical records of 26 eyes of 21 consecutive patients with posterior polar cataract who had cataract surgery using the torsional phacoemulsification were evaluated retrospectively. The surgical procedure used, phacoemulsification parameters, intraoperative complications, and postoperative visual outcome were recorded. Results: Of the 26 eyes, 24 (92.3% had small to medium posterior polar opacity. Two eyes had large opacity. All surgeries were performed using the torsional handpiece. Posterior capsule rupture occurred in 4 (15.3% eyes. The mean visual acuity improved significantly after surgery (p<0.001. The postoperative visual acuity was worse than 20/20 in 5 eyes. The cause of the low acuity was amblyopia. Discussion: Successful surgical results and good visual outcome can be achieved with phacoemulsification using the torsional handpiece. (Turk J Ophthalmol 2013; 43: 345-7
Torsional Dynamics of Steerable Needles: Modeling and Fluoroscopic Guidance
Swensen, John P.; Lin, MingDe; Okamura, Allison M.; Cowan, Noah J.
2017-01-01
Needle insertions underlie a diversity of medical interventions. Steerable needles provide a means by which to enhance existing needle-based interventions and facilitate new ones. Tip-steerable needles follow a curved path and can be steered by twisting the needle base during insertion, but this twisting excites torsional dynamics that introduce a discrepancy between the base and tip twist angles. Here, we model the torsional dynamics of a flexible rod—such as a tip-steerable needle—during subsurface insertion and develop a new controller based on the model. The torsional model incorporates time-varying mode shapes to capture the changing boundary conditions inherent during insertion. Numerical simulations and physical experiments using two distinct setups—stereo camera feedback in semi-transparent artificial tissue and feedback control with real-time X-ray imaging in optically opaque artificial tissue— demonstrate the need to account for torsional dynamics in control of the needle tip. PMID:24860026
Torsion effect on fully developed flow in a helical pipe
Kao, Hsiao C.
1987-01-01
Two techniques, a series expansion method of perturbed Poiseuille flow valid for low Dean numbers and a solution of the complete Navier-Stokes equation applicable to intermediate Dean values, are used to investigate the torsion effect on the fully developed laminar flow in a helical pipe of constant circular cross section. For the secondary flow patterns, the results show that the presence of torsion can produce a significant effect if the ratio of the curvature to the torsion is of order unity. The secondary flow is distorted in these cases. It is noted that the torsion effect is, however, usually small, and that the secondary flow has the usual pattern of a pair of counter-rotating vortices of nearly equal strength.
Tomographic elastography of contracting skeletal muscles from their natural vibrations
Sabra, Karim G.; Archer, Akibi
2009-11-01
Conventional elastography techniques require an external mechanical or radiation excitation to measure noninvasively the viscoelastic properties of skeletal muscles and thus monitor human motor functions. We developed instead a passive elastography technique using only an array of skin-mounted accelerometers to record the low-frequency vibrations of the biceps brachii muscle naturally generated during voluntary contractions and to determine their two-dimensional directionality. Cross-correlating these recordings provided travel-times measurements of these muscle vibrations between multiple sensor pairs. Travel-time tomographic inversions yielded spatial variations of their propagation velocity during isometric elbow flexions which indicated a nonuniform longitudinal stiffening of the biceps.
Standardized education and parental awareness are lacking for testicular torsion.
Friedman, Ariella A; Ahmed, Haris; Gitlin, Jordan S; Palmer, Lane S
2016-06-01
Testicular torsion leads to orchiectomy in 30-50% of cases, which may cause psychological upset and parental guilt over a potentially avertable outcome. Presentation delay is an important modifiable cause of orchiectomy; yet, families are not routinely educated about torsion or its urgency. The present study assessed parental knowledge regarding acute scrotal pain. An anonymous survey was distributed to parents in Urology and ENT offices, asking about their children's gender and scrotal pain history, urgency of response to a child's acute scrotal pain, and familiarity with testicular torsion. Surveys of 479 urology and 59 ENT parents were analyzed. The results between the two were not statistically different. Among the urology parents, 34% had heard of testicular twisting/torsion, most commonly through friends, relatives or knowing someone with torsion (35%); only 17% were informed by pediatricians (Summary Figure). Parents presenting for a child's scrotal pain were significantly more likely to have heard of torsion (69%) than those presenting for other reasons (30%, OR 5.24, P parents of boys had spoken with their children about torsion. Roughly three quarters of them would seek emergent medical attention - by day (75%) or night (82%) - for acute scrotal pain. However, urgency was no more likely among those who knew about torsion. This was the first study to assess parental knowledge of the emergent nature of acute scrotal pain in a non-urgent setting, and most closely approximating their level of knowledge at the time of pain onset. It also assessed parents' hypothetical responses to the scenario, which was markedly different than documented presentation times, highlighting a potential area for improvement in presentation times. Potential limitations included lack of respondent demographic data, potential sampling bias of a population with greater healthcare knowledge or involvement, and assessment of parents only. Parental knowledge of testicular torsion was
Long GRBs sources population non-uniformity
Arkhangelskaja, Irene
Long GRBs observed in the very wide energy band. It is possible to separate two subsets of GRBs with high energy component (E > 500 MeV) presence. First type events energy spectra in low and high energy intervals are similar (as for GRB 021008) and described by Band, power law or broken power law models look like to usual bursts without emission in tens MeV region. For example, Band spectrum of GRB080916C covering 6 orders of magnitude. Second ones contain new additional high energy spectral component (for example, GRB 050525B and GRB 090902B). Both types of GRBs observed since CGRO mission beginning. The low energy precursors existence are typical for all types bursts. Both types of bursts temporal profiles can be similar in the various energy regions during some events or different in other cases. The absence of hard to soft evolution in low energy band and (or) presence of high energy precursors for some events are the special features of second class of GRBs by the results of preliminary data analysis and this facts gives opportunities to suppose differences between these two GRBs subsets sources. Also the results of long GRB redshifts distribution analysis have shown its shape contradiction to uniform population objects one for our Metagalaxy to both total and various redshifts definition methods GRBs sources samples. These evidences allow making preliminary conclusion about non-uniformity of long GRBs sources population.
Minimum nonuniform graph partitioning with unrelated weights
Makarychev, K. S.; Makarychev, Yu S.
2017-12-01
We give a bi-criteria approximation algorithm for the Minimum Nonuniform Graph Partitioning problem, recently introduced by Krauthgamer, Naor, Schwartz and Talwar. In this problem, we are given a graph G=(V,E) and k numbers ρ_1,\\dots, ρ_k. The goal is to partition V into k disjoint sets (bins) P_1,\\dots, P_k satisfying \\vert P_i\\vert≤ ρi \\vert V\\vert for all i, so as to minimize the number of edges cut by the partition. Our bi-criteria algorithm gives an O(\\sqrt{log \\vert V\\vert log k}) approximation for the objective function in general graphs and an O(1) approximation in graphs excluding a fixed minor. The approximate solution satisfies the relaxed capacity constraints \\vert P_i\\vert ≤ (5+ \\varepsilon)ρi \\vert V\\vert. This algorithm is an improvement upon the O(log \\vert V\\vert)-approximation algorithm by Krauthgamer, Naor, Schwartz and Talwar. We extend our results to the case of 'unrelated weights' and to the case of 'unrelated d-dimensional weights'. A preliminary version of this work was presented at the 41st International Colloquium on Automata, Languages and Programming (ICALP 2014). Bibliography: 7 titles.
Model of Structural Fragmentation Induced by High Pressure Torsion
Czech Academy of Sciences Publication Activity Database
Kratochvíl, J.; Kružík, Martin; Sedláček, R.
2010-01-01
Roč. 25, č. 1 (2010), s. 88-98 ISSN 1606-5131 Institutional research plan: CEZ:AV0Z10750506 Keywords : High-pressure torsion * intergranular glide * homogeneous deformation mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.649, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/kruzik-model of structural fragmentation induced by high pressure torsion.pdf
Torsional Moment Measurement on Bucket Wheel Shaft of Giant Machine
Directory of Open Access Journals (Sweden)
Jiří FRIES
2011-06-01
Full Text Available Bucket wheel loading at the present time (torsional moment on wheel shaft, peripheral cutting force is determined from electromotor incoming power or reaction force measured on gearbox hinge. Both methods together are weighted by steel construction absorption of driving units and by inertial forces of motor rotating parts. In the article is described direct method of the torsional moment measurement, which eliminates mentioned unfavourable impacts except absorption of steel construction of bucket wheel itself.
Intravitreal Phacoemulsification Using Torsional Handpiece for Retained Lens Fragments
Kumar, Vinod; Takkar, Brijesh
2016-01-01
Purpose: To evaluate the results of intravitreal phacoemulsification with torsional hand piece in eyes with posteriorly dislocated lens fragments. Methods: In this prospective, interventional case series, 15 eyes with retained lens fragments following phacoemulsification were included. All patients underwent standard three-port pars plana vitrectomy and intravitreal phacoemulsification using sleeveless, torsional hand piece (OZiL™, Alcon's Infiniti Vision System). Patients were followed up...
Muscular Basis of Whisker Torsion in Mice and Rats.
Haidarliu, Sebastian; Bagdasarian, Knarik; Shinde, Namrata; Ahissar, Ehud
2017-09-01
Whisking mammals move their whiskers in the rostrocaudal and dorsoventral directions with simultaneous rolling about their long axes (torsion). Whereas muscular control of the first two types of whisker movement was already established, the anatomic muscular substrate of the whisker torsion remains unclear. Specifically, it was not clear whether torsion is induced by asymmetrical operation of known muscles or by other largely unknown muscles. Here, we report that mystacial pads of newborn and adult rats and mice contain oblique intrinsic muscles (OMs) that connect diagonally adjacent vibrissa follicles. Each of the OMs is supplied by a cluster of motor end plates. In rows A and B, OMs connect the ventral part of the rostral follicle with the dorsal part of the caudal follicle. In rows C-E, in contrast, OMs connect the dorsal part of the rostral follicle to the ventral part of the caudal follicle. This inverse architecture is consistent with previous behavioral observations [Knutsen et al.: Neuron 59 (2008) 35-42]. In newborn mice, torsion occurred in irregular single twitches. In adult anesthetized rats, microelectrode mediated electrical stimulation of an individual OM that is coupled with two adjacent whiskers was sufficient to induce a unidirectional torsion of both whiskers. Torsional movement was associated with protracting movement, indicating that in the vibrissal system, like in the ocular system, torsional movement is mechanically coupled to horizontal and vertical movements. This study shows that torsional whisker rotation is mediated by specific OMs whose morphology and attachment sites determine rotation direction and mechanical coupling, and motor innervation determines rotation dynamics. Anat Rec, 300:1643-1653, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Torsion of the greater omentum: A rare preoperative diagnosis
International Nuclear Information System (INIS)
Tandon, Ankit Anil; Lim, Kian Soon
2010-01-01
Torsion of the greater omentum is a rare acute abdominal condition that is seldom diagnosed preoperatively. We report the characteristic computed tomography (CT) scan findings and the clinical implications of this unusual diagnosis in a 41-year-old man, who also had longstanding right inguinal hernia. Awareness of omental torsion as a differential diagnosis in the acute abdomen setting is necessary for correct patient management
High harmonic terahertz confocal gyrotron with nonuniform electron beam
Energy Technology Data Exchange (ETDEWEB)
Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)
2016-01-15
The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.
Non-uniformity Correction of Infrared Images by Midway Equalization
Directory of Open Access Journals (Sweden)
Yohann Tendero
2012-07-01
Full Text Available The non-uniformity is a time-dependent noise caused by the lack of sensor equalization. We present here the detailed algorithm and on line demo of the non-uniformity correction method by midway infrared equalization. This method was designed to suit infrared images. Nevertheless, it can be applied to images produced for example by scanners, or by push-broom satellites. The obtained single image method works on static images, is fully automatic, having no user parameter, and requires no registration. It needs no camera motion compensation, no closed aperture sensor equalization and is able to correct for a fully non-linear non-uniformity.
Bicavitary effusion secondary to liver lobe torsion in a dog
Directory of Open Access Journals (Sweden)
Khan Z
2016-04-01
Full Text Available Zaheda Khan,1 Kathryn Gates,2 Stephen A Simpson,31Emergency and Critical Care, Animal Specialty and Emergency Center, Los Angeles, CA, 2Emergency and Critical Care, Advanced Critical Care, Emergency and Specialty Services, Culver City, CA 3Emergency and Critical Care, Southern California Veterinary Specialty Hospital, Irvine, CA, USA Abstract: We described the diagnosis and successful treatment of pleural and peritoneal effusion secondary to liver lobe torsion in a dog. A 12-year-old female spayed Borzoi dog was referred for heart failure. Emergency room thoracic and abdominal ultrasound showed a large volume of pleural effusion with mild peritoneal effusion and an abdominal mass. Pleural fluid analysis classified the effusion as exudative. A complete ultrasound revealed mild peritoneal effusion and decreased blood flow to the right liver lobe. Other causes of bicavitary effusion were ruled out based on blood work, ultrasound, echocardiogram, and computed tomography. The patient was taken to surgery and diagnosed with caudate liver lobe torsion and had a liver lobectomy. At the 2-week postoperative recheck, the patient was doing well and there was complete resolution of the pleural effusion. Liver lobe torsion is a rare occurrence in dogs and can be difficult to diagnose. Clinical signs are nonspecific for liver lobe torsion and patients may present in respiratory distress with significant pleural fluid accumulation. When assessing patients with pleural and peritoneal effusion, liver lobe torsion should be considered as a differential diagnosis.Keywords: pleural effusion, peritoneal effusion, hepatic torsion
ESTIMATING TORSION OF DIGITAL CURVES USING 3D IMAGE ANALYSIS
Directory of Open Access Journals (Sweden)
Christoph Blankenburg
2016-04-01
Full Text Available Curvature and torsion of three-dimensional curves are important quantities in fields like material science or biomedical engineering. Torsion has an exact definition in the continuous domain. However, in the discrete case most of the existing torsion evaluation methods lead to inaccurate values, especially for low resolution data. In this contribution we use the discrete points of space curves to determine the Fourier series coefficients which allow for representing the underlying continuous curve with Cesàro’s mean. This representation of the curve suits for the estimation of curvature and torsion values with their classical continuous definition. In comparison with the literature, one major advantage of this approach is that no a priori knowledge about the shape of the cyclic curve parts approximating the discrete curves is required. Synthetic data, i.e. curves with known curvature and torsion, are used to quantify the inherent algorithm accuracy for torsion and curvature estimation. The algorithm is also tested on tomographic data of fiber structures and open foams, where discrete curves are extracted from the pore spaces.
Effectiveness of lycopene on experimental testicular torsion.
Güzel, Mahmut; Sönmez, Mehmet Fatih; Baştuğ, Osman; Aras, Necip Fazıl; Öztürk, Ayşe Betül; Küçükaydın, Mustafa; Turan, Cüneyt
2016-07-01
We aimed to demonstrate the long term effectiveness of lycopene, a precursor of vitamin A, on the testes for ischemia-reperfusion injury. Seventy male Wistar albino rats were used for this experiment. The rats were divided into seven groups. Group 1 served as the control group; group 2 was sham-operated; group 3 received 20mg/kg/day lycopene (intraperitoneally); in group 4, the right testes of rats were kept torted for 2hours and then were detorted and the animals lived for three days; in group 5, the right testes of rats were kept torted for 2hours and then were detorted and the animals lived for ten days; in group 6, the right testes of the rats were kept torted for 2hours and then detorted and the animals received 20mg/kg/day lycopene (intraperitoneally) for three days; in group 7, the right testes of the rats were kept torted for 2hours and then were detorted and the animals received 20mg/kg/day lycopene (intraperitoneally) for ten days. Lycopene was used intraperitoneally. Some of the testes tissues were used for biochemical analyses and the other tissues were used for histological procedures. The Johnsen's score was used for seminiferous tubule deterioration. The TUNEL method was utilized to show apoptosis of testicular tissue. Testosterone levels were measured from blood samples and SOD, MDA, TNF-α, IL-1β and IL-6 measurements were recorded from tissue samples. The results were analyzed statistically. In groups 1, 2 and 3 there was normal testicular structure. Rats in groups 4 and 5 had damaged testicular tissues. In groups 6 and 7, in which we used lycopene, the testes were not better than those in groups 4 and 5. The MSTD and JTBS values were better in group 6, but not in group 7 among the torsion groups. As a result, MDA, SOD, TNF-α and IL-1β were increased and serum testosterone and IL-6 levels were decreased in groups 4 and 5 compared to group 1. There was no improvement in the groups treated with lycopene for therapeutic purposes. It was shown that
National Aeronautics and Space Administration — Ground vibration tests or modal surveys are routinely conducted to support flutter analysis for subsonic and supersonic vehicles. However, vibration testing...
Koroleva, L. A.; Tyulin, V. I.; Matveev, V. K.; Pentin, Yu. A.
2012-04-01
The assignments of absorption bands of the vibrational structure of the UV spectrum are compared with the assignments of bands obtained by the CRDS method in a supersonic jet from the time of laser radiation damping for the trans isomer of acrolein in the excited ( S 1) electronic state. The ν00 trans = 25861 cm-1 values and fundamental frequencies, including torsional vibration frequency, obtained by the two methods were found to coincide in the excited electronic state ( S 1) for this isomer. The assignments of several absorption bands of the vibrational structure of the spectrum obtained by the CRDS method were changed. Changes in the assignment of (0-v') transition bands of the torsional vibration of the trans isomer in the Deslandres table from the ν00 trans trans origin allowed the table to be extended to high quantum numbers v'. The torsional vibration frequencies up to v' = 5 were found to be close to the frequencies found by analyzing the vibrational structure of the UV spectrum and calculated quantum-mechanically. The coincidence of the barrier to internal rotation (the cis-trans transition) in the one-dimensional model with that calculated quantum-mechanically using the two-dimensional model corresponds to a planar structure of the acrolein molecule in the excited ( S 1) electronic state.
FEM Updating of Tall Buildings using Ambient Vibration Data
DEFF Research Database (Denmark)
Ventura, C. E.; Lord, J. F.; Turek, M.
2005-01-01
Ambient vibration testing is the most economical non-destructive testing method to acquire vibration data from large civil engineering structures. The purpose of this paper is to demonstrate how ambient vibration Modal Identification techniques can be effectively used with Model Updating tools...... to develop reliable finite element models of large civil engineering structures. A fifteen story and a forty-eight story reinforced concrete buildings are used as case studies for this purpose. The dynamic characteristics of interest for this study were the first few lateral and torsional natural frequencies...... the information provided in the design documentation of the building. Different parameters of the model were then modified using an automated procedure to improve the correlation between measured and calculated modal parameters. Careful attention was placed to the selection of the parameters to be modified...
Magnetic resonance imaging findings in adnexial torsion
Energy Technology Data Exchange (ETDEWEB)
Trindade, Ronald Meira Castro; Quadros, Marianne Siquara de [Hospital Albert Einstein, Sao Paulo, SP (Brazil). Instituto de Ensino e Pesquisa], e-mail: rtrindade@einstein.br; Baroni, Ronaldo Hueb; Rosemberg, Michelle; Racy, Marcelo de Castro Jorge; Tachibana, Adriano [Hospital Albert Einstein, Sao Paulo, SP (Brazil); Funari, Marcelo Buarque de Gusmao [Hospital Albert Einstein, Sao Paulo, SP (Brazil). Imaging Service
2010-01-15
Adnexial torsion is an unusual event, but a major cause of abdominal pain in women. It is often associated with ovarian tumor or cyst, but can occur in normal ovaries, especially in children. The twisting of adnexial structures may involve the ovary or tube, but frequently affects both. In most cases, it is unilateral, with slight predilection for the right size. In imaging findings, increased ovarian volume and adnexial masses are observed, with reduced or absent vascularisation. In cases of undiagnosed or untreated complete twist, hemorrhagic necrosis may occur leading to complications; in that, peritonitis is the most frequent. Early diagnosis helps preventing irreversible damage with conservative treatment, thereby saving the ovary. Limitations in performing physical examination, possible inconclusive results in ultrasound and exposure to radiation in computed tomography makes magnetic resonance imaging a valuable tool in emergency assessment of gynecological diseases. The objective of this study was to report two confirmed cases of adnexial twist, emphasizing the contribution of magnetic resonance imaging in the diagnosis of this condition. (author)
Design of Nonuniform Filter Bank Transceivers for Frequency Selective Channels
Directory of Open Access Journals (Sweden)
Yuan-Pei Lin
2007-01-01
Full Text Available In recent years, there has been considerable interest in the theory and design of filter bank transceivers due to their superior frequency response. In many applications, it is desired to have transceivers that can support multiple services with different incoming data rates and different quality-of-service requirements. To meet these requirements, we can either do resource allocation or design transceivers with a nonuniform bandwidth partition. In this paper, we propose a method for the design of nonuniform filter bank transceivers for frequency selective channels. Both frequency response and signal-to-interference ratio (SIR can be incorporated in the transceiver design. Moreover, the technique can be extended to the case of nonuniform filter bank transceivers with rational sampling factors. Simulation results show that nonuniform filter bank transceivers with good filter responses as well as high SIR can be obtained by the proposed design method.
