Non-uniform current distribution in a force-cooled superconductor under changing magnetic field
International Nuclear Information System (INIS)
Koizumi, Norikiyo
2000-02-01
Strands in a large current force-cooled superconductor, referred to a CICC (cable-in-conduit conductor) hereafter, are coated with formvar (insulated layer) or chrome plating (high resistive layer) to reduce coupling current loss due to magnetic field variation. The author first carried out an experiment of the large superconducting coil consisting of such CICCs for demonstration of their applicability to a large superconducting coil. These CICCs exhibited instability, i.e. the normal zone propagation with thermal runaway (quench), at 1/20 and 1/5 of the expected conductor critical currents, respectively. The author constructed the database of this instability and studies its reason through experimental and theoretical investigations and then finds such instability is caused as a result of non-uniform current distribution in the conductor. Joule heating loss at electrical connections at the ends of the conductor should be small. Therefore, the strands in the CICC are electrically connected from each other with low resistance there. Circulation current is induced in the loop composed of the strands electrically connected at the ends of the conductor if its leakage magnetic flux is not completely vanished. The non-uniform current distribution is caused as a result of superimposition of the circulation and transport currents. The strand carrying large current becomes the normal state when it reaches or approaches to its critical current. Thus, the strands are twisted in order to vanish the leakage magnetic flux. The instability due to the current imbalance was not observed in the middle-scale coil (an element coil, such as a single double-pancake, of a large superconducting coil) consisting of the conductor in which the formvar-coated strands were twisted as above-mentioned. Consequently, it was believed that the leakage magnetic flux could be vanished by the normal twisting. However, the magnetic field increases in a large coil as a result of piling element coils
DEFF Research Database (Denmark)
Filatrella, G; Pedersen, Niels Falsig
1999-01-01
We have numerically investigated the behavior of stacks of long Josephson junctions considering a nonuniform bias profile. In the presence of a microwave field the nonuniform bias, which favors the formation of fluxons, can give rise to a change of the sequence of radio-frequency induced steps...
International Nuclear Information System (INIS)
Mejlikhov, E.Z.; Farzetdinova, R.M.
1997-01-01
Critical current of inhomogeneous intergranular Josephson transition is calculated in the assumption concerning superconductivity suppression by local strains of boundary dislocations with random distribution
Murtomaeki, Jaako; Kirby, Glen; Rossi, Lucio; Ruuskanen, Janne; Stenvall, Antti; Murtomaeki, Jaako
2017-01-01
Future high-energy accelerators will need very high magnetic ﬁelds in the range of 20 T. The EuCARD-2 WP10 Future Magnets collaboration is aiming at testing HTS-based Roebel cables in an accelerator magnet. The demonstrator should produce around 17 T, when inserted into the 100 mm aperture of Feather-M2 13 T outsert magnet. HTS Roebel cables are assembled from meander shaped REBCO coated conductor tapes. In comparison with fair level of uniformity of current distribution in cables made out of round Nb-Ti or Nb$_{3}$Sn strands, current distribution within the coils wound from Roebel cables is highly non-homogeneous. It results in nonuniform electromagnetic force distribution over the cable that could damage the very thin REBCO superconducting layer. This paper focuses on the numerical models to describe the effect of the non-homogenous current distribution on stress distribution in the demonstrator magnet designed for the EuCARD-2 project. Preliminary results indicate that the impregnation bonding betweenthe...
International Nuclear Information System (INIS)
Wadayama, Y.; Koizumi, N.; Takahashi, Y.; Matsui, K.; Tsuji, H.; Shimamoto, S.
1996-01-01
30kA-NbTi Demo Poloidal Coil (DPC-U) exhibited instability such as the conductor quenches at 40% of the rated current which is still much smaller than the expected conductor critical current. It was found that this instability was caused by the non-uniform current distribution in the DPC-U conductor whose strands were insulated from each other. To investigate the instability of the DPC-U conductor, a stability experiment of a subsize conductor consisting of 27 strands was performed and the effect of the current imbalance on the stability was investigated. The current imbalance was forcibly established in the conductor using two current sources in this experiment. The experimental results indicate that the stability margin decreases as the current imbalance becomes larger and that the stability margin of the conductor is governed by the stability of the strand with the highest current in the conductor. Also, it is confirmed from the experimental results that the instability of DPC-U has to be attributed to the current imbalance in the conductor
Verweij, A P
1998-01-01
Electrical measurements on samples of superconducting cables are usually performed in order to determine the critical current $I_c$ and the n-value, assuming that the voltage U at the transition from the superconducting to the normal state follows the power law, U\\sim($I/I_c$)$^n$. An accurate measurement of $I_c$ and n demands, first of all, good control of temperature and field, and precise measurement of current and voltage. The critical current and n-value of a cable are influenced by the self-field of the cable, an effect that has to be known in order to compare the electrical characteristics of the cable with those of the strands from which it is made. The effect of the self-field is dealt with taking into account the orientation and magnitude of the applied field and the n-value of the strands. An important source of inaccuracy is related to the distribution of the currents among the strands. Non-uniform distributions, mainly caused by non-equal resistances of the connections between the strands of the...
Effect of nonuniform fuel distribution
International Nuclear Information System (INIS)
Katakura, Jun-ichi
1987-01-01
In order to ensure the subcriticality of nuclear fuel, the method of controlling the mass, form or dimensions below the limit values and the method of confirming subcriticality by calculation are taken, but at this time, it is often assumed that the concentration of fuel is constant in a fuel region, or fuel rods are arranged at constant intervals. However, in the extraction process in fuel reprocessing or in fuel storage vessels, the concentration distribution may arise in fuel regions even though temporarily. Even if subcriticality is expected in a uniform system, when concentration distribution arises, and an uneven system results in, criticality may occur. Therefore, it is important to grasp the effect of uneven fuel distribution for ensuring the safety against criticality. In this paper, the effect of uneven fuel distribution is discussed, centering around the critical mass. The examples in literatures and the examples of calculation of uneven fuel distribution are shown. As the result of calculation in Japan Atomic Energy Research Institute, in a high enrichment U-235-water system, the critical mass decreased by about 7 % due to uneven distribution, which nearly agreed with the result of Clark of about 6 %. As for a low enrichment system, the conspicuous decrease of the critical mass was not observed. (Kako, I.)
Potential distribution of a nonuniformly charged ellipsoid
International Nuclear Information System (INIS)
Kiwamoto, Y.; Aoki, J.; Soga, Y.
2004-01-01
A convenient formula is obtained for fast calculation of the three-dimensional potential distribution associated with a spatially varying charge-density distribution by reconstructing it as a superposed set of nested spheroidal shells. It is useful for experimental analyses of near-equilibrium states of non-neutral plasmas and for quick evaluation of the gravity field associated with stellar mass distributions
A poloidal non-uniformity of the collisionless parallel current in a tokamak plasma
Energy Technology Data Exchange (ETDEWEB)
Romannikov, A.; Fenzi-Bonizec, C
2005-07-01
The collisionless distortion of the ion (electron) distribution function at certain points on a magnetic surface is studied in the framework of a simple model of a large aspect ratio tokamak plasma. The flow velocity driven by this distortion is calculated. The possibility of an additional non-uniform collisionless parallel current density on a magnetic surface, other than the known neo-classical non-uniformity is shown. The difference between the parallel current density on the low and high field side of a magnetic surface is close to the neoclassical bootstrap current density. The first Tore-Supra experimental test indicates the possibility of the poloidal non-uniformity of the parallel current density. (authors)
Measurement of reactivity effect caused by nonuniform fuel distribution
International Nuclear Information System (INIS)
Yamane, Yoshihiro; Hirano, Yasushi; Yasui, Hazime; Nishina, Kojiro; Shiroya, Seiji
1991-01-01
A reactivity effect due to a spatial variation of nuclear fuel concentration is an important problem in a reprocessing plant. To estimate this reactivity effect theoretically, the ''Goertzel's necessary condition, and th Fuel Importance'' theory have been proposed. In order to verify these theories, we have performed systematic measurements of reactivity effect due to the nonuniformity in the fuel distribution within the Kyoto University Critical Assembly. Neutron flux distribution and Fuel Importance distribution were also determined. A nonuniform assembly whose fuel concentration in the center region was 40% higher than the uniform one was found to have an excess reactivity of 0.3%Δk/k, with the same total uranium mass for which the uniform assembly was just critical. Moreover, its spatial distribution of thermal neutron flux and of Fuel Importance were more flat than those of the uniform assembly, as expected by the Goertzel's condition and the Fuel Importance theory. (Author)
Nonimaging optics for nonuniform brightness distributions
Jenkins, David G.; Winston, Roland
1995-08-01
We present a general design method of nonimaging optics that obtains the highest possible concentration for a given absorber shape. This technique, which uses a complimentary edge ray to simplify the geometrical formulism, recovers familiar designs for flat phase space distributions, such as trumpets, and (theta) 1-(theta) 2 concentrators. This method is easy to use and handles diverse boundary conditions, such as reflection, satisfying total internal reflection or design within a material of graded index. Presented is a novel two-stage 2D solar collector with a fixed circular primary mirror and nonimaging secondary. This newly developed secondary gives a 25% improvement over conventional nonimaging concentrators.
Directory of Open Access Journals (Sweden)
Jeom Kee Paik
2012-01-01
Full Text Available The Galerkin method is applied to analyze the elastic large deflection behavior of metal plates subject to a combination of in-plane loads such as biaxial loads, edge shear and biaxial inplane bending moments, and uniformly or nonuniformly distributed lateral pressure loads. The motive of the present study was initiated by the fact that metal plates of ships and ship-shaped offshore structures at sea are often subjected to non-uniformly distributed lateral pressure loads arising from cargo or water pressure, together with inplane axial loads or inplane bending moments, but the current practice of the maritime industry usually applies some simplified design methods assuming that the non-uniform pressure distribution in the plates can be replaced by an equivalence of uniform pressure distribution. Applied examples are presented, demonstrating that the current plate design methods of the maritime industry may be inappropriate when the non-uniformity of lateral pressure loads becomes more significant.
The Influence of nonuniform activity distribution on cellular dosimetry
International Nuclear Information System (INIS)
Naling, Song; Yuan, Tian; Liangan, Zhang; Guangfu, Dai
2008-01-01
S value is an important parameter in determination of absorbed dose in nuclear medicine and radiobiology. The distribution of radioactivity shows significant influence on the S value especially in microdosimetry. In present work, a semi Monte Carlo Model is developed to calculate the microdosimetric cellular S value for different micro-distributions of radioactivity, i.e. uniform, linear increase, linear decrease, exponential increase, exponential decrease and centroid distribution. Emission of alpha particles is simulated by Monte Carlo model and the energy imparted to the target volume is calculated by the analytical Continuous Slowing Down Approximation (CSDA) model and the spline interpolation of range-energy relationship. We calculate tables of S values for 213 Po and 210 Po with various dimensions and most important with various possible micro-distributions of radioactivity, such as linear increase, linear decrease, exponential increase and exponential decrease. Then we compare the S values from cell to cell of uniform distribution with the Hamacher's results to test the feasibility of our model. S values of some nonuniform micro-distributions are compared to the corresponding data of the uniform distribution. The possible sources of these differences are theoretical analyzed. (author)
Directory of Open Access Journals (Sweden)
Sutrisno Wahyuniarsih
2017-01-01
Full Text Available Uniform corrosion still widely used by a lot of researchers and engineers to analyze the corrosion induced cracking. However, in practice, corrosion process occurred non-uniformly. The part nearest to the exposed surface is more likely to have faster corrosion initiation compared with other regions. This research is mainly focused on investigating the effect of non-uniform rust distribution to cover cracking in reinforced concrete. An experimental test performed using accelerated corrosion test by using 5% NaCl solution and applied a constant electric current to the concrete samples. The rust distribution and measurement were observed by using a digital microscope. Based on the experimental result, it was found that the rust was distributed in a non-uniform pattern. As a result, the cracks also formed non-uniformly along the perimeter of steel bar. At the last part of this paper, a simulation result of concrete cracking induced by non-uniform corrosion is presented. The result compared with a simulation using uniform corrosion assumption to investigate the damage pattern of each model. The simulation result reveals stress evolution due to rust expansion which leads to concrete cracking. Furthermore, a comparison of stresses induced by non-uniform corrosion and uniform corrosion indicates that non-uniform corrosion could lead to earlier damage to the structure which is specified by the formation and propagation of the crack.
Degradation nonuniformity in the solar diffuser bidirectional reflectance distribution function.
Sun, Junqiang; Chu, Mike; Wang, Menghua
2016-08-01
The assumption of angular dependence stability of the solar diffuser (SD) throughout degradation is critical to the on-orbit calibration of the reflective solar bands (RSBs) in many satellite sensors. Recent evidence has pointed to the contrary, and in this work, we present a thorough investigative effort into the angular dependence of the SD degradation for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP) satellite and for the twin Moderate-resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua spacecrafts. One common key step in the RSB calibration is the use of the SD degradation performance measured by an accompanying solar diffuser stability monitor (SDSM) as a valid substitute for the SD degradation factor in the direction of the RSB view. If SD degradations between these two respective directions do not maintain the same relative relationship over time, then the unmitigated use of the SDSM-measured SD degradation factor in the RSB calibration calculation will generate bias, and consequently, long-term drift in derived science products. We exploit the available history of the on-orbit calibration events to examine the response of the SDSM and the RSB detectors to the incident illumination reflecting off SD versus solar declination angle and show that the angular dependency, particularly at short wavelengths, evolves with respect to time. The generalized and the decisive conclusion is that the bidirectional reflectance distribution function (BRDF) of the SD degrades nonuniformly with respect to both incident and outgoing directions. Thus, the SDSM-based measurements provide SD degradation factors that are biased relative to the RSB view direction with respect to the SD. The analysis also reveals additional interesting phenomena, for example, the sharp behavioral change in the evolving angular dependence observed in Terra MODIS and SNPP VIIRS. For SNPP VIIRS the mitigation for this
Emittance growth caused by nonuniform charge distribution of bunched beam in linac
International Nuclear Information System (INIS)
Chen Yinbao; Zhang Zhenhai
1993-09-01
The nonlinear space charge effect of bunched beam in linac is one of the important reasons that induces the emittance growth because of the conversion of the field energy to kinetic energy. The authors have worked out the internal field energies associated with some nonuniform space change distributions of a bunched beam, such as Gaussian distribution, waterbag distribution and parabolic distribution. And the emittance growths caused by these nonuniformities are obtained
Clinical implications of alternative TCP models for nonuniform dose distributions
International Nuclear Information System (INIS)
Deasy, J. O.
1995-01-01
Several tumor control probability (TCP) models for nonuniform dose distributions were compared, including: (a) a logistic/inter-patient-heterogeneity model, (b) a probit/inter-patient-heterogeneity model, (c) a Poisson/radioresistant-strain/identical-patients model, (d) a Poisson/inter-patient-heterogeneity model and (e) a Poisson/intra-tumor- and inter-patient-heterogeneity model. The models were analyzed in terms of the probability of controlling a single tumor voxel (the voxel control probability, or VCP), as a function of voxel volume and dose. Alternatively, the VCP surface can be thought of as the effect of a small cold spot. The models based on the Poisson equation which include inter-patient heterogeneity ((d) and (e)) have VCP surfaces (VCP as a function of dose and volume) which have a threshold 'waterfall' shape: below the waterfall (in dose), VCP is nearly zero. The threshold dose decreases with decreasing voxel volume. However, models (a), (b), and (c) all show a high probability of controlling a voxel (VCP>50%) with very low dose (e.g., 1 Gy) if the voxel is small (smaller than about 10 -3 of the tumor volume). Model (c) does not have the waterfall shape at low volumes due to the assumption of patient uniformity and a neglect of the effect of the clonogens which are more radiosensitive (and more numerous). Models (a) and (b) deviate from the waterfall shape at low volumes due to numerical differences between the functions used and the Poisson function. Hence, the Possion models which include inter-patient heterogeneities ((d) and (e)) are more sensitive to the effects of small cold spots than the other models considered
Measurement of fuel importance distribution in non-uniformly distributed fuel systems
International Nuclear Information System (INIS)
Yamane, Yoshihiro; Hirano, Yasushi; Yasui, Hazime; Izima, Kazunori; Shiroya, Seiji; Kobayashi, Keiji.
1995-01-01
A reactivity effect due to a spatial variation of nuclear fuel concentration is an important problem for nuclear criticality safety in a reprocessing plant. As a theory estimating this reactivity effect, the Goertzel and fuel importance theories are well known. It has been shown that the Goertzel's theory is valid in the range of our experiments based on measurements of reactivity effect and thermal neutron flux in non-uniformly distributed fuel systems. On the other hand, there have been no reports concerning systematic experimental studies on the flatness of fuel importance which is a more general index than the Goertzel's theory. It is derived from the perturbation theory that the fuel importance is proportional to the reactivity change resulting from a change of small amount of fuel mass. Using a uniform and three kinds of nonuniform fuel systems consisting of 93.2% enriched uranium plates and polyethylene plates, the fuel importance distributions were measured. As a result, it was found experimentally that the fuel importance distribution became flat, as its reactivity effect became large. Therefore it was concluded that the flatness of fuel importance distribution is the useful index for estimating reactivity effect of non-uniformly distributed fuel system. (author)
Khmyrova, Irina; Watanabe, Norikazu; Kholopova, Julia; Kovalchuk, Anatoly; Shapoval, Sergei
2014-07-20
We develop an analytical and numerical model for performing simulation of light extraction through the planar output interface of the light-emitting diodes (LEDs) with nonuniform current injection. Spatial nonuniformity of injected current is a peculiar feature of the LEDs in which top metal electrode is patterned as a mesh in order to enhance the output power of light extracted through the top surface. Basic features of the model are the bi-plane computation domain, related to other areas of numerical grid (NG) cells in these two planes, representation of light-generating layer by an ensemble of point light sources, numerical "collection" of light photons from the area limited by acceptance circle and adjustment of NG-cell areas in the computation procedure by the angle-tuned aperture function. The developed model and procedure are used to simulate spatial distributions of the output optical power as well as the total output power at different mesh pitches. The proposed model and simulation strategy can be very efficient in evaluation of the output optical performance of LEDs with periodical or symmetrical configuration of the electrodes.
Modeling of parallel-plate regenerators with non-uniform plate distributions
DEFF Research Database (Denmark)
Jensen, Jesper Buch; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden
2010-01-01
plate spacing distributions are presented in order to understand the impact of spacing non-uniformity. Simulations of more realistic distributions where the plate spacings follow normal distributions are then discussed in order to describe the deviation of the performance of a regenerator relative...
Current Density Distribution on the Perimeter of Waveguide Exciter Cylindrical Vibrator Conductor
Zakharia, Yosyp
2010-01-01
On ground of electrodynamic analysis the surface current distribution nonuniformity on the perimeter of waveguide-exciter cylindrical conductor is found. Considerable influence of current distribution nonuniformity on exciter input reactance is established. It is also showed, that the current distribution on the vibrator perimeter, for conductor radius no greater then 0,07 of waveguide cross section breadth, approximately uniform is.
Generation of zonal magnetic fields by drift waves in a current carrying nonuniform magnetoplasma
International Nuclear Information System (INIS)
Shukla, Nitin; Shukla, P.K.
2010-01-01
It is shown that zonal magnetic fields (ZMFs) can be nonlinearly excited by incoherent drift waves (DWs) in a current carrying nonuniform magnetoplasma. The dynamics of incoherent DWs in the presence of ZMFs is governed by a wave-kinetic equation. The governing equation for ZMFs in the presence of nonlinear advection force of the DWs is obtained from the parallel component of the electron momentum equation and the Faraday law. Standard techniques are used to derive a nonlinear dispersion relation, which depicts instability via which ZMFs are excited in plasmas. ZMFs may inhibit the turbulent cross-field particle and energy transport in a nonuniform magnetoplasma.
Spatial linear flows of finite length with nonuniform intensity distribution
Directory of Open Access Journals (Sweden)
Mikhaylov Ivan Evgrafovich
2014-02-01
Full Text Available Irrotational flows produced by spatial linear flows of finite length with different uneven lows of discharge over the flow length are represented in cylindrical coordinate system. Flows with the length 2a are placed in infinite space filled with ideal (inviscid fluid. In “А” variant discharge is fading linearly downward along the length of the flow. In “B” variant in upper half of the flow (length a discharge is fading linearly downward, in lower half of the flow discharge is fading linearly from the middle point to lower end. In “C” variant discharge of the flow is growing linearly from upper and lower ends to middle point.Equations for discharge distribution along the length of the flow are provided for each variant. Equations consist of two terms and include two dimensional parameters and current coordinate that allows integrating on flow length. Analytical expressions are derived for speed potential functions and flow speed components for flow speeds produced by analyzed flows. These analytical expressions consist of dimensional parameters of discharge distribution patterns along the length of the flow. Flow lines equation (meridional sections of flow surfaces for variants “A”, “B”, “C” is unsolvable in quadratures. Flow lines plotting is proposed to be made by finite difference method. Equations for flow line plotting are provided for each variant. Calculations of these equations show that the analyzed flows have the following flow lines: “A” has confocal hyperbolical curves, “B” and “C” have confocal hyperboles. Flow surfaces are confocal hyperboloids produced by rotation of these hyperboles about the axis passing through the flows. In “A” variant the space filled with fluid is separated by vividly horizontal flow surface in two parts. In upper part that includes the smaller part of the flow length flow lines are oriented downward, in lower part – upward. The equation defining coordinate of
Nonuniform distribution of gas-liquid system in gas-distributing collector
Energy Technology Data Exchange (ETDEWEB)
Kasimov, R.Sh.; Abdullayev, E.A.; Eyubov, A.A.; Khudobakhshiyev, M.R.
1979-01-01
In the example of studying GS-1 of the field Shatlyk, the effect of nonuniform distribution of the liquid phase is examined (hydrocarbon condensate, water) on production lines of the unit of low temperature separation on the process of field preparation of gas. In particular, the unequal efficiency of single-type equipment operating under comparable conditions is noted: differences in the magnitude of under recuperation of coal of the recuperation heat exchangers, in the values of the integrated effect of Joule-Thomson, the coefficients of removal of low-temperature separators, etc. A consequence of this situation is deterioration in the quality of gas fed to the main pipe line. It is suggested that efforts be concentrated on developing technical designs which guarantee uniform supply of liquid from the field collector to the production lines of the unit for low temperature separation.
Modelling non-uniform strain distributions in aerospace composites using fibre Bragg gratings
Rajabzadehdizaji, Aydin; Groves, R.M.; Hendriks, R.C.; Heusdens, R.; Chung, Y.; Jin, W.; Lee, B.; Canning, J.; Nakamura, K.; Yuan, L.
2017-01-01
In this paper the behaviour of fibre Bragg grating (FBG) sensors under non-uniform strain distributions was analysed. Using the fundamental matrix approach, the length of the FBG sensor was discretised, with each segment undergoing different strain values. FBG sensors that are embedded inside
On the burnout in annular channels at non-uniform heat release distribution in length
International Nuclear Information System (INIS)
Ornatskij, A.P.; Chernobaj, V.A.; Vasil'ev, A.F.; Struts, G.V.
1982-01-01
The effect of axial heat release non-uniformity on the conditions of the burnout in annular channels is investigated. The investigation is carried out in annular channels with different laws of heat flux density distribution by channel length. The heat release non-uniformity coefficient was varied from 4.4 to 10, the pressure from 9.8 to 17.6 MPa, mass rate from 500 to 1700 kg (m 2 xS), liquid temperature (chemically desalted water) at the channel inlet constituted 30-300 deg C. The experiments have been performed at the test bench with a closed circulation circuit. The data obtained testify to the fact that under non-uniform heat release the influence of main operating parameters on the value of critical power is of the same character as under uniform heat release. The character of wall temperature variation by channel length before the burnout is determined by the form of heat supply temperature profile. The temperature maximum is observed in the region lying behind the cross section with maximum heat flux. The conclusion is drawn that the dominant influence on the position of the cross section in which the burnout arises is exerted by the form of heat flux density distribution by length. Independently of this distribution form the burnout developes when the vapour content near the wall reaches a limiting value
Distributed ISAR Subimage Fusion of Nonuniform Rotating Target Based on Matching Fourier Transform.
Li, Yuanyuan; Fu, Yaowen; Zhang, Wenpeng
2018-06-04
In real applications, the image quality of the conventional monostatic Inverse Synthetic Aperture Radar (ISAR) for the maneuvering target is subject to the strong fluctuation of Radar Cross Section (RCS), as the target aspect varies enormously. Meanwhile, the maneuvering target introduces nonuniform rotation after translation motion compensation which degrades the imaging performance of the conventional Fourier Transform (FT)-based method in the cross-range dimension. In this paper, a method which combines the distributed ISAR technique and the Matching Fourier Transform (MFT) is proposed to overcome these problems. Firstly, according to the characteristics of the distributed ISAR, the multiple channel echoes of the nonuniform rotation target from different observation angles can be acquired. Then, by applying the MFT to the echo of each channel, the defocused problem of nonuniform rotation target which is inevitable by using the FT-based imaging method can be avoided. Finally, after preprocessing, scaling and rotation of all subimages, the noncoherent fusion image containing all the RCS information in all channels can be obtained. The accumulation coefficients of all subimages are calculated adaptively according to the their image qualities. Simulation and experimental data are used to validate the effectiveness of the proposed approach, and fusion image with improved recognizability can be obtained. Therefore, by using the distributed ISAR technique and MFT, subimages of high-maneuvering target from different observation angles can be obtained. Meanwhile, by employing the adaptive subimage fusion method, the RCS fluctuation can be alleviated and more recognizable final image can be obtained.
Directory of Open Access Journals (Sweden)
M. I. Baranov
2017-06-01
Full Text Available Purpose. To obtain new calculation correlations, determining approximate energy dissipation and electric erosion of massive basic metallic electrodes in the high-voltage high-current air switchboard (HVCAS of atmospheric pressure, in-use in the bit chain of the high-voltage electrophysics setting (HVES with the powerful capacity store of energy (CSE. Methodology. Electrophysics bases of technique of high-voltage and large impulsive currents (LIC, scientific and technical bases of development and planning of high-voltage heavy-current impulsive electro-devices, including HVES and powerful CSE, and also methods of measuring in their bit chains of LIC of the microsecond temporal range. Results. On the basis of new engineering approach the results of calculation estimation of excretions energy and electric erosion of massive basic metallic electrodes are resulted in probed HVCAS. New correlations are obtained for the approximate calculation of thermal energy, selected in an impulsive air spark and on the workings surfaces of anode and cathode of HVCAS. It is entered and a new electrophysics concept, touching equivalent active resistance of impulsive air spark, is mathematically certain. New formulas are obtained for the approximate calculation of most depth of single round crater of destruction on the workings surfaces of basic metallic electrodes of HVCAS, and also mass of metal, thrown out magnetic pressure from this crater of destruction on the electrodes of switch for one electric discharge through them powerful CSE HVES. It is shown that the radius of the indicated single crater of destruction is approximately equal to the maximal radius of plasma channel of a spark discharge between a cathode and anode of HVCAS. The executed high-current experiments in the bit chain of HVES with powerful CSE validated row of the got and in-use calculation correlations for the estimation of energy dissipation and electric erosion of metallic electrodes in
Tumour control probability (TCP) for non-uniform activity distribution in radionuclide therapy
International Nuclear Information System (INIS)
Uusijaervi, Helena; Bernhardt, Peter; Forssell-Aronsson, Eva
2008-01-01
Non-uniform radionuclide distribution in tumours will lead to a non-uniform absorbed dose. The aim of this study was to investigate how tumour control probability (TCP) depends on the radionuclide distribution in the tumour, both macroscopically and at the subcellular level. The absorbed dose in the cell nuclei of tumours was calculated for 90 Y, 177 Lu, 103m Rh and 211 At. The radionuclides were uniformly distributed within the subcellular compartment and they were uniformly, normally or log-normally distributed among the cells in the tumour. When all cells contain the same amount of activity, the cumulated activities required for TCP = 0.99 (A-tilde TCP=0.99 ) were 1.5-2 and 2-3 times higher when the activity was distributed on the cell membrane compared to in the cell nucleus for 103m Rh and 211 At, respectively. TCP for 90 Y was not affected by different radionuclide distributions, whereas for 177 Lu, it was slightly affected when the radionuclide was in the nucleus. TCP for 103m Rh and 211 At were affected by different radionuclide distributions to a great extent when the radionuclides were in the cell nucleus and to lesser extents when the radionuclides were distributed on the cell membrane or in the cytoplasm. When the activity was distributed in the nucleus, A-tilde TCP=0.99 increased when the activity distribution became more heterogeneous for 103m Rh and 211 At, and the increase was large when the activity was normally distributed compared to log-normally distributed. When the activity was distributed on the cell membrane, A-tilde TCP=0.99 was not affected for 103m Rh and 211 At when the activity distribution became more heterogeneous. A-tilde TCP=0.99 for 90 Y and 177 Lu were not affected by different activity distributions, neither macroscopic nor subcellular
Directory of Open Access Journals (Sweden)
Dafen Chen
2016-10-01
Full Text Available A battery model that has the capability of analyzing the internal non-uniformity of local state variables, including the state of charge (SOC, temperature and current density, is proposed in this paper. The model is built using a set of distributed parameter equivalent circuits. In order to validate the accuracy of the model, a customized battery with embedded T-type thermocouple sensors inside the battery is tested. The simulated temperature conforms well with the measured temperature at each test point, and the maximum difference is less than 1 °C. Then, the model is applied to analyze the evolution processes of local state variables’ distribution inside the battery during the discharge process. The simulation results demonstrate drastic distribution changes of the local state variables inside the battery during the discharge process. The internal non-uniformity is originally caused by the resistance of positive and negative foils, while also influenced by the change rate of open circuit voltage and the total resistance of the battery. Hence, the factors that affect the distribution of the local state variables are addressed.
Current limitation and formation of plasma double layers in a non-uniform magnetic field
International Nuclear Information System (INIS)
Plamondon, R.; Teichmann, J.; Torven, S.
1986-07-01
Formation of strong double layers has been observed experimentally in a magnetised plasma column maintained by a plasma source. The magnetic field is approximately axially homogenous except in a region at the anode where the electric current flows into a magnetic mirror. The double layer has a stationary position only in the region of non-uniform magnetic field or at the aperture separating the source and the plasma column. It is characterized by a negative differential resistance in the current-voltage characteristic of the device. The parameter space,where the double layer exists, has been studied as well as the corresponding potential profiles and fluctuation spectra. The electric current and the axial electric field are oppositely directed between the plasma source and a potential minimum which is formed in the region of inhomogeneous magnetic field. Electron reflection by the resulting potential barrier is found to be an important current limitation mechanism. (authors)
Energy Technology Data Exchange (ETDEWEB)
Mellor, A.; Domenech-Garret, J.L.; Chemisana, D.; Rosell, J.I. [Departament de Medi Ambient i C.S., University of Lleida, Av. Alcalde Rovira Roure 191, E25198 (Spain)
2009-09-15
A two-dimensional finite element model of current flow in the front surface of a PV cell is presented. In order to validate this model we perform an experimental test. Later, particular attention is paid to the effects of non-uniform illumination in the finger direction which is typical in a linear concentrator system. Fill factor, open circuit voltage and efficiency are shown to decrease with increasing degree of non-uniform illumination. It is shown that these detrimental effects can be mitigated significantly by reoptimization of the number of front surface metallization fingers to suit the degree of non-uniformity. The behavior of current flow in the front surface of a cell operating at open circuit voltage under non-uniform illumination is discussed in detail. (author)
The influence of nonuniform micro-distribution of alpha emitter on microdosimetry in cells
International Nuclear Information System (INIS)
Tian Yuan; Zhang Liang'an; Dai Guangfu
2007-01-01
Objective: To study the influence of nonuniform micro-distribution of alpha emitter on cellular S values(in the radioimmunotherapy). Methods: Emission of alpha particles is randomly simulated by Monte Carlo method; the incident energy and exit energy are calculated with interpolation technique based on the relationship between range and energy of alpha particle and the analytical Continuous Slowing Down Approximation (CSDA) model. So energy deposited in the target area can be obtained. To take 213 Po as an example, cellular S values with various cell dimensions and possible micro-distributions of radioactivity are calculated, such as linear increase, linear decrease, exponential increase and exponential decrease. Results: S values from cell to cell of uniform distribution showed no difference with the Hamacher's results. S values of different micro-distributions are distinguishing with each other. It is indicated that different micro-distributions of radioactivity will result in significant change of average chord length of alpha particles traveling in the target area, as well as the change of average stopping power over the chord, which is primary reason for differences of S values. Conclusions: The nonuniform micro-distributions show remarkable influence on cellular S values and hence should be taken consideration in cellular absorbed dose estimation, especially in microdosimetry. (authors)
Impact of uniform electrode current distribution on ETF
Bents, D. J.
1982-01-01
The design impacts on the ETF electrode consolidation network associated with uniform channel electrode current distribution are examined and the alternate consolidation design which occur are presented compared to the baseline (non-uniform current) design with respect to performance, and hardware requirements. A rational basis is given for comparing the requirements for the different designs and the savings that result from uniform current distribution. Performance and cost impacts upon the combined cycle plant are discussed.
γ-irradiation effect on the electrical properties on n-Ge with nonuniform distribution of impurity
International Nuclear Information System (INIS)
Antonenko, R.S.; Shakhovtsov, V.I.; Shakhovtsova, S.I.
1975-01-01
There has been experimentally investigated the effect of γ-irradiation on the electrical properties of germanium alloyed with antimony, when the alloying element is non-uniformly distributed. It is shown that in response to γ-irradiation the mobility of the current carriers is reduced, whereas the temperature dependence is changed. At the radiation doses providing for a high degree of compensation the temperature dependence of the current carrier mobility changes abnormaly the volt-ampere characteristics of the samples within the 'non-heating' electric field range are linear up to the radiation doses corresponding to the conductivity conversion. The experimental results are discussed from the point of view of the conceptions pertaining to current-carrying ability of a heterogeneous material. There has been drawn up a conclusion that the degree of compensation substantially affects the electrical properties of a semiconductor
The importance of non-uniform dose-distribution in an organ
International Nuclear Information System (INIS)
Richmond, C.R.
1975-01-01
The recent revival of interest in the 'hot particle' problem, especially as regards particulate plutonium and other actinide elements in the lung, stimulated the preparation of this paper. Non-uniformity of dose-distribution has been of concern to standards-setting bodies and other groups such as the National Academy of Sciences and to health protectionists for many years. This paper reviews data from animal experiments that are used by some to implicate particulate plutonium as being especially hazardous to man. Other relevant biological data are also discussed. (author)
Analysis of effect on microdose of 10B nonuniform distribution in cellular
International Nuclear Information System (INIS)
Xie Qin; Geng Changran; Tang Xiaobin; Chen Da
2012-01-01
Boron neutron capture therapy (BNCT) is one of the effective way to treat malignant melanoma and head-neck cancer. The intercellular nonuniform distributions of 10 B in tumor cell impact the estimates of inactivation dose. The α-Li Version l.0 code was developed based on Monte-Carlo method to calculate the S values of cell induced by α and 7 Li particle which are the products of 10 B (n,a) 7 Li. The calculation included two types of cell size, eight kinds of energy of a particle and three kinds of source distributions. Differences between results of this code and an analytical algorithm of MIRD committee were within 1%. On this basis, a total of 3420 cases were calculated and analyzed with different kinds of nucleus radius, cell radius, and source launch position combination. Finally, cellular S values of 10 B (n,a) 7 Li calculated in this paper can be used to compute the excellent precision dose under 10 B compound nonuniform distribution in intercellular scale. (authors)
Reactivity effect of non-uniformly distributed fuel in fuel solution systems
International Nuclear Information System (INIS)
Hirano, Yasushi; Yamane, Yoshihiro; Nishina, Kojiro; Mitsuhashi, Ishi.
1991-01-01
A numerical method to determine the optimal fuel distribution for minimum critical mass, or maximum k-effective, is developed using the Maximum Principle in order to evaluate the maximum effect of non-uniformly distributed fuel on reactivity. This algorithm maximizes the Hamiltonian directly by an iterative method under a certain constraint-the maintenance of criticality or total fuel mass. It ultimately reaches the same optimal state of a flattened fuel importance distribution as another algorithm by Dam based on perturbation theory. This method was applied to two kinds of spherical cores with water reflector in the simulating reprocessing facility. In the slightly-enriched uranyl nitrate solution core, the minimum critical mass decreased by less than 1% at the optimal moderation state. In the plutonium nitrate solution core, the k-effective increment amounted up to 4.3% Δk within the range of present study. (author)
International Nuclear Information System (INIS)
Tyynelä, Jani; Leinonen, Jussi; Moisseev, Dmitri; Nousiainen, Timo; Lerber, Annakaisa von
2014-01-01
In a number of studies it is reported that at the early stages, melting of aggregate snowflakes is enhanced at lower parts. In this paper, the manifestation of the resulting nonuniform distribution of water is studied for radar backscattering cross sections at C, Ku, Ka and W bands. The melting particles are described as spheroids with a mixture of water and air at the bottom part of the particle and a mixture of ice and air at the upper part. The radar backscattering is modeled using the discrete-dipole approximation in a horizontally pointing geometry. The results are compared to the T-matrix method, Mie theory, and the Rayleigh approximation using the Maxwell Garnett mixing formula. We find that the differential reflectivity and the linear depolarization ratio show systematic differences between the discrete-dipole approximation and the T-matrix method, but that the differences are relatively small. The horizontal cross sections show only small differences between the methods with the aspect ratio and the presence of resonance peaks having a larger effect on it than the nonuniform distribution of water. Overall, the effect of anisotropic distribution of water, reported for early stages of melting, is not significant for radar observations at the studied frequencies. -- Highlights: • We model backscattering from spheroidal melting snowflakes at C, Ku, Ka, and W bands. • We study the effect of anisotropic distribution of meltwater in the snow particles. • We find systematic, but relatively small differences for the backscattering properties. • We find that the aspect ratio and resonance peaks have a bigger effect than anisotropic distribution of water. • Anisotropic distribution of water is not significant for radar observations at early stages of melting
Estimation of current density distribution under electrodes for external defibrillation
Directory of Open Access Journals (Sweden)
Papazov Sava P
2002-12-01
Full Text Available Abstract Background Transthoracic defibrillation is the most common life-saving technique for the restoration of the heart rhythm of cardiac arrest victims. The procedure requires adequate application of large electrodes on the patient chest, to ensure low-resistance electrical contact. The current density distribution under the electrodes is non-uniform, leading to muscle contraction and pain, or risks of burning. The recent introduction of automatic external defibrillators and even wearable defibrillators, presents new demanding requirements for the structure of electrodes. Method and Results Using the pseudo-elliptic differential equation of Laplace type with appropriate boundary conditions and applying finite element method modeling, electrodes of various shapes and structure were studied. The non-uniformity of the current density distribution was shown to be moderately improved by adding a low resistivity layer between the metal and tissue and by a ring around the electrode perimeter. The inclusion of openings in long-term wearable electrodes additionally disturbs the current density profile. However, a number of small-size perforations may result in acceptable current density distribution. Conclusion The current density distribution non-uniformity of circular electrodes is about 30% less than that of square-shaped electrodes. The use of an interface layer of intermediate resistivity, comparable to that of the underlying tissues, and a high-resistivity perimeter ring, can further improve the distribution. The inclusion of skin aeration openings disturbs the current paths, but an appropriate selection of number and size provides a reasonable compromise.
Current-induced nonuniform enhancement of sheet resistance in A r+ -irradiated SrTi O3
Roy, Debangsu; Frenkel, Yiftach; Davidovitch, Sagi; Persky, Eylon; Haham, Noam; Gabay, Marc; Kalisky, Beena; Klein, Lior
2017-06-01
The sheet resistance Rs of A r+ irradiated SrTi O3 in patterns with a length scale of several microns increases significantly below ˜40 K in connection with driving currents exceeding a certain threshold. The initial lower Rs is recovered upon warming with accelerated recovery around 70 and 160 K. Scanning superconducting quantum interference device microscopy shows local irreversible changes in the spatial distribution of the current with a length scale of several microns. We attribute the observed nonuniform enhancement of Rs to the attraction of the charged single-oxygen and dioxygen vacancies by the crystallographic domain boundaries in SrTi O3 . The boundaries, which are nearly ferroelectric below 40 K, are polarized by the local electrical field associated with the driven current and the clustered vacancies which suppress conductivity in their vicinity and yield a noticeable enhancement in the device resistance when the current path width is on the order of the boundary extension. The temperatures of accelerated conductivity recovery are associated with the energy barriers for the diffusion of the two types of vacancies.
Proposal for a Domain Wall Nano-Oscillator driven by Non-uniform Spin Currents
Sharma, Sanchar; Muralidharan, Bhaskaran; Tulapurkar, Ashwin
2015-09-01
We propose a new mechanism and a related device concept for a robust, magnetic field tunable radio-frequency (rf) oscillator using the self oscillation of a magnetic domain wall subject to a uniform static magnetic field and a spatially non-uniform vertical dc spin current. The self oscillation of the domain wall is created as it translates periodically between two unstable positions, one being in the region where both the dc spin current and the magnetic field are present, and the other, being where only the magnetic field is present. The vertical dc spin current pushes it away from one unstable position while the magnetic field pushes it away from the other. We show that such oscillations are stable under noise and can exhibit a quality factor of over 1000. A domain wall under dynamic translation, not only being a source for rich physics, is also a promising candidate for advancements in nanoelectronics with the actively researched racetrack memory architecture, digital and analog switching paradigms as candidate examples. Devising a stable rf oscillator using a domain wall is hence another step towards the realization of an all domain wall logic scheme.
Directory of Open Access Journals (Sweden)
Xin Mi Yang
2015-01-01
Full Text Available We make preliminary investigations on a new approach to reducing radar cross section (RCS of conducting objects. This approach employs novel planar metasurfaces characterizing nonuniform distribution of reflection phase. The operation principle of this approach and the design rule of the associated metasurfaces are explained using a simplified theoretical model. We then present a design example of such metasurfaces, in which three-layer stacked square patches with variable sizes are utilized as the reflecting elements. The proposed RCS-reduction approach is verified by both numerical simulations and measurements on the example, under the assumption of normal plane wave incidence. It is observed that, in a fairly wide frequency band (from 3.6 to 5.5 GHz, the presented example is capable of suppressing the specular reflections of conducting plates significantly (by more than 7 dB for two orthogonal incident polarizations.
Effect of nonuniform radial density distribution on the space charge dominated beam bunching
International Nuclear Information System (INIS)
Sing Babu, P.; Goswami, A.; Pandit, V. S.
2011-01-01
Beam dynamics of a space charge dominated beam during the bunch compression is studied self consistently for the case of fixed shape non-uniform bell shape and hollow shape density distributions in the transverse direction. We have used thick slices at different parts of the beam to account for variation in the beam radius in the study of the transverse dynamics. The longitudinal dynamics has been studied using the disc model. The axial variation of the radius of the slices and emittance growth arising from the phase dependence of the transverse rf forces are also included in the simulation. We have modified the beam envelope equation to take into account the longitudinal space charge effect on the transverse motion which arises due to the finite bunch size. To demonstrate the application of the theoretical formulations developed, we have studied a sinusoidal beam bunching system and presented detailed numerical results.
Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows
Matsuoka, C.; Nishihara, K.; Sano, T.
2017-04-01
A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.
Electron Beam Dose Distribution in the Presence of Non-Uniform Magnetic Field
Directory of Open Access Journals (Sweden)
Mohamad Javad Tahmasebi-Birgani
2014-04-01
Full Text Available Introduction Magnetic fields are capable of altering the trajectory of electron beams andcan be used in radiation therapy.Theaim of this study was to produce regions with dose enhancement and reduction in the medium. Materials and Methods The NdFeB permanent magnets were arranged on the electron applicator in several configurations. Then, after the passage of the electron beams (9 and 15 MeV Varian 2100C/D through the non-uniform magnetic field, the Percentage Depth Dose(PDDs on central axis and dose profiles in three depths for each energy were measured in a 3D water phantom. Results For all magnet arrangements and for two different energies, the surface dose increment and shift in depth of maximum dose (dmax were observed. In addition, the pattern of dose distribution in buildup region was changed. Measurement of dose profile showed dose localization and spreading in some other regions. Conclusion The results of this study confirms that using magnetic field can alter the dose deposition patterns and as a result can produce dose enhancement as well as dose reduction in the medium using high-energy electron beams. These effects provide dose distribution with arbitrary shapes for use in radiation therapy.
Magneto-acoustic resonance in a non-uniform current carrying plasma column
Vaclavik, J.
2017-01-01
The forced radial magneto-acoustic oscillations in a plasma column with nonuniform mass density and temperature are investigated. It turns out that the oscillations have a resonant character similar to that of the magneto-acoustic oscillations in a uniform plasma column. The properties of the axial and azimuthal components of the oscillating magnetic field are discussed in detail
International Nuclear Information System (INIS)
Vasina, P; Hytkova, T; Elias, M
2009-01-01
The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.
Current distribution tomography for determination of internal current density distributions
International Nuclear Information System (INIS)
Gailey, P.C.
1993-01-01
A method is presented for determination of current densities inside a cylindrical object using measurements of the magnetic fields outside the object. The cross section of the object is discretized with the current assumed constant over each defined region. Magnetic fields outside the object are related to the internal current densities through a geometry matrix which can be inverted to yield a solution for the current densities in terms of the measured fields. The primary limitation of this technique results from singularities in the geometry matrix that arise due to cylindrical symmetry of the problem. Methods for circumventing the singularities to obtain information about the distribution of current densities are discussed. This process of current distribution tomography is designed to determine internal body current densities using measurements of the external magnetic field distribution. It is non-invasive, and relatively simple to implement. Although related to a more general study of magnetic imaging which has been used to investigate endogenous currents in the brain and other parts of the body, it is restricted to currents either applied directly or induced by exposure to an external field. The research is related to public concern about the possibility of health effects resulting from exposure to power frequency electric and magnetic fields
International Nuclear Information System (INIS)
Lu, D.; Florescu, D.I.; Lee, D.S.; Ramer, J.C.; Parekh, A.; Merai, V.; Li, S.; Begarney, M.J.; Armour, E.A.; Gardner, J.J.
2005-01-01
Nonuniform indium distribution within InGaN/GaN single quantum well (SQW) structures with nanoscale islands grown by metalorganic chemical vapor deposition (MOCVD) have been characterized by advanced characterization techniques. Robinson backscattered electron (BSE) measurements show cluster-like BSE contrast of high brightness regions, which are not centered at small dark pits in a SQW structure of spiral growth mode. By comparing with the secondary electron (SE) images, the bright cluster areas from the BSE images were found to have higher indium content compared to the surrounding dark areas. Temperature dependant photoluminescence (PL) measurement shows typical ''S-shape'' curve, which shows good correlation with nonuniform indium distribution from BSE measurement. Optical evaluation of the samples show increased PL slope efficiency of the spiral mode SQW, which can be attributed to the presence of Indium inhomogeneities. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Han, Xifeng; Zhou, Wen
2018-03-01
Optical vector radio-frequency (RF) signal generation based on optical carrier suppression (OCS) in one Mach-Zehnder modulator (MZM) can realize frequency-doubling. In order to match the phase or amplitude of the recovered quadrature amplitude modulation (QAM) signal, phase or amplitude pre-coding is necessary in the transmitter side. The detected QAM signals usually have one non-uniform phase distribution after square-law detection at the photodiode because of the imperfect characteristics of the optical and electrical devices. We propose to use optimal threshold of error decision for non-uniform phase contribution to reduce the bit error rate (BER). By employing this scheme, the BER of 16 Gbaud (32 Gbit/s) quadrature-phase-shift-keying (QPSK) millimeter wave signal at 36 GHz is improved from 1 × 10-3 to 1 × 10-4 at - 4 . 6 dBm input power into the photodiode.
International Nuclear Information System (INIS)
Shuchi, S.; Shimada, K.; Kamiyama, S.; Yamaguchi, H.
2002-01-01
We clarify numerically the wall friction coefficient, the distributions of velocity and shear rate, and the number of aggregated particles on steady magnetic fluid flow in a straight tube by taking into account the non-uniform distribution of mass concentration (DMC). Also the effect of DMC is clarified under the uniform and non-uniform transverse steady magnetic field. In comparison with the published data, the numerical results show good agreement with the experimental data
Current distribution in parallel paths of the coils of a 50 Hz prototype dipole magnet
International Nuclear Information System (INIS)
Otter, A.J.
1995-06-01
The prototype dipole made for TRIUMF's Kaon Factory proposal used coils with 12 parallel paths to reduce eddy current losses in the conductors. The ac current distribution in these paths was non-uniform due to different self and mutual inductances. Small differences in inductance can cause large circulating currents in the parallel windings. This paper describes the measurement of the inductances and shows an attempt to predict the current distribution for two alternative connection schemes. (author). 4 refs., 8 figs
International Nuclear Information System (INIS)
Qian Libo; Qiu Suizheng; Zhang Dalin; Su Guanghui; Tian Wenxi
2010-01-01
Molten salt reactor is one of the six Generation IV systems capable of breeding and transmutation of actinides and long-lived fission products, which uses the liquid molten salt as the fuel solvent, coolant and heat generation simultaneously. The present work presents a numerical investigation on natural convection with non-uniform heat generation through which the heat generated by the fluid fuel is removed out of the core region when the reactor is under post-accident condition or zero-power condition. The two-group neutron diffusion equation is applied to calculated neutron flux distribution, which leads to non-uniform heat generation. The SIMPLER algorithm is used to calculate natural convective heat transfer rate with isothermal or adiabatic rigid walls. These two models are coupled through the temperature field and heat sources. The peculiarities of natural convection with non-uniform heat generation are investigated in a range of Ra numbers (10 3 ∼ 10 7 ) for the laminar regime of fluid motion. In addition, the numerical results are also compared with those containing uniform heat generation.
International Nuclear Information System (INIS)
Golota, V.I.; Zavada, L.M.; Kotyukov, O.V.; Kudin, D.V.; Rodionov, S.V.; Pis'menetskoj, A.S.; Dotsenko, Yu.V.
2010-01-01
The barrierless gas discharge of negative polarity with strongly non-uniform distribution of electrical field in the methanol and ethanol vapour was studied. It is shown that level of methanol and ethanol conversion depended from power consumed by the discharge and exposition time for gas mixture in discharge zone. The condition for deep conversion of the methanol and ethanol vapours were determined. The water and carbon dioxide are the end products for the methanol and ethanol conversion. Formaldehyde and formic acid are the intermediates products in the conversion of methanol. And ethanol has a number of different compounds, including acetic acid, acetaldehyde, etc.
Transient current distributions in porous zinc electrodes in KOH electrolyte
Energy Technology Data Exchange (ETDEWEB)
Liu, M.B.; Yamazaki, Y.; Cook, G.M.; Yao, N.P.
1981-02-01
A zero-resistance ammeter circuit with a 10-channel operational amplifier was used to measure the current distribution during a discharge of 10 to 100 mA with simulated zinc porous electrodes in 7.24 M KOH saturated with ZnO. The reaction distribution was found to be highly nonuniform, with 70 to 78% of the charge transfer reaction completed in a depth of 0.01 cm. The high nonuniformity of the initial reaction profile was believed to be due to low conductivity of the electrolyte in the electrode pores. The current distribution changes during passivation of the electrode were experimentally obtained. A mathematical model based upon a macroscope averaging technique was used to predict the time dependence of charge transfer reaction profiles. With mathematical model, current distributions and overpotentials were predicted as a function of time for the segmented zinc electrode discharged at a current of 10 to 100 mA; for these predictions, assumed values of both precipitation rate constants for porous ZnO and diffusion coefficients for hydroxide and zincate ions were used. A gradual decrease in the specific conductivity of the pore electrolyte to 20% of the initial value during discharge yields predictions of current distributions and overpotentials in good agreement with the experimental data. The extent of reduction in the specific conductivity of the pore electrolyte implies a supersaturation of zincate of four times chemical saturation, which was been observed experimentally.At high discharge current (25 to 100 mA), the passivation behavior of the electrode has been simulated. The results of the experiments and mathematical model show that the effective reaction penetration depth is less than 0.02 cm.
Impact of uniform electrode current distribution on ETF. [Engineering Test Facility MHD generator
Bents, D. J.
1982-01-01
A basic reason for the complexity and sheer volume of electrode consolidation hardware in the MHD ETF Powertrain system is the channel electrode current distribution, which is non-uniform. If the channel design is altered to provide uniform electrode current distribution, the amount of hardware required decreases considerably, but at the possible expense of degraded channel performance. This paper explains the design impacts on the ETF electrode consolidation network associated with uniform channel electrode current distribution, and presents the alternate consolidation designs which occur. They are compared to the baseline (non-uniform current) design with respect to performance, and hardware requirements. A rational basis is presented for comparing the requirements for the different designs and the savings that result from uniform current distribution. Performance and cost impacts upon the combined cycle plant are discussed.
Zemlyanaya, N. V.; Gulyakin, A. V.
2017-11-01
The uniformity of flow distribution in perforated manifolds is a relevant task. The efficiency of water supply, sewerage and perflation systems is determined by hydraulics of the flow with a variable mass. The extensive study of versatile available information showed that achieving a uniform flow distribution through all of the outlets is almost impossible. The analysis of the studies conducted by other authors and our numerical experiments performed with the help of the software package ANSYS 16.1 were made in this work. The results allowed us to formulate the main causes of non-uniform flow distribution. We decided to suggest a hypothesis to explain the static pressure rise problem at the end of a perforated manifold.
International Nuclear Information System (INIS)
Frank, A.G.; Bogdanov, S.Yu.; Burilina, V.B.; Kyrie, N.P.
1997-01-01
Laboratory experiments are reported, in which we studied the possibilities of the formation of current sheets (CS) in different magnetic configurations, as well as the magnetic reconnection phenomena. In 2D magnetic fields with null-lines the CS formation was shown to be a typical process in both linear and nonlinear regimes. The problem of CS formation is of a fundamental importance in the general case of 3D magnetic configurations. We have revealed experimentally, that the formation of CS occurs in the various 3D configurations, both containing magnetic null-points and without them. At the same time, the CS parameters essentially depend on the local characteristics of the configuration. We may conclude therefore, that the self-organization of CS represents the universal process for the plasma dynamics in the nonuniform magnetic fields. (author)
Strain distributions in nano-onions with uniform and non-uniform compositions
International Nuclear Information System (INIS)
Duan, H L; Karihaloo, B L; Wang, J; Yi, X
2006-01-01
Nano-onions are ellipsoidal or spherical particles consisting of a core surrounded by concentric shells of nanometre size. Nano-onions produced by self-assembly and colloidal techniques have different structures and compositions, and thus differ in the state of strains. The mismatch of the thermal expansion coefficients and lattice constants between neighbouring shells induces stress/strain fields in the core and shells, which in turn affect their physical/mechanical properties and/or the properties of the composites containing them. In this paper, the strains in embedded and free-standing nano-onions with uniform and non-uniform compositions are studied in detail. It is found that the strains in the nano-onions can be modified by adjusting their compositions and structures. The results are useful for the band structure engineering of semiconductor nano-onions
International Nuclear Information System (INIS)
Henry, L.J.; Rosenthal, M.S.
1992-01-01
We report results of scatter simulations for both point and distributed sources of 99m Tc in symmetrical non-uniform attenuating media. The simulations utilized Monte Carlo techniques and were tested against experimental phantoms. Both point and ring sources were used inside a 10.5 cm radius acrylic phantom. Attenuating media consisted of combinations of water, ground beef (to simulate muscle mass), air and bone meal (to simulate bone mass). We estimated/measured energy spectra, detector efficiencies and peak height ratios for all cases. In all cases, the simulated spectra agree with the experimentally measured spectra within 2 SD. Detector efficiencies and peak height ratios also are in agreement. The Monte Carlo code is able to properly model the non-uniform attenuating media used in this project. With verification of the simulations, it is possible to perform initial evaluation studies of scatter correction algorithms by evaluating the mechanisms of action of the correction algorithm on the simulated spectra where the magnitude and sources of scatter are known. (author)
Non-Uniformity of Ion Implantation in Direct-Current Plasma Immersion Ion Implantation
International Nuclear Information System (INIS)
Cheng-Sen, Liu; Yu-Jia, Fan; Nan, Zhang; Li, Guan; Yuan, Yao; De-Zhen, Wang
2010-01-01
A particle-in-cell simulation is developed to study dc plasma immersion ion implantation. Particular attention is paid to the influence of the voltage applied to the target on the ion path, and the ion flux distribution on the target surface. It is found that the potential near the aperture within the plasma region is not the plasma potential, and is impacted by the voltage applied to the implanted target. A curved equipotential contour expands into the plasma region through the aperture and the extent of the expansion depends on the voltage. Ions accelerated by the electric field in the sheath form a beam shape and a flux distribution on the target surface, which are strongly dependent on the applied voltage. The results of the simulations demonstrate the formation mechanism of the grid-shadow effect, which is in agreement with the result observed experimentally. (physics of gases, plasmas, and electric discharges)
International Nuclear Information System (INIS)
Girka, I.A.; Stepanov, K.N.
1990-01-01
Dispersion equation for fast plasma cylinder with longitudinal current including a weak azimuthal magnetic field β 0v is obtained and analyzed on the basis of perturbation theory. Simple asymptotic expressions for S w , S n and σ k are derived under different limiting cases (propagation of small-scale waves with high values of radial wave number, wave in the uniform cylinder, surface mode etc.). 10 refs.; 1 fig
Errors due to non-uniform distribution of fat in dual X-ray absorptiometry of the lumbar spine
International Nuclear Information System (INIS)
Tothill, P.; Pye, D.W.
1992-01-01
Errors in spinal dual X-ray absorptiometry (DXA) were studied by analysing X-ray CT scans taken for diagnostic purposes on 20 patients representing a wide range of fat content. The mean difference between the fat thickness over the vertebral bodies and that over a background area in antero-posterior (AP) scanning was 6.7 ± 8.1 mm for men and 13.4 ± 4.7 mm for women. For AP scanning a non-uniform fat distribution leads to a mean overestimate of 0.029 g/cm 2 for men and 0.057 g/cm 2 for women. The error exceeded 0.1 g/cm 2 in 10% of slices. For lateral scanning the error exceeded 0.1 g/cm 2 (about 15% of normal) in a quarter of slices. (author)
Coral, W.; Rossi, C.; Curet, O. M.
2015-12-01
This paper presents a Differential Quadrature Element Method for free transverse vibration of a robotic fish based on a continuous and non-uniform flexible backbone with distributed masses (fish ribs). The proposed method is based on the theory of a Timoshenko cantilever beam. The effects of the masses (number, magnitude and position) on the value of natural frequencies are investigated. Governing equations, compatibility and boundary conditions are formulated according to the Differential Quadrature rules. The convergence, efficiency and accuracy are compared to other analytical solution proposed in the literature. Moreover, the proposed method has been validate against the physical prototype of a flexible fish backbone. The main advantages of this method, compared to the exact solutions available in the literature are twofold: first, smaller computational cost and second, it allows analysing the free vibration in beams whose section is an arbitrary function, which is normally difficult or even impossible with other analytical methods.
Energy Technology Data Exchange (ETDEWEB)
Pazirandeh, Ali [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Science and Research Branch; Hooshyar Mobaraki, Almas
2017-07-15
The safe operation of a reactor is based on feedback models. In this paper we attempted to discuss the influence of a non-uniform radial temperature distribution on the fuel rod temperature coefficient of reactivity. The paper demonstrates that the neutron properties of a reactor core is based on effective temperature of the fuel to obtain the correct fuel temperature feedback. The value of volume-averaged temperature being used in the calculations of neutron physics with feedbacks would result in underestimating the probable event. In the calculation it is necessary to use the effective temperature of the fuel in order to provide correct accounting of the fuel temperature feedback. Fuel temperature changes in different zones of the core and consequently reactivity coefficient change are an important parameter for analysis of transient conditions. The restricting factor that compensates the inserted reactivity is the temperature reactivity coefficient and effective delayed neutron fraction.
International Nuclear Information System (INIS)
Scheid, Matthias; Bercioux, Dario; Richter, Klaus
2007-01-01
We consider the possibility to employ a quantum wire realized in a two-dimensional electron gas (2DEG) as a spin ratchet. We show that a net spin current without accompanying net charge transport can be induced in the nonlinear regime by an unbiased external driving via an ac voltage applied between the contacts at the ends of the quantum wire. To achieve this, we make use of the coupling of the electron spin to inhomogeneous magnetic fields created by ferromagnetic stripes patterned on the semiconductor heterostructure that harbors the 2DEG. Using recursive Green function techniques, we numerically study two different set-ups, consisting of one and two ferromagnetic stripes, respectively
Steady-state dynamo and current drive in a nonuniform bounded plasma
International Nuclear Information System (INIS)
Mett, R.R.; Taylor, J.B.
1991-03-01
Current drive due to helicity injection and dynamo effect are examined in an inhomogeneous bounded plasma. Averaged over a magnetic surface, there is in general no dynamo effect independent of resistivity -- contrary to the results found previously for an unbounded plasma. The dynamo field is calculated explicitly for an incompressible visco-resistive fluid in the plane-slab model. In accord with our general conclusion, outside the Alfven resonant layer it is proportional to the resistivity. Within the resonant layer there is a contribution which is enhanced, relative to its value outside the layer, by a factor (ωa 2 /(η + ν)), where ω is the wave frequency, a the plasma radius, η the magnetic diffusivity, and ν the kinematic viscosity. However, this contribution vanishes when integrated across the layer. The average field in the layer is enhanced by factor (ωa 2 /(η + ν)) 2/3 and is proportional to the shear in the magnetic field and the cube root of the gradient of the Alfven speed. These results are interpreted in terms of helicity balance, and reconciled with the infinite medium calculations. 15 refs
Energy Technology Data Exchange (ETDEWEB)
Han, Seung Hak; Nam, Seok Ho; Lee, Je Yull; Song, Seung Hyun; Jeon, Hae Ryong; Baek, Geon Woo; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of); Kang, Hyoung Ku [Korea National University of Transportation, Chungju (Korea, Republic of)
2017-09-15
Current lead is a device that connects the power supply and superconducting magnets. High temperature superconductor (HTS) has lower thermal conductivity and higher current density than normal metal. For these reasons, the heat load can be reduced by replacing the normal metal of the current lead with the HTS. Conventional HTS current lead has same cross-sectional area in the axial direction. However, this is over-designed at the cold-end (4.2 K) in terms of current. The heat load can be reduced by reducing this part because the heat load is proportional to the cross-sectional area. Therefore, in this paper, heat load was calculated from the heat diffusion equation of HTS current leads with uniform and non-uniform cross-sectional areas. The cross-sectional area of the warm-end (65K) is designed considering burnout time when cooling system failure occurs. In cold-end, Joule heat and heat load due to current conduction occurs at the same time, so the cross-sectional area where the sum of the two heat is minimum is obtained. As a result of simulation, current leads for KSTAR TF coils with uniform and non-uniform cross-sectional areas were designed, and it was confirmed that the non-uniform cross-sectional areas could further reduce the heat load.
Size Distribution Imaging by Non-Uniform Oscillating-Gradient Spin Echo (NOGSE MRI.
Directory of Open Access Journals (Sweden)
Noam Shemesh
Full Text Available Objects making up complex porous systems in Nature usually span a range of sizes. These size distributions play fundamental roles in defining the physicochemical, biophysical and physiological properties of a wide variety of systems - ranging from advanced catalytic materials to Central Nervous System diseases. Accurate and noninvasive measurements of size distributions in opaque, three-dimensional objects, have thus remained long-standing and important challenges. Herein we describe how a recently introduced diffusion-based magnetic resonance methodology, Non-Uniform-Oscillating-Gradient-Spin-Echo (NOGSE, can determine such distributions noninvasively. The method relies on its ability to probe confining lengths with a (length6 parametric sensitivity, in a constant-time, constant-number-of-gradients fashion; combined, these attributes provide sufficient sensitivity for characterizing the underlying distributions in μm-scaled cellular systems. Theoretical derivations and simulations are presented to verify NOGSE's ability to faithfully reconstruct size distributions through suitable modeling of their distribution parameters. Experiments in yeast cell suspensions - where the ground truth can be determined from ancillary microscopy - corroborate these trends experimentally. Finally, by appending to the NOGSE protocol an imaging acquisition, novel MRI maps of cellular size distributions were collected from a mouse brain. The ensuing micro-architectural contrasts successfully delineated distinctive hallmark anatomical sub-structures, in both white matter and gray matter tissues, in a non-invasive manner. Such findings highlight NOGSE's potential for characterizing aberrations in cellular size distributions upon disease, or during normal processes such as development.
Current Issues and Distributive Justice.
Rosal, Lorenca Consuelo
1992-01-01
Provides a lesson plan on the issue of distributive justice, or fairness in the ways things are distributed among individuals and groups. Includes a student reading concerning a proposed guaranteed standard of living. Proposes an activity that calls for student discussion of a constitutional amendment that would offer such a guarantee. (SG)
Florschuetz, L. W.; Metzger, D. E.; Su, C. C.; Isoda, Y.; Tseng, H. H.
1982-01-01
Two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer surface. The configurations considered are intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The effects of an initial crossflow which approaches the array through an upstream extension of the channel are considered. Flow distributions as well as heat transfer coefficients and adiabatic wall temperatures resolved to one streamwise hole spacing were measured as a function of the initial crossflow rate and temperature relative to the jet flow rate and temperature. Both Nusselt number profiles and dimensionless adiabatic wall temperature (effectiveness) profiles are presented and discussed. Special test results which show a significant reduction of jet orifice discharge coefficients owing to the effect of a confined crossflow are also presented, along with a flow distribution model which incorporates those effects. A nonuniform array flow distribution model is developed and validated.
Directory of Open Access Journals (Sweden)
Zhi Liu
Full Text Available DNA microarray analysis is an effective method to detect unintended effects by detecting differentially expressed genes (DEG in safety assessment of genetically modified (GM crops. With the aim to reveal the distribution of DEG of GM crops under different conditions, we performed DNA microarray analysis using transgenic rice Huahui 1 (HH1 and its non-transgenic parent Minghui 63 (MH63 at different developmental stages and environmental conditions. Considerable DEG were selected in each group of HH1 under different conditions. For each group of HH1, the number of DEG was different; however, considerable common DEG were shared between different groups of HH1. These findings suggested that both DEG and common DEG were adequate for investigation of unintended effects. Furthermore, a number of significantly changed pathways were found in all groups of HH1, indicating genetic modification caused everlasting changes to plants. To our knowledge, our study for the first time provided the non-uniformly distributed pattern for DEG of GM crops at different developmental stages and environments. Our result also suggested that DEG selected in GM plants at specific developmental stage and environment could act as useful clues for further evaluation of unintended effects of GM plants.
Park, George D; Reed, Catherine L
2015-02-01
Researchers acknowledge the interplay between action and attention, but typically consider action as a response to successful attentional selection or the correlation of performance on separate action and attention tasks. We investigated how concurrent action with spatial monitoring affects the distribution of attention across the visual field. We embedded a functional field of view (FFOV) paradigm with concurrent central object recognition and peripheral target localization tasks in a simulated driving environment. Peripheral targets varied across 20-60 deg eccentricity at 11 radial spokes. Three conditions assessed the effects of visual complexity and concurrent action on the size and shape of the FFOV: (1) with no background, (2) with driving background, and (3) with driving background and vehicle steering. The addition of visual complexity slowed task performance and reduced the FFOV size but did not change the baseline shape. In contrast, the addition of steering produced not only shrinkage of the FFOV, but also changes in the FFOV shape. Nonuniform performance decrements occurred in proximal regions used for the central task and for steering, independent of interference from context elements. Multifocal attention models should consider the role of action and account for nonhomogeneities in the distribution of attention. © 2015 SAGE Publications.
Inverse analysis of non-uniform temperature distributions using multispectral pyrometry
Fu, Tairan; Duan, Minghao; Tian, Jibin; Shi, Congling
2016-05-01
Optical diagnostics can be used to obtain sub-pixel temperature information in remote sensing. A multispectral pyrometry method was developed using multiple spectral radiation intensities to deduce the temperature area distribution in the measurement region. The method transforms a spot multispectral pyrometer with a fixed field of view into a pyrometer with enhanced spatial resolution that can give sub-pixel temperature information from a "one pixel" measurement region. A temperature area fraction function was defined to represent the spatial temperature distribution in the measurement region. The method is illustrated by simulations of a multispectral pyrometer with a spectral range of 8.0-13.0 μm measuring a non-isothermal region with a temperature range of 500-800 K in the spot pyrometer field of view. The inverse algorithm for the sub-pixel temperature distribution (temperature area fractions) in the "one pixel" verifies this multispectral pyrometry method. The results show that an improved Levenberg-Marquardt algorithm is effective for this ill-posed inverse problem with relative errors in the temperature area fractions of (-3%, 3%) for most of the temperatures. The analysis provides a valuable reference for the use of spot multispectral pyrometers for sub-pixel temperature distributions in remote sensing measurements.
International Nuclear Information System (INIS)
Soussaline, F.; Bidaut, L.; Raynaud, C.; Le Coq, G.
1983-06-01
An analytical solution to the SPECT reconstruction problem, where the actual attenuation effect can be included, was developped using a regularizing iterative method (RIM). The potential of this approach in quantitative brain studies when using a tracer for cerebrovascular disorders is now under evaluation. Mathematical simulations for a distributed activity in the brain surrounded by the skull and physical phantom studies were performed, using a rotating camera based SPECT system, allowing the calibration of the system and the evaluation of the adapted method to be used. On the simulation studies, the contrast obtained along a profile, was less than 5%, the standard deviation 8% and the quantitative accuracy 13%, for a uniform emission distribution of mean = 100 per pixel and a double attenuation coefficient of μ = 0.115 cm -1 and 0.5 cm -1 . Clinical data obtained after injection of 123 I (AMPI) were reconstructed using the RIM without and with cerebrovascular diseases or lesion defects. Contour finding techniques were used for the delineation of the brain and the skull, and measured attenuation coefficients were assumed within these two regions. Using volumes of interest, selected on homogeneous regions on an hemisphere and reported symetrically, the statistical uncertainty for 300 K events in the tomogram was found to be 12%, the index of symetry was of 4% for normal distribution. These results suggest that quantitative SPECT reconstruction for brain distribution is feasible, and that combined with an adapted tracer and an adequate model physiopathological parameters could be extracted
Stable and efficient retrospective 4D-MRI using non-uniformly distributed quasi-random numbers
Breuer, Kathrin; Meyer, Cord B.; Breuer, Felix A.; Richter, Anne; Exner, Florian; Weng, Andreas M.; Ströhle, Serge; Polat, Bülent; Jakob, Peter M.; Sauer, Otto A.; Flentje, Michael; Weick, Stefan
2018-04-01
The purpose of this work is the development of a robust and reliable three-dimensional (3D) Cartesian imaging technique for fast and flexible retrospective 4D abdominal MRI during free breathing. To this end, a non-uniform quasi random (NU-QR) reordering of the phase encoding (k y –k z ) lines was incorporated into 3D Cartesian acquisition. The proposed sampling scheme allocates more phase encoding points near the k-space origin while reducing the sampling density in the outer part of the k-space. Respiratory self-gating in combination with SPIRiT-reconstruction is used for the reconstruction of abdominal data sets in different respiratory phases (4D-MRI). Six volunteers and three patients were examined at 1.5 T during free breathing. Additionally, data sets with conventional two-dimensional (2D) linear and 2D quasi random phase encoding order were acquired for the volunteers for comparison. A quantitative evaluation of image quality versus scan times (from 70 s to 626 s) for the given sampling schemes was obtained by calculating the normalized mutual information (NMI) for all volunteers. Motion estimation was accomplished by calculating the maximum derivative of a signal intensity profile of a transition (e.g. tumor or diaphragm). The 2D non-uniform quasi-random distribution of phase encoding lines in Cartesian 3D MRI yields more efficient undersampling patterns for parallel imaging compared to conventional uniform quasi-random and linear sampling. Median NMI values of NU-QR sampling are the highest for all scan times. Therefore, within the same scan time 4D imaging could be performed with improved image quality. The proposed method allows for the reconstruction of motion artifact reduced 4D data sets with isotropic spatial resolution of 2.1 × 2.1 × 2.1 mm3 in a short scan time, e.g. 10 respiratory phases in only 3 min. Cranio-caudal tumor displacements between 23 and 46 mm could be observed. NU-QR sampling enables for stable 4D
Fujikura, Hajime; Hayashi, Kentaro; Horikiri, Fumimasa; Narita, Yoshinobu; Konno, Taichiro; Yoshida, Takehiro; Ohta, Hiroshi; Mishima, Tomoyoshi
2018-04-01
In vertical GaN PN diodes (PNDs) grown entirely by metal–organic chemical vapor deposition (MOCVD), large current nonuniformity was observed. This nonuniformity was induced by macrosteps on the GaN surface through modulation of carbon incorporation into the n-GaN crystal. It was eliminated in a hybrid PND consisting of a carbon-free n-GaN layer grown by hydride vapor phase epitaxy (HVPE) and an MOCVD-regrown p-GaN layer. The hybrid PND showed a fairly low on-resistance (2 mΩ cm2) and high breakdown voltage (2 kV) even without a field plate electrode. These results clearly indicated the strong advantages of the HVPE-grown drift layer for improving power device performance, uniformity, and yield.
DEFF Research Database (Denmark)
Krasnov, V.M.; Oboznov, V.A.; Pedersen, Niels Falsig
1997-01-01
Fluxon dynamics in nonuniform Josephson junctions was studied both experimentally and theoretically. Two types of nonuniform junctions were considered: the first type had a nonuniform spatial distribution of critical and bias currents and the second had a temperature gradient applied along...... the junction. An analytical expression for the I-V curve in the presence of a temperature gradient or spatial nonuniformity was derived. It was shown that there is no static thermomagnetic Nernst effect due to Josephson fluxon motion despite the existence of a force pushing fluxons in the direction of smaller...
Current distribution in conducting nanowire networks
Kumar, Ankush; Vidhyadhiraja, N. S.; Kulkarni, Giridhar U.
2017-07-01
Conducting nanowire networks find diverse applications in solar cells, touch-screens, transparent heaters, sensors, and various related transparent conducting electrode (TCE) devices. The performances of these devices depend on effective resistance, transmittance, and local current distribution in these networks. Although, there have been rigorous studies addressing resistance and transmittance in TCE, not much attention is paid on studying the distribution of current. Present work addresses this compelling issue of understanding current distribution in TCE networks using analytical as well as Monte-Carlo approaches. We quantified the current carrying backbone region against isolated and dangling regions as a function of wire density (ranging from percolation threshold to many multiples of threshold) and compared the wired connectivity with those obtained from template-based methods. Further, the current distribution in the obtained backbone is studied using Kirchhoff's law, which reveals that a significant fraction of the backbone (which is believed to be an active current component) may not be active for end-to-end current transport due to the formation of intervening circular loops. The study shows that conducting wire based networks possess hot spots (extremely high current carrying regions) which can be potential sources of failure. The fraction of these hot spots is found to decrease with increase in wire density, while they are completely absent in template based networks. Thus, the present work discusses unexplored issues related to current distribution in conducting networks, which are necessary to choose the optimum network for best TCE applications.
Energy Technology Data Exchange (ETDEWEB)
Ferrouk, M. [Laboratoire du Genie Physique des Hydrocarbures, University of Boumerdes, Boumerdes 35000 (Algeria)], E-mail: m_ferrouk@yahoo.fr; Aissani, S. [Laboratoire du Genie Physique des Hydrocarbures, University of Boumerdes, Boumerdes 35000 (Algeria); D' Auria, F.; DelNevo, A.; Salah, A. Bousbia [Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione, Universita di Pisa (Italy)
2008-10-15
The present article covers the evaluation of the performance of twelve critical heat flux methods/correlations published in the open literature. The study concerns the simulation of an axially non-uniform heat flux distribution with the RELAP5 computer code in a single boiling water reactor channel benchmark problem. The nodalization scheme employed for the considered particular geometry, as modelled in RELAP5 code, is described. For this purpose a review of critical heat flux models/correlations applicable to non-uniform axial heat profile is provided. Simulation results using the RELAP5 code and those obtained from our computer program, based on three type predictions methods such as local conditions, F-factor and boiling length average approaches were compared.
Current Distribution Characteristics of CFRP Panels
Yamamoto, Kazuo
CFRP (Carbon Fiber Reinforced Plastic) is widely used in the structures of aircrafts, automobiles, wing turbines, and rockets because of its qualities of high mechanical strength, low weight, fatigue resistance, and dimensional stability. However, these structures are often at risk of being struck by lightning. When lightning strikes such structures and lightning current flows through the CFRP, it may be structurally damaged because of the impact of the lightning strike or ignitions between layers. If there are electronic systems near the CFRP, they may break down or malfunction because of the resulting electromagnetic disturbance. In fact, the generation mechanisms of these breakdowns and malfunctions depend on the current distribution in the CFRP. Hence, it is critical to clarify the current distribution in various kinds of CFRPs. In this study, two kinds of CFRP panels—one composed of quasi-isotropic lamination layers and the other composed of 0°/90° lamination layers of unidirectional CFRP prepregs—are used to investigate the dependence of current distribution on the nature of the lamination layers. The current distribution measurements and simulations for CFRP panels are compared with those for a same-sized aluminum plate. The knowledge of these current distribution characteristics would be very useful for designing the CFRP structures of aircrafts, automobiles, wing turbines, rockets, etc. in the future.
Current distribution characteristics of superconducting parallel circuits
International Nuclear Information System (INIS)
Mori, K.; Suzuki, Y.; Hara, N.; Kitamura, M.; Tominaka, T.
1994-01-01
In order to increase the current carrying capacity of the current path of the superconducting magnet system, the portion of parallel circuits such as insulated multi-strand cables or parallel persistent current switches (PCS) are made. In superconducting parallel circuits of an insulated multi-strand cable or a parallel persistent current switch (PCS), the current distribution during the current sweep, the persistent mode, and the quench process were investigated. In order to measure the current distribution, two methods were used. (1) Each strand was surrounded with a pure iron core with the air gap. In the air gap, a Hall probe was located. The accuracy of this method was deteriorated by the magnetic hysteresis of iron. (2) The Rogowski coil without iron was used for the current measurement of each path in a 4-parallel PCS. As a result, it was shown that the current distribution characteristics of a parallel PCS is very similar to that of an insulated multi-strand cable for the quench process
Mizerna, O P; Fedulova, S A; Veselovs'kyĭ, M S
2010-01-01
In the present study, we investigated the sensitivity of GABAergic short-term plasticity to the selective P- and P/Q-type calcium channels blocker omega-agatoxin-IVA. To block the P-type channels we used 30 nM of this toxin and 200 nM of the toxin was used to block the P/Q channel types. The evoked inhibitory postsynaptic currents (eIPSC) were studied using patch-clamp technique in whole-cell configuration in postsynaptic neuron and local extracellular stimulation of single presynaptic axon by rectangular pulse. The present data show that the contribution of P- and P/Q-types channels to GABAergic synaptic transmission in cultured hippocampal neurons are 30% and 45%, respectively. It was shown that the mediate contribution of the P- and P/Q-types channels to the amplitudes of eIPSC is different to every discovered neuron. It means that distribution of these channels is non-uniform. To study the short-term plasticity of inhibitory synaptic transmission, axons of presynaptic neurons were paired-pulse stimulated with the interpulse interval of 150 ms. Neurons demonstrated both the depression and facilitation. The application of 30 nM and 200 nM of the blocker decreased the depression and increased facilitation to 8% and 11%, respectively. In addition, we found that the mediate contribution of the P- and P/Q-types channels to realization of synaptic transmission after the second stimuli is 4% less compared to that after the first one. Therefore, blocking of both P- and P/Q-types calcium channels can change the efficiency of synaptic transmission. In this instance it facilitates realization of the transmission via decreased depression or increased facilitation. These results confirm that the P- and P/Q-types calcium channels are involved in regulation of the short-term inhibitory synaptic plasticity in cultured hippocampal neurons.
Directory of Open Access Journals (Sweden)
Sygut P.
2016-06-01
Full Text Available The paper presents the results of theoretical studies influence of non-uniform temperature distribution along the feedstock length to the unit friction force working on the metal contact surface with the roll change during the round bars 70 mm in diameter continuous rolling process. This value is one of the major factors affecting the grooves wear during the rolling process. The studies were carried out based on the actual engineering data for 160 × 160 mm square cross-section feedstock of steel S355J0. Numerical modelling of the rolling process was performed using Forge2008®, a finite-element based computer program.
Directory of Open Access Journals (Sweden)
Sara Bardestani
2017-09-01
Full Text Available Triangular channels have different applications in many water and wastewater engineering problems. For this purpose investigating hydraulic characteristics of flow in these sections has great importance. Researchers have presented different prediction methods for the velocity contours in prismatic sections. Most proposed methods are not able to consider the effect of walls roughness, the roughness distribution and secondary flows. However, due to complexity and nonlinearity of velocity contours in open channel flow, there is no simple relationship that can be fully able to exactly draw the velocity contours. In this paper an efficient approach for modeling velocity contours in triangular open channels with non-uniform roughness distributions by Adaptive Neuro-Fuzzy Inference System (ANFIS has been suggested. For training and testing model, the experimental data including 1703 data in triangular channels with geometric symmetry and non-uniform roughness distributions have been used. Comparing experimental results with predicted values by model indicates that ANFIS model is capable to be used in simulation of local velocity and determining velocity contours and the independent evaluation showed that the calculated values of discharge and depth-averaged velocity from model information are precisely in conformity with experimental values.
Xia, Yongfang; Shi, Junrui; Xu, Youning; Ma, Rui
2018-03-01
Filtration combustion (FC) is one style of porous media combustion with inert matrix, in which the combustion wave front propagates, only downstream or reciprocally. In this paper, we investigate the FC flame front inclinational instability of lean methane/air mixtures flowing through a packed bed as a combustion wave front perturbation of the initial preheating temperature non-uniformity is assumed. The predicted results show that the growth rate of the flame front inclinational angle is proportional to the magnitude of the initial preheating temperature difference. Additionally, depending on gas inlet gas velocity and equivalence ratio, it is demonstrated that increase of gas inlet gas velocity accelerates the FC wave front deformation, and the inclinational instability evolves faster at lower equivalence ratio. The development of the flame front inclinational angle may be regarded as a two-staged evolution, which includes rapid increase, and approaching maximum value of inclinational angle due to the quasi-steady condition of the combustion system. The hydrodynamic and thermal mechanisms of the FC inclinational instability are analyzed. Consequently, the local propagation velocity of the FC wave front is non-uniform to result in the development of inclinational angle at the first stage of rapid increase.
Nonuniform sampling by quantiles
Craft, D. Levi; Sonstrom, Reilly E.; Rovnyak, Virginia G.; Rovnyak, David
2018-03-01
A flexible strategy for choosing samples nonuniformly from a Nyquist grid using the concept of statistical quantiles is presented for broad classes of NMR experimentation. Quantile-directed scheduling is intuitive and flexible for any weighting function, promotes reproducibility and seed independence, and is generalizable to multiple dimensions. In brief, weighting functions are divided into regions of equal probability, which define the samples to be acquired. Quantile scheduling therefore achieves close adherence to a probability distribution function, thereby minimizing gaps for any given degree of subsampling of the Nyquist grid. A characteristic of quantile scheduling is that one-dimensional, weighted NUS schedules are deterministic, however higher dimensional schedules are similar within a user-specified jittering parameter. To develop unweighted sampling, we investigated the minimum jitter needed to disrupt subharmonic tracts, and show that this criterion can be met in many cases by jittering within 25-50% of the subharmonic gap. For nD-NUS, three supplemental components to choosing samples by quantiles are proposed in this work: (i) forcing the corner samples to ensure sampling to specified maximum values in indirect evolution times, (ii) providing an option to triangular backfill sampling schedules to promote dense/uniform tracts at the beginning of signal evolution periods, and (iii) providing an option to force the edges of nD-NUS schedules to be identical to the 1D quantiles. Quantile-directed scheduling meets the diverse needs of current NUS experimentation, but can also be used for future NUS implementations such as off-grid NUS and more. A computer program implementing these principles (a.k.a. QSched) in 1D- and 2D-NUS is available under the general public license.
International Nuclear Information System (INIS)
Shabalin, E. P.
1997-09-01
This paper focuses on an optional model of radical recombination in solid methane, apart from conventional theory. It shares the common property of two-order reactions, but accounts for local nonuniformitites of the objects involved (such as radical concentration, the track nature of energy deposition, and others). Accounting for local nonuniformity provides absolutely different results for the time dependence of the space-averaged concentration of radicals, both for the processes of their storage and 'burping', compared to the common approach; it also brings new conditions for the thermal instability of the methane slug under irradiation and gives a better understanding of most of the strange features of burp performances.
Calculation of the force acting on a drop in a nonuniform flow of a current-supporting fluid
International Nuclear Information System (INIS)
Korovin, V.M.
1993-01-01
In the context of wide use of intense electric currents in various technological process, it is of practical interest to investigate the characteristics of the force action of electromagnetic fields on a variety of inclusions - solid particles, drops, gas bubbles - suspended in current-supporting fluids. In the available studies one treats the simplest case, in which the vortical component of the electromagnetic forces, generated by the interaction of the current with the internal magnetic field, is nonvanishing only in small vicinities near these inclusions, and therefore these electromagnetic forces do not generate global motion of the homogeneous current-supporting fluid. In practice, in most cases the vortical component of electromagnetic forces plays a substantial role in the whole operating region of the technological device, and the motion of the current-supporting fluid is created specifically by electromagnetic forces. In the case of a varying electromagnetic field the forces acting on particles are located in the conducting fluid, moving under the field action, were calculated by Korovim (Korovim, V. M., open-quotes The calculation of forces acting on suspended particles during the flow of a conducting fluid in a varying electromagnetic field,close quotes Magn. Gidrodin, No. 1 95-102 (1991)). In the present study the authors generalize the method suggested by Korovin for calculating forces applied to both drops and particles and gas bubbles suspended in the gradient flow of a fluid moving under the action of a constant electromagnetic field. 6 refs
International Nuclear Information System (INIS)
Kim, Young Suk; Jain, Mukesh K.; Metzger, Don R.
2005-01-01
From various draw-bend friction tests with sheet metals at lubricated conditions, it has been unanimously reported that the friction coefficient increases as the pin diameter decreases. However, a proper explanation for this phenomenon has not been given yet. In those experiments, tests were performed for different pin diameters while keeping the same average contact pressure by adjusting applied tension forces. In this paper, pressure profiles at pin/strip contacts and the changes in the pressure profiles depending on pin diameters are investigated using finite element simulations. To study the effect of the pressure profile changes on friction measurements, a non-constant friction model (Stribeck friction model), which is more realistic for the lubricated sheet metal contacts, is implemented into the finite element code and applied to the simulations. The study shows that the non-uniformity of the pressure profile increases and the pin/strip contact angle decreases as the pin diameter decreases, and these phenomena increase the friction coefficient, which is calculated from the strip tension forces using a conventional rope-pulley equation
International Nuclear Information System (INIS)
Moon, S.K.; Chun, S.Y.; Choi, K.Y.; Yang, S.K.
2001-01-01
An experimental study on transient critical heat flux (CHF) under flow coast-down has been performed for water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady state CHF. The transient CHF experiments have been performed for three kinds of flow transient modes based on the coast-down data of the Kori 3/4 nuclear power plant reactor coolant pump. Most of the CHFs occurred in the annular-mist flow regime. Thus, it means that the possible CHF mechanism might be the liquid film dryout in the annular-mist flow regime. For flow transient mode with the smallest flow reduction rate, the time-to-CHF is the largest. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to-CHF becomes large as the heat flux decreases. Usually, the critical mass flux is large for slow flow reduction. There is a pressure effect on the ratio of the transient CHF data to steady state CHF data. Some conventional correlations show relatively better CHF prediction results for high system pressure, high quality and slow transient modes than for low system pressure, low quality and fast transient modes. (author)
Wang, Xiao; Wen, Zhijie; Jiang, Yujing; Huang, Hao
2018-03-01
The mechanical and acoustic emission characteristics of rock-like materials under non-uniform loads were investigated by means of a self-developed mining-induced stress testing system and acoustic emission monitoring system. In the experiments, the specimens were divided into three regions and different initial vertical stresses and stress loading rates were used to simulate different mining conditions. The mechanical and acoustic emission characteristics between regions were compared, and the effects of different initial vertical stresses and different stress loading rates were analysed. The results showed that the mechanical properties and acoustic emission characteristics of rock-like materials can be notably localized. When the initial vertical stress and stress loading rate are fixed, the peak strength of region B is approximately two times that of region A, and the maximum acoustic emission hit value of region A is approximately 1-2 times that of region B. The effects of the initial vertical stress and stress loading rate on the peck strain, maximum hit value, and occurrence time of the maximum hit are similar in that when either of the former increase, the latter all decrease. However, peck strength will increase with the increase in loading rate and decrease with the increase in initial vertical stress. The acoustic emission hits can be used to analyse the damage in rock material, but the number of acoustic emission hits cannot be used alone to determine the degree of rock damage directly.
Springett, J. C.
1982-01-01
The technique outlined in this paper is intended to eliminate the problems of cochannel interference and uniform geographic distribution of user channels which arise in conventional designs for a multiple spot beam communication satellite to serve mobile telephony users across the CONUS. By time multiplexing FM/FDMA signal ensembles so that only those beams operating on distinct frequency subbands are allowed to transmit concurrently, cochannel interference arising from simultaneous frequency subband reuse is precluded. Thus, time disjoint frequency reuse is accomplished over a repetitive sequence of fixed time slots. By assigning different size subbands to each time slot, a market of nonuniform users can be accommodated. The technique results in a greatly simplified antenna feed system design for the satellite, at a cost of imposing the need for time slot synchronization on the mobile FM receivers whose ability for rejecting adjacent channel interference is somewhat diminished.
International Nuclear Information System (INIS)
Guskova, A.; Barabanova, A
1996-01-01
Experience in diagnosis and treatment of radiation accident victims undergone to radiation expose with non-uniform distribution of the dose within a body is presented and the most significant features of medical management of such patients are discussed. The term 'compound radiation injure' is proposed to use for this form of radiation disease. Treatment of compound radiation injure demands a participation of very qualified specialists. The first medical aid and management should include careful body surface monitoring. Beside daily haematological observation and cytogenetic study with corresponding treatment, careful observation and registration of skin reaction are necessary. Some features of treatment are the following: more early administration of anti infection means, including isolation in sterile room, timely surgical intervention, prophylacsis and treatment of endorganic intoxication improving of microcirculation, long time follow up study with pathogenic therapy. (author)
Springett, J. C.
The technique outlined in this paper is intended to eliminate the problems of cochannel interference and uniform geographic distribution of user channels which arise in conventional designs for a multiple spot beam communication satellite to serve mobile telephony users across the CONUS. By time multiplexing FM/FDMA signal ensembles so that only those beams operating on distinct frequency subbands are allowed to transmit concurrently, cochannel interference arising from simultaneous frequency subband reuse is precluded. Thus, time disjoint frequency reuse is accomplished over a repetitive sequence of fixed time slots. By assigning different size subbands to each time slot, a market of nonuniform users can be accommodated. The technique results in a greatly simplified antenna feed system design for the satellite, at a cost of imposing the need for time slot synchronization on the mobile FM receivers whose ability for rejecting adjacent channel interference is somewhat diminished.
Spatial and temporal distribution of ionospheric currents-4: altitude ...
African Journals Online (AJOL)
(a) The continuous distribution of current density model reproduces the altitude distribution parameters of EEJ current density very well, (b) the altitude distribution parameters of EEJ current density in India and Peru are not significantly different and (c) The altitude distribution parameters of EEJ current density from rockets ...
Energy Technology Data Exchange (ETDEWEB)
Kyrie, N. P., E-mail: kyrie@fpl.gpi.ru; Markov, V. S., E-mail: natalya.kyrie@yandex.ru; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V. [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation)
2016-06-15
The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.
International Nuclear Information System (INIS)
Kyrie, N. P.; Markov, V. S.; Frank, A. G.; Vasilkov, D. G.; Voronova, E. V.
2016-01-01
The distributions of the ion temperature, ion pressure, and electron density over the width (the major transverse dimension) of the current sheet have been studied for the first time. The current sheets were formed in discharges in argon and helium in 2D and 3D magnetic configurations. It is found that the temperature of argon ions in both 2D and 3D magnetic configurations is almost uniform over the sheet width and that argon ions are accelerated by the Ampère force. In contrast, the distributions of the electron density and the temperature of helium ions are found to be substantially nonuniform. As a result, in the 2D magnetic configuration, the ion pressure gradient across the sheet width makes a significant contribution (comparable with the Ampère force) to the acceleration of helium ions, whereas in the 3D magnetic configuration, the Ampère force is counterbalanced by the pressure gradient.
International Nuclear Information System (INIS)
Mitomo, Osamu; Tsunoda, Takashi; Kuwabara, Hidemasa
2004-01-01
By means of quantifying the nonuniform distribution of pulmonary perfusion in Lung Perfusion Scintigraphy SPECT (single photon emission tomography), which is called ''SPECT'' for short, we evaluated the degree of functional impairment of pulmonary perfusion in non-operated lung cancer patients treated by the radiotherapy. Sixty-eight patients with non-operated lung cancer treated with radiotherapy, and who either received or did not receive chemotherapy, from February, 1996 to August, 2002, were examined using SPECT within 6 weeks prior to, or within 2 weeks following radiotherapy. This group was called ''irradiated lung cancer patients''. Twenty-six patients, who were called ''follow-up irradiated lung cancer patients'', were reexamined within four weeks after radiotherapy. On the other hand, 323 patients without lung cancer, who were subdivided into four groups; pulmonary, cardiac, cardio-pulmonary, and non-cardiopulmonary. The SPECT was examined in the supine position after infusing Tc-99m-MAA, 185 MBq in a bolus, mainly into an antecubital vein with the patient's arm elevated. From reconstructed SPECT images, the volume of lung as a whole calculated at 10% of thresholds was assumed to be the ''Baseline Lung Perfusion Volume'' (BPV), and the functional volume rates were calculated in 10% threshold widths from 10% to 100% of the threshold. Assuming the total absolute differences in functional volume rate between each subject and the control to be the distribution index of the lung as a whole (D index), we quantified the degree of nonuniform distribution of the lung as a whole in each subject. In the same way, the distribution index of the left or right lung respectively was calculated as D l or D r index assuming the volume of left or right lung were calculated at 10% of the threshold as left or right BPV and calculating the functional volume rates of each lung in 10% threshold widths from 10% to 100% of the threshold. The D index of irradiated lung cancer
Energy Technology Data Exchange (ETDEWEB)
Vitaly Osmachkin [Russian Research Center ' Kurchatov Institute' 1, Kurchatov sq, Moscow 123182 (Russian Federation)
2005-07-01
Full text of publication follows: The influence of power transient, changes of flow rate, inlet temperatures or pressure in cores of nuclear reactors on heat transfer and burnout conditions in channels depend on rate of such violations. Non-uniform distribution of the heat flux is also important factor for heat transfer and development of crisis phenomenon. Such effects may be significant for NPPs safety. But they have not yet generally accepted interpretation. Steady state approach is often recommended for use in calculations. In the paper a review of experimental observed so-called non-equilibrium effects is presented. The effects of space and time factors are displaying due delay in reformation turbulence intensity, velocity, temperatures or void fraction profiles, water film flow on the surface of heated channels. For estimation of such effect different methods are used. Modern computer codes based on two or three fluids approaches are considered as most effective. But simple and clear correlations may light up the mechanics of effects on heat transfer and improve general understanding of scale and significance of the transient events. In the paper the simplified methods for assessment the influence of lags in the development of distributions of parameters of flow, the relaxation of temporal or space violations are considered. They are compared with more sophisticated approaches. Velocities of disturbance fronts moving along the channels are discussed also. (author)
Lee, Min Sun; Kim, Joong Hyun; Paeng, Jin Chul; Kang, Keon Wook; Jeong, Jae Min; Lee, Dong Soo; Lee, Jae Sung
2017-12-14
Personalized dosimetry with high accuracy is becoming more important because of the growing interests in personalized medicine and targeted radionuclide therapy. Voxel-based dosimetry using dose point kernel or voxel S-value (VSV) convolution is available. However, these approaches do not consider medium heterogeneity. Here, we propose a new method for whole-body voxel-based personalized dosimetry for heterogeneous media with non-uniform activity distributions, which is referred to as the multiple VSV approach. Methods: The multiple numbers (N) of VSVs for media with different densities covering the whole-body density ranges were used instead of using only a single VSV for water. The VSVs were pre-calculated using GATE Monte Carlo simulation; those were convoluted with the time-integrated activity to generate density-specific dose maps. Computed tomography-based segmentation was conducted to generate binary maps for each density region. The final dose map was acquired by the summation of N segmented density-specific dose maps. We tested several sets of VSVs with different densities: N = 1 (single water VSV), 4, 6, 8, 10, and 20. To validate the proposed method, phantom and patient studies were conducted and compared with direct Monte Carlo, which was considered the ground truth. Finally, patient dosimetry (10 subjects) was conducted using the multiple VSV approach and compared with the single VSV and organ-based dosimetry approaches. Errors at the voxel- and organ-levels were reported for eight organs. Results: In the phantom and patient studies, the multiple VSV approach showed significant improvements regarding voxel-level errors, especially for the lung and bone regions. As N increased, voxel-level errors decreased, although some overestimations were observed at lung boundaries. In the case of multiple VSVs ( N = 8), we achieved voxel-level errors of 2.06%. In the dosimetry study, our proposed method showed much improved results compared to the single VSV and
Energy Technology Data Exchange (ETDEWEB)
Zotova, N V; Karandashev, S A; Matveev, B. A., E-mail: Bmat@iropt3.ioffe.ru; Remennyy, M A; Rybal' chenko, A Yu; Stus' , N M [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation)
2011-04-15
Current-voltage characteristics of surface-irradiated photodiodes based on the InAsSbP/InAs structures are analyzed using experimental data on the distribution of electroluminescence intensity over the diode surface and taking into account thickening the current streamlines near the contacts. The influence of the potential barrier associated with the N-InAsSbP/n-InAs junction in double heterostructures on the differential resistance of diodes under zero bias, the value of the reverse current, and spreading of the forward current is discussed.
International Nuclear Information System (INIS)
Zotova, N. V.; Karandashev, S. A.; Matveev, B. A.; Remennyy, M. A.; Rybal’chenko, A. Yu.; Stus’, N. M.
2011-01-01
Current-voltage characteristics of surface-irradiated photodiodes based on the InAsSbP/InAs structures are analyzed using experimental data on the distribution of electroluminescence intensity over the diode surface and taking into account thickening the current streamlines near the contacts. The influence of the potential barrier associated with the N-InAsSbP/n-InAs junction in double heterostructures on the differential resistance of diodes under zero bias, the value of the reverse current, and spreading of the forward current is discussed.
Errors in dual-energy X-ray scanning of the hip because of nonuniform fat distribution.
Tothill, Peter; Weir, Nicholas; Loveland, John
2014-01-01
The variable proportion of fat in overlying soft tissue is a potential source of error in dual-energy X-ray absorptiometry (DXA) measurements of bone mineral. The effect on spine scanning has previously been assessed from cadaver studies and from computed tomography (CT) scans of soft tissue distribution. We have now applied the latter technique to DXA hip scanning. The CT scans performed for clinical purposes were used to derive mean adipose tissue thicknesses over bone and background areas for total hip and femoral neck. The former was always lower. More importantly, the fat thickness differences varied among subjects. Errors because of bone marrow fat were deduced from CT measurements of marrow thickness and assumed fat proportions of marrow. The effect of these differences on measured bone mineral density was deduced from phantom measurements of the bone equivalence of fat. Uncertainties of around 0.06g/cm(2) are similar to those previously reported for spine scanning and the results from cadaver measurements. They should be considered in assessing the diagnostic accuracy of DXA scanning. Copyright © 2014 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Experimental results of current distribution in Rutherford-type LHC cables
Verweij, A P
2000-01-01
Current distribution among the wires of multi-strand superconducting cables is an important item for accelerator magnets. A non-uniform distribution could cause additional field distortions in the magnet bore and can as well be one of the reasons of premature quenching. Since two years electrical measurements on superconducting Rutherford-type cables are performed at CERN as part of the reception tests for the Large Hadron Collider (LHC). Cable samples of 2.4 m length are tested at currents up to 32 kA, temperatures around 1.9 and 4.3 K, and fields up to 10 T, applied perpendicularly as well as parallel to the broad face of the cable. Last year, an array of 24 Hall probes was installed in the test set-up in order to measure the self-field of the cable samples along one cable pitch. Each of the probes measures the local field generated by the current in the strands close by, and the results of the all probes reflect therefore the distribution of the strand currents. Experiments are done varying the applied fie...
Waterfowl in Cuba: Current status and distribution
Blanco Rodríquez, Pedro; Vilella, Francisco; Sánchez Oria, Bárbara
2014-01-01
Cuba and its satellite islands represent the largest landmass in the Caribbean archipelago and a major repository of the region’s biodiversity. Approximately 13.4% of the Cuban territory is covered by wetlands, encompassing approximately 1.48 million ha which includes mangroves, flooded savannas, peatlands, freshwater swamp forests and various types of managed wetlands. Here, we synthesise information on the distribution and abundance of waterfowl on the main island of Cuba, excluding the numerous surrounding cays and the Isla de la Juventud (Isle of Youth), and report on band recoveries from wintering waterfowl harvested in Cuba by species and location. Twenty-nine species of waterfowl occur in Cuba, 24 of which are North American migrants. Of the five resident Anatid species, three are of conservation concern: the West Indian Whistling-duck Dendrocygna arborea (globally vulnerable), White-cheeked Pintail Anas bahamensis (regional concern) and Masked Duck Nomonyx dominicus(regional concern). The most abundant species of waterfowl wintering in Cuba include Blue-winged Teal A. discors, Northern Pintail A. acuta, and Northern Shoveler A. clypeata. Waterfowl banded in Canada and the United States and recovered in Cuba included predominantly Blue-winged Teal, American Wigeon and Northern Pintail. Banding sites of recovered birds suggest that most of the waterfowl moving through and wintering in Cuba are from the Atlantic and Mississippi flyways. Threats to wetlands and waterfowl in Cuba include: 1) egg poaching of resident species, 2) illegal hunting of migratory and protected resident species, 3) mangrove deforestation, 4) reservoirs for irrigation, 5) periods of pronounced droughts, and 6) hurricanes. Wetland and waterfowl conservation efforts continue across Cuba’s extensive system of protected areas. Expanding collaborations with international conservation organisations, researchers and governments in North America will enhance protection
Computer Simulation of Nonuniform MTLs via Implicit Wendroff and State-Variable Methods
Directory of Open Access Journals (Sweden)
L. Brancik
2011-04-01
Full Text Available The paper deals with techniques for a computer simulation of nonuniform multiconductor transmission lines (MTLs based on the implicit Wendroff and the statevariable methods. The techniques fall into a class of finitedifference time-domain (FDTD methods useful to solve various electromagnetic systems. Their basic variants are extended and modified to enable solving both voltage and current distributions along nonuniform MTL’s wires and their sensitivities with respect to lumped and distributed parameters. An experimental error analysis is performed based on the Thomson cable whose analytical solutions are known, and some examples of simulation of both uniform and nonuniform MTLs are presented. Based on the Matlab language programme, CPU times are analyzed to compare efficiency of the methods. Some results for nonlinear MTLs simulation are presented as well.
Current distribution in a plasma erosion opening switch
International Nuclear Information System (INIS)
Weber, B.V.; Commisso, R.J.; Meger, R.A.; Neri, J.M.; Oliphant, W.F.; Ottinger, P.F.
1984-01-01
The current distribution in a plasma erosion opening switch is determined from magnetic field probe data. During the closed state of the switch the current channel broadens rapidly. The width of the current channel is consistent with a bipolar current density limit imposed by the ion flux to the cathode. The effective resistivity of the current channel is anomalously large. Current is diverted to the load when a gap opens near the cathode side of the switch. The observed gap opening can be explained by erosion of the plasma. Magnetic pressure is insufficient to open the gap
Current distribution in a plasma erosion opening switch
International Nuclear Information System (INIS)
Weber, B.V.; Commisso, R.J.; Meger, R.A.; Neri, J.M.; Oliphant, W.F.; Ottinger, P.F.
1985-01-01
The current distribution in a plasma erosion opening switch is determined from magnetic field probe data. During the closed state of the switch the current channel broadens rapidly. The width of the current channel is consistent with a bipolar current density limit imposed by the ion flux to the cathode. The effective resistivity of the current channel is anomalously large. Current is diverted to the load when a gap opens near the cathode side of the switch. The observed gap opening can be explained by erosion of the plasma. Magnetic pressure is insufficient to open the gap
Electric current distribution of a multiwall carbon nanotube
Energy Technology Data Exchange (ETDEWEB)
Chen, Li-Ying; Chang, Chia-Seng, E-mail: jasonc@phys.sinica.edu.tw [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taiwan (China); Chen, Yu-Jyun [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China)
2016-07-15
The electric current distribution in a multiwall carbon nanotube (MWCNT) was studied by in situ measuring the electric potential along an individual MWCNT in the ultra-high vacuum transmission electron microscope (TEM). The current induced voltage drop along each section of a side-bonded MWCNT was measured by a potentiometric probe in TEM. We have quantitatively derived that the current on the outermost shell depends on the applied current and the shell diameter. More proportion of the total electronic carriers hop into the inner shells when the applied current is increased. The larger a MWCNT’s diameter is, the easier the electronic carriers can hop into the inner shells. We observed that, for an 8 nm MWCNT with 10 μA current applied, 99% of the total current was distributed on the outer two shells.
distribution of euphausiid crustaceans from the agulhas current
African Journals Online (AJOL)
may set up a northeasterly counter-current close to the coast and cause local upwelling (aowes. 1950; Darbyshire 1964). The Agulhas Current shows considerable seasonal variation in its rate of flow (Darbyshire. 1964) and ...... detailed study of the biology and distribution of this interesting species in eastern Cape coastal.
Current and voltage distribution in the diffuse vacuum arc
Schellekens, H.; Schram, D.C.
1985-01-01
On the basis of extensive measurements, a model is developed for the diffuse plasma of the high-current vacuum arc. The model shows that the current constriction and the voltage distribution in the diffuse vacuum arc prior to anode-spot formation are caused by the pressure source to which the
Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems
Yukawa, Satoshi
2009-02-15
A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.
Nonequilibrium Microscopic Distribution of Thermal Current in Particle Systems
Yukawa, Satoshi; Shimada, Takashi; Ogushi, Fumiko; Ito, Nobuyasu
2009-01-01
A nonequilibrium distribution function of microscopic thermal current is studied by a direct numerical simulation in a thermal conducting steady state of particle systems. Two characteristic temperatures of the thermal current are investigated on the basis of the distribution. It is confirmed that the temperature depends on the current direction; Parallel temperature to the heat-flux is higher than antiparallel one. The difference between the parallel temperature and the antiparallel one is proportional to a macroscopic temperature gradient. ©2009 The Physical Society of Japan.
Modeling the current distribution in HTS tapes with transport current and applied magnetic field
Yazawa, T.; Yazawa, Takashi; Rabbers, J.J.; Chevtchenko, O.A.; ten Haken, Bernard; ten Kate, Herman H.J.; Maeda, Hideaki
1999-01-01
A numerical model is developed for the current distribution in a high temperature superconducting (HTS) tape, (Bi,Pb)2Sr2 Ca2Cu3Ox-Ag, subjected to a combination of a transport current and an applied magnetic field. This analysis is based on a two-dimensional formulation of Maxwell's equations in
Current distribution in triodes neglecting space charge and initial velocities
Hamaker, H.C.
1950-01-01
A theory of the current distribution in triodes with positive grid is developed on the assumption that space charge and the initial velocities of both primary and secondary electrons may be neglected. This theory, which is originally due to De Lussanct de la Sablonière, has been put in a more lucid
Imaging of current distributions in superconducting thin film structures
International Nuclear Information System (INIS)
Doenitz, D.
2006-01-01
Local analysis plays an important role in many fields of scientific research. However, imaging methods are not very common in the investigation of superconductors. For more than 20 years, Low Temperature Scanning Electron Microscopy (LTSEM) has been successfully used at the University of Tuebingen for studying of condensed matter phenomena, especially of superconductivity. In this thesis LTSEM was used for imaging current distributions in different superconducting thin film structures: - Imaging of current distributions in Josephson junctions with ferromagnetic interlayer, also known as SIFS junctions, showed inhomogeneous current transport over the junctions which directly led to an improvement in the fabrication process. An investigation of improved samples showed a very homogeneous current distribution without any trace of magnetic domains. Either such domains were not present or too small for imaging with the LTSEM. - An investigation of Nb/YBCO zigzag Josephson junctions yielded important information on signal formation in the LTSEM both for Josephson junctions in the short and in the long limit. Using a reference junction our signal formation model could be verified, thus confirming earlier results on short zigzag junctions. These results, which could be reproduced in this work, support the theory of d-wave symmetry in the superconducting order parameter of YBCO. Furthermore, investigations of the quasiparticle tunneling in the zigzag junctions showed the existence of Andreev bound states, which is another indication of the d-wave symmetry in YBCO. - The LTSEM study of Hot Electron Bolometers (HEB) allowed the first successful imaging of a stable 'Hot Spot', a self-heating region in HEB structures. Moreover, the electron beam was used to induce an - otherwise unstable - hot spot. Both investigations yielded information on the homogeneity of the samples. - An entirely new method of imaging the current distribution in superconducting interference devices
Current distribution between petals in PF-FSJS sample
International Nuclear Information System (INIS)
Zani, L.
2003-01-01
6 Rogowski coils have been installed on each leg of each of the 12 petals in the PF-FSJS sample (poloidal field - full size joint sample) in order to diagnostic current. It appears that Rogowski signal seem reliable for current distribution analysis (Ampere's law is checked and reproducibility is assured) but there is some limitations for qualitative diagnostics. In the series of transparencies results are detailed for the PU1 position, for both leg and right legs and for various unique-angle shift (Δθ) configurations but only results for 0 < Δθ < -5 are consistent
A distributed current stimulator ASIC for high density neural stimulation.
Jeong Hoan Park; Chaebin Kim; Seung-Hee Ahn; Tae Mok Gwon; Joonsoo Jeong; Sang Beom Jun; Sung June Kim
2016-08-01
This paper presents a novel distributed neural stimulator scheme. Instead of a single stimulator ASIC in the package, multiple ASICs are embedded at each electrode site for stimulation with a high density electrode array. This distributed architecture enables the simplification of wiring between electrodes and stimulator ASIC that otherwise could become too complex as the number of electrode increases. The individual ASIC chip is designed to have a shared data bus that independently controls multiple stimulating channels. Therefore, the number of metal lines is determined by the distributed ASICs, not by the channel number. The function of current steering is also implemented within each ASIC in order to increase the effective number of channels via pseudo channel stimulation. Therefore, the chip area can be used more efficiently. The designed chip was fabricated with area of 0.3 mm2 using 0.18 μm BCDMOS process, and the bench-top test was also conducted to validate chip performance.
Eddy current distribution and lift force for finite MAGLEV strips
Energy Technology Data Exchange (ETDEWEB)
Atherton, D L; Eastham, A R; Fombrun, C; Chong, M
1974-07-01
The transverse distribution of induced eddy currents across a flat conducing strip of finite width, due to a rectangular dc magnet moving above it, was modelled experimentally, and was compared with that calculated for an infinite sheet. The electrodynamic suspension was simulated by means of a stationary ac-excited copper magnet suspended above an aluminum strip, and the induced surface current density was measured by a voltage pickup probe connected to a lock-in amplifier. The effect of reducing strip width is examined and shown to produce high current densities close to the edges. These results are related to the variation of lift force with strip width, determined by impedance modelling. A slight enhancement of lift is evident for intermediate strip widths.
Current distribution in Cable-In-Conduit Conductors
International Nuclear Information System (INIS)
Ferri, M.A.
1994-05-01
A numerical study of the current distribution in Cable-In-Conduit Conductors (CICC's) experiencing linearly ramping transport currents and transverse magnetic fields was conducted for both infinitely long, periodic cables and finite length cables terminated in low resistance joints. The goal of the study was to gain insight into the phenomenon known as Ramp Rate Limitation, an as yet unexplained correspondence between maximum attainable current and the ramp time taken to reach that current in CICC superconducting magnets. A discrete geometric model of a 27 strand multiply twisted CICC was developed to effectively represent the flux linkages, mutual inductances, and resistive contact points between the strands of an experimentally tested cable. The results of the numerical study showed that for fully periodic cables, the current imbalances due to ramping magnetic fields and ramping transport currents are negligible in the range of experimentally explored operating conditions. For finite length, joint terminated cables, however, significant imbalances can exist. Unfortunately, quantitative results are limited by a lack of knowledge of the transverse resistance between strands in the joints. Nonetheless, general results are presented showing the dependency of the imbalance on cable length, ramp time, and joint resistance for both ramping transverse magnet fields and ramping transport currents. At the conclusion of the study, it is suggested that calculated current imbalances in a finite length cable could cause certain strands to prematurely ''quench'' -- become non-superconducting --thus leading to an instability for the entire cable. This numerically predicted ''current imbalance instability'' is compared to the experimentally observed Ramp Rate Limitation for the 27 strand CICC sample
Marshall, C. J.; Marshall, P. W.; Howe, C. L.; Reed, R. A.; Weller, R. A.; Mendenhall, M.; Waczynski, A.; Ladbury, R.; Jordan, T. M.