Pattern of diffusion-limited aggregation on nonuniform substrate
Ouyang Wen Ze; Zou Xian Wu; Jin Zhun Zhi
2003-01-01
Pattern of diffusion-limited aggregation (DLA) on nonuniform substrate was investigated by computer simulations. The nonuniform substrates are represented by Leath percolations with the probability p. p stands for the degree of nonuniformity and takes values in the range p sub c<=p<=1, where p sub c is the threshold of percolation. The DLA cluster grows up on the Leath percolation substrate. The patterns of the DLA clusters appear asymmetrical and nonuniform, and the branches are relative few for the case p is close to p sub c. In addition, the pattern depends on the shape of substrate. As p increases from p sub c to 1, cluster changes to pure DLA gradually. Correspondingly, the fractal dimension increases from 1.46 to 1.68. Also, the random walks on Leath percolations through the range p sub c<=p<=1 were examined. Our simulations show the Honda-Toyoki-Matsushita relation is still reasonable for fractional dimensional systems.
Non-uniform sampling of NMR relaxation data
DEFF Research Database (Denmark)
Schwarz-Linnet, Troels; Teilum, Kaare
2016-01-01
The use of non-uniform sampling of NMR spectra may give significant reductions in the data acquisition time. For quantitative experiments such as the measurement of spin relaxation rates, non-uniform sampling is however not widely used as inaccuracies in peak intensities may lead to errors...... in the extracted dynamic parameters. By systematic reducing the coverage of the Nyquist grid of (15)N Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion datasets for four different proteins and performing a full data analysis of the resulting non-uniform sampled datasets, we have compared the performance...... of the multi-dimensional decomposition and iterative re-weighted least-squares algorithms in reconstructing spectra with accurate peak intensities. As long as a single fully sampled spectrum is included in a series of otherwise non-uniform sampled two-dimensional spectra, multi-dimensional decomposition...
Theory of vibration protection
Karnovsky, Igor A
2016-01-01
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans. Numerous examples, which illustrate the theoretical ideas of each chapter, ar...
Charged particle acceleration in nonuniform plasmas
International Nuclear Information System (INIS)
Bulanov, S.V.; Naumova, N.M.; Pegoraro, F.
1996-11-01
The high-gradient electron acceleration schemes that have been demonstrated using LWFA appear promising for the development of plasma-based laser accelerators into practical devices. However, a question still exists: how to avoid the wake field deterioration and the loss of the phase synchronism between the plasma wave and the electrons that prevent them from being accelerated up to the theoretical limit. In order to obtain the highest possible values of the wake electric field one must use as intense laser pulses as possible i.e., pulses with dimensionless amplitudes a much-gt 1. Pulses that have a dimensionless amplitude larger than one tend to be subject to a host of instabilities, such as relativistic self-focusing, self modulation and stimulated Raman scattering, that affect their propagation in the plasma. Such processes could be beneficial, in so far as they increase the pulse energy density, enhance the wake field generation, and provide the mechanism for transporting the laser radiation over several Rayleigh lengths without diffraction spreading. However, it is still far from certain that these processes can be exploited in a controlled form and can lead to regular, stationary wake fields. It is known that, in order to create good quality wake fields, it would be preferable to use laser pulses with steep fronts of order λ p . The present paper aims at analyzing the influence of the laser pulse shape and of the plasma nonuniformity on the charged particle acceleration. This study is based on the results obtained with one dimensional PIC simulations
Compensation for nonuniform attenuation in SPECT brain imaging
International Nuclear Information System (INIS)
Glick, S.J.; King, M.A.; Pan, T.S.; Soares, E.J.
1996-01-01
Accurate compensation for photon attenuation is needed to perform quantitative brain single-photon-emission computed tomographic (SPECT) imaging. Bellini's attenuation-compensation method has been used with a nonuniform attenuation map to account for the nonuniform attenuation properties of the head. Simulation studies using a three-dimensional (3-D) digitized anthropomorphic brain phantom were conducted to compare quantitative accuracy of reconstructions obtained with the nonuniform Bellini method to that obtained with the Chang method and to iterative reconstruction using maximum-likelihood expectation maximization (ML-EM). Using the Chang method and assuming the head to be a uniform attenuator gave reconstructions with an average bias of approximately 6-8%, whereas using the Bellini or the iterative ML-EM method with a nonuniform attenuation map gave an average bias of approximately 1%. The computation time required to implement nonuniform attenuation compensation with the Bellini algorithm is approximately equivalent to the time required to perform one iteration of ML-EM. Thus, using the Bellini method with a nonuniform attenuation map provides accurate compensation for photon attenuation within the head, and the method can be implemented in computation times suitable for routine clinical use
On unified field theories, dynamical torsion and geometrical models: II
International Nuclear Information System (INIS)
Cirilo-Lombardo, D.J.
2011-01-01
We analyze in this letter the same space-time structure as that presented in our previous reference (Part. Nucl, Lett. 2010. V.7, No.5. P.299-307), but relaxing now the condition a priori of the existence of a potential for the torsion. We show through exact cosmological solutions from this model, where the geometry is Euclidean RxO 3 ∼ RxSU(2), the relation between the space-time geometry and the structure of the gauge group. Precisely this relation is directly connected with the relation of the spin and torsion fields. The solution of this model is explicitly compared with our previous ones and we find that: i) the torsion is not identified directly with the Yang-Mills type strength field, ii) there exists a compatibility condition connected with the identification of the gauge group with the geometric structure of the space-time: this fact leads to the identification between derivatives of the scale factor a with the components of the torsion in order to allow the Hosoya-Ogura ansatz (namely, the alignment of the isospin with the frame geometry of the space-time), and iii) of two possible structures of the torsion the 'tratorial' form (the only one studied here) forbid wormhole configurations, leading only to cosmological instanton space-time in eternal expansion
Torsion of wandering spleen in patient with horseshoe kidney
International Nuclear Information System (INIS)
Molski, St.; Zurada, A.; Meder, G.; Lasek, W.
2005-01-01
Wandering spleen is rare pathology, mostly occurring in young women. Disease may be congenital or acquired. Absence or laxity of ligaments leads to spleen pathologic mobility and may cause torsion of its pedicle, resulting in ischemia or infarct even haemorrhagic shock and patients death. We report a case of young woman previously diagnosed (and treated nonoperative) with wandering spleen who presented acute abdomen after minor blunt trauma. She was evaluated with abdominal ultrasound (US) and spiral computed tomography (CT). Torsion of splenic pedicle and splenic rupture was diagnosed and a horseshoe kidney as well. Laparotomy followed by splenectomy confirmed the existence of an intrapelvic torsioned wandering spleen. The only definitive treatment of wandering spleen is operative since nonoperative treatment is associated with high complication rate. Earlier diagnosis of wandering spleen in asymptomatic patients lets to direct diagnosis when patient starts to present with acute abdomen. CT and abdominal US play most important role in diagnosing splenic pedicle torsion. To our knowledge this is a first case of torsion of splenic pedicle in patient with horseshoe kidney. We consider this coincidence to be a congenital defect as both conditions may develop in second month gestation. (author)
Prune belly syndrome, splenic torsion, and malrotation: a case report.
Tran, Sifrance; Grossman, Eric; Barsness, Katherine A
2013-02-01
An 18 year old male with a history of prune belly syndrome (PBS) presented with acute abdominal pain and palpable left upper quadrant mass. Computed tomography (CT) of the abdomen revealed a medialized spleen with a "whirl sign" in the splenic vessels, consistent with splenic torsion. Coincidentally, the small bowel was also noted to be on the right side of the abdomen, while the colon was located on the left, indicative of malrotation. Emergent diagnostic laparoscopy confirmed splenic torsion and intestinal malrotation. Successful laparoscopic reduction of the splenic torsion was achieved, however, conversion to an open procedure by a vertical midline incision was necessary owing to the patient's unique anatomy. Open splenopexy with a mesh sling and Ladd's procedure were subsequently performed. Malrotation and wandering spleen are known, rare associated anomalies in PBS; however, both have not been reported concurrently in a patient with PBS in the literature. In patients with PBS, acute abdominal pain, and an abdominal mass, high clinical suspicion for gastrointestinal malformations and prompt attention can result in spleen preservation and appropriate malrotation management. We present a case of a teenager who presented with a history of PBS, acute abdominal pain, and a palpable abdominal mass. The patient was found to have splenic torsion and intestinal malrotation. The clinical findings, diagnostic imaging, and surgical treatment options of splenic torsion are reviewed. Copyright © 2013 Elsevier Inc. All rights reserved.
Elevated temperature axial and torsional fatigue behavior of Haynes 188
Bonacuse, Peter J.; Kalluri, Sreeramesh
1992-06-01
The results of high-temperature axial and torsional low-cycle fatigue experiments performed on Haynes 188, a wrought cobalt-base superalloy, are reported. Fatigue tests were performed at 760 C in air on thin-walled tubular specimens at various ranges under strain control. Data are also presented for coefficient of thermal expansion, elastic modulus, and shear modulus at various temperatures from room to 1000 C, and monotonic and cyclic stress-strain curves in tension and in shear at 760 C. The data set is used to evaluate several multiaxial fatigue life models (most were originally developed for room temperature multiaxial life prediction) including von Mises equivalent strain range (ASME boiler and pressure vessel code), Manson-Halford, Modified Multiaxiality Factor (proposed here), Modified Smith-Watson-Topper, and Fatemi-Socie-Kurath. At von Mises equivalent strain ranges (the torsional strain range divided by the square root of 3, taking the Poisson's ratio to be 0.5), torsionally strained specimens lasted, on average, factors of 2 to 3 times longer than axially strained specimens. The Modified Multiaxiality Factor approach shows promise as a useful method of estimating torsional fatigue life from axial fatigue data at high temperatures. Several difficulties arose with the specimen geometry and extensometry used in these experiments. Cracking at extensometer probe indentations was a problem at smaller strain ranges. Also, as the largest axial and torsional strain range fatigue tests neared completion, a small amount of specimen buckling was observed.
Residual torsional properties of composite shafts subjected to impact loadings
International Nuclear Information System (INIS)
Sevkat, Ercan; Tumer, Hikmet
2013-01-01
Highlights: • Impact loading reduces the torsional strength of composite shaft. • Impact energy level determines the severity of torsional strength reduction. • Hybrid composite shafts can be manufactured by mixing two types of filament. • Maximum torque capacity of shafts can be estimated using finite element method. - Abstract: This paper presents an experimental and numerical study to investigate residual torsional properties of composite shafts subjected to impact loadings. E-glass/epoxy, carbon/epoxy and E-glass–carbon/epoxy hybrid composite shafts were manufactured by filament winding method. Composite shafts were impacted at 5, 10, 20 and 40 J energy levels. Force–time and energy–time histories of impact tests were recorded. One composite shaft with no impact, and four composite shafts with impact damage, five in total, were tested under torsion. Torque-twisting angle relations for each test were obtained. Reduction at maximum torque and maximum twisting angle induced by impact loadings were calculated. While 5 J impact did not cause significant reduction at maximum torque and maximum twisting angle, remaining impact loadings caused 34–67% reduction at maximum torque, and 30–61% reduction at maximum twisting angle. Reductions increased with increasing energy levels and varied depending on the material of composite shafts. The 3-D finite element (FE) software, Abaqus, incorporated with an elastic orthotropic model, was then used to simulate the torsion tests. Good agreement between experimental and numerical results was achieved
Torsion as a dark matter candidate from the Higgs portal
Belyaev, Alexander S.; Thomas, Marc C.; Shapiro, Ilya L.
2017-05-01
Torsion is a metric-independent component of gravitation, which may provide a more general geometry than the one taking place within general relativity. On the other hand, torsion could lead to interesting phenomenology in both particle physics and cosmology. In the present work it is shown that a torsion field interacting with the SM Higgs doublet and having a negligible coupling to standard model (SM) fermions is protected from decaying by a Z2 symmetry, and therefore becomes a promising dark matter (DM) candidate. This model provides a good motivation for Higgs portal vector DM scenario. We evaluate the DM relic density and explore direct DM detection and collider constraints on this model to understand its consistency with experimental data and establish the most up-to-date limits on its parameter space. We have found in the model when the Higgs boson is only partly responsible for the generation of torsion mass, there is a region of parameter space where torsion contributes 100% to the DM budget of the Universe. Furthermore, we present the first results on the potential of the LHC to probe the parameter space of minimal scenario with Higgs portal vector DM using mono-jet searches and have found that LHC at high luminosity will be sensitive to the substantial part of model parameter space which cannot be probed by other experiments.
Crack path in aeronautical titanium alloy under ultrasonic torsion loading
Directory of Open Access Journals (Sweden)
A. Nikitin
2016-01-01
Full Text Available This paper discusses features of fatigue crack initiation and growth in aeronautical VT3-1 titanium alloy under pure torsion loading in gigacycle regime. Two materials: extruded and forged VT3-1 titanium alloys were studied. Torsion fatigue tests were performed up to fatigue life of 109 cycles. The results of the torsion tests were compared with previously obtained results under fully reversed axial loading on the same alloys. It has been shown that independently on production process as surface as well subsurface crack initiation may appear under ultrasonic torsion loading despite the maximum stress amplitude located at the specimen surface. In the case of surface crack initiation, a scenario of crack initiation and growth is similar to HCF regime except an additional possibility for internal crack branching. In the case of subsurface crack, the initiation site is located below the specimen surface (about 200 μm and is not clearly related to any material flaw. Internal crack initiation is produced by shear stress in maximum shear plane and early crack growth is in Mode II. Crack branching is limited in the case of internal crack initiation compared to surface one. A typical ‘fish-eye’ crack can be observed at the torsion fracture surface, but mechanism of crack initiation seems not to be the same than under axial fatigue loading.
Direct torsional actuation of microcantilevers using magnetic excitation
Energy Technology Data Exchange (ETDEWEB)
Gosvami, Nitya Nand; Nalam, Prathima C.; Tam, Qizhan; Carpick, Robert W., E-mail: carpick@seas.upenn.edu [Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Exarhos, Annemarie L.; Kikkawa, James M. [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States)
2014-09-01
Torsional mode dynamic force microscopy can be used for a wide range of studies including mapping lateral contact stiffness, torsional frequency or amplitude modulation imaging, and dynamic friction measurements of various materials. Piezo-actuation of the cantilever is commonly used, but it introduces spurious resonances, limiting the frequency range that can be sampled, and rendering the technique particularly difficult to apply in liquid medium where the cantilever oscillations are significantly damped. Here, we demonstrate a method that enables direct torsional actuation of cantilevers with high uniformity over wide frequency ranges by attaching a micrometer-scale magnetic bead on the back side of the cantilever. We show that when beads are magnetized along the width of the cantilever, efficient torsional actuation of the cantilevers can be achieved using a magnetic field produced from a solenoid placed underneath the sample. We demonstrate the capability of this technique by imaging atomic steps on graphite surfaces in tapping mode near the first torsional resonance of the cantilever in dodecane. The technique is also applied to map the variations in the lateral contact stiffness on the surface of graphite and polydiacetylene monolayers.
[Torsion of wandering spleen in a teenager: about a case].
Dème, Hamidou; Akpo, Léra Géraud; Fall, Seynabou; Badji, Nfally; Ka, Ibrahima; Guèye, Mohamadou Lamine; Touré, Mouhamed Hamine; Niang, El Hadj
2016-01-01
Wandering or migrating spleen is a rare anomaly which is usually described in children. Complications, which include pedicle torsion, are common and can be life-threatening. We report the case of a 17 year-old patient with a long past medical history of epigastric pain suffering from wandering spleen with chronic torsion of the pedicle. The clinical picture was marked by spontaneously painful epigastric mass, evolved over the past 48 hours. Abdominal ultrasound objectified heterogeneous hypertrophied ectopic spleen in epigastric position and a subcapsular hematoma. Doppler showed a torsion of splenic pedicle which was untwisted 2 turns and a small blood stream on the splenic artery. Abdominal CT scan with contrast injection showed a lack of parenchymal enhancement of large epigastric ectopic spleen and a subcapsular hematoma. The diagnosis of wandering spleen with chronic torsion of the pedicle complicated by necrosis and subcapsular hematoma was confirmed. The patient underwent splenectomy. The postoperative course was uneventful. We here discuss the contribution of ultrasound and CT scan in the diagnosis of wandering spleen with chronic torsion of the pedicle.
International Nuclear Information System (INIS)
Kwak, Mun Gyu; Na, Sung Su; Baek, Gwang Hyeon; Song, Chul Gi; Han, Sang Bo
2001-09-01
This book deals with vibration of machine which gives descriptions of free vibration using SDOF system, forced vibration using SDOF system, vibration of multi-degree of freedom system like introduction and normal form, distribution system such as introduction, free vibration of bar and practice problem, approximate solution like lumped approximations and Raleigh's quotient, engineering by intuition and experience, real problem and experimental method such as technology of signal, fourier transform analysis, frequency analysis and sensor and actuator.
Enhanced vibration diagnostics using vibration signature analysis
International Nuclear Information System (INIS)
Ahmed, S.; Shehzad, K.; Zahoor, Y.; Mahmood, A.; Bibi, A.
2001-01-01
Symptoms will appear in equipment, as well as in human beings. when 'suffering from sickness. Symptoms of abnormality in equipment are vibration, noise, deformation, temperature, pressure, electric current, crack, wearing, leakage etc. these are called modes of failure. If the mode of failure is vibration then the vibration signature analysis can be effectively used in order to diagnose the machinery problems. Much valuable information is contained within these vibration 'Spectra' or 'Signatures' but is only of use if the analyst can unlock its 'Secrets'. This paper documents a vibration problem in the motor of a centrifugal pump (Type ETA). It focuses mainly on the roll of modern vibration monitoring system in problem analysis. The problem experienced was the motor unstability and noise due to high vibration. Using enhanced vibration signature data, the problem was analyzed. which suggested that the rotor eccentricity was the cause of excessive noise and vibration in the motor. In conclusion, advanced electronic monitoring and diagnostic systems provide powerful information for machine's condition assessment and problem analysis. Appropriate interpretation and use of this information is important for accurate and effective vibration analysis. (author)
Ghaffari, I.; Parhizkar Yaghoobi, M.; Ghannad, M.
2018-01-01
The purpose of this study is to offer a complete solution to analyze the mechanical behavior (bending, buckling and vibration) of Nano-beam under non-uniform loading. Furthermore, the effects of size (nonlocal parameters), non-homogeneity constants, and different boundary conditions are investigated by using this method. The exact solution presented here reduces costs incurred by experiments. In this research, the displacement field obeys the kinematics of the Euler-Bernoulli beam theory and non-local elasticity theory has been used. The governing equations and general boundary conditions are derived for a beam by using energy method. The presented solution enables us to analyze any kind of loading profile and boundary conditions with no limitations. Furthermore, this solution, unlike previous studies, is not a series-solution; hence, there is no limitation prior to existing with the series-solution, nor does it need to check convergence. Based on the developed analytical solution, the influence of size, non-homogeneity and non-uniform loads on bending, buckling and vibration behaviors is discussed. Also, the obtained result is highly accurate and in good agreement with previous research. In theoretical method, the allowable range for non-local parameters can be determined so as to make a major contribution to the reduction of the cost of experiments determining the value of non-local parameters.
A Case of Torsion of Gravid Uterus Caused by Leiomyoma
Directory of Open Access Journals (Sweden)
Gururaj Deshpande
2011-01-01
Full Text Available Uterine torsion during pregnancy is only sporadically reported in the literature. Here we present a case of leiomyoma causing uterine torsion in pregnancy and review the literature on etiology, diagnosis, and management. A 25-years-old primigravida with leiomyoma complicating pregnancy was admitted in our hospital with abdominal pain and uterine tenderness. She underwent emergency LSCS (lower segment cesarean section for fetal bradycardia. Intraoperatively, the uterus was rotated 180 degrees left to right. Inadvertent incision on the posterior wall was avoided by proper delineation of anatomy. Torsion was corrected by exteriorization of leiomyoma and uterus, and lower segment cesarean was carried out safely. Prompt recognition and management of this condition is necessary for better maternal and fetal outcome.
Torsional Topological Invariants (and their relevance for real life)
Chandia, O; Chandia, Osvaldo; Zanelli, Jorge
1997-01-01
The existence of topological invariants analogous to Chern/Pontryagin classes for a standard $SO(D)$ or SU(N) connection, but constructed out of the torsion tensor, is discussed. These invariants exhibit many of the features of the Chern/Pontryagin invariants: they can be expressed as integrals over the manifold of local densities and take integer values on compact spaces without boundary; their spectrum is determined by the homotopy groups determined by the connection bundle but depend also on the bundle of local orthonormal frames on the tangent space of the manifold. It is shown that in spacetimes with nonvanishing torsion there can occur topologically stable configurations associated with the frame bundle which are independent of the curvature. Explicit examples of topologically stable configurations carrying nonvanishing instanton number in four and eight dimensions are given, and they can be conjectured to exist in dimension $4k$. It is also shown that the chiral anomaly in a spacetime with torsion rece...