2007-01-01
This paper presents a combined Monte Carlo and analytic approach to the calculation of the pixel-to-pixel distribution of proton-induced damage in a HgCdTe sensor array and compares the results to measured dark current distributions after damage by 63 MeV protons. The moments of the Coulombic, nuclear elastic and nuclear inelastic damage distributions were extracted from Monte Carlo simulations and combined to form a damage distribution using the analytic techniques first described in [1]. The calculations show that the high energy recoils from the nuclear inelastic reactions (calculated using the Monte Carlo code MCNPX [2]) produce a pronounced skewing of the damage energy distribution. While the nuclear elastic component (also calculated using the MCNPX) contributes only a small fraction of the total nonionizing damage energy, its inclusion in the shape of the damage across the array is significant. The Coulombic contribution was calculated using MRED [3-5], a Geant4 [4,6] application. The comparison with the dark current distribution strongly suggests that mechanisms which are not linearly correlated with nonionizing damage produced according to collision kinematics are responsible for the observed dark current increases. This has important implications for the process of predicting the on-orbit dark current response of the HgCdTe sensor array.
Current and field distribution in high temperature superconductors
International Nuclear Information System (INIS)
Johnston, M.D.
1998-01-01
The manufacture of wires from HTS materials containing copper-oxide planes is difficult because their physical and electrical properties are highly anisotropic. The electrical connectivity depends on the nearest-neighbour grain alignment and although a high degree of grain texture is achieved through processing, the tape microstructure is generally far from uniform, with weak links and porosity also complicating the picture. In order to optimise the processing, the microstructural features common to good tapes must be identified, requiring knowledge of the local properties. The preferential path taken by transport current is determined by the properties of the local microstructure and as such can be used to measure the variation in quality across the tape cross-section. By measuring the self-field profile generated by a current-carrying tape, it is possible to extract the associated current distribution. I have designed and built a Scanning Hall Probe Microscope to measure the normal field distribution above superconductor tapes carrying DC currents, operating at liquid nitrogen temperature and zero applied magnetic field. It has a spatial resolution of 50*50 μm and a field sensitivity of 5 μT, and can scan over a distance of 6 mm. The current extraction is performed by means of a deconvolution procedure based on Legendre functions. This allows a nondestructive, non-invasive method of evaluating the effects of the processing on the tapes - especially when correlated with transport and magnetisation measurement data. Conductors fabricated from Bi 2 Sr 2 Ca 2 Cu 3 O 10 , Bi 2 Sr 2 CaCu 2 O 8 and (Tl 0.78 Bi 0.22 )(Sr 0.8 Ba 0.2 ) 2 Ca 2 Cu 3 O x , have been investigated. I have confirmed the reports that in Bi-2223/Ag mono-core conductors produced by the oxide-powder-in-tube (OPIT) technique, the current flows predominantly at the edges of the tape, where the grains are long and well-aligned. This is in contrast to Bi-2212 ribbons, where the better microstructure
Linear q-nonuniform difference equations
International Nuclear Information System (INIS)
Bangerezako, Gaspard
2010-01-01
We introduce basic concepts of q-nonuniform differentiation and integration and study linear q-nonuniform difference equations and systems, as well as their application in q-nonuniform difference linear control systems. (author)
Distribution of electric currents in sunspots from photosphere to corona
Energy Technology Data Exchange (ETDEWEB)
Gosain, Sanjay [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Démoulin, Pascal [Observatoire de Paris, LESIA, UMR 8109 (CNRS), F-92195 Meudon Principal Cedex (France); López Fuentes, Marcelo [Instituto de Astronomía y Física del Espacio (IAFE), UBA-CONICET, CC. 67, Suc. 28 Buenos Aires 1428 (Argentina)
2014-09-20
We present a study of two regular sunspots that exhibit nearly uniform twist from the photosphere to the corona. We derive the twist parameter in the corona and in the chromosphere by minimizing the difference between the extrapolated linear force-free field model field lines and the observed intensity structures in the extreme-ultraviolet images of the Sun. The chromospheric structures appear more twisted than the coronal structures by a factor of two. Further, we derive the vertical component of electric current density, j{sub z} , using vector magnetograms from the Hinode Solar Optical Telescope (SOT). The spatial distribution of j{sub z} has a zebra pattern of strong positive and negative values owing to the penumbral fibril structure resolved by Hinode/SOT. This zebra pattern is due to the derivative of the horizontal magnetic field across the thin fibrils; therefore, it is strong and masks weaker currents that might be present, for example, as a result of the twist of the sunspot. We decompose j{sub z} into the contribution due to the derivatives along and across the direction of the horizontal field, which follows the fibril orientation closely. The map of the tangential component has more distributed currents that are coherent with the chromospheric and coronal twisted structures. Moreover, it allows us to map and identify the direct and return currents in the sunspots. Finally, this decomposition of j{sub z} is general and can be applied to any vector magnetogram in order to better identify the weaker large-scale currents that are associated with coronal twisted/sheared structures.
Evaluation of Current Controllers for Distributed Power Generation Systems
DEFF Research Database (Denmark)
Timbus, Adrian; Liserre, Marco; Teodorescu, Remus
2009-01-01
This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional-integral, proportio......This paper discusses the evaluation of different current controllers employed for grid-connected distributed power generation systems having variable input power, such as wind turbines and photovoltaic systems. The focus is mainly set on linear controllers such as proportional......-integral, proportional-resonant, and deadbeat (DB) controllers. Additionally, an improved DB controller robust against grid impedance variation is also presented. Since the paper discusses the implementation of these controllers for grid-connected applications, their evaluation is made in three operating conditions....... First, in steady-state conditions, the contribution of controllers to the total harmonic distortion of the grid current is pursued. Further on, the behavior of controllers in the case of transient conditions like input power variations and grid voltage faults is also examined. Experimental results...
Energy Technology Data Exchange (ETDEWEB)
Bezsmolnyy, Ya.Yu.; Sokolova, E.S.; Sokolov, S.S. [B.Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, 47 Prospekt Nauky, 61103 Kharkov (Ukraine); Studart, Nelson [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Av. dos Estados, 5001, 09210-580 Santo André, São Paulo (Brazil); Departamento de Física, Universidade Federal de São Carlos, via Washington Luís, km 235, 13565-905 Säo Carlos, São Paulo (Brazil)
2017-02-15
The energy gap between the ground and first excited energy levels of surface electrons deposited over a dilute {sup 3}He - {sup 4}He solution is evaluated. Two spatial distributions of {sup 3}He atoms near the free surface solution are considered. One consists of a thin though macroscopic {sup 3}He film and in the other the {sup 3}He concentration varies continuously from the surface inside the liquid. The energy gap is calculated as a function of the parameters of the {sup 3}He spatial distribution for these distributions. It is shown that the energy gap dependence on the distribution parameters allows using measurements of intersubband transitions of the surface electrons to determine the {sup 3}He concentration distribution and, in principle, the nature of the spatial distribution of the light isotope near the surface of the solution.
Biswas, Debabrata
2018-04-01
Field emission from nano-structured emitters primarily takes place from the tips. Using recent results on the variation of the enhancement factor around the apex [Biswas et al., Ultramicroscopy 185, 1-4 (2018)], analytical expressions for the surface distribution of net emitted electrons, as well as the total and normal energy distributions are derived in terms of the apex radius Ra and the local electric field at the apex Ea. Formulae for the net emitted current and effective emission area in terms of these quantities are also obtained.
Correlation among ESDD, NSDD and leakage current in distribution insulators
International Nuclear Information System (INIS)
Montoya, G.; Ramirez, I.; Montoya, J.I.
2004-01-01
The maintenance of distribution networks is more effective if the insulation contamination levels are known. The selection of measuring methods of pollution levels is then crucial. The relationship between several evaluation methods of pollution levels and the operating behaviour of several insulator profiles in a polluted zone is described. Laboratory tests were carried out to reproduce pollution levels found in the field. The quantity of non-soluble materials deposited over the insulators' surface affect the magnitude of the leakage current generated over a contaminated insulator. The relationship that defines leakage current with respect to the equivalent salt deposit density (ESDD) level for a specific non-soluble material level is almost linear, from which it is possible to develop a relationship between them for each insulator. (author)
DEFF Research Database (Denmark)
Wang, W.G.; Jensen, M.B.; Kindl, B.
2000-01-01
The spatial distribution of the critical current density (Jc) and engineering critical current density (Je) along the tape width direction was studied by a cutting technique on Bi-2223 multifilamentary tapes. In general, an increase of Jc towards the centre of the tape was measured. We attribute...... microstructure with a great amount of secondary phases. Local variation of Jc was measured within the centre segment of the tape. This indicates the influence of other factors on Jc, such as filament shape, connectivity of the filaments, and sausaging. Enhancement of Je has been pursued in which average Je of 12...
Nonuniform quantum turbulence in superfluids
Nemirovskii, Sergey K.
2018-04-01
The problem of quantum turbulence in a channel with an inhomogeneous counterflow of superfluid turbulent helium is studied. The counterflow velocity Vns x(y ) along the channel is supposed to have a parabolic profile in the transverse direction y . Such statement corresponds to the recent numerical simulation by Khomenko et al. [Phys. Rev. B 91, 180504 (2015), 10.1103/PhysRevB.91.180504]. The authors reported about a sophisticated behavior of the vortex-line density (VLD) L (r ,t ) , different from L ∝Vns x(y) 2 , which follows from the straightforward application of the conventional Vinen theory. It is clear that Vinen theory should be refined by taking into account transverse effects, and the way it ought to be done is the subject of active discussion in the literature. In this work, we discuss several possible mechanisms of the transverse flux of VLD L (r ,t ) which should be incorporated in the standard Vinen equation to describe adequately the inhomogeneous quantum turbulence. It is shown that the most effective among these mechanisms is the one that is related to the phase-slippage phenomenon. The use of this flux in the modernized Vinen equation corrects the situation with an unusual distribution of the vortex-line density, and satisfactorily describes the behavior L (r ,t ) both in stationary and nonstationary situations. The general problem of the phenomenological Vinen theory in the case of nonuniform and nonstationary quantum turbulence is thoroughly discussed.
International Nuclear Information System (INIS)
Wojtas, H.
2004-01-01
The main source of errors in measuring the corrosion rate of rebars on site is a non-uniform current distribution between the small counter electrode (CE) on the concrete surface and the large rebar network. Guard ring electrodes (GEs) are used in an attempt to confine the excitation current within a defined area. In order to better understand the functioning of modulated guard ring electrode and to assess its effectiveness in eliminating errors due to lateral spread of current signal from the small CE, measurements of the polarisation resistance performed on a concrete beam have been numerically simulated. Effect of parameters such as rebar corrosion activity, concrete resistivity, concrete cover depth and size of the corroding area on errors in the estimation of polarisation resistance of a single rebar has been examined. The results indicate that modulated GE arrangement fails to confine the lateral spread of the CE current within a constant area. Using the constant diameter of confinement for the calculation of corrosion rate may lead to serious errors when test conditions change. When high corrosion activity of rebar and/or local corrosion occur, the use of the modulated GE confinement may lead to significant underestimation of the corrosion rate
Global pyrogeography: the current and future distribution of wildfire.
Directory of Open Access Journals (Sweden)
Meg A Krawchuk
Full Text Available Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade. We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research
Global pyrogeography: the current and future distribution of wildfire.
Krawchuk, Meg A; Moritz, Max A; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine
2009-01-01
Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global
Arce-Romero, Antonio Rafael; Monterroso-Rivas, Alejandro Ismael; Gómez-Díaz, Jesús David; Cruz-León, Artemio
2017-01-01
Abstract Plums (Spondias spp.) are species native to Mexico with adaptive, nutritional and ethnobotanical advantages. The aim of this study was to assess the current and potential distribution of two species of Mexican plum: Spondias purpurea L. and Spondias mombin L. The method applied was ecological niche modeling in Maxent software, which has been used in Mexico with good results. In fieldwork, information on the presence of these species in the country was collected. In addition, environm...
Directory of Open Access Journals (Sweden)
Dong‐Hwan Shin
2017-10-01
Full Text Available A 6‐GHz‐to‐18‐GHz monolithic nonuniform distributed power amplifier has been designed using the load modulation of increased series gate capacitance. This amplifier was implemented using a 0.25‐μm AlGaN/GaN HEMT process on a SiC substrate. With the proposed load modulation, we enhanced the amplifier's simulated performance by 4.8 dB in output power, and by 13.1% in power‐added efficiency (PAE at the upper limit of the bandwidth, compared with an amplifier with uniform gate coupling capacitors. Under the pulse‐mode condition of a 100‐μs pulse period and a 10% duty cycle, the fabricated power amplifier showed a saturated output power of 39.5 dBm (9 W to 40.4 dBm (11 W with an associated PAE of 17% to 22%, and input/output return losses of more than 10 dB within 6 GHz to 18 GHz.
Karpowicz, Jolanta; Zradziński, Patryk; Gryz, Krzysztof
2012-01-01
The aim of study was to analyze by computer simulations the electrodynamic effects of magnetic field (MF) on workers, to harmonize the principles of occupational hazards assessment with international guidelines. Simulations involved 50 Hz MF of various spatial distributions, representing workers' exposure in enterprises. Homogeneous models of sigma = 0.2 S/m conductivity and dimensions of body parts - palm, head and trunk - were located at 50 cm ("hand-distance") or 5 cm (adjacent) from the source (circle conductor of 20 cm or 200 cm in diameter). Parameters of magnetic flux density (B(i)) affecting the models were the exposure measures, and the induced electric field strength (E(in)) was the measure of MF exposure effects. The ratio E(in)/B(i) in the analyzed cases ranged from 2.59 to 479 (V/m)/T. The strongest correlation (p assessing the effects of non-uniform fields exposure, resulting from a strong dependence of the E(in)/B(i) ratio on the conditions of exposure and its applied measures, requires special caution when defining the permissible MF levels and the principles of exposure assessment at workplace.
Current Solutions: Recent Experience in Interconnecting Distributed Energy Resources
Energy Technology Data Exchange (ETDEWEB)
Johnson, M.
2003-09-01
This report catalogues selected real-world technical experiences of utilities and customers that have interconnected distributed energy assets with the electric grid. This study was initiated to assess the actual technical practices for interconnecting distributed generation and had a particular focus on the technical issues covered under the Institute of Electrical and Electronics Engineers (IEEE) 1547(TM) Standard for Interconnecting Distributed Resources With Electric Power Systems.
Glavinovíc, M I
1999-02-01
The release of vesicular glutamate, spatiotemporal changes in glutamate concentration in the synaptic cleft and the subsequent generation of fast excitatory postsynaptic currents at a hippocampal synapse were modeled using the Monte Carlo method. It is assumed that glutamate is released from a spherical vesicle through a cylindrical fusion pore into the synaptic cleft and that S-alpha-amino-3-hydroxy -5-methyl-4-isoxazolepropionic acid (AMPA) receptors are uniformly distributed postsynaptically. The time course of change in vesicular concentration can be described by a single exponential, but a slow tail is also observed though only following the release of most of the glutamate. The time constant of decay increases with vesicular size and a lower diffusion constant, and is independent of the initial concentration, becoming markedly shorter for wider fusion pores. The cleft concentration at the fusion pore mouth is not negligible compared to vesicular concentration, especially for wider fusion pores. Lateral equilibration of glutamate is rapid, and within approximately 50 micros all AMPA receptors on average see the same concentration of glutamate. Nevertheless the single-channel current and the number of channels estimated from mean-variance plots are unreliable and different when estimated from rise- and decay-current segments. Greater saturation of AMPA receptor channels provides higher but not more accurate estimates. Two factors contribute to the variability of postsynaptic currents and render the mean-variance nonstationary analysis unreliable, even when all receptors see on average the same glutamate concentration. Firstly, the variability of the instantaneous cleft concentration of glutamate, unlike the mean concentration, first rapidly decreases before slowly increasing; the variability is greater for fewer molecules in the cleft and is spatially nonuniform. Secondly, the efficacy with which glutamate produces a response changes with time. Understanding
The current distribution in Bi-2223/Ag HTS conductors: comparing Hall probe and magnetic knife
Demencik, E.; Dhalle, Marc M.J.; ten Kate, Herman H.J.; Polak, M.
2006-01-01
We analyzed the current distribution in three Bi-2223/Ag tapes with different filament lay-out, comparing the results of magnetic knife and Hall probe experiments. Detailed knowledge of the current distribution can be useful for the diagnostics of HTS conductors. The lateral current distribution was
Probability Distribution Function of the Upper Equatorial Pacific Current Speeds
National Research Council Canada - National Science Library
Chu, Peter C
2005-01-01
...), constructed from hourly ADCP data (1990-2007) at six stations for the Tropical Atmosphere Ocean project satisfies the two-parameter Weibull distribution reasonably well with different characteristics between El Nino and La Nina events...
Nonquasineutral electron vortices in nonuniform plasmas
Energy Technology Data Exchange (ETDEWEB)
Angus, J. R.; Richardson, A. S.; Swanekamp, S. B.; Schumer, J. W. [Plasma Physics Division, Naval Research Laboratory, Washington, District of Columbia 20375 (United States); Ottinger, P. F. [Engility Corporation, Chantilly, Virginia 20151 (United States)
2014-11-15
Electron vortices are observed in the numerical simulation of current carrying plasmas on fast time scales where the ion motion can be ignored. In plasmas with nonuniform density n, vortices drift in the B × ∇n direction with a speed that is on the order of the Hall speed. This provides a mechanism for magnetic field penetration into a plasma. Here, we consider strong vortices with rotation speeds V{sub ϕ} close to the speed of light c where the vortex size δ is on the order of the magnetic Debye length λ{sub B}=|B|/4πen and the vortex is thus nonquasineutral. Drifting vortices are typically studied using the electron magnetohydrodynamic model (EMHD), which ignores the displacement current and assumes quasineutrality. However, these assumptions are not strictly valid for drifting vortices when δ ≈ λ{sub B}. In this paper, 2D electron vortices in nonuniform plasmas are studied for the first time using a fully electromagnetic, collisionless fluid code. Relatively large amplitude oscillations with periods that correspond to high frequency extraordinary modes are observed in the average drift speed. The drift speed W is calculated by averaging the electron velocity field over the vorticity. Interestingly, the time-averaged W from these simulations matches very well with W from the much simpler EMHD simulations even for strong vortices with order unity charge density separation.
Steps towards the universal direct current distribution system
Mackay, L.J.
2018-01-01
The traditional ac power system is challenged by emerging distributed renewable energy sources and an increase in installed load capacity, e.g., electric vehicles. Most of these new resources use inherently dc as do more and more appliances. This poses the question, if they should still be connected
Current Electric Distribution Network Operation and Grid Tariffs
DEFF Research Database (Denmark)
Wu, Qiuwei
2012-01-01
The aim of EcoGridEU task 1.4 is to extend the real‐time price approach with an integrated optimization of the distribution system operation. This will be achieved by extending the basic real‐time market concept with local location‐dependant prices that reflect the grid operation, especially...
High-order nonuniformly correlated beams
Wu, Dan; Wang, Fei; Cai, Yangjian
2018-02-01
We have introduced a class of partially coherent beams with spatially varying correlations named high-order nonuniformly correlated (HNUC) beams, as an extension of conventional nonuniformly correlated (NUC) beams. Such beams bring a new parameter (mode order) which is used to tailor the spatial coherence properties. The behavior of the spectral density of the HNUC beams on propagation has been investigated through numerical examples with the help of discrete model decomposition and fast Fourier transform (FFT) algorithm. Our results reveal that by selecting the mode order appropriately, the more sharpened intensity maxima can be achieved at a certain propagation distance compared to that of the NUC beams, and the lateral shift of the intensity maxima on propagation is closed related to the mode order. Furthermore, analytical expressions for the r.m.s width and the propagation factor of the HNUC beams on free-space propagation are derived by means of Wigner distribution function. The influence of initial beam parameters on the evolution of the r.m.s width and the propagation factor, and the relation between the r.m.s width and the occurring of the sharpened intensity maxima on propagation have been studied and discussed in detail.
Downsampling Non-Uniformly Sampled Data
Directory of Open Access Journals (Sweden)
Fredrik Gustafsson
2007-10-01
Full Text Available Decimating a uniformly sampled signal a factor D involves low-pass antialias filtering with normalized cutoff frequency 1/D followed by picking out every Dth sample. Alternatively, decimation can be done in the frequency domain using the fast Fourier transform (FFT algorithm, after zero-padding the signal and truncating the FFT. We outline three approaches to decimate non-uniformly sampled signals, which are all based on interpolation. The interpolation is done in different domains, and the inter-sample behavior does not need to be known. The first one interpolates the signal to a uniformly sampling, after which standard decimation can be applied. The second one interpolates a continuous-time convolution integral, that implements the antialias filter, after which every Dth sample can be picked out. The third frequency domain approach computes an approximate Fourier transform, after which truncation and IFFT give the desired result. Simulations indicate that the second approach is particularly useful. A thorough analysis is therefore performed for this case, using the assumption that the non-uniformly distributed sampling instants are generated by a stochastic process.
Stream lines for a pure multipole current distribution
International Nuclear Information System (INIS)
Gongora-T, A.
1990-01-01
We give an equation describing the electric current stream-lines on the surface of a sphere that generates a magnetic field which contains a single multipole component. The equation shows how to wind a coil in order to produce a pure multipole field and helps to give an intuitive grasp of how well existing traps approximate multipoles. (Author)
Error Resilience in Current Distributed Video Coding Architectures
Directory of Open Access Journals (Sweden)
Tonoli Claudia
2009-01-01
Full Text Available In distributed video coding the signal prediction is shifted at the decoder side, giving therefore most of the computational complexity burden at the receiver. Moreover, since no prediction loop exists before transmission, an intrinsic robustness to transmission errors has been claimed. This work evaluates and compares the error resilience performance of two distributed video coding architectures. In particular, we have considered a video codec based on the Stanford architecture (DISCOVER codec and a video codec based on the PRISM architecture. Specifically, an accurate temporal and rate/distortion based evaluation of the effects of the transmission errors for both the considered DVC architectures has been performed and discussed. These approaches have been also compared with H.264/AVC, in both cases of no error protection, and simple FEC error protection. Our evaluations have highlighted in all cases a strong dependence of the behavior of the various codecs to the content of the considered video sequence. In particular, PRISM seems to be particularly well suited for low-motion sequences, whereas DISCOVER provides better performance in the other cases.
Australian shellfish ecosystems: Past distribution, current status and future direction.
Directory of Open Access Journals (Sweden)
Chris L Gillies
Full Text Available We review the status of marine shellfish ecosystems formed primarily by bivalves in Australia, including: identifying ecosystem-forming species, assessing their historical and current extent, causes for decline and past and present management. Fourteen species of bivalves were identified as developing complex, three-dimensional reef or bed ecosystems in intertidal and subtidal areas across tropical, subtropical and temperate Australia. A dramatic decline in the extent and condition of Australia's two most common shellfish ecosystems, developed by Saccostrea glomerata and Ostrea angasi oysters, occurred during the mid-1800s to early 1900s in concurrence with extensive harvesting for food and lime production, ecosystem modification, disease outbreaks and a decline in water quality. Out of 118 historical locations containing O. angasi-developed ecosystems, only one location still contains the ecosystem whilst only six locations are known to still contain S. glomerata-developed ecosystems out of 60 historical locations. Ecosystems developed by the introduced oyster Crasostrea gigas are likely to be increasing in extent, whilst data on the remaining 11 ecosystem-forming species are limited, preventing a detailed assessment of their current ecosystem-forming status. Our analysis identifies that current knowledge on extent, physical characteristics, biodiversity and ecosystem services of Australian shellfish ecosystems is extremely limited. Despite the limited information on shellfish ecosystems, a number of restoration projects have recently been initiated across Australia and we propose a number of existing government policies and conservation mechanisms, if enacted, would readily serve to support the future conservation and recovery of Australia's shellfish ecosystems.
Australian shellfish ecosystems: Past distribution, current status and future direction
Gillies, Chris L.; McLeod, Ian M.; Alleway, Heidi K.; Cook, Peter; Crawford, Christine; Creighton, Colin; Diggles, Ben; Ford, John; Hamer, Paul; Heller-Wagner, Gideon; Lebrault, Emma; Le Port, Agnès; Russell, Kylie; Sheaves, Marcus; Warnock, Bryn
2018-01-01
We review the status of marine shellfish ecosystems formed primarily by bivalves in Australia, including: identifying ecosystem-forming species, assessing their historical and current extent, causes for decline and past and present management. Fourteen species of bivalves were identified as developing complex, three-dimensional reef or bed ecosystems in intertidal and subtidal areas across tropical, subtropical and temperate Australia. A dramatic decline in the extent and condition of Australia’s two most common shellfish ecosystems, developed by Saccostrea glomerata and Ostrea angasi oysters, occurred during the mid-1800s to early 1900s in concurrence with extensive harvesting for food and lime production, ecosystem modification, disease outbreaks and a decline in water quality. Out of 118 historical locations containing O. angasi-developed ecosystems, only one location still contains the ecosystem whilst only six locations are known to still contain S. glomerata-developed ecosystems out of 60 historical locations. Ecosystems developed by the introduced oyster Crasostrea gigas are likely to be increasing in extent, whilst data on the remaining 11 ecosystem-forming species are limited, preventing a detailed assessment of their current ecosystem-forming status. Our analysis identifies that current knowledge on extent, physical characteristics, biodiversity and ecosystem services of Australian shellfish ecosystems is extremely limited. Despite the limited information on shellfish ecosystems, a number of restoration projects have recently been initiated across Australia and we propose a number of existing government policies and conservation mechanisms, if enacted, would readily serve to support the future conservation and recovery of Australia’s shellfish ecosystems. PMID:29444143
Skin carcinogenesis following uniform and non-uniform β irradiation
International Nuclear Information System (INIS)
Charles, M.W.; Williams, J.P.; Coggle, J.E.
1989-01-01
Where workers or the general public may be exposed to ionising radiation, the irradiation is rarely uniform. The risk figures and dose limits recommended by the International Commission on Radiological Protection (ICRP) are based largely on clinical and epidemiological studies of reasonably uniform irradiated organs. The paucity of clinical or experimental data for highly non-uniform exposures has prevented the ICRP from providing adequate recommendations. This weakness has led on a number of occasions to the postulate that highly non-uniform exposures of organs could be 100,000 times more carcinogenic than ICRP risk figures would predict. This so-called ''hot-particle hypothesis'' found little support among reputable radiobiologists, but could not be clearly and definitively refuted on the basis of experiment. An experiment, based on skin tumour induction in mouse skin, is described which was developed to test the hypothesis. The skin of 1200 SAS/4 male mice has been exposed to a range of uniform and non-uniform sources of the β emitter 170 Tm (E max ∼ 1 MeV). Non-uniform exposures were produced using arrays of 32 or 8 2-mm diameter sources distributed over the same 8-cm 2 area as a uniform control source. Average skin doses varied from 2-100 Gy. The results for the non-uniform sources show a 30% reduction in tumour incidence by the 32-point array at the lower mean doses compared with the response from uniform sources. The eight-point array showed an order-of-magnitude reduction in tumour incidence compared to uniform irradiation at low doses. These results, in direct contradiction to the ''hot particle hypothesis'', indicate that non-uniform exposures produce significantly fewer tumours than uniform exposures. (author)
International Nuclear Information System (INIS)
Stefanovskii, A. M.
2011-01-01
The processes that are likely to accompany discharge disruptions and sawteeth in a tokamak are considered in a simple plasma current model. The redistribution of the current density in plasma is supposed to be primarily governed by the onset of the MHD-instability-driven turbulent plasma mixing in a finite region of the current column. For different disruption conditions, the variation in the total plasma current (the appearance of a characteristic spike) is also calculated. It is found that the numerical shape and amplitude of the total current spikes during disruptions approximately coincide with those measured in some tokamak experiments. Under the assumptions adopted in the model, the physical mechanism for the formation of the spikes is determined. The mechanism is attributed to the diffusion of the negative current density at the column edge into the zero-conductivity region. The numerical current density distributions in the plasma during the sawteeth differ from the literature data.
Simulation of Non-Uniform Electron Beams in the Gyrotron Electron-Optical System
Louksha, O. I.; Trofimov, P. A.
2018-04-01
New calculated data on the effect of emission inhomogeneities on the quality of the electron beam, which is formed in an electron-optical system of a gyrotron, have been obtained. The calculations were based on emission current density distributions, which were measured for the different cathodes in the gyrotron of Peter the Great St. Petersburg Polytechnic University. A satisfactory agreement between the experimental and calculated data on the influence of emission nonuniformities on the velocity spread of electrons has been shown. The necessity of considering the real distribution of the emission current density over the cathode surface to determine the main parameters of the electron beam—the velocity and energy spreads of the electrons, spatial structure of the beam, and coefficient of reflection of electrons from the magnetic mirror—has been demonstrated. The maximum level of emission inhomogeneities, which are permissible for effective work of gyrotrons, has been discussed.
Estimation of current density distribution of PAFC by analysis of cell exhaust gas
Energy Technology Data Exchange (ETDEWEB)
Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)
1996-12-31
To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.
Crack problem in superconducting cylinder with exponential distribution of critical-current density
Zhao, Yufeng; Xu, Chi; Shi, Liang
2018-04-01
The general problem of a center crack in a long cylindrical superconductor with inhomogeneous critical-current distribution is studied based on the extended Bean model for zero-field cooling (ZFC) and field cooling (FC) magnetization processes, in which the inhomogeneous parameter η is introduced for characterizing the critical-current density distribution in inhomogeneous superconductor. The effect of the inhomogeneous parameter η on both the magnetic field distribution and the variations of the normalized stress intensity factors is also obtained based on the plane strain approach and J-integral theory. The numerical results indicate that the exponential distribution of critical-current density will lead a larger trapped field inside the inhomogeneous superconductor and cause the center of the cylinder to fracture more easily. In addition, it is worth pointing out that the nonlinear field distribution is unique to the Bean model by comparing the curve shapes of the magnetization loop with homogeneous and inhomogeneous critical-current distribution.
Nonequilibrium Distribution of the Microscopic Thermal Current in Steady Thermal Transport Systems
Yukawa, Satoshi; Ogushi, Fumiko; Shimada, Takashi; Ito, Nobuyasu
2010-01-01
Nonequilibrium distribution of the microscopic thermal current is investigated by direct molecular dynamics simulations. The microscopic thermal current in this study is defined by a flow of kinetic energy carried by a single particle. Asymptotic parallel and antiparallel tails of the nonequilibrium distribution to an average thermal current are identical to ones of equilibrium distribution with different temperatures. These temperatures characterizing the tails are dependent on a characteristic length in which a memory of dynamics is completely erased by several particle collisions. This property of the tails of nonequilibrium distribution is confirmed in other thermal transport systems. In addition, statistical properties of a particle trapped by a harmonic potential in a steady thermal conducting state are also studied. This particle feels a finite force parallel to the average thermal current as a consequence of the skewness of the distribution of the current. This force is interpreted as the microscopic origin of thermophoresis.
Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode
Poehlmann, Flavio R.; Cappelli, Mark A.; Rieker, Gregory B.
2010-01-01
Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma def...
International Nuclear Information System (INIS)
Liu Fang; Wu Yu; Long Feng
2010-01-01
Based on Pacman device which is widely used to investigate the axial strain dependence of the critical current in superconductors, the finite element analysis method is employed to carry out the force analysis of the spring and the superconducting strand, thereby the axial and lateral strain distributions of the superconducting strand are obtained. According to the two extreme assumptions(low inter-filament resistance and high inter-filament resistance), the effects of the strain homogeneity at the cross section of the superconductor on the critical current is analyzed combined with the Nb 3 Sn deviatoric strain-critical current scaling law. (authors)
Research for the Influence of Distribution Network Line Reclosing Current on Line Protection
Directory of Open Access Journals (Sweden)
Yu Kansheng
2016-01-01
Full Text Available According to the distribution network line structure and reclosing control strategy, the system simulation model of distribution network lines has established based on the real-time digital simulation RTDS. Based on this, distribution network switching impulse current characteristic has researched with different capacity, different distribution and different load power factor under the different voltage switching angles. The results of the study provide a scientific basis for distribution network line protection setting, in order to further lay the foundation for improvement the validity and reliability of distribution network line protection action.
Energy Technology Data Exchange (ETDEWEB)
Hamajima, K.; Alamgir, A.K.M.; Harada, N.; Tsuda, M. [Yamaguchi Univ., Yamaguchi (Japan); Ono, M.; Takano, H. [Toshiba Corp., Tokyo (Japan)
2000-04-25
An imbalanced current distribution is often observed in cable-in-conduit (CIC) superconductors, which are composed of multistaged, triplet type sub-cables, and deteriorates the performance of the coils. Therefore, it is very important to analyze the current distribution in a superconductor and find out methods to obtain a homogeneous current distribution in the conductor. We apply a magnetic flux conservation in a loop contoured by electric center lines of filaments in two arbitrary strands located on adjacent layers in a coaxial multilayer superconductor, and then analyze the current distribution in the conductor. A generalized formula governing the current distribution can be described as explicit functions of the superconductor construction parameters, such as twist pitch, twist direction and radius of each layer. It is shown that we can obtain a homogeneous current distribution using this fundamental formula, which is a function of the twist pitches of layers. Moreover, it is demonstrated that we can control current distribution in the coaxial superconductor. (author)
Forte, Stefano; Ridolfi, G; Forte, Stefano; Mangano, Michelangelo L.; Ridolfi, Giovanni
2001-01-01
We discuss the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments. We summarize the next-to-leading order treatment of charged-current polarized structure functions, their relation to polarized parton distributions and scale dependence, and discuss their description by means of a next-to-leading order evolution code. We discuss current theoretical expectations and positivity constraints on the unmeasured C-odd combinations Delta q-Delta qbar of polarized quark distributions, and their determination in charged-current deep-inelastic scattering experiments. We give estimates of the expected errors on charged-current structure functions at a future neutrino factory, and perform a study of the accuracy in the determination of polarized parton distributions that would be possible at such a facility. We show that these measurements have the potential to distinguish between different theoretical scenarios for the proton spin structure.
International Nuclear Information System (INIS)
Forte, Stefano; Mangano, Michelangelo L.; Ridolfi, Giovanni
2001-01-01
We discuss the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments. We summarize the next-to-leading-order treatment of charged-current polarized structure functions, their relation to polarized parton distributions and scale dependence, and discuss their description by means of a next-to-leading-order evolution code. We discuss current theoretical expectations and positivity constraints on the unmeasured C-odd combinations Δq-Δq-bar of polarized quark distributions, and their determination in charged-current deep-inelastic scattering experiments. We give estimates of the expected errors on charged-current structure functions at a future neutrino factory, and perform a study of the accuracy in the determination of polarized parton distributions that would be possible at such a facility. We show that these measurements have the potential to distinguish between different theoretical scenarios for the proton spin structure
International Nuclear Information System (INIS)
Tallouli, M; Yamaguchi, S.; Shyshkin, O.
2017-01-01
The development of power transmission lines based on long-length high temperature superconducting (HTS) tapes is complicated and technically challenging task. A serious problem for transmission line operation could become HTS power cable damage due to over-current pulse conditions. To avoid the cable damage in any urgent case the superconducting coil technology, i.e. superconductor fault current limiter (SFCL) is required. Comprehensive understanding of the current density characteristics of HTS tapes in both cases, either after pure over-current pulse or after over-current pulse limited by SFCL, is needed to restart or to continue the operation of the power transmission line. Moreover, current density distribution along and across the HTS tape provides us with the sufficient information about the quality of the tape performance in different current feeding regimes. In present paper we examine BSCCO HTS tape under two current feeding regimes. The first one is 100A feeding preceded by 900A over-current pulse. In this case none of tape protection was used. The second scenario is similar to the fist one but SFCL is used to limit an over-current value. For both scenarios after the pulse is gone and the current feeding is set up at 100A we scan magnetic field above the tape by means of Hall probe sensor. Then the feeding is turned of and the magnetic field scanning is repeated. Using the inverse problem numerical solver we calculate the corresponding direct and permanent current density distributions during the feeding and after switch off. It is demonstrated that in the absence of SFCL the current distribution is highly peaked at the tape center. At the same time the current distribution in the experiment with SFCL is similar to that observed under normal current feeding condition. The current peaking in the first case is explained by the effect of an opposite electric field induced at the tape edges during the overcurrent pulse decay, and by degradation of
GEPOIS: a two dimensional nonuniform mesh Poisson solver
International Nuclear Information System (INIS)
Quintenz, J.P.; Freeman, J.R.
1979-06-01
A computer code is described which solves Poisson's equation for the electric potential over a two dimensional cylindrical (r,z) nonuniform mesh which can contain internal electrodes. Poisson's equation is solved over a given region subject to a specified charge distribution with either Neumann or Dirichlet perimeter boundary conditions and with Dirichlet boundary conditions on internal surfaces. The static electric field is also computed over the region with special care given to normal electric field components at boundary surfaces
Distribution of ionospheric currents induced by the solar wind interaction with Venus
International Nuclear Information System (INIS)
Daniell, R.E. Jr.; Cloutier, P.A.
1977-01-01
The electric currents induced in the atmosphere of a non-magnetic planet such as Venus by the interaction of the solar wind satisfy a generalized Ohm's Law relationship with tensor conductivity. The distribution of these currents within the planetary ionosphere may be calculated by a variational technique which minimizes the Joule heating over the ionospheric volume. In this paper, we present the development of the variational technique, and apply it to a model of the solar wind interaction with Venus. Potential and current distributions are shown, and the use of these distributions in determining convective transport patterns of planetary ions is discussed. (author)
Directory of Open Access Journals (Sweden)
R. M. STEVANOVIC
2001-02-01
Full Text Available Cell voltage current density dependences for a model electrochemical cell of fixed geometry were calculated for different electrolyte conductivities, Tafel slopes and cathodic exchange current densities. The ratio between the current density at the part of the cathode nearest to the anode and the one furthest away were taken as a measure for the estimation of the current density distribution. The calculations reveal that increasing the conductivity of the electrolyte, as well as increasing the cathodic Tafel slope should both improve the current density distribution. Also, the distribution should be better under total activation control or total diffusion control rather than at mixed activation-diffusion-Ohmic control of the deposition process. On the contrary, changes in the exchange current density should not affect it. These results, being in agreement with common knowledge about the influence of different parameters on the current distribution in an electrochemical cell, demonstrate that a quick estimation of the current distribution can be performed by a simple comparison of the current density at the point of the cathode closest to anode with that at furthest point.
n value and Jc distribution dependence of AC transport current losses in HTS conductors
International Nuclear Information System (INIS)
Ogawa, Jun; Sawai, Yusuke; Nakayama, Haruki; Tsukamoto, Osami; Miyagi, Daisuke
2004-01-01
Compared with LTS materials, HTS materials have some peculiarities affecting AC loss characteristics of the conductors. We measured the AC transport current losses in YBCO thin film coated conductors and a Bi2223/Ag sheathed tape. Comparing the measured data with analytical calculations, the dependence of the AC transport current losses on the n value and critical current density distributions are studied. It is shown that, considering the n values and J c distributions, the peculiarities in the HTS materials can be taken into consideration and the transport current losses in HTS conductors can be calculated by the same analytical method used for LTS
International Nuclear Information System (INIS)
Manglos, S.H.; Jaszczak, R.J.; Floyd, C.E.
1988-01-01
A method is developed to improve quantitation in SPECT imaging by using an attenuation compensation method which includes the correct non-uniform attenuation spatial distribution (''map''). The method is based on the technique of weighted back projection, previously developed for uniform attenuation. The method is tested by imaging a non-uniform phantom, reconstructing with the known attenuation map, and quantitatively comparing the resultant image with the known activity distribution. Reconstructed image profiles are dramatically improved in comparison to reconstructions without compensation or with an assumed uniform attenuation map. Contrast measurements further quantify the improvement. Line spread function distortions seen previously in non-uniform geometries are essentially eliminated by the method. Therefore, the method appears to be appropriate for these geometries, if the non-uniform map can be determined. Some additional image distortions introduced by the compensation method are noted and will require further study
A mathematical model of the current density distribution in electrochemical cells - AUTHORS’ REVIEW
Directory of Open Access Journals (Sweden)
PREDRAG M. ŽIVKOVIĆ
2011-06-01
Full Text Available An approach based on the equations of electrochemical kinetics for the estimation of the current density distribution in electrochemical cells is presented. This approach was employed for a theoretical explanation of the phenomena of the edge and corner effects. The effects of the geometry of the system, the kinetic parameters of the cathode reactions and the resistivity of the solution are also discussed. A procedure for a complete analysis of the current distribution in electrochemical cells is presented.
Atlas of current and potential future distributions of common trees of the eastern United States
Louis R. Iverson; Anantha M. Prasad; Betsy J. Hale; Elaine Kennedy Sutherland
1999-01-01
This atlas documents the current and possible future distribution of 80 common tree species in the Eastern United States and gives detailed information on environmental characteristics defining these distributions. Also included are outlines of life history characteristics and summary statistics for these species. Much of the data are derived from Forest Inventory and...
On the Electromagnetic Momentum of Static Charge and Steady Current Distributions
Gsponer, Andre
2007-01-01
Faraday's and Furry's formulae for the electromagnetic momentum of static charge distributions combined with steady electric current distributions are generalized in order to obtain full agreement with Poynting's formula in the case where all fields are of class C[superscript 1], i.e., continuous and continuously differentiable, and the…
Haldane model under nonuniform strain
Ho, Yen-Hung; Castro, Eduardo V.; Cazalilla, Miguel A.
2017-10-01
We study the Haldane model under strain using a tight-binding approach, and compare the obtained results with the continuum-limit approximation. As in graphene, nonuniform strain leads to a time-reversal preserving pseudomagnetic field that induces (pseudo-)Landau levels. Unlike a real magnetic field, strain lifts the degeneracy of the zeroth pseudo-Landau levels at different valleys. Moreover, for the zigzag edge under uniaxial strain, strain removes the degeneracy within the pseudo-Landau levels by inducing a tilt in their energy dispersion. The latter arises from next-to-leading order corrections to the continuum-limit Hamiltonian, which are absent for a real magnetic field. We show that, for the lowest pseudo-Landau levels in the Haldane model, the dominant contribution to the tilt is different from graphene. In addition, although strain does not strongly modify the dispersion of the edge states, their interplay with the pseudo-Landau levels is different for the armchair and zigzag ribbons. Finally, we study the effect of strain in the band structure of the Haldane model at the critical point of the topological transition, thus shedding light on the interplay between nontrivial topology and strain in quantum anomalous Hall systems.
Modelling of HVDC wall bushing flashover in nonuniform rain
International Nuclear Information System (INIS)
Rizk, F.A.M.; Kamel, S.I.
1991-01-01
This paper presents the first mathematical model to provide necessary and sufficient conditions for flashover of an HVDC wall bushing under nonuniform rain. The suggested mechanism is initiated by streamer bridging of the dry zone enhanced by nonuniform voltage distribution along the bushing and within the dry zone. Fast voltage collapse across the dry zone die to energy stored in the bushing stray capacitance to ground leads to impulsive stressing of the wet part of the bushing. The nonuniform distribution of the impulse stress and the process of streamer bridging, fast voltage collapse as well as subsequent recharging of the bushing capacitances can lead to continued discharge propagation and flashover of the complete bushing. The findings of the model have been satisfactorily compared with previous experiments and field observations and can, for the first time, account for the following aspects of the flashover mechanism: critical dry zone length, polarity effect, specific leakage path, wet layer conductance per unit leakage length as well as the DC system voltage
Energy Technology Data Exchange (ETDEWEB)
Stevens, J.E.; von Goeler, S.; Bernabei, S.; Bitter, M.; Chu, T.K.; Efthimion, P.; Fisch, N.; Hooke, W.; Hosea, J.; Jobes, F.
1985-03-01
Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed.
International Nuclear Information System (INIS)
Stevens, J.E.; von Goeler, S.; Bernabei, S.
1985-03-01
Lower hybrid current drive requires the generation of a high energy electron tail anisotropic in velocity. Measurements of bremsstrahlung emission produced by this tail are compared with the calculated emission from reasonable model distributions. The physical basis and the sensitivity of this modeling process are described and the plasma properties of current driven discharges which can be derived from the model are discussed
On the magnitude and distribution of halo currents during disruptions on MAST
International Nuclear Information System (INIS)
Counsell, G F; Martin, R; Pinfold, T; Taylor, D
2007-01-01
Recent results from MAST in which all halo current paths are monitored suggest that, during disruptions, the plasma responsible for the generation of halo current acts more as a voltage source than a current source. As a result the resistance of the current path along which the halo current must flow has a profound impact on the magnitude of the current. This may provide opportunities for directing the current away from sensitive components in future devices such as ITER. Analysis of data from over 3800 disruptions shows that the halo currents on MAST are relatively benign, having a peak value less than 25% of the pre-disruption plasma current with a rather symmetric distribution near the centre column (average toroidal peaking factor ∼1.1). The low peaking factor favourably reduces the tilting/bending forces in the region of the centre column, which has limited space for bulky supports
The magnetostriction in a superconductor-magnet system under non-uniform magnetic field
Energy Technology Data Exchange (ETDEWEB)
Li, Xueyi; Jiang, Lang; Wu, Hao [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Zhiwen, E-mail: gaozhw@lzu.edu.cn [Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)
2017-03-15
Highlights: • We studied firstly magnetostriction in HTS under non-uniform magnetic field. • The superconductors may be homogeneous and nonhomogeneous. • The magnetostrictions response of the HTS is sensitive to the critical current density and amplitude of the applied magnetic field. • The magnetostriction of nonhomogeneous HTS is larger than that of homogeneous HTS. - Abstract: This paper describes a numerical model to examine the magnetostriction of bulk high-temperature superconductor (HTS) under non-uniform magnetic field in conjunction with finite element analysis. Through this model, the magnetostriction of homogeneous and nonhomogeneous HTS can be implemented under non-uniform magnetic field. Further, the effects of critical current density, applied field frequency and amplitude are also considered. The computational study can provide a fundamental mechanistic understanding the effects of non-uniform magnetic field on magnetostriction of HTS.
Long GRBs sources population non-uniformity
Arkhangelskaja, Irene
Long GRBs observed in the very wide energy band. It is possible to separate two subsets of GRBs with high energy component (E > 500 MeV) presence. First type events energy spectra in low and high energy intervals are similar (as for GRB 021008) and described by Band, power law or broken power law models look like to usual bursts without emission in tens MeV region. For example, Band spectrum of GRB080916C covering 6 orders of magnitude. Second ones contain new additional high energy spectral component (for example, GRB 050525B and GRB 090902B). Both types of GRBs observed since CGRO mission beginning. The low energy precursors existence are typical for all types bursts. Both types of bursts temporal profiles can be similar in the various energy regions during some events or different in other cases. The absence of hard to soft evolution in low energy band and (or) presence of high energy precursors for some events are the special features of second class of GRBs by the results of preliminary data analysis and this facts gives opportunities to suppose differences between these two GRBs subsets sources. Also the results of long GRB redshifts distribution analysis have shown its shape contradiction to uniform population objects one for our Metagalaxy to both total and various redshifts definition methods GRBs sources samples. These evidences allow making preliminary conclusion about non-uniformity of long GRBs sources population.
Calculation of the self-consistent current distribution and coupling of an RF antenna array
International Nuclear Information System (INIS)
Ballico, M.; Puri, S.
1993-10-01
A self-consistent calculation of the antenna current distribution and fields in an axisymmetric cylindrical geometry for the ICRH antenna-plasma coupling problem is presented. Several features distinguish this calculation from other codes presently available. 1. Variational form: The formulation of the self consistent antenna current problem in a variational form allows good convergence and stability of the algorithm. 2. Multiple straps: Allows modelling of (a) the current distribution across the width of the strap (by dividing it up into sub straps) (b) side limiters and septum (c) antenna cross-coupling. 3. Analytic calculation of the antenna field and calculation of the antenna self-consistent current distribution, (given the surface impedance matrix) gives rapid calculation. 4. Framed for parallel computation on several different parallel architectures (as well as serial) gives a large speed improvement to the user. Results are presented for both Alfven wave heating and current drive antenna arrays, showing the optimal coupling to be achieved for toroidal mode numbers 8< n<10 for typical ASDEX upgrade plasmas. Simulations of the ASDEX upgrade antenna show the importance of the current distribution across the antenna and of image currents flowing in the side limiters, and an analysis of a proposed asymmetric ITER antenna is presented. (orig.)
Quasiparticles in non-uniformly magnetized plasma
International Nuclear Information System (INIS)
Sosenko, P.P.
1994-01-01
A quasiparticle concept is generalized for the case of non-uniformly magnetized plasma. Exact and reduced continuity equations for the microscopic density in the quasiparticle phase space are derived, and the nature of quasiparticles is analyzed. The theory is developed for the general case of relativistic particles in electromagnetic fields, besides non-uniform but stationary magnetic fields. Effects of non-stationary magnetic fields are briefly investigated also. 26 refs
International Nuclear Information System (INIS)
Ochiai, S; Matsubayashi, H; Okuda, H; Osamura, K; Otto, A; Malozemoff, A
2009-01-01
Distributions of local and overall critical currents and correlation of n value to the critical current of bent Bi2223 composite tape were studied from the statistical viewpoint. The data of the local and overall transport critical currents and n values of the Bi2223 composite tape specimens were collected experimentally for a wide range of bending strain (0-1.1%) by using the specimens, designed so as to characterize the local and overall critical currents and n values. The measured local and overall critical currents were analyzed with various types of Weibull distribution function. Which of the Weibull distribution functions is suitable for the description of the distribution of local and overall critical currents at each bending strain, and also how much the Weibull parameter values characterizing the distribution vary with bending strain, were revealed. Then we attempted to reproduce the overall critical current distribution and correlation of the overall n value to the overall critical current from the distribution of local critical currents and the correlation of the local n value to the local critical current by a Monte Carlo simulation. The measured average values of critical current and n value at each bending strain and the correlation of n value to critical current were reproduced well by the present simulation, while the distribution of critical current values was reproduced fairly well but not fully. The reason for this is discussed.
Design of Chebychev’s Low Pass Filters Using Nonuniform Transmission Lines
Directory of Open Access Journals (Sweden)
Said Attamimi
2016-03-01
Full Text Available Transmission lines are utilized in many applications to convey energy as well as information. Nonuniform transmission lines (NTLs are obtained through variation of the characteristic quantities along the axial direction. Such NTLs can be used to design network elements, like matching circuits, delay equalizers, filters, VLSI interconnections, etc. In this work, NTLs were analyzed with a numerical method based on the implementation of method of moment. In order to approximate the voltage and current distribution along the transmission line, a sum of basis functions with unknown amplitudes was introduced. As basis function, a constant function was used. In this work, we observed several cases such as lossless and lossy uniform transmission lines with matching and arbitrary load. These cases verified the algorithm developed in this work. The second example consists of nonuniform transmission lines in the form of abruptly changing transmission lines. This structure was used to design a Chebychev’s low pass filter. The calculated reflection and transmission factors of the filters showed some coincidences with the measurements.
Welding Current Distribution in the Work-piece and Pool in Arc Welding
Directory of Open Access Journals (Sweden)
A. M. Rybachuk
2015-01-01
Full Text Available In order to select the optimal configuration of controlling magnetic fields and build rational construction of magnetic systems, we need to know the distribution of welding current in the molten metal of the weld pool. So the objective of the work is to establish the calculated methods for determining current density in the weld pool during arc welding. The distribution of welding current in the pool depends on the field of the electrical resistance, which is determined by the deformed temperature field while arc moves with the welding speed. The previous works have shown experimentally and by simulation on the conductive paper that deformation of temperature field defines deformation of electric field. On the basis thereof, under certain boundary conditions the problem has been solved to give a general solution of differential equation, which relates the potential distribution to the temperature in the product during arc welding. This solution is obtained under the following boundary conditions: 1 metal is homogeneous; 2 input and output surfaces of heat flux and electric current coincide; 3 input and output surfaces of heat flux and electric current are insulated and equipotential; 4 other (lateral surfaces are adiabatic boundaries. Therefore, this paper pays basic attention to obtaining the analytical solution of a general differential equation, which relates distribution of potential to the temperature in the product. It considers the temperature field of the heat source, which moves at a welding speed with normal-circular distribution of the heat flow at a certain concentration factor. The distribution of current density is calculated on the assumption that the welding current is introduced through the same surface as the heat flux and the distribution of current density corresponds to the normally circular at a certain concentration factor. As a result, we get an expression that allows us to calculate the current density from the known
International Nuclear Information System (INIS)
Johansen, T.H.; Baziljevich, M.; Bratsberg, H.; Galperin, Y.; Lindelof, P.E.; Shen, Y.; Vase, P.
1996-01-01
Magneto-optic imaging was used for a detailed study of the flux and current distribution of a long thin strip of YBa 2 Cu 3 O 7-δ placed in a perpendicular external magnetic field. The inverse magnetic problem, i.e., that of deriving from a field map the underlying current distribution, is formulated and solved for the strip geometry. Applying the inversion to the magneto-optically found field map we find on a model-independent basis the current distribution across the strip to be in remarkable agreement with the profile predicted by the Bean model. The paper also presents results on the behavior of the Bi-doped YIG film with in-plane anisotropy which we use as field indicator, explaining why previous measurements of flux density profiles have displayed surprisingly large deviations from the expected behavior. copyright 1996 The American Physical Society
DEFF Research Database (Denmark)
Nielsen, Jimmi; Jacobsen, Torben
2010-01-01
the primary current distribution to the DC current distribution restricted to the Three-Phase-Boundary (TPB) zone introduces an error in the determination of the reaction resistance, Rreac = Z(freq. → 0) − Z(freq. → ∞). The error is estimated for different width of the effective TPB zone and a rule of thumb...... regarding its significance is provided. The associated characteristic impedance spectrum shape change is simulated and its origin discussed. Furthermore, the characteristic shape of impedance spectra of thin electroceramic film electrodes with lateral ohmic resistance is studied as a function...
A current controller of grid-connected converter for harmonic damping in a distribution network
DEFF Research Database (Denmark)
Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe
2011-01-01
Harmonic resonance caused by the increased use of shunt-connected capacitors in LCL-filters and power factor correction devices may become a serious power quality challenge in electric distribution systems. A voltage-detection method based on current control is developed to damp harmonic resonances....... However, it is susceptible to the mismatch between harmonic conductance and characteristic impedance of distribution feeder. This paper proposes a current controller which allows discrete adjustment of harmonic conductance for both the characteristic harmonic and the non-characteristic harmonic voltages...
Multipole lenses with implicit poles and with harmonic distribution of current density in a coil
International Nuclear Information System (INIS)
Skachkov, V.S.
1984-01-01
General theory of the multipole lense with implicit poles is presented. The thickness of lense coil is finite. Current density distribution in the coil cross section is harmonic in the azimuth direction and arbitrary in the radial one. The calculation of yoke contribution in the lence field is given. Two particular lense variants differing from each other in the method of current density radial distribution are considered and necessary calculated relations for the lense with and without yoke ar presented. A comparative analysis of physical and technological peculiarities of these lenses is performed
Directory of Open Access Journals (Sweden)
Piwowarczyk Renata
2014-06-01
Full Text Available Orobanche flava is a species of Central European mountain ranges, mainly the Alps and Carpathian Mts. The paper presents the current distribution of O. flava in Poland based on a critical revision of herbarium and literature data as well as results of field investigations conducted between 1999 and 2014. The distribution of species is centered in southern Poland, mainly in the Carpathian Mts., and, sporadically, in the Sudeten Mts. The distribution of O. flava in Poland is mapped. The taxonomy, biology, and ecology are also discussed.
Distributed Secondary Control for DC Microgrid Applications with Enhanced Current Sharing Accuracy
DEFF Research Database (Denmark)
Lu, Xiaonan; Guerrero, Josep M.; Sun, Kai
2013-01-01
With the consideration of line resistances in a dc microgrid, the current sharing accuracy is lowered down, since the dc output voltage cannot be exactly the same for different interfacing converters. Meanwhile, the dc bus voltage deviation is involved by using droop control. In this paper...... control diagram is accomplished and the requirement of distributed configuration in a microgrid is satisfied. The experimental validation based on a 2×2.2 kW prototype was implemented to demonstrate the proposed approach......., a distributed secondary control method is proposed. Droop control is employed as the primary control method for load current sharing. Meanwhile, the dc output voltage and current in each module is transferred to the others by the low bandwidth communication (LBC) network. Average voltage and current controllers...