Simple currents versus orbifolds with discrete torsion -- a complete classification
Kreuzer, M
1994-01-01
We give a complete classification of all simple current modular invariants, extending previous results for $(\\Zbf_p)^k$ to arbitrary centers. We obtain a simple explicit formula for the most general case. Using orbifold techniques to this end, we find a one-to-one correspondence between simple current invariants and subgroups of the center with discrete torsions. As a by-product, we prove the conjectured monodromy independence of the total number of such invariants. The orbifold approach works in a straightforward way for symmetries of odd order, but some modifications are required to deal with symmetries of even order. With these modifications the orbifold construction with discrete torsion is complete within the class of simple current invariants. Surprisingly, there are cases where discrete torsion is a necessity rather than a possibility.
Mechanical Design of AM Fabricated Prismatic Rods under Torsion
Directory of Open Access Journals (Sweden)
Manzhirov Alexander V.
2017-01-01
Full Text Available We study the stress-strain state of viscoelastic prismatic rods fabricated or repaired by additive manufacturing technologies under torsion. An adequate description of the processes involved is given by methods of a new scientific field, mechanics of growing solids. Three main stages of the deformation process (before the beginning of growth, in the course of growth, and after the termination of growth are studied. Two versions of statement of two problems are given: (i given the torque, find the stresses, displacements, and torsion; (ii given the torsion, find the stresses, displacements, and torque. Solution methods using techniques of complex analysis are presented. The results can be used in mechanical and instrument engineering.
Intravitreal Phacoemulsification Using Torsional Handpiece for Retained Lens Fragments.
Kumar, Vinod; Takkar, Brijesh
2016-01-01
To evaluate the results of intravitreal phacoemulsification with torsional hand piece in eyes with posteriorly dislocated lens fragments. In this prospective, interventional case series, 15 eyes with retained lens fragments following phacoemulsification were included. All patients underwent standard three-port pars plana vitrectomy and intravitreal phacoemulsification using sleeveless, torsional hand piece (OZiL™, Alcon's Infiniti Vision System). Patients were followed up for a minimum of six months to evaluate the visual outcomes and complications. The preoperative best-corrected visual acuity (BCVA) ranged from light perception to 0.3. No complications such as thermal burns of the scleral wound, retinal damage due to flying lens fragments, or difficult lens aspiration occurred during intravitreal phacoemulsification. Mean post-operative BCVA at the final follow-up was 0.5. Two eyes developed cystoid macular edema, which was managed medically. No retinal detachment was noted. Intravitreal phacoemulsification using torsional hand piece is a safe and effective alternative to conventional longitudinal phacofragmentation.
Standing torsional waves in a fully saturated, porous, circular cylinder
Solorza, S; 10.1111/j.1365-246X.2004.02198.x
2004-01-01
For dynamic measurement of the elastic moduli of a porous material saturated with viscous fluid using the resonance-bar technique, one also observes attenuation. In this article we have carried out the solution of the boundary-value problem associated with standing torsional oscillations of a finite, poroelastic, circular cylinder cast in the framework of volume-averaged theory of poroelasticity. Analysing this solution by eigenvalue perturbation approach we are able to develop expressions for torsional resonance and temporal attenuation frequencies in which the dependence upon the material properties are transparent. It shows how the attenuation is controlled by the permeability and the fluid properties, and how the resonance frequency drops over its value for the dry solid-frame due to the drag effect of fluid mass. Based upon this work we have a firm basis to determine solid-frame shear modulus, permeability, and tortuosity factor from torsional oscillation experiments.
Simple currents versus orbifolds with discrete torsion - a complete classification
International Nuclear Information System (INIS)
Kreuzer, M.; Schellekens, A.N.
1993-01-01
We give a complete classification of all simple current modular invariants, extending previous results for (Z p ) k to arbitrary centers. We obtain a simple explicit formula for the most general case. Using orbifold techniques to this end, we find a one-to-one correspondence between simple current invariants and subgroups of the center with discrete torsions. As a by-product, we prove the conjectured monodromy independence of the total number of such invariants. The orbifold approach works in a straightforward way for symmetries of odd order, but some modifications are required to deal with symmetries of even order. With these modifications the orbifold construction with discrete torsion is complete within the class of simple current invariants. Surprisingly, there are cases where discrete torsion is a necessity rather than a possibility. (orig.)
Deep learning methods for protein torsion angle prediction.
Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin
2017-09-18
Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.
Primary decomposition of torsion R[X]-modules
Directory of Open Access Journals (Sweden)
William A. Adkins
1994-01-01
Full Text Available This paper is concerned with studying hereditary properties of primary decompositions of torsion R[X]-modules M which are torsion free as R-modules. Specifically, if an R[X]-submodule of M is pure as an R-submodule, then the primary decomposition of M determines a primary decomposition of the submodule. This is a generalization of the classical fact from linear algebra that a diagonalizable linear transformation on a vector space restricts to a diagonalizable linear transformation of any invariant subspace. Additionally, primary decompositions are considered under direct sums and tensor product.
Singularities and n-dimensional black holes in torsion theories
Energy Technology Data Exchange (ETDEWEB)
Cembranos, J.A.R.; Valcarcel, J. Gigante; Torralba, F.J. Maldonado, E-mail: cembra@fis.ucm.es, E-mail: jorgegigante@ucm.es, E-mail: fmaldo01@ucm.es [Departamento de Física Teórica I, Universidad Complutense de Madrid, E-28040 Madrid (Spain)
2017-04-01
In this work we have studied the singular behaviour of gravitational theories with non symmetric connections. For this purpose we introduce a new criteria for the appearance of singularities based on the existence of black/white hole regions of arbitrary codimension defined inside a spacetime of arbitrary dimension. We discuss this prescription by increasing the complexity of the particular torsion theory under study. In this sense, we start with Teleparallel Gravity, then we analyse Einstein-Cartan theory, and finally dynamical torsion models.
Elastic torsional buckling of thin-walled composite cylinders
Marlowe, D. E.; Sushinsky, G. F.; Dexter, H. B.
1974-01-01
The elastic torsional buckling strength has been determined experimentally for thin-walled cylinders fabricated with glass/epoxy, boron/epoxy, and graphite/epoxy composite materials and composite-reinforced aluminum and titanium. Cylinders have been tested with several unidirectional-ply orientations and several cross-ply layups. Specimens were designed with diameter-to-thickness ratios of approximately 150 and 300 and in two lengths of 10 in. and 20 in. The results of these tests were compared with the buckling strengths predicted by the torsional buckling analysis of Chao.
Torsion tensor and covector in a unified field theory
International Nuclear Information System (INIS)
Chernikov, N.A.
1976-01-01
The Einstein unified field theory is used to solve a tensor equation to provide the unambiguous definition of affine connectedness. In the process of solving the Einstein equation limitations imposed by symmetry on the tensor and the torsion covector as well as on affine connectedness are elucidated. It is demonstrated that in a symmetric case the connectedness is unambiguously determined by the Einstein equation. By means of the Riemann geometry a formula for the torsion covector is derived. The equivalence of Einstein equations to those of the nonlinear Born-Infeld electrodynamics is proved
Torsional osteotomies of the tibia in patellofemoral dysbalance.
Dickschas, Jörg; Tassika, Aliki; Lutter, Christoph; Harrer, Jörg; Strecker, Wolf
2017-02-01
Anterior knee pain or patellofemoral instability is common symptom of patellofemoral dysbalance or maltracking. Tibial torsional deformities can be the reason of this pathology. After appropriate diagnostic investigation, the treatment of choice is a torsional osteotomy. This study addresses the diagnostic investigation, treatment, and the outcome of torsional osteotomies of the tibia. Does this treatment result in patellofemoral stability and provide pain relief? Forty-nine tibial torsional osteotomies were included. The major symptoms were patellofemoral instability in 19 cases and anterior knee pain in 42 cases. In addition to clinical and radiographic analysis, a torsional angle CT scan was performed pre-operatively. A visual analog scale (VAS), the Japanese Knee Society score, the Tegner activity score, and the Lysholm score were assessed pre-operatively and at the 42-month follow-up. Mean tibial external torsion was 47.4° (SD 5.41; range 37°-66°; standard value 34°). Surgical treatment consisted of an acute supratuberositary tibial internal torsional osteotomy (mean 10.8°; SD 3.01°; range 5°-18°). At the follow-up investigation, the Tegner activity score was increased 0.4 points (p value 0.014) from 3.9 (SD 1.33; range 2-7) to 4.3 (SD 1.25; range 0-7). The Lysholm score increased 26 points (SD 16.32; p value 0.001) from 66 (SD 14.94; range 32-94) to 92 (SD 9.29; range 70-100) and the Japanese Knee Society score increased 18 points (SD 14.70; p value 0.001) from 72 (SD 13.72, range 49-100) to 90 (SD 9.85, range 60-100). VAS was reduced 3.4 points (SD 2.89; p value 0.001) from 5.7 (SD 2.78; range 0-10) to 2.3 (SD 1.83; range 0-7). As regards patellofemoral instability, no redislocation occurred in the follow-up period. The results of this study show that in cases of tibial maltorsion, a torsional osteotomy can lead to patellofemoral stability and pain relief, and should be considered as a treatment option. The improved clinical scores in the present
Spontaneous compactification and Ricci-flat manifolds with torsion
International Nuclear Information System (INIS)
McInnes, B.
1985-06-01
The Freund-Rubin mechanism is based on the equation Rsub(ik)=lambdagsub(ik) (where lambda>0), which, via Myers' Theorem, implies ''spontaneous'' compactification. The difficulties connected with the cosmological constant in this approach can be resolved if torsion is introduced and lambda set equal to zero, but then compactification ''by hand'' is necessary, since the equation Rsub(ik)=0 can be satisfied both on compact and on non-compact manifolds. In this paper we discuss the global geometry of Ricci-flat manifolds with torsion, and suggest ways of restoring the ''spontaneity'' of the compactification. (author)
Massless fermions and Kaluza--Klein theory with torsion
International Nuclear Information System (INIS)
Wu, Y.; Zee, A.
1984-01-01
A pure Kaluza--Klein theory contains no massless fermion in four-dimensional theory. We investigate the effect of introducing torsion on the internal manifold and find that there are massless fermions. The hope is that given an isometry group the representation to which these fermions belong is fixed, in contrast to the situation in Yang--Mills theory. We show that this is indeed the case, but the representations do not appear to be the ones favored by current theoretical prejudice. The cases with parallelizable torsions on a group manifold as the internal manifold are analyzed in detail
A black hole with torsion in 5D Lovelock gravity
Cvetković, B.; Simić, D.
2018-03-01
We analyze static spherically symmetric solutions of five dimensional (5D) Lovelock gravity in the first order formulation. In the Riemannian sector, when torsion vanishes, the Boulware–Deser black hole represents a unique static spherically symmetric black hole solution for the generic choice of the Lagrangian parameters. We show that a special choice of the Lagrangian parameters, different from the Lovelock Chern–Simons gravity, leads to the existence of a static black hole solution with torsion, the metric of which is asymptotically anti-de Sitter (AdS). We calculate the conserved charges and thermodynamical quantities of this black hole solution.
[Occupational standing vibration rate and vibrational diseases].
Karnaukh, N G; Vyshchipan, V F; Haumenko, B S
2003-12-01
Occupational standing vibration rate is proposed in evaluating a degree of impairment of an organism activity. It will allow more widely to introduce specification of quality and quantity in assessment of the development of vibrational disease. According out-patient and inpatient obtained data we have established criterial values of functional changes in accordance with accumulated occupational standing vibration rate. The nomogram was worked out for defining a risk of the development of vibrational disease in mine workers. This nomogram more objectively can help in diagnostics of the disease.
Acetone n-radical cation internal rotation spectrum: The torsional potential surface
International Nuclear Information System (INIS)
Shea, Dana A.; Goodman, Lionel; White, Michael G.
2000-01-01
The one color REMPI and two color ZEKE-PFI spectra of acetone-d 3 have been recorded. The 3p x Rydberg state of acetone-d 3 lies at 59 362.3 cm-1 and both of the torsional modes are visible in this spectrum. The antigearing Rydberg (a 2 ) mode, v 12 * , has a frequency of 62.5 cm-1, while the previously unobserved gearing (b 1 ) mode, v 17 * , is found at 119.1 cm-1. An ionization potential of 78 299.6 cm-1 for acetone-d 3 has been measured. In acetone-d 3 n-radical cation ground state, the fundamentals of both of the torsional modes have been observed, v 12 + at 51.0 cm-1 and v 17 + at 110.4 cm-1, while the first overtone of v 12 + has been measured at 122.4 cm-1. Deuterium shifts show that v 12 + behaves like a local C 3v rotor, but that v 17 + is canonical. Combining this data with that for acetone-d 0 and aacetone-d 6 has allowed us to fit the observed frequencies to a torsional potential energy surface based on an ab initio C 2v cation ground state geometry. This potential energy surface allows for prediction of the v 17 vibration in acetone-d 0 and acetone-d 6 . The barrier to synchronous rotation is higher in the cation ground state than in the neutral ground state, but significantly lower than in the 3s Rydberg state. The 3p x Rydberg and cation ground state potential energy surfaces are found to be very similar to each other, strongly supporting the contention that the 3p x Rydberg state has C 2v geometry and is a good model for the ion core. The altered 3s Rydberg state potential surface suggests this state has significant valence character. (c) 2000 American Institute of Physics
LDPC Code Design for Nonuniform Power-Line Channels
Directory of Open Access Journals (Sweden)
Sanaei Ali
2007-01-01
Full Text Available We investigate low-density parity-check code design for discrete multitone channels over power lines. Discrete multitone channels are well modeled as nonuniform channels, that is, different bits experience various channel parameters. We propose a coding system for discrete multitone channels that allows for using a single code over a nonuniform channel. The number of code parameters for the proposed system is much greater than the number of code parameters in conventional channel. Therefore, search-based optimization methods are impractical. We first formulate the problem of optimizing the rate of an irregular low-density parity-check code, with guaranteed convergence over a general nonuniform channel, as an iterative linear programming which is significantly more efficient than search-based methods. Then we use this technique for a typical power-line channel. The methodology of this paper is directly applicable to all decoding algorithms for which a density evolution analysis is possible.
A 55-Year-Old Man with Right Testicular Pain: Too Old for Torsion?
Tang, Yu Ho; Yeung, Victor Hip Wo; Chu, Peggy Sau Kwan; Man, Chi Wai
2017-02-01
Testicular torsion is predominantly a disease of adolescence, but age itself should not be an exclusion criterion for the diagnosis. A lack of suspicion for testicular torsion in older patients may result in a missed or delayed diagnosis which jeopardizes the chance of testicular salvage. In this article, we report a case of testicular torsion in a 55-year-old Chinese man.
Aerodynamic stability of long span suspension bridges with low torsional natural frequencies
DEFF Research Database (Denmark)
Andersen, Michael Styrk; Johansson, Jens; Brandt, Anders
2016-01-01
tests where the torsional frequency was lower than the vertical. But too low torsional stiffness caused large static displacements of the girder at medium–high wind speeds and steady state oscillations driven by a combination of torsional divergence and stalling behavior at the critical wind seed...
Skin carcinogenesis following uniform and non-uniform β irradiation
International Nuclear Information System (INIS)
Charles, M.W.; Williams, J.P.; Coggle, J.E.
1989-01-01
Where workers or the general public may be exposed to ionising radiation, the irradiation is rarely uniform. The risk figures and dose limits recommended by the International Commission on Radiological Protection (ICRP) are based largely on clinical and epidemiological studies of reasonably uniform irradiated organs. The paucity of clinical or experimental data for highly non-uniform exposures has prevented the ICRP from providing adequate recommendations. This weakness has led on a number of occasions to the postulate that highly non-uniform exposures of organs could be 100,000 times more carcinogenic than ICRP risk figures would predict. This so-called ''hot-particle hypothesis'' found little support among reputable radiobiologists, but could not be clearly and definitively refuted on the basis of experiment. An experiment, based on skin tumour induction in mouse skin, is described which was developed to test the hypothesis. The skin of 1200 SAS/4 male mice has been exposed to a range of uniform and non-uniform sources of the β emitter 170 Tm (E max ∼ 1 MeV). Non-uniform exposures were produced using arrays of 32 or 8 2-mm diameter sources distributed over the same 8-cm 2 area as a uniform control source. Average skin doses varied from 2-100 Gy. The results for the non-uniform sources show a 30% reduction in tumour incidence by the 32-point array at the lower mean doses compared with the response from uniform sources. The eight-point array showed an order-of-magnitude reduction in tumour incidence compared to uniform irradiation at low doses. These results, in direct contradiction to the ''hot particle hypothesis'', indicate that non-uniform exposures produce significantly fewer tumours than uniform exposures. (author)
Microwave interaction with nonuniform hydrogen gas in carbon nanotubes
International Nuclear Information System (INIS)
Babaei, S.; Babaei, Sh.
2009-01-01
In this paper we study the reflection, absorption, and transmission of microwave from nonuniform hydrogen gas in carbon nanotubes, grown by iron-catalyzed high-pressure carbon monoxide disproportionate (HiPco) process. A discussion on the effect of various hydrogen gas parameters on the reflected power, absorbed power, and transmitted power is presented. The nonuniform hydrogen gas slab is modeled by a series of subslabs. The overall number density profile across the whole slab follows a parabolic function. The total reflected, absorbed, and transmitted powers are then deduced and their functional dependence on the number density, collision frequency, and angle of propagation is studied
Assessment indices for uniform and non-uniform thermal environments
Institute of Scientific and Technical Information of China (English)
2008-01-01
Different assessment indices for thermal environments were compared and selected for proper assessment of indoor thermal environments.30 subjects reported their overall thermal sensation,thermal comfort,and thermal acceptability in uniform and non-uniform conditions.The results show that these three assessment indices provide equivalent evaluations in uniform environments.However,overall thermal sensation differs from the other two indices and cannot be used as a proper index for the evaluation of non-uniform environments.The relationship between the percentage and the mean vote for each index is established.
Modeling of nonuniform corrosion in salt brines: Salt Repository Project
International Nuclear Information System (INIS)
Reimus, P.W.
1988-03-01
A mechanistic approach to modeling nonuniform corrosion in brines is presented in this report. Equations are derived for completely describing the electrochemical environment within a localized corrosion cavity, and appropriate initial and boundary conditions are invoked to obtain a solvable system of equations. The initial and boundary conditions can be adjusted to simulate pitting, crevice corrosion, or stress corrosion cracking. Although no numerical results are presented, a numerical strategy for solving the equations is presented. The report focuses on the nonuniform corrosion behavior of mild steel; however, the modeling approach presented is expected to apply to a broad range of metallic materials. 34 refs., 5 figs., 2 tabs
Beecher, L. C.; Williams, F. T.
1970-01-01
Gas-driven vibration exciter produces a sinusoidal excitation function controllable in frequency and in amplitude. It allows direct vibration testing of components under normal loads, removing the possibility of component damage due to high static pressure.
Torsion of the spleen with incomplete infarction: case report
International Nuclear Information System (INIS)
Lernau, O.Z.; Baron, J.; Nissan, S.
1977-01-01
Torsion and infarction of a ''wandering spleen'' is a rare disease which is often confused with other acute abdominal crises. A correct preoperative diagnosis, when made, has usually been determined by arteriographic studies. A child is described in whom changes in the TcSC scan made a correct diagnosis possible by non-invasive methods
Ocular torsion before and after 1 hour centrifugation
Groen, E.; Graaf, B. de; Bles, W.; Bos, J.E.
1996-01-01
To assess a possible otolith contribution to effects observed following prolonged expo-sure to hyper gravity, we used video-oculography to measure ocular torsion during static and dynamic conditions of lateral body tilt (roll) before and after one hour of centrifugation with a Gx-load of 3G. Static
Ocular torsion before and after 1 hour centrifugation
Groen, Eric; De Graaf, Bernd; Bles, Willem; Bos, Jelte E.
1996-01-01
To assess a possible otolith contribution to effects observed following prolonged exposure to hypergravity, we used video oculography to measure ocular torsion during static and dynamic conditions of lateral body tilt (roll) before and after t h of centrifugation with a G(x)-load of 3 G. Static tilt
Lung lobe torsion in dogs: 22 cases (1981-1999).
Neath, P J; Brockman, D J; King, L G
2000-10-01
To identify breed disposition, postoperative complications, and outcome in dogs with lung lobe torsion. Retrospective study. 22 client-owned dogs. Information on signalment; history; clinical findings; results of clinicopathologic testing, diagnostic imaging, and pleural fluid analysis; surgical treatment; intra- and postoperative complications; histologic findings; and outcome were obtained from medical records. All 22 dogs had pleural effusion; dyspnea was the most common reason for examination. Fifteen dogs were large deep-chested breeds; 5 were toy breeds. Afghan Hounds were overrepresented, compared with the hospital population. One dog was euthanatized without treatment; the remaining dogs underwent exploratory thoracotomy and lung lobectomy. Eleven dogs recovered from surgery without complications, but 3 of these later died of thoracic disease. Four dogs survived to discharge but had clinically important complications within 2 months, including chylothorax, mediastinal mesothelioma, gastric dilatation, and a second lung lobe torsion. Six dogs died or were euthanatized within 2 weeks after surgery because of acute respiratory distress syndrome, pneumonia, septic shock, pneumothorax, or chylothorax. Chylothorax was diagnosed in 8 of the 22 dogs, including 4 Afghan Hounds. Results suggest that lung lobe torsion is rare in dogs and develops most frequently in large deep-chested dogs, particularly Afghan Hounds. Other predisposing causes were not identified, but an association with chylothorax was evident, especially in Afghan Hounds. Prognosis for dogs with lung lobe torsion was fair to guarded.