The current duration design for estimating the time to pregnancy distribution
DEFF Research Database (Denmark)
Gasbarra, Dario; Arjas, Elja; Vehtari, Aki
2015-01-01
This paper was inspired by the studies of Niels Keiding and co-authors on estimating the waiting time-to-pregnancy (TTP) distribution, and in particular on using the current duration design in that context. In this design, a cross-sectional sample of women is collected from those who are currently...... attempting to become pregnant, and then by recording from each the time she has been attempting. Our aim here is to study the identifiability and the estimation of the waiting time distribution on the basis of current duration data. The main difficulty in this stems from the fact that very short waiting...... times are only rarely selected into the sample of current durations, and this renders their estimation unstable. We introduce here a Bayesian method for this estimation problem, prove its asymptotic consistency, and compare the method to some variants of the non-parametric maximum likelihood estimators...
DC current distribution mapping system of the solar panels using a HTS-SQUID gradiometer
International Nuclear Information System (INIS)
Miyazaki, Shingo; Kasuya, Syohei; Saari, Mohd Mawardi; Sakai, Kenji; Kiwa, Toshihiko; Tsukada, Keiji; Tsukamoto, Akira; Adachi, Seiji; Tanabe, Keiichi
2014-01-01
Solar panels are expected to play a major role as a source of sustainable energy. In order to evaluate solar panels, non-destructive tests, such as defect inspections and response property evaluations, are necessary. We developed a DC current distribution mapping system of the solar panels using a High Critical Temperature Superconductor Superconducting Quantum Interference Device (HTS-SQUID) gradiometer with ramp edge type Josephson junctions. Two independent components of the magnetic fields perpendicular to the panel surface (∂Bz/∂x, ∂Bz/∂y) were detected. The direct current of the solar panel is visualized by calculating the composition of the two signal components, the phase angle, and mapping the DC current vector. The developed system can evaluate the uniformity of DC current distributions precisely and may be applicable for defect detection of solar panels.
Method of measuring the current density distribution and emittance of pulsed electron beams
International Nuclear Information System (INIS)
Schilling, H.B.
1979-07-01
This method of current density measurement employs an array of many Faraday cups, each cup being terminated by an integrating capacitor. The voltages of the capacitors are subsequently displayed on a scope, thus giving the complete current density distribution with one shot. In the case of emittance measurements, a moveable small-diameter aperture is inserted at some distance in front of the cup array. Typical results with a two-cathode, two-energy electron source are presented. (orig.)
Directory of Open Access Journals (Sweden)
Damasen Ikwaba Paul
2015-01-01
Full Text Available Photovoltaic (PV concentrators are a promising approach for lowering PV electricity costs in the near future. However, most of the concentrators that are currently used for PV applications yield nonuniform flux profiles on the surface of a PV module which in turn reduces its electrical performance if the cells are serially connected. One way of overcoming this effect is the use of PV modules with isolated cells so that each cell generates current that is proportional to the energy flux absorbed. However, there are some cases where nonuniform illumination also exists in a single cell in an isolated cells PV module. This paper systematically studied the effect of nonuniform illumination on various cell performance parameters of a single monocrystalline standard PV cell at low and medium energy concentration ratios. Furthermore, the effect of orientation, size, and geometrical shapes of nonuniform illumination was also investigated. It was found that the effect of nonuniform illumination on various PV cell performance parameters of a single standard PV cell becomes noticeable at medium energy flux concentration whilst the location, size, and geometrical shape of nonuniform illumination have no effect on the performance parameters of the cell.
AC losses in a type II superconductor strip with inhomogeneous critical current distribution
International Nuclear Information System (INIS)
Tsukamoto, Osami
2005-01-01
Analytical formulae derived by Brandt and Indenbom (1993 Phys. Rev. B 48 12893-906) and Norris (1970 J. Phys. D: Appl. Phys. 3 489-507) are often used to calculate the magnetization and AC transport current losses in HTS strip conductors, respectively. In these formulae, homogeneous distribution of critical sheet current density σ c in the strip is assumed. However, it is considered that σ c distributions are inhomogeneous in actual HTS strips and that the inhomogeneous σ c distributions cause deviations of the measured AC loss data of actual HTS strips from those formulae. A semi-analytical method to calculate AC transport current and magnetization losses is derived for a type II superconductor strip with inhomogeneous distribution of σ c in the direction of the strip width. The method is derived modifying the analysis of Brandt et al. The validity of the semi-analytical method is shown by comparing the results calculated by this method with those calculated by the Norris and Brandt formulae and by a different method of our previous work and also with experimental data. Moreover, it is shown that the deviation of the measured data from the Norris and Brandt models can be estimated by assuming proper σ c distributions
Lightning current distribution and hard radiation in aircraft, measured in-flight
van Deursen, A.P.J.; Kochkin, P.; de Boer, A.; Bardet, M.; Allasia, C.; Boissin, J.F.; Flourens, F.
2017-01-01
The In-flight Lightning Damage Assessment System ILDAS has been presented in EMC Europe in 2012. ILDAS can determine the lightning current distribution on an aircraft with high resolution in time and amplitude. Later the system was extended and included two x-ray detectors to measure the high-energy
Polarized parton distributions from charged-current deep-inelastic scattering
International Nuclear Information System (INIS)
Ridolfi, G
2003-01-01
We investigate the capabilities of a neutrino factory in the determination of polarized parton distributions from charged-current deep-inelastic scattering experiments, with special attention to the accuracy of this kind of measurements. We show that a neutrino factory would allow to distinguish between different theoretical scenarios for the proton spin structure
Current distribution in LV networks during 1-phase MV short-circuit
Waes, van J.B.M.; Provoost, F.; Merwe, van der J.; Cobben, J.F.G.; Deursen, van A.P.J.; van Riet, M.J.M.; Laan, van der P.C.T.
2000-01-01
This paper describes the consequences of a fault in a medium voltage network on the grounding systems at the LV-side. To study the current distribution and to verify the models, we deliberately introduced one phase to ground faults in the 10 kV floating MV network. The selected site was the end of a
Current distribution over the electrode surface in a cylindrical VRLA cell during discharge
Czech Academy of Sciences Publication Activity Database
Křivák, P.; Bača, P.; Calábek, M.; Micka, Karel; Král, P.
2006-01-01
Roč. 154, č. 2 (2006), s. 518-522 ISSN 0378-7753 Grant - others:Advanced Lead-Acid Battery Consortium(ES) N4.2 Institutional research plan: CEZ:AV0Z40400503 Keywords : grid design * current distribution * cylindrical lead-acid cell Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.521, year: 2006
International Nuclear Information System (INIS)
Guo-Ping, Ru; Rong, Yu; Yu-Long, Jiang; Gang, Ruan
2010-01-01
This paper investigates the thermal activation behaviour of current in an inhomogeneous Schottky diode with a Gaussian distribution of barrier height by numerical simulation. The analytical Gaussian distribution model predicted that the I-V-T curves may intersect with the possibility of the negative thermal activation of current, but may be contradictory to the thermionic emission mechanism in a Schottky diode. It shows that the cause of the unphysical phenomenon is related to the incorrect calculation of current across very low barriers. It proposes that junction voltage V j , excluding the voltage drop across series resistance from the external bias, is a crucial parameter for correct calculation of the current across very low barriers. For correctly employing the thermionic emission model, V j needs to be smaller than the barrier height ø. With proper scheme of series resistance connection where the condition of V j > ø is guaranteed, I-V-T curves of an inhomogeneous Schottky diode with a Gaussian distribution of barrier height have been simulated, which demonstrate normal thermal activation. Although the calculated results exclude the intersecting possibility of I-V-T curves with an assumption of temperature-independent series resistance, it shows that the intersecting is possible when the series resistance has a positive temperature coefficient. Finally, the comparison of our numerical and analytical results indicates that the analytical Gaussian distribution model is valid and accurate in analysing I-V-T curves only for small barrier height inhomogeneity. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Current distribution and conductance quantization in the integer quantum Hall regime
International Nuclear Information System (INIS)
Cresti, Alessandro; Farchioni, Riccardo; Grosso, Giuseppe; Parravicini, Giuseppe Pastori
2003-01-01
Charge transport of a two-dimensional electron gas in the presence of a magnetic field is studied by means of the Keldysh-Green function formalism and the tight-binding method. We evaluate the spatial distributions of persistent (equilibrium) and transport (nonequilibrium) currents, and give a vivid picture of their profiles. In the quantum Hall regime, we find exact conductance quantization both for persistent currents and for transport currents, even in the presence of impurity scattering centres and moderate disorder. (letter to the editor)
Current distribution and conductance quantization in the integer quantum Hall regime
Energy Technology Data Exchange (ETDEWEB)
Cresti, Alessandro [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Farchioni, Riccardo [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Grosso, Giuseppe [NEST-INFM and Dipartimento di Fisica ' E Fermi' , Universita di Pisa, via F Buonarroti 2, I-56127 Pisa (Italy); Parravicini, Giuseppe Pastori [NEST-INFM and Dipartimento di Fisica ' A Volta' , Universita di Pavia, via A Bassi 6, I-27100 Pavia (Italy)
2003-06-25
Charge transport of a two-dimensional electron gas in the presence of a magnetic field is studied by means of the Keldysh-Green function formalism and the tight-binding method. We evaluate the spatial distributions of persistent (equilibrium) and transport (nonequilibrium) currents, and give a vivid picture of their profiles. In the quantum Hall regime, we find exact conductance quantization both for persistent currents and for transport currents, even in the presence of impurity scattering centres and moderate disorder. (letter to the editor)
Electromotive Potential Distribution and Electronic Leak Currents in Working YSZ Based SOCs
DEFF Research Database (Denmark)
Mogensen, Mogens Bjerg; Jacobsen, Torben
2009-01-01
The size of electronic leak currents through the YSZ electrolyte of solid oxide cells have been calculated using basic solid state electrochemical relations and literature data. The distribution of the electromotive potential, of Galvani potential, of concentration of electrons, e, and electron...... holes, h, was also calculated as these parameters are the basis for the understanding of the electronic conductivity that causes the electronic leak currents. The results are illustrated with examples. The effects of electrolyte thickness, temperature and cell voltage on the electronic leak current...
Current distribution measurements inside an electromagnetic plasma gun operated in a gas-puff mode.
Poehlmann, Flavio R; Cappelli, Mark A; Rieker, Gregory B
2010-12-01
Measurements are presented of the time-dependent current distribution inside a coaxial electromagnetic plasma gun. The measurements are carried out using an array of six axially distributed dual-Rogowski coils in a balanced circuit configuration. The radial current distributions indicate that operation in the gas-puff mode, i.e., the mode in which the electrode voltage is applied before injection of the gas, results in a stationary ionization front consistent with the presence of a plasma deflagration. The effects of varying the bank capacitance, transmission line inductance, and applied electrode voltage were studied over the range from 14 to 112 μF, 50 to 200 nH, and 1 to 3 kV, respectively.
Schroeder, Indra
2015-01-01
Abstract A main ingredient for the understanding of structure/function correlates of ion channels is the quantitative description of single-channel gating and conductance. However, a wealth of information provided from fast current fluctuations beyond the temporal resolution of the recording system is often ignored, even though it is close to the time window accessible to molecular dynamics simulations. This kind of current fluctuations provide a special technical challenge, because individual opening/closing or blocking/unblocking events cannot be resolved, and the resulting averaging over undetected events decreases the single-channel current. Here, I briefly summarize the history of fast-current fluctuation analysis and focus on the so-called “beta distributions.” This tool exploits characteristics of current fluctuation-induced excess noise on the current amplitude histograms to reconstruct the true single-channel current and kinetic parameters. A guideline for the analysis and recent applications demonstrate that a construction of theoretical beta distributions by Markov Model simulations offers maximum flexibility as compared to analytical solutions. PMID:26368656
Properties of multilayer nonuniform holographic structures
International Nuclear Information System (INIS)
Pen, E F; Rodionov, Mikhail Yu
2010-01-01
Experimental results and analysis of properties of multilayer nonuniform holographic structures formed in photopolymer materials are presented. The theoretical hypotheses is proved that the characteristics of angular selectivity for the considered structures have a set of local maxima, whose number and width are determined by the thicknesses of intermediate layers and deep holograms and that the envelope of the maxima coincides with the selectivity contour of a single holographic array. It is also experimentally shown that hologram nonuniformities substantially distort shapes of selectivity characteristics: they become asymmetric, the local maxima differ in size and the depths of local minima reduce. The modelling results are made similar to experimental data by appropriately choosing the nonuniformity parameters. (imaging and image processing. holography)
International Nuclear Information System (INIS)
Kurihara, Kenichi
1997-11-01
Plasma current density distribution is one of the most important controlled variables to determine plasma performance of energy confinement and stability in a tokamak. However, its reproduction by using magnetic measurements solely is recognized to yield an ill-posed problem. A method to presume the formulas giving profiles of plasma pressure and current has been adopted to regularize the ill-posedness, and hence it has been reported the current density distribution can be reproduced as a solution of Grad-Shafranov equation within a certain accuracy. In order to investigate its strict reproducibility from magnetic measurements in this inverse problem, a new method of 'bounded-eigenfunction expansion' is introduced, and it was found that the reproducibility directly corresponds to the independence of a series of the special function. The results from various investigations in an aspect of applied mathematics concerning this inverse problem are presented in detail. (author)
DEFF Research Database (Denmark)
He, Jinwei; Wei Li, Yun; Wang, Xiongfei
2013-01-01
In order to utilize DG unit interfacing converters to actively compensate distribution system harmonics, this paper proposes an enhanced current control approach. It seamlessly integrates system harmonic mitigation capabilities with the primary DG power generation function. As the proposed current...... controller has two well decoupled control branches to independently control fundamental and harmonic DG currents, phase-locked loops (PLL) and system harmonic component extractions can be avoided during system harmonic compensation. Moreover, a closed-loop power control scheme is also employed to derive...... the fundamental current reference. The proposed power control scheme effectively eliminates the impacts of steady-state fundamental current tracking errors in the DG units. Thus, an accurate power control is realized even when the harmonic compensation functions are activated. Experimental results from a single...
Nonuniformities in organic liquid ionization calorimeters
International Nuclear Information System (INIS)
Wenzel, W.A.
1989-06-01
Hermeticity and uniformity in SSC calorimeter designs are compromised by structure and modularity. Some of the consequences of the cryogenic needs of liquid argon calorimetry are relatively well known. If the active medium is an organic liquid (TMP, TMS, etc.), a large number of independent liquid volumes is needed for safety and for rapid liquid exchange to eliminate local contamination. Modular construction ordinarily simplifies fabrication, assembly, handling and preliminary testing at the price of additional walls, other dead regions and many nonuniformities. Here we examine ways of minimizing the impact of some generic nonuniformities on the quality of calorimeter performance. 6 refs., 7 figs
Energy Technology Data Exchange (ETDEWEB)
Doenitz, D.
2006-10-31
Local analysis plays an important role in many fields of scientific research. However, imaging methods are not very common in the investigation of superconductors. For more than 20 years, Low Temperature Scanning Electron Microscopy (LTSEM) has been successfully used at the University of Tuebingen for studying of condensed matter phenomena, especially of superconductivity. In this thesis LTSEM was used for imaging current distributions in different superconducting thin film structures: - Imaging of current distributions in Josephson junctions with ferromagnetic interlayer, also known as SIFS junctions, showed inhomogeneous current transport over the junctions which directly led to an improvement in the fabrication process. An investigation of improved samples showed a very homogeneous current distribution without any trace of magnetic domains. Either such domains were not present or too small for imaging with the LTSEM. - An investigation of Nb/YBCO zigzag Josephson junctions yielded important information on signal formation in the LTSEM both for Josephson junctions in the short and in the long limit. Using a reference junction our signal formation model could be verified, thus confirming earlier results on short zigzag junctions. These results, which could be reproduced in this work, support the theory of d-wave symmetry in the superconducting order parameter of YBCO. Furthermore, investigations of the quasiparticle tunneling in the zigzag junctions showed the existence of Andreev bound states, which is another indication of the d-wave symmetry in YBCO. - The LTSEM study of Hot Electron Bolometers (HEB) allowed the first successful imaging of a stable 'Hot Spot', a self-heating region in HEB structures. Moreover, the electron beam was used to induce an - otherwise unstable - hot spot. Both investigations yielded information on the homogeneity of the samples. - An entirely new method of imaging the current distribution in superconducting interference
International Nuclear Information System (INIS)
Ochiai, S; Doko, D; Okuda, H; Oh, S S; Ha, D W
2006-01-01
The distribution of the local critical current and the n-value along the sample length and its relation to the overall critical current were studied experimentally and analytically for the bent multifilamentary Bi2223/Ag/Ag-Mg alloy superconducting composite tape. Then, based on the results, it was attempted to simulate on a computer the dependence of the critical current on the sample length. The main results are summarized as follows. The experimentally observed relation of the distributed local critical current and n-value to the overall critical current was described comprehensively with a simple voltage summation model, in which the sample was regarded as a one-dimensional series circuit. The sample length dependence of the critical current was reproduced on the computer by a Monte Carlo simulation incorporating the voltage summation model and the regression analysis results for the local critical current distribution and the relation of the n-value to the critical current
On the Inverse EEG Problem for a 1D Current Distribution
Directory of Open Access Journals (Sweden)
George Dassios
2014-01-01
Full Text Available Albanese and Monk (2006 have shown that, it is impossible to recover the support of a three-dimensional current distribution within a conducting medium from the knowledge of the electric potential outside the conductor. On the other hand, it is possible to obtain the support of a current which lives in a subspace of dimension lower than three. In the present work, we actually demonstrate this possibility by assuming a one-dimensional current distribution supported on a small line segment having arbitrary location and orientation within a uniform spherical conductor. The immediate representation of this problem refers to the inverse problem of electroencephalography (EEG with a linear current distribution and the spherical model of the brain-head system. It is shown that the support is identified through the solution of a nonlinear algebraic system which is investigated thoroughly. Numerical tests show that this system has exactly one real solution. Exact solutions are analytically obtained for a couple of special cases.
Directory of Open Access Journals (Sweden)
Renata Piwowarczyk
2014-09-01
Full Text Available The paper presents the current distribution of Orobanche caryophyllacea Sm. in Poland based on a critical revision of herbarium and literature data as well as the results of my field studies. The majority of localities are in south and south-eastern Poland: Małopolska Upland, Lublin Upland, Roztocze, Przemyśl Foothills, Pieniny Mts, rarely in the valleys of the Lower Vistula and Oder rivers or Wolin island. The distribution map in Poland is included. The taxonomy, biology and ecology of the species are discussed.
Angular distribution of the bremsstrahlung emission during lower-hybrid current drive on PLT
International Nuclear Information System (INIS)
von Goeler, S.; Stevens, J.; Bernabei, S.
1985-06-01
The bremsstrahlung emission from the PLT tokamak during lower-hybrid current drive has been measured as a function of angle between the magnetic field and the emission direction. The emission is peaked strongly in the forward direction, indicating a strong anisotropy of the electron-velocity distribution. The data demonstrate the existence of a nearly flat tail of the velocity distribution, which extends out to approximately 500 keV and which is interpreted as the plateau created by Landau damping of the lower-hybrid waves
Electric field distribution and current emission in a miniaturized geometrical diode
Lin, Jinpu; Wong, Patrick Y.; Yang, Penglu; Lau, Y. Y.; Tang, W.; Zhang, Peng
2017-06-01
We study the electric field distribution and current emission in a miniaturized geometrical diode. Using Schwarz-Christoffel transformation, we calculate exactly the electric field inside a finite vacuum cathode-anode (A-K) gap with a single trapezoid protrusion on one of the electrode surfaces. It is found that there is a strong field enhancement on both electrodes near the protrusion, when the ratio of the A-K gap distance to the protrusion height d /h spot checked against COMSOL simulations. We calculate the effective field enhancement factor for the field emission current, by integrating the local Fowler-Nordheim current density along the electrode surfaces. We systematically examine the electric field enhancement and the current rectification of the miniaturized geometrical diode for various geometric dimensions and applied electric fields.
Integer channels in nonuniform non-equilibrium 2D systems
Shikin, V.
2018-01-01
We discuss the non-equilibrium properties of integer channels in nonuniform 2D electron (hole) systems in the presence of a strong magnetic field. The results are applied to a qualitative explanation of the Corbino disk current-voltage characteristics (IVC) in the quantum Hall effect (QHE) regime. Special consideration is paid to the so-called "QHE breakdown" effect, which is readily observed in both the Hall bar and Corbino geometries of the tested cells. The QHE breakdown is especially evident in the Corbino samples, allowing for a more in-depth study of these effects.
Capacitated Vehicle Routing with Nonuniform Speeds
DEFF Research Database (Denmark)
Gørtz, Inge Li; Molinaro, Marco; Nagarajan, Viswanath
2016-01-01
is the distance traveled divided by its speed.Our algorithm relies on a new approximate minimum spanning tree construction called Level-Prim, which is related to but different from Light Approximate Shortest-path Trees. We also extend the widely used tour-splitting technique to nonuniform speeds, using ideas from...
Casimir energy of a nonuniform string
Hadasz, L.; Lambiase, G.; Nesterenko, V. V.
2000-07-01
The Casimir energy of a nonuniform string built up from two pieces with different speeds of sound is calculated. A standard procedure of subtracting the energy of an infinite uniform string is applied, the subtraction being interpreted as the renormalization of the string tension. It is shown that in the case of a homogeneous string this method is completely equivalent to zeta renormalization.
Stone Stability in Non-uniform Flow
Hoan, N.T.; Stive, M.J.F.; Booij, R.; Hofland, B.; Verhagen, H.J.
2011-01-01
This paper presents the results of an experimental study on stone stability under nonuniform turbulent flow, in particular expanding flow. Detailed measurements of both flow and turbulence and the bed stability are described. Than various manners of quantifying the hydraulic loads exerted on the
Stone Stability under Stationary Nonuniform Flows
Steenstra, Remco; Hofland, B.; Paarlberg, Andries; Smale, Alfons; Huthoff, Fredrik; Uijttewaal, W.S.J.
2016-01-01
A stability parameter for rock in bed protections under nonuniform stationary flow is derived. The influence of the mean flow velocity, turbulence, and mean acceleration of the flow are included explicitly in the parameter. The relatively new notion of explicitly incorporating the mean acceleration
Radar Doppler Processing with Nonuniform Sampling.
Energy Technology Data Exchange (ETDEWEB)
Doerry, Armin W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-07-01
Conventional signal processing to estimate radar Doppler frequency often assumes uniform pulse/sample spacing. This is for the convenience of t he processing. More recent performance enhancements in processor capability allow optimally processing nonuniform pulse/sample spacing, thereby overcoming some of the baggage that attends uniform sampling, such as Doppler ambiguity and SNR losses due to sidelobe control measures.
Energy Technology Data Exchange (ETDEWEB)
Schroeder, Alexander; Wippermann, Klaus [Forschungszentrum Juelich GmbH (Germany). Inst. of Energy Research, IEF-3: Fuel Cells; Sanders, Tilman [RWTH Aachen (DE). Inst. for Power Electronics and Electrical Drives (ISEA); Arlt, Tobias [Helmholtz Centre Berlin (Germany). Inst. for Applied Materials
2010-07-01
Neutron radiography allows the investigation of the local fluid distribution in direct methanol fuel cells (DMFCs) under operating conditions. Spatial resolutions in the order of some tens of micrometers at the full test cell area are achieved. This offers the possibility to study practice-oriented, large stack cells with an active area of several hundred cm{sup 2} as well as specially designed, small test cells with an area of some cm{sup 2}. Combined studies of high resolution neutron radiography and segmented cell measurements are especially valuable, because they enable a correlation of local fluid distribution and local performance [1, 2]. The knowledge of this interdependency is essential to optimise the water management and performance respecting a homogeneous fluid, current and temperature distribution and to achieve high performance and durability of DMFCs. (orig.)
Multiplicity distributions of charged hadrons in vp and charged current interactions
Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; Morrison, D. R. O.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H. P.; Myatt, G.; Radojicic, D.; Burke, S.
1992-03-01
Using data on vp andbar vp charged current interactions from a bubble chamber experiment with BEBC at CERN, the multiplicity distributions of charged hadrons are investigated. The analysis is based on ˜20000 events with incident v and ˜10000 events with incidentbar v. The invariant mass W of the total hadronic system ranges from 3 GeV to ˜14 GeV. The experimental multiplicity distributions are fitted by the binomial function (for different intervals of W and in different intervals of the rapidity y), by the Levy function and the lognormal function. All three parametrizations give acceptable values for X 2. For fixed W, forward and backward multiplicities are found to be uncorrelated. The normalized moments of the charged multiplicity distributions are measured as a function of W. They show a violation of KNO scaling.
International Nuclear Information System (INIS)
Carroll, D.P.; Kasturi, S.; Subudhi, M.; Gunther, W.
1992-01-01
Most previous analysis on the effects of geomagnetically induced currents (GIC) on electric utility systems has steady-state phenomena, with the main interest in the generator step-up transformer and the off-site power system. This paper begins to investigate the possible effects that a GIC event might have on the power plant itself, by examining the harmonic distortion that could exist at various voltage levels in the on-site distribution system
Faraj, C; Ouahabi, S; Adlaoui, E; Elaouad, R
2010-10-01
This bibliographical study, based on published works, ministry of Health Reports, exploitation of the database relative to the entomological surveillance conducted in the framework of the National Malaria Control Program, as well as unpublished results obtained within the framework of the European project "Emerging disease in a changing European environment", summarizes and completes with new data current knowledge on the systematics, the distribution and the vectorial competence of moroccan anophelines. Copyright © 2010 Elsevier Masson SAS. All rights reserved.
Dacuñ a, Javier; Xie, Wei; Salleo, Alberto
2012-01-01
bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact
Laterally excited flexible tanks with nonuniform density liquid
International Nuclear Information System (INIS)
Tang, Yu
1996-01-01
A study of the dynamic responses of flexible tanks containing nonuniform liquid under horizontal base excitations is presented. The system considered is an upright, circular cylindrical tank filled with an incompressible and inviscid liquid in which the density increases with the liquid depth. Only the impulsive components of response are considered in this study since the convective components can be computed by considering the tank to be rigid. It is shown in this study that for tanks with height-to-radius ratios between 0.3 and 1.2, the response quantities may be estimated utilizing the rigid tank solutions. Also, it is found that the pressure distribution along the tank wall is not sensitive to the detailed distribution function of the liquid density, and that the base shear and moments for the tank with nonuniform liquid can be estimated conservatively by assuming that the tank is filled with an equivalent uniform liquid density that preserves the total liquid weight. Finally, a simple equation for evaluating the fundamental natural frequency of the system is proposed
Electrostatic ion-cyclotron waves in a nonuniform magnetic field
International Nuclear Information System (INIS)
Cartier, S.L.; D'Angelo, N.; Merlino, R.L.
1985-01-01
The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f> or approx. =f/sub c/i, where f/sub c/i is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism
[Ecological affinity and current distribution of primates (Cebidae) in Campeche, Mexico].
Navarro Fernández, Eloísa; Pozo de la Tijera, Carmen; Escobedo Cabrera, Enrique
2003-06-01
We carried out surveys realized field work from March to September 2000 to get the current distribution of Cebids in the state of Campeche, Mexico. Based on interviews and direct observations. We defined the distribution of Ateles geoffroyi yucatanensis and Alouatta pigra and we documented the first time localities where Allouata palliata is found in the state. We made distributional maps of each species using vegetation overlays from Inventario Nacional Forestal (Inv For) and each point documented during fieldwork. We presented the distribution of species according to confiability of the verified or expected data. Using the attributes table of Inv For, we calculated the areas of distribution which were 22,735 km2 for Alouatta sp. and 18,501 km2 for A. g. yucatanensis. We also presented the area occupied by each species according to vegetation types and the relative proportion of these vegetation types in the state. We confirmed the ability of Alouatta sp. to survive in disturbed environments produced by habitat fragmentation, and the affinity of A. g. yucatanesis to well preserved habitats.
International Nuclear Information System (INIS)
Sihler, C.; Heller, R.; Maurer, W.; Ulbricht, A.; Wuechner, F.
1995-10-01
Unexpected ramp rate limitations (RRL) found in superconducting magnets during the development of magnet systems can be attributed to a current imbalance amongst the cabled strands which leads to a lower than expected quench current. In superconducting magnets the current distribution in the cable during ramping depends mainly on the electromagnetic properties of the system. A detailed analysis of principle causes for RRL phenomena was performed with a model for one half of the POLO coil considering the complete inductance matrix of the cable and the fact that all turns are mutually coupled. The main results of these calculations are that unequal contact resistances can not be responsible for RRL phenomena in coils with parameters comparable to those of the POLO coil and that already minor geometrical disturbances in the cable structure can lead to major and lasting imbalances in the current distribution of cables with insulated and non-insulated strands. During the POLO experiment the half-coil model was employed to get a better understanding of the measured compensated subcable voltages during quench. The good agreement of the calculated and measured results demonstrates the validity of the model for RRL analyses. (orig.)
International Nuclear Information System (INIS)
Taheri, Peyman; Mansouri, Abraham; Yazdanpour, Maryam; Bahrami, Majid
2014-01-01
An analytical model is proposed to describe the two-dimensional distribution of potential and current in planar electrodes of pouch-type lithium-ion batteries. A concentration-independent polarization expression, obtained experimentally, is used to mimic the electrochemical performance of the battery. By numerically solving the charge balance equation on each electrode in conjugation with the polarization expression, the battery behavior during constant-current discharge processes is simulated. Our numerical simulations show that reaction current between the electrodes remains approximately uniform during most of the discharge process, in particular, when depth-of-discharge varies from 5% to 85%. This observation suggests to simplify the electrochemical behavior of the battery such that the charge balance equation on each electrode can be solved analytically to obtain closed-form solutions for potential and current density distributions. The analytical model shows fair agreement with numerical data at modest computational cost. The model is applicable for both charge and discharge processes, and its application is demonstrated for a prismatic 20 Ah nickel-manganese-cobalt lithium-ion battery during discharge processes
Effects of non-uniformities on electrical conduction in weakly ionized plasmas
International Nuclear Information System (INIS)
Numano, M.; Murakami, Y.; Nitta, T.
1989-01-01
The effect of non-uniformities on the flow of electric current in weakly ionized plasmas is investigated by taking into account the ion slip as well as the Hall current. An Ohm's law for a non-uniform plasma is derived, from which the formula previously obtained by Numano, i.e. an extension of Rosa's equation, is obtainable as a special case. Making use of this new Ohm's law, the effective electrical conductivity and the effective Hall parameter are determined for isotropically turbulent plasmas. It is found that when the ion-slip effect is absent they are in good agreement with the results obtained previously. (author)
Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope
Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki
2015-10-01
Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.
Geomagnetic storms, the Dst ring-current myth and lognormal distributions
Campbell, W.H.
1996-01-01
The definition of geomagnetic storms dates back to the turn of the century when researchers recognized the unique shape of the H-component field change upon averaging storms recorded at low latitude observatories. A generally accepted modeling of the storm field sources as a magnetospheric ring current was settled about 30 years ago at the start of space exploration and the discovery of the Van Allen belt of particles encircling the Earth. The Dst global 'ring-current' index of geomagnetic disturbances, formulated in that period, is still taken to be the definitive representation for geomagnetic storms. Dst indices, or data from many world observatories processed in a fashion paralleling the index, are used widely by researchers relying on the assumption of such a magnetospheric current-ring depiction. Recent in situ measurements by satellites passing through the ring-current region and computations with disturbed magnetosphere models show that the Dst storm is not solely a main-phase to decay-phase, growth to disintegration, of a massive current encircling the Earth. Although a ring current certainly exists during a storm, there are many other field contributions at the middle-and low-latitude observatories that are summed to show the 'storm' characteristic behavior in Dst at these observatories. One characteristic of the storm field form at middle and low latitudes is that Dst exhibits a lognormal distribution shape when plotted as the hourly value amplitude in each time range. Such distributions, common in nature, arise when there are many contributors to a measurement or when the measurement is a result of a connected series of statistical processes. The amplitude-time displays of Dst are thought to occur because the many time-series processes that are added to form Dst all have their own characteristic distribution in time. By transforming the Dst time display into the equivalent normal distribution, it is shown that a storm recovery can be predicted with
International Nuclear Information System (INIS)
Maekawa, Koichiro
1978-01-01
According to the analysis of the magnetic records from the Triad satellite, it has been found that there are two regions of the field-aligned current of magnetospheric origin along the auroral oval; Region 1 in higher latitude and Region 2 in lower latitude. These currents seem to have important effect on the distribution of electric field and current in the ionosphere, in addition to the Sq electric field and current of ionospheric origin. The global current systems generated by the field-aligned current were calculated, using some simplified ionospheric models. The effect of the field-aligned current on the distribution of electric field and current of the ionosphere at middle and low latitudes was investigated. (Yoshimori, M.)
Modeling of Eddy current distribution and equilibrium reconstruction in the SST-1 Tokamak
International Nuclear Information System (INIS)
Banerjee, Santanu; Sharma, Deepti; Radhakrishnana, Srinivasan; Daniel, Raju; Shankara Joisa, Y.; Atrey, Parveen Kumar; Pathak, Surya Kumar; Singh, Amit Kumar
2015-01-01
Toroidal continuity of the vacuum vessel and the cryostat leads to the generation of large eddy currents in these passive structures during the Ohmic phase of the steady state superconducting tokamak SST-1. This reduces the magnitude of the loop voltage seen by the plasma as also delays its buildup. During the ramping down of the Ohmic transformer current (OT), the resultant eddy currents flowing in the passive conductors play a crucial role in governing the plasma equilibrium. Amount of this eddy current and its distribution has to be accurately determined such that this can be fed to the equilibrium reconstruction code as an input. For the accurate inclusion of the effect of eddy currents in the reconstruction, the toroidally continuous conducting structures like the vacuum vessel and the cryostat with large poloidal cross-section and any other poloidal field (PF) coil sitting idle on the machine are broken up into a large number of co-axial toroidal current carrying filaments. The inductance matrix for this large set of toroidal current carrying conductors is calculated using the standard Green's function and the induced currents are evaluated for the OT waveform of each plasma discharge. Consistency of this filament model is cross-checked with the 11 in-vessel and 12 out-vessel toroidal flux loop signals in SST-1. Resistances of the filaments are adjusted to reproduce the experimental measurements of these flux loops in pure OT shots and shots with OT and vertical field (BV). Such shots are taken routinely in SST-1 without the fill gas to cross-check the consistency of the filament model. A Grad-Shafranov (GS) equation solver, named as IPREQ, has been developed in IPR to reconstruct the plasma equilibrium through searching for the best-fit current density profile. Ohmic transformer current (OT), vertical field coil current (BV), currents in the passive filaments along with the plasma pressure (p) and current (I p ) profiles are used as inputs to the IPREQ
Instruction sequence based non-uniform complexity classes
Bergstra, J.A.; Middelburg, C.A.
2013-01-01
We present an approach to non-uniform complexity in which single-pass instruction sequences play a key part, and answer various questions that arise from this approach. We introduce several kinds of non-uniform complexity classes. One kind includes a counterpart of the well-known non-uniform
Analysis of single blow effectiveness in non-uniform parallel plate regenerators
DEFF Research Database (Denmark)
Jensen, Jesper Buch; Bahl, Christian Robert Haffenden; Engelbrecht, Kurt
2011-01-01
Non-uniform distributions of plate spacings in parallel plate regenerators have been found to induce loss of performance. In this paper, it has been investigated how variations of three geometric parameters (the aspect ratio, the porosity, and the standard deviation of the plate spacing) affects...
Effects of transverse temperature field nonuniformity on stress in silicon sheet growth
Mataga, P. A.; Hutchinson, J. W.; Chalmers, B.; Bell, R. O.; Kalejs, J. P.
1987-01-01
Stress and strain rate distributions are calculated using finite element analysis for steady-state growth of thin silicon sheet temperature nonuniformities imposed in the transverse (sheet width) dimension. Significant reductions in residual stress are predicted to occur for the case where the sheet edge is cooled relative to its center provided plastic deformation with high creep rates is present.
Non-uniform approximations for sums of discrete m-dependent random variables
Vellaisamy, P.; Cekanavicius, V.
2013-01-01
Non-uniform estimates are obtained for Poisson, compound Poisson, translated Poisson, negative binomial and binomial approximations to sums of of m-dependent integer-valued random variables. Estimates for Wasserstein metric also follow easily from our results. The results are then exemplified by the approximation of Poisson binomial distribution, 2-runs and $m$-dependent $(k_1,k_2)$-events.
Modeling Bubble Flow and Current Density Distribution in an Alkaline Electrolysis Cell
Directory of Open Access Journals (Sweden)
Ravichandra S. Jupudi
2009-12-01
Full Text Available The effect of bubbles on the current density distribution over the electrodes of an alkaline electrolyzer cell is studied using a two-dimensional computational fluid dynamics model. Model includes Eulerian-Eulerian two-phase flow methodology to model the multiphase flow of Hydrogen and Oxygen with water and the behavior of each phase is accounted for using first principle. Hydrogen/Oxygen evolution, flow field and current density distribution are incorporated in the model to account for the complicated physics involved in the process. Fluent 6.2 is used to solve two-phase flow and electrochemistry is incorporated using UDF (User Defined Function feature of Fluent. Model is validated with mesh refinement study and by comparison with experimental measurements. Model is found to replicate the effect of cell voltage and inter-electrode gap (distance between the electrodes on current density accurately. Further, model is found to capture the existence of optimum cell height. The validated model is expected to be a very useful tool in the design and optimization of alkaline electrolyzer cells.
Determining the Impact of Steady-State PV Fault Current Injections on Distribution Protection
Energy Technology Data Exchange (ETDEWEB)
Seuss, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grijalva, Santiago [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-05-01
This report investigates the fault current contribution from a single large PV system and the impact it has on existing distribution overcurrent protection devices. Assumptions are made about the modeling of the PV system under fault to perform exhaustive steady - state fault analyses throughout distribution feeder models. Each PV interconnection location is tested to determine how the size of the PV system affects the fault current measured by each protection device. This data is then searched for logical conditions that indicate whether a protection device has operated in a manner that will cause more customer outages due to the addition of the PV system. This is referred to as a protection issue , and there are four unique types of issues that have been identified in the study. The PV system size at which any issues occur are recorded to determine the feeder's PV hosting capacity limitations due to interference with protection settings. The analysis is carried out on six feeder models. The report concludes with a discussion of the prevalence and cause of each protection issue caused by PV system fault current.
Distributed Cooperative Current-Sharing Control of Parallel Chargers Using Feedback Linearization
Directory of Open Access Journals (Sweden)
Jiangang Liu
2014-01-01
Full Text Available We propose a distributed current-sharing scheme to address the output current imbalance problem for the parallel chargers in the energy storage type light rail vehicle system. By treating the parallel chargers as a group of agents with output information sharing through communication network, the current-sharing control problem is recast as the consensus tracking problem of multiagents. To facilitate the design, input-output feedback linearization is first applied to transform the nonidentical nonlinear charging system model into the first-order integrator. Then, a general saturation function is introduced to design the cooperative current-sharing control law which can guarantee the boundedness of the proposed control. The cooperative stability of the closed-loop system under fixed and dynamic communication topologies is rigorously proved with the aid of Lyapunov function and LaSalle invariant principle. Simulation using a multicharging test system further illustrates that the output currents of parallel chargers are balanced using the proposed control.
A tuning method for nonuniform traveling-wave accelerating structures
International Nuclear Information System (INIS)
Gong Cunkui; Zheng Shuxin; Shao Jiahang; Jia Xiaoyu; Chen Huaibi
2013-01-01
The tuning method of uniform traveling-wave structures based on non-resonant perturbation field distribution measurement has been widely used in tuning both constant-impedance and constant-gradient structures. In this paper, the method of tuning nonuniform structures is proposed on the basis of the above theory. The internal reflection coefficient of each cell is obtained from analyzing the normalized voltage distribution. A numerical simulation of tuning process according to the coupled cavity chain theory has been done and the result shows each cell is in right phase advance after tuning. The method will be used in the tuning of a disk-loaded traveling-wave structure being developed at the Accelerator Laboratory, Tsinghua University. (authors)
Directory of Open Access Journals (Sweden)
SINGH Alka
2012-10-01
Full Text Available Use of distributed resources is growing in developing countries like India and in developed nations too. The increased acceptance of suchresources is mainly due to their modularity, increased reliability, good power quality and environment friendly operation. These are currently being interfaced to the existing systems using voltage source inverters (VSC’s. The control of such distributed resources is significantly different than the conventional power systems mainly because the VSC’s have no inertia unlike the synchronous generators.This paper deals with the Matlab modeling and design of control aspects of one such distributed source feeding a common load. A grid connected supply is also available. The control algorithm is developed for real and reactive power sharing of the load between thedistributed source and the grid. The developed control scheme is tested for linear (R-L load as well as nonlinear loads. With suitable modifications, the control algorithm can be extended for several distributed resources connected in parallel.
Additive non-uniform random sampling in superimposed fiber Bragg grating strain gauge
International Nuclear Information System (INIS)
Ma, Y C; Liu, H Y; Yan, S B; Li, J M; Tang, J; Yang, Y H; Yang, M W
2013-01-01
This paper demonstrates an additive non-uniform random sampling and interrogation method for dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to generate non-equidistant space of a sensing pulse train in the time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A 1.9 kHz dynamic strain is measured by generating an additive non-uniform randomly distributed 2 kHz optical sensing pulse train from a mean 500 Hz triangular periodically changing scanning frequency. (paper)
Additive non-uniform random sampling in superimposed fiber Bragg grating strain gauge
Ma, Y. C.; Liu, H. Y.; Yan, S. B.; Yang, Y. H.; Yang, M. W.; Li, J. M.; Tang, J.
2013-05-01
This paper demonstrates an additive non-uniform random sampling and interrogation method for dynamic and/or static strain gauge using a reflection spectrum from two superimposed fiber Bragg gratings (FBGs). The superimposed FBGs are designed to generate non-equidistant space of a sensing pulse train in the time domain during dynamic strain gauge. By combining centroid finding with smooth filtering methods, both the interrogation speed and accuracy are improved. A 1.9 kHz dynamic strain is measured by generating an additive non-uniform randomly distributed 2 kHz optical sensing pulse train from a mean 500 Hz triangular periodically changing scanning frequency.
International Nuclear Information System (INIS)
Alaefour, Ibrahim; Karimi, G.; Jiao, Kui; Li, X.
2012-01-01
Highlights: ► Spatial local current distributions in a single PEMFC are measured. ► Effects of key operating conditions on the local current density are investigated. ► Increasing air and hydrogen stoichiometries improves local current density distributions. ► Operating pressure and temperature have negligible impact on local current distribution. - Abstract: Understanding of current distributions in proton exchange membrane fuel cells (PEMFCs) is crucial for designing cell components such as the flow field plates and the membrane electrode assembly (MEA). In this study, the spatial current density distributions in a single PEMFC with three serpentine flow channels are measured using a segmented bipolar plate and printed circuit board technique. The effects of key operating conditions such as stoichiometry ratios, inlet humidity levels, cell pressure and temperature on the local current density distributions for co-, counter-, and cross-flow arrangements are examined. It is observed that the local current density distribution over the MEA is directly affected by the cell operating conditions along with the configuration of the flow arrangement. It is also found that among the different flow configurations tested under the various operating conditions, the counter flow arrangement provides the optimum average current density and the lowest variations in the local current densities along the flow channels.
Vortices in nonuniform upper-hybrid field
International Nuclear Information System (INIS)
Davydova, T.A.; Vranjes, J.
1992-01-01
The equations describing the interaction of an upper-hybrid pump wave with small low-frequency density perturbations are discussed under assumption that the pump is spatially nonuniform. The conditions for the modulational instability are investigated. Instead of a dispersion relation, describing the growth of perturbations in the case of an uniform pump, in our case of nonuniform pump a differential equation is obtained and from its eigenvalues are found the instability criteria. Taking into account the slow-frequency self-interaction terms some localized solutions similar to dipole vortices are found, but described by analytic functions in all space. It is shown that their characteristic size and speed are determined by the pump intensity and its spatial structure. (au)
Non-uniform tube representation of proteins
DEFF Research Database (Denmark)
Hansen, Mikael Sonne
Treating the full protein structure is often neither computationally nor physically possible. Instead one is forced to consider various reduced models capturing the properties of interest. Previous work have used tubular neighborhoods of the C-alpha backbone. However, assigning a unique radius...... might not correctly capture volume exclusion - of crucial importance when trying to understand a proteins $3$d-structure. We propose a new reduced model treating the protein as a non-uniform tube with a radius reflecting the positions of atoms. The tube representation is well suited considering X......-ray crystallographic resolution ~ 3Å while a varying radius accounts for the different sizes of side chains. Such a non-uniform tube better capture the protein geometry and has numerous applications in structural/computational biology from the classification of protein structures to sequence-structure prediction....
Allowance for influence of gravity field nonuniformity
Tsysar, A. P.
1987-03-01
The constants of a quartz-metal pendulum used in higher-order gravimetric networks have been determined and a formula has been derived for the total correction for gravity field nonuniformity measurements made with the pendulum. Nomograms were constructed on the basis of these formulas and are used in introducing corrections into pendulum measurements. A table was prepared giving the components of the correction for some values of the derivatives of gravity potential from surrounding masses. Errors can be caused by building walls, the pedestal on which the instrument sits and other factors, and these must be taken into account since they increase the normal gravity gradient. After introducing these correction components for the nonuniform gravity field, the gravity field at the measurement point is related to the instrument point coinciding with the middle of the pendulum knife blade.
Directory of Open Access Journals (Sweden)
Fahad Al-Amri
2014-01-01
Full Text Available A numerical heat transfer model was developed to investigate the temperature of a triple junction solar cell and the thermal characteristics of the airflow in a channel behind the solar cell assembly using nonuniform incident illumination. The effects of nonuniformity parameters, emissivity of the two channel walls, and Reynolds number were studied. The maximum solar cell temperature sharply increased in the presence of nonuniform light profiles, causing a drastic reduction in overall efficiency. This resulted in two possible solutions for solar cells to operate in optimum efficiency level: (i adding new receiver plate with higher surface area or (ii using forced cooling techniques to reduce the solar cell temperature. Thus, surface radiation exchanges inside the duct and Re significantly reduced the maximum solar cell temperature, but a conventional plain channel cooling system was inefficient for cooling the solar cell at medium concentrations when the system was subjected to a nonuniform light distribution. Nonuniformity of the incident light and surface radiation in the duct had negligible effects on the collected thermal energy.
Derivation of nonlinear wave equations for ultrasound beam in nonuniform bubbly liquids
Kanagawa, Tetsuya; Yano, Takeru; Kawahara, Junya; Kobayashi, Kazumichi; Watanabe, Masao; Fujikawa, Shigeo
2012-09-01
Weakly nonlinear propagation of diffracted ultrasound beams in a nonuniform bubbly liquid is theoretically studied based on the method of multiple scales with the set of scaling relations of some physical parameters. It is assumed that the spatial distribution of the number density of bubbles in an initial state at rest is a slowly varying function of space coordinates and the amplitude of its variation is small compared with a mean number density. As a result, a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with dispersion and nonuniform effects for a low frequency case and a nonlinear Schrödinger (NLS) equation with dissipation, diffraction, and nonuniform effects for a high frequency case, are derived from the basic equations of bubbly flows.
International Nuclear Information System (INIS)
Reutov, V.F.; Farkhutdinov, K.G.
1977-01-01
The results are presented of the investigation into the perimeter radiation swelling of Kh18N10T stainless steel cladding in different cross sections of a peripheral fuel element of the BR-5 reactor. The fluence on the cladding is 1.8-2.9 x 10 22 fast neutr/cm 2 , the operating temperatures in different parts of the fuel element being 430 deg to 585 deg C. There has been observed circumferential non-uniformity of the distribution, concentration, and of the total volume of radiation cavities, which is due to temperature non-uniformity along the cladding perimeter. It is shown that such non-uniformity of radiation swelling of the cladding material may result in bending of the peripheral fuel element with regard to the fuel assembly sheath walls
Surface magnetic canting in a nonuniform film
International Nuclear Information System (INIS)
Pini, M.G.; Rettori, A.; Pappas, D.P.; Anisimov, A.V.; Popov, A.P.
2004-01-01
The zero temperature equilibrium configuration of a nonuniform system made of a ferromagnetic (FM) monolayer on top of a semi-infinite FM film is calculated using a nonlinear mapping formulation of mean-field theory, where the surface is taken into account via an appropriate boundary condition. The analytical criterion for the existence of surface magnetic canting, previously obtained by Popov and Pappas, is also recovered
Experimental investigation of the ion current distribution in microsecond plasma opening switch
Energy Technology Data Exchange (ETDEWEB)
Bystritskij, V; Grigor` ev, S; Kharlov, A; Sinebryukhov, A [Russian Academy of Sciences, Tomsk (Russian Federation). Institute of Electrophysics
1997-12-31
This paper is devoted to the investigations of properties of the microsecond plasma opening switch (MPOS) as an ion beam source for surface modification. Two plasma sources were investigated: flash-board and cable guns. The detailed measurements of axial and azimuthal distributions of ion current density in the switch were performed. It was found that the azimuthal inhomogeneity of the ion beam increases from the beginning to the end of MPOS. The advantages and problems of this approach are discussed. (author). 5 figs., 2 refs.
International Nuclear Information System (INIS)
Koronovskij, A.A.; Rempen, I.S.; Khramov, A.E.
2003-01-01
The set of the unstable periodic space-time states, characterizing the chaotic space-time dynamics of the electron beam with the supercritical current in the Pierce diode is discussed. The Lyapunov indicators of the revealed instable space-time states of the chaotic dynamics of the distributed self-excited system are calculated. It is shown that change in the set of the unstable periodic states in dependence on the Pierce parameter is determined by change in the various orbits stability, which is demonstrated by the values of senior Lyapunov unstable state index [ru
Statistical evaluation of unobserved nonuniform corrosion in A216 steel
International Nuclear Information System (INIS)
Pulsipher, B.A.
1988-07-01
Tests designed to promote nonuniform corrosion have been conducted at PNL on A216 steel. In all of the tests performed to date, there have been no manifestations of significant nonuniform corrosion. Although this may suggest that nonuniform corrosion in A216 steel may not be a significant problem in the nuclear waste repository, a question arises as to whether enough tests have been conducted for a sufficient length of time to rule out nonuniform corrosion of A216 steel. In this report, a method for determining the required number of tests is examined for two of the mechanisms of nonuniform corrosion: pitting and crevice corrosion
A Heuristic Probabilistic Approach to Estimating Size-Dependent Mobility of Nonuniform Sediment
Woldegiorgis, B. T.; Wu, F. C.; van Griensven, A.; Bauwens, W.
2017-12-01
Simulating the mechanism of bed sediment mobility is essential for modelling sediment dynamics. Despite the fact that many studies are carried out on this subject, they use complex mathematical formulations that are computationally expensive, and are often not easy for implementation. In order to present a simple and computationally efficient complement to detailed sediment mobility models, we developed a heuristic probabilistic approach to estimating the size-dependent mobilities of nonuniform sediment based on the pre- and post-entrainment particle size distributions (PSDs), assuming that the PSDs are lognormally distributed. The approach fits a lognormal probability density function (PDF) to the pre-entrainment PSD of bed sediment and uses the threshold particle size of incipient motion and the concept of sediment mixture to estimate the PSDs of the entrained sediment and post-entrainment bed sediment. The new approach is simple in physical sense and significantly reduces the complexity and computation time and resource required by detailed sediment mobility models. It is calibrated and validated with laboratory and field data by comparing to the size-dependent mobilities predicted with the existing empirical lognormal cumulative distribution function (CDF) approach. The novel features of the current approach are: (1) separating the entrained and non-entrained sediments by a threshold particle size, which is a modified critical particle size of incipient motion by accounting for the mixed-size effects, and (2) using the mixture-based pre- and post-entrainment PSDs to provide a continuous estimate of the size-dependent sediment mobility.
Subrandom methods for multidimensional nonuniform sampling.
Worley, Bradley
2016-08-01
Methods of nonuniform sampling that utilize pseudorandom number sequences to select points from a weighted Nyquist grid are commonplace in biomolecular NMR studies, due to the beneficial incoherence introduced by pseudorandom sampling. However, these methods require the specification of a non-arbitrary seed number in order to initialize a pseudorandom number generator. Because the performance of pseudorandom sampling schedules can substantially vary based on seed number, this can complicate the task of routine data collection. Approaches such as jittered sampling and stochastic gap sampling are effective at reducing random seed dependence of nonuniform sampling schedules, but still require the specification of a seed number. This work formalizes the use of subrandom number sequences in nonuniform sampling as a means of seed-independent sampling, and compares the performance of three subrandom methods to their pseudorandom counterparts using commonly applied schedule performance metrics. Reconstruction results using experimental datasets are also provided to validate claims made using these performance metrics. Copyright © 2016 Elsevier Inc. All rights reserved.
Going from microscopic to macroscopic on nonuniform growing domains.
Yates, Christian A; Baker, Ruth E; Erban, Radek; Maini, Philip K
2012-08-01
Throughout development, chemical cues are employed to guide the functional specification of underlying tissues while the spatiotemporal distributions of such chemicals can be influenced by the growth of the tissue itself. These chemicals, termed morphogens, are often modeled using partial differential equations (PDEs). The connection between discrete stochastic and deterministic continuum models of particle migration on growing domains was elucidated by Baker, Yates, and Erban [Bull. Math. Biol. 72, 719 (2010)] in which the migration of individual particles was modeled as an on-lattice position-jump process. We build on this work by incorporating a more physically reasonable description of domain growth. Instead of allowing underlying lattice elements to instantaneously double in size and divide, we allow incremental element growth and splitting upon reaching a predefined threshold size. Such a description of domain growth necessitates a nonuniform partition of the domain. We first demonstrate that an individual-based stochastic model for particle diffusion on such a nonuniform domain partition is equivalent to a PDE model of the same phenomenon on a nongrowing domain, providing the transition rates (which we derive) are chosen correctly and we partition the domain in the correct manner. We extend this analysis to the case where the domain is allowed to change in size, altering the transition rates as necessary. Through application of the master equation formalism we derive a PDE for particle density on this growing domain and corroborate our findings with numerical simulations.
Distribution of the Current Density in Electrolyte of the Pem Fuel Cell
Directory of Open Access Journals (Sweden)
Eugeniusz Kurgan
2004-01-01
Full Text Available In this paper water management in proton exchange membrane (PEM fuel cell is considered. Firt mass convervation law for water is applied. Next proton transport is described by the Nernst-Planck equation and liqid water convection velocity is eliminated by the Schlogl equation. Electro-osmotic drag coefficient is related to hydrogen index and experimentally determined swelling coefficient. Three partial differential equations for molar water concentration Cw, electric potential ϕ and water pressure Pw are formulated. Current density vector i is derived from proton flux expression. These equations together with adequate boundary conditions were solved using finite element method. The distribution of electric potential and current density in function of geometrical parametres is investigated. At the end some illustrative example is given.
Iwafune, Yumiko; Ogimoto, Kazuhiko; Yagita, Yoshie
The Energy management systems (EMS) on demand sides are expected as a method to enhance the capability of supply and demand balancing of a power system under the anticipated penetration of renewable energy generation such as Photovoltaics (PV). Elucidation of energy consumption structure in a building is one of important elements for realization of EMS and contributes to the extraction of potential energy saving. In this paper, we propose the estimation method of operating condition of household appliances using circuit current data on an electric distribution board. Circuit current data are broken down by their shape using a self-organization map method and aggregated by appliance based on customers' information of appliance possessed. Proposed method is verified using residential energy consumption measurement survey data.
Malashin, M. V.; Moshkunov, S. I.; Khomich, V. Yu.; Shershunova, E. A.
2018-01-01
Experimental results on the radial distribution of the nanosecond dielectric barrier discharge (DBD) current in flat millimeter air gaps under atmospheric pressure and natural humidity of 40-60% at a voltage rise rate at the electrodes of 250 V/ns are presented. The time delay of the appearance of discharge currents was observed to increase from the center to the periphery of the air gap at discharge gap heights above 3 mm, which correlated with the appearance of constricted channels against the background of the volume DBD plasma. Based on the criterion of the avalanche-streamer transition, it is found out that the development of a nanosecond DBD in air gaps of 1-3 mm occurs by the streamer mechanism.