In vitro transcription of a torsionally constrained template
DEFF Research Database (Denmark)
Bentin, Thomas; Nielsen, Peter E
2002-01-01
of torsionally constrained DNA by free RNAP. We asked whether or not a newly synthesized RNA chain would limit transcription elongation. For this purpose we developed a method to immobilize covalently closed circular DNA to streptavidin-coated beads via a peptide nucleic acid (PNA)-biotin conjugate in principle...
f(R) gravity, torsion and non-metricity
International Nuclear Information System (INIS)
Sotiriou, Thomas P
2009-01-01
For both f(R) theories of gravity with an independent symmetric connection (no torsion), usually referred to as Palatini f(R) gravity theories, and for f(R) theories of gravity with torsion but no non-metricity, called U4 theories, it has been shown that the independent connection can actually be eliminated algebraically, as long as this connection does not couple to matter. Remarkably, the outcome in both cases is the same theory, which is dynamically equivalent with an ω 0 = -3/2 Brans-Dicke theory. It is shown here that even for the most general case of an independent connection with both non-metricity and torsion, one arrives at exactly the same theory as in the more restricted cases. This generalizes the previous results and explains why assuming that either the torsion or the non-metricity vanishing ultimately leads to the same theory. It also demonstrates that f(R) actions cannot support an independent connection which carries dynamical degrees of freedom, irrespective of how general this connection is, at least as long as there is no connection-matter coupling. (fast track communication)
Torsional Newton-Cartan geometry and the Schrodinger algebra
Bergshoeff, Eric A.; Hartong, Jelle; Rosseel, Jan
2015-01-01
We show that by gauging the Schrodinger algebra with critical exponent z and imposing suitable curvature constraints, that make diffeomorphisms equivalent to time and space translations, one obtains a geometric structure known as (twistless) torsional Newton-Cartan geometry (TTNC). This is a version
Burden and seasonality of testicular torsion in tropical Africa ...
African Journals Online (AJOL)
Jibril O. Bello
2018-02-14
Feb 14, 2018 ... Department of Surgery, University of Ilorin Teaching Hospital, Ilorin, Nigeria ... Cases occurred 91% higher than average during the cold season (November to .... tion strategies through the education of school staff and students on .... torsion and weather conditions: analysis of 21,289 cases in Brazil. Int.
Portal Venous Thrombosis Developing after Torsion of a Wandering ...
African Journals Online (AJOL)
2017-03-06
Mar 6, 2017 ... Department of General Surgery, YüzüncüYıl University. Faculty of ... an emergency surgery. The spleen was ... exist in acute, subacute or chronic forms, depending on the development ... of spleen infarction, sepsis and acute pancreatitis. ... In cases of torsion of wandering spleen, the treatment principally ...
Lateral-torsional buckling resistance of cellular beams
Sonck, Delphine; Belis, Jan
The evenly spaced circular web openings in I-section cellular beams have an advantageous effect on the material use if these beams are loaded in strong-axis bending. However, not all aspects of the behaviour of such beams have been studied adequately, such as the lateral–torsional buckling failure.
Hardening and softening mechanisms of pearlitic steel wire under torsion
International Nuclear Information System (INIS)
Zhao, Tian-Zhang; Zhang, Shi-Hong; Zhang, Guang-Liang; Song, Hong-Wu; Cheng, Ming
2014-01-01
Highlights: • Mechanical behavior of pearlitic steel wire is studied using torsion. • Work hardening results from refinement lamellar pearlitic structure. • Softening results from recovery, shear bands and lamellar fragmentations. • A microstructure based analytical flow stress model is established. - Abstract: The mechanical behaviors and microstructure evolution of pearlitic steel wires under monotonic shear deformation have been investigated by a torsion test and a number of electron microscopy techniques including scanning electron microscopy (SEM) and transmission electron microscopy (TEM), with an aim to reveal the softening and hardening mechanisms of a randomly oriented pearlitic structure during a monotonic stain path. Significantly different from the remarkable strain hardening in cold wire drawing, the strain hardening rate during torsion drops to zero quickly after a short hardening stage. The microstructure observations indicate that the inter-lamellar spacing (ILS) decreases and the dislocations accumulate with strain, which leads to hardening of the material. Meanwhile, when the strain is larger than 0.154, the enhancement of dynamic recovery, shear bands (SBs) and cementite fragmentations results in the softening and balances the strain hardening. A microstructure based analytical flow stress model with considering the influence of ILS on the mean free path of dislocations and the softening caused by SBs and cementite fragmentations, has been established and the predicted flow shear curve meets well with the measured curve in the torsion test
Torsion of an Epiploic Appendix Pretending as Acute Appendicitis
Directory of Open Access Journals (Sweden)
Kamran Ahmad Malik
2010-07-01
Full Text Available Torsion of an epiploic appendix is a rare surgical entity. Its unusual symptomatology, wide variation in physical findings and the absence of helpful laboratory and radiological studies makes it very difficult to diagnose pre-operatively. This is a report of this rare entity found in a patient upon diagnostic laparoscopy performed for suspected acute appendicitis
Axial Torsion of Gangrenous Meckel's Diverticulum Causing Small ...
African Journals Online (AJOL)
dividing the band. Resection and anastomosis of the small bowel including the MD was performed. We hereby report a rare and unusual complication of a MD. Although treatment outcome is generally good, pre-operative diagnosis is often difficult. Key words: Axial torsion, Meckel's diverticulum, small bowel obstruction.
Direct excitation of resonant torsional Alfven waves by footpoint motions
Ruderman, M. S.; Berghmans, D.; Goossens, M.; Poedts, S.
1997-01-01
The present paper studies the heating of coronal loops by linear resonant Alfven waves that are excited by the motions of the photospheric footpoints of the magnetic field lines. The analysis is restricted to torsionally polarised footpoint motions in an axially symmetric system so that only
Determination of ocular torsion by means of automatic pattern recognition
Groen, E.L.; Bos, J.E.; Nacken, P.F.M.; Graaf, B. de
1996-01-01
A new, automatic method for determination of human ocular torsion (OT) was devel-oped based on the tracking of iris patterns in digitized video images. Instead of quanti-fying OT by means of cross-correlation of circular iris samples, a procedure commonly applied, this new method automatically
Determination of ocular torsion by means of automatic pattern recognition
Groen, Eric; Bos, Jelte E.; Nacken, Peter F M; De Graaf, Bernd
A new, automatic method for determination of human ocular torsion (OT) was developed based on the tracking of iris patterns in digitized video images. Instead of quantifying OT by means of cross-correlation of circular iris samples, a procedure commonly applied, this new method automatically selects
Absence of torsion for NK_1(R) over associative rings
Basu, Rabeya
2010-01-01
When R is a commutative ring with identity, and if k is a natural number with kR = R, then C. Weibel proved that SK_1(R[X]) has no k-torsion. We reprove his result for any associative ring R with identity in which kR = R.
Nonlinear damping for vibration isolation of microsystems using shear thickening fluid
Iyer, S. S.; Vedad-Ghavami, R.; Lee, H.; Liger, M.; Kavehpour, H. P.; Candler, R. N.
2013-06-01
This work reports the measurement and analysis of nonlinear damping of micro-scale actuators immersed in shear thickening fluids (STFs). A power-law damping term is added to the linear second-order model to account for the shear-dependent viscosity of the fluid. This nonlinear model is substantiated by measurements of oscillatory motion of a torsional microactuator. At high actuation forces, the vibration velocity amplitude saturates. The model accurately predicts the nonlinear damping characteristics of the STF using a power-law index extracted from independent rheology experiments. This result reveals the potential to use STFs as adaptive, passive dampers for vibration isolation of microelectromechanical systems.
Vibration survey of internal combustion engines for use on unmanned air vehicles
International Nuclear Information System (INIS)
Duanis, B.
1998-01-01
This paper describes the method, the procedure and data results of engine vibration test which is carried out on engines for use on unmanned air vehicles. The paper focuses on the testing of rotating propulsion systems powered by an internal combustion engine which is composed of main rotating components such as the alternator, gearbox, propeller , dampers and couplings. Three measurement methods for measuring torsional and lateral vibrations are presented: a. Gear tooth pulse signal. b. Shaft Strain Gage. c. Laser Displacement Sensors The paper also presents data from tests which were performed using each method and discusses the applications, the advantages and disadvantages of each method
Indian Academy of Sciences (India)
We make music by causing strings, membranes, or air columns to vibrate. Engineers design safe structures by control- ling vibrations. I will describe to you a very simple vibrating system and the mathematics needed to analyse it. The ideas were born in the work of Joseph-Louis Lagrange (1736–1813), and I begin by quot-.
Directory of Open Access Journals (Sweden)
Omer Faruk Yagli
2018-05-01
Full Text Available Testicular torsion is one of the most common causes of acute scrotum in children and adolescents. The bell-clapper deformity, which detected in 12% of males, is the most important reason that leads to testicular torsion. In our case, a 14 years old male admitted to our clinic due to testicular torsion developed after ejaculation with manual sexual stimulation of the penis. The most important criteria in determining the loss of testis is the degree and duration of torsion. Here, we discussed the rare cause of testicular torsion along with diagnostic and therapeutic characteristics.
A generic Approach for Reliability Predictions considering non-uniformly Deterioration Behaviour
International Nuclear Information System (INIS)
Krause, Jakob; Kabitzsch, Klaus
2012-01-01
Predictive maintenance offers the possibility to prognosticate the remaining time until a maintenance action of a machine has to be scheduled. Unfortunately, current predictive maintenance solutions are only suitable for very specific use cases like reliability predictions based on vibration monitoring. Furthermore, they do not consider the fact that machines may deteriorate non-uniformly, depending on external influences (e.g., the work piece material in a milling machine or the changing fruit acid concentration in a bottling plant). In this paper two concepts for a generic predictive maintenance solution which also considers non-uniformly aging behaviour are introduced. The first concept is based on system models representing the health state of a technical system. As these models are usually statically (viz. without a timely dimension) their coefficients are determined periodically and the resulting time series is used as aging indicator. The second concept focuses on external influences (contexts) which change the behaviour of the previous mentioned aging indicators in order to increase the accuracy of reliability predictions. Therefore, context-depended time series models are determined and used to predict machine reliability. Both concepts were evaluated on data of an air ventilation system. Thereby, it could be shown that they are suitable to determine aging indicators in a generic way and to incorporate external influences in the reliability prediction. Through this, the quality of reliability predictions can be significantly increased. In reality this leads to a more accurate scheduling of maintenance actions. Furthermore, the generic character of the solutions makes the concepts suitable for a wide range of aging processes.
Stability Analysis of Nonuniform Rectangular Beams Using Homotopy Perturbation Method
Directory of Open Access Journals (Sweden)
Seval Pinarbasi
2012-01-01
Full Text Available The design of slender beams, that is, beams with large laterally unsupported lengths, is commonly controlled by stability limit states. Beam buckling, also called “lateral torsional buckling,” is different from column buckling in that a beam not only displaces laterally but also twists about its axis during buckling. The coupling between twist and lateral displacement makes stability analysis of beams more complex than that of columns. For this reason, most of the analytical studies in the literature on beam stability are concentrated on simple cases: uniform beams with ideal boundary conditions and simple loadings. This paper shows that complex beam stability problems, such as lateral torsional buckling of rectangular beams with variable cross-sections, can successfully be solved using homotopy perturbation method (HPM.
Shape Preserving Interpolatory Subdivision Schemes for Nonuniform Data
Kuijt, F.; van Damme, Rudolf M.J.
2002-01-01
This article is concerned with a class of shape preserving four-point subdivision schemes which are stationary and which interpolate nonuniform univariate data {(xi, fi)}. These data are functional data, i.e., xi≠xj if i≠j. Subdivision for the strictly monotone x-values is performed by a subdivision
Field nonuniformity correction for quantitative analysis of digitized mammograms
International Nuclear Information System (INIS)
Pawluczyk, Olga; Yaffe, Martin J.
2001-01-01
Several factors, including the heel effect, variation in distance from the x-ray source to points in the image and path obliquity contribute to the signal nonuniformity of mammograms. To best use digitized mammograms for quantitative image analysis, these field non-uniformities must be corrected. An empirically based correction method, which uses a bowl-shaped calibration phantom, has been developed. Due to the annular spherical shape of the phantom, its attenuation is constant over the entire image. Remaining nonuniformities are due only to the heel and inverse square effects as well as the variable path through the beam filter, compression plate and image receptor. In logarithmic space, a normalized image of the phantom can be added to mammograms to correct for these effects. Then, an analytical correction for path obliquity in the breast can be applied to the images. It was found that the correction causes the errors associated with field nonuniformity to be reduced from 14% to 2% for a 4 cm block of material corresponding to a combination of 50% fibroglandular and 50% fatty breast tissue. A repeatability study has been conducted to show that in regions as far as 20 cm away from the chest wall, variations due to imaging conditions and phantom alignment contribute to <2% of overall corrected signal
Josephson flux-flow oscillators in nonuniform microwave fields
DEFF Research Database (Denmark)
Salerno, Mario; Samuelsen, Mogens Rugholm
2000-01-01
We present a simple theory for Josephson flux-flow oscillators in the presence of nonuniform microwave fields. In particular we derive an analytical expression for the I-V characteristic of the oscillator from which we show that satellite steps are spaced around the main flux-flow resonance by only...
Absolute parametric instability in a nonuniform plane plasma ...
Indian Academy of Sciences (India)
Abstract. The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is ...
Absolute parametric instability in a nonuniform plane plasma
Indian Academy of Sciences (India)
The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is considered.
Instruction sequences and non-uniform complexity theory
Bergstra, J.A.; Middelburg, C.A.
2008-01-01
We develop theory concerning non-uniform complexity in a setting in which the notion of single-pass instruction sequence considered in program algebra is the central notion. We define counterparts of the complexity classes P/poly and NP/poly and formulate a counterpart of the complexity theoretic
Recent development of the passive vibration control method
Ishida, Yukio
2012-05-01
This paper introduces new passive vibration suppression methods developed recently in our laboratory. First, two methods used to suppress steady-state resonances are explained. One is the improvement of the efficiency of a ball balancer. A simple method to eliminate the influence of friction of balls and to improve its efficiency is introduced. The other is an effective method that utilizes the discontinuous spring characteristics. Secondly, a method to eliminate unstable ranges in rotor systems is explained. Unstable ranges in an asymmetrical shaft, and in a hollow rotor partially filled with liquid, are eliminated by the discontinuous spring characteristics. Thirdly, a method to suppress self-excited oscillations is explained. Self-excited oscillations due to internal damping and rubbing are discussed. Finally, the methods of using a pendulum or roller type absorbers to suppress torsional vibrations are explained.
Energy Technology Data Exchange (ETDEWEB)
Hougen, J.T. [NIST, Gaithersburg, MD (United States)
1993-12-01
The goal of this project is to use spectroscopic techniques to investigate in detail phenomena involving the vibrational quasi-continuum in a simple physical system. Acetaldehyde was chosen for the study because: (i) methyl groups have been suggested to be important promotors of intramolecular vibrational relaxation, (ii) the internal rotation of a methyl group is an easily describle large-amplitude motion, which should retain its simple character even at high levels of excitation, and (iii) the aldehyde carbonyl group offers the possibility of both vibrational and electronic probing. The present investigation of the ground electronic state has three parts: (1) understanding the {open_quotes}isolated{close_quotes} internal-rotation motion below, at, and above the top of the torsional barrier, (2) understanding in detail traditional (bond stretching and bending) vibrational fundamental and overtone states, and (3) understanding interactions involving states with multiquantum excitations of at least one of these two kinds of motion.
Transitional Failure of Carbon Nanotube Systems under a Combination of Tension and Torsion
Directory of Open Access Journals (Sweden)
Byeong-Woo Jeong
2012-01-01
Full Text Available Transitional failure envelopes of single- and double-walled carbon nanotubes under combined tension-torsion are predicted using classical molecular dynamics simulations. The observations reveal that while the tensile failure load decreases with combined torsion, the torsional buckling moment increases with combined tension. As a result, the failure envelopes under combined tension-torsion are definitely different from those under pure tension or torsion. In such combined loading, there is a multitude of failure modes (tensile failure and torsional buckling, and the failure consequently exhibits the feature of transitional failure envelopes. In addition, the safe region of double-walled carbon nanotubes is significantly larger than that of single-walled carbon nanotubes due to the differences in the onset of torsional buckling.
Energy Technology Data Exchange (ETDEWEB)
Matsudaira, Y.; Obara, H. [Tokyo Metropolitan Institute of Technology, Tokyo (Japan); Nakagawa, H. [Sumitomo Heavy Industries, Ltd., Tokyo (Japan); Yoshida, H. [Tokyo Metropolitan Institute of Technology, Tokyo (Japan)
2000-08-25
Supercavitation hydrofoil applied to high-speed marine propeller or hydro-machinery blade runs into unsteady behaviors such as cavitation breakdown and hydraulic flutter in some operation range. The hydrofoil performance was experimentally estimated and compared with the wedge performance using the cavitation tunnel and the torsional vibration apparatus with three component load cells, This experiment was carried out at several angles of attack in the region from subcavitation to supercavitation. At a general steady state but including some cavitation breakdowns, the hydrofoil has the most superior time mean lift/drag ratio about 6 < C{sub l}/C{sub d} < 8 at in all cavitation regions. But, the ratio drastically decreases as the angle of attack increases. Fluctuating lift coefficient C{sub l}{sup '} due to the cavitation breakdown reaches up to about 10% of time mean lift coefficient C{sub l}. At the hydrofoil pitching motion, the torsional flutter margin of the hydrofoil extends to higher reduced frequency side as the angle of attack increases and has the nearly same margin of the wedge in all cavitation regions. (author)
Vibration of hydraulic machinery
Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong
2013-01-01
Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...
Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W
2015-03-01
For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered. © Crown copyright 2014.
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced
International Nuclear Information System (INIS)
Sun, Shuaishuai; Yang, Jian; Li, Weihua; Alici, Gursel; Deng, Huaxia; Du, Haiping; Yan, Tianhong
2016-01-01
A new design of adaptive tuned vibration absorber was proposed in this study for vibration reduction. The innovation of the new absorber is the adoption of the eccentric mass on the top of the multilayered magnetorheological elastomer (MRE) structure so that this proposed absorber has two vibration modes: one in the torsional direction and the other in translational direction. This property enables the absorber to expand its effective bandwidth and to be more capable of reducing the vibrations especially dealing with those vibrations with multi-frequencies. The innovative MRE absorber was designed and tested on a horizontal vibration table. The test results illustrate that the MRE absorber realized double natural frequencies, both of which are controllable. Inertia’s influence on the dynamic behavior of the absorber is also investigated in order to guide the design of the innovative MRE absorber. Additionally, the experimentally obtained natural frequencies coincide with the theoretical data, which sufficiently verifies the feasibility of this new design. The last part in terms of the vibration absorption ability also proves that both of these two natural frequencies play a great role in absorbing vibration energy. (paper)
Molecular Mechanics of the α-Actinin Rod Domain: Bending, Torsional, and Extensional Behavior
Golji, Javad; Collins, Robert; Mofrad, Mohammad R. K.
2009-01-01
α-Actinin is an actin crosslinking molecule that can serve as a scaffold and maintain dynamic actin filament networks. As a crosslinker in the stressed cytoskeleton, α-actinin can retain conformation, function, and strength. α-Actinin has an actin binding domain and a calmodulin homology domain separated by a long rod domain. Using molecular dynamics and normal mode analysis, we suggest that the α-actinin rod domain has flexible terminal regions which can twist and extend under mechanical stress, yet has a highly rigid interior region stabilized by aromatic packing within each spectrin repeat, by electrostatic interactions between the spectrin repeats, and by strong salt bridges between its two anti-parallel monomers. By exploring the natural vibrations of the α-actinin rod domain and by conducting bending molecular dynamics simulations we also predict that bending of the rod domain is possible with minimal force. We introduce computational methods for analyzing the torsional strain of molecules using rotating constraints. Molecular dynamics extension of the α-actinin rod is also performed, demonstrating transduction of the unfolding forces across salt bridges to the associated monomer of the α-actinin rod domain. PMID:19436721
Vibration analysis of 1 MW gearbox for the Avedoere wind turbine
International Nuclear Information System (INIS)
Crone, A.