International Nuclear Information System (INIS)
Gagliardo, J.J.; Owejan, J.P.; Trabold, T.A.; Tighe, T.W.
2009-01-01
Neutron radiography has proven to be a powerful tool to study and understand the effects of liquid water in an operating fuel cell. In the present work, this experimental method is coupled with locally resolved current and ohmic resistance measurements, giving additional insight into water management and fuel cell performance under a variety of conditions. The effects of varying the inlet humidification level and the current density of the 50 cm 2 cell are studied by simultaneously monitoring electrochemical performance with a 10x10 matrix of current sensors, and liquid water volumes are measured using the National Institute of Standards and Technology (NIST) neutron imaging facility. A counter flow, straight channel proton exchange membrane (PEM) fuel cell is used to demonstrate localized performance loss corresponds to water-filled channels that impede gas transport to the catalyst layer, thereby creating an area that has low current density. Furthermore, certain operating conditions causing excess water accumulation in the channels can result in localized proton resistance increase, a result that can only be accurately observed with combined radiography and distributed electrochemical measurements.
Directory of Open Access Journals (Sweden)
Sonali Sachin Sankpal
2016-01-01
Full Text Available Scattering and absorption of light is main reason for limited visibility in water. The suspended particles and dissolved chemical compounds in water are also responsible for scattering and absorption of light in water. The limited visibility in water results in degradation of underwater images. The visibility can be increased by using artificial light source in underwater imaging system. But the artificial light illuminates the scene in a nonuniform fashion. It produces bright spot at the center with the dark region at surroundings. In some cases imaging system itself creates dark region in the image by producing shadow on the objects. The problem of nonuniform illumination is neglected by the researchers in most of the image enhancement techniques of underwater images. Also very few methods are discussed showing the results on color images. This paper suggests a method for nonuniform illumination correction for underwater images. The method assumes that natural underwater images are Rayleigh distributed. This paper used maximum likelihood estimation of scale parameter to map distribution of image to Rayleigh distribution. The method is compared with traditional methods for nonuniform illumination correction using no-reference image quality metrics like average luminance, average information entropy, normalized neighborhood function, average contrast, and comprehensive assessment function.
Current density distribution mapping in PEM fuel cells as an instrument for operational measurements
Energy Technology Data Exchange (ETDEWEB)
Geske, M.; Heuer, M.; Heideck, G.; Styczynski, Z. A. [Otto-von-Guericke University Magdeburg, Chair Electric Power Networks and Renewable Energy Sources, Magdeburg (Germany)
2010-07-01
A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC). Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes. (author)
The distribution of seabirds and fish in relation to ocean currents in the southeastern Chukchi Sea
Piatt, John F.; Wells, John L.; MacCharles, Andrea; Fadely, Brian S.; Montevecchi, W.A.; Gaston, A.J.
1991-01-01
In late August 1988, we studied the distribution of seabirds in the southeastern Chukchi Sea, particularly in waters near a major seabird colony at Cape Thompson. Foraging areas were characterized using hydrographic data obtained from hydroacoustic surveys for fish. Murres (Uria spp.) and Black-legged Kitttiwakes Rissa tridactyla breeding at Cape Thompson fed mostly on Arctic cod, which are known from previous studies to be the most abundant pelagic fish in the region. Our hydroacoustic surveys revealed that pelagic fish were distributed widely, but densities were estimated to be low (e.g., 0.1-10 g∙m-3) throughout the study area and a few schools were recorded. Large feeding flocks of murres and kittiwakes were observed over fish schools with densities estimated to exceed 15 g∙m-3. Fish densities were higher in shallow Alaska Coastal Current waters than offshore in Bering Sea waters, and most piscivorous seabirds foraged in coastal waters. Poor kittiwake breeding success and a low frequency of fish in murre and kittiwake stomachs in late August suggested that fish densities were marginal for sustaining breeding seabirds at that time. Planktivorous Least Auklets Aethia pusilla and Parakeet Auklets Cyclorrhynchus psittacula foraged almost exclusively in Bering Sea waters. Short-tailed Shearwaters Puffinus tenuirostris and Tufted Puffins Fratercula cirrhata foraged in transitional waters at the front between Coastal and Bering Sea currents.
Directory of Open Access Journals (Sweden)
Guido Ala
2018-03-01
Full Text Available This paper presents the results of a first investigation on the effects of lightning stroke on medium voltage installations’ grounding systems, interconnected with the metal shields of the Medium Voltage (MV distribution grid cables or with bare buried copper ropes. The study enables us to evaluate the distribution of the lightning current among interconnected ground electrodes in order to estimate if the interconnection, usually created to reduce ground potential rise during a single-line-to-ground fault, can give place to dangerous situations far from the installation hit by the lightning stroke. Four different case studies of direct lightning stroke are presented and discussed: (1 two secondary substations interconnected by the cables’ shields; (2 two secondary substations interconnected by a bare buried conductor; (3 a high voltage/medium voltage station connected with a secondary substation by the medium voltage cables’ shields; (4 a high voltage/medium voltage station connected with a secondary substation by a bare buried conductor. The results of the simulations show that a higher peak-lowering action on the lighting-stroke current occurs due to the use of bare conductors as interconnection elements in comparison to the cables’ shields.
Current Density Distribution Mapping in PEM Fuel Cells as An Instrument for Operational Measurements
Directory of Open Access Journals (Sweden)
Martin Geske
2010-04-01
Full Text Available A newly developed measurement system for current density distribution mapping has enabled a new approach for operational measurements in proton exchange membrane fuel cells (PEMFC. Taking into account previously constructed measurement systems, a method based on a multi layer printed circuit board was chosen for the development of the new system. This type of system consists of a sensor, a special electronic device and the control and visualization PC. For the acquisition of the current density distribution values, a sensor device was designed and installed within a multilayer printed circuit board with integrated shunt resistors. Varying shunt values can be taken into consideration with a newly developed and evaluated calibration method. The sensor device was integrated in a PEM fuel cell stack to prove the functionality of the whole measurement system. A software application was implemented to visualize and save the measurement values. Its functionality was verified by operational measurements within a PEMFC system. Measurement accuracy and possible negative reactions of the sensor device during PEMFC operation are discussed in detail in this paper. The developed system enables operational measurements for different operating phases of PEM fuel cells. Additionally, this can be seen as a basis for new opportunities of optimization for fuel cell design and operation modes.
Current Outlook for 99mTc Distribution Based on Electron Accelerator Production
International Nuclear Information System (INIS)
Benjamin L. Nelson; W. David Bence; John R. Snyder
2007-01-01
In 1999 a practical example illustrating the economical and reliable production of 99mTc from an accelerator was developed. It included the realistic costs involved in establishing and operating the accelerator facility and the distribution of the 99mTc to regions in Florida. However, the technology was never commercialized. Recent political and economic developments prompted this second look at accelerator produced 99mTc. The practicality of this system in 2007 dollars was established to account for inflation and current demand. The same distribution model and production schedule from the Global 1999 study were used. Numbers were found using current rates and costs where possible and indexed estimations when necessary. Though several of the costs increased significantly and the sale price remains at approximately 35 cents/mCi, the unit cost of 99mTc throughput only increased from 12.8 cents/mCi to 15.0 cents/mCi or approximately 17.2% from 1999 to 2007 thus continuing to be economically viable. This study provides ground work for creating business development models at additional locations within the U.S
Analyte preconcentration in nanofluidic channels with nonuniform zeta potential
Eden, A.; McCallum, C.; Storey, B. D.; Pennathur, S.; Meinhart, C. D.
2017-12-01
It is well known that charged analytes in the presence of nonuniform electric fields concentrate at locations where the relevant driving forces balance, and a wide range of ionic stacking and focusing methods are commonly employed to leverage these physical mechanisms in order to improve signal levels in biosensing applications. In particular, nanofluidic channels with spatially varying conductivity distributions have been shown to provide increased preconcentration of charged analytes due to the existence of a finite electric double layer (EDL), in which electrostatic attraction and repulsion from charged surfaces produce nonuniform transverse ion distributions. In this work, we use numerical simulations to show that one can achieve greater levels of sample accumulation by using field-effect control via wall-embedded electrodes to tailor the surface potential heterogeneity in a nanochannel with overlapped EDLs. In addition to previously demonstrated stacking and focusing mechanisms, we find that the coupling between two-dimensional ion distributions and the axial electric field under overlapped EDL conditions can generate an ion concentration polarization interface in the middle of the channel. Under an applied electric field, this interface can be used to concentrate sample ions between two stationary regions of different surface potential and charge density. Our numerical model uses the Poisson-Nernst-Planck system of equations coupled with the Stokes equation to demonstrate the phenomenon, and we discuss in detail the driving forces behind the predicted sample enhancement. The numerical velocity and salt concentration profiles exhibit good agreement with analytical results from a simplified one-dimensional area-averaged model for several limiting cases, and we show predicted amplification ratios of up to 105.
Physical Limitations To Nonuniformity Correction In IR Focal Plane Arrays
Scribner, D. A.; Kruer, M. R.; Gridley, J. C.; Sarkady, K.
1988-05-01
Simple nonuniformity correction algorithms currently in use can be severely limited by nonlinear response characteristics of the individual pixels in an IR focal plane array. Although more complicated multi-point algorithms improve the correction process they too can be limited by nonlinearities. Furthermore, analysis of single pixel noise power spectrums usually show some level of 1 /f noise. This in turn causes pixel outputs to drift independent of each other thus causing the spatial noise (often called fixed pattern noise) of the array to increase as a function of time since the last calibration. Measurements are presented for two arrays (a HgCdTe hybrid and a Pt:Si CCD) describing pixel nonlinearities, 1/f noise, and residual spatial noise (after nonuniforming correction). Of particular emphasis is spatial noise as a function of the lapsed time since the last calibration and the calibration process selected. The resulting spatial noise is examined in terms of its effect on the NEAT performance of each array tested and comparisons are made. Finally, a discussion of implications for array developers is given.
Non-Uniform Cathode Emission Studies of a MIG Gun
Marchewka, C. D.; Shapiro, M. A.; Sirigiri, J. R.; Temkin, R. J.
2004-11-01
We present the initial results of the modeling of the effect of emission non-uniformity in 96 kV, 40 A Magnetron Injection Gun (MIG) of a 1.5 MW 110 GHz gyrotron using a 3D gun simulation code. The azimuthal emission nonuniformity can lead to increased mode competition and an overall decreased efficiency of the device [1]. The electron beam is modeled from the cathode to a downstream position where the velocity spread saturates using the AMAZE 3D suite of codes. After bench marking the results of the 3D code with 2D codes such as TRAK2D and EGUN, the emitter was modified to simulate asymmetric emission from the cathode to gain an understanding into the effects of inhomogeneous beam current density on the velocity spread and pitch factor of the electron beam. [1] G. S. Nusinovich, A.N. Vlasov, M. Botton, T. M. Antonsen, Jr., S. Cauffman, K. Felch, ``Effect of the azimuthal inhomogeneity of electron emission on gyrotron operation,'' Phys. Plasmas, vol. 8, no. 7, pp. 3473-3479, 2001
Current-voltage characteristic of a Josephson junction with randomly distributed Abrikosov vortices
International Nuclear Information System (INIS)
Fistul, M.V.; Giuliani, G.F.
1997-01-01
We have developed a theory of the current-voltage characteristic of a Josephson junction in the presence of randomly distributed, pinned misaligned Abrikosov vortices oriented perpendicularly to the junction plane. Under these conditions the Josephson phase difference var-phi acquires an interesting stochastic dependence on the position in the plane of the junction. In this situation it is possible to define an average critical current which is determined by the spatial correlations of this function. Due to the inhomogeneity, we find that for finite voltage bias the electromagnetic waves propagating in the junction display a broad spectrum of wavelengths. This is at variance with the situation encountered in homogeneous junctions. The amplitude of these modes is found to decrease as the bias is increased. We predict that the presence of these excitations is directly related to a remarkable feature in the current-voltage characteristic. The dependence of the position and the magnitude of this feature on the vortex concentration has been determined. copyright 1997 The American Physical Society
Modelling refrigerant distribution in minichannel evaporators
DEFF Research Database (Denmark)
Brix, Wiebke
of the liquid and vapour in the inlet manifold. Combining non-uniform airflow and non-uniform liquid and vapour distribution shows that a non-uniform airflow distribution to some degree can be compensated by a suitable liquid and vapour distribution. Controlling the superheat out of the individual channels...... to be equal, results in a cooling capacity very close to the optimum. A sensitivity study considering parameter changes shows that the course of the pressure gradient in the channel is significant, considering the magnitude of the capacity reductions due to non-uniform liquid and vapour distribution and non......This thesis is concerned with numerical modelling of flow distribution in a minichannel evaporator for air-conditioning. The study investigates the impact of non-uniform airflow and non-uniform distribution of the liquid and vapour phases in the inlet manifold on the refrigerant mass flow...
Effective electrodiffusion equation for non-uniform nanochannels.
Marini Bettolo Marconi, Umberto; Melchionna, Simone; Pagonabarraga, Ignacio
2013-06-28
We derive a one-dimensional formulation of the Planck-Nernst-Poisson equation to describe the dynamics of a symmetric binary electrolyte in channels whose section is nanometric and varies along the axial direction. The approach is in the spirit of the Fick-Jacobs diffusion equation and leads to a system of coupled equations for the partial densities which depends on the charge sitting at the walls in a non-trivial fashion. We consider two kinds of non-uniformities, those due to the spatial variation of charge distribution and those due to the shape variation of the pore and report one- and three-dimensional solutions of the electrokinetic equations.
Energy Technology Data Exchange (ETDEWEB)
Hattem, M V; Paterson, L; Woollett, J
2008-08-20
65 surveys were completed in 2002 to assess the current distribution of special status amphibians at the Lawrence Livermore National Laboratory's (LLNL) Livermore Site and Site 300. Combined with historical information from previous years, the information presented herein illustrates the dynamic and probable risk that amphibian populations face at both sites. The Livermore Site is developed and in stark contrast to the mostly undeveloped Site 300. Yet both sites have significant issues threatening the long-term sustainability of their respective amphibian populations. Livermore Site amphibians are presented with a suite of challenges inherent of urban interfaces, most predictably the bullfrog (Rana catesbeiana), while Site 300's erosion issues and periodic feral pig (Sus scrofa) infestations reduce and threaten populations. The long-term sustainability of LLNL's special status amphibians will require active management and resource commitment to maintain and restore amphibian habitat at both sites.
Current distribution and giant magnetoimpedance in composite wires with helical magnetic anisotropy
International Nuclear Information System (INIS)
Buznikov, N.A.; Antonov, A.S.; Granovsky, A.B.; Kim, C.G.; Kim, C.O.; Li, X.P.; Yoon, S.S.
2006-01-01
The giant magnetoimpedance effect in composite wires consisting of a non-magnetic inner core and soft magnetic shell is studied theoretically. It is assumed that the magnetic shell has a helical anisotropy. The current and field distributions in the composite wire are found by means of a simultaneous solution of Maxwell equations and the Landau-Lifshitz equation. The expressions for the diagonal and off-diagonal impedance are obtained for low and high frequencies. The dependences of the impedance on the anisotropy axis angle and the shell thickness are analyzed. Maximum field sensitivity is shown to correspond to the case of the circular anisotropy in the magnetic shell. It is demonstrated that the optimum shell thickness to obtain maximum impedance ratio is equal to the effective skin depth in the magnetic material
Current distribution and giant magnetoimpedance in composite wires with helical magnetic anisotropy
Energy Technology Data Exchange (ETDEWEB)
Buznikov, N.A. [Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow 125412 (Russian Federation) and Research Center for Advanced Magnetic Materials, Chungnam National University, Daeduk Science Town, Daejeon 305-764 (Korea, Republic of)]. E-mail: n_buznikov@mail.ru; Antonov, A.S. [Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Granovsky, A.B. [Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Kim, C.G. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daeduk Science Town, Daejeon 305-764 (Korea, Republic of)]. E-mail: cgkim@cnu.ac.kr; Kim, C.O. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daeduk Science Town, Daejeon 305-764 (Korea, Republic of); Li, X.P. [Department of Mechanical Engineering and Division of Bioengineering, National University of Singapore, Singapore 119260 (Singapore); Yoon, S.S. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daeduk Science Town, Daejeon 305-764 (Korea, Republic of); Department of Physics, Andong National University, Andong 760-749 (Korea, Republic of)
2006-01-15
The giant magnetoimpedance effect in composite wires consisting of a non-magnetic inner core and soft magnetic shell is studied theoretically. It is assumed that the magnetic shell has a helical anisotropy. The current and field distributions in the composite wire are found by means of a simultaneous solution of Maxwell equations and the Landau-Lifshitz equation. The expressions for the diagonal and off-diagonal impedance are obtained for low and high frequencies. The dependences of the impedance on the anisotropy axis angle and the shell thickness are analyzed. Maximum field sensitivity is shown to correspond to the case of the circular anisotropy in the magnetic shell. It is demonstrated that the optimum shell thickness to obtain maximum impedance ratio is equal to the effective skin depth in the magnetic material.
Directory of Open Access Journals (Sweden)
M. S. MANNA
2011-12-01
Full Text Available The development of electromagnetic devices as machines, transformers, heating devices confronts the engineers with several problems. For the design of an optimized geometry and the prediction of the operational behaviour an accurate knowledge of the dependencies of the field quantities inside the magnetic circuits is necessary. This paper provides the eddy current and core flux density distribution analysis in linear induction motor. Magnetic flux in the air gap of the Linear Induction Motor (LIM is reduced to various losses such as end effects, fringes, effect, skin effects etc. The finite element based software package COMSOL Multiphysics Inc. USA is used to get the reliable and accurate computational results for optimization the performance of Linear Induction Motor (LIM. The geometrical characteristics of LIM are varied to find the optimal point of thrust and minimum flux leakage during static and dynamic conditions.
Directory of Open Access Journals (Sweden)
I. Giorgi
2012-08-01
Full Text Available The purpose of this study was to conduct an assessment on the quality and methods for marketing of fish products sold by ethnic minimarket. Has been inspected 20 supermarkets and buyed 60 fish and shellfish samples. The neatness of the rooms were evaluated during the shopping in the markets. Products purchased in the supermarket (about three samples for each shop were brought in Ichthypathology laboratory of State Veterinary Institute of Piedmont, Liguria and Aosta Valley, in Turin. Were conducted in the laboratory the readings of the labels. The conditions of hygiene were poor, especially in supermarket freezers. Only 16 samples were labelled in accordance with current legislation. According to the results obtained, the products 'ethnic' distributed in the supermarkets visited, may be considered a potential risk to human health.
Energy Technology Data Exchange (ETDEWEB)
Mork, B; Nelson, R; Kirkendall, B; Stenvig, N
2009-11-30
Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.
Energy Technology Data Exchange (ETDEWEB)
Sakai, Kenji, E-mail: Sakai-k@okayama-u.ac.jp; Tanaka, Kohei; Kiwa, Toshihiko; Tsukada, Keiji
2016-11-15
Highlights: • Current distribution and direction of dye-sensitized solar cell (DSSC) was measured. • Electrical current flowing in the indium tin oxide (ITO) glass substrate was uniform. • The distribution of electrical current depended on I–V characteristic. • Current direction changed when the performance of DSSC is low. - Abstract: The current flowing inside a dye-sensitized solar cell (DSSC) was measured using a high-temperature superconductor superconducting quantum interference device (HTS-SQUID)-based magnetic measurement system. Further, a new evaluation method of the DSSC, which is difficult to measure using the conventional method, was investigated to improve the characteristics of the DSSC. The tangential components of the magnetic field generated from the DSSC were measured using two HTS-SQUIDs, and the intensity and direction related to the electrical current were obtained by the measured magnetic field. The DSSCs prepared with different dyes and catalytic substances showed different current-intensity mapping. The current direction was different for the DSSC with low performance. In addition, the current flowing in the ITO layer of the ITO glass substrate was also measured and the results confirmed that it had uniform distribution. These results show that the current mapping and the direction of the electrical current depend on the internal factors of the DSSC, and the detection of the magnetic field distribution generated from it is expected to lead to its new evaluation method.
Distribution and seasonal change of the Tsugaru warm current water off Rokkasho
International Nuclear Information System (INIS)
Shima, Shigeki; Nakayama, Tomoharu; Iseda, Kenichi; Nishizawa, Keisuke; Gasa, Shinichi; Suto, Kazuhiko; Sakurai, Satoshi; Oguri, Kazumasa; Kouzuma, Kiyotake
2000-01-01
The first commercial spent fuel reprocessing plant in Japan is being installed in Rokkasho-mura, Aomori Prefecture. Decontaminated liquid effluents in its operation will be released into a sea. In accessing the environmental impact of radionuclides discharged into a sea, it is important that the patterns of water movements around the discharge outlet are clarified. This area off Rokkasho is an open coast, where the Tsugaru Warm Current Water (TWC), the cold Oyashio and the warm Kuroshio Extension meet. Therefore, it is considered that complicated water circulations will be formed around the region of the wastewater outlet. Current structures of the coastal water near the ocean outlet were investigated by use of mooring current meters/ADCPs, a towing-ADCP, and some CTD observations. In addition, extensive observations with CTD and a shipboard ADCP were made in detail around the off Rokkasho (Shimokita Peninsula) to evaluate the distribution and the seasonal change of the TWC. These observations were carried out five times in September 1997 to August 1999. Gyre mode and coastal mode of the TWC experimentally pointed out by Conlon are found by those investigations. In the gyre mode, the large eddy more than 100 km in diameter is found in the east part of the Tsugaru Strait, which has the vertical structure of 1,000 m in depth. From the current measurements by shipboard ADCP, the velocity of the TWC was more than three knots and the width of its fastest region about 30km at that mode. On the other hand, in the coastal mode, the TWC flows along the continental slope off Rokkasho (ca five miles off the coast) and is about 400m thick in depth. The TWC affects the layers below the sill depth of the Tsugaru Strait. In the gyre mode the TWC flows northward along the slope off Rokkasho, however, around the coastal zone standing near to the outlet, southward flow was observed predominantly. At the coastal mode, the northward flow was mostly observed around the coastal area
Energy Technology Data Exchange (ETDEWEB)
Campoccia, A.; Di Silvestre, M.L.; Incontrera, I.; Riva Sanseverino, E. [Dipartimento di Ingegneria Elettrica elettronica e delle Telecomunicazioni, Universita degli Studi di Palermo, viale delle Scienze, 90128 Palermo (Italy); Spoto, G. [Centro per la Ricerca Elettronica in Sicilia, Monreale, Via Regione Siciliana 49, 90046 Palermo (Italy)
2010-10-15
Service continuity is one of the major aspects in the definition of the quality of the electrical energy, for this reason the research in the field of faults diagnostic for distribution systems is spreading ever more. Moreover the increasing interest around modern distribution systems automation for management purposes gives faults diagnostics more tools to detect outages precisely and in short times. In this paper, the applicability of an efficient fault location and characterization methodology within a centralized monitoring system is discussed. The methodology, appropriate for any kind of fault, is based on the use of the analytical model of the network lines and uses the fundamental components rms values taken from the transient measures of line currents and voltages at the MV/LV substations. The fault location and identification algorithm, proposed by the authors and suitably restated, has been implemented on a microprocessor-based device that can be installed at each MV/LV substation. The speed and precision of the algorithm have been tested against the errors deriving from the fundamental extraction within the prescribed fault clearing times and against the inherent precision of the electronic device used for computation. The tests have been carried out using Matlab Simulink for simulating the faulted system. (author)
International Nuclear Information System (INIS)
Svitra, Z.V.; Bowen, S.M.; Marsh, S.F.
1994-12-01
As part of the Hanford Tank Waste Remediation System program at Los Alamos, we evaluated 64 commercially available or experimental absorber materials for their ability to remove hazardous components from high-level waste. These absorbers included cation and anion exchange resins, inorganic exchangers, composite absorbers, and a series of liquid extractants sorbed on porous support-beads. We tested these absorbers with a solution that simulates Hanford neutralized current acid waste (NCAW) (pH 14.2). To this simulant solution we added the appropriate radionuclides and used gamma spectrometry to measure fission products (Cs, Sr, Tc, and Y) and matrix elements (Cr, Co, Fe, Mn, Ni, V, Zn, and Zr). For each of 768 element/absorber combinations, we measured distribution coefficients for dynamic contact periods of 30 min, 2 h, and 6 h to obtain information about sorption kinetics. On the basis of these 2304 measured distribution coefficients, we determined that many of the tested absorbers may be suitable for processing NCAW solutions
Gielen, J.W.A.M.; de Groot, S.; Dijk, van J.; Mullen, van der J.J.A.M.
2004-01-01
Due to cataphoresis, axial segregation of mercury will occur when the gas discharge of a fluorescent lamp is operated by means of a direct current. A consequence of this is a non-uniform axial luminance distribution along the lamp. To determine the degree of axial mercury segregation experimentally,
Schreiner, T
2002-01-01
The windings of high--field superconducting accelerator magnets are usually made of Rutherford--type cables. The magnetic field distribution along the axis of such magnets exhibits a periodic modulation with a wavelength equal to the twist pitch length of the cable used in the winding. Such a Periodic Field Pattern (PFP) has already been observed in number of superconducting accelerator magnets. Additional unbalanced currents in individual strands of the cable appear to be causing this effect. The present thesis describes the investigation of the PFPs performed with a Hall probes array inserted inside the aperture of the LHC superconducting dipoles, both in the small--scale model magnets with a length of one meter and in full--scale prototypes and pre--series magnets with fifteen meters of length. The amplitude and the time dependence of this periodic field oscillation have been studied as a function of the magnet current history. One of the main parameters influencing the properties of the PFP is the cross--...
RF current distribution and topology of RF sheath potentials in front of ICRF antennae
International Nuclear Information System (INIS)
Colas, L.; Heuraux, S.; Bremond, S.; Bosia, G.
2005-01-01
The 2D (radial/poloidal) spatial topology of RF-induced convective cells developing radially in front of ion cyclotron range of frequency (ICRF) antennae is investigated, in relation to the spatial distribution of RF currents over the metallic structure of the antenna. This is done via a Green's function, determined from the ICRF wave coupling equations, and well-suited to open field lines extending toroidally far away on both sides of the antenna. Using such formalism, combined with a full-wave calculation using the 3D antenna code ICANT (Pecoul S. et al 2000 Comput. Phys. Commun. 146 166-87), two classes of convective cells are analysed. The first one appears in front of phased arrays of straps, and depending on the strap phasing, its topology is interpreted using the poloidal profiles of either the RF current or the RF voltage of the strip line theory. The other class of convective cells is specific to antenna box corners and is evidenced for the first time. Based on such analysis, general design rules are worked out in order to reduce the RF-sheath potentials, which generalize those proposed in the earlier literature, and concrete antenna design options are tested numerically. The merits of aligning all strap centres on the same (tilted) flux tube, and of reducing the antenna box toroidal conductivity in its lower and upper parts, are discussed
Ahmed, M.; Putrus, G. A.; Ran, L.; Penlington, R.
2006-01-01
This paper describes the development of a solid-state Fault Current Limiting and Interrupting Device (FCLID) suitable for low voltage distribution networks. The main components of the FCLID are a bidirectional semiconductor switch that can disrupt the short-circuit current, and a voltage clamping element that helps in controlling the current and absorbing the inductive energy stored in the network during current interruption. Using a hysteresis type control algorithm, the short-circuit curren...
Liu, Jiang-Tao; Su, Fu-Hai; Deng, Xin-Hua; Wang, Hai
2012-05-21
The two-color optical coherence absorption spectrum (QUIC-AB) of semiconductors in the presence of a charge current is investigated. We find that the QUIC-AB depends strongly not only on the amplitude of the electron current but also on the direction of the electron current. Thus, the amplitude and the angular distribution of current in semiconductors can be detected directly in real time with the QUIC-AB.
Park, Hyeonwoo; Teramoto, Akinobu; Kuroda, Rihito; Suwa, Tomoyuki; Sugawa, Shigetoshi
2018-04-01
Localized stress-induced leakage current (SILC) has become a major problem in the reliability of flash memories. To reduce it, clarifying the SILC mechanism is important, and statistical measurement and analysis have to be carried out. In this study, we applied an array test circuit that can measure the SILC distribution of more than 80,000 nMOSFETs with various gate areas at a high speed (within 80 s) and a high accuracy (on the 10-17 A current order). The results clarified that the distributions of localized SILC in different gate areas follow a universal distribution assuming the same SILC defect density distribution per unit area, and the current of localized SILC defects does not scale down with the gate area. Moreover, the distribution of SILC defect density and its dependence on the oxide field for measurement (E OX-Measure) were experimentally determined for fabricated devices.
Experimental Investigation of Electron Cloud Containment in a Nonuniform Magnetic Field
Eninger, J. E.
1974-01-01
Dense clouds of electrons were generated and studied in an axisymmetric, nonuniform magnetic field created by a short solenoid. The operation of the experiment was similar to that of a low-pressure (approximately 0.000001 Torr) magnetron discharge. Discharge current characteristics are presented as a function of pressure, magnetic field strength, voltage, and cathode end-plate location. The rotation of the electron cloud is determined from the frequency of diocotron waves. In the space charge saturated regime of operation, the cloud is found to rotate as a solid body with frequency close to V sub a/phi sub a where V sub a is the anode voltage and phi suba is the total magnetic flux. This result indicates that, in regions where electrons are present, the magnetic field lines are electrostatic equipotentials (E bar, B bar = 0). Equilibrium electron density distributions suggested by this conditions are integrated with respect to total ionizing power and are found consistent with measured discharge currents.
Experimental investigation of electron cloud containment in a nonuniform magnetic field
International Nuclear Information System (INIS)
Eninger, J.E.
1974-05-01
Dense clouds of electrons were generated and studied in an axisymmetric, nonuniform magnetic field created by a short solenoid. The operation of the experiment was similar to that of a low-pressure (approximately 0.000001 torr) magnetron discharge. Discharge current characteristics are presented as a function of pressure, magnetic field strength, voltage, and cathode end-plate location. The rotation of the electron cloud is determined from the frequency of diocotron waves. In the space charge saturated regime of operation, the cloud is found to rotate as a solid body with frequency close to V/sub a/phi/sub a/ where V/sub a/ is the anode voltage and phi/sub a/ is the total magnetic flux. This result indicates that, in regions where electrons are present, the magnetic field lines are electrostatic equipotentials (E bar, B bar = 0). Equilibrium electron density distributions suggested by this condition are integrated with respect to total ionizing power and are found consistent with measured discharge currents. (U.S.)
Non-uniformly sampled grids in double pole coordinate system for freeform reflector construction
Ma, Donglin; Pacheco, Shaun; Feng, Zexin; Liang, Rongguang
2015-08-01
We propose a new method to design freeform reflectors by nonuniformly sampling the source intensity distribution in double pole coordinate system. In double pole coordinate system, there is no pole for the whole hemisphere because both poles of the spherical coordinate system are moved to southernmost point of the sphere and overlapped together. With symmetric definition of both angular coordinates in the modified double pole coordinate system, a better match between the source intensity distribution and target irradiance distribution can be achieved for reflectors with large acceptance solid angle, leading to higher light efficiency and better uniformity on the target surface. With non-uniform sampling of the source intensity, we can design circular freeform reflector to obtain uniform rectangular illumination pattern. Aided by the feedback optimization, the freeform reflector can achieve the collection efficiency for ideal point source over 0.7 and relative standard deviation (RSD) less than 0.1.
A stability criterion for HNFDE with non-uniform delays
International Nuclear Information System (INIS)
Liu Xingwen; Zhong Shouming; Zhang Fengli
2005-01-01
Stability of functional differential equations (FDE) is an increasingly important problem in both science and engineering. Delays, whether uniform or non-uniform, play an important role in the dynamics of a system. Since non-uniform delay is more general and less focused than uniform delay, this paper concentrates on the stability of high-order neutral functional differential equations (HNFDE) with non-uniform delay, and proposes a sufficient condition for it. This result may be widely helpful, thanks to the frequent emergence of a HNFDE with non-uniform delay in various fields. Its effectiveness is illustrated by some examples
Effect of non-uniform surface resistance on the quality factor of superconducting niobium cavity
Tan, Weiwei; Lu, Xiangyang; Yang, Ziqin; Zhao, Jifei; Yang, Deyu; Yang, Yujia
2016-08-01
The formula Rs = G /Q0 is commonly used in the calculation of the surface resistance of radio frequency niobium superconducting cavities. The applying of such equation is under the assumption that surface resistance is consistent over the cavity. However, the distribution of the magnetic field varies over the cavity. The magnetic field in the equator is much higher than that in the iris. According to Thermal Feedback Theory, it leads non-uniform distribution of the density of heat flux, which results in a different temperature distribution along the cavity inter surface. The BCS surface resistance, which depends largely on the temperature, is different in each local inner surface. In this paper, the effect of surface non-uniform resistance on the quality factor has been studied, through the calculation of Q0 in the original definition of it. The results show that it is necessary to consider the non-uniform distribution of magnetic field when the accelerating field is above 20 MV/m for TESLA cavities. Also, the effect of inhomogeneity of residual resistance on the quality factor is discussed. Its distribution barely affects the quality factor.
Dacuña, Javier
2012-09-06
We used a mobility edge transport model and solved the drift-diffusion equation to characterize the space-charge-limited current of a rubrene single-crystal hole-only diode. The current-voltage characteristics suggest that current is injection-limited at high voltage when holes are injected from the bottom contact (reverse bias). In contrast, the low-voltage regime shows that the current is higher when holes are injected from the bottom contact as compared to hole injection from the top contact (forward bias), which does not exhibit injection-limited current in the measured voltage range. This behavior is attributed to an asymmetric distribution of trap states in the semiconductor, specifically, a distribution of traps located near the top contact. Accounting for a localized trap distribution near the contact allows us to reproduce the temperature-dependent current-voltage characteristics in forward and reverse bias simultaneously, i.e., with a single set of model parameters. We estimated that the local trap distribution contains 1.19×1011 cm -2 states and decays as exp(-x/32.3nm) away from the semiconductor-contact interface. The local trap distribution near one contact mainly affects injection from the same contact, hence breaking the symmetry in the charge transport. The model also provides information of the band mobility, energy barrier at the contacts, and bulk trap distribution with their corresponding confidence intervals. © 2012 American Physical Society.
Directory of Open Access Journals (Sweden)
Paulo Vallejos-Garrido
2017-09-01
-fitting model that explains species richness. OLS and SAR models show that this set of variables explains 69.9% and 64.2% of species richness, respectively. Potential of evapotranspiration is the most important variable within this model, showing a linear positive relationship with species richness, and clear lower and upper limits to the species richness distribution. Discussion We suggest that New World monkeys historically migrated from their biodiversity hotspot (energetically optimal areas for most platyrrine species to adjacent, energetically suboptimal areas, and that the different dispersal abilities of these species, the lack of competitive interactions at a macroecological scale, and environmental constraints (i.e., energy availability, seasonality are key elements which explain the non-uniform pattern of species richness for this clade.
Taylor dispersion in wind-driven current
Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.
2017-12-01
Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.
Marangoni flows induced by non-uniform surfactant distributions
Hanyak, M.
2012-01-01
The spreading dynamics of surfactants is of crucial importance for numerous technological applications ranging from printing and coating processes, pulmonary drug delivery to crude oil recovery. In the area of inkjet printing surfactants are necessary for lowering surface tension of water-based ink
DEFF Research Database (Denmark)
Wang, Xiongfei; Blaabjerg, Frede; Chen, Zhe
2012-01-01
Harmonic current filtering and resonance damping have become important concerns on the control of an islanded microgrids. To address these challenges, this paper proposes a control method of inverter-interfaced Distributed Generation (DG) units, which can autonomously share harmonic currents and ...
DEFF Research Database (Denmark)
Li, Helong; Zhou, Wei; Wang, Xiongfei
2018-01-01
This paper addresses the transient current distribution in the multichip half-bridge power modules, where two types of paralleling connections with different current commutation mechanisms are considered: paralleling dies and paralleling half-bridges. It reveals that with paralleling dies, both t...
Influence of a transport current on the local magnetic field distribution in sintered YBa2Cu3Ox
International Nuclear Information System (INIS)
Zimmermann, P.; Keller, H.; Kuendig, W.; Puempin, B.; Savic, I.M.; Schneider, J.W.; Simmler, H.; Kaldis, E.; Rusiecki, S.
1991-01-01
The influence of a transport current on the magnetic flux-line distribution in sintered YBCO was studied by means of μSR. Pronounced differences between zero-field-cooled (ZFC) and field-cooled (FC) signals and irreversible behavior were observed. In the ZFC case even a small transport current (10 A/cm 2 ) tends to order irreversibly the inhomogeneous flux-line distribution considerably, suggesting a broad distribution of pinning barriers. However, for a FC sample no noticeable change in the flux distribution in the presence of a transport current (up to 40 A/cm 2 ) was detected, indicating that the FC state represents a stable flux-line configuration. (orig.)
Directory of Open Access Journals (Sweden)
Tiger Sangay
2016-12-01
Full Text Available The Bhutan Takin Budorcas whitei Lydekker, 1907 is endemic to Bhutan and it is categorized as Vulnerable by the IUCN Red List of Threatened Species. While the other Takin species have been studied in China (Golden Takin B. bedfordi; Sichuan Takin B. tibetana and India (Mishmi Takin B. taxicolor, only one study has focused on the Bhutan Takin. In this paper, we report the current distribution and conservation status of the Bhutan Takin using the information gathered through field surveys, interviews and unpublished reports. Bhutan Takin are seasonal migrants, occurring between 1500–5550 m, preferring areas in close proximity to river valleys and geothermal outlets (hot springs. Takin avoid areas that are disturbed by road construction and power transmission lines, and where they have to compete for forage with domestic livestock. Takin conservation in Bhutan requires: (1 a commitment to reduce disturbances from domestic livestock through better herding and animal husbandry practices, (2 environmentally friendly road construction, inclusive of wildlife corridors, (3 establishment of satellite offices and regularizing anti-poaching patrol systems, (4 development of education programs to enlist support for Takin conservation, and (5 encouragement of more research on the ecology and management needs of the species.
Wright, J.; Townsend, A.; Alexander, K.
2005-05-01
We compared the stonefly diversity sampled from 11 selected sites in the Gunnison River Basin over the last three years to the stonefly diversity recorded by Knight (1965) from the same or nearby sites. The 11 sites in this study were chosen from the 22 sites reported by Knight (1965) because they represented mainstem Gunnison River sites that would be predicted to experience the most alteration due to anthropogenic changes such as the construction of impoundments, differences in land use patterns, and effects from the increase in human population of the region. We have been unable to locate ten of the stonefly species that were historically found and we presume that they have gone locally extinct or have become increasingly rare. We have also found six species present today that were not historically reported from Knight (1965). Maps showing current and historical stonefly diversity and distribution have been produced using ArcGIS and analyzed with relevant geographical data to form hypotheses to account for specific changes in the stonefly fauna of the basin.
Physics-based distributed snow models in the operational arena: Current and future challenges
Winstral, A. H.; Jonas, T.; Schirmer, M.; Helbig, N.
2017-12-01
The demand for modeling tools robust to climate change and weather extremes along with coincident increases in computational capabilities have led to an increase in the use of physics-based snow models in operational applications. Current operational applications include the WSL-SLF's across Switzerland, ASO's in California, and USDA-ARS's in Idaho. While the physics-based approaches offer many advantages there remain limitations and modeling challenges. The most evident limitation remains computation times that often limit forecasters to a single, deterministic model run. Other limitations however remain less conspicuous amidst the assumptions that these models require little to no calibration based on their foundation on physical principles. Yet all energy balance snow models seemingly contain parameterizations or simplifications of processes where validation data are scarce or present understanding is limited. At the research-basin scale where many of these models were developed these modeling elements may prove adequate. However when applied over large areas, spatially invariable parameterizations of snow albedo, roughness lengths and atmospheric exchange coefficients - all vital to determining the snowcover energy balance - become problematic. Moreover as we apply models over larger grid cells, the representation of sub-grid variability such as the snow-covered fraction adds to the challenges. Here, we will demonstrate some of the major sensitivities of distributed energy balance snow models to particular model constructs, the need for advanced and spatially flexible methods and parameterizations, and prompt the community for open dialogue and future collaborations to further modeling capabilities.
Directory of Open Access Journals (Sweden)
Danielle Bond
2012-10-01
Full Text Available Plasma Transferred Arc (PTA is the only thermal spray process that results in a metallurgical bond, being frequently described as a hardfacing process. The superior properties of coatings have been related to the fine microstructures obtained, which are finer than those processed under similar heat input with welding techniques using wire feedstock. This observation suggests that the atomized feedstock plays a role on the solidification of coatings. In this study a model for the role of the powders grains in the solidification of PTA coatings is put forward and discussed. An experiment was setup to discuss the model which involved the deposition of an atomized Co-based alloy with different grain size distributions and deposition currents. X ray diffraction showed that there were no phase changes due to the processing parameters. Microstructure analysis by Laser Confocal Microscopy, dilution with the substrate steel and Vickers microhardness were used the characterized coatings and enriched the discussion confirming the role of the powdered feedstock on the solidification of coatings.
A study on DC hybrid three-phase fault current limiting interrupter for a power distribution system
International Nuclear Information System (INIS)
Shao, Hongtian; Satoh, Tomoyuki; Yamaguchi, Mitsugi; Fukui, Satoshi; Ogawa, Jun; Satoh, Takao; Ishikawa, Hiroyuki
2005-01-01
For the purpose of protecting electric power system, many researches and developments of fault current limiters are being performed. The authors studied a dc hybrid three-phase fault current limiting interrupter (FCLI) composed of a superconducting reactor and an S/N transition element, connected in series each other. The dc hybrid type fault current limiting interrupter can limit a fault current by means of the inductance of high temperature superconducting (HTS) coil together with the normal transition of HTS bulk material (HTSB). In the case of an accident, the normal transition of the bulk material can be accelerated by the magnetic field of the HTS coil. In this paper, the dc hybrid type fault current limiting interrupter for 5.5 km long 6.6 kV-600 A power distribution system is analyzed, and performances of fault current limitation and interruption are confirmed. Moreover, a reclosing operation is discussed for this power distribution system
Impulsive response of nonuniform density liquid in a laterally excited tank
International Nuclear Information System (INIS)
Tang, Y.; Chang, Y.W.
1994-04-01
A study on the impulsive component of the dynamic response of a liquid of nonuniform density in a tank undergoing lateral base excitations is presented. The system considered is a circular cylindrical tank containing an incompressible and inviscid liquid whose density increases with the liquid depth. The density distribution along the depth can be of any arbitrary continuous or discontinuous function. In the analysis, the liquid field is divided into n layers. The thickness of the liquid layers can be different, but the density of each liquid layer is considered to be uniform and is equal to the value of the original liquid density at the mid-height of that layer. The problem is solved by the eigenfunction expansion in conjunction with the transfer matrix technique. The effect of the nonuniform liquid density on the impulsive component of the dynamic response is illustrated in a numerical example in which the linear and cosine distributions of the liquid density are assumed. The response quantities examined include the impulsive pressure, base shear and moments. The results are presented in tabular and graphical forms. It is found that the impulsive pressure distribution along the tank wall is not sensitive to the detailed distribution function of the density, and the base shear and moments for the nonuniform liquid can be estimated by assuming an equivalent uniform liquid density that preserves the total liquid weight. The effect of tank flexibility is assessed by a simple approach in which the response quantities for flexible tanks are evaluated by simplified equations
International Nuclear Information System (INIS)
Jongejans, B.; Tenner, A.G.; Apeldoorn, G.W. van
1989-01-01
Results are presented on the multiplicity distributions of charged hadrons produced in νn, νp, antiνn and antiνp charged-current interactions for the hadronic energy range 2GeV ≤ W ≤ 14GeV (corresponding approximately to the neutrino energy range 5GeV ≤ E ≤ 150GeV). The experimental distributions are analysed in terms of binomial distributions. With increasing hadronic energy it is found a smooth transition from an ordinary binomial via Poissonian to the negative binomial function. KNO scaling holds approximately for the multiplicity distribution for the whole phase space. Data on the multiplicity distributions for neutral-current interactions are also presented
Nonuniform radiation damage in permanent magnet quadrupoles.
Danly, C R; Merrill, F E; Barlow, D; Mariam, F G
2014-08-01
We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.
Nonuniform radiation damage in permanent magnet quadrupoles
International Nuclear Information System (INIS)
Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.
2014-01-01
We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components
Nonuniform radiation damage in permanent magnet quadrupoles
Energy Technology Data Exchange (ETDEWEB)
Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)
2014-08-15
We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.
Flexible RF filter using a nonuniform SCISSOR.
Zhuang, Leimeng
2016-03-15
This work presents a flexible radiofrequency (RF) filter using an integrated microwave photonic circuit that comprises a nonuniform side-coupled integrated spaced sequence of resonators (N-SCISSOR). The filter passband can be reconfigured by varying the N-SCISSOR parameters. When employing a dual-parallel Mach-Zechnder modulator, the filter is also able to perform frequency down-conversion. In the experiment, various filter response shapes are shown, ranging from a flat-top band-pass filter to a total opposite high-rejection (>40 dB) notch filter, with a frequency coverage of greater than two octaves. The frequency down-conversion function is also demonstrated.
Branch current state estimation of three phase distribution networks suitable for paralellization
Blaauwbroek, N.; Nguyen, H.P.; Gibescu, M.; Slootweg, J.G.
2017-01-01
The evolution of distribution networks from passive to active distribution systems puts new requirements on the monitoring and control capabilities of these systems. The development of state estimation algorithms to gain insight in the actual system state of a distribution network has resulted in a
International Nuclear Information System (INIS)
Ochiai, S.; Okuda, H.; Fujimoto, M.; Shin, J.K.; Oh, S.S.; Ha, D.W.
2011-01-01
We simulate critical current distribution of bent-damaged Bi2223 composite tape. We use a Monte Carlo method and a damage evolution model for simulation. With the present simulation approach, experimental results are described well. Critical current distribution stems mainly from difference in damage evolution. It was attempted to reproduce the measured critical current (I c ) distributions of the Bi2223 composite tape bent by 0-0.833% by simulation. Simulation was carried out with a Monte Carlo method in combination with a model that correlates the critical current to damage evolution. Two variables that differ from specimen to specimen were input in the simulation. One was the damage strain parameter, with which the difference in extent of damage among specimens was expressed. Another was the original critical current (I c0 ) values at zero bending strain. With the present simulation approach, the measured distributions of critical current at various bending strains, and the measured variations of average and coefficient of variation of critical current values with increasing bending strain were reproduced well.
Effects of a nonuniform open magnetic field on the plasma presheath
International Nuclear Information System (INIS)
Sato, Kunihiro; Miyawaki, Fujio
1991-01-01
Effects of a nonuniform magnetic field on the plasma presheath is numerically investigated using the plasma equation for a collisionless plasma with a finite-temperature particle source. The present calculation confirms that analytical solutions previously published by the authors are available over a wide range of mirror ratio. Potential drop in the presheath, which considerably depends on both the magnetic strength profile and the spatial distribution of the particle source, is remarkably increased by applying an expanding magnetic field when plasma particles are generated in the inner part of the plasma. An effect of a nonuniform magnetic field on sheath formation is also discussed by using the calculated ion distribution function. If the plasma equation has no singularity at the sheath edge, its solution satisfies the generalized Bohm criterion with the inequality sign in the expanding magnetic field. (author)
Nonuniformity mitigation of beam illumination in heavy ion inertial fusion
International Nuclear Information System (INIS)
Kawata, S; Noguchi, K; Suzuki, T; Kurosaki, T; Barada, D; Ogoyski, A I; Zhang, W; Xie, J; Zhang, H; Dai, D
2014-01-01
In inertial fusion, a target DT fuel should be compressed to typically 1000 times the solid density. The target implosion nonuniformity is introduced by a driver beam’s illumination nonuniformity, for example. The target implosion should be robust against the implosion nonuniformities. In this paper, the requirement for implosion uniformity is first discussed. The implosion non-uniformity should be less than a few percent. The implosion dynamics is also briefly reviewed in heavy ion inertial fusion (HIF). Heavy ions deposit their energy inside the target energy absorber, and the energy deposition layer is rather thick, depending on the ion particle energy. Then nonuniformity mitigation mechanisms of the heavy ion beam (HIB) illumination in HIF are discussed. A density valley appears in the energy absorber, and the large-scale density valley also works as a radiation energy confinement layer, which contributes to a radiation energy smoothing. In HIF, wobbling heavy ion beam illumination was also introduced to realize a uniform implosion. The wobbling HIB axis oscillation is precisely controlled. In the wobbling HIBs’ illumination, the illumination nonuniformity oscillates in time and space on an HIF target. The oscillating-HIB energy deposition may contribute to the reduction of the HIBs’ illumination nonuniformity by its smoothing effect on the HIB illumination nonuniformity and also by a growth mitigation effect on the Rayleigh–Taylor instability. (invited comment)
Li, Yiyang; Jin, Weiqi; Li, Shuo; Zhang, Xu; Zhu, Jin
2017-05-08
Cooled infrared detector arrays always suffer from undesired ripple residual nonuniformity (RNU) in sky scene observations. The ripple residual nonuniformity seriously affects the imaging quality, especially for small target detection. It is difficult to eliminate it using the calibration-based techniques and the current scene-based nonuniformity algorithms. In this paper, we present a modified temporal high-pass nonuniformity correction algorithm using fuzzy scene classification. The fuzzy scene classification is designed to control the correction threshold so that the algorithm can remove ripple RNU without degrading the scene details. We test the algorithm on a real infrared sequence by comparing it to several well-established methods. The result shows that the algorithm has obvious advantages compared with the tested methods in terms of detail conservation and convergence speed for ripple RNU correction. Furthermore, we display our architecture with a prototype built on a Xilinx Virtex-5 XC5VLX50T field-programmable gate array (FPGA), which has two advantages: (1) low resources consumption; and (2) small hardware delay (less than 10 image rows). It has been successfully applied in an actual system.
Isolation and purification of Gallid herpesvirus 2 strains currently distributed in Japan.
Machida, Yuka; Murata, Shiro; Matsuyama-Kato, Ayumi; Isezaki, Masayoshi; Taneno, Akira; Sakai, Eishi; Konnai, Satoru; Ohashi, Kazuhiko
2017-01-20
Gallid herpesvirus 2 (GaHV-2) causes malignant lymphomas in chickens (Marek's disease, MD). Although MD is controlled through vaccination efforts, field isolates of GaHV-2 have increased in virulence worldwide and even cause MD in vaccinated chickens. GaHV-2 strains are classified into four categories (mild, virulent, very virulent and very virulent +) based on the virulence exhibited in experimental infection in unvaccinated or MD-vaccinated susceptible chickens. Although MD cases are sporadically reported in Japan, the recent field strains of GaHV-2 in Japan have not been characterized. During isolation of recent field strains by using primary chicken kidney cell cultures, a method classically used for GaHV-2 isolation, vaccine strains were simultaneously isolated. Therefore, it is necessary to separate vaccine strains to characterize the virulence and pathogenicity of the GaHV-2 strains currently distributed in Japan. In this study, we prepared cell suspensions from the spleens of MD-symptomatic chickens, inoculated day-old-chicks and isolated GaHV-2 strains by primary chicken kidney cell cultures at 2-3 weeks post inoculation. The isolated strains were passaged several times on chicken embryo fibroblast cells, and PCR analysis revealed that the isolated strains were not contaminated with vaccine strains. Moreover, the contaminant vaccine strains were completely removed by the purification of plaques observed in chicken kidney cells. These procedures are necessary to isolate GaHV-2 field strains from vaccine strains in order to carry out future studies to characterize these strains and glean insights into GaHV-2 virulence and pathogenicity.
Variational theory of cyclotron emission from nonuniformly magnetized plasmas
International Nuclear Information System (INIS)
Shvets, V.F.; Swanson, D.G.
1992-01-01
Whereas direct calculations of emission from a source model in both homogeneous and weakly inhomogeneous media have been previously executed, there are no previous theories of the source distribution function from nonuniformly magnetized plasmas where mode conversion phenomena must be taken into account. Whenever the emitting layer is localized due to gradients of the external magnetic field, mode conversion leads to the Generalized Kirchhoff's Law (GKL) E 1 /A 1 = E 2 /A 2 = E 3 /A 3 , where A j represents the absorbed fraction on the j-th wave branch and E j is the corresponding emitted energy along j-th branch. Recently integral expressions for A j and E j in terms of arbitrary localized sink and source distributions have been obtained. The GKL relating absorption to emission along each branch of coexisting in the inhomogeneous mode conversion layer affects the shape of source distribution through a functional of the emissivity. Moreover, E j /A j ≡ I bb , where I bb is a black body radiated power. Accordingly, the distributed emission source function should be an extremal of the emissivity functional. The authors have developed the corresponding variational analysis with nontrivial GKL constraints. As a result they have discovered the correct representation of the ratio of source and sink distributions in the form of an expansion in linearly independent adjoint wave solutions of the absorption problem. Finally, unknown coefficients have been found numerically by further maximization taking account of both source boundedness and the GKL constraints. Calculations performed for a broad variety of plasma parameters will be presented
International Nuclear Information System (INIS)
Yun, J; Shim, J-I; Shin, D-S
2013-01-01
We demonstrate a modeling method based on the three-dimensional electrical and thermal circuit analysis to extract current, voltage and temperature distributions of light-emitting diodes (LEDs). In our model, the electrical circuit analysis is performed first to extract the current and voltage distributions in the LED. Utilizing the result obtained from the electrical circuit analysis as distributed heat sources, the thermal circuit is set up by using the duality between Fourier's law and Ohm's law. From the analysis of the thermal circuit, the temperature distribution at each epitaxial film is successfully obtained. Comparisons of experimental and simulation results are made by employing an InGaN/GaN multiple-quantum-well blue LED. Validity of the electrical circuit analysis is confirmed by comparing the light distribution at the surface. Since the temperature distribution at each epitaxial film cannot be obtained experimentally, the apparent temperature distribution is compared at the surface of the LED chip. Also, experimentally obtained average junction temperature is compared with the value calculated from the modeling, yielding a very good agreement. The analysis method based on the circuit modeling has an advantage of taking distributed heat sources as inputs, which is essential for high-power devices with significant self-heating. (paper)
International Nuclear Information System (INIS)
Kenney, B.; Karan, K.
2005-01-01
Cathodes processes in a solid oxide fuel cell (SOFC) are thought to dominate the overall electrochemical losses. One strategy for minimizing the cathode electrochemical losses in a state-of-the-art SOFC that utilize lanthanum-strontium-manganate (LSM) electrocatalyst and yttria-stabilized-zirconia (YSZ) electrolyte is to utilize composite cathodes comprising a mixture of LSM and YSZ. Composite cathodes improve performance by extending the active reaction zone from electrolyte-electrode interface to throughout the electrode. In this study, a two-dimensional composite cathode model was developed to assess cathode performance in terms of current density distributions. The model results indicate that geometric and microstructural parameters strongly influence current density distribution. In addition electrode composition affects magnitude and distribution of current. An optimum composition for equal-sized LSM/YSZ is 40 vol% LSM and 60 vol% YSZ at 900 o C. (author)
Wakie, Tewodros T.; Evangelista, Paul H.; Jarnevich, Catherine S.; Laituri, Melinda
2014-01-01
We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclim...
International Nuclear Information System (INIS)
Jiao Kui; Alaefour, Ibrahim E.; Karimi, Gholamreza; Li Xianguo
2011-01-01
Cold start is critical to the commercialization of proton exchange membrane fuel cell (PEMFC) in automotive applications. Dynamic distributions of current and temperature in PEMFC during various cold start processes determine the cold start characteristics, and are required for the optimization of design and operational strategy. This study focuses on an investigation of the cold start characteristics of a PEMFC through the simultaneous measurements of current and temperature distributions. An analytical model for quick estimate of purging duration is also developed. During the failed cold start process, the highest current density is initially near the inlet region of the flow channels, then it moves downstream, reaching the outlet region eventually. Almost half of the cell current is produced in the inlet region before the cell current peaks, and the region around the middle of the cell has the best survivability. These two regions are therefore more important than other regions for successful cold start through design and operational strategy, such as reducing the ice formation and enhancing the heat generation in these two regions. The evolution of the overall current density distribution over time remains similar during the successful cold start process; the current density is the highest near the flow channel inlets and generally decreases along the flow direction. For both the failed and the successful cold start processes, the highest temperature is initially in the flow channel inlet region, and is then around the middle of the cell after the overall peak current density is reached. The ice melting and liquid formation during the successful cold start process have negligible influence on the general current and temperature distributions.
DEFF Research Database (Denmark)
Rodriguez, Pedro; Luna, Alvaro; Hermoso, Juan Ramon
2011-01-01
The operation of distributed power generation systems under grid fault conditions is a key issue for the massive integration of renewable energy systems. Several studies have been conducted to improve the response of such distributed generation systems under voltage dips. In spite of being less s...