1993-08-01
Investigations of the vibrational behaviour of the gearbox for the Avedoere wind turbine, have been carried out by means of test bed measurements. Attention has especially been paid to the structure-borne noise source strength at the frequency of the output gear stage, as tonal gear noise emission from wind turbines, from experience, is dominated by components at this frequency. The structure-borne noise source strength related to the output gear stage of the gearbox has been evaluated and compared for two gear sets with different tooth profile. One is designed by the gear manufacturer, Flender AG, and the other by ELKRAFT A.m.b.A. Vibration measurements at different speeds between 1000 and 2000 rpm showed that the velocity levels at the harmonics of the toothmesth frequencies may change by more than 10 dB in a speed range close to the operational speed. These changes are due to natural vibration modes in the gearbox structure. When resonance conditions between the toothmesh frequency of the output gear stage and torsional modes in the gearbox shaft system may amplify the structure-borne noise generated in the gearbox to an undesirably high level, the natural torsional frequencies of the shaft system have been identified. Comparisons between the identified and calculated natural torsional frequencies show in general a good correlation, with a maximum deviation of 14% between the frequencies. The natural frequencies extracted from the measurements and the torsional calculations, indicate that the structure-borne noise from the gearbox, at the toothmesh frequency of the output gear stage, will not be strongly amplified due to resonance conditions, when the gearbox is operating in the wind turbine at speeds of 1500-1524 rpm. (EG)
Energy Technology Data Exchange (ETDEWEB)
Tapia-Vine, M.; Pedrosa, I.; Escribano, N. [Hospital Clinico San Carlos (Spain)
2000-07-01
Isolated torsion of the fallopian tube is an uncommon entity. Given the difficulties involved in the preoperative diagnosis, the ultrasound findings characteristic of this anomaly are not widely known. We present a case of tubal torsion associated with a cyst, describing the ultrasound images in our case and those reported in the literature. (Author) 18 refs.
International Nuclear Information System (INIS)
Takatsu, Hideyuki; Yamamoto, Masahiro; Shimizu, Masatsugu; Suzuki, Kazuo; Sonobe, Tadashi; Hayashi, Yuzo; Mizuno, Gen-ichiro.
1984-01-01
Torsional fatigue strength of the welded bellows was evaluated experimentally, aiming the application to a port of a fusion device. The welded bellows revealed elastic torsional buckling and spiral distorsion even under a small angle of torsion. Twisting load never leads the welded bellows to fracture easily so far as the angle of torsion is not excessively large, and the welded bellows has the torsional fatigue strength much larger than that expected so far. Two formulae were proposed to evaluate the stress of the welded bellows under the forced angle of torsion; shearing stress evaluation formula in the case that torsional buckling does not occur and the axial bending stress evaluation formula in the case that torsional buckling occurs. And the results of the torsional fatigue experiments showed that the former is reasonably conservative and simulates the actual behavior of the welded bellows better than the latter in the high cycle fatigue region and vice versa in the low cycle fatigue region from the viewpoint of the mechanical design. The present evaluation method of the torsional fatigue strength was applied to the welded bellows for the port of the JT-60 vacuum vessel and its structural integrity was confirmed under the design load condition. (author)
Testicular torsion and weather conditions: analysis of 21,289 cases in Brazil
Directory of Open Access Journals (Sweden)
Fernando Korkes
2012-04-01
Full Text Available PURPOSE: The hypothesis of association between testicular torsion and hyperactive cremasteric reflex, worsened by cold weather, has not been proved. Thirteen studies in the literature evaluated this issue, with inconclusive results. The aim of the present study was to evaluate the seasonality of testicular torsion in a large subset of patients surgically treated in Brazil, and additionally to estimate the incidence of testicular torsion. MATERIALS AND METHODS: Brazilian Public Health System Database was assessed from 1992-2010 to evaluate hospital admissions associated with treatment of testicular torsion. Average monthly temperature between 1992-2010 was calculated for each region. RESULTS: We identified 21,289 hospital admissions for treatment of testicular torsion. There was a higher number of testicular torsions during colder months (p = 0.002. To estimate the incidence of testicular torsion, we have related our findings to data from the last Brazilian census (2010. In 2010, testicular torsion occurred in 1.4:100,000 men in Brazil. CONCLUSIONS:Testicular torsion occurred at an annual incidence of approximately 1.4:100,000 men in Brazil in 2010. Seasonal variations do occur, with a significant increase of events during winter. Our findings support the theory of etiological role of cold weather to the occurrence of testicular torsion. Strategies to prevent these events can be based on these findings.
A torsional artificial muscle from twisted nitinol microwire
Mirvakili, Seyed M.; Hunter, Ian W.
2017-04-01
Nitinol microwires of 25 μm in diameter can have tensile actuation of up to 4.5% in less than 100 ms. A work density of up to 480 MPa can be achieved from these microwires. In the present work, we are showing that by twisting the microwires in form of closed-loop two-ply yarn we can create a torsional actuator. We achieved a revisable torsional stroke of 46°/mm with peak rotational speed of up to 10,000 rpm. We measured a gravimetric torque of up to 28.5 N•m/kg which is higher than the 3 - 6 N•m/kg for direct-drive commercial electric motors. These remarkable performance results are comparable to those of guest-infiltrated carbon nanotube twisted yarns.
Omental torsion in a captive polar bear (Ursus maritimus).
Mendez-Angulo, Jose L; Funes, Francisco J; Trent, Ava M; Willette, Michelle; Woodhouse, Kerry; Renier, Anna C
2014-03-01
This is the first case report of an omental torsion in a polar bear (Ursus maritimus). A captive, 23-yr-old, 250-kg, intact female polar bear presented to the University of Minnesota Veterinary Medical Center with a 2-day history of lethargy, depression, and vomiting. Abdominal ultrasound identified large amounts of hyperechoic free peritoneal fluid. Ultrasound-guided abdominocentesis was performed and yielded thick serosanguinous fluid compatible with a hemoabdomen. An exploratory laparotomy revealed a large amount of malodorous, serosanguineous fluid and multiple necrotic blood clots associated with a torsion of the greater omentum and rupture of a branch of the omental artery. A partial omentectomy was performed to remove the necrotic tissue and the abdomen was copiously lavaged. The polar bear recovered successfully and is reported to be clinically well 6 mo later. This condition should be considered as a differential in bears with clinical signs of intestinal obstruction and hemoabdomen.
Scalar-metric and scalar-metric-torsion gravitational theories
International Nuclear Information System (INIS)
Aldersley, S.J.
1977-01-01
The techniques of dimensional analysis and of the theory of tensorial concomitants are employed to study field equations in gravitational theories which incorporate scalar fields of the Brans-Dicke type. Within the context of scalar-metric gravitational theories, a uniqueness theorem for the geometric (or gravitational) part of the field equations is proven and a Lagrangian is determined which is uniquely specified by dimensional analysis. Within the context of scalar-metric-torsion gravitational theories a uniqueness theorem for field Lagrangians is presented and the corresponding Euler-Lagrange equations are given. Finally, an example of a scalar-metric-torsion theory is presented which is similar in many respects to the Brans-Dicke theory and the Einstein-Cartan theory
MR evaluation of femoral neck version and tibial torsion
Energy Technology Data Exchange (ETDEWEB)
Koenig, James Karl; Dwek, Jerry R. [University of California, San Diego, Children' s Hospital and Health Center, Department of Radiology, San Diego, CA (United States); Pring, Maya E. [Rady Children' s Hospital, Department of Pediatric Orthopedic Surgery, San Diego, CA (United States)
2012-01-15
Abnormalities of femoral neck version have been associated with a number of hip abnormalities in children, including slipped capital femoral epiphysis, proximal femoral focal deficiency, coxa vara, a deep acetabulum and, rarely, developmental dysplasia of the hip. Orthopedic surgeons also are interested in quantifying the femoral neck anteversion or retroversion in children especially to plan derotational osteotomies. Historically, the angle of femoral version and tibial torsion has been measured with the use of radiography and later by CT. Both methods carry with them the risks associated with ionizing radiation. Techniques that utilize MR are used less often because of the associated lengthy imaging times. This article describes a technique using MRI to determine femoral neck version and tibial torsion with total scan times of approximately 10 min. (orig.)
In vitro transcription of a torsionally constrained template
DEFF Research Database (Denmark)
Bentin, Thomas; Nielsen, Peter E
2002-01-01
RNA polymerase (RNAP) and the DNA template must rotate relative to each other during transcription elongation. In the cell, however, the components of the transcription apparatus may be subject to rotary constraints. For instance, the DNA is divided into topological domains that are delineated...... of torsionally constrained DNA by free RNAP. We asked whether or not a newly synthesized RNA chain would limit transcription elongation. For this purpose we developed a method to immobilize covalently closed circular DNA to streptavidin-coated beads via a peptide nucleic acid (PNA)-biotin conjugate in principle...... constrained. We conclude that transcription of a natural bacterial gene may proceed with high efficiency despite the fact that newly synthesized RNA is entangled around the template in the narrow confines of torsionally constrained supercoiled DNA....
Nonlinear modulation of torsional waves in elastic rod. [Instability
Energy Technology Data Exchange (ETDEWEB)
Hirao, M; Sugimoto, N [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science
1977-06-01
Nonlinear Schroedinger equation, which describes the nonlinear modulation of dispersive torsional waves in an elastic rod of circular cross-section, is derived by the derivative expansion method. It is found, for the lowest dispersive mode, that the modulational instability occurs except in the range of the carrier wavenumber, 2.799
Torsion of a Wandering Spleen Presenting as Acute Abdomen
International Nuclear Information System (INIS)
Chauhan, Narvir Singh; Kumar, Satish
2016-01-01
Wandering spleen is a rare condition which if uncorrected, can result in torsion and infarction. Clinical presentation of a wandering spleen can vary from asymptomatic abdominal mass to acute abdominal pain. Radiological investigations play a pivotal role in diagnosis as the clinical diagnosis is usually impossible. We present a case of wandering spleen with torsion and complete infarction that occurred in a 32-year-old multiparous female. The diagnosis was established preoperatively on colour Doppler and CT of the abdomen with subsequent confirmation on surgery. Wandering spleen is a rare clinical condition which can present as acute abdomen. An increased awareness of this entity together with the timely use of ultrasound and CT of the abdomen can play an important role in preoperative diagnosis and surgical management
General relativity with spin and torsion: Foundations and prospects
International Nuclear Information System (INIS)
Hehl, F.W.; von der Heyde, P.; Kerlick, G.D.; Nester, J.M.
1976-01-01
A generalization of Einstein's gravitational theory is discussed in which the spin of matter as well as its mass plays a dynamical role. The spin of matter couples to a non-Riemannian structure in space-time, Cartan's torsion tensor. The theory which emerges from taking this coupling into account, the U 4 theory of gravitation, predicts, in addition to the usual infinite-range gravitational interaction mediated by the metric field, a new, very weak, spin contact interaction of gravitational origin. We summarize here all the available theoretical evidence that argues for admitting spin and torsion into a relativistic gravitational theory. Not least among this evidence is the demonstration that the U 4 theory arises as a local gauge theory for the Poincare group in space-time. The deviations of the U 4 theory from standard general relativity are estimated, and the prospects for further theoretical development are assessed
Radiation, photon orbits, and torsion in strongly curved spacetimes
International Nuclear Information System (INIS)
Sandberg, V.D.
1975-01-01
Four topics on the strong field aspects of general relativity are presented. These are the role of constraining forces for ultrarelativistic particle motion as a source of gravitational radiation, the study of electromagnetic radiation due to space-time oscillations, the light scattering properties of a class of naked singularities, and the relation of gravitation theories with torsion to general relativity. The astrophysical implications and unusual physical phenomena associated with very intense gravitational fields are discussed for these four topics
Elasto-plastic torsion problem as an infinity Laplace's equation
Directory of Open Access Journals (Sweden)
Ahmed Addou
2006-12-01
Full Text Available In this paper, we study a perturbed infinity Laplace's equation, the perturbation corresponds to an Leray-Lions operator with no coercivity assumption. We consider the case where data are distributions or $L^{1}$ elements. We show that this problem has an unique solution which is the solution to the variational inequality arising in the elasto-plastic torsion problem, associated with an operator $A$.
Human tibial torsion - Morphometric assessment and clinical relevance
Directory of Open Access Journals (Sweden)
Swati Gandhi
2014-02-01
Full Text Available Background: Tibial torsion is an important anatomical parameter in clinical practice and displays variability among individuals. These variations are extremely significant in view of alignment guides such as those related to rotational landmarks of tibia in total knee arthroplasty. Further, precise knowledge and information pertaining to angle of tibial torsion also helps in correction of traumatic malunion or congenital maltorsion of tibia. Methods: The present study was carried out to determine the angle of tibial torsion in 100 adult dry tibia bones in the Department of Anatomy, Government Medical College, Amritsar. The study group comprised 50 males and 50 females with equal number of right- and left-sided bones. The measurements were meticulously recorded and the data were subjected to statistical analysis. The results were analyzed and discussed in the light of existing literature. Results: On the right side, it was found to be 29.84° ± 4.86°° (range = 22.00° -38.00° in males and 28.92° ± 5.10°° (range = 15.00°-38.00° in females. On the left side, it was found to be 28.00° ± 4.94°° (range = 20.00°-40.00°° in males and 28.12° ± 4.28°° (range = 20.00°-37.00°° in females. Conclusion: The present study is an endeavor to provide baseline data with reference to the angle of tibial torsion in the Indian population. The results of the study assume special importance in view of the technical advancements in reconstructive surgical procedures in orthopedic practice.
On Polya's inequality for torsional rigidity and first Dirichlet eigenvalue
Berg, M. van den; Ferone, V.; Nitsch, C.; Trombetti, C.
2016-01-01
Let $\\Omega$ be an open set in Euclidean space with finite Lebesgue measure $|\\Omega|$. We obtain some properties of the set function $F:\\Omega\\mapsto \\R^+$ defined by $$ F(\\Omega)=\\frac{T(\\Omega)\\lambda_1(\\Omega)}{|\\Omega|} ,$$ where $T(\\Omega)$ and $\\lambda_1(\\Omega)$ are the torsional rigidity and the first eigenvalue of the Dirichlet Laplacian respectively. We improve the classical P\\'olya bound $F(\\Omega)\\le 1,$ and show that $$F(\\Omega)\\le 1- \
Compactification over coset spaces with torsion and vanishing cosmological constant
International Nuclear Information System (INIS)
Batakis, N.A.
1989-01-01
We consider the compactification of ten-dimensional Einstein-Yang-Mills theories over non-symmetric, six-dimensional homogeneous coset spaces with torsion. We examine the Einstein-Yang-Mills equations of motion requiring vanishing cosmological constant at ten and four dimensions and we present examples of compactifying solutions. It appears that the introduction of more than one radii in the coset space, when possible, may be mandatory for the existence of compactifying solutions. (orig.)
Spectral Action for Torsion with and without Boundaries
DEFF Research Database (Denmark)
Iochum, B.; Levy, Cyril Olivier; Vassilevich, D.
2012-01-01
We derive a commutative spectral triple and study the spectral action for a rather general geometric setting which includes the (skew-symmetric) torsion and the chiral bag conditions on the boundary. The spectral action splits into bulk and boundary parts. In the bulk, we clarify certain issues...... of the boundary conditions, and show that θ = 0 is a critical point of the action in any dimension and at all orders of the expansion....
Compactification over coset spaces with torsion and vanishing cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Batakis, N.A.; Farakos, K.; Koutsoumbas, G.; Zoupanos, G.; Kapetanakis, D.
1989-04-13
We consider the compactification of ten-dimensional Einstein-Yang-Mills theories over non-symmetric, six-dimensional homogeneous coset spaces with torsion. We examine the Einstein-Yang-Mills equations of motion requiring vanishing cosmological constant at ten and four dimensions and we present examples of compactifying solutions. It appears that the introduction of more than one radii in the coset space, when possible, may be mandatory for the existence of compactifying solutions.
Torsion and curvature in higher dimensional supergravity theories
International Nuclear Information System (INIS)
Smith, A.W.; Pontificia Univ. Catolica do Rio de Janeiro
1983-01-01
This work is an extension of Dragon's theorems to higher dimensional space-time. It is shown that the first set of Bianchi identities allow us to express the curvature components in terms of torsion components and its covariant derivatives. It is also shown that the second set of Bianchi identities does not give any new information which is not already contained in the first one. (Author) [pt
Effect of bilateral superior oblique split lengthening on torsion
Directory of Open Access Journals (Sweden)
Jitendra Jethani
2015-01-01
Full Text Available Introduction: Superior oblique split lengthening (SOSL is done for weakening of superior oblique. It corrects the superior oblique overaction (SOOA and A pattern. Its effect on the torsion of the eye is not known. We present our data on the effect of this particular procedure on torsion. Materials and Methods: We did a study of 16 patients (32 eyes who underwent bilateral SOSL and compared the disc foveal angle (DFA preoperatively and postoperatively. The split lengthening was done from 4 mm to 7 mm depending upon the overaction of superior oblique. Results: The mean age was 15.3 ± 8.4 years. Mean preoperative DFA in the right eye (RE was −3.9° and in the left eye (LE was −2.9°. Mean postoperative DFA in RE was 0.2° and in LE was 0.9°. The mean change in the DFA for RE was 4.1° ± 1.3° and for LE was 3.8° ± 1.2°. All the patients were aligned horizontally within 6 prism diopter and no pattern and no diplopia postoperatively. The A pattern was corrected in all the patient postsurgery. For each mm of surgery, an improvement of 0.8° was seen in the DFA. Conclusion: We report the effect of SOSL on torsion. The SOSL reduces intorsion postsurgery and is, therefore, a valuable procedure in SOOA where both pattern and in torsion needs to be corrected.
Tachyonless models of relativistic particles with curvature and torsion
International Nuclear Information System (INIS)
Kuznetsov, Yu.A.; Plyushchaj, M.S.
1992-01-01
The problem of construction (2+1)-dimensional tachyonless models of relativistic particles with an action depending on the world-trajectory curvature and torsion is investigated. The special class of models, described by maximum symmetric action and comprising only spin internal degrees of freedom is found. The examples of systems from the special class are given, whose classical and quantum spectra contain only massive states. 23 refs
A supersymmetric R2-action in six dimensions and torsion
International Nuclear Information System (INIS)
Bergshoeff, E.; Salam, A.; Sezgin, E.
1986-01-01
We give the superconformal extension of (Rsub(μνab)) 2 in six dimensions. We show that in a superconformal gauge the 3-form field Hsub(μνrho) has a natural torsion interpretation. We also give partial results on the superconformal extension of the Gauss-Bonnet combination: Rsub(μνab) 2 -4Rsub(μa) 2 +R 2 . (author)
Einstein gravity with torsion induced by the scalar field
Özçelik, H. T.; Kaya, R.; Hortaçsu, M.
2018-06-01
We couple a conformal scalar field in (2+1) dimensions to Einstein gravity with torsion. The field equations are obtained by a variational principle. We could not solve the Einstein and Cartan equations analytically. These equations are solved numerically with 4th order Runge-Kutta method. From the numerical solution, we make an ansatz for the rotation parameter in the proposed metric, which gives an analytical solution for the scalar field for asymptotic regions.
Bandshapes in vibrational spectroscopy
International Nuclear Information System (INIS)
Dijkman, F.G.
1978-01-01
A detailed account is given of the development of modern bandshape theories since 1965. An investigation into the relative contributions of statistical irreversible relaxation processes is described, for a series of molecules in which gradually the length of one molecular axis is increased. An investigation into the theoretical and experimental investigation of the broadening brought about by the effect of fluctuating intermolecular potentials on the vibrational frequency is also described. The effect of an intermolecular perturbative potential on anharmonic and Morse oscillators is discussed and the results are presented of a computation on the broadening of the vibrational band of some diatomic molecules in a rigid lattice type solvent. The broadening of the OH-stretching vibration in a number of aliphatic alcohols, the vibrational bandshapes of the acetylenic C-H stretching vibration and of the symmetric methyl stretching vibration are investigated. (Auth./ C.F.)
Influence Of Nonuniformity On Infrared Focal Plane Array Performance
Milton, A. F.; Barone, F. R.; Kruer, M. R.
1985-08-01
It is well known that detector response nonuniformity results in pattern noise with staring sensors that is a severe problem in the infrared due to the low intrinsic contrast of IR imagery. The pattern noise can be corrected by electronic processing; however, the ability to correct for pattern noise is limited by the interaction of interscene and intrascene variability with the dynamic range of the processor (number of bits) and, depending upon the algorithm used, by nonlinearities in the detector response. This paper quantifies these limitations and describes the interaction of detector gain nonuniformity and detector nonlinearities. Probabilistic models are developed to determine the maximum sensitivity that can be obtained using a two-point algorithm to correct a nonlinear response curve over a wide temperature range. Curves that permit a prediction of the noise equivalent differential temperature (NEAT) under varying circumstances are presented. A piecewise linear approach to dealing with severe detector response nonlinearities is presented and analyzed for its effectiveness.
Measurement of reactivity effect caused by nonuniform fuel distribution
International Nuclear Information System (INIS)
Yamane, Yoshihiro; Hirano, Yasushi; Yasui, Hazime; Nishina, Kojiro; Shiroya, Seiji
1991-01-01
A reactivity effect due to a spatial variation of nuclear fuel concentration is an important problem in a reprocessing plant. To estimate this reactivity effect theoretically, the ''Goertzel's necessary condition, and th Fuel Importance'' theory have been proposed. In order to verify these theories, we have performed systematic measurements of reactivity effect due to the nonuniformity in the fuel distribution within the Kyoto University Critical Assembly. Neutron flux distribution and Fuel Importance distribution were also determined. A nonuniform assembly whose fuel concentration in the center region was 40% higher than the uniform one was found to have an excess reactivity of 0.3%Δk/k, with the same total uranium mass for which the uniform assembly was just critical. Moreover, its spatial distribution of thermal neutron flux and of Fuel Importance were more flat than those of the uniform assembly, as expected by the Goertzel's condition and the Fuel Importance theory. (Author)
POSSOL, 2-D Poisson Equation Solver for Nonuniform Grid
International Nuclear Information System (INIS)
Orvis, W.J.
1988-01-01
1 - Description of program or function: POSSOL is a two-dimensional Poisson equation solver for problems with arbitrary non-uniform gridding in Cartesian coordinates. It is an adaptation of the uniform grid PWSCRT routine developed by Schwarztrauber and Sweet at the National Center for Atmospheric Research (NCAR). 2 - Method of solution: POSSOL will solve the Helmholtz equation on an arbitrary, non-uniform grid on a rectangular domain allowing only one type of boundary condition on any one side. It can also be used to handle more than one type of boundary condition on a side by means of a capacitance matrix technique. There are three types of boundary conditions that can be applied: fixed, derivative, or periodic
Numerical simulation of effect of laser nonuniformity in interior interface
International Nuclear Information System (INIS)
Yu Xiaojin; Wu Junfeng; Ye Wenhua
2007-01-01
Using the LARED-S code and referring to the NIF direct-drive DT ignition target, the effect of laser nonuniformity on the interior interface in direct-drive spherical implosion with high convergence ratio was numerically studied. The two-dimensional results show that the implosion with high convergence ratio is sensitive to the nonuniformity of driving laser, and the growth of hydrodynamic instability on interior interface destroys the symmetric-drive and reduces the volume of central hot spot observably. Taking the limit that perturbation amplitude is equal to 1/3 radius of central hot spot, the simulation also gives that the requirements for the laser uniformity for different mode number(less than 12) on simple physical model are between 2.5% -0.25%, and the modes between 8-10 have the most rigorous requirement which is about 0.25%. (authors)
Protostellar formation in rotating interstellar clouds. VI. Nonuniform initial conditions
International Nuclear Information System (INIS)
Boss, A.P.
1987-01-01
The collapse and fragmentation of rotating protostellar clouds is explored, starting from nonuniform density and nonuniform rotation initial conditions. Whether binary fragmentation occurs during the first dynamic collapse phase depends strongly on the initial density profile. Exponential clouds are only somewhat more resistant to fragmentation than uniform-density clouds, but power-law clouds do not undergo fragmentation for likely values of a relevant parameter. Because binary fragments start from profiles intermediate between uniform density and exponential clouds, minimum protostellar mass for population I stars should be increased to approximately 0.02 solar mass. The axisymmetric Terey et al. (1984) model should be stable with respect to nonaxisymmetric perturbations. Considering the observed binary frequency, collapse from power-law initial conditions appears to be less common than collapse from more uniform initial conditions. 34 references
Computation of nonuniform transmission lines using the FDTD method
Energy Technology Data Exchange (ETDEWEB)
Miranda, G.C.; Paulino, J.O.S. [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). School of Engineering
1997-12-31
Calculation of lightning overvoltages on transmission lines has been described. Lightning induced overvoltages are of great significance under certain conditions because of the main characteristics of the phenomena. The lightning channel model is one of the most important parameters essential to obtaining the generated electromagnetic fields. In this study, nonuniform transmission line equations were solved using the finite difference method and the leap-frog scheme, the Finite Difference Time Domain (FDTD) method. The subroutine was interfaced with the Electromagnetic Transients Program (EMTP). Two models were used to represent the characteristic impedance of the nonuniform lines used to model the transmission line towers and the lightning main channel. The advantages of the FDTD method was the much smaller code and faster processing time. 35 refs., 5 figs.
Non-uniformity measurements of PbWO4 crystals
International Nuclear Information System (INIS)
Depasse, P.; Ernenwein, J.P.; Ille, B.; Martin, F.; Rosset, C.; Zach, F.
1998-11-01
Two independent methods have been used to measure the longitudinal non-uniformity scintillation response of 3 different (23-cm long) PbWO 4 crystals. The first one is the classical 60 Co source method. The source is collimated along the crystal, each 1,5-cm, and the scintillation signal is measured with a photomultiplier (a hybrid photomultiplier in our case). The second one is the use of cosmic particles (Minimum Ionizing Particles). A cosmic bench allows reconstructing the track of the MIP's and thus the energy deposit with the help of a full GEANT simulation of the setup. Variations of E along the crystal artificially cut in 1,5-cm divisions, leads to determine the non-uniformity. The conclusion is that both methods agree quite well. Furthermore, a good estimation of crystal light yield can be obtained. (author)
On discrete symmetries and torsion homology in F-theory
Energy Technology Data Exchange (ETDEWEB)
Mayrhofer, Christoph [Arnold-Sommerfeld-Center, Ludwig-Maximilians-Universität München,München (Germany); Palti, Eran; Till, Oskar; Weigand, Timo [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg,Heidelberg (Germany)
2015-06-04
We study the relation between discrete gauge symmetries in F-theory compactifications and torsion homology on the associated Calabi-Yau manifold. Focusing on the simplest example of a ℤ{sub 2} symmetry, we show that there are two physically distinct ways that such a discrete gauge symmetry can arise. First, compactifications of M-Theory on Calabi-Yau threefolds which support a genus-one fibration with a bi-section are known to be dual to six-dimensional F-theory vacua with a ℤ{sub 2} gauge symmetry. We show that the resulting five-dimensional theories do not have a ℤ{sub 2} symmetry but that the latter emerges only in the F-theory decompactification limit. Accordingly the genus-one fibred Calabi-Yau manifolds do not exhibit torsion in homology. Associated to the bi-section fibration is a Jacobian fibration which does support a section. Compactifying on these related but distinct varieties does lead to a ℤ{sub 2} symmetry in five dimensions and, accordingly, we find explicitly an associated torsion cycle. We identify the expected particle and membrane system of the discrete symmetry in terms of wrapped M2 and M5 branes and present a field-theory description of the physics for both cases in terms of circle reductions of six-dimensional theories. Our results and methods generalise straightforwardly to larger discrete symmetries and to four-dimensional compactifications.
Boundary integral method for torsion of composite shafts
International Nuclear Information System (INIS)
Chou, S.I.; Mohr, J.A.
1987-01-01
The Saint-Venant torsion problem for homogeneous shafts with simply or multiply-connected regions has received a great deal of attention in the past. However, because of the mathematical difficulties inherent in the problem, very few problems of torsion of shafts with composite cross sections have been solved analytically. Muskhelishvili (1963) studied the torsion problem for shafts with cross sections having several solid inclusions surrounded by an elastic material. The problem of a circular shaft reinforced by a non-concentric round inclusion, a rectangular shaft composed of two rectangular parts made of different materials were solved. In this paper, a boundary integral equation method, which can be used to solve problems more complex than those considered by Katsikadelis et. al., is developed. Square shaft with two dissimilar rectangular parts, square shaft with a square inclusion are solved and the results compared with those given in the reference cited above. Finally, a square shaft composed of two rectangular parts with circular inclusion is solved. (orig./GL)
Discussion on massive gravitons and propagating torsion in arbitrary dimensions
International Nuclear Information System (INIS)
Hernaski, C.A.; Vargas-Paredes, A.A.; Helayel-Neto, J.A.
2009-01-01
Full text. Massive gravity has been an issue of particular interest since the early days of Quantum Gravity. More recently, in connection with models based on brane-world scenarios, the discussion of massive gravitons is drawing a great deal of attention, in view of the possibility of their production at LHC and the feasibility of detection of quantum gravity effects at the TeV scale. In this paper, we reassess a particular R 2 -type gravity action in D dimensions, recently studied by Nakasone and Oda, taking now torsion effects into account. Considering that the vielbein and the spin connection carry independent propagating degrees of freedom, we conclude that ghosts and tachyons are absent only if torsion is non-propagating, and we also conclude that there is no room for massive gravitons. To include these excitations, we understand how to enlarge Nakasone-Oda's model by means of explicit torsion terms in the action and we discuss the unitarity of the enlarged model for arbitrary dimensions. To make this we construct a complete basis of operators that projects the degrees of freedom of the dynamical fields of the model in their irreducible spin decomposition. The outcome is that we find a set of Lagrangians with a massive graviton that, in D=4, reproduce those already studied in the literature. (author)
Intravitreal Phacoemulsification Using Torsional Handpiece for Retained Lens Fragments
Kumar, Vinod; Takkar, Brijesh
2016-01-01
Purpose: To evaluate the results of intravitreal phacoemulsification with torsional hand piece in eyes with posteriorly dislocated lens fragments. Methods: In this prospective, interventional case series, 15 eyes with retained lens fragments following phacoemulsification were included. All patients underwent standard three-port pars plana vitrectomy and intravitreal phacoemulsification using sleeveless, torsional hand piece (OZiL™, Alcon's Infiniti Vision System). Patients were followed up for a minimum of six months to evaluate the visual outcomes and complications. Results: The preoperative best-corrected visual acuity (BCVA) ranged from light perception to 0.3. No complications such as thermal burns of the scleral wound, retinal damage due to flying lens fragments, or difficult lens aspiration occurred during intravitreal phacoemulsification. Mean post-operative BCVA at the final follow-up was 0.5. Two eyes developed cystoid macular edema, which was managed medically. No retinal detachment was noted. Conclusion: Intravitreal phacoemulsification using torsional hand piece is a safe and effective alternative to conventional longitudinal phacofragmentation. PMID:27621783
Diffusive intergranular cavity growth in creep in tension and torsion
International Nuclear Information System (INIS)
Stanzl, S.E.; Argon, A.S.; Tschegg, E.K.
1983-01-01
Creep experiments were performed at 500 C in tension and torsion on high conductivity copper tubes with a uniform initial coverage of implanted water vapor bubbles on all grain boundaries. No significant differences were found in the times to fracture over a wide stress range when the results were correlated according to the maximum principal tensile stress in the two fields. The results indicate that the cavities grow in a crack-like mode but at one tenth the rate predicted from the theoretical model of Pharr and Nix. This difference is attributed partly to load shedding from boundaries normal to the maximum principal tensile stress to slanted boundaries, and partly to a lack of knowledge about th surface diffusion constant. The results indicate further that the contribution to intergranular cavity growth by power-law creep in negligible in comparison to the contribution by diffusional flow. Complementary tension and torsion experiments performed in initially uncavitated samples results in shorter creep lives in torsion than in tension due to more effective cavity nucleation in the former. The times to fracture in both of these cases obey Monkman and Grant's law, indicating the presence of constraints on growth by the lagging deformations by power-law creep in the surroundings of the cavitating isolated grain facets
Review of gastric torsion in eight guinea pigs (Cavia porcellus).
Nógrádi, Anna Linda; Cope, Iain; Balogh, Márton; Gál, János
2017-12-01
The authors present eight cases of gastric dilatation and volvulus (GDV) in guinea pigs from the Department and Clinic of Exotic Animal and Wildlife Medicine, University of Veterinary Medicine, Budapest, Hungary between 2012 and 2016. Seven animals were operated on and two survived. Gastric torsion has been noted in many mammalian species. Gastric volvulus has a high morbidity and high mortality rate with a guarded to poor prognosis in all of these species. How GDV develops is still not widely understood. Postmortem examinations, in both our cases and previously reported cases, have failed to reveal the exact causes of the gastric torsions. The aetiology of gastric torsion in guinea pigs is probably multifactorial. Feeding fewer meals per day, eating rapidly, decreased food particle size, exercise, stress after a meal, competition, age, and an aggressive or fearful temperament, are all likely and potential risk factors for GDV development in a similar fashion to dogs. Sex, breeding, dental diseases, anatomical abnormalities, pain and pregnancy may also be contributing factors.
Non-uniformity of phase structure in immiscible polymer blends
Czech Academy of Sciences Publication Activity Database
Fortelný, Ivan; Lapčíková, Monika; Lednický, František; Starý, Zdeněk; Kruliš, Zdeněk
2008-01-01
Roč. 48, č. 3 (2008), s. 564-571 ISSN 0032-3888 R&D Projects: GA ČR GA106/06/0729; GA ČR GA106/06/0761 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer blends * melt mixing * non-uniform morphology Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.245, year: 2008
Using Nonuniform Fiber to Generate Slow Light via SBS
Directory of Open Access Journals (Sweden)
Wenhai Li
2008-01-01
Full Text Available The data pulse delay based on slow light induced by stimulated Brillouin scattering (SBS in a nonuniform dispersion decreasing fiber (DDF is demonstrated experimentally, and the distortions of data pulses at different beat frequencies are studied. We found that a delay exceeding a pulse width can be achieved at particular beat frequency, and the DDF has larger delay versus gain slope coefficient with much better output pulse quality than single-mode fiber.
Linearization of Nonautonomous Impulsive System with Nonuniform Exponential Dichotomy
Directory of Open Access Journals (Sweden)
Yongfei Gao
2014-01-01
Full Text Available This paper gives a version of Hartman-Grobman theorem for the impulsive differential equations. We assume that the linear impulsive system has a nonuniform exponential dichotomy. Under some suitable conditions, we proved that the nonlinear impulsive system is topologically conjugated to its linear system. Indeed, we do construct the topologically equivalent function (the transformation. Moreover, the method to prove the topological conjugacy is quite different from those in previous works (e.g., see Barreira and Valls, 2006.
GEPOIS: a two dimensional nonuniform mesh Poisson solver
International Nuclear Information System (INIS)
Quintenz, J.P.; Freeman, J.R.
1979-06-01
A computer code is described which solves Poisson's equation for the electric potential over a two dimensional cylindrical (r,z) nonuniform mesh which can contain internal electrodes. Poisson's equation is solved over a given region subject to a specified charge distribution with either Neumann or Dirichlet perimeter boundary conditions and with Dirichlet boundary conditions on internal surfaces. The static electric field is also computed over the region with special care given to normal electric field components at boundary surfaces
Transfer vibration through spine
Benyovszky, Adam
2012-01-01
Transfer Vibration through Spine Abstract In the bachelor project we deal with the topic of Transfer Vibration through Spine. The problem of TVS is trying to be solved by the critical review method. We analyse some diagnostic methods and methods of treatment based on this principle. Close attention is paid to the method of Transfer Vibration through Spine that is being currently solved by The Research Institute of Thermomechanics in The Czech Academy of Sciences in cooperation with Faculty of...
International Nuclear Information System (INIS)
Shintaku, Hirofumi; Kotera, Hidetoshi; Kobayashi, Takayuki; Zusho, Kazuki; Kawano, Satoyuki
2013-01-01
In this study, we have demonstrated the fabrication of a microbeam array (MBA) with various thicknesses and investigated the suitability it for an acoustic sensor with wide-range frequency selectivity. For this, an MBA composed of 64 beams, with thicknesses varying from 2.99–142 µm, was fabricated by using single gray-scale lithography and a thick negative photoresist. The vibration of the beams in air was measured using a laser Doppler vibrometer; the resonant frequencies of the beams were measured to be from 11.5 to 290 kHz. Lastly, the frequency range of the MBA with non-uniform thickness was 10.9 times that of the MBA with uniform thickness. (paper)
Modelling of HVDC wall bushing flashover in nonuniform rain
International Nuclear Information System (INIS)
Rizk, F.A.M.; Kamel, S.I.
1991-01-01
This paper presents the first mathematical model to provide necessary and sufficient conditions for flashover of an HVDC wall bushing under nonuniform rain. The suggested mechanism is initiated by streamer bridging of the dry zone enhanced by nonuniform voltage distribution along the bushing and within the dry zone. Fast voltage collapse across the dry zone die to energy stored in the bushing stray capacitance to ground leads to impulsive stressing of the wet part of the bushing. The nonuniform distribution of the impulse stress and the process of streamer bridging, fast voltage collapse as well as subsequent recharging of the bushing capacitances can lead to continued discharge propagation and flashover of the complete bushing. The findings of the model have been satisfactorily compared with previous experiments and field observations and can, for the first time, account for the following aspects of the flashover mechanism: critical dry zone length, polarity effect, specific leakage path, wet layer conductance per unit leakage length as well as the DC system voltage
ELECTRONIC CIRCUIT BOARDS NON-UNIFORM COOLING SYSTEM MODEL
Directory of Open Access Journals (Sweden)
D. V. Yevdulov
2016-01-01
Full Text Available Abstract. The paper considers a mathematical model of non-uniform cooling of electronic circuit boards. The block diagram of the system implementing this approach, the method of calculation of the electronic board temperature field, as well as the principle of its thermal performance optimizing are presented. In the considered scheme the main heat elimination from electronic board is produced by the radiator system, and additional cooling of the most temperature-sensitive components is produced by thermoelectric batteries. Are given the two-dimensional temperature fields of the electronic board during its uniform and non-uniform cooling, is carried out their comparison. As follows from the calculations results, when using a uniform overall cooling of electronic unit there is a waste of energy for the cooling 0f electronic board parts which temperature is within acceptable temperature range without the cooling system. This approach leads to the increase in the cooling capacity of used thermoelectric batteries in comparison with the desired values. This largely reduces the efficiency of heat elimination system. The use for electronic boards cooling of non-uniform local heat elimination removes this disadvantage. The obtained dependences show that in this case, the energy required to create a given temperature is smaller than when using a common uniform cooling. In this approach the temperature field of the electronic board is more uniform and the cooling is more efficient.
Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy
Xia, Minglu; Sun, Qingping
2017-10-01
Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.
Tensile and Torsional Structural Properties of the Native Scapholunate Ligament.
Pang, Eric Quan; Douglass, Nathan; Behn, Anthony; Winterton, Matthew; Rainbow, Michael J; Kamal, Robin N
2018-02-17
The ideal material for reconstruction of the scapholunate interosseous ligament (SLIL) should replicate the mechanical properties of the native SLIL to recreate normal kinematics and prevent posttraumatic arthritis. The purpose of our study was to evaluate the cyclic torsional and tensile properties of the native SLIL and load to failure tensile properties of the dorsal SLIL. The SLIL bone complex was resected from 10 fresh-frozen cadavers. The scaphoid and lunate were secured in polymethylmethacrylate and mounted on a test machine that incorporated an x-y stage and universal joint, which permitted translations perpendicular to the rotation/pull axis as well as nonaxial angulations. After a 1 N preload, specimens underwent cyclic torsional testing (±0.45 N m flexion/extension at 0.5 Hz) and tensile testing (1-50 N at 1 Hz) for 500 cycles. Lastly, the dorsal 10 mm of the SLIL was isolated and displaced at 10 mm/min until failure. During intact SLIL cyclic torsional testing, the neutral zone was 29.7° ± 6.6° and the range of rotation 46.6° ± 7.1°. Stiffness in flexion and extension were 0.11 ± 0.02 and 0.12 ± 0.02 N m/deg, respectively. During cyclic tensile testing, the engagement length was 0.2 ± 0.1 mm, the mean stiffness was 276 ± 67 N/mm, and the range of displacement was 0.4 ± 0.1 mm. The dorsal SLIL displayed a 0.3 ± 0.2 mm engagement length, 240 ± 65 N/mm stiffness, peak load of 270 ± 91 N, and displacement at peak load of 1.8 ± 0.3 mm. We report the torsional properties of the SLIL. Our novel test setup allows for free rotation and translation, which reduces out-of-plane force application. This may explain our observation of greater dorsal SLIL load to failure than previous reports. By matching the natural ligament with respect to its tensile and torsional properties, we believe that reconstructions will better restore the natural kinematics of the wrist and lead to improved outcomes. Future clinical studies should aim to investigate this
Stevens, Peter M.; Gililland, Jeremy M.; Anderson, Lucas A.; Mickelson, Jennifer B.; Nielson, Jenifer; Klatt, Joshua W.
2013-01-01
Torsional deformities of the femur and/or tibia often go unrecognized in adolescents and adults who present with anterior knee pain, and patellar maltracking or instability. While open and arthroscopic surgical techniques have evolved to address these problems, unrecognized torsion may compromise the outcomes of these procedures. We collected a group of 16 consecutive patients (23 knees), with mean age of 17, who had undergone knee surgery before torsion was recognized and subsequently treate...
Isolated torsion of fallopian tube during pregnancy; report of two cases.
Yalcin, O T; Hassa, H; Zeytinoglu, S; Isiksoy, S
1997-08-01
Isolated torsion of fallopian tube is very uncommon during pregnancy. Predisposing factors for torsion are hydrosalpinx, prior tubal operation, pelvic congestion, ovarian and paraovarian masses and trauma. Although the most important clinical symptom is abdominal pain in lower quadrants, the diagnosis is usually established during the operation performed for acute abdomen and salpingectomy is almost always necessary. Two cases of torsion of fallopian tube during pregnancy, one with hydrosalpinx, the other with paratubal cyst are presented and symptoms and predisposing factors are discussed.
Tibial torsion in non-arthritic Indian adults: A computer tomography study of 100 limbs
Directory of Open Access Journals (Sweden)
Mullaji Arun
2008-01-01
Full Text Available Background: Knowledge of normal tibial torsion is mandatory during total knee replacement (TKR, deformity correction and fracture management of tibia. Different values of tibial torsion have been found in different races due to biological and mechanical factors. Value of normal tibial torsion in Indian limbs is not known, hence this study to determine the norm of tibial torsional value in normal Indian population. Materials and Methods: Computer tomography (CT scans were performed in 100 non-arthritic limbs of 50 Indian adults (42 males, eight females; age 26-40 years. Value of tibial torsion was measured using dorsal tangent to tibial condyles proximally and bimalleolar axis distally. Results: Normal tibial torsion was found to be 21.6 ± 7.6 (range 4.8 to 39.5 with none of the values in internal rotation. Right tibia was externally rotated by 2 degrees as compared to the left side ( P 0.029. No significant difference was found in male and female subjects. Value of tibial torsion was less than in Caucasian limbs, but was comparable to Japanese limbs when studies using similar measurement technique were compared. Conclusions: Indian limbs have less tibial torsion than Caucasian limbs but the value of tibial torsion is comparable to Japanese limbs.