Historical and Current U.S. Strategies for Boosting Distributed Generation
Energy Technology Data Exchange (ETDEWEB)
Lowder, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwabe, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)
2015-10-29
This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.
Current state of the art for statistical modeling of species distributions [Chapter 16
Troy M. Hegel; Samuel A. Cushman; Jeffrey Evans; Falk Huettmann
2010-01-01
Over the past decade the number of statistical modelling tools available to ecologists to model species' distributions has increased at a rapid pace (e.g. Elith et al. 2006; Austin 2007), as have the number of species distribution models (SDM) published in the literature (e.g. Scott et al. 2002). Ten years ago, basic logistic regression (Hosmer and Lemeshow 2000)...
International Nuclear Information System (INIS)
Whitney, K.G.; Pulsifer, P.E.
1993-01-01
Results from the standard quasilinear theory of ion-acoustic and Langmuir plasma microturbulence are incorporated into the kinetic theory of the electron distribution function. The theory is then applied to high current discharges and laser-produced plasmas, where either the current flow or the nonlinear laser-light absorption acts, respectively, as the energy source for the microturbulence. More specifically, the theory is applied to a selenium plasma, whose charge state is determined under conditions of collisional-radiative equilibrium, and plasma conditions are found under which microturbulence strongly influences the electron kinetics. In selenium, we show that this influence extends over a wide range of plasma conditions. For ion-acoustic turbulence, a criterion is derived, analogous to one previously obtained for laser heated plasmas, that predicts when Ohmic heating dominates over electron-electron collisions. This dominance leads to the generation of electron distributions with reduced high-energy tails relative to a Maxwellian distribution of the same temperature. Ion-acoustic turbulence lowers the current requirements needed to generate these distributions. When the laser heating criterion is rederived with ion-acoustic turbulence included in the theory, a similar reduction in the laser intensity needed to produce non-Maxwellian distributions is found. Thus we show that ion-acoustic turbulence uniformly (i.e., by the same numerical factor) reduces the electrical and heat conductivities, as well as the current (squared) and laser intensity levels needed to drive the plasma into non-Maxwellian states
Tunable pinning effects produced by non-uniform antidot arrays in YBCO thin films
Energy Technology Data Exchange (ETDEWEB)
George, J.; Jones, A.; Al-Qurainy, M. [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW (Australia); Fedoseev, S.A. [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW (Australia); Centre for Medical Radiation Physics, University of Wollongong, NSW (Australia); Rosenfeld, A. [Centre for Medical Radiation Physics, University of Wollongong, NSW (Australia); Pan, A.V. [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW (Australia); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)
2017-04-15
Uniform, graded and spaced arrays of 3 μm triangular antidots in pulsed laser deposited YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) superconducting thin films are compared by examining the improvements in the critical current density J{sub c} they produced. The comparison is made to establish the role of their lithographically defined (non-)uniformity and the effectiveness to control and/or enhance the critical current density. It is found that almost all types of non-uniform arrays, including graded ones enhance J{sub c} over the broad applied magnetic field and temperature range due to the modified critical state. Whereas uniform arrays of antidots either reduce or produce no effect on J{sub c} compared to the original (as-deposited) thin films. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Moyce, William; Mangeya, Pride; Owen, Richard; Love, David
The Mzingwane River is a sand filled channel, with extensive alluvial aquifers distributed along its banks and bed in the lower catchment. LandSat TM imagery was used to identify alluvial deposits for potential groundwater resources for irrigation development. On the false colour composite band 3, band 4 and band 5 (FCC 345) the alluvial deposits stand out as white and dense actively growing vegetation stands out as green making it possible to mark out the lateral extent of the saturated alluvial plain deposits using the riverine fringe and vegetation . The alluvial aquifers form ribbon shaped aquifers extending along the channel and reaching over 20 km in length in some localities and are enhanced at lithological boundaries. These alluvial aquifers extend laterally outside the active channel, and individual alluvial aquifers have been measured with area ranging from 45 ha to 723 ha in the channels and 75 ha to 2196 ha on the plains. The alluvial aquifers are more pronounced in the Lower Mzingwane, where the slopes are gentler and allow for more sediment accumulation. Estimated water resources potential ranges between 175,000 m 3 and 5,430,000 m 3 in the channels and between 80,000 m 3 and 6,920,000 m 3 in the plains. Such a water resource potential can support irrigation ranging from 18 ha to 543 ha for channels alluvial aquifers and 8 ha to 692 ha for plain alluvial aquifers. Currently, some of these aquifers are being used to provide water for domestic use, livestock watering and dip tanks, commercial irrigation and market gardening. The water quality of the aquifers in general is fairly good due to regular recharge and flushing out of the aquifers by annual river flows and floodwater. Water salinity was found to increase significantly in the end of the dry season, and this effect was more pronounced in water abstracted from wells on the alluvial plains. During drought years, recharge is expected to be less and if the drought is extended water levels in the
Directory of Open Access Journals (Sweden)
Mazen Abdel-Salam
2017-09-01
Full Text Available The presence of distributed generation (DG units in distribution systems increases the fault current level, which disrupts the existing coordination time interval of the protective overcurrent relays. One of the ways for decreasing DG effects on the coordination of protective devices is re-coordination of the relays by installing unidirectional fault current limiter (UFCL between the main grid (upstream network and the microgrid (downstream network. The UFCL does not limit fault current contribution of the upstream network when fault occurs in downstream but limits fault current contribution of the downstream network when fault occurs in the upstream. Moreover, it preserves the coordination between all of the relays. Several case studies are carried out for illustrating the performance of the UFCL in maintaining the relay coordination.
Flexural Free Vibrations of Multistep Nonuniform Beams
Directory of Open Access Journals (Sweden)
Guojin Tan
2016-01-01
Full Text Available This paper presents an exact approach to investigate the flexural free vibrations of multistep nonuniform beams. Firstly, one-step beam with moment of inertia and mass per unit length varying as I(x=α11+βxr+4 and m(x=α21+βxr was studied. By using appropriate transformations, the differential equation for flexural free vibration of one-step beam with variable cross section is reduced to a four-order differential equation with constant coefficients. According to different types of roots for the characteristic equation of four-order differential equation with constant coefficients, two kinds of modal shape functions are obtained, and the general solutions for flexural free vibration of one-step beam with variable cross section are presented. An exact approach to solve the natural frequencies and modal shapes of multistep beam with variable cross section is presented by using transfer matrix method, the exact general solutions of one-step beam, and iterative method. Numerical examples reveal that the calculated frequencies and modal shapes are in good agreement with the finite element method (FEM, which demonstrates the solutions of present method are exact ones.
Minimum nonuniform graph partitioning with unrelated weights
Makarychev, K. S.; Makarychev, Yu S.
2017-12-01
We give a bi-criteria approximation algorithm for the Minimum Nonuniform Graph Partitioning problem, recently introduced by Krauthgamer, Naor, Schwartz and Talwar. In this problem, we are given a graph G=(V,E) and k numbers ρ_1,\\dots, ρ_k. The goal is to partition V into k disjoint sets (bins) P_1,\\dots, P_k satisfying \\vert P_i\\vert≤ ρi \\vert V\\vert for all i, so as to minimize the number of edges cut by the partition. Our bi-criteria algorithm gives an O(\\sqrt{log \\vert V\\vert log k}) approximation for the objective function in general graphs and an O(1) approximation in graphs excluding a fixed minor. The approximate solution satisfies the relaxed capacity constraints \\vert P_i\\vert ≤ (5+ \\varepsilon)ρi \\vert V\\vert. This algorithm is an improvement upon the O(log \\vert V\\vert)-approximation algorithm by Krauthgamer, Naor, Schwartz and Talwar. We extend our results to the case of 'unrelated weights' and to the case of 'unrelated d-dimensional weights'. A preliminary version of this work was presented at the 41st International Colloquium on Automata, Languages and Programming (ICALP 2014). Bibliography: 7 titles.
Current distribution of Branchinecta gaini on James Ross Island and Vega Island
Czech Academy of Sciences Publication Activity Database
Nedbalová, Linda; Nývlt, D.; Lirio, J.M.; Kavan, J.; Elster, Josef
2017-01-01
Roč. 29, č. 4 (2017), s. 341-342 ISSN 0954-1020 Institutional support: RVO:67985939 Keywords : Antarctica * fairy shrimp * distribution Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 1.461, year: 2016
Historical and Current U.S. Strategies for Boosting Distributed Generation (Chinese Translation)
Energy Technology Data Exchange (ETDEWEB)
Lowder, Travis [National Renewable Energy Lab. (NREL), Golden, CO (United States); Schwabe, Paul [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhou, Ella [National Renewable Energy Lab. (NREL), Golden, CO (United States); Arent, Douglas J. [Joint Inst. for Strategic Energy Analysis, Golden, CO (United States)
2015-08-01
This is the Chinese translation of NREL/TP-6A20-64843. This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.
Distributed generation in European electricity markets. Current challenges and future opportunities
Energy Technology Data Exchange (ETDEWEB)
Ropenus, S. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy. Systems Analysis Div., Roskilde (Denmark))
2010-07-01
This Ph.D. thesis studies the role of distributed generation in European electricity markets. It focuses primarily on the interactions of economics and policy with the aim of contributing to the understanding of how distributed generation is embedded in the present regulatory and market framework, which barriers exist, and which role it may possibly play in the future. To capture the interdisciplinarity of the topic, a combination of qualitative and quantitative methods is applied. Subsequent to the identification of barriers, this thesis turns to the microeconomic perspective on the interplay of vertical structure, regulation and distributed generation. This is done through the application of quantitative methods in the form of partial equilibrium models focusing on the effects induced by the vertical structure of the network operator, either a combined operator or a distribution system operator, in a market with small distributed producers. In areas where the promotion of renewable energy sources and combined heat and power has induced a substantial increase in distributed generation, new challenges in system integration arise. In particular, high levels of generation from intermittent energy sources, such as wind, add to the complexity of network operation and control, which can hardly be tackled with the present 'fit and forget' approach. The conclusion is that distributed generation has great potential to enhance competitiveness, sustainability and security of supply in European electricity markets. A prerequisite is the removal of market and regulatory barriers, taking the interdependencies of vertical structure, support mechanisms and network access into account. In the future, higher penetration levels of distributed generation necessitate changes in the power system and the adoption of new technologies, where hydrogen production by grid connected electrolysis constitutes one example. (LN)
High harmonic terahertz confocal gyrotron with nonuniform electron beam
Energy Technology Data Exchange (ETDEWEB)
Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)
2016-01-15
The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.
Non-uniformity Correction of Infrared Images by Midway Equalization
Directory of Open Access Journals (Sweden)
Yohann Tendero
2012-07-01
Full Text Available The non-uniformity is a time-dependent noise caused by the lack of sensor equalization. We present here the detailed algorithm and on line demo of the non-uniformity correction method by midway infrared equalization. This method was designed to suit infrared images. Nevertheless, it can be applied to images produced for example by scanners, or by push-broom satellites. The obtained single image method works on static images, is fully automatic, having no user parameter, and requires no registration. It needs no camera motion compensation, no closed aperture sensor equalization and is able to correct for a fully non-linear non-uniformity.
Directory of Open Access Journals (Sweden)
Antonio Marcos Alberti
2016-11-01
Full Text Available Nowadays, there are hundreds of underway worldwide projects to redesign both com- munication protocols and architecture of the Internet. These initiatives are collectively called “future Internet” research. Most of these initiatives rely on existing distributed systems, which often limit or even prevent the development of “clean slate” solutions. The main reason is that the great majority of distributed systems are tightly-linked with the TCP/IP protocol stack. In this article, we provide a first glance discussion on the relationships between future Internet and distributed systems research, focusing on dependencies and similar requirements among these areas. From this analysis, it beco- mes evident that many of the future Internet requirements (and open challenges are repeated in the distributed systems landscape. Although there are many studies on both research fronts individually, the study of the key challenges of future Internet when addressing distributed systems requirements is a topic yet not explored in our contemporary research. This paper aims at determining the gaps and requirements future Internet must fulfill in order to support future distributed systems. To support this objective, a set of design metrics are identified and a convergent design space is proposed.
International Nuclear Information System (INIS)
Soler, Roberto; Terradas, Jaume; Oliver, Ramón; Goossens, Marcel
2013-01-01
Magnetohydrodynamic (MHD) waves are ubiquitously observed in the solar atmosphere. Kink waves are a type of transverse MHD waves in magnetic flux tubes that are damped due to resonant absorption. The theoretical study of kink MHD waves in solar flux tubes is usually based on the simplification that the transverse variation of density is confined to a nonuniform layer much thinner than the radius of the tube, i.e., the so-called thin boundary approximation. Here, we develop a general analytic method to compute the dispersion relation and the eigenfunctions of ideal MHD waves in pressureless flux tubes with transversely nonuniform layers of arbitrary thickness. Results for kink waves are produced and compared with fully numerical resistive MHD eigenvalue computations in the limit of small resistivity. We find that the frequency and resonant damping rate are the same in both ideal and resistive cases. The actual results for thick nonuniform layers deviate from the behavior predicted in the thin boundary approximation and strongly depend on the shape of the nonuniform layer. The eigenfunctions in ideal MHD are very different from those in resistive MHD. The ideal eigenfunctions display a global character regardless of the thickness of the nonuniform layer, while the resistive eigenfunctions are localized around the resonance and are indistinguishable from those of ordinary resistive Alfvén modes. Consequently, the spatial distribution of wave energy in the ideal and resistive cases is dramatically different. This poses a fundamental theoretical problem with clear observational consequences
International Nuclear Information System (INIS)
Reshetenko, Tatyana V.; Bender, Guido; Bethune, Keith; Rocheleau, Richard
2013-01-01
Highlights: ► Effects of a flow field design on PEMFC were investigated. ► A segmented cell was used to study 6- and 10-channel serpentine flow fields. ► 10-Channel flow field improved a fuel cell's performance at high current. ► Performance distribution was more uniform for 10-channel than for 6-channel flow field. ► The performance improvement was due to an increased pressure drop. -- Abstract: A serpentine flow field is a commonly used design in proton exchange membrane fuel cells (PEMFCs). Consequently, optimization of the flow field parameters is critically needed. A segmented cell system was used to study the impact of the flow field's parameters on the current distribution in a PEMFC, and the data obtained were analyzed in terms of voltage overpotentials. 6-Channel and 10-channel serpentine flow field designs were investigated. At low current the segments performance was found to slightly decrease for a 10-channel serpentine flow field. However, increasing the number of channels increased the fuel cell performance when operating at high current and the cell performance became more uniform downstream. The observed improvement in fuel cell performance was attributed to a decrease in mass transfer voltage losses (permeability and diffusion), due to an increased pressure drop. Spatially distributed electrochemical impedance spectroscopy (EIS) data showed differences in the local segment impedance response and confirmed the performance distribution and the impact of the flow field design
International Nuclear Information System (INIS)
Beno, J.H.
1991-01-01
In this paper vector potential is solved as a three dimensional, boundary value problem for a conductor geometry consisting of square-bore railgun rails and a stationary armature. Conductors are infinitely conducting and perfect contact is assumed between rails and the armature. From the vector potential solution, surface current distribution is inferred
Attorre, F.; Francesconi, F.; Taleb, N.; Scholte, P.; Saed, A.; Alfo, M.; Bruno, F.
2007-01-01
The potential impact of climate change on Dracaena cinnabari, a spectacular relict of the Mio-Pliocene Laurasian subtropical forest in Socotra (Yemen), was analysed. Current distribution, abundance and vertical structure of D. cinnabari populations were assessed with 74 plots in nine remnant areas.
Bridges, Benjamin, Jr.; Johnston, Mary P.
The impact of the tax-transfer system on the distribution of income among economic units is the subject of a number of studies by the Office of Research and Statistics of the Social Security Administration. One of the most important data sources for the work is the Census Bureau's March Current Population Survey (CPS). To conduct such studies, the…
Nonuniform Sparse Data Clustering Cascade Algorithm Based on Dynamic Cumulative Entropy
Directory of Open Access Journals (Sweden)
Ning Li
2016-01-01
Full Text Available A small amount of prior knowledge and randomly chosen initial cluster centers have a direct impact on the accuracy of the performance of iterative clustering algorithm. In this paper we propose a new algorithm to compute initial cluster centers for k-means clustering and the best number of the clusters with little prior knowledge and optimize clustering result. It constructs the Euclidean distance control factor based on aggregation density sparse degree to select the initial cluster center of nonuniform sparse data and obtains initial data clusters by multidimensional diffusion density distribution. Multiobjective clustering approach based on dynamic cumulative entropy is adopted to optimize the initial data clusters and the best number of the clusters. The experimental results show that the newly proposed algorithm has good performance to obtain the initial cluster centers for the k-means algorithm and it effectively improves the clustering accuracy of nonuniform sparse data by about 5%.
Directory of Open Access Journals (Sweden)
Kai-Long Hsiao
2010-01-01
Full Text Available A magnetic hydrodynamic (MHD of an incompressible viscoelastic fluid over a stretching sheet with electric and magnetic dissipation and nonuniform heat source/sink has been studied. The buoyant effect and the electric number E1 couple with magnetic parameter M to represent the dominance of the electric and magnetic effects, and adding the specific item of nonuniform heat source/sink is presented in governing equations which are the main contribution of this study. The similarity transformation, the finite-difference method, Newton method, and Gauss elimination method have been used to analyze the present problem. The numerical solutions of the flow velocity distributions, temperature profiles, and the important wall unknown values of f''(0 and θ'(0 have been carried out. The parameter Pr, E1, or Ec can increase the heat transfer effects, but the parameter M or A* may decrease the heat transfer effects.
Selective catalytic reduction converter design: The effect of ammonia nonuniformity at inlet
International Nuclear Information System (INIS)
Paramadayalan, Thiyagarajan; Pant, Atul
2013-01-01
A three-dimensional CFD model of SCR converter with detailed chemistry is developed. The model is used to study the effects of radial variation in inlet ammonia profile on SCR emission performance at different temperatures. The model shows that radial variation in inlet ammonia concentration affects the SCR performance in the operating range of 200-400 .deg. C. In automotive SCR systems, ammonia is non-uniformly distributed due to evaporation/reaction of injected urea, and using a 1D model or a 3D model with flat ammonia profile at inlet for these conditions can result in erroneous emission prediction. The 3D SCR model is also used to study the effect of converter design parameters like inlet cone angle and monolith cell density on the SCR performance for a non-uniform ammonia concentration profile at the inlet. The performance of SCR is evaluated using DeNO x efficiency and ammonia slip
Many-junction photovoltaic device performance under non-uniform high-concentration illumination
Valdivia, Christopher E.; Wilkins, Matthew M.; Chahal, Sanmeet S.; Proulx, Francine; Provost, Philippe-Olivier; Masson, Denis P.; Fafard, Simon; Hinzer, Karin
2017-09-01
A parameterized 3D distributed circuit model was developed to calculate the performance of III-V solar cells and photonic power converters (PPC) with a variable number of epitaxial vertically-stacked pn junctions. PPC devices are designed with many pn junctions to realize higher voltages and to operate under non-uniform illumination profiles from a laser or LED. Performance impacts of non-uniform illumination were greatly reduced with increasing number of junctions, with simulations comparing PPC devices with 3 to 20 junctions. Experimental results using Azastra Opto's 12- and 20-junction PPC illuminated by an 845 nm diode laser show high performance even with a small gap between the PPC and optical fiber output, until the local tunnel junction limit is reached.
International Nuclear Information System (INIS)
Hua-Bing, Li; Li, Jin; Bing, Qiu
2008-01-01
To study two-dimensional red blood cells deforming in a shear Bow with the membrane nonuniform on the rigidity and mass, the membrane is discretized into equilength segments. The fluid inside and outside the red blood cell is simulated by the D2Q9 lattice Boltzmann model and the hydrodynamic forces exerted on the membrane from the inner and outer of the red blood cell are calculated by a stress-integration method. Through the global deviation from the curvature of uniform-membrane, we find that when the membrane is nonuniform on the rigidity, the deviation first decreases with the time increases and implies that the terminal profile of the red blood cell is static. To a red blood cell with the mass nonuniform on the membrane, the deviation becomes more large, and the mass distribution affects the profile of the two sides of the flattened red blood cell in a shear flow. (fundamental areas of phenomenology(including applications))
Directory of Open Access Journals (Sweden)
Jianwei Li
Full Text Available Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235 specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing.
Li, Jianwei; Zhang, Weimin; Zeng, Weiqin; Chen, Guolong; Qiu, Zhongchao; Cao, Xinyuan; Gao, Xuanyi
2017-01-01
Estimation of the stress distribution in ferromagnetic components is very important for evaluating the working status of mechanical equipment and implementing preventive maintenance. Eddy current testing technology is a promising method in this field because of its advantages of safety, no need of coupling agent, etc. In order to reduce the cost of eddy current stress measurement system, and obtain the stress distribution in ferromagnetic materials without scanning, a low cost eddy current stress measurement system based on Archimedes spiral planar coil was established, and a method based on BP neural network to obtain the stress distribution using the stress of several discrete test points was proposed. To verify the performance of the developed test system and the validity of the proposed method, experiment was implemented using structural steel (Q235) specimens. Standard curves of sensors at each test point were achieved, the calibrated data were used to establish the BP neural network model for approximating the stress variation on the specimen surface, and the stress distribution curve of the specimen was obtained by interpolating with the established model. The results show that there is a good linear relationship between the change of signal modulus and the stress in most elastic range of the specimen, and the established system can detect the change in stress with a theoretical average sensitivity of -0.4228 mV/MPa. The obtained stress distribution curve is well consonant with the theoretical analysis result. At last, possible causes and improving methods of problems appeared in the results were discussed. This research has important significance for reducing the cost of eddy current stress measurement system, and advancing the engineering application of eddy current stress testing.
Directory of Open Access Journals (Sweden)
Wenge Christoph
2017-12-01
Full Text Available Electric vehicles (EVs can be utilized as mobile storages in a power system. The use of battery chargers can cause current harmonics in the supplied AC system. In order to analyze the impact of different EVs with regardto their number and their emission of current harmonics, a generic harmonic current model of EV types was built and implemented in the power system simulation tool PSS®NETOMAC. Based on the measurement data for different types of EVs three standardized harmonic EV models were developed and parametrized. Further, the identified harmonic models are used by the computation of load flow in a modeled, German power distribution system. As a benchmark, a case scenario was studied regarding a high market penetration of EVs in the year 2030 for Germany. The impact of the EV charging on the power distribution system was analyzed and evaluated with valid power quality standards.
Directory of Open Access Journals (Sweden)
Zhe Zhang
2014-01-01
Full Text Available In order to solve the problems of the existing wide-area backup protection (WABP algorithms, the paper proposes a novel WABP algorithm based on the distribution characteristics of fault component current and improved Dempster/Shafer (D-S evidence theory. When a fault occurs, slave substations transmit to master station the amplitudes of fault component currents of transmission lines which are the closest to fault element. Then master substation identifies suspicious faulty lines according to the distribution characteristics of fault component current. After that, the master substation will identify the actual faulty line with improved D-S evidence theory based on the action states of traditional protections and direction components of these suspicious faulty lines. The simulation examples based on IEEE 10-generator-39-bus system show that the proposed WABP algorithm has an excellent performance. The algorithm has low requirement of sampling synchronization, small wide-area communication flow, and high fault tolerance.
Zhang, Zhe; Kong, Xiangping; Yin, Xianggen; Yang, Zengli; Wang, Lijun
2014-01-01
In order to solve the problems of the existing wide-area backup protection (WABP) algorithms, the paper proposes a novel WABP algorithm based on the distribution characteristics of fault component current and improved Dempster/Shafer (D-S) evidence theory. When a fault occurs, slave substations transmit to master station the amplitudes of fault component currents of transmission lines which are the closest to fault element. Then master substation identifies suspicious faulty lines according to the distribution characteristics of fault component current. After that, the master substation will identify the actual faulty line with improved D-S evidence theory based on the action states of traditional protections and direction components of these suspicious faulty lines. The simulation examples based on IEEE 10-generator-39-bus system show that the proposed WABP algorithm has an excellent performance. The algorithm has low requirement of sampling synchronization, small wide-area communication flow, and high fault tolerance. PMID:25050399
International Nuclear Information System (INIS)
Neuffer, D.
1979-03-01
Many applications of particle acceleration, such as heavy ion fusion, require longitudinal bunching of a high intensity particle beam to extremely high particle currents with correspondingly high space charge forces. This requires a precise analysis of longitudinal motion including stability analysis. Previous papers have treated the longitudinal space charge force as strictly linear, and have not been self-consistent; that is, they have not displayed a phase space distribution consistent with this linear force so that the transport of the phase space distribution could be followed, and departures from linearity could be analyzed. This is unlike the situation for transverse phase space where the Kapchinskij--Vladimirskij (K--V) distribution can be used as the basis of an analysis of transverse motion. In this paper a self-consistent particle distribution in longitudinal phase space is derived which is a solution of the Vlasov equation and an envelope equation for this solution is derived
Divergent and nonuniform gene expression patterns in mouse brain
Morris, John A.; Royall, Joshua J.; Bertagnolli, Darren; Boe, Andrew F.; Burnell, Josh J.; Byrnes, Emi J.; Copeland, Cathy; Desta, Tsega; Fischer, Shanna R.; Goldy, Jeff; Glattfelder, Katie J.; Kidney, Jolene M.; Lemon, Tracy; Orta, Geralyn J.; Parry, Sheana E.; Pathak, Sayan D.; Pearson, Owen C.; Reding, Melissa; Shapouri, Sheila; Smith, Kimberly A.; Soden, Chad; Solan, Beth M.; Weller, John; Takahashi, Joseph S.; Overly, Caroline C.; Lein, Ed S.; Hawrylycz, Michael J.; Hohmann, John G.; Jones, Allan R.
2010-01-01
Considerable progress has been made in understanding variations in gene sequence and expression level associated with phenotype, yet how genetic diversity translates into complex phenotypic differences remains poorly understood. Here, we examine the relationship between genetic background and spatial patterns of gene expression across seven strains of mice, providing the most extensive cellular-resolution comparative analysis of gene expression in the mammalian brain to date. Using comprehensive brainwide anatomic coverage (more than 200 brain regions), we applied in situ hybridization to analyze the spatial expression patterns of 49 genes encoding well-known pharmaceutical drug targets. Remarkably, over 50% of the genes examined showed interstrain expression variation. In addition, the variability was nonuniformly distributed across strain and neuroanatomic region, suggesting certain organizing principles. First, the degree of expression variance among strains mirrors genealogic relationships. Second, expression pattern differences were concentrated in higher-order brain regions such as the cortex and hippocampus. Divergence in gene expression patterns across the brain could contribute significantly to variations in behavior and responses to neuroactive drugs in laboratory mouse strains and may help to explain individual differences in human responsiveness to neuroactive drugs. PMID:20956311
Design of Nonuniform Filter Bank Transceivers for Frequency Selective Channels
Directory of Open Access Journals (Sweden)
Yuan-Pei Lin
2007-01-01
Full Text Available In recent years, there has been considerable interest in the theory and design of filter bank transceivers due to their superior frequency response. In many applications, it is desired to have transceivers that can support multiple services with different incoming data rates and different quality-of-service requirements. To meet these requirements, we can either do resource allocation or design transceivers with a nonuniform bandwidth partition. In this paper, we propose a method for the design of nonuniform filter bank transceivers for frequency selective channels. Both frequency response and signal-to-interference ratio (SIR can be incorporated in the transceiver design. Moreover, the technique can be extended to the case of nonuniform filter bank transceivers with rational sampling factors. Simulation results show that nonuniform filter bank transceivers with good filter responses as well as high SIR can be obtained by the proposed design method.
Pattern of diffusion-limited aggregation on nonuniform substrate
Ouyang Wen Ze; Zou Xian Wu; Jin Zhun Zhi
2003-01-01
Pattern of diffusion-limited aggregation (DLA) on nonuniform substrate was investigated by computer simulations. The nonuniform substrates are represented by Leath percolations with the probability p. p stands for the degree of nonuniformity and takes values in the range p sub c<=p<=1, where p sub c is the threshold of percolation. The DLA cluster grows up on the Leath percolation substrate. The patterns of the DLA clusters appear asymmetrical and nonuniform, and the branches are relative few for the case p is close to p sub c. In addition, the pattern depends on the shape of substrate. As p increases from p sub c to 1, cluster changes to pure DLA gradually. Correspondingly, the fractal dimension increases from 1.46 to 1.68. Also, the random walks on Leath percolations through the range p sub c<=p<=1 were examined. Our simulations show the Honda-Toyoki-Matsushita relation is still reasonable for fractional dimensional systems.
Non-uniform sampling of NMR relaxation data
DEFF Research Database (Denmark)
Schwarz-Linnet, Troels; Teilum, Kaare
2016-01-01
The use of non-uniform sampling of NMR spectra may give significant reductions in the data acquisition time. For quantitative experiments such as the measurement of spin relaxation rates, non-uniform sampling is however not widely used as inaccuracies in peak intensities may lead to errors...... in the extracted dynamic parameters. By systematic reducing the coverage of the Nyquist grid of (15)N Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion datasets for four different proteins and performing a full data analysis of the resulting non-uniform sampled datasets, we have compared the performance...... of the multi-dimensional decomposition and iterative re-weighted least-squares algorithms in reconstructing spectra with accurate peak intensities. As long as a single fully sampled spectrum is included in a series of otherwise non-uniform sampled two-dimensional spectra, multi-dimensional decomposition...
Charged particle acceleration in nonuniform plasmas
International Nuclear Information System (INIS)
Bulanov, S.V.; Naumova, N.M.; Pegoraro, F.
1996-11-01
The high-gradient electron acceleration schemes that have been demonstrated using LWFA appear promising for the development of plasma-based laser accelerators into practical devices. However, a question still exists: how to avoid the wake field deterioration and the loss of the phase synchronism between the plasma wave and the electrons that prevent them from being accelerated up to the theoretical limit. In order to obtain the highest possible values of the wake electric field one must use as intense laser pulses as possible i.e., pulses with dimensionless amplitudes a much-gt 1. Pulses that have a dimensionless amplitude larger than one tend to be subject to a host of instabilities, such as relativistic self-focusing, self modulation and stimulated Raman scattering, that affect their propagation in the plasma. Such processes could be beneficial, in so far as they increase the pulse energy density, enhance the wake field generation, and provide the mechanism for transporting the laser radiation over several Rayleigh lengths without diffraction spreading. However, it is still far from certain that these processes can be exploited in a controlled form and can lead to regular, stationary wake fields. It is known that, in order to create good quality wake fields, it would be preferable to use laser pulses with steep fronts of order λ p . The present paper aims at analyzing the influence of the laser pulse shape and of the plasma nonuniformity on the charged particle acceleration. This study is based on the results obtained with one dimensional PIC simulations
Liquid jets injected into non-uniform crossflow
Tambe, Samir
An experimental study has been conducted with liquid jets injected transversely into a crossflow to study the effect of non-uniformities in the crossflow velocity distribution to the jet behavior. Two different non-uniform crossflows were created during this work, a shear-laden crossflow and a swirling crossflow. The shear-laden crossflow was generated by merging two independent, co-directional, parallel airstreams creating a shear mixing layer at the interface between them. The crossflow exhibited a quasi-linear velocity gradient across the height of the test chamber. By varying the velocities of the two airstreams, the sense and the slope of the crossflow velocity gradient could be changed. Particle Image Velocimetry (PIV) studies were conducted to characterize the crossflow. The parameter, UR, is defined as the ratio of the velocities of the two streams and governs the velocity gradient. A positive velocity gradient was observed for UR > 1 and a negative velocity gradient for UR Phase Doppler Particle Anemometry (PDPA) studies were conducted to study the penetration and atomization of 0.5 mm diameter water jets injected into this crossflow. The crossflow velocity gradient was observed to have a significant effect on jet penetration as well as the post breakup spray. For high UR (> 1), jet penetration increased and the Sauter Mean Diameter (SMD) distribution became more uniform. For low UR (Doppler Velocimetry (LDV) was used to study the crossflow velocities. The axial (Ux) and the tangential (Utheta) components of the crossflow velocity were observed to decrease with increasing radial distance away from the centerbody. The flow angle of the crossflow was smaller than the vane exit angle, with the difference increasing with the vane exit angle. Water jets were injected from a 0.5 mm diameter orifice located on a cylindrical centerbody. Multi-plane PIV measurements were conducted to study the penetration and droplet velocity distribution of the jets. The jets were
Modified knife-edge method for current density distribution measurements in e-beam writers
Czech Academy of Sciences Publication Activity Database
Bok, Jan; Kolařík, Vladimír; Horáček, Miroslav; Matějka, Milan; Matějka, František
2013-01-01
Roč. 31, č. 3 (2013), 031603:1-6 ISSN 1071-1023 R&D Projects: GA MŠk ED0017/01/01; GA TA ČR TE01020118 Institutional support: RVO:68081731 Keywords : electron-beam * intensity distribution * aperture * detector * profile * size Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.358, year: 2013
Wendell R. Haag; Melvin L. Warren
1995-01-01
Little is known about the distribution of freshwater mussels in Mississippi national forests. Review of the scant available information revealed that the national forests harbor a diverse mussel fauna of possibly 46 or more species (including confirmed, probable, and potential occurrences). Occurrence of 33 species is confirmed. Because of the geographic, physiographic...
González, Camila; Rebollar-Téllez, Eduardo A.; Ibáñez-Bernal, Sergio; Becker-Fauser, Ingeborg; Martínez-Meyer, Enrique; Peterson, A. Townsend; Sánchez-Cordero, Víctor
2011-01-01
Leishmaniases are a group of vector-borne diseases with different clinical manifestations caused by parasites transmitted by sand fly vectors. In Mexico, the sand fly Lutzomyia olmeca olmeca is the only vector proven to transmit the parasite Leishmania mexicana to humans, which causes leishmaniasis. Other vector species with potential medical importance have been obtained, but their geographic distributions and relation to transmission areas have never been assessed. We modeled the ecological niches of nine sand fly species and projected niches to estimate potential distributions by using known occurrences, environmental coverages, and the algorithms GARP and Maxent. All vector species were distributed in areas with known recurrent transmission, except for Lu. diabolica, which appeared to be related only to areas of occasional transmission in northern Mexico. The distribution of Lu. o. olmeca does not overlap with all reported cutaneous leishmaniasis cases, suggesting that Lu. cruciata and Lu. shannoni are likely also involved as primary vectors in those areas. Our study provides useful information of potential risk areas of leishmaniasis transmission in Mexico. PMID:22049037
Directory of Open Access Journals (Sweden)
Youwei He
2018-02-01
Full Text Available Although technical advances in hydraulically fracturing and drilling enable commercial production from tight reservoirs, oil/gas recovery remains at a low level. Due to the technical and economic limitations of well-testing operations in tight reservoirs, rate-transient analysis (RTA has become a more attractive option. However, current RTA models hardly consider the effect of the non-uniform production on rate decline behaviors. In fact, PLT results demonstrate that production profile is non-uniform. To fill this gap, this paper presents an improved RTA model of multi-fractured horizontal wells (MFHWs to investigate the effects of non-uniform properties of hydraulic fractures (production of fractures, fracture half-length, number of fractures, fracture conductivity, and vertical permeability on rate transient behaviors through the diagnostic type curves. Results indicate obvious differences on the rate decline curves among the type curves of uniform properties of fractures (UPF and non-uniform properties of fractures (NPF. The use of dimensionless production integral derivative curve magnifies the differences so that we can diagnose the phenomenon of non-uniform production. Therefore, it’s significant to incorporate the effects of NPF into the RDA models of MFHWs, and the model proposed in this paper enables us to better evaluate well performance based on long-term production data.
Compensation for nonuniform attenuation in SPECT brain imaging
International Nuclear Information System (INIS)
Glick, S.J.; King, M.A.; Pan, T.S.; Soares, E.J.
1996-01-01
Accurate compensation for photon attenuation is needed to perform quantitative brain single-photon-emission computed tomographic (SPECT) imaging. Bellini's attenuation-compensation method has been used with a nonuniform attenuation map to account for the nonuniform attenuation properties of the head. Simulation studies using a three-dimensional (3-D) digitized anthropomorphic brain phantom were conducted to compare quantitative accuracy of reconstructions obtained with the nonuniform Bellini method to that obtained with the Chang method and to iterative reconstruction using maximum-likelihood expectation maximization (ML-EM). Using the Chang method and assuming the head to be a uniform attenuator gave reconstructions with an average bias of approximately 6-8%, whereas using the Bellini or the iterative ML-EM method with a nonuniform attenuation map gave an average bias of approximately 1%. The computation time required to implement nonuniform attenuation compensation with the Bellini algorithm is approximately equivalent to the time required to perform one iteration of ML-EM. Thus, using the Bellini method with a nonuniform attenuation map provides accurate compensation for photon attenuation within the head, and the method can be implemented in computation times suitable for routine clinical use
International Nuclear Information System (INIS)
Liu, A.H.; Plawsky, J.L.; Wayner, P.C. Jr.
1993-01-01
The long-term objective of this research program is to determine the stability and heat transfer characteristics of evaporating thin films. The current objective is to develop and use a microscopic image-processing system (IPS) which has two parts: an image analyzing interferometer (IAI) and an image scanning ellipsometer (ISE). The primary purpose of this paper is to present the basic concept of ISE, which is a novel technique to measure the two dimensional thickness profile of a non-uniform, thin film, from several nm up to several μm, in a steady state as well as in a transient state. It is a full-field imaging technique which can study every point on the surface simultaneously with high spatial resolution and thickness sensitivity, i.e., it can measure and map the 2-D film thickness profile. The ISE was tested by measuring the thickness profile and the refractive index of a nonuniform solid film
Chauhan, Munish; Vidya Shankar, Rohini; Ashok Kumar, Neeta; Kodibagkar, Vikram D; Sadleir, Rosalind
2018-01-01
Magnetic resonance electrical impedance tomography (MREIT) sequences typically use conventional spin or gradient echo-based acquisition methods for reconstruction of conductivity and current density maps. Use of MREIT in functional and electroporation studies requires higher temporal resolution and faster sequences. Here, single and multishot echo planar imaging (EPI) based MREIT sequences were evaluated to see whether high-quality MREIT phase data could be obtained for rapid reconstruction of current density, conductivity, and electric fields. A gel phantom with an insulating inclusion was used as a test object. Ghost artifact, geometric distortion, and MREIT correction algorithms were applied to the data. The EPI-MREIT-derived phase-projected current density and conductivity images were compared with simulations and spin-echo images as a function of EPI shot number. Good agreement among measures in simulated, spin echo, and EPI data was achieved. Current density errors were stable and below 9% as the shot number decreased from 64 to 2, but increased for single-shot images. Conductivity reconstruction relative contrast ratios were stable as the shot number decreased. The derived electric fields also agreed with the simulated data. The EPI methods can be combined successfully with MREIT reconstruction algorithms to achieve fast imaging of current density, conductivity, and electric field. Magn Reson Med 79:71-82, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
International Nuclear Information System (INIS)
Chen Liang; Zhang Wan-Rong; Jin Dong-Yue; Shen Pei; Xie Hong-Yun; Ding Chun-Bao; Xiao Ying; Sun Bo-Tao; Wang Ren-Qing
2011-01-01
A method of non-uniform finger spacing is proposed to enhance thermal stability of a multiple finger power SiGe heterojunction bipolar transistor under different power dissipations. Temperature distribution on the emitter fingers of a multi-finger SiGe heterojunction bipolar transistor is studied using a numerical electro-thermal model. The results show that the SiGe heterojunction bipolar transistor with non-uniform finger spacing has a small temperature difference between fingers compared with a traditional uniform finger spacing heterojunction bipolar transistor at the same power dissipation. What is most important is that the ability to improve temperature non-uniformity is not weakened as power dissipation increases. So the method of non-uniform finger spacing is very effective in enhancing the thermal stability and the power handing capability of power device. Experimental results verify our conclusions. (interdisciplinary physics and related areas of science and technology)
Energy Technology Data Exchange (ETDEWEB)
MassoudiFarid, Mehrdad; Shin, Jae Woong; Lee, Ji Ho; Ko, Tae Kuk [Yonsei University, Seoul (Korea, Republic of)
2013-12-15
In power grid, in order to level out the generation with demand, up-gradation of the system is occasionally required. This will lead to more fault current levels. However, upgrading all the protection instruments of the system is both costly and extravagant. This issue could be dominated by using Smart Fault Current Controller (SFCC). While the impact of Fault current Limiters (FCL) in various locations has been studied in different situations for years, the performance of SFCC has not been investigated extensively. In this research, SFCC which has adopted the characteristics of a full bridge thyristor rectifier with a superconducting coil is applied to three main locations such as load feeder, Bus-tie position and main feeder location and its behavior is investigated through simulation in presence and absence of small Distributed Generation unit (DG). The results show a huge difference in limiting the fault current when using SFCC.
Electromagnetic Screening and Skin-Current Distribution with Magnetic and Non-Magnetic Conductors
Energy Technology Data Exchange (ETDEWEB)
Dahlberg, E [Dept. of Plasma Physics, Royal Institute of Technology, Stockholm (SE)
1974-12-15
In many applications it is permissible to assume that eddy currents are essentially confined to the skin of the conductor. However, the perfect-conductor approach, commonly employed for skin-current estimates, requires that also mud << L{sub t}, where mu is the relative permeability of the conductor, d its skin depth, and L{sub t} a characteristic length along its surface. The need for this restriction does not seem to be sufficiently well known. In this note simple formulae giving quantitative estimates - valid for arbitrary mud/L - for far-field skin-currents, eddy current losses and screening efficiency are derived for several simple configurations. Boundary conditions that should allow calculations for more complicated configurations are also presented. The parameter mud is important also for non-magnetic materials. Thus, the equivalence of a thin real screen (thickness D) and an infinitely thin screen with the same rhoomegaD will be improved if - in addition - mud is the same for both
International Nuclear Information System (INIS)
Kaita, R.; Kozub, T.; Logan, N.; Majeski, R.; Menard, J.; Zakharov, L.
2010-01-01
The lithium tokamak experiment (LTX) is a modest-sized spherical tokamak (R 0 = 0.4 m and a = 0.26 m) designed to investigate the low-recycling lithium wall operating regime for magnetically confined plasmas. LTX will reach this regime through a lithium-coated shell internal to the vacuum vessel, conformal to the plasma last-closed-flux surface, and heated to 300-400 C. This structure is highly conductive and not axisymmetric. The three-dimensional nature of the shell causes the eddy currents and magnetic fields to be three-dimensional as well. In order to analyze the plasma equilibrium in the presence of three-dimensional eddy currents, an extensive array of unique magnetic diagnostics has been implemented. Sensors are designed to survive high temperatures and incidental contact with lithium and provide data on toroidal asymmetries as well as full coverage of the poloidal cross-section. The magnetic array has been utilized to determine the effects of nonaxisymmetric eddy currents and to model the start-up phase of LTX. Measurements from the magnetic array, coupled with two-dimensional field component modeling, have allowed a suitable field null and initial plasma current to be produced. For full magnetic reconstructions, a three-dimensional electromagnetic model of the vacuum vessel and shell is under development.
Bridge density functional approximation for non-uniform hard core repulsive Yukawa fluid
International Nuclear Information System (INIS)
Zhou Shiqi
2008-01-01
In this work, a bridge density functional approximation (BDFA) (J. Chem. Phys. 112, 8079 (2000)) for a non-uniform hard-sphere fluid is extended to a non-uniform hard-core repulsive Yukawa (HCRY) fluid. It is found that the choice of a bulk bridge functional approximation is crucial for both a uniform HCRY fluid and a non-uniform HCRY fluid. A new bridge functional approximation is proposed, which can accurately predict the radial distribution function of the bulk HCRY fluid. With the new bridge functional approximation and its associated bulk second order direct correlation function as input, the BDFA can be used to well calculate the density profile of the HCRY fluid subjected to the influence of varying external fields, and the theoretical predictions are in good agreement with the corresponding simulation data. The calculated results indicate that the present BDFA captures quantitatively the phenomena such as the coexistence of solid-like high density phase and low density gas phase, and the adsorption properties of the HCRY fluid, which qualitatively differ from those of the fluids combining both hard-core repulsion and an attractive tail. (condensed matter: structure, thermal and mechanical properties)
Krupiński, Michał; Bareła, Jaroslaw; Firmanty, Krzysztof; Kastek, Mariusz
2013-10-01
Uneven response of particular detectors (pixels) to the same incident power of infrared radiation is an inherent feature of microbolometer focal plane arrays. As a result an image degradation occurs, known as Fixed Pattern Noise (FPN), which distorts the thermal representation of an observed scene and impairs the parameters of a thermal camera. In order to compensate such non-uniformity, several NUC correction methods are applied in digital data processing modules implemented in thermal cameras. Coefficients required to perform the non-uniformity correction procedure (NUC coefficients) are determined by calibrating the camera against uniform radiation sources (blackbodies). Non-uniformity correction is performed in a digital processing unit in order to remove FPN pattern in the registered thermal images. Relevant correction coefficients are calculated on the basis of recorded detector responses to several values of radiant flux emitted from reference IR radiation sources (blackbodies). The measurement of correction coefficients requires specialized setup, in which uniform, extended radiation sources with high temperature stability are one of key elements. Measurement stand for NUC correction developed in Institute of Optoelectronics, MUT, comprises two integrated extended blackbodies with the following specifications: area 200×200 mm, stabilized absolute temperature range +15 °C÷100 °C, and uniformity of temperature distribution across entire surface +/-0.014 °C. Test stand, method used for the measurement of NUC coefficients and the results obtained during the measurements conducted on a prototype thermal camera will be presented in the paper.
International Nuclear Information System (INIS)
Doraswami, U.; Droushiotis, N.; Kelsall, G.H.
2010-01-01
A three-dimensional model, considering mass, momentum, energy and charge conservation, was developed and the equations solved to describe the physico-chemical phenomena occurring within a single, micro-tubular hollow fibre solid oxide fuel cell (HF-SOFC). The model was used to investigate the spatial distributions of potential, current and reactants in a 10 mm long HF-SOFC. The predicted effects of location of current collectors, electrode conductivities, cathode thickness and porosity were analysed to minimise the ranges of current density distributions and maximise performance by judicious design. To decrease the computational load, azimuthal symmetry was assumed to model 50 and 100 mm long reactors in 2-D. With connectors at the same end of the HF-SOFC operating at a cell voltage of 0.5 V and a mean 5 kA m -2 , axial potential drops of ca. 0.14 V in the cathode were predicted, comparable to the cathode activation overpotential. Those potential drops caused average current densities to decrease from ca. 6.5 to ca.1 kA m -2 as HF-SOFC length increased from 10 to 100 mm, at which much of the length was inactive. Peak power densities were predicted to vary from 3.8 to -2 , depending on the location of the current collectors; performance increased with increasing cathode thickness and decreasing porosity.
A parametric transfer function methodology for analyzing reactive transport in nonuniform flow.
Luo, Jian; Cirpka, Olaf A; Fienen, Michael N; Wu, Wei-min; Mehlhorn, Tonia L; Carley, Jack; Jardine, Philip M; Criddle, Craig S; Kitanidis, Peter K
2006-02-01
We analyze reactive transport during in-situ bioremediation in a nonuniform flow field, involving multiple extraction and injection wells, by the method of transfer functions. Gamma distributions are used as parametric models of the transfer functions. Apparent parameters of classical transport models may be estimated from those of the gamma distributions by matching temporal moments. We demonstrate the method by application to measured data taken at a field experiment on bioremediation conducted in a multiple-well system in Oak Ridge, TN. Breakthrough curves (BTCs) of a conservative tracer (bromide) and a reactive compound (ethanol) are measured at multi-level sampling (MLS) wells and in extraction wells. The BTCs of both compounds are jointly analyzed to estimate the first-order degradation rate of ethanol. To quantify the tracer loss, we compare the approaches of using a scaling factor and a first-order decay term. Results show that by including a scaling factor both gamma distributions and inverse-Gaussian distributions (transfer functions according to the advection-dispersion equation) are suitable to approximate the transfer functions and estimate the reactive rate coefficients for both MLS and extraction wells. However, using a first-order decay term for tracer loss fails to describe the BTCs at the extraction well, which is affected by the nonuniform distribution of travel paths.
Czech Academy of Sciences Publication Activity Database
Skálová, Hana; Guo, Wen-Yong; Wild, Jan; Pyšek, Petr
2017-01-01
Roč. 89, č. 1 (2017), s. 1-16 ISSN 0032-7786 R&D Projects: GA MŠk(CZ) LD15157; GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : common ragweed * plant invasion * species distribution modelling (SDM) Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 3.000, year: 2016
Energy Technology Data Exchange (ETDEWEB)
Yuan Weijia; Campbell, A M; Hong, Z; Ainslie, M D; Coombs, T A, E-mail: wy215@cam.ac.u [Electronic, Power and Energy Conversion Group, Electrical Engineering Division, Engineering Department, University of Cambridge, Cambridge CB3 0FA (United Kingdom)
2010-08-15
A model is presented for calculating the AC losses, magnetic field/current density distribution and critical currents of a circular superconducting pancake coil. The assumption is that the magnetic flux lines will lie parallel to the wide faces of tapes in the unpenetrated area of the coil. Instead of using an infinitely long stack to approximate the circular coil, this paper gives an exact circular coil model using elliptic integrals. A new efficient numerical method is introduced to yield more accurate and fast computation. The computation results are in good agreement with the assumptions. For a small value of the coil radius, there is an asymmetry along the coil radius direction. As the coil radius increases, this asymmetry will gradually decrease, and the AC losses and penetration depth will increase, but the critical current will decrease. We find that if the internal radius is equal to the winding thickness, the infinitely long stack approximation overestimates the loss by 10% and even if the internal radius is reduced to zero, the error is still only 60%. The infinitely long stack approximation is therefore adequate for most practical purposes. In addition, the comparison result shows that the infinitely long stack approximation saves computation time significantly.
Multiplicity distributions of charged hadrons in νp and anti νp charged current interactions
International Nuclear Information System (INIS)
Jones, G.T.; Jones, R.W.L.; Kennedy, B.W.; Morrison, D.R.O.; Mobayyen, M.M.; Wainstein, S.; Borner, H.P.; Myatt, G.; Radojicic, D.; Burke, S.; Aderholz, M.; Hantke, D.; Katz, U.F.; Kern, J.; Schmitz, N.; Wittek, W.
1991-10-01
Using data on νp and anti νp charged current interactions from a bubble chamber experiment with BEBC at CERN, the multiplicity distributions of charged hadrons are investigated. The analysis is based on ∝ 20 000 events with incident ν and ∝ 10 000 events with incident anti ν. The invariant mass W of the total hadronic system ranges from 3 GeV to ∝ 14 GeV. The experimental multiplicity distributions are fitted by the binomial function (for different intervals of W and in different intervals of the rapidity y), by the Levy function and the lognormal function. All three parametrizations give acceptable values for χ 2 /NDF. For fixed W, forward and backward multiplicities are found to be uncorrelated. The normalized moments of the charged multiplicity distributions are measured as a function of W. They show a violation of KNO scaling. (orig.)
Multiplicity distributions of charged hadrons in νp and anti νp charged current interactions
International Nuclear Information System (INIS)
Jones, G.T.; Jones, R.W.L.; Kennedy, B.W.; Morrison, D.R.O.; Mobayyen, M.M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U.F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H.P.; Myatt, G.; Radojicic, D.; Burke, S.
1992-01-01
Using data on νp and anti νp charged current interactions from a bubble chamber experiment with BEBC at CERN, the multiplicity distributions of charged hadrons are investigated. The analysis is based on ∝20 000 events with incident ν and ∝10 000 events with incident anti ν. The invariant mass W of the total hadronic system ranges from 3 GeV to ∝14 GeV. The experimental multiplicity distributions are fitted by the binomial function (for different intervals of W and in different intervals of the rapidity y), by the Levy function and the lognormal function. All three parametrizations give acceptable values for χ 2 /NDF. For fixed W, forward and backward multiplicities are found to be uncorrelated. The normalized moments of the charged multiplicity distributions are measured as a function of W. They show a violation of KNO scaling. (orig.)
Lücken, Leonhard; Yanchuk, Serhiy; Popovych, Oleksandr V.; Tass, Peter A.
2013-01-01
Several brain diseases are characterized by abnormal neuronal synchronization. Desynchronization of abnormal neural synchrony is theoretically compelling because of the complex dynamical mechanisms involved. We here present a novel type of coordinated reset (CR) stimulation. CR means to deliver phase resetting stimuli at different neuronal sub-populations sequentially, i.e., at times equidistantly distributed in a stimulation cycle. This uniform timing pattern seems to be intuitive and actually applies to the neural network models used for the study of CR so far. CR resets the population to an unstable cluster state from where it passes through a desynchronized transient, eventually resynchronizing if left unperturbed. In contrast, we show that the optimal stimulation times are non-uniform. Using the model of weakly pulse-coupled neurons with phase response curves, we provide an approach that enables to determine optimal stimulation timing patterns that substantially maximize the desynchronized transient time following the application of CR stimulation. This approach includes an optimization search for clusters in a low-dimensional pulse coupled map. As a consequence, model-specific non-uniformly spaced cluster states cause considerably longer desynchronization transients. Intriguingly, such a desynchronization boost with non-uniform CR stimulation can already be achieved by only slight modifications of the uniform CR timing pattern. Our results suggest that the non-uniformness of the stimulation times can be a medically valuable parameter in the calibration procedure for CR stimulation, where the latter has successfully been used in clinical and pre-clinical studies for the treatment of Parkinson's disease and tinnitus. PMID:23750134
National Oceanic and Atmospheric Administration, Department of Commerce — Wind direction/velocity and current direction/velocity data were collected using current meter casts in a world wide distribution from December 6, 1970 to October 1,...
Wang, Rulin; Li, Qing; He, Shisong; Liu, Yuan; Wang, Mingtian; Jiang, Gan
2018-01-01
Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a major threat to the kiwifruit industry throughout the world and accounts for substantial economic losses in China. The aim of the present study was to test and explore the possibility of using MaxEnt (maximum entropy models) to predict and analyze the future large-scale distribution of Psa in China. Based on the current environmental factors, three future climate scenarios, which were suggested by the fifth IPCC report, and the current distribution sites of Psa, MaxEnt combined with ArcGIS was applied to predict the potential suitable areas and the changing trend of Psa in China. The jackknife test and correlation analysis were used to choose dominant climatic factors. The receiver operating characteristic curve (ROC) drawn by MaxEnt was used to evaluate the accuracy of the simulation. The results showed that under current climatic conditions, the area from latitude 25° to 36°N and from longitude 101° to 122°E is the primary potential suitable area of Psa in China. The highly suitable area (with suitability between 66 and 100) was mainly concentrated in Northeast Sichuan, South Shaanxi, most of Chongqing, West Hubei and Southwest Gansu and occupied 4.94% of land in China. Under different future emission scenarios, both the areas and the centers of the suitable areas all showed differences compared with the current situation. Four climatic variables, i.e., maximum April temperature (19%), mean temperature of the coldest quarter (14%), precipitation in May (11.5%) and minimum temperature in October (10.8%), had the largest impact on the distribution of Psa. The MaxEnt model is potentially useful for forecasting the future adaptive distribution of Psa under climate change, and it provides important guidance for comprehensive management.
Directory of Open Access Journals (Sweden)
Rulin Wang
Full Text Available Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa is a major threat to the kiwifruit industry throughout the world and accounts for substantial economic losses in China. The aim of the present study was to test and explore the possibility of using MaxEnt (maximum entropy models to predict and analyze the future large-scale distribution of Psa in China.Based on the current environmental factors, three future climate scenarios, which were suggested by the fifth IPCC report, and the current distribution sites of Psa, MaxEnt combined with ArcGIS was applied to predict the potential suitable areas and the changing trend of Psa in China. The jackknife test and correlation analysis were used to choose dominant climatic factors. The receiver operating characteristic curve (ROC drawn by MaxEnt was used to evaluate the accuracy of the simulation.The results showed that under current climatic conditions, the area from latitude 25° to 36°N and from longitude 101° to 122°E is the primary potential suitable area of Psa in China. The highly suitable area (with suitability between 66 and 100 was mainly concentrated in Northeast Sichuan, South Shaanxi, most of Chongqing, West Hubei and Southwest Gansu and occupied 4.94% of land in China. Under different future emission scenarios, both the areas and the centers of the suitable areas all showed differences compared with the current situation. Four climatic variables, i.e., maximum April temperature (19%, mean temperature of the coldest quarter (14%, precipitation in May (11.5% and minimum temperature in October (10.8%, had the largest impact on the distribution of Psa.The MaxEnt model is potentially useful for forecasting the future adaptive distribution of Psa under climate change, and it provides important guidance for comprehensive management.