Running coupling in electroweak interactions of leptons from f(R)-gravity with torsion
International Nuclear Information System (INIS)
Capozziello, Salvatore; De Laurentis, Mariafelicia; Fabbri, Luca; Vignolo, Stefano
2012-01-01
The f(R)-gravitational theory with torsion is considered for one family of leptons; it is found that the torsion tensor gives rise to interactions having the structure of the weak forces, while the intrinsic non-linearity of the f(R) function provides an energy-dependent coupling: in this way, torsional f(R) gravity naturally generates both structure and strength of the electroweak interactions among leptons. This implies that the weak interactions among the lepton fields could be addressed as a geometric effect due to the interactions among spinors induced by the presence of torsion in the most general f(R) gravity. Phenomenological considerations are given. (orig.)
Unusual cause of acute abdominal pain in a postmenopausal woman: adnexal torsion
Directory of Open Access Journals (Sweden)
Alper Biler
2016-03-01
Full Text Available Adnexal torsion is an infrequent but significant cause of acute lower abdominal pain in women. While adnexal torsion is generally considered in premenopausal women presenting with acute abdominal pain and a pelvic mass, it is a rare cause of acute abdominal pain during postmenopausal period. The diagnosis of adnexal torsion is often challenging due to nonspesific clinical, laboratory and physical examination findings. Causes of adnexal torsion is also different in premenopausal and postmenopausal women. While a simple functional cyst is often the cause of torsion in premenopausal women, it is more rarely the cause in postmenopausal women. Adnexal torsion is a surgical emergency. The surgery of adnexal torsion is performed either via conventional exploratory laparotomy or laparoscopic surgery. Adnexal torsion in postmenopausal women should be considered not only in the setting of sudden onset pain, but also in long-term abdominal discomfort. In this article, we presented a case with adnexal torsion that rarely cause acute abdominal pain in postmenopausal women. [Cukurova Med J 2016; 41(1.000: 167-170
The accuracy of serum interleukin-6 and tumour necrosis factor as markers for ovarian torsion.
Cohen, S B; Wattiez, A; Stockheim, D; Seidman, D S; Lidor, A L; Mashiach, S; Goldenberg, M
2001-10-01
The aim of this study was to investigate a possible role for interleukin-6 (IL-6) and tumour necrosis factor (TNF-alpha) as pre-operative markers for the diagnosis of ovarian torsion. Twenty consecutive patients admitted to the gynaecological emergency room with suspected clinical diagnosis of ovarian torsion were prospectively assigned to the study. Blood samples were drawn pre-operatively and examined for serum concentrations of IL-6 and TNF-alpha. Surgeons were blinded to laboratory results prior to laparoscopy. The pre-operative diagnosis of ovarian torsion was confirmed during an urgent diagnostic laparoscopy in 8 (40%) patients. The surgical diagnosis among the remaining 12 patients was a large ovarian cyst not in torsion. In six out of eight (75.0%) patients with ovarian torsion serum IL-6 concentrations were elevated. None of the 12 patients without torsion had elevated serum IL-6 concentrations. This difference was statistically significant (P < 0.001). There was no significant difference in the proportion of women with elevated serum TNF-alpha concentrations, two of eight (25.0%) patients with torsion and four of 12 (33.3%) control cases. Elevated serum IL-6 concentrations, but not serum TNF-alpha concentrations, were significantly associated with the occurrence of ovarian torsion. In patients with vague clinical signs of ovarian torsion, serum IL-6 might help to distinguish which patients should undergo diagnostic laparoscopy.
Isolated torsion of fallopian tube in a post-menopausal patient: a case report.
Ozgun, Mahmut Tuncay; Batukan, Cem; Turkyilmaz, Cagdas; Serin, Ibrahim Serdar
2007-07-20
Isolated fallopian tube torsion after menopause is a rare condition. Here we report the second case of isolated fallopian tube torsion in a post-menopausal woman. A 55-year-old post-menopausal woman presented with right lower abdominal pain. Sonography depicted a simple cystic mass adjacent to the right uterine border. Laparatomy revealed torsion of the right fallopian tube together with a paraovarian cyst. Total abdominal hysterectomy and bilateral salpingo-oophorectomy was performed. Histopathological examination revealed a simple paraovarian cyst with severe congestion, necrosis and hemorrhage. Tubal torsion should be considered in the differential diagnosis of acute lower abdominal pain, even in post-menopausal women.
Acute torsion and ischemia of the appendix in a young child
Directory of Open Access Journals (Sweden)
Dhruvin H. Hirpara
2018-04-01
Full Text Available Torsion of the vermiform appendix is a rare diagnosis; its clinical and radiographic presentation can mimic that of acute appendicitis. We report the case of a two-year-old boy presenting with a one day history of lower abdominal pain and serial ultrasound examinations suspicious for atypical acute appendicitis. Operative findings revealed a necrotic and engorged appendix with a 720° clockwise torsion at its base. Final pathology was consistent with ischemic necrosis in the setting of lymphoid hyperplasia. A brief update on the current body of literature regarding pediatric torsion of the vermiform appendix is provided. Keywords: Appendicitis, Volvulus, Torsion
A Rare Cause of Scrotal Mass in a Newborn: Antenatal Intravaginal Testicular Torsion
Directory of Open Access Journals (Sweden)
Ahmet Ali Tuncer
2018-04-01
Full Text Available Intravaginal testicular torsion is a very rare pathology in the neonatal period. However, it is the most common type of torsion in puberty. In this article, we present a male patient with testicular hyperemia and a mass in the testis. Ultrasonography revealed intravaginal testicular torsion and absence of testicular blood flow. This paper aims to draw attention to the importance of neonatal examination for the presence of testicular torsion which is a rare pathology in newborns with scrotal colour change or presence of an abnormal mass.
Mechanical vibration and shock analysis, sinusoidal vibration
Lalanne, Christian
2014-01-01
Everything engineers need to know about mechanical vibration and shock...in one authoritative reference work! This fully updated and revised 3rd edition addresses the entire field of mechanical vibration and shock as one of the most important types of load and stress applied to structures, machines and components in the real world. Examples include everything from the regular and predictable loads applied to turbines, motors or helicopters by the spinning of their constituent parts to the ability of buildings to withstand damage from wind loads or explosions, and the need for cars to m
Hydroelastic Vibrations of Ships
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher; Folsø, Rasmus
2002-01-01
A formula for the necessary hull girder bending stiffness required to avoid serious springing vibrations is derived. The expression takes into account the zero crossing period of the waves, the ship speed and main dimensions. For whipping vibrations the probability of exceedance for the combined...
Surface vibrational spectroscopy
International Nuclear Information System (INIS)
Erskine, J.L.
1984-01-01
A brief review of recent studies which combine measurements of surface vibrational energies with lattice dynamical calculations is presented. These results suggest that surface vibrational spectroscopy offers interesting prospects for use as a molecular-level probe of surface geometry, adsorbate bond distances and molecular orientations
Gearbox vibration diagnostic analyzer
1992-01-01
This report describes the Gearbox Vibration Diagnostic Analyzer installed in the NASA Lewis Research Center's 500 HP Helicopter Transmission Test Stand to monitor gearbox testing. The vibration of the gearbox is analyzed using diagnostic algorithms to calculate a parameter indicating damaged components.
Handbook Of Noise And Vibration
International Nuclear Information System (INIS)
1995-12-01
This book is about noise and vibration. The first chapter has explanations of noise such as basic of sound, influence of noise, assessment of noise, measurement of prevention of noise and technology, case of noise measurement and soundproof. The second chapter describes vibration with outline, theory of vibration, interpretation of vibration, measurement for reduction of vibration, case of design of protection against vibration. It deals with related regulation and method of measurement.
Vibration insensitive interferometry
Millerd, James; Brock, Neal; Hayes, John; Kimbrough, Brad; North-Morris, Michael; Wyant, James C.
2017-11-01
The largest limitation of phase-shifting interferometry for optical testing is the sensitivity to the environment, both vibration and air turbulence. An interferometer using temporal phase-shifting is very sensitive to vibration because the various phase shifted frames of interferometric data are taken at different times and vibration causes the phase shifts between the data frames to be different from what is desired. Vibration effects can be reduced by taking all the phase shifted frames simultaneously and turbulence effects can be reduced by averaging many measurements. There are several techniques for simultaneously obtaining several phase-shifted interferograms and this paper will discuss two such techniques: 1) Simultaneous phase-shifting interferometry on a single detector array (PhaseCam) and 2) Micropolarizer phase-shifting array. The application of these techniques for the testing of large optical components, measurement of vibrational modes, the phasing of segmented optical components, and the measurement of deformations of large diffuse structures is described.
Vibrations of rotating machinery
Matsushita, Osami; Kanki, Hiroshi; Kobayashi, Masao; Keogh, Patrick
2017-01-01
This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristic...
A Method to Assess Transverse Vibration Energy of Ship Propeller Shaft for Diagnostic Purposes
Directory of Open Access Journals (Sweden)
Korczewski Zbigniew
2017-12-01
Full Text Available The article discusses a key problem of ship propulsion system vibration diagnostics, which concerns assessing this part of mechanical energy transmitted from the main engine to the ship propeller which is dissipated due to propeller shaft vibration. A simplified calculation model is proposed which allows the total energy of the generated torsional vibration to be assessed from the shaft deflection amplitude measured at the mind-span point between the supports. To verify the developed model, pilot tests were performed on the laboratory rotational mechanical system test rig. In those tests, cyclic bending moment was applied to a unified (cylindrical material sample, which modelled, at an appropriate scale, structural and functional properties of a real propeller shaft.
[The functional sport shoe parameter "torsion" within running shoe research--a literature review].
Michel, F I; Kälin, X; Metzger, A; Westphal, K; Schweizer, F; Campe, S; Segesser, B
2009-12-01
Within the sport shoe area torsion is described as the twisting and decoupling of the rear-, mid- and forefoot along the longitudinal axis of the foot. Studies have shown that running shoes restrict the torsion of the foot and thus they increase the pronation of the foot. Based on the findings, it is recommended to design running shoes, which allow the natural freedom of movement of the foot. The market introduction of the first torsion concept through adidas(R) took place in 1989. Independently of the first market introduction, only one epidemiological study was conducted in the running shoe area. The study should investigate the occurrence of Achilles tendon problems of the athletes running in the new "adidas Torsion(R) shoes". However, further studies quantifying the optimal region of torsionability concerning the reduction of injury incidence are still missing. Newer studies reveal that the criterion torsion only plays a secondary roll regarding the buying decision. Moreover, athletes are not able to perceive torsionability as a discrete functional parameter. It is to register, that several workgroups are dealing intensively with the detailed analysis of the foot movement based on kinematic multi-segment-models. However, scientific as well as popular scientific contributions display that the original idea of the torsion concept is still not completely understood. Hence, the "inverse" characteristic is postulated. The present literature review leads to the deduction that the functional characteristics of the torsion concept are not fully implemented within the running shoe area. This implies the necessity of scientific studies, which investigate the relevance of a functional torsion concept regarding injury prevention based on basic and applied research. Besides, biomechanical studies should analyse systematically the mechanism and the effects of torsion relevant technologies and systems.
A Highly Accurate and Efficient Analytical Approach to Bridge Deck Free Vibration Analysis
Directory of Open Access Journals (Sweden)
D.J. Gorman
2000-01-01
Full Text Available The superposition method is employed to obtain an accurate analytical type solution for the free vibration frequencies and mode shapes of multi-span bridge decks. Free edge conditions are imposed on the long edges running in the direction of the deck. Inter-span support is of the simple (knife-edge type. The analysis is valid regardless of the number of spans or their individual lengths. Exact agreement is found when computed results are compared with known eigenvalues for bridge decks with all spans of equal length. Mode shapes and eigenvalues are presented for typical bridge decks of three and four span lengths. In each case torsional and non-torsional modes are studied.
A comprehensive model for in-plane and out-of-plane vibration of CANDU fuel endplate rings
Energy Technology Data Exchange (ETDEWEB)
Yu, S.D., E-mail: syu@ryerson.ca; Fadaee, M.
2016-08-01
Highlights: • Proposed an effective method for modelling bending and torsional vibration of CANDU fuel endplate rings. • Applied successfully the thick plate theory to curved structural members by accounting for the transverse shear effect. • The proposed method is computationally more efficient compared to the 3D finite element. - Abstract: In this paper, a comprehensive vibration model is developed for analysing in-plane and out-of-plane vibration of CANDU fuel endplate rings by taking into consideration the effects of in-plane extension in the circumferential and radial directions, shear, and rotatory inertia. The model is based on Reddy’s thick plate theory and the nine-node isoparametric Lagrangian plate finite elements. Natural frequencies of various modes of vibration of circular rings obtained using the proposed method are compared with 3D finite element results, experimental data and results available in the literature. Excellent agreement was achieved.
The model of the relativistic particle with torsion
International Nuclear Information System (INIS)
Plyushchay, M.S.
1991-01-01
The model of the relativistic particle with torsion, whose action appears in the Bose-Fermi transmutation mechanism, is canonically quantized in the Minkowski and euclidean spaces. In the Minkowski space there are massive, massless and tachyonic states in the spectrum of the model. In the massive sector the spectrum contains an infinite number of states, whose spin can take integer, half-integer, or fractional values. In the euclidean space, the spectrum is finite and the spin can only be integer, or half-integer. The reasons for the differences of the quantum theory of the model in the two spaces are elucidated. (orig.)
Electromagnetic calibration system for sub-micronewton torsional thrust stand
Lam, J. K.; Koay, S. C.; Cheah, K. H.
2017-12-01
It is critical for a micropropulsion system to be evaluated. Thrust stands are widely recognised as the instrument to complete such tasks. This paper presents the development of an alternative electromagnetic calibration technique for thrust stands. Utilising the commercially made voice coils and permanent magnets, the proposed system is able to generate repeatable and also consistent steady-state calibration forces at over four orders of magnitude (30 - 23000 μN). The system is then used to calibrate a custom-designed torsional thrust stand, where its inherent ability in ease of setup is well demonstrated.
Experimental and numerical research on forging with torsion
Petrov, Mikhail A.; Subich, Vadim N.; Petrov, Pavel A.
2017-10-01
Increasing the efficiency of the technological operations of blank production is closely related to the computer-aided technologies (CAx). On the one hand, the practical result represents reality exactly. On the other hand, the development procedure of new process development demands unrestricted resources, which are limited on the SMEs. The tools of CAx were successfully applied for development of new process of forging with torsion and result analysis as well. It was shown, that the theoretical calculations find the confirmation both in praxis and during numerical simulation. The mostly used constructional materials were under study. The torque angles were stated. The simulated results were evaluated by experimental procedure.
The evolution of space curves by curvature and torsion
International Nuclear Information System (INIS)
Richardson, G; King, J R
2002-01-01
We apply Lie group based similarity methods to the study of a new, and widely relevant, class of objects, namely motions of a space curve. In particular, we consider the motion of a curve evolving with a curvature κ and torsion τ dependent velocity law. We systematically derive the Lie point symmetries of all such laws of motion and use these to catalogue all their possible similarity reductions. This calculation reveals special classes of law with high degrees of symmetry (and a correspondingly large number of similarity reductions). Of particular note is one class which is invariant under general linear transformations in space. This has potential applications in pattern and signal recognition
Validation of an Automated Torsional and Warping Stress Analysis Program
1992-08-19
AT ftA NC[ VIPS’ Af $UPP69T ds (ZqOoo x,~)(23.6 ui7)( .000012433) 127672 P~s Af .SL Cq6"): dws (2qOOC KcI)(21Ci;)2)G-.OOOQQ 3623):’ -2uqO KSI AT M~C...TORSIONAL ,’KMENT .50000000 ENDING AT 1,2.04000 FMD • LE3 END PHIZ .00)OOE+00 PHI: .o0000Eo0f PHI2: .38240E-04 PHI3: -. 33�E-05 I"OR. SHR. WEL
The demagnetizing field of a non-uniform rectangular prism
DEFF Research Database (Denmark)
Smith, Anders; Nielsen, Kaspar Kirstein; Christensen, Dennis
2010-01-01
The effect of demagnetization on the magnetic properties of a rectangular ferromagnetic prism under non-uniform conditions is investigated. A numerical model for solving the spatially varying internal magnetic field is developed, validated and applied to relevant cases. The demagnetizing field...... is solved by an analytical calculation and the coupling between applied field, the demagnetization tensor field and spatially varying temperature is solved through iteration. We show that the demagnetizing field is of great importance in many cases and that it is necessary to take into account the non...
Linear kinetic enlightenment of a slab of nonuniform plasma
International Nuclear Information System (INIS)
Revenchuk, S.M.
1996-01-01
A phenomenon of linear kinetic regeneration of a harmonic electric-field perturbation beyond the nonuniform opacity barrier due to electrons trapped by a potential well is investigated. Such electrons are reflected by the well walls without loss of phase memory about the external perturbation, which is rehabilitated on the other side of the barrier. The incidence of the electromagnetic wave polarized in the plane of incidence on a plasma slab. Analytic expressions for the regenerated electric field and regeneration coefficient are obtained in the ballistic approximation. The dependence of the regeneration coefficient on shape of the electrostatic potential confining the wave barrier is discussed
Integer channels in nonuniform non-equilibrium 2D systems
Shikin, V.
2018-01-01
We discuss the non-equilibrium properties of integer channels in nonuniform 2D electron (hole) systems in the presence of a strong magnetic field. The results are applied to a qualitative explanation of the Corbino disk current-voltage characteristics (IVC) in the quantum Hall effect (QHE) regime. Special consideration is paid to the so-called "QHE breakdown" effect, which is readily observed in both the Hall bar and Corbino geometries of the tested cells. The QHE breakdown is especially evident in the Corbino samples, allowing for a more in-depth study of these effects.
Silicon micromachined vibrating gyroscopes
Voss, Ralf
1997-09-01
This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.
System Detects Vibrational Instabilities
Bozeman, Richard J., Jr.
1990-01-01
Sustained vibrations at two critical frequencies trigger diagnostic response or shutdown. Vibration-analyzing electronic system detects instabilities of combustion in rocket engine. Controls pulse-mode firing of engine and identifies vibrations above threshold amplitude at 5.9 and/or 12kHz. Adapted to other detection and/or control schemes involving simultaneous real-time detection of signals above or below preset amplitudes at two or more specified frequencies. Potential applications include rotating machinery and encoders and decoders in security systems.
Lanzani, Guglielmo; De Silvestri, Sandro
2007-01-01
Vibrational spectroscopy is a powerful investigation tool for a wide class of materials covering diverse areas in physics, chemistry and biology. The continuous development in the laser field regarding ultrashort pulse generation has led to the possibility of producing light pulses that can follow vibrational motion coupled to the electronic transitions in molecules and solids in real time. Aimed at researchers and graduate students using vibrational spectroscopy, this book provides both introductory chapters as well as more advanced contents reporting on recent progress. It also provides a good starting point for scientists seeking a sound introduction to ultrafast optics and spectroscopic techniques.
Directory of Open Access Journals (Sweden)
Eugenio Pedullà
2015-06-01
Conclusions: Torsional preloads reduced the cyclic fatigue resistance of M-wire and conventional (as ProTaper Next and Mtwo NiTi rotary instruments except for Mtwo with 25% or 50% of torsional preloading.
A non-uniform expansion mechanical safety model of the stent.
Yang, J; Huang, N; Du, Q
2009-01-01
Stents have a serial unstable structure that readily leads to non-uniform expansion. Non-uniform expansion in turn creates a stent safety problem. We explain how a stent may be simplified to a serial unstable structure, and present a method to calculate the non-uniform expansion of the stent on the basis of the serial unstable structure. We propose a safety criterion based on the expansion displacement instead of the strain, and explain that the parameter Rd, the ratio of the maximum displacement of the elements to normal displacement, is meaningful to assess the safety level of the stent. We also examine how laser cutting influences non-uniform expansion. The examples illustrate how to calculate the parameter Rd to assess non-uniform expansion of the stent, and demonstrate how the laser cutting offset and strengthening coefficient of the material influence the stent expansion behaviour. The methods are valuable for assessing stent safety due to non-uniform expansion.
Asymmetric magnetoimpedance in amorphous microwires due to bias current: Effect of torsional stress
International Nuclear Information System (INIS)
Buznikov, N.A.; Antonov, A.S.; Granovsky, A.B.