Measurements of current density distribution in shaped e-beam writers
Czech Academy of Sciences Publication Activity Database
Bok, Jan; Horáček, Miroslav; Kolařík, Vladimír; Urbánek, Michal; Matějka, Milan; Krzyžánek, Vladislav
2016-01-01
Roč. 149, JAN 5 (2016), s. 117-124 ISSN 0167-9317 R&D Projects: GA ČR(CZ) GA14-20012S; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : shaped e-beam writer * electron beam * current density Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.806, year: 2016
Muffly, Matthew K; Muffly, Tyler M; Weterings, Robbie; Singleton, Mark; Honkanen, Anita
2016-07-01
There is no comprehensive database of pediatric anesthesiologists, their demographic characteristics, or geographic location in the United States. We endeavored to create a comprehensive database of pediatric anesthesiologists by merging individuals identified as US pediatric anesthesiologists by the American Board of Anesthesiology, National Provider Identifier registry, Healthgrades.com database, and the Society for Pediatric Anesthesia membership list as of November 5, 2015. Professorial rank was accessed via the Association of American Medical Colleges and other online sources. Descriptive statistics characterized pediatric anesthesiologists' demographics. Pediatric anesthesiologists' locations at the city and state level were geocoded and mapped with the use of ArcGIS Desktop 10.1 mapping software (Redlands, CA). We identified 4048 pediatric anesthesiologists in the United States, which is approximately 8.8% of the physician anesthesiology workforce (n = 46,000). The median age of pediatric anesthesiologists was 49 years (interquartile range, 40-57 years), and the majority (56.4%) were men. Approximately two-thirds of identified pediatric anesthesiologists were subspecialty board certified in pediatric anesthesiology, and 33% of pediatric anesthesiologists had an identified academic affiliation. There is substantial heterogeneity in the geographic distribution of pediatric anesthesiologists by state and US Census Division with urban clustering. This description of pediatric anesthesiologists' demographic characteristics and geographic distribution fills an important gap in our understanding of pediatric anesthesia systems of care.
Gálvez, Rosa; Musella, Vicenzo; Descalzo, Miguel A; Montoya, Ana; Checa, Rocío; Marino, Valentina; Martín, Oihane; Cringoli, Giuseppe; Rinaldi, Laura; Miró, Guadalupe
2017-09-19
The cat flea, Ctenocephalides felis, is the most prevalent flea species detected on dogs and cats in Europe and other world regions. The status of flea infestation today is an evident public health concern because of their cosmopolitan distribution and the flea-borne diseases transmission. This study determines the spatial distribution of the cat flea C. felis infesting dogs in Spain. Using geospatial tools, models were constructed based on entomological data collected from dogs during the period 2013-2015. Bioclimatic zones, covering broad climate and vegetation ranges, were surveyed in relation to their size. The models builded were obtained by negative binomial regression of several environmental variables to show impacts on C. felis infestation prevalence: land cover, bioclimatic zone, mean summer and autumn temperature, mean summer rainfall, distance to urban settlement and normalized difference vegetation index. In the face of climate change, we also simulated the future distributions of C. felis for the global climate model (GCM) "GFDL-CM3" and for the representative concentration pathway RCP45, which predicts their spread in the country. Predictive models for current climate conditions indicated the widespread distribution of C. felis throughout Spain, mainly across the central northernmost zone of the mainland. Under predicted conditions of climate change, the risk of spread was slightly greater, especially in the north and central peninsula, than for the current situation. The data provided will be useful for local veterinarians to design effective strategies against flea infestation and the pathogens transmitted by these arthropods.
Effects of drive current rise-time and initial load density distribution on Z-pinch characteristics
Institute of Scientific and Technical Information of China (English)
Duan Yao-Yong; Guo Yong-Hui; Wang Wen-Sheng; Qiu Ai-Ci
2005-01-01
A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z-pinch on the Qiangguang-Ⅰ generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power.
Feng Sheng Qin; LianShouLiu
2002-01-01
The non-uniform longitudinal flow model (NUFM) proposed recently is extended to include also the transverse flow. The resulting longitudinally non-uniform collective expansion model (NUCEM) is applied to the calculation of rapidity distribution of kaons, lambdas and protons in relativistic heavy ion collisions at CERN-SPS energies. The model results are compared with the 200 A GeV/c S-S and 158 A GeV/c Pb-Pb collision data. The central dips observed in experiments are reproduced in a natural way. It is found that the depth of the central dip depends on the magnitude of the parameter e and the mass of produced particles, i.e. the non-uniformity of the longitudinal flow which is described by the parameter e determines the depth of the central dip for produced particles. Comparing with one-dimensional non-uniform longitudinal flow model, the rapidity distribution of lighter strange particle kaon also shows a dip due to the effect of transverse flow
Teeratananon, Manida
2004-01-01
Ce travail est consacré à une étude multi-échelle des réacteurs électrochimiques rencontrés dans les procédés de dépôts électrolytiques. La première partie s'intéresse à la modélisation macroscopique d'un réacteur batch lors de la dépollution d'un bain de dépôt de cuivre. La seconde partie concerne l'étude expérimentale des distributions des lignes de courant dans une cellule de Hull rotative ainsi que dans une cellule de Mohler modifiée. La troisième partie traite de la mise au point d'un mé...
Species distributions and climate change:current patterns and future scenarios for biodiversity
DEFF Research Database (Denmark)
Hof, Christian
by shifts of their distributional ranges, which affects the spatial patterns of species richness and turnover. Global temperatures are projected to rise by 1.8 - 4°C until the end of the century; hence climate change will most likely leave further imprints on species and ecosystems. This PhD thesis aims......-thirds of the areas harboring the richest amphibian faunas may be heavily impacted by at least one of the major threats by 2080. The stability of the climatic niche influences the need for a species to track climate change via dispersal, or its potential to adapt to novel climatic conditions. I therefore explore...... the phylogenetic signal in climatic niches of the world's amphibians, which serves as a surrogate quantification of niche stability. Results indicate an overall tendency of phylogenetic signal to be present in realised climatic niches, but signal strength varies across biogeographical regions and among amphibian...
International Nuclear Information System (INIS)
Stollenwerk, L
2009-01-01
In a planar, laterally extended dielectric barrier discharge (DBD) system operated in glow mode, a filamentary discharge is observed. The filaments tend to move laterally and hence tend to cause collisions. Thereby, usually one collision partner becomes destroyed. In this paper, the collision process and especially the preceding time period is investigated. Beside the luminescence density of the filaments, the surface charge density accumulated between the single breakdowns of the DBD is observed via an optical measurement technique based on the linear electro-optical effect (pockels effect). A ring-like substructure of the surface charge distribution of a single filament is found, which correlates to the filament interaction behaviour. Furthermore, a preferred filament distance is found, suggesting the formation of a filamentary quasi-molecule.
Broday, David M
2017-10-02
The evaluation of the effects of air pollution on public health and human-wellbeing requires reliable data. Standard air quality monitoring stations provide accurate measurements of airborne pollutant levels, but, due to their sparse distribution, they cannot capture accurately the spatial variability of air pollutant concentrations within cities. Dedicated in-depth field campaigns have dense spatial coverage of the measurements but are held for relatively short time periods. Hence, their representativeness is limited. Moreover, the oftentimes integrated measurements represent time-averaged records. Recent advances in communication and sensor technologies enable the deployment of dense grids of Wireless Distributed Environmental Sensor Networks for air quality monitoring, yet their capability to capture urban-scale spatiotemporal pollutant patterns has not been thoroughly examined to date. Here, we summarize our studies on the practicalities of using data streams from sensor nodes for air quality measurement and the required methods to tune the results to different stakeholders and applications. We summarize the results from eight cities across Europe, five sensor technologies-three stationary (with one tested also while moving) and two personal sensor platforms, and eight ambient pollutants. Overall, few sensors showed an exceptional and consistent performance, which can shed light on the fine spatiotemporal urban variability of pollutant concentrations. Stationary sensor nodes were more reliable than personal nodes. In general, the sensor measurements tend to suffer from the interference of various environmental factors and require frequent calibrations. This calls for the development of suitable field calibration procedures, and several such in situ field calibrations are presented.
Characterization and Processing of Non-Uniformities in Back-Illuminated CCDs
Lemm, Alia D.; Della-Rose, Devin J.; Maddocks, Sally
2018-01-01
In astronomical photometry, Charged Coupled Device (CCD) detectors are used to achieve high precision photometry and must be properly calibrated to correct for noise and pixel non-uniformities. Uncalibrated images may contain bias offset, dark current, bias structure and uneven illumination. In addition, standard data reduction is often not sufficient to “normalize” imagery to single-digit millimagnitude (mmag) precision. We are investigating an apparent non-uniformity, or interference pattern, in a back-illuminated sensor, the Alta U-47, attached to a DFM Engineering 41-cm Ritchey-Chrétien f/8 telescope. Based on the amplitude of this effect, we estimate that instrument magnitude peak-to-valley deviations of 50 mmag or more may result. Our initial testing strongly suggests that reflected skylight from high pressure sodium city lights may be the cause of this interference pattern. Our research goals are twofold: to fully characterize this non-uniformity and to determine the best method to remove this interference pattern from our reduced CCD images.
Belloir, Jean-Marc; Goiffon, Vincent; Virmontois, Cédric; Raine, Mélanie; Paillet, Philippe; Duhamel, Olivier; Gaillardin, Marc; Molina, Romain; Magnan, Pierre; Gilard, Olivier
2016-02-22
The dark current produced by neutron irradiation in CMOS Image Sensors (CIS) is investigated. Several CIS with different photodiode types and pixel pitches are irradiated with various neutron energies and fluences to study the influence of each of these optical detector and irradiation parameters on the dark current distribution. An empirical model is tested on the experimental data and validated on all the irradiated optical imagers. This model is able to describe all the presented dark current distributions with no parameter variation for neutron energies of 14 MeV or higher, regardless of the optical detector and irradiation characteristics. For energies below 1 MeV, it is shown that a single parameter has to be adjusted because of the lower mean damage energy per nuclear interaction. This model and these conclusions can be transposed to any silicon based solid-state optical imagers such as CIS or Charged Coupled Devices (CCD). This work can also be used when designing an optical imager instrument, to anticipate the dark current increase or to choose a mitigation technique.
Ingberman, Bianca; Fusco-Costa, Roberto; Monteiro-Filho, Emygdio Leite de Araujo
2016-01-01
The muriqui (Brachyteles spp.), endemic to the Atlantic Forest of Brazil, is the largest primate in South America and is endangered, mainly due to habitat loss. Its distribution limits are still uncertain and need to be resolved in order to determine their true conservation status. Species distribution modeling (SDM) has been used to estimate potential species distributions, even when information is incomplete. Here, we developed an environmental suitability model for the two endangered species of muriqui (Brachyteles hypoxanthus and B. arachnoides) using Maxent software. Due to historical absence of muriquis, areas with predicted high habitat suitability yet historically never occupied, were excluded from the predicted historical distribution. Combining that information with the model, it is evident that rivers are potential dispersal barriers for the muriquis. Moreover, although the two species are environmentally separated in a large part of its distribution, there is a potential contact zone where the species apparently do not overlap. This separation might be due to either a physical (i.e., Serra da Mantiqueira mountains) or a biotic barrier (the species exclude one another). Therefore, in addition to environmental characteristics, physical and biotic barriers potentially shaped the limits of the muriqui historical range. Based on these considerations, we proposed the adjustment of their historical distributional limits. Currently only 7.6% of the predicted historical distribution of B. hypoxanthus and 12.9% of B. arachnoides remains forested and able to sustain viable muriqui populations. In addition to measurement of habitat loss we also identified areas for conservation concern where new muriqui populations might be found.
Directory of Open Access Journals (Sweden)
Bianca Ingberman
Full Text Available The muriqui (Brachyteles spp., endemic to the Atlantic Forest of Brazil, is the largest primate in South America and is endangered, mainly due to habitat loss. Its distribution limits are still uncertain and need to be resolved in order to determine their true conservation status. Species distribution modeling (SDM has been used to estimate potential species distributions, even when information is incomplete. Here, we developed an environmental suitability model for the two endangered species of muriqui (Brachyteles hypoxanthus and B. arachnoides using Maxent software. Due to historical absence of muriquis, areas with predicted high habitat suitability yet historically never occupied, were excluded from the predicted historical distribution. Combining that information with the model, it is evident that rivers are potential dispersal barriers for the muriquis. Moreover, although the two species are environmentally separated in a large part of its distribution, there is a potential contact zone where the species apparently do not overlap. This separation might be due to either a physical (i.e., Serra da Mantiqueira mountains or a biotic barrier (the species exclude one another. Therefore, in addition to environmental characteristics, physical and biotic barriers potentially shaped the limits of the muriqui historical range. Based on these considerations, we proposed the adjustment of their historical distributional limits. Currently only 7.6% of the predicted historical distribution of B. hypoxanthus and 12.9% of B. arachnoides remains forested and able to sustain viable muriqui populations. In addition to measurement of habitat loss we also identified areas for conservation concern where new muriqui populations might be found.
International Nuclear Information System (INIS)
Gosselin, Marie-Christine; Kühn, Sven; Kuster, Niels
2013-01-01
The evaluation of the exposure from mobile communication devices requires consideration of electromagnetic fields (EMFs) over a broad frequency range from dc to GHz. Mobile phones in operation have prominent spectral components in the low-frequency (LF) and radio-frequency (RF) ranges. While the exposure to RF fields from mobile phones has been comprehensively assessed in the past, the LF fields have received much less attention. In this study, LF fields from mobile phones are assessed experimentally and numerically for the global system for mobile (GSM) and universal mobile telecommunications system (UMTS) communication systems and conclusions about the global (LF and RF) EMF exposure from both systems are drawn. From the measurements of the time-domain magnetic fields, it was found that the contribution from the audio signal at a normal speech level, i.e., −16 dBm0, is the same order of magnitude as the fields induced by the current bursts generated from the implementation of the GSM communication system at maximum RF output level. The B-field induced by currents in phones using the UMTS is two orders of magnitude lower than that induced by GSM. Knowing that the RF exposure from the UMTS is also two orders of magnitude lower than from GSM, it is now possible to state that there is an overall reduction of the exposure from this communication system. (paper)
Gosselin, Marie-Christine; Kühn, Sven; Kuster, Niels
2013-12-01
The evaluation of the exposure from mobile communication devices requires consideration of electromagnetic fields (EMFs) over a broad frequency range from dc to GHz. Mobile phones in operation have prominent spectral components in the low-frequency (LF) and radio-frequency (RF) ranges. While the exposure to RF fields from mobile phones has been comprehensively assessed in the past, the LF fields have received much less attention. In this study, LF fields from mobile phones are assessed experimentally and numerically for the global system for mobile (GSM) and universal mobile telecommunications system (UMTS) communication systems and conclusions about the global (LF and RF) EMF exposure from both systems are drawn. From the measurements of the time-domain magnetic fields, it was found that the contribution from the audio signal at a normal speech level, i.e., -16 dBm0, is the same order of magnitude as the fields induced by the current bursts generated from the implementation of the GSM communication system at maximum RF output level. The B-field induced by currents in phones using the UMTS is two orders of magnitude lower than that induced by GSM. Knowing that the RF exposure from the UMTS is also two orders of magnitude lower than from GSM, it is now possible to state that there is an overall reduction of the exposure from this communication system.
The use of non-uniform drowning terminology: a follow-up study.
Schmidt, Andrew C; Sempsrott, Justin R; Szpilman, David; Queiroga, Ana Catarina; Davison, Matt S; Zeigler, Ryan J; McAlister, Sean J
2017-07-17
In 2002, the World Congress on Drowning developed a uniform definition for drowning. The aim of this study is to determine the prevalence of "non-uniform drowning terminology" (NUDT) and "non-uniform drowning definitions" (NUDD) in peer-reviewed scientific literature from 2010 to 2016, and compare these findings with those from our unpublished study performing a similar analysis on literature from 2003 to 2010. A systematic review was performed using drowning-specific search terms in Pubmed and Web of Science. Titles and abstracts published between July 2010 and January 2016 were screened for relevance to the study focus. Articles meeting screening criteria were reviewed for exclusion criteria to produce the final group of studies. These articles were reviewed by four reviewers for NUDT and NUDD. The Fisher exact test was used to determine any statistically significant changes. The final group of studies included 167 articles. A total of 53 articles (32%) utilized NUDT, with 100% of these including the term "near drowning". The proportion of articles utilizing NUDT was significantly less than reported by our previous study (p drowning (uniform or non-uniform), with 15% of these utilizing NUDD. Our study reveals a statistically significant improvement over the past thirteen years in the use of uniform drowning terminology in peer-reviewed scientific literature, although year-to-year variability over the current study period does not yield an obvious trend. Of the articles reviewed during the 2010-2016 study period, 32% included outdated and non-uniform drowning terminology and definitions. While this reveals an absolute decrease of 11% as compared with the previous study period (2003-2010), there is still significant room for improvement.
Directory of Open Access Journals (Sweden)
M. Kiyasatfar
2011-01-01
Full Text Available In the present study, simulation of steady state, incompressible and fully developed laminar flow has been conducted in a magneto hydrodynamic (MHD pump. The governing equations are solved numerically by finite-difference method. The effect of the magnetic flux density and current on the flow and temperature distributions in a MHD pump is investigated. The obtained results showed that controlling the flow and the temperature is possible through the controlling of the applied current and the magnetic flux. Furthermore, the effects of the magnetic flux density and current on entropy generation in MHD pump are considered. Our presented numerical results are in good agreement with the experimental data showed in literature.
GaInAsP/InP lateral-current-injection distributed feedback laser with a-Si surface grating.
Shindo, Takahiko; Okumura, Tadashi; Ito, Hitomi; Koguchi, Takayuki; Takahashi, Daisuke; Atsumi, Yuki; Kang, Joonhyun; Osabe, Ryo; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa
2011-01-31
We fabricated a novel lateral-current-injection-type distributed feedback (DFB) laser with amorphous-Si (a-Si) surface grating as a step to realize membrane lasers. This laser consists of a thin GaInAsP core layer grown on a semi-insulating InP substrate and a 30-nm-thick a-Si surface layer for DFB grating. Under a room-temperature continuous-wave condition, a low threshold current of 7.0 mA and high efficiency of 43% from the front facet were obtained for a 2.0-μm stripe width and 300-μm cavity length. A small-signal modulation bandwidth of 4.8 GHz was obtained at a bias current of 30 mA.
International Nuclear Information System (INIS)
Gutschwager, Berndt; Hollandt, Jörg
2017-01-01
We present a novel method of nonuniformity correction (NUC) of infrared cameras and focal plane arrays (FPA) in a wide optical spectral range by reading radiance temperatures and by applying a radiation source with an unknown and spatially nonhomogeneous radiance temperature distribution. The benefit of this novel method is that it works with the display and the calculation of radiance temperatures, it can be applied to radiation sources of arbitrary spatial radiance temperature distribution, and it only requires sufficient temporal stability of this distribution during the measurement process. In contrast to this method, an initially presented method described the calculation of NUC correction with the reading of monitored radiance values. Both methods are based on the recording of several (at least three) images of a radiation source and a purposeful row- and line-shift of these sequent images in relation to the first primary image. The mathematical procedure is explained in detail. Its numerical verification with a source of a predefined nonhomogeneous radiance temperature distribution and a thermal imager of a predefined nonuniform FPA responsivity is presented. (paper)
3D eddy-current distribution in a tokamak first wall during a plasma disruption using 'TRIFOU'
International Nuclear Information System (INIS)
Chaussecourte, P.; Bossavit, A.; Verite, J.C.; Crutzen, Y.R.
1989-01-01
In fusion reactor studies there is a lack of knowledge concerning the electromagnetic-type of phenomena generated by a plasma disruption event (rapid quenching of the plasma current). The induced eddy current distribution in space and time in the passive conducting structural components surrounding the plasma ring needs to be accurately investigated. TRIFOU is a full 3D eddy-current computer program based on a mixed FEM and BIEM technique, using the magnetic field, h, as a state variable, It has already been used in various areas of interest including static or rotating machines, non-destructive testing, induction heating, and research devices such as tokamaks. It can take into account various geometries and a wide range of physical situations (time dependency, physical properties, etc.). The present application is related to the eddy-current situation arising from a strong electromagnetic transient generated in the NET (Next European Torus) first wall segment. With respect to previous numerical simulations, the general 3D approach for the current density shows different eddy current circulations in the front/side shells and in the stiff back plate. The results obtained by TRIFOU are illustrated by means of advanced computer graphic displays and an animation movie. (orig.)
Directory of Open Access Journals (Sweden)
Simone Guareschi
Full Text Available Invasions of alien species are considered among the least reversible human impacts, with diversified effects on aquatic ecosystems. Since prevention is the most cost-effective way to avoid biodiversity loss and ecosystem problems, one challenge in ecological research is to understand the limits of the fundamental niche of the species in order to estimate how far invasive species could spread. Trichocorixa verticalis verticalis (Tvv is a corixid (Hemiptera originally distributed in North America, but cited as an alien species in three continents. Its impact on native communities is under study, but it is already the dominant species in several saline wetlands and represents a rare example of an aquatic alien insect. This study aims: i to estimate areas with suitable environmental conditions for Tvv at a global scale, thus identifying potential new zones of invasion; and ii to test possible changes in this global potential distribution under a climate change scenario. Potential distributions were estimated by applying a multidimensional envelope procedure based on both climatic data, obtained from observed occurrences, and thermal physiological data. Our results suggest Tvv may expand well beyond its current range and find inhabitable conditions in temperate areas along a wide range of latitudes, with an emphasis on coastal areas of Europe, Northern Africa, Argentina, Uruguay, Australia, New Zealand, Myanmar, India, the western boundary between USA and Canada, and areas of the Arabian Peninsula. When considering a future climatic scenario, the suitability area of Tvv showed only limited changes compared with the current potential distribution. These results allow detection of potential contact zones among currently colonized areas and potential areas of invasion. We also identified zones with a high level of suitability that overlap with areas recognized as global hotspots of biodiversity. Finally, we present hypotheses about possible means of
Guareschi, Simone; Coccia, Cristina; Sánchez-Fernández, David; Carbonell, José Antonio; Velasco, Josefa; Boyero, Luz; Green, Andy J.; Millán, Andrés
2013-01-01
Invasions of alien species are considered among the least reversible human impacts, with diversified effects on aquatic ecosystems. Since prevention is the most cost-effective way to avoid biodiversity loss and ecosystem problems, one challenge in ecological research is to understand the limits of the fundamental niche of the species in order to estimate how far invasive species could spread. Trichocorixa verticalis verticalis (Tvv) is a corixid (Hemiptera) originally distributed in North America, but cited as an alien species in three continents. Its impact on native communities is under study, but it is already the dominant species in several saline wetlands and represents a rare example of an aquatic alien insect. This study aims: i) to estimate areas with suitable environmental conditions for Tvv at a global scale, thus identifying potential new zones of invasion; and ii) to test possible changes in this global potential distribution under a climate change scenario. Potential distributions were estimated by applying a multidimensional envelope procedure based on both climatic data, obtained from observed occurrences, and thermal physiological data. Our results suggest Tvv may expand well beyond its current range and find inhabitable conditions in temperate areas along a wide range of latitudes, with an emphasis on coastal areas of Europe, Northern Africa, Argentina, Uruguay, Australia, New Zealand, Myanmar, India, the western boundary between USA and Canada, and areas of the Arabian Peninsula. When considering a future climatic scenario, the suitability area of Tvv showed only limited changes compared with the current potential distribution. These results allow detection of potential contact zones among currently colonized areas and potential areas of invasion. We also identified zones with a high level of suitability that overlap with areas recognized as global hotspots of biodiversity. Finally, we present hypotheses about possible means of spread, focusing on
Directory of Open Access Journals (Sweden)
Hannah Slater
Full Text Available Modelling the spatial distributions of human parasite species is crucial to understanding the environmental determinants of infection as well as for guiding the planning of control programmes. Here, we use ecological niche modelling to map the current potential distribution of the macroparasitic disease, lymphatic filariasis (LF, in Africa, and to estimate how future changes in climate and population could affect its spread and burden across the continent. We used 508 community-specific infection presence data collated from the published literature in conjunction with five predictive environmental/climatic and demographic variables, and a maximum entropy niche modelling method to construct the first ecological niche maps describing potential distribution and burden of LF in Africa. We also ran the best-fit model against climate projections made by the HADCM3 and CCCMA models for 2050 under A2a and B2a scenarios to simulate the likely distribution of LF under future climate and population changes. We predict a broad geographic distribution of LF in Africa extending from the west to the east across the middle region of the continent, with high probabilities of occurrence in the Western Africa compared to large areas of medium probability interspersed with smaller areas of high probability in Central and Eastern Africa and in Madagascar. We uncovered complex relationships between predictor ecological niche variables and the probability of LF occurrence. We show for the first time that predicted climate change and population growth will expand both the range and risk of LF infection (and ultimately disease in an endemic region. We estimate that populations at risk to LF may range from 543 and 804 million currently, and that this could rise to between 1.65 to 1.86 billion in the future depending on the climate scenario used and thresholds applied to signify infection presence.
Fault Current Distribution and Pole Earth Potential Rise (EPR) Under Substation Fault
Nnassereddine, M.; Rizk, J.; Hellany, A.; Nagrial, M.
2013-09-01
New high-voltage (HV) substations are fed by transmission lines. The position of these lines necessitates earthing design to ensure safety compliance of the system. Conductive structures such as steel or concrete poles are widely used in HV transmission mains. The earth potential rise (EPR) generated by a fault at the substation could result in an unsafe condition. This article discusses EPR based on substation fault. The pole EPR assessment under substation fault is assessed with and without mutual impedance consideration. Split factor determination with and without the mutual impedance of the line is also discussed. Furthermore, a simplified formula to compute the pole grid current under substation fault is included. Also, it includes the introduction of the n factor which determines the number of poles that required earthing assessments under substation fault. A case study is shown.
Directory of Open Access Journals (Sweden)
Dinka Grubišić
2016-06-01
Full Text Available Beet nematode is one of the most harmful pests of sugar beet. It was found on 194 ha in the Tovarnik area 37 years ago. As this is the sugar beet intensive production area, the aim of this study was to determine the present-day distribution of this pest. Sampling of 1159.49 ha of sugar beet fields and collecting of 692 soil samples were conducted in the period 2012-2014. Soil samples were processed using Spears flotation devices, cysts were identified according to morphological characteristics and population density was determined by crushing cysts in Huysman’s homogenizer. Population density was expressed by g of soil and used to determine the appropriate control measures. H. schachtii was found in 34.54% of the samples and 40% of sampled fields. Total infested area is 867.21 ha being evidence of conservation, but also significant expansion of H. schachtii in the Tovarnik area. Population density ranged from 0.06 to 20.72/ g of soil. By determining the population density and taking appropriate control measures, such as regular crop rotation, weed control, sowing of trap crops and tolerant varieties of sugar beet, increase of pest populations and allow long-term production of sugar beet can be prevented.
Harrison, T. W.; Polagye, B. L.
2016-02-01
Coastal ecosystems are characterized by spatially and temporally varying hydrodynamics. In marine renewable energy applications, these variations strongly influence project economics and in oceanographic studies, they impact accuracy of biological transport and pollutant dispersion models. While stationary point or profile measurements are relatively straight forward, spatial representativeness of point measurements can be poor due to strong gradients. Moving platforms, such as AUVs or surface vessels, offer better coverage, but suffer from energetic constraints (AUVs) and resolvable scales (vessels). A system of sub-surface, drifting sensor packages is being developed to provide spatially distributed, synoptic data sets of coastal hydrodynamics with meter-scale resolution over a regional extent of a kilometer. Computational investigation has informed system parameters such as drifter size and shape, necessary position accuracy, number of drifters, and deployment methods. A hydrodynamic domain with complex flow features was created using a computational fluid dynamics code. A simple model of drifter dynamics propagate the drifters through the domain in post-processing. System parameters are evaluated relative to their ability to accurately recreate domain hydrodynamics. Implications of these results for an inexpensive, depth-controlled Lagrangian drifter system is presented.
NRC Information No. 88-86: Operating with multiple grounds in direct current distribution systems
International Nuclear Information System (INIS)
Rossi, C.E.
1992-01-01
During recent NRC maintenance inspections at Quad Cities, Oconee, and D.C. Cook power reactor facilities, it was found that plants had been operating with multiple grounds in the dc distribution systems for extended periods. Specific examples are described. Most nuclear power plant dc systems are two-wire ungrounded, combination battery/charger systems equipped with ground detection. Typical ground detection system features include a remote annunciator and a local indicator and/or recorder. Ground detectors are incorporated in the dc system so that if a single ground point does occur, immediate steps can be taken to clear the ground fault from the system. Failure to respond to a single ground will mask subsequent grounds. Multiple grounds can cause the indiscriminate operation of equipment, which may have safety consequences. Grounds can cause control circuit fuses to fail and can render important safety equipment inoperable as previously described. Furthermore, batteries have a designed capacity to supply power during a station blackout condition, and this capacity can be affected by the presence of unanalyzed loads in the form of multiple grounds. It is recognized that troubleshooting and finding grounds on a dc system are difficult tasks that may affect plant operation. The licensees previously mentioned have reviewed their designs and conditions for potential impact on safety system operability and have taken corrective actions to minimize the effect of grounds
International Nuclear Information System (INIS)
Shen Pei; Zhang Wanrong; Huang Lu; Jin Dongyue; Xie Hongyun
2011-01-01
An improved inductor layout with non-uniform metal width and non-uniform spacing is proposed to increase the quality factor (Q factor). For this inductor layout, from outer coil to inner coil, the metal width is reduced by an arithmetic-progression step, while the metal spacing is increased by a geometric-progression step. An improved layout with variable width and changed spacing is of benefit to the Q factor of RF spiral inductor improvement (approximately 42.86%), mainly due to the suppression of eddy-current loss by weakening the current crowding effect in the center of the spiral inductor. In order to increase the Q factor further, for the novel inductor, a patterned ground shield is used with optimized layout together. The results indicate that, in the range of 0.5 to 16 GHz, the Q factor of the novel inductor is at an optimum, which improves by 67% more than conventional inductors with uniform geometry dimensions (equal width and equal spacing), is enhanced by nearly 23% more than a PGS inductor with uniform geometry dimensions, and improves by almost 20% more than an inductor with an improved layout. (semiconductor devices)
Kozyra, J. U.; Rasmussen, C. E.; Miller, R. H.; Villalon, E.
1995-11-01
The evolution of the bounce-averaged ring current/radiation belt proton distribution is simulated during resonant interactions with ducted plasmaspheric hiss. The plasmaspheric hiss is assumed to be generated by ring current electrons and to be damped by the energetic protons. Thus energy is transferred between energetic electrons and protons using the plasmaspheric hiss as a mediary. The problem is not solved self-consistently. During the simulation period, interactions with ring current electrons (not represented in the model) are assumed to maintain the wave amplitudes in the presence of damping by the energetic protons, allowing the wave spectrum to be held fixed. Diffusion coefficients in pitch angle, cross pitch angle/energy, and energy were previously calculated by Kozyra et al. (1994) and are adopted for the present study. The simulation treats the energy range, E>=80 keV, within which the wave diffusion operates on a shorter timescale than other proton loss processes (i.e., Coulomb drag and charge exchange). These other loss processes are not included in the simulation. An interesting result of the simulation is that energy diffusion maximizes at moderate pitch angles near the edge of the atmospheric loss cone. Over the simulation period, diffusion in energy creates an order of magnitude enhancement in the bounce-averaged proton distribution function at moderate pitch angles. The loss cone is nearly empty because scattering of particles at small pitch angles is weak. The bounce-averaged flux distribution, mapped to ionospheric heights, results in elevated locally mirroring proton fluxes. OGO 5 observed order of magnitude enhancements in locally mirroring energetic protons at altitudes between 350 and 1300 km and invariant latitudes between 50° and 60° (Lundblad and Soraas, 1978). The proton distributions were highly anisotropic in pitch angle with nearly empty loss cones. The similarity between the observed distributions and those resulting from this
International Nuclear Information System (INIS)
Cote-Verhaaf, A.; Patoine, M.A.; Tanguay, F.
2002-01-01
In June 2002 Gazifere Inc. applied to Quebec's Regie de l'energie for approval to maintain its current gas tariffs in its area of operation, the Outaouais region of Quebec. Gazifere also presented its program for energy efficiency and its distribution program with a request to extend its distribution network in the Outaouais. The energy efficiency program includes the rental of residential water heaters, water and gas savings, high efficiency furnaces, rental of commercial water heaters, and a program for low income families. The Regie reviewed the application and declared that the current fees could remain in effect until October 1, 2002. It also approved the modifications proposed by Gazifere to the adjustment of rates. The Regie reviewed the objectives of the energy efficiency programs and approved a volumetric budget for the plan and authorized that the deferred rate be kept in the energy efficiency program. The Regie approved that the energy efficiency plan should extend over 3 years with the exception of the residential inspection program until more information could be gathered on the energy savings in the residential sector. The Regie made a request to Gazifere to provide data on industrial consumption before authorizing $3,730,200 for extension of their distribution network. It approved the amount $5,306,400 as exploitation charges for the year 2002-2003. refs., tabs
Directory of Open Access Journals (Sweden)
Ewa Szczęśniak
2012-10-01
Full Text Available Pilularia globulifera is a subatlantic European fern threatened with extinction. In Poland, it reaches the eastern border of its continuous range. Up to the end of the 20th century, it was observed here in 21 stands; only 2 of them existed by the second half of the century, so the species was categorized as critically endangered. Five new locations have been found in western and northwestern Poland during the last 10 years. Abundant and permanent populations grow in 3 locations, while 2 stands were ephemeral. All the current stands are situated in anthropogenic habitats with spontaneous vegetation, in oligotrophic to eutrophic waters. One of the new localities is about 280 km distant from the eastern range of the limit known previously. Pilularia forms its own plant community Pilularietum globuliferae, enters plots of Ranunculo-Juncetum bulbosi and occurs in mesotrophic to eutrophic rushes of Eleocharis palustris, Phragmites australis, Typha angustifolia and Equisetum fluviatile. Specimens are vigorous and regularly produce sporocarps.
LDPC Code Design for Nonuniform Power-Line Channels
Directory of Open Access Journals (Sweden)
Sanaei Ali
2007-01-01
Full Text Available We investigate low-density parity-check code design for discrete multitone channels over power lines. Discrete multitone channels are well modeled as nonuniform channels, that is, different bits experience various channel parameters. We propose a coding system for discrete multitone channels that allows for using a single code over a nonuniform channel. The number of code parameters for the proposed system is much greater than the number of code parameters in conventional channel. Therefore, search-based optimization methods are impractical. We first formulate the problem of optimizing the rate of an irregular low-density parity-check code, with guaranteed convergence over a general nonuniform channel, as an iterative linear programming which is significantly more efficient than search-based methods. Then we use this technique for a typical power-line channel. The methodology of this paper is directly applicable to all decoding algorithms for which a density evolution analysis is possible.
Wetting layer and void fraction nonuniformity in a liquid-metal MHD generator
International Nuclear Information System (INIS)
Branover, H.; Yakhot, A.
1981-01-01
The quetion of the effect of a liquid layer on the walls of an MHD channel in the case of uniform void fraction distribution in the flow core was first considered several years ago. More recently an analytic solution for high Hartmann numbers was obtained, which led to the conclusion that this layer does not have a significant effect on the efficiency of large generators. This paper postulates an analytic model which makes it possible to estimate the effect of a void fraction nonuniformity, in the presence of the wetting layer on the walls, on the generator performance. 3 refs
International Nuclear Information System (INIS)
Brodsky, Anatol M
2010-01-01
The optical nondestructive characterization of chemical transformation dynamics and diffusion kinetics, including phase transitions, in heterogeneous media with a random distribution of nanoparticles (nano-nonuniformities), is of great theoretical and practical importance. Such characterization, with the help of coherence loss spectroscopy, considered in this paper can be applied for the control of a number of industrial processes dynamics, environmental monitoring, and medical diagnostics and therapy. As a specific example, the growth of crystal nuclei (embrions) as a result of the diffusion to them of a substance from the surrounding supersaturated solution is considered
Initial particle loadings for a nonuniform simulation plasma in a magnetic field
International Nuclear Information System (INIS)
Naitou, Hiroshi; Kamimura, Tetsuo; Tokuda, Sinji.
1978-09-01
Improved methods for initially loading particles in a magnetized simulation plasma with nonuniform density and temperature distributions are proposed. In the usual guiding center loading (GCL), a charge separation coming from finite Larmor radius effects remains due to the difference between the guiding center density and the actual density. The modified guiding center loading (MGCL) presented here eliminates the electric field so generated and can be used for arbitrary density and temperature profiles. Some applications of these methods to actual simulations are given for comparison. The significance of these methods of initial particle loadings is also discussed. (author)
A new correlation of non-uniformly heated round tube burnout data
International Nuclear Information System (INIS)
Kirby, G.J.
1966-07-01
A new correlation of non-uniformly heated round tube burnout data is presented. This fits the available data better than any previously published correlation - the root-mean-square deviation being 5.7% for all data at 1000 p.s.i.a. and the worst fit being to data at 2000 p.s.i.a. where the r.m.s. error is 6.6%. The correlation is used to investigate the effect of flux profile changes and no significant increase in burnout power is obtained by modifying the present chopped cosine distribution. (author)
Laser investigation of the non-uniformity of fluorescent species in dental enamel
Tran, Stephanie U.; Ridge, Jeremy S.; Nelson, Leonard Y.; Seibel, Eric J.
In the present study, artificial type I and type II erosions were created on dental specimen using acetic acid and EDTA respectively. Specimens were prepared by etching extracted teeth samples in acid to varying degrees, after which the absolute fluorescence intensity ratio of the etched enamel relative to sound enamel was recorded for each specimen using 405 and 532 nm laser excitation. Results showed differences in the fluorescence ratio of etched to sound enamel for type I and II erosions. These findings suggest a non-uniform distribution of fluorescent species in the interprismatic region as compared to the prismatic region.
Energy Technology Data Exchange (ETDEWEB)
Zhou, Shengjun [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Yuan, Shu; Liu, Yingce [Quantum Wafer Inc., Foshan 528251 (China); Guo, L. Jay [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 (United States); Liu, Sheng, E-mail: victor_liu63@126.com [School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072 (China); Ding, Han [State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)
2015-11-15
Graphical abstract: - Highlights: • TEM is used to characterize threading dislocation existing in GaN epitaxial layer. • Effect of threading dislocation on optical and electrical of LEDs is discussed. • Strip-shaped SiO{sub 2} DCBL is designed to improve current spreading performance of LEDs. - Abstract: We demonstrated that the improvement in optical and electrical performance of high power LEDs was achieved using cone-shaped patterned sapphire substrate (PSS) and strip-shaped SiO{sub 2} distributed current blocking layer (DCBL). We found through transmission electron microscopy (TEM) observation that densities of both the screw dislocation and edge dislocation existing in GaN epitaxial layer grown on PSS were much less than that of GaN epitaxial layer grown on flat sapphire substrate (FSS). Compared to LED grown on FSS, LED grown on PSS showed higher sub-threshold forward-bias voltage and lower reverse leakage current, resulting in an enhancement in device reliability. We also designed a strip-shaped SiO{sub 2} DCBL beneath a strip-shaped p-electrode, which prevents the current from being concentrated on regions immediately adjacent the strip-shaped p-electrode, thereby facilitating uniform current spreading into the active region. By implementing strip-shaped SiO{sub 2} DCBL, light output power of high power PSS-LED chip could be further increased by 13%.
Hepatitis A in Korea from 2011 to 2013: Current Epidemiologic Status and Regional Distribution.
Moon, Shinje; Han, Jun Hee; Bae, Geun-Ryang; Cho, Enhi; Kim, Bongyoung
2016-01-01
The hepatitis A virus (HAV) has been the leading cause of viral hepatitis in Korea since the 2000s. We aimed to describe the current status and regional differences in hepatitis A incidence. We studied the total number of hepatitis A cases reported to the Korea Centers for Disease Control and Prevention through the National Infectious Diseases Surveillance System between 2011 and 2013. Additionally, National Health Insurance Review and Assessment Service data and national population data from Statistics Korea were used. In total, 7,585 hepatitis A cases were reported; 5,521 (10.9 cases per 100,000 populations), 1,197 (2.3 cases per 100,000 populations), and 867 (1.7 cases per 100,000 populations) in 2011, 2012, and 2013, respectively. Fifty-eight patients were infected outside of the country and 7,527 patients represented autochthonous HAV infection cases. Autochthonous HAV infection occurred more frequently among men than women (4,619 cases, 6.1 cases per 100,000 population vs. 2,908 cases, 3.9 cases per 100,000 population). The incidence rate was higher in the 20-29 yr-old group (2,309 cases, 11.6 cases per 100,000 populations) and 30-39 yr-old group (3,306 cases, 13.6 cases per 100,000 populations). The majority of cases were reported from March to June (53.6%, 4,038/7,527). Geographic analyses revealed a consistently high relative risk (RR) of HAV infection in mid-western regions (2011, RR, 1.25, P=0.019; 2012, RR, 2.53, Phepatitis A incidence has been decreasing gradually from 2011 to 2013 and that some regions show the highest prevalence rates of HAV infection in Korea.
International Nuclear Information System (INIS)
Cossent, Rafael; Gómez, Tomás; Olmos, Luis
2011-01-01
Similar to other European countries, mechanisms for the promotion of electricity generation from renewable energy sources (RESs) and combined heat and power (CHP) production have caused a significant growth in distributed generation (DG) in Spain. Low DG/RES penetration levels do not have a major impact on electricity systems. However, several problems arise as DG shares increase. Smarter distribution grids are deemed necessary to facilitate DG/RES integration. This involves modifying the way distribution networks are currently planned and operated. Furthermore, DG and demand should also adopt a more active role. This paper reviews the current situation of DG/RES in Spain including penetration rates, support payments for DG/RES, level of market integration, economic regulation of Distribution System Operators (DSOs), smart metering implementation, grid operation and planning, and incentives for DSO innovation. This paper identifies several improvements that could be made to the treatment of DG/RES. Key aspects of an efficient DG/RES integration are identified and several regulatory changes specific to the Spanish situation are recommended. - Highlights: ► Substantial DG/RES penetration levels are foreseen for the coming years in Spain. ► Integrating such amount of DG/RES in electricity markets and networks is challenging. ► We review key regulatory aspects that may affect DG/RES integration in Spain. ► Several recommendations aimed at easing DG/RES integration in Spain are provided. ► Market integration and the transition towards smarter grids are deemed key issues.
Microwave interaction with nonuniform hydrogen gas in carbon nanotubes
International Nuclear Information System (INIS)
Babaei, S.; Babaei, Sh.
2009-01-01
In this paper we study the reflection, absorption, and transmission of microwave from nonuniform hydrogen gas in carbon nanotubes, grown by iron-catalyzed high-pressure carbon monoxide disproportionate (HiPco) process. A discussion on the effect of various hydrogen gas parameters on the reflected power, absorbed power, and transmitted power is presented. The nonuniform hydrogen gas slab is modeled by a series of subslabs. The overall number density profile across the whole slab follows a parabolic function. The total reflected, absorbed, and transmitted powers are then deduced and their functional dependence on the number density, collision frequency, and angle of propagation is studied
Assessment indices for uniform and non-uniform thermal environments
Institute of Scientific and Technical Information of China (English)
2008-01-01
Different assessment indices for thermal environments were compared and selected for proper assessment of indoor thermal environments.30 subjects reported their overall thermal sensation,thermal comfort,and thermal acceptability in uniform and non-uniform conditions.The results show that these three assessment indices provide equivalent evaluations in uniform environments.However,overall thermal sensation differs from the other two indices and cannot be used as a proper index for the evaluation of non-uniform environments.The relationship between the percentage and the mean vote for each index is established.
Modeling of nonuniform corrosion in salt brines: Salt Repository Project
International Nuclear Information System (INIS)
Reimus, P.W.
1988-03-01
A mechanistic approach to modeling nonuniform corrosion in brines is presented in this report. Equations are derived for completely describing the electrochemical environment within a localized corrosion cavity, and appropriate initial and boundary conditions are invoked to obtain a solvable system of equations. The initial and boundary conditions can be adjusted to simulate pitting, crevice corrosion, or stress corrosion cracking. Although no numerical results are presented, a numerical strategy for solving the equations is presented. The report focuses on the nonuniform corrosion behavior of mild steel; however, the modeling approach presented is expected to apply to a broad range of metallic materials. 34 refs., 5 figs., 2 tabs
Molina, Camilo A; Zadnik, Patricia L; Gokaslan, Ziya L; Witham, Timothy F; Bydon, Ali; Wolinsky, Jean-Paul; Sciubba, Daniel M
2013-11-01
suggest that the current focus on decreasing physician reimbursement as the principal cost saving strategy will lead to minimal reimbursement for surgeons without a substantial drop in the overall cost of procedures performed. Copyright © 2013 Elsevier Inc. All rights reserved.
Directory of Open Access Journals (Sweden)
Tewodros T Wakie
Full Text Available We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI and Normalized Difference Vegetation Indices (NDVI with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species- occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC curve (AUC. Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC = 0.94, while the potential habitat for future infestations is 5,024 km2 (AUC = 0.95. Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries.
Wakie, Tewodros T; Evangelista, Paul H; Jarnevich, Catherine S; Laituri, Melinda
2014-01-01
We used correlative models with species occurrence points, Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices, and topo-climatic predictors to map the current distribution and potential habitat of invasive Prosopis juliflora in Afar, Ethiopia. Time-series of MODIS Enhanced Vegetation Indices (EVI) and Normalized Difference Vegetation Indices (NDVI) with 250 m2 spatial resolution were selected as remote sensing predictors for mapping distributions, while WorldClim bioclimatic products and generated topographic variables from the Shuttle Radar Topography Mission product (SRTM) were used to predict potential infestations. We ran Maxent models using non-correlated variables and the 143 species- occurrence points. Maxent generated probability surfaces were converted into binary maps using the 10-percentile logistic threshold values. Performances of models were evaluated using area under the receiver-operating characteristic (ROC) curve (AUC). Our results indicate that the extent of P. juliflora invasion is approximately 3,605 km2 in the Afar region (AUC = 0.94), while the potential habitat for future infestations is 5,024 km2 (AUC = 0.95). Our analyses demonstrate that time-series of MODIS vegetation indices and species occurrence points can be used with Maxent modeling software to map the current distribution of P. juliflora, while topo-climatic variables are good predictors of potential habitat in Ethiopia. Our results can quantify current and future infestations, and inform management and policy decisions for containing P. juliflora. Our methods can also be replicated for managing invasive species in other East African countries.
Filippov, Alexander E; Gorb, Stanislav N
2015-02-06
One of the important problems appearing in experimental realizations of artificial adhesives inspired by gecko foot hair is so-called clusterization. If an artificially produced structure is flexible enough to allow efficient contact with natural rough surfaces, after a few attachment-detachment cycles, the fibres of the structure tend to adhere one to another and form clusters. Normally, such clusters are much larger than original fibres and, because they are less flexible, form much worse adhesive contacts especially with the rough surfaces. Main problem here is that the forces responsible for the clusterization are the same intermolecular forces which attract fibres to fractal surface of the substrate. However, arrays of real gecko setae are much less susceptible to this problem. One of the possible reasons for this is that ends of the seta have more sophisticated non-uniformly distributed three-dimensional structure than that of existing artificial systems. In this paper, we simulated three-dimensional spatial geometry of non-uniformly distributed branches of nanofibres of the setal tip numerically, studied its attachment-detachment dynamics and discussed its advantages versus uniformly distributed geometry.
Planned studies of charge collection in non-uniformly irradiated Si and GaAs detectors
International Nuclear Information System (INIS)
Rosenfeld, A.; Reinhard, M.; Carolan, M.; Kaplan, G.; Lerch, M.; Alexiev, D.
1995-01-01
The aim of this project is to study the time and amplitude characteristics of silicon ion-implanted detectors non-uniformly irradiated with fast neutrons in order to predict their radiation behaviour in the LHC and space. It is expected in such detectors increases of the charge deficit due to trapping by large scale traps and transient time increases due to the reduction of the mobility. The theoretical model will be modified to describe the charge kinetics in the electrical field of the detector created by a non uniform space charge distribution. Experimental confirmation techniques are needed to develop non uniform predictable damage of silicon detectors using fast neutron sources (accelerators, reactors) and to study peculiarities of the charge transport in different parts of the detector. In parallel to experimental research will be started the theoretical development of the charge transport model for non-uniform distribution of space charge in the depletion layer (Neff). The model will include the linear distribution of Neff(y) along the detector as well as the change of sign of Neff (conversion from n to p type of silicon) inside the detector
Direct numerical simulation of turbulent pipe flow with nonuniform surface heat flux
International Nuclear Information System (INIS)
Satake, Shin-ichi; Kunugi, Tomoaki
1998-01-01
Turbulent transport computations of a scalar quantity for fully-developed turbulent pipe flow were carried out by means of a direct numerical simulation (DNS) procedure. In this paper, three wall-heating boundary conditions were considered as follows: Case-1) a uniform heat-flux condition along the wall, Case-2) a nonuniform wall-heating condition, that is, a cosine heat-flux distribution along the wall and Case-3) a nonuniform wall-heating condition with a constant temperature over a half of the pipe wall. The number of computational grids used in this paper is 256 x 128 x 128. Prandtl number of the working fluid is 0.71. The Nusselt number in case of Case-1 is in good agreement with the empirical correlation. In case of Case-3, the distributions of the turbulent quantity and the Nusselt number seem to be reasonable. However, as for Case-2, the distributions of the turbulent quantity and the Nusselt number seem to be unrealistic. Two numerical treatments of thermal boundary condition on the wall were applied and their results were discussed from the viewpoint of the turbulent transport feature. (author)
Kanagawa, Tetsuya
2015-05-01
This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.
Energy Technology Data Exchange (ETDEWEB)
Periyadurai, K. [Department of Mathematics, Bharathiar University, Coimbatore 641046, Tamil Nadu (India); Muthtamilselvan, M., E-mail: muthtamill@yahoo.co.in [Department of Mathematics, Bharathiar University, Coimbatore 641046, Tamil Nadu (India); Doh, Deog-Hee [Division of Mechanical Engineering, College of Engineering,Korea Maritime Ocean University, Busan 606781 (Korea, Republic of)
2016-12-15
In the present study, the effect of inclined magnetic field on natural convection of micro-polar fluid in a square cavity with uniform and nonuniform heated thin plate built in centrally is investigated numerically. The vertical walls are cooled while the top and bottom walls are insulated. The thin plate is assumed to be isothermal with a linearly varying temperature. The governing equations were solved by finite volume method using second order central difference scheme and upwind differencing scheme. The numerical investigation is carried out for different governing parameters namely, the Hartmann number, inclination angle of magnetic field, Rayleigh number, vortex viscosity and source non-uniformity parameters. The result shows that the heat transfer rate is decreased when increasing Hartmann number, inclination angle of magnetic field and vortex viscosity parameter. It is found that the non-uniformity parameter affects the fluid flow and temperature distribution especially for the high Rayleigh numbers. Finally, the overall heat transfer rate of micro-polar fluids is found to be smaller than that of Newtonian fluid. - Highlights: • We investigate the effect of inclined magnetic field on micropolar fluid in a cavity. • The effects of uniform and non-uniform heated plate are studied. • The present numerical results are compared with the experimental results. • The addition of vortex viscosity parameter declines the heat transfer performance. • The high heat transfer rate occurs in the vertical plate compared to the horizontal one.
Energy Technology Data Exchange (ETDEWEB)
Sadeghi-Goughari, Moslem [Shahid Bahonar University of Kerman, Kerman (Iran, Islamic Republic of); Hosseini, Mohammad [Sirjan University of Technology, Sirjan (Iran, Islamic Republic of)
2015-02-15
The vibrational behavior of a viscous nanoflow-conveying single-walled carbon nanotube (SWCNT) was investigated. The nonuniformity of the flow velocity distribution caused by the viscosity of fluid and the small-size effects on the flow field was considered. Euler-Bernoulli beam model was used to investigate flow-induced vibration of the nanotube, while the non-uniformity of the flow velocity and the small-size effects of the flow field were formulated through Knudsen number (Kn), as a discriminant parameter. For laminar flow in a circular nanotube, the momentum correction factor was developed as a function of Kn. For Kn = 0 (continuum flow), the momentum correction factor was found to be 1.33, which decreases by the increase in Kn may even reach near 1 for the transition flow regime. We observed that for passage of viscous flow through a nanotube with the non-uniform flow velocity, the critical continuum flow velocity for divergence decreased considerably as opposed to those for the uniform flow velocity, while by increasing Kn, the difference between the uniform and non-uniform flow models may be reduced. In the solution part, the differential transformation method (DTM) was used to solve the governing differential equations of motion.
International Nuclear Information System (INIS)
Sadeghi-Goughari, Moslem; Hosseini, Mohammad
2015-01-01
The vibrational behavior of a viscous nanoflow-conveying single-walled carbon nanotube (SWCNT) was investigated. The nonuniformity of the flow velocity distribution caused by the viscosity of fluid and the small-size effects on the flow field was considered. Euler-Bernoulli beam model was used to investigate flow-induced vibration of the nanotube, while the non-uniformity of the flow velocity and the small-size effects of the flow field were formulated through Knudsen number (Kn), as a discriminant parameter. For laminar flow in a circular nanotube, the momentum correction factor was developed as a function of Kn. For Kn = 0 (continuum flow), the momentum correction factor was found to be 1.33, which decreases by the increase in Kn may even reach near 1 for the transition flow regime. We observed that for passage of viscous flow through a nanotube with the non-uniform flow velocity, the critical continuum flow velocity for divergence decreased considerably as opposed to those for the uniform flow velocity, while by increasing Kn, the difference between the uniform and non-uniform flow models may be reduced. In the solution part, the differential transformation method (DTM) was used to solve the governing differential equations of motion.
Mathewson, Paul D; Moyer-Horner, Lucas; Beever, Erik A; Briscoe, Natalie J; Kearney, Michael; Yahn, Jeremiah M; Porter, Warren P
2017-03-01
How climate constrains species' distributions through time and space is an important question in the context of conservation planning for climate change. Despite increasing awareness of the need to incorporate mechanism into species distribution models (SDMs), mechanistic modeling of endotherm distributions remains limited in this literature. Using the American pika (Ochotona princeps) as an example, we present a framework whereby mechanism can be incorporated into endotherm SDMs. Pika distribution has repeatedly been found to be constrained by warm temperatures, so we used Niche Mapper, a mechanistic heat-balance model, to convert macroclimate data to pika-specific surface activity time in summer across the western United States. We then explored the difference between using a macroclimate predictor (summer temperature) and using a mechanistic predictor (predicted surface activity time) in SDMs. Both approaches accurately predicted pika presences in current and past climate regimes. However, the activity models predicted 8-19% less habitat loss in response to annual temperature increases of ~3-5 °C predicted in the region by 2070, suggesting that pikas may be able to buffer some climate change effects through behavioral thermoregulation that can be captured by mechanistic modeling. Incorporating mechanism added value to the modeling by providing increased confidence in areas where different modeling approaches agreed and providing a range of outcomes in areas of disagreement. It also provided a more proximate variable relating animal distribution to climate, allowing investigations into how unique habitat characteristics and intraspecific phenotypic variation may allow pikas to exist in areas outside those predicted by generic SDMs. Only a small number of easily obtainable data are required to parameterize this mechanistic model for any endotherm, and its use can improve SDM predictions by explicitly modeling a widely applicable direct physiological effect
Mathewson, Paul; Moyer-Horner, Lucas; Beever, Erik; Briscoe, Natalie; Kearney, Michael T.; Yahn, Jeremiah; Porter, Warren P.