2014-01-01
The influence of torsional stress on the asymmetric magnetoimpedance in a glass-coated negative magnetostrictive amorphous microwire due to bias current is studied theoretically. The longitudinal and off-diagonal impedance components are found assuming a simplified spatial distribution of the magnetoelastic anisotropy induced by the torsional stress. The asymmetry in the field dependence of the impedance components is attributed to the combination of the circular magnetic field produced by the bias current and a helical anisotropy induced by the torsional stress. The asymmetry in the magnetoimpedance and the low-field hysteresis are analyzed as a function of the bias current and torsional stress. It is shown that the application of torsional stress significantly changes the value of the bias current required to suppress the hysteresis effect. The results obtained may be useful for applications in magnetic-field and stress sensors. - Highlights: • Effects of torsional stress on magnetoimpedance in amorphous microwire are studied. • Asymmetry in magnetoimpedance is analyzed as a function of bias current and stress. • Torsional stress changes the anisotropy and effects on the microwire impedance. • Field-dependence of impedance is anhysteretic when bias current exceeds threshold value. • Threshold bias current can be tuned by the application of torsional stress
Asymmetric magnetoimpedance in amorphous microwires due to bias current: Effect of torsional stress
Energy Technology Data Exchange (ETDEWEB)
Buznikov, N.A., E-mail: n_buznikov@mail.ru [Scientific-Research Institute of Natural Gases and Gas Technologies – GAZPROM VNIIGAZ, Razvilka, Leninsky District, Moscow Region 142717 (Russian Federation); Antonov, A.S. [Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Granovsky, A.B. [Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)
2014-04-15
The influence of torsional stress on the asymmetric magnetoimpedance in a glass-coated negative magnetostrictive amorphous microwire due to bias current is studied theoretically. The longitudinal and off-diagonal impedance components are found assuming a simplified spatial distribution of the magnetoelastic anisotropy induced by the torsional stress. The asymmetry in the field dependence of the impedance components is attributed to the combination of the circular magnetic field produced by the bias current and a helical anisotropy induced by the torsional stress. The asymmetry in the magnetoimpedance and the low-field hysteresis are analyzed as a function of the bias current and torsional stress. It is shown that the application of torsional stress significantly changes the value of the bias current required to suppress the hysteresis effect. The results obtained may be useful for applications in magnetic-field and stress sensors. - Highlights: • Effects of torsional stress on magnetoimpedance in amorphous microwire are studied. • Asymmetry in magnetoimpedance is analyzed as a function of bias current and stress. • Torsional stress changes the anisotropy and effects on the microwire impedance. • Field-dependence of impedance is anhysteretic when bias current exceeds threshold value. • Threshold bias current can be tuned by the application of torsional stress.
Contribution of the otoliths to the human torsional vestibulo-ocular reflex
Groen, Eric; Bos, Jelte E.; De Graaf, Bernd
1999-01-01
The dynamic contribution of the otolith organs to the human ocular torsion response was examined during passive sinusoidal body roll about an earth-horizontal axis (varying otolith inputs) and about an earth-vertical axis (invariant otolith inputs). Torsional eye movements were registered in 5
Torsion of the fallopian the mimicking appendicitis in a pregnant woman
International Nuclear Information System (INIS)
Tapia-Vine, M.; Pedrosa, I.; Escribano, N.
2000-01-01
Isolated torsion of the fallopian tube is an uncommon entity. Given the difficulties involved in the preoperative diagnosis, the ultrasound findings characteristic of this anomaly are not widely known. We present a case of tubal torsion associated with a cyst, describing the ultrasound images in our case and those reported in the literature. (Author) 18 refs
Brans-Dicke theory in general space-time with torsion
International Nuclear Information System (INIS)
Kim, S.
1986-01-01
The Brans-Dicke theory in the general space-time endowed with torsion is investigated. Since the gradient of the scalar field as well as the intrinsic spin generate the torsion field, the interaction term of the spin-scalar field appears in the wave equation. The equations of motion are satisfied with the conservation laws
Open string fluctuations in AdS space with and without torsion
DEFF Research Database (Denmark)
Larsen, A.L.; Lomholt, Michael Andersen
2003-01-01
The equations of motion and boundary conditions for the fluctuations around a classical open string, in a curved space-time with torsion, are considered in compact and world-sheet covariant form. The rigidly rotating open strings in anti-de Sitter space with and without torsion are investigated...
Should Torsion Balance Technique Continue to be Taught to Pharmacy Students?
Bilger, Rhonda; Chereson, Rasma; Salama, Noha Nabil
2017-06-01
Objective. To determine the types of balances used in compounding pharmacies: torsion or digital. Methods. A survey was mailed to the pharmacist-in-charge at 698 pharmacies, representing 47% of the pharmacies in Missouri as of July 2013. The pharmacies were randomly selected and stratified by region into eight regions to ensure a representative sample. Information was gathered regarding the type and use of balances and pharmacists' perspectives on the need to teach torsion balance technique to pharmacy students. Results. The response rate for the survey was 53.3%. Out of the total responses received, those pharmacies having a torsion balance, digital balance or both were 46.8%, 27.4% and 11.8%, respectively. About 68.3% of respondents compound prescriptions. The study showed that 52% of compounding pharmacies use torsion balances in their practice. Of those with a balance in their pharmacy, 65.6% favored continuation of torsion balance instruction. Conclusions. Digital balances have become increasingly popular and have replaced torsion balances in some pharmacies, especially those that compound a significant number of prescriptions. The results of this study indicate that torsion balances remain integral to compounding practice. Therefore, students should continue being taught torsion balance technique at the college.
Uterine Torsion in a West African Dwarf Ewe in Ibadan, Nigeria ...
African Journals Online (AJOL)
Keywords: Uterine torsion, West African Dwarf Ewe, Ibadan A case of uterine torsion in a 21/2 year old pluriparous West Africa Dwarf (WAD) ewe raised semi intensively with adequate veterinary care before the death of the dam and the lamb is presented. The dam had been off feed for 3 days and was found straining a night ...
Humeral torsion revisited: a functional and ontogenetic model for populational variation.
Cowgill, Libby W
2007-12-01
Anthropological interest in humeral torsion has a long history, and several functional explanations for observed variation in the orientation of the humeral head have been proposed. Recent clinical studies have revived this topic by linking patterns of humeral torsion to habitual activities such as overhand throwing. However, the precise functional implications and ontogenetic history of humeral torsion remain unclear. This study examines the ontogeny of humeral torsion in a large sample of primarily immature remains from six different skeletal collections (n = 407). The results of this research confirm that humeral torsion displays consistent developmental variation within all populations of growing children; neonates display relatively posteriorly oriented humeral heads, and the level of torsion declines steadily into adulthood. As in adults, variation in the angle of humeral torsion in immature individuals varies by population, and these differences arise early in development. However, when examined in the context of the developing muscles of the shoulder complex, it becomes apparent that variation in the angle of humeral torsion is not necessarily related to specific habitual activities. Variability in this feature is more likely caused by a generalized functional imbalance between muscles of medial and lateral rotation that can be produced by a wide variety of upper limb activity patterns during growth. (c) 2007 Wiley-Liss, Inc.
Torsion zero-cycles and the Abel-Jacobi map over the real numbers
Hamel, J. van
1999-01-01
This is a study of the torsion in the Chow group of zero-cycles on a variety over the real numbers. The first section recalls important results from the literature. The rest of the paper is devoted to the study of the AbelJacobi map a: A0XAlbXR restricted to torsion subgroups. Using Roitmans
Study on reinforced lightweight coconut shell concrete beam behavior under torsion
International Nuclear Information System (INIS)
Gunasekaran, K.; Ramasubramani, R.; Annadurai, R.; Prakash Chandar, S.
2014-01-01
Highlights: • Use of coconut shell as aggregate in concrete production. • Behavior of coconut shell concrete under torsion. • Pre and post cracking behavior and analysis. • Torsional reinforcement and ductility. • Crack width and stiffness. - Abstract: This research investigates and evaluates the results of coconut shell concrete beams subjected to torsion and compared with conventional concrete beams. Eight beams, four with coconut shell concrete and four with conventional concrete were fabricated and tested. Study includes the general cracking characteristics, pre cracking behavior and analysis, post cracking behavior and analysis, minimum torsional reinforcement, torsional reinforcement, ductility, crack width and stiffness. It was observed that the torsional behavior of coconut shell concrete is comparable to that of conventional concrete. Compare to ACI prediction, equation suggested by Macgregor is more conservative in calculating cracking torsional resistance. But for the calculation of ultimate torque strength ACI prediction is more conservative compared to the equation suggested by Macgregor. Indian standard is also conservative in this regard, but it was under estimated compared to ACI and Macgregor equations. Minimum torsional reinforcement in beams is necessary to ensure that the beam do not fail at cracking. Compared to conventional concrete specimens, coconut shell concrete specimens have more ductility. Crack width at initial cracking torque for both conventional and coconut shell concrete with corresponding reinforcement ratios is almost similar
Illumination non-uniformity of spirally wobbling beam in heavy ion fusion
International Nuclear Information System (INIS)
Suzuki, T.; Noguchi, K.; Kurosaki, T.; Barada, D.; Kawata, S.; Ma, Y. Y.; Ogoyski, A.I.
2016-01-01
In inertial confinement fusion, the driver beam illumination non-uniformity leads a degradation of fusion energy output. The illumination non-uniformity allowed is less than a few percent in inertial fusion target implosion. Heavy ion beam (HIB) accelerator provides a capability to oscillate a beam axis with a high frequency. The wobbling beams may provide a new method to reduce or smooth the beam illumination non-uniformity. In this paper the HIBs wobbling illumination scheme was optimized. (paper)
Physical Limitations To Nonuniformity Correction In IR Focal Plane Arrays
Scribner, D. A.; Kruer, M. R.; Gridley, J. C.; Sarkady, K.
1988-05-01
Simple nonuniformity correction algorithms currently in use can be severely limited by nonlinear response characteristics of the individual pixels in an IR focal plane array. Although more complicated multi-point algorithms improve the correction process they too can be limited by nonlinearities. Furthermore, analysis of single pixel noise power spectrums usually show some level of 1 /f noise. This in turn causes pixel outputs to drift independent of each other thus causing the spatial noise (often called fixed pattern noise) of the array to increase as a function of time since the last calibration. Measurements are presented for two arrays (a HgCdTe hybrid and a Pt:Si CCD) describing pixel nonlinearities, 1/f noise, and residual spatial noise (after nonuniforming correction). Of particular emphasis is spatial noise as a function of the lapsed time since the last calibration and the calibration process selected. The resulting spatial noise is examined in terms of its effect on the NEAT performance of each array tested and comparisons are made. Finally, a discussion of implications for array developers is given.
Potential coherent structures in nonuniform streaming dusty magnetoplasma
Energy Technology Data Exchange (ETDEWEB)
Vranjes, Jovo [Inst. of Physics, Belgrade (Yugoslavia); Shukla, Padma Kant [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik IV, Bochum (Germany)
2001-07-01
In this paper we study linear and nonlinear behaviour of modified convective cells and vortices in nonuniform dusty magnetoplasmas with perpendicular and parallel to the magnetic field plasma flows, and in basically two different physical systems, with stationary (corresponding to the case of ShuklaVarma mode) and nonstationary (i.e. taking part in perturbations) dust particles. For the case of stationary dust, by choosing some specific profiles for the sheared plasma flow and the dust density, we analyze the eigenvalue equation in order to deduce the growth rate. A threshold is also obtained for the wavenumber separating spatially damped and convective modes (growing in space) due to its interaction with the sheared plasma flow. In the nonlinear regime, for both stationary and nonstationary dust particles, and in the presence of various plasma flows perpendicular and parallel to the magnetic field lines, a variety of possible nonlinear solutions, driven by the nonuniform shear flow and dust density is presented, i.e., single and double vortex chains accompanied with zonal flows, and tripolar and global vortices. (author)
Going from microscopic to macroscopic on nonuniform growing domains.
Yates, Christian A; Baker, Ruth E; Erban, Radek; Maini, Philip K
2012-08-01
Throughout development, chemical cues are employed to guide the functional specification of underlying tissues while the spatiotemporal distributions of such chemicals can be influenced by the growth of the tissue itself. These chemicals, termed morphogens, are often modeled using partial differential equations (PDEs). The connection between discrete stochastic and deterministic continuum models of particle migration on growing domains was elucidated by Baker, Yates, and Erban [Bull. Math. Biol. 72, 719 (2010)] in which the migration of individual particles was modeled as an on-lattice position-jump process. We build on this work by incorporating a more physically reasonable description of domain growth. Instead of allowing underlying lattice elements to instantaneously double in size and divide, we allow incremental element growth and splitting upon reaching a predefined threshold size. Such a description of domain growth necessitates a nonuniform partition of the domain. We first demonstrate that an individual-based stochastic model for particle diffusion on such a nonuniform domain partition is equivalent to a PDE model of the same phenomenon on a nongrowing domain, providing the transition rates (which we derive) are chosen correctly and we partition the domain in the correct manner. We extend this analysis to the case where the domain is allowed to change in size, altering the transition rates as necessary. Through application of the master equation formalism we derive a PDE for particle density on this growing domain and corroborate our findings with numerical simulations.
Electrostatic ion-cyclotron waves in a nonuniform magnetic field
International Nuclear Information System (INIS)
Cartier, S.L.; D'Angelo, N.; Merlino, R.L.
1985-01-01
The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f> or approx. =f/sub c/i, where f/sub c/i is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism
Non-Uniform Cathode Emission Studies of a MIG Gun
Marchewka, C. D.; Shapiro, M. A.; Sirigiri, J. R.; Temkin, R. J.
2004-11-01
We present the initial results of the modeling of the effect of emission non-uniformity in 96 kV, 40 A Magnetron Injection Gun (MIG) of a 1.5 MW 110 GHz gyrotron using a 3D gun simulation code. The azimuthal emission nonuniformity can lead to increased mode competition and an overall decreased efficiency of the device [1]. The electron beam is modeled from the cathode to a downstream position where the velocity spread saturates using the AMAZE 3D suite of codes. After bench marking the results of the 3D code with 2D codes such as TRAK2D and EGUN, the emitter was modified to simulate asymmetric emission from the cathode to gain an understanding into the effects of inhomogeneous beam current density on the velocity spread and pitch factor of the electron beam. [1] G. S. Nusinovich, A.N. Vlasov, M. Botton, T. M. Antonsen, Jr., S. Cauffman, K. Felch, ``Effect of the azimuthal inhomogeneity of electron emission on gyrotron operation,'' Phys. Plasmas, vol. 8, no. 7, pp. 3473-3479, 2001
Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.
Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A
2018-02-20
Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.
Laterally excited flexible tanks with nonuniform density liquid
International Nuclear Information System (INIS)
Tang, Yu
1996-01-01
A study of the dynamic responses of flexible tanks containing nonuniform liquid under horizontal base excitations is presented. The system considered is an upright, circular cylindrical tank filled with an incompressible and inviscid liquid in which the density increases with the liquid depth. Only the impulsive components of response are considered in this study since the convective components can be computed by considering the tank to be rigid. It is shown in this study that for tanks with height-to-radius ratios between 0.3 and 1.2, the response quantities may be estimated utilizing the rigid tank solutions. Also, it is found that the pressure distribution along the tank wall is not sensitive to the detailed distribution function of the liquid density, and that the base shear and moments for the tank with nonuniform liquid can be estimated conservatively by assuming that the tank is filled with an equivalent uniform liquid density that preserves the total liquid weight. Finally, a simple equation for evaluating the fundamental natural frequency of the system is proposed
Identification of the material properties in nonuniform nanostructures
International Nuclear Information System (INIS)
Bao, Gang; Xu, Xiang
2015-01-01
This paper is concerned with addressing two significant challenges arising from quantifying mechanical properties of nanomaterials, namely nonuniformity of the nanomaterial and the high noise level of measurements. For nonuniformity, an explicit solution is derived for the general Euler–Bernoulli equation in terms of the Green function for the Poisson equation. Then, by examining a stochastic source, the systematic error may be removed from measurements, which leads to more accurate estimation of mechanical properties. Based on Itô integral properties, three deterministic Fredholm integral equations can be deduced to extract the stiffness and the structure of the random source from measured data. To overcome ill-posedness and high nonlinearity in solving the Fredholm equations, a Tikhonov regularization method is developed with an a priori strategy of choosing the regularization parameter. Moreover, under a regularity assumption for the stiffness coefficient and structures of the random source, the convergence rate can be obtained in the sense of probability. Numerical examples are presented to illustrate the validity and effectiveness of the novel model and regularization method. (paper)
Nonuniform code concatenation for universal fault-tolerant quantum computing
Nikahd, Eesa; Sedighi, Mehdi; Saheb Zamani, Morteza
2017-09-01
Using transversal gates is a straightforward and efficient technique for fault-tolerant quantum computing. Since transversal gates alone cannot be computationally universal, they must be combined with other approaches such as magic state distillation, code switching, or code concatenation to achieve universality. In this paper we propose an alternative approach for universal fault-tolerant quantum computing, mainly based on the code concatenation approach proposed in [T. Jochym-O'Connor and R. Laflamme, Phys. Rev. Lett. 112, 010505 (2014), 10.1103/PhysRevLett.112.010505], but in a nonuniform fashion. The proposed approach is described based on nonuniform concatenation of the 7-qubit Steane code with the 15-qubit Reed-Muller code, as well as the 5-qubit code with the 15-qubit Reed-Muller code, which lead to two 49-qubit and 47-qubit codes, respectively. These codes can correct any arbitrary single physical error with the ability to perform a universal set of fault-tolerant gates, without using magic state distillation.
PREFACE: Vibrations at surfaces Vibrations at surfaces
Rahman, Talat S.
2011-12-01
This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of
Acute abdomen due to primary omental torsion: case report.
Tsironis, Apostolos; Zikos, Nikolaos; Bali, Christina; Pappas-Gogos, George; Koulas, Spiridon; Katsamakis, Nikolaos
2013-01-01
Primary torsion of the greater omentum is an uncommon cause of acute abdominal pain that mainly affects adults in their fourth or fifth decade. It was first described by Eitel in 1899. Since then, more than 300 cases have been reported in the published literature. Clinical presentation and imaging findings are often of limited value in the diagnosis of primary omental torsion (POT). The patients usually undergo laparotomy for "acute appendicitis" or acute abdomen of poorly defined origin. To provide a detailed description of this rare cause of acute abdomen. We report a case of POT in a woman of reproductive age and discuss contemporary methods in diagnosis and management of the condition. Nowadays, laparoscopy is a safe and effective approach for the diagnosis and management of POT, with the advantages of reduced postoperative pain and hospital stay. Conservative management has also been advocated by some authors in selected patients with a preoperative diagnosis of POT based on computed tomography findings. Copyright © 2013 Elsevier Inc. All rights reserved.
Cosmology with torsion: An alternative to cosmic inflation
International Nuclear Information System (INIS)
Poplawski, Nikodem J.
2010-01-01
We propose a simple scenario which explains why our Universe appears spatially flat, homogeneous and isotropic. We use the Einstein-Cartan-Kibble-Sciama (ECKS) theory of gravity which naturally extends general relativity to include the spin of matter. The torsion of spacetime generates gravitational repulsion in the early Universe filled with quarks and leptons, preventing the cosmological singularity: the Universe expands from a state of minimum but finite radius. We show that the dynamics of the closed Universe immediately after this state naturally solves the flatness and horizon problems in cosmology because of an extremely small and negative torsion density parameter, Ω S ∼-10 -69 . Thus the ECKS gravity provides a compelling alternative to speculative mechanisms of standard cosmic inflation. This scenario also suggests that the contraction of our Universe preceding the bounce at the minimum radius may correspond to the dynamics of matter inside a collapsing black hole existing in another universe, which could explain the origin of the Big Bang.
CT measurements of torsion and length in the lower extremities
International Nuclear Information System (INIS)
Waidelich, H.A.; Strecker, W.; Schneider, E.
1992-01-01
Complex corrective osteotomies in the lower extremities require precise preoperative planning. Fifty patients who had suffered fractures of the lower limbs and had been treated by osteosynthetic or conservative methods were studied, using a GE 9800 Quick CT; accurate and reproducible measurements of the angles of torsion of the femur and tibia were obtained. Digital images were produced to standardise the planes of measurement and to measure the length of the limb. The most important clinical measurement is the intra-individual difference of the torsional angles. Amongst normals this is 4.3 ± 2.3deg in the femur and 6.1 ± 4.5deg in the tibia. Radiation exposure was measured by a LiF-thermoluminescence dosimeter on an Alderson phantom. Skin dose was 6.3 ± 1.2 mGy and gonadal dose for females was 2.5 ± 0.3 mGy and for males 0.7 ± 0.1 mGy. (orig./GDG) [de
Strengthening of Steel Columns under Load: Torsional-Flexural Buckling
Directory of Open Access Journals (Sweden)
Martin Vild
2016-01-01
Full Text Available The paper presents experimental and numerical research into the strengthening of steel columns under load using welded plates. So far, the experimental research in this field has been limited mostly to flexural buckling of columns and the preload had low effect on the column load resistance. This paper focuses on the local buckling and torsional-flexural buckling of columns. Three sets of three columns each were tested. Two sets corresponding to the base section (D and strengthened section (E were tested without preloading and were used for comparison. Columns from set (F were first preloaded to the load corresponding to the half of the load resistance of the base section (D. Then the columns were strengthened and after they cooled, they were loaded to failure. The columns strengthened under load (F had similar average resistance as the columns welded without preloading (E, meaning the preload affects even members susceptible to local buckling and torsional-flexural buckling only slightly. This is the same behaviour as of the tested columns from previous research into flexural buckling. The study includes results gained from finite element models of the problem created in ANSYS software. The results obtained from the experiments and numerical simulations were compared.