2017-01-01
How climate constrains species’ distributions through time and space is an important question in the context of conservation planning for climate change. Despite increasing awareness of the need to incorporate mechanism into species distribution models (SDMs), mechanistic modeling of endotherm distributions remains limited in this literature. Using the American pika (Ochotona princeps) as an example, we present a framework whereby mechanism can be incorporated into endotherm SDMs. Pika distribution has repeatedly been found to be constrained by warm temperatures, so we used Niche Mapper, a mechanistic heat-balance model, to convert macroclimate data to pika-specific surface activity time in summer across the western United States. We then explored the difference between using a macroclimate predictor (summer temperature) and using a mechanistic predictor (predicted surface activity time) in SDMs. Both approaches accurately predicted pika presences in current and past climate regimes. However, the activity models predicted 8–19% less habitat loss in response to annual temperature increases of ~3–5 °C predicted in the region by 2070, suggesting that pikas may be able to buffer some climate change effects through behavioral thermoregulation that can be captured by mechanistic modeling. Incorporating mechanism added value to the modeling by providing increased confidence in areas where different modeling approaches agreed and providing a range of outcomes in areas of disagreement. It also provided a more proximate variable relating animal distribution to climate, allowing investigations into how unique habitat characteristics and intraspecific phenotypic variation may allow pikas to exist in areas outside those predicted by generic SDMs. Only a small number of easily obtainable data are required to parameterize this mechanistic model for any endotherm, and its use can improve SDM predictions by explicitly modeling a widely applicable direct physiological effect
International Nuclear Information System (INIS)
Chen, Deshen; Qian, Hongliang; Wang, Huajie; Zhang, Gang; Fan, Feng; Shen, Shizhao
2017-01-01
Highlights: • Solar non-uniform temperature field test of a telescope’s reflector is conducted initially. • Time-varying distribution regularities are analyzed contrastively. • Simulation methods are proposed involving environmental factors and self-shadowing. • Refined discrimination method for the shadow distribution is put forward. • Validity of simulation methods is evaluated with the experimental data. - Abstract: To improve the ability of deep-space exploration, many astronomers around the world are actively engaged in the construction of large-aperture and high-precision radio telescopes. The temperature effect is one of three main factors affecting the reflector accuracy of radio telescopes. To study the daily non-uniform temperature field of the main reflector, experimental studies are first carried out with a 3-m-aperture radio telescope model. According to the test results for 16 working conditions, the distribution rule and time-varying regularity of the daily temperature field are summarized initially. Next, theoretical methods for the temperature field of the main reflector are studied considering multiple environmental parameters and self-shadows. Finally, the validity of the theoretical methods is evaluated with test results. The experimental study demonstrates that the non-uniform temperature distribution of the main reflector truly exists and should not be overlooked, and that the theoretical methods for the reflector temperature field proposed in this paper are effective. The research methods and conclusions can provide valuable references for thermal design, monitoring and control of similar high-precision radio telescopes.
Efficient SPECT scatter calculation in non-uniform media using correlated Monte Carlo simulation
International Nuclear Information System (INIS)
Beekman, F.J.
1999-01-01
Accurate simulation of scatter in projection data of single photon emission computed tomography (SPECT) is computationally extremely demanding for activity distribution in non-uniform dense media. This paper suggests how the computation time and memory requirements can be significantly reduced. First the scatter projection of a uniform dense object (P SDSE ) is calculated using a previously developed accurate and fast method which includes all orders of scatter (slab-derived scatter estimation), and then P SDSE is transformed towards the desired projection P which is based on the non-uniform object. The transform of P SDSE is based on two first-order Compton scatter Monte Carlo (MC) simulated projections. One is based on the uniform object (P u ) and the other on the object with non-uniformities (P ν ). P is estimated by P-tilde=P SDSE P ν /P u . A tremendous decrease in noise in P-tilde is achieved by tracking photon paths for P ν identical to those which were tracked for the calculation of P u and by using analytical rather than stochastic modelling of the collimator. The method was validated by comparing the results with standard MC-simulated scatter projections (P) of 99m Tc and 201 Tl point sources in a digital thorax phantom. After correction, excellent agreement was obtained between P-tilde and P. The total computation time required to calculate an accurate scatter projection of an extended distribution in a thorax phantom on a PC is a only few tens of seconds per projection, which makes the method attractive for application in accurate scatter correction in clinical SPECT. Furthermore, the method removes the need of excessive computer memory involved with previously proposed 3D model-based scatter correction methods. (author)
International Nuclear Information System (INIS)
Noji, H; Haji, K; Hamada, T
2003-01-01
We have calculated the alternating current (ac) losses of a 114 MVA high-T C superconducting (HTS) transmission cable using an electric-circuit (EC) model. The HTS cable is fabricated by Tokyo Electric Power Company and Sumitomo Electric Industries, Ltd. The EC model is comprised of a resistive part and an inductive part. The resistive part is obtained by the approximated Norris equation for a HTS tape. The Norris equation indicates hysteresis losses due to self-fields. The inductive part has two components, i.e. inductances related to axial fields and those related to circumferential fields. The layer currents and applied fields of each layer were calculated by the EC model. By using both values, the ac losses of the one-phase HTS cable were obtained by calculation considering the self-field, the axial field and the circumferential field of the HTS tape. The measured ac loss transporting 1 kA rms is 0.7 W m -1 ph -1 , which is equal to the calculation. The distribution of each layer loss resembles in shape the distribution of the circumferential field in each layer, which indicates that the circumferential fields strongly influence the ac losses of the HTS cable
Directory of Open Access Journals (Sweden)
Yu-San Han
Full Text Available Anguilla japonica and Anguilla marmorata share overlapping spawning sites, similar drifting routes, and comparable larval durations. However, they exhibit allopatric geographical distributions in East Asia. To clarify this ecological discrepancy, glass eels from estuaries in Taiwan, the Philippines, Indonesia, and China were collected monthly, and the survival rate of A. marmorata under varying water salinities and temperatures was examined. The composition ratio of these 2 eel species showed a significant latitude cline, matching the 24 °C sea surface temperature isotherm in winter. Both species had opposing temperature preferences for recruitment. A. marmorata prefer high water temperatures and die at low water temperatures. In contrast, A. japonica can endure low water temperatures, but their recruitment is inhibited by high water temperatures. Thus, A. japonica glass eels, which mainly spawn in summer, are preferably recruited to Taiwan, China, Korea, and Japan by the Kuroshio and its branch waters in winter. Meanwhile, A. marmorata glass eels, which spawn throughout the year, are mostly screened out in East Asia in areas with low-temperature coastal waters in winter. During summer, the strong northward currents from the South China Sea and Changjiang River discharge markedly block the Kuroshio invasion and thus restrict the approach of A. marmorata glass eels to the coasts of China and Korea. The differences in the preferences of the recruitment temperature for glass eels combined with the availability of oceanic currents shape the real geographic distribution of Anguilla japonica and Anguilla marmorata, making them "temperate" and "tropical" eels, respectively.
Han, Yu-San; Yambot, Apolinario V; Zhang, Heng; Hung, Chia-Ling
2012-01-01
Anguilla japonica and Anguilla marmorata share overlapping spawning sites, similar drifting routes, and comparable larval durations. However, they exhibit allopatric geographical distributions in East Asia. To clarify this ecological discrepancy, glass eels from estuaries in Taiwan, the Philippines, Indonesia, and China were collected monthly, and the survival rate of A. marmorata under varying water salinities and temperatures was examined. The composition ratio of these 2 eel species showed a significant latitude cline, matching the 24 °C sea surface temperature isotherm in winter. Both species had opposing temperature preferences for recruitment. A. marmorata prefer high water temperatures and die at low water temperatures. In contrast, A. japonica can endure low water temperatures, but their recruitment is inhibited by high water temperatures. Thus, A. japonica glass eels, which mainly spawn in summer, are preferably recruited to Taiwan, China, Korea, and Japan by the Kuroshio and its branch waters in winter. Meanwhile, A. marmorata glass eels, which spawn throughout the year, are mostly screened out in East Asia in areas with low-temperature coastal waters in winter. During summer, the strong northward currents from the South China Sea and Changjiang River discharge markedly block the Kuroshio invasion and thus restrict the approach of A. marmorata glass eels to the coasts of China and Korea. The differences in the preferences of the recruitment temperature for glass eels combined with the availability of oceanic currents shape the real geographic distribution of Anguilla japonica and Anguilla marmorata, making them "temperate" and "tropical" eels, respectively.
Shape Preserving Interpolatory Subdivision Schemes for Nonuniform Data
Kuijt, F.; van Damme, Rudolf M.J.
2002-01-01
This article is concerned with a class of shape preserving four-point subdivision schemes which are stationary and which interpolate nonuniform univariate data {(xi, fi)}. These data are functional data, i.e., xi≠xj if i≠j. Subdivision for the strictly monotone x-values is performed by a subdivision
Field nonuniformity correction for quantitative analysis of digitized mammograms
International Nuclear Information System (INIS)
Pawluczyk, Olga; Yaffe, Martin J.
2001-01-01
Several factors, including the heel effect, variation in distance from the x-ray source to points in the image and path obliquity contribute to the signal nonuniformity of mammograms. To best use digitized mammograms for quantitative image analysis, these field non-uniformities must be corrected. An empirically based correction method, which uses a bowl-shaped calibration phantom, has been developed. Due to the annular spherical shape of the phantom, its attenuation is constant over the entire image. Remaining nonuniformities are due only to the heel and inverse square effects as well as the variable path through the beam filter, compression plate and image receptor. In logarithmic space, a normalized image of the phantom can be added to mammograms to correct for these effects. Then, an analytical correction for path obliquity in the breast can be applied to the images. It was found that the correction causes the errors associated with field nonuniformity to be reduced from 14% to 2% for a 4 cm block of material corresponding to a combination of 50% fibroglandular and 50% fatty breast tissue. A repeatability study has been conducted to show that in regions as far as 20 cm away from the chest wall, variations due to imaging conditions and phantom alignment contribute to <2% of overall corrected signal
Josephson flux-flow oscillators in nonuniform microwave fields
DEFF Research Database (Denmark)
Salerno, Mario; Samuelsen, Mogens Rugholm
2000-01-01
We present a simple theory for Josephson flux-flow oscillators in the presence of nonuniform microwave fields. In particular we derive an analytical expression for the I-V characteristic of the oscillator from which we show that satellite steps are spaced around the main flux-flow resonance by only...
Absolute parametric instability in a nonuniform plane plasma ...
Indian Academy of Sciences (India)
Abstract. The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is ...
Absolute parametric instability in a nonuniform plane plasma
Indian Academy of Sciences (India)
The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is considered.
Instruction sequences and non-uniform complexity theory
Bergstra, J.A.; Middelburg, C.A.
2008-01-01
We develop theory concerning non-uniform complexity in a setting in which the notion of single-pass instruction sequence considered in program algebra is the central notion. We define counterparts of the complexity classes P/poly and NP/poly and formulate a counterpart of the complexity theoretic
International Nuclear Information System (INIS)
Maciejewski, B.; Rodney Withers, H.
2004-01-01
The exploitation of a number of current clinical trials and reports on outcomes after radiation therapy (i.e. breast, head and neck, prostate) in clinical practice reflects many limitations for conventional techniques and dose-fractionation schedules and for 'average' conclusions. Even after decades of evolution of radiation therapy we still do not know how to optimize treatment for the individual patient and only have 'averages' and ill-defined 'probabilities' to guide treatment prescription. Wide clinical and biological heterogeneity within the groups of patients recruited into clinical trials with a few-fold variation in tumour volume within one stage of disease is obvious. Basic radiobiological guidelines concerning average cell killing of uniformly distributed and equally radiosensitive tumour cells arose from elegant but idealistic in vitro experiments and seem to be of uncertain validity. Therefore, we are confronted with more dilemmas than dogmas. Nonlinearity and in homogeneity of human tumour pattern and response to irradiation are discussed. The purpose of this paper is to present and discuss various aspects of non-uniform tumour cell targeted radiotherapy using conformal and dose intensity modulated techniques. (author)
Directory of Open Access Journals (Sweden)
Vladimir Kendrovski
2012-02-01
Full Text Available BACKGROUND. The goal of the present paper was to assess the impact of current and future burden of the ambient temperature to pollen distributions in Skopje. METHODS. In the study we have evaluated a correlation between the concentration of pollen grains in the atmosphere of Skopje and maximum temperature, during the vegetation period of 1996, 2003, 2007 and 2009 as a current burden in context of climate change. For our analysis we have selected 9 representative of each phytoallergen group (trees, grasses, weeds. The concentration of pollen grains has been monitored by a Lanzoni volumetric pollen trap. The correlation between the concentration of pollen grains in the atmosphere and selected meteorological variable from weekly monitoring has been studied with the help of linear regression and correlation coefficients. RESULTS. The prevalence of the sensibilization of standard pollen allergens in Skopje during the some period shows increasing from 16,9% in 1996 to 19,8% in 2009. We detect differences in onset of flowering, maximum and end of the length of seasons for pollen. The pollen distributions and risk increases in 3 main periods: early spring, spring and summer which are the main cause of allergies during these seasons. The largest increase of air temperature due to climate change in Skopje is expected in the summer season. CONCLUSION. The impacts of climate change by increasing of the temperature in the next decades very likely will include impacts on pollen production and differences in current pollen season. [TAF Prev Med Bull 2012; 11(1.000: 35-40
International Nuclear Information System (INIS)
Harrabi, Z.; Jomni, S.; Beji, L.; Bouazizi, A.
2010-01-01
In this work, we have studied the electrical characteristics of the Au/porous GaAs/p-GaAs diodes as a function of temperature. The (I-V)-T characteristics are analysed on the basis of thermionic emission (TE). The temperature behaviour of the barrier height potential and the ideality factor demonstrate that the current transport is controlled by the thermionic emission mechanism (TE) with Gaussian distribution of the barrier height potential. The Gaussian distribution of barrier height potential is due to barrier inhomogeneity, which is suggested to be caused by the presence of the porous GaAs interfacial layer. The experimental (I-V)-T characteristics of the Au/porous GaAs/p-GaAs heterostructure demonstrate the presence of a two Gaussian distributions having a mean barrier height potential Φ b0 -bar of about 0.67 and 0.54 V and standard deviations σ s 2 of about 8.4x10 -3 and 4.2x10 -3 V, respectively. Using the obtained standard deviation, the obtained Richardson constant value is in accordance with the well documented value (79.2 A cm -2 K -2 ) of p-type GaAs and the mean barrier height Φ b0 -bar is closed to the band gap of GaAs. The obtained values prove that the I-V-T characteristics of Au/porous GaAs/p-GaAs heterostructure are governed by the TE mechanism theory with two Gaussian distributions of barrier heights.
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced
International Nuclear Information System (INIS)
Zani, L.; Ciazynski, D.; Torre, A.; Bruzzone, P.; Stepanov, B.; Dewittler, R.; Staehli, F.
2007-01-01
Two full-size conductor samples using advanced Nb 3 Sn strands were tested in the SULTAN facility in 2005-2006 within (I,B,T) ranges close to the ITER operating conditions (B MAX ∼ 12 T, T ∼ 5 K). Each sample includes two conductor legs, connected together by a twin-box joint in their lower part. The conductor design is the same for the four legs, similar to that of the ITER Toroidal Field Model Coil, but each leg uses specific strands newly developed and industrially produced to reach higher J c performances than in previous samples. In addition to classical voltage taps and temperature sensors, the sample instrumentation included Hall probe (HP) heads positioned so as to discriminate current distribution between conductor main sub-cables (petals). In a first simple approach, we analyse the results supposing that the conductor drives a uniform current among strands. The model is mainly based on geometrical considerations associated with a global approach on strand mechanical behavior. In a second part, we model the conductor in a more realistic way with different currents shared between main sub-cables. Taking into account various geometrical aspects (spiral trajectories, precise self-field maps...) the current in all petals are reconstructed with help of HP's signals, expected to experience self-field from CICC's. The mechanical aspects are also tentatively considered (electromagnetic load, bending strain...). Global results for both samples are shown, and possible inaccuracies due to geometrical parameters (petals positioning) are discussed. Those data are then injected into a Matlab program for electrical and geometrical CICC modeling (derived from the previous ENSIC code from CEA) and compared with dedicated experimental runs. Results are finally commented on the basis of overall consistency with HP's signals. (authors)
Directory of Open Access Journals (Sweden)
O. Klemp
2006-01-01
Full Text Available In order to satisfy the stringent demand for an accurate prediction of MIMO channel capacity and diversity performance in wireless communications, more effective and suitable models that account for real antenna radiation behavior have to be taken into account. One of the main challenges is the accurate modeling of antenna correlation that is directly related to the amount of channel capacity or diversity gain which might be achieved in multi element antenna configurations. Therefore spherical wave theory in electromagnetics is a well known technique to express antenna far fields by means of a compact field expansion with a reduced number of unknowns that was recently applied to derive an analytical approach in the computation of antenna pattern correlation. In this paper we present a novel and efficient computational technique to determine antenna pattern correlation based on the evaluation of the surface current distribution by means of a spherical mode expansion.
DEFF Research Database (Denmark)
Han, Renke; Meng, Lexuan; Guerrero, Josep M.
2018-01-01
combining the state-dependent tolerance with a nonnegative offset. In order to design the event-triggered principle and guarantee the global stability, a generalized dc microgrid model is proposed and proven to be positive definite, based on which Lyapunov-based approach is applied. Furthermore, considering......A distributed nonlinear controller is presented to achieve both accurate current-sharing and voltage regulation simultaneously in dc microgrids considering different line impedances’ effects among converters. Then, an improved event-triggered principle for the controller is introduced through...... for precise real-time information transmission, without sacrificing system performance. Experimental results obtained from a dc microgrid setup show the robustness of the new proposal under normal, communication failure, communication delay and plug-and-play operation conditions. Finally, communication...
Experimental study on the CHF in uniformly and non-uniformly heated vertical annuli
Energy Technology Data Exchange (ETDEWEB)
Chun, Se Young; Moon, Sang Ki; Chung, Heung June; Park, Jong Kuk; Kim, Bok Deuk; Youn, Young Jung; Chung, Moon Ki
2001-09-01
Up to now, KAERI has performed critical heat flux experiments in water under zero-flow and low-flow conditions using a RCS CHF loop facility with uniformly and non-uniformly heated vertical annulus. Since the existing CHF experiments were mainly performed under low-pressure conditions, we performed the CHF experiment to investigate the pressure effect on the CHF under zero-flow and low-flow conditions for a wide range of system pressures. Also, two vertical annuli with the same geometry have been used to investigate the axial heat flux distributions on the CHF. This report summarizes the experimental results and provides the CHF data that can be used for the development for CHF correlation and a thermal hydraulic analysis code. The CHF data have been collected for system pressures ranging from 0.57 to 15.15 MPa, mass flux 0 and from 200 to 650 kg/m2s, inlet subcooling from 75 to 360 kJ/kg and exit quality from 0.07 to 0.57. At low-flow conditions, the total number of data are 242 and 290 with uniformly heated- and non-uniformly heated test sections, respectively. 41 and 94 CHF data are generated with uniformly heated- and non-uniformly heated test sections, respectively, in zero-flow CHF experiments that are performed by blocking test section bottoms. The CHF experiment result shows that the effects of system pressure, mass flux and inlet subcooling are consistent with conventional understandings and similar to those for round tubes. The behavior of the CHF is relatively complex at low pressures. Also, the effects of axial heat flux profile are large at low-pressure conditions.
Experimental study on the CHF in uniformly and non-uniformly heated vertical annuli
International Nuclear Information System (INIS)
Chun, Se Young; Moon, Sang Ki; Chung, Heung June; Park, Jong Kuk; Kim, Bok Deuk; Youn, Young Jung; Chung, Moon Ki
2001-09-01
Up to now, KAERI has performed critical heat flux experiments in water under zero-flow and low-flow conditions using a RCS CHF loop facility with uniformly and non-uniformly heated vertical annulus. Since the existing CHF experiments were mainly performed under low-pressure conditions, we performed the CHF experiment to investigate the pressure effect on the CHF under zero-flow and low-flow conditions for a wide range of system pressures. Also, two vertical annuli with the same geometry have been used to investigate the axial heat flux distributions on the CHF. This report summarizes the experimental results and provides the CHF data that can be used for the development for CHF correlation and a thermal hydraulic analysis code. The CHF data have been collected for system pressures ranging from 0.57 to 15.15 MPa, mass flux 0 and from 200 to 650 kg/m2s, inlet subcooling from 75 to 360 kJ/kg and exit quality from 0.07 to 0.57. At low-flow conditions, the total number of data are 242 and 290 with uniformly heated- and non-uniformly heated test sections, respectively. 41 and 94 CHF data are generated with uniformly heated- and non-uniformly heated test sections, respectively, in zero-flow CHF experiments that are performed by blocking test section bottoms. The CHF experiment result shows that the effects of system pressure, mass flux and inlet subcooling are consistent with conventional understandings and similar to those for round tubes. The behavior of the CHF is relatively complex at low pressures. Also, the effects of axial heat flux profile are large at low-pressure conditions
International Nuclear Information System (INIS)
Hajmohammadi, M.R.; Poozesh, S.; Rahmani, M.; Campo, A.
2013-01-01
This paper explores the bearing that a non-uniform distribution of heat flux used as a wall boundary condition exerts on the heat transfer improvement in a round pipe. Because the overall heat load is considered fixed, the heat transfer improvement is viewed through a reduction in the maximum temperature (‘hot spot’) by imposing optimal distribution of heat flux. Two cases are studied in detail 1) fully developed and 2) developing flow. Peak temperatures in the heated pipe wall are calculated via an analytical approach for the fully developed case, while a numerical simulation based on CFD is employed for the developing case. By relaxing the heat flux distribution on the pipe wall, the numerical results imply that the optimum distribution of heat flux, which minimizes the peak temperatures corresponds with the ‘descending’ distribution. Given that the foregoing approach is quite different from the ‘ascending’ heat flux distribution recommended in the literature by means of the entropy generation minimization (EGM) method, it is inferred that the optimization of heat transfer and fluid flow, in comparison with the thermodynamic optimization, may bring forth quite different guidelines for the designs of thermal systems under the same constraints and circumstances. -- Highlights: • Considered the bearing of non-uniform distribution of heat flux on the hot spots. • Determined the optimal distribution of heat flux that minimizes the hot spots. • Results are compared with those obtained by EGM method
John R. Jones
1985-01-01
Quaking aspen is the most widely distributed native North American tree species (Little 1971, Sargent 1890). It grows in a great diversity of regions, environments, and communities (Harshberger 1911). Only one deciduous tree species in the world, the closely related Eurasian aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911)....
Haase, S.; Moser, M.; Hirschfeld, J. A.; Jozwiak, K.
2016-01-01
An automotive fuel cell with an active area of 250 cm2 is investigated in a 4-cell short stack with a current and temperature distribution device next to the bipolar plate with 560 current and 140 temperature segments. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this current scan shunt module. The applied fuel cell consists of bipolar plates constructed of 75-μm-thick, welded stainless-steel foils and a graphitic coating. The electrical conductivities of the bipolar plate and gas diffusion layer assembly are determined ex-situ with this module with a 6% deviation in in-plane conductivity. The current density distribution is evaluated up to 2.4 A cm-2. The entire cell's investigated volumetric power density is 4.7 kW l-1, and its gravimetric power density is 4.3 kW kg-1 at an average cell voltage of 0.5 V. The current density distribution is determined without influencing the operating cell. In addition, the current density distribution in the catalyst-coated membrane and its effective resistivity distribution with a finite volume discretisation of Ohm's law are evaluated. The deviation between the current density distributions in the catalyst-coated membrane and the bipolar plate is determined.
Non-uniform Mutation Rates for Problems with Unknown Solution Lengths
DEFF Research Database (Denmark)
Cathabard, Stephan; Lehre, Per Kristian; Yao, Xin
2011-01-01
Many practical optimisation problems allow candidate solu- tions of varying lengths, and where the length of the opti- mal solution is thereby a priori unknown. We suggest that non-uniform mutation rates can be beneficial when solving such problems. In particular, we consider a mutation oper- ator...... that flips each bit with a probability that is inversely proportional to the bit position, rather than the bitstring length. The runtime of the (1+1) EA using this mutation operator is analysed rigorously on standard example func- tions. Furthermore, the behaviour of the new mutation op- erator...... distribution, and show that the new operator can yield exponentially faster runtimes for some parameters of this distribution. The experimental results show that the new mutation operator leads to dramatically shorter runtimes on a class of instances of the software engi- neering problem that is conjectured...
Energy Technology Data Exchange (ETDEWEB)
Chiba, Atsuo [Yongo National Collage of Technology (Japan); Isaka, Katsuo [University of Tokushima (Japan)
1999-07-01
The health effect of the weak current induced in the human body as a result of the interaction between human body and power frequency electric fields has been investigated. However, the current density inside the head part tissues of the human body exposed to the electric fields has rarely been discussed. In this paper, the finite element method is applied to the analysis of the current density distribution of the head part composed of scalp, skull, cerebrospinal liquid and brain tissues. The basic characteristics of the current density distributions of the brain in the asymmetrical human model have been made clear. (author)
Influence Of Nonuniformity On Infrared Focal Plane Array Performance
Milton, A. F.; Barone, F. R.; Kruer, M. R.
1985-08-01
It is well known that detector response nonuniformity results in pattern noise with staring sensors that is a severe problem in the infrared due to the low intrinsic contrast of IR imagery. The pattern noise can be corrected by electronic processing; however, the ability to correct for pattern noise is limited by the interaction of interscene and intrascene variability with the dynamic range of the processor (number of bits) and, depending upon the algorithm used, by nonlinearities in the detector response. This paper quantifies these limitations and describes the interaction of detector gain nonuniformity and detector nonlinearities. Probabilistic models are developed to determine the maximum sensitivity that can be obtained using a two-point algorithm to correct a nonlinear response curve over a wide temperature range. Curves that permit a prediction of the noise equivalent differential temperature (NEAT) under varying circumstances are presented. A piecewise linear approach to dealing with severe detector response nonlinearities is presented and analyzed for its effectiveness.
POSSOL, 2-D Poisson Equation Solver for Nonuniform Grid
International Nuclear Information System (INIS)
Orvis, W.J.
1988-01-01
1 - Description of program or function: POSSOL is a two-dimensional Poisson equation solver for problems with arbitrary non-uniform gridding in Cartesian coordinates. It is an adaptation of the uniform grid PWSCRT routine developed by Schwarztrauber and Sweet at the National Center for Atmospheric Research (NCAR). 2 - Method of solution: POSSOL will solve the Helmholtz equation on an arbitrary, non-uniform grid on a rectangular domain allowing only one type of boundary condition on any one side. It can also be used to handle more than one type of boundary condition on a side by means of a capacitance matrix technique. There are three types of boundary conditions that can be applied: fixed, derivative, or periodic
Numerical simulation of effect of laser nonuniformity in interior interface
International Nuclear Information System (INIS)
Yu Xiaojin; Wu Junfeng; Ye Wenhua
2007-01-01
Using the LARED-S code and referring to the NIF direct-drive DT ignition target, the effect of laser nonuniformity on the interior interface in direct-drive spherical implosion with high convergence ratio was numerically studied. The two-dimensional results show that the implosion with high convergence ratio is sensitive to the nonuniformity of driving laser, and the growth of hydrodynamic instability on interior interface destroys the symmetric-drive and reduces the volume of central hot spot observably. Taking the limit that perturbation amplitude is equal to 1/3 radius of central hot spot, the simulation also gives that the requirements for the laser uniformity for different mode number(less than 12) on simple physical model are between 2.5% -0.25%, and the modes between 8-10 have the most rigorous requirement which is about 0.25%. (authors)
Protostellar formation in rotating interstellar clouds. VI. Nonuniform initial conditions
International Nuclear Information System (INIS)
Boss, A.P.
1987-01-01
The collapse and fragmentation of rotating protostellar clouds is explored, starting from nonuniform density and nonuniform rotation initial conditions. Whether binary fragmentation occurs during the first dynamic collapse phase depends strongly on the initial density profile. Exponential clouds are only somewhat more resistant to fragmentation than uniform-density clouds, but power-law clouds do not undergo fragmentation for likely values of a relevant parameter. Because binary fragments start from profiles intermediate between uniform density and exponential clouds, minimum protostellar mass for population I stars should be increased to approximately 0.02 solar mass. The axisymmetric Terey et al. (1984) model should be stable with respect to nonaxisymmetric perturbations. Considering the observed binary frequency, collapse from power-law initial conditions appears to be less common than collapse from more uniform initial conditions. 34 references
Computation of nonuniform transmission lines using the FDTD method
Energy Technology Data Exchange (ETDEWEB)
Miranda, G.C.; Paulino, J.O.S. [Universidade Federal de Minas Gerais, Belo Horizonte, MG (Brazil). School of Engineering
1997-12-31
Calculation of lightning overvoltages on transmission lines has been described. Lightning induced overvoltages are of great significance under certain conditions because of the main characteristics of the phenomena. The lightning channel model is one of the most important parameters essential to obtaining the generated electromagnetic fields. In this study, nonuniform transmission line equations were solved using the finite difference method and the leap-frog scheme, the Finite Difference Time Domain (FDTD) method. The subroutine was interfaced with the Electromagnetic Transients Program (EMTP). Two models were used to represent the characteristic impedance of the nonuniform lines used to model the transmission line towers and the lightning main channel. The advantages of the FDTD method was the much smaller code and faster processing time. 35 refs., 5 figs.
Non-uniformity measurements of PbWO4 crystals
International Nuclear Information System (INIS)
Depasse, P.; Ernenwein, J.P.; Ille, B.; Martin, F.; Rosset, C.; Zach, F.
1998-11-01
Two independent methods have been used to measure the longitudinal non-uniformity scintillation response of 3 different (23-cm long) PbWO 4 crystals. The first one is the classical 60 Co source method. The source is collimated along the crystal, each 1,5-cm, and the scintillation signal is measured with a photomultiplier (a hybrid photomultiplier in our case). The second one is the use of cosmic particles (Minimum Ionizing Particles). A cosmic bench allows reconstructing the track of the MIP's and thus the energy deposit with the help of a full GEANT simulation of the setup. Variations of E along the crystal artificially cut in 1,5-cm divisions, leads to determine the non-uniformity. The conclusion is that both methods agree quite well. Furthermore, a good estimation of crystal light yield can be obtained. (author)
International Nuclear Information System (INIS)
Bhattacharyya Krishnendu
2013-01-01
In this paper, the effect of non-uniform heat flux on heat transfer in boundary layer stagnation-point flow over a shrinking sheet is studied. The variable boundary heat fluxes are considered of two types: direct power-law variation with the distance along the sheet and inverse power-law variation with the distance. The governing partial differential equations (PDEs) are transformed into non linear self-similar ordinary differential equations (ODEs) by similarity transformations, and then those are solved using very efficient shooting method. The direct variation and inverse variation of heat flux along the sheet have completely different effects on the temperature distribution. Moreover, the heat transfer characteristics in the presence of non-uniform heat flux for several values of physical parameters are also found to be interesting
Li, Hongye; Wan, Hongdan; Zhang, Zuxing; Sun, Bing; Zhang, Lin
2016-10-01
This paper investigates optical properties of few-mode fiber with non-uniform refractive index, namely: the few mode fiber with U-shape refractive index and the two-mode and four-mode few-mode fiber with bent radius. Finite element method is used to analyze the mode distributions based on their non-uniform refractive index. Effective mode control can be achieved through these few mode fibers to achieve vector beam generation. Finally, reflection spectra of a few-mode fiber Bragg grating are calculated theoretically and then measured under different bending conditions. Experimental results are in good accordance with the theoretical ones. These few mode fibers show potential applications in generation of cylindrical vector beam both for optical lasing and sensing systems.
Non-uniformity of phase structure in immiscible polymer blends
Czech Academy of Sciences Publication Activity Database
Fortelný, Ivan; Lapčíková, Monika; Lednický, František; Starý, Zdeněk; Kruliš, Zdeněk
2008-01-01
Roč. 48, č. 3 (2008), s. 564-571 ISSN 0032-3888 R&D Projects: GA ČR GA106/06/0729; GA ČR GA106/06/0761 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer blends * melt mixing * non-uniform morphology Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.245, year: 2008
Using Nonuniform Fiber to Generate Slow Light via SBS
Directory of Open Access Journals (Sweden)
Wenhai Li
2008-01-01
Full Text Available The data pulse delay based on slow light induced by stimulated Brillouin scattering (SBS in a nonuniform dispersion decreasing fiber (DDF is demonstrated experimentally, and the distortions of data pulses at different beat frequencies are studied. We found that a delay exceeding a pulse width can be achieved at particular beat frequency, and the DDF has larger delay versus gain slope coefficient with much better output pulse quality than single-mode fiber.
Linearization of Nonautonomous Impulsive System with Nonuniform Exponential Dichotomy
Directory of Open Access Journals (Sweden)
Yongfei Gao
2014-01-01
Full Text Available This paper gives a version of Hartman-Grobman theorem for the impulsive differential equations. We assume that the linear impulsive system has a nonuniform exponential dichotomy. Under some suitable conditions, we proved that the nonlinear impulsive system is topologically conjugated to its linear system. Indeed, we do construct the topologically equivalent function (the transformation. Moreover, the method to prove the topological conjugacy is quite different from those in previous works (e.g., see Barreira and Valls, 2006.
ELECTRONIC CIRCUIT BOARDS NON-UNIFORM COOLING SYSTEM MODEL
Directory of Open Access Journals (Sweden)
D. V. Yevdulov
2016-01-01
Full Text Available Abstract. The paper considers a mathematical model of non-uniform cooling of electronic circuit boards. The block diagram of the system implementing this approach, the method of calculation of the electronic board temperature field, as well as the principle of its thermal performance optimizing are presented. In the considered scheme the main heat elimination from electronic board is produced by the radiator system, and additional cooling of the most temperature-sensitive components is produced by thermoelectric batteries. Are given the two-dimensional temperature fields of the electronic board during its uniform and non-uniform cooling, is carried out their comparison. As follows from the calculations results, when using a uniform overall cooling of electronic unit there is a waste of energy for the cooling 0f electronic board parts which temperature is within acceptable temperature range without the cooling system. This approach leads to the increase in the cooling capacity of used thermoelectric batteries in comparison with the desired values. This largely reduces the efficiency of heat elimination system. The use for electronic boards cooling of non-uniform local heat elimination removes this disadvantage. The obtained dependences show that in this case, the energy required to create a given temperature is smaller than when using a common uniform cooling. In this approach the temperature field of the electronic board is more uniform and the cooling is more efficient.
Adding muscle where you need it: non-uniform hypertrophy patterns in elite sprinters.
Handsfield, G G; Knaus, K R; Fiorentino, N M; Meyer, C H; Hart, J M; Blemker, S S
2017-10-01
Sprint runners achieve much higher gait velocities and accelerations than average humans, due in part to large forces generated by their lower limb muscles. Various factors have been explored in the past to understand sprint biomechanics, but the distribution of muscle volumes in the lower limb has not been investigated in elite sprinters. In this study, we used non-Cartesian MRI to determine muscle sizes in vivo in a group of 15 NCAA Division I sprinters. Normalizing muscle sizes by body size, we compared sprinter muscles to non-sprinter muscles, calculated Z-scores to determine non-uniformly large muscles in sprinters, assessed bilateral symmetry, and assessed gender differences in sprinters' muscles. While limb musculature per height-mass was 22% greater in sprinters than in non-sprinters, individual muscles were not all uniformly larger. Hip- and knee-crossing muscles were significantly larger among sprinters (mean difference: 30%, range: 19-54%) but only one ankle-crossing muscle was significantly larger (tibialis posterior, 28%). Population-wide asymmetry was not significant in the sprint population but individual muscle asymmetries exceeded 15%. Gender differences in normalized muscle sizes were not significant. The results of this study suggest that non-uniform hypertrophy patterns, particularly large hip and knee flexors and extensors, are advantageous for fast sprinting. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Bott-Suzuki, Simon; Cordaro, S. W.; Caballero Bendixsen, L. S.; Atoyan, L.; Byvank, T.; Potter, W.; Kusse, B. R.; Greenly, J. B.; Hammer, D. A.; Chittenden, J. P.; Jennings, C. A.
2015-11-01
We present a study investigating the initiation of plasma in solid, metallic liners where the liner thickness is large compared to the collisionless skin depth. A vacuum gap is introduced in the power feed and we investigate the effect of this on the azimuthal initiation of plasma in the liner. We present optical emission data from aluminum liners on the 1 MA, 100ns COBRA generator. We use radial and axial gated imaging and streak photography, which show a dependence of onset of emission with the size of a small power-feed vacuum gap. The evolution of ``hot-spots'' generated from breakdown vacuum gap evolves relatively slowly and azimuthal uniformity is not observed on the experimental time-scale. We also show measurements of the B-field both outside and inside the liner, using miniature Bdot probes, which show a dependence on the liner diameter and thickness, and a correlation to the details of the breakdown. These data will be compared to magneto-hydrodynamic simulations to infer how such non-uniformities may affect full liner implosion experiments.
Prevention of Bridge Scour with Non-uniform Circular Piers Plane under Steady Flows
Chen, Hsing-Ting; Wang, Chuan-Yi
2017-04-01
River bed scour and deposit variation extremely severe because of most of rivers are steep and rapid flows, and river discharge extremely unstable and highly unsteady during different seasons in Taiwan. In addition to the obstruction of piers foundation, it causes local scour and threatens the safety of bridges. In the past, riprap, wire gabion or wrap pier works were adopted as the protections of piers foundation, but there were no effectual outcomes. The events of break off piers still happen sometimes. For example, typhoon Kalmaegi (2008) and Morakot (2009) caused heavy damages on Ho-Fon bridge in the Da-jia river and Shuang-Yuan bridge in the Kao-Ping river, respectively. Accordingly, to understand the piers scour system and propose an appropriate protection of piers foundation becomes an important topic for this study currently. This research improves the protection works of the existing uniform bridge pier (diameter D) to ensure the safety of the bridge. The non-uniform plane of circular piers (diameter D*) are placed on the top of a bridge pier foundation to reduce the down flow impacting energy and scour by its' surface roughness characteristics. This study utilize hydraulic models to simulate local scour depth and scour depth change with time for non-uniform pier diameter ratio D/D* of 0.3,0.4,0.5,0.6,0.7 and 0.8, and different type pier and initial bed level (Y) relative under the foundation top elevation under steady flows of V/Vc=0.95,0.80 and 0.65. The research results show that the scour depth increases with an increase of flow intensity (V/Vc) under different types of steady flow hydrographs. The scour depth decreases with increase of initial bed level (Y=+0.2D*,0D*and -0.2D*) relative under the foundation top elevation of the different type pier. The maximum scour depth occurred in the front of the pier for all conditions. Because of the scouring retardation by the non-uniform plane of foundation, the scour depth is reduced for the un-exposed bridge
R.f.-induced steps in mutually coupled, two-dimensional distributed Josephson tunnel junctions
International Nuclear Information System (INIS)
Klein, U.; Dammschneider, P.
1991-01-01
This paper reports on the amplitudes of the current steps in the I-V characteristics of mutually coupled two-dimensional distributed Josephson tunnel junctions driven by microwaves. For this purpose we use a numerical computation algorithm based on a planar resonator model for the individual Josephson tunnel junctions to calculate the d.c. current density distribution. In addition to the fundamental microwave frequency, harmonic contents of the tunneling current are also considered. The lateral dimensions of the individual junctions are small compared to the microwave wavelength and the Josephson penetration depth, giving an almost constant current density distribution. Therefore, the coupled junctions can give much greater step amplitudes than a single junction with an equal tunneling area, because of their nonuniform current density distribution
Hefferman, Gerald; Chen, Zhen; Wei, Tao
2017-07-01
This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.
Hefferman, Gerald; Chen, Zhen; Wei, Tao
2017-07-01
This article details the generation of an extended-bandwidth frequency sweep using a single, communication grade distributed feedback (DFB) laser. The frequency sweep is generated using a two-step technique. In the first step, injection current modulation is employed as a means of varying the output frequency of a DFB laser over a bandwidth of 99.26 GHz. A digital optical phase lock loop is used to lock the frequency sweep speed during current modulation, resulting in a linear frequency chirp. In the second step, the temperature of the DFB laser is modulated, resulting in a shifted starting laser output frequency. A laser frequency chirp is again generated beginning at this shifted starting frequency, resulting in a frequency-shifted spectrum relative to the first recorded data. This process is then repeated across a range of starting temperatures, resulting in a series of partially overlapping, frequency-shifted spectra. These spectra are then aligned using cross-correlation and combined using averaging to form a single, broadband spectrum with a total bandwidth of 510.9 GHz. In order to investigate the utility of this technique, experimental testing was performed in which the approach was used as the swept-frequency source of a coherent optical frequency domain reflectometry system. This system was used to interrogate an optical fiber containing a 20 point, 1-mm pitch length fiber Bragg grating, corresponding to a period of 100 GHz. Using this technique, both the periodicity of the grating in the frequency domain and the individual reflector elements of the structure in the time domain were resolved, demonstrating the technique's potential as a method of extending the sweeping bandwidth of semiconductor lasers for frequency-based sensing applications.
Dyer, Joseph J.; Brewer, Shannon K.; Worthington, Thomas A.; Bergey, Elizabeth A.
2013-01-01
1.A major limitation to effective management of narrow-range crayfish populations is the paucity of information on the spatial distribution of crayfish species and a general understanding of the interacting environmental variables that drive current and future potential distributional patterns. 2.Maximum Entropy Species Distribution Modeling Software (MaxEnt) was used to predict the current and future potential distributions of four endemic crayfish species in the Ouachita Mountains. Current distributions were modelled using climate, geology, soils, land use, landform and flow variables thought to be important to lotic crayfish. Potential changes in the distribution were forecast by using models trained on current conditions and projecting onto the landscape predicted under climate-change scenarios. 3.The modelled distribution of the four species closely resembled the perceived distribution of each species but also predicted populations in streams and catchments where they had not previously been collected. Soils, elevation and winter precipitation and temperature most strongly related to current distributions and represented 6587% of the predictive power of the models. Model accuracy was high for all models, and model predictions of new populations were verified through additional field sampling. 4.Current models created using two spatial resolutions (1 and 4.5km2) showed that fine-resolution data more accurately represented current distributions. For three of the four species, the 1-km2 resolution models resulted in more conservative predictions. However, the modelled distributional extent of Orconectes leptogonopodus was similar regardless of data resolution. Field validations indicated 1-km2 resolution models were more accurate than 4.5-km2 resolution models. 5.Future projected (4.5-km2 resolution models) model distributions indicated three of the four endemic species would have truncated ranges with low occurrence probabilities under the low-emission scenario
Energy Technology Data Exchange (ETDEWEB)
Weiss, Roland [Siemens AG, Erlangen (Germany); Boeke, Ulrich [Philips Group Innovation-Research, Eindhoven (Netherlands); Maurer, Wilhelm [Infineon Technologies AG, Neubiberg (Germany); Zeltner, Stefan [Fraunhofer-Inst. fuer Integrierte Systeme und Bauelementetechnologie (IISB), Erlangen (Germany)
2012-07-01
The joint undertaking ''Direct Current Components and Grid'' (DCC+G) takes on the strategic challenge to reduce energy consumption and thus the reduction of CO{sub 2} emission caused by commercially used buildings through research in the fields of Direct Current distribution at a voltage level of {+-} 380 V. The major energy consumers in commercially used buildings, ready for the ''net-zero-energy'' goal of the European Union, are heat pumps for heating, ventilation systems, air conditioning units, cooling units (HVAC), lighting systems and information technology. All these components and subsystems have in common, that the most efficient versions would benefit from a direct current supply. Additionally the local producers of electric energy like photovoltaic systems usually generate DC-current. A Direct Current distribution grid within buildings would avoid the repeating conversion from DC and AC an vice versa and therefore reduce conversion losses. Important components of a direct current distribution grid are central, smart, high efficient, bidirectional rectifiers replacing the large number of small, less efficient rectifiers used today. Such large central rectifiers units could additionally be used to actively improve the power quality of the smart local AC distribution grid. One major part of the described activities is to show energy savings of about 5 % of electrical energy with a 2-phase direct current distribution grid using a voltage level of {+-} 380 V. (orig.)
Directory of Open Access Journals (Sweden)
N. Bayati
2017-02-01
Full Text Available Distributed Generation (DG connection in a power system tends to increase the short circuit level in the entire system which, in turn, could eliminate the protection coordination between the existing relays. Fault Current Limiters (FCLs are often used to reduce the short-circuit level of the network to a desirable level, provided that they are dully placed and appropriately sized. In this paper, a method is proposed for optimal placement of FCLs and optimal determination of their impedance values by which the relay operation time, the number and size of the FCL are minimized while maintaining the relay coordination before and after DG connection. The proposed method adopts the removal of low-impact FCLs and uses a hybrid Genetic Algorithm (GA optimization scheme to determine the optimal placement of FCLs and the values of their impedances. The suitability of the proposed method is demonstrated by examining the results of relay coordination in a typical DG network before and after DG connection.
Directory of Open Access Journals (Sweden)
ARASHLOO, R. S.
2014-05-01
Full Text Available Efficiency improvement under faulty conditions is one of the main objectives of fault tolerant PM drives. This goal can be achieved by increasing the output power while reducing the losses. Stator copper loss not only directly affects the total efficiency, but also plays an important role in thermal stress generations of iron core. In this paper, the effect of having control on neutral point current is studied on the efficiency of five-phase permanent magnet machines. Open circuit fault is considered for both one and two phases, and the distribution of copper loss along the windings are evaluated in each case. It is shown that only by having access to neutral point, it is possible to generate less stator thermal stress and more mechanical power in five-phase permanent magnet generators. Wind power generation and their applications are kept in mind, and the results are verified via simulations and experimental tests on an outer-rotor type of five-phase PM machine.
Park, Yong Min; Kim, Byeong Hee; Seo, Young Ho
2016-06-01
This paper presents a selective aluminum anodization technique for the fabrication of microstructures covered by nanoscale dome structures. It is possible to fabricate bulging microstructures, utilizing the different growth rates of anodic aluminum oxide in non-uniform electric fields, because the growth rate of anodic aluminum oxide depends on the intensity of electric field, or current density. After anodizing under a non-uniform electric field, bulging microstructures covered by nanostructures were fabricated by removing the residual aluminum layer. The non-uniform electric field induced by insulative micropatterns was estimated by computational simulations and verified experimentally. Utilizing computational simulations, the intensity profile of the electric field was calculated according to the ratio of height and width of the insulative micropatterns. To compare computational simulation results and experimental results, insulative micropatterns were fabricated using SU-8 photoresist. The results verified that the shape of the bottom topology of anodic alumina was strongly dependent on the intensity profile of the applied electric field, or current density. The one-step fabrication of nanostructure-covered microstructures can be applied to various fields, such as nano-biochip and nano-optics, owing to its simplicity and cost effectiveness.
International Nuclear Information System (INIS)
Han, Fengxiang X.; Su, Yi; Monts, David L.
2011-01-01
The objectives of this study were to investigate the current status of mercury distribution, speciation and bioavailability in the floodplain soils of Lower East Fork Poplar Creek (LEFPC) after decades of US Department of Energy's remediation. Historically as part of its national security mission, the U.S. Department of Energy's Y-12 National Security Facility in Oak Ridge, TN, USA acquired a significant fraction of the world's supply of elemental mercury. During the 1950s and 1960s, a large amount of elemental mercury escaped confinement and is still present in the watershed surrounding the Y-12 facility. A series of remediation efforts have been deployed in the watersheds around the Oak Ridge site during the following years. The sampling fields were located in a floodplain of LEFPC of Oak Ridge, TN, USA. A series of surface soils (10-20 cm) were sampled from both wooded areas and wetland/grass land. Two 8x8 m fields were selected in the woodland. Five profiles each consisting of three layers were randomly taken from each field. The three layers were the surface layer at 0-10cm, subsurface layer at 50-60 cm, and bottom layer at 100-110 cm. Soil in both wood and wetland areas was well developed with a clear B horizon. The present study clearly shows that the total mercury in floodplain soils of LEFPC significantly decreased after the series of remediation. This study confirmed the long-term effectiveness of these remediation actions, especially after excavation of highly contaminated floodplain soils. However, the average total mercury level of all soil samples collected are in the range of 50-80 mg/kg, still significantly above toxic level (> 5mg/kg). Furthermore, contrary to conventional believing, the major mercury form in current soils of this particular area of floodplain of LEFPC is mainly in non-cinnabar mercury bound in clay minerals (after decades of remediation). The floodplains can act both as a medium-term sink and as long-term sources. Native North
Nonuniformities of electrical resistivity in undoped 6H-SiC wafers
International Nuclear Information System (INIS)
Li, Q.; Polyakov, A.Y.; Skowronski, M.; Sanchez, E.K.; Loboda, M.J.; Fanton, M.A.; Bogart, T.; Gamble, R.D.
2005-01-01
Chemical elemental analysis, temperature-dependent Hall measurements, deep-level transient spectroscopy, and contactless resistivity mapping were performed on undoped semi-insulating (SI) and lightly nitrogen-doped conducting 6H-SiC crystals grown by physical vapor transport (PVT). Resistivity maps of commercial semi-insulating SiC wafers revealed resistivity variations across the wafers between one and two orders of magnitude. Two major types of variations were identified. First is the U-shape distribution with low resistivity in the center and high in the periphery of the wafer. The second type had an inverted U-shape distribution. Secondary-ion-mass spectrometry measurements of the distribution of nitrogen concentration along the growth axis and across the wafers sliced from different locations of lightly nitrogen-doped 6H-SiC boules were conducted. The measured nitrogen concentration gradually decreased along the growth direction and from the center to the periphery of the wafers. This change gives rise to the U-like distribution of resistivity in wafers of undoped SI-SiC. The concentrations of deep electron traps exhibited similar dependence. Compensation of nitrogen donors by these traps can result in the inverted U-like distribution of resistivity. Possible reasons for the observed nonuniformities include formation of a (0001) facet in PVT growth coupled with orientation-dependent nitrogen incorporation, systematic changes of the gas phase composition, and increase of the deposition temperature during boule growth
Study of entropy generation in a slab with non-uniform internal heat generation
Directory of Open Access Journals (Sweden)
El Haj Assad Mamdouh
2013-01-01
Full Text Available Analysis of entropy generation in a rectangular slab with a nonuniform internal heat generation is presented. Dimensionless local and total entropy generation during steady state heat conduction through the slab are obtained. Two different boundary conditions have been considered in the analysis, the first with asymmetric convection and the second with constant slab surface temperature. Temperature distribution within the slab is obtained analytically. The study investigates the effect of some relevant dimensionless heat transfer parameters on entropy generation. The results show that there exists a minimum local entropy generation but there does not exist a minimum total entropy generation for certain combinations of the heat transfer parameters. The results of calculations are presented graphically.
Shape and fission instabilities of ferrofluids in non-uniform magnetic fields
Vieu, Thibault; Walter, Clément
2018-04-01
We study static distributions of ferrofluid submitted to non-uniform magnetic fields. We show how the normal-field instability is modified in the presence of a weak magnetic field gradient. Then we consider a ferrofluid droplet and show how the gradient affects its shape. A rich phase transitions phenomenology is found. We also investigate the creation of droplets by successive splits when a magnet is vertically approached from below and derive theoretical expressions which are solved numerically to obtain the number of droplets and their aspect ratio as function of the field configuration. A quantitative comparison is performed with previous experimental results, as well as with our own experiments, and yields good agreement with the theoretical modeling.
Huang, Zheyong; Shen, Yunli; Pei, Ning; Sun, Aijun; Xu, Jianfeng; Song, Yanan; Huang, Gangyong; Sun, Xiaoning; Zhang, Shuning; Qin, Qing; Zhu, Hongming; Yang, Shan; Yang, Xiangdong; Zou, Yunzeng; Qian, Juying; Ge, Junbo
2013-12-01
Magnetic targeting has been recently introduced to enhance cell retention in animals with acute myocardial infarction. However, it is unclear whether the magnetic accumulation of intravascular cells increases the risk of coronary embolism. Upon finite element analysis, we found that the permanent magnetic field was nonuniform, manifestated as attenuation along the vertical axis and polarisation along the horizontal axis. In the in vitro experiments, iron-labelled mesenchymal stem cells (MSCs) were accumulated in layers predominantly at the edge of the magnet. In an ischaemic rat model subjected to intracavitary MSCs injection, magnetic targeting induced unfavourable vascular embolisation and an inhomogeneous distribution of the donor cells, which prevented the enhanced cell retention from translating into additional functional benefit. These potential complications of magnetic targeting should be thoroughly investigated and overcome before clinical application. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sui, Qi; Zhou, Hong; Yang, Lin; Zhang, Haifeng; Feng, Li; Zhang, Peng
2018-02-01
In this work, biomimetic laser treatment was performed on repairing and remanufacturing the nonuniform worn rail surface. The wearing depth distribution of three work regions of a failure rail surface was discussed, and different thickness hardening layers with different microstructure, microhardness and wear resistances were detected from the worm surfaces. Varying wear resistances of the surfaces with different biomimetic morphologies were obtained by biomimetic laser treatments, and the corresponding effect on the lubrication sliding wear of treated and untreated surfaces were studied for comparative study. In addition, the relationship between wear resistance and the spacing of units was also provided, which can lay the important theoretical foundation for avoiding the wear resistance of the serious worn surface is less than that of the slight worn surface in the future practical applications.
Gorris, M. E.; Hoffman, F. M.; Zender, C. S.; Treseder, K. K.; Randerson, J. T.
2017-12-01
Coccidioidomycosis, otherwise known as valley fever, is an infectious fungal disease currently endemic to the southwestern U.S. The magnitude, spatial distribution, and seasonality of valley fever incidence is shaped by variations in regional climate. As such, climate change may cause new communities to become at risk for contracting this disease. Humans contract valley fever by inhaling fungal spores of the genus Coccidioides. Coccidioides grow in the soil as a mycelium, and when stressed, autolyze into spores 2-5 µm in length. Spores can become airborne from any natural or anthropogenic soil disturbance, which can be exacerbated by dry soil conditions. Understanding the relationship between climate and valley fever incidence is critical for future disease risk management. We explored several multivariate techniques to create a predictive model of county-level valley fever incidence throughout the southwestern U.S., including Arizona, California, New Mexico, Nevada, and Utah. We incorporated surface air temperature, precipitation, soil moisture, surface dust concentrations, leaf area index, and the amount of agricultural land, all of which influence valley fever incidence. A log-linear regression model that incorporated surface air temperature, soil moisture, surface dust concentration, and the amount of agricultural land explained 34% of the county-level variance in annual average valley fever incidence. We used this model to predict valley fever incidence for the Representative Concentration Pathway 8.5 using simulation output from the Community Earth System Model. In our analysis, we describe how regional hotspots of valley fever incidence may shift with sustained warming and drying in the southwestern U.S. Our predictive model of valley fever incidence may help mitigate future health impacts of valley fever by informing health officials and policy makers of the climate conditions suitable for disease outbreak.
Zhong, Guangcai; Xie, Zhiyong; Cai, Minghong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; He, Jianfeng; Ebinghaus, Ralf
2012-01-03
Surface seawater and marine boundary layer air samples were collected on the ice-breaker R/V Xuelong (Snow Dragon) from the East China Sea to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic air samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the Sea of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi Seas. The dissolved CUPs in ocean water ranged widely from air. Trifluralin in seawater was relatively high in the Sea of Japan (35.2° N) and evenly distributed between 36.9 and 72.5° N, but it remained below the detection limit at the highest northern latitudes in Chukchi Sea. In contrast with other CUPs, concentrations of chlorothalonil and dacthal were more abundant in Chukchi Sea and in East Asia. The air-sea gas exchange of CUPs was generally dominated by net deposition. Latitudinal trends of fugacity ratios of α-endosulfan, chlorothalonil, and dacthal showed stronger deposition of these compounds in East Asia than in Chukchi Sea, while trifluralin showed stronger deposition in Chukchi Sea (-455 ± 245 pg/m(2)/day) than in the North Pacific (-241 ± 158 pg/m(2)/day). Air-sea gas exchange of chlorpyrifos varied from net volatilizaiton in East Asia (<40° N) to equilibrium or net deposition in the North Pacific and the Arctic.
The demagnetizing field of a non-uniform rectangular prism
DEFF Research Database (Denmark)
Smith, Anders; Nielsen, Kaspar Kirstein; Christensen, Dennis
2010-01-01
The effect of demagnetization on the magnetic properties of a rectangular ferromagnetic prism under non-uniform conditions is investigated. A numerical model for solving the spatially varying internal magnetic field is developed, validated and applied to relevant cases. The demagnetizing field...... is solved by an analytical calculation and the coupling between applied field, the demagnetization tensor field and spatially varying temperature is solved through iteration. We show that the demagnetizing field is of great importance in many cases and that it is necessary to take into account the non...
Nonuniform nuclear structures and QPOs in giant flares
International Nuclear Information System (INIS)
Sotani, Hajime
2012-01-01
We show that the shear modes in the neutron star crust are quite sensitive to the existence of nonuniform nuclear structures, the so-called “pasta”. Due to the existence of pasta phase, the frequencies of shear modes are reduced. Since the torsional shear frequencies depend strongly on the structure of pasta phase, through the observations of stellar oscillations, one can probe the pasta structure in the crust. Additionally, considering the effect of pasta phase, we show the possibility to explain all the observed frequencies in the SGR 1806-20 with using only crust torsional oscillations